PR 10169
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 /* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83 static unsigned int marked_pr_dependency = 0;
84
85 #endif /* OBJ_ELF */
86
87 /* Results from operand parsing worker functions. */
88
89 typedef enum
90 {
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94 } parse_operand_result;
95
96 enum arm_float_abi
97 {
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101 };
102
103 /* Types of processor to assemble for. */
104 #ifndef CPU_DEFAULT
105 #if defined __XSCALE__
106 #define CPU_DEFAULT ARM_ARCH_XSCALE
107 #else
108 #if defined __thumb__
109 #define CPU_DEFAULT ARM_ARCH_V5T
110 #endif
111 #endif
112 #endif
113
114 #ifndef FPU_DEFAULT
115 # ifdef TE_LINUX
116 # define FPU_DEFAULT FPU_ARCH_FPA
117 # elif defined (TE_NetBSD)
118 # ifdef OBJ_ELF
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120 # else
121 /* Legacy a.out format. */
122 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123 # endif
124 # elif defined (TE_VXWORKS)
125 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
126 # else
127 /* For backwards compatibility, default to FPA. */
128 # define FPU_DEFAULT FPU_ARCH_FPA
129 # endif
130 #endif /* ifndef FPU_DEFAULT */
131
132 #define streq(a, b) (strcmp (a, b) == 0)
133
134 static arm_feature_set cpu_variant;
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148
149 /* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
152 static const arm_feature_set *legacy_cpu = NULL;
153 static const arm_feature_set *legacy_fpu = NULL;
154
155 static const arm_feature_set *mcpu_cpu_opt = NULL;
156 static const arm_feature_set *mcpu_fpu_opt = NULL;
157 static const arm_feature_set *march_cpu_opt = NULL;
158 static const arm_feature_set *march_fpu_opt = NULL;
159 static const arm_feature_set *mfpu_opt = NULL;
160 static const arm_feature_set *object_arch = NULL;
161
162 /* Constants for known architecture features. */
163 static const arm_feature_set fpu_default = FPU_DEFAULT;
164 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
166 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
168 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173 #ifdef CPU_DEFAULT
174 static const arm_feature_set cpu_default = CPU_DEFAULT;
175 #endif
176
177 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
195 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
196 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
198 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
202 static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
204
205 static const arm_feature_set arm_arch_any = ARM_ANY;
206 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
210 static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
212 static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214 static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216 static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
224 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
225 static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
227 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
230 static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
231
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
243
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
246 bfd_boolean
247 arm_is_eabi (void)
248 {
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250 }
251 #endif
252
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
257
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263 /* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266 #define MODE_RECORDED (1 << 4)
267
268 /* If unified_syntax is true, we are processing the new unified
269 ARM/Thumb syntax. Important differences from the old ARM mode:
270
271 - Immediate operands do not require a # prefix.
272 - Conditional affixes always appear at the end of the
273 instruction. (For backward compatibility, those instructions
274 that formerly had them in the middle, continue to accept them
275 there.)
276 - The IT instruction may appear, and if it does is validated
277 against subsequent conditional affixes. It does not generate
278 machine code.
279
280 Important differences from the old Thumb mode:
281
282 - Immediate operands do not require a # prefix.
283 - Most of the V6T2 instructions are only available in unified mode.
284 - The .N and .W suffixes are recognized and honored (it is an error
285 if they cannot be honored).
286 - All instructions set the flags if and only if they have an 's' affix.
287 - Conditional affixes may be used. They are validated against
288 preceding IT instructions. Unlike ARM mode, you cannot use a
289 conditional affix except in the scope of an IT instruction. */
290
291 static bfd_boolean unified_syntax = FALSE;
292
293 enum neon_el_type
294 {
295 NT_invtype,
296 NT_untyped,
297 NT_integer,
298 NT_float,
299 NT_poly,
300 NT_signed,
301 NT_unsigned
302 };
303
304 struct neon_type_el
305 {
306 enum neon_el_type type;
307 unsigned size;
308 };
309
310 #define NEON_MAX_TYPE_ELS 4
311
312 struct neon_type
313 {
314 struct neon_type_el el[NEON_MAX_TYPE_ELS];
315 unsigned elems;
316 };
317
318 struct arm_it
319 {
320 const char * error;
321 unsigned long instruction;
322 int size;
323 int size_req;
324 int cond;
325 /* "uncond_value" is set to the value in place of the conditional field in
326 unconditional versions of the instruction, or -1 if nothing is
327 appropriate. */
328 int uncond_value;
329 struct neon_type vectype;
330 /* Set to the opcode if the instruction needs relaxation.
331 Zero if the instruction is not relaxed. */
332 unsigned long relax;
333 struct
334 {
335 bfd_reloc_code_real_type type;
336 expressionS exp;
337 int pc_rel;
338 } reloc;
339
340 struct
341 {
342 unsigned reg;
343 signed int imm;
344 struct neon_type_el vectype;
345 unsigned present : 1; /* Operand present. */
346 unsigned isreg : 1; /* Operand was a register. */
347 unsigned immisreg : 1; /* .imm field is a second register. */
348 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
349 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
350 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
351 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
352 instructions. This allows us to disambiguate ARM <-> vector insns. */
353 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
354 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
355 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
356 unsigned issingle : 1; /* Operand is VFP single-precision register. */
357 unsigned hasreloc : 1; /* Operand has relocation suffix. */
358 unsigned writeback : 1; /* Operand has trailing ! */
359 unsigned preind : 1; /* Preindexed address. */
360 unsigned postind : 1; /* Postindexed address. */
361 unsigned negative : 1; /* Index register was negated. */
362 unsigned shifted : 1; /* Shift applied to operation. */
363 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
364 } operands[6];
365 };
366
367 static struct arm_it inst;
368
369 #define NUM_FLOAT_VALS 8
370
371 const char * fp_const[] =
372 {
373 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
374 };
375
376 /* Number of littlenums required to hold an extended precision number. */
377 #define MAX_LITTLENUMS 6
378
379 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
380
381 #define FAIL (-1)
382 #define SUCCESS (0)
383
384 #define SUFF_S 1
385 #define SUFF_D 2
386 #define SUFF_E 3
387 #define SUFF_P 4
388
389 #define CP_T_X 0x00008000
390 #define CP_T_Y 0x00400000
391
392 #define CONDS_BIT 0x00100000
393 #define LOAD_BIT 0x00100000
394
395 #define DOUBLE_LOAD_FLAG 0x00000001
396
397 struct asm_cond
398 {
399 const char * template;
400 unsigned long value;
401 };
402
403 #define COND_ALWAYS 0xE
404
405 struct asm_psr
406 {
407 const char *template;
408 unsigned long field;
409 };
410
411 struct asm_barrier_opt
412 {
413 const char *template;
414 unsigned long value;
415 };
416
417 /* The bit that distinguishes CPSR and SPSR. */
418 #define SPSR_BIT (1 << 22)
419
420 /* The individual PSR flag bits. */
421 #define PSR_c (1 << 16)
422 #define PSR_x (1 << 17)
423 #define PSR_s (1 << 18)
424 #define PSR_f (1 << 19)
425
426 struct reloc_entry
427 {
428 char *name;
429 bfd_reloc_code_real_type reloc;
430 };
431
432 enum vfp_reg_pos
433 {
434 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
435 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
436 };
437
438 enum vfp_ldstm_type
439 {
440 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
441 };
442
443 /* Bits for DEFINED field in neon_typed_alias. */
444 #define NTA_HASTYPE 1
445 #define NTA_HASINDEX 2
446
447 struct neon_typed_alias
448 {
449 unsigned char defined;
450 unsigned char index;
451 struct neon_type_el eltype;
452 };
453
454 /* ARM register categories. This includes coprocessor numbers and various
455 architecture extensions' registers. */
456 enum arm_reg_type
457 {
458 REG_TYPE_RN,
459 REG_TYPE_CP,
460 REG_TYPE_CN,
461 REG_TYPE_FN,
462 REG_TYPE_VFS,
463 REG_TYPE_VFD,
464 REG_TYPE_NQ,
465 REG_TYPE_VFSD,
466 REG_TYPE_NDQ,
467 REG_TYPE_NSDQ,
468 REG_TYPE_VFC,
469 REG_TYPE_MVF,
470 REG_TYPE_MVD,
471 REG_TYPE_MVFX,
472 REG_TYPE_MVDX,
473 REG_TYPE_MVAX,
474 REG_TYPE_DSPSC,
475 REG_TYPE_MMXWR,
476 REG_TYPE_MMXWC,
477 REG_TYPE_MMXWCG,
478 REG_TYPE_XSCALE,
479 };
480
481 /* Structure for a hash table entry for a register.
482 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
483 information which states whether a vector type or index is specified (for a
484 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
485 struct reg_entry
486 {
487 const char *name;
488 unsigned char number;
489 unsigned char type;
490 unsigned char builtin;
491 struct neon_typed_alias *neon;
492 };
493
494 /* Diagnostics used when we don't get a register of the expected type. */
495 const char *const reg_expected_msgs[] =
496 {
497 N_("ARM register expected"),
498 N_("bad or missing co-processor number"),
499 N_("co-processor register expected"),
500 N_("FPA register expected"),
501 N_("VFP single precision register expected"),
502 N_("VFP/Neon double precision register expected"),
503 N_("Neon quad precision register expected"),
504 N_("VFP single or double precision register expected"),
505 N_("Neon double or quad precision register expected"),
506 N_("VFP single, double or Neon quad precision register expected"),
507 N_("VFP system register expected"),
508 N_("Maverick MVF register expected"),
509 N_("Maverick MVD register expected"),
510 N_("Maverick MVFX register expected"),
511 N_("Maverick MVDX register expected"),
512 N_("Maverick MVAX register expected"),
513 N_("Maverick DSPSC register expected"),
514 N_("iWMMXt data register expected"),
515 N_("iWMMXt control register expected"),
516 N_("iWMMXt scalar register expected"),
517 N_("XScale accumulator register expected"),
518 };
519
520 /* Some well known registers that we refer to directly elsewhere. */
521 #define REG_SP 13
522 #define REG_LR 14
523 #define REG_PC 15
524
525 /* ARM instructions take 4bytes in the object file, Thumb instructions
526 take 2: */
527 #define INSN_SIZE 4
528
529 struct asm_opcode
530 {
531 /* Basic string to match. */
532 const char *template;
533
534 /* Parameters to instruction. */
535 unsigned char operands[8];
536
537 /* Conditional tag - see opcode_lookup. */
538 unsigned int tag : 4;
539
540 /* Basic instruction code. */
541 unsigned int avalue : 28;
542
543 /* Thumb-format instruction code. */
544 unsigned int tvalue;
545
546 /* Which architecture variant provides this instruction. */
547 const arm_feature_set *avariant;
548 const arm_feature_set *tvariant;
549
550 /* Function to call to encode instruction in ARM format. */
551 void (* aencode) (void);
552
553 /* Function to call to encode instruction in Thumb format. */
554 void (* tencode) (void);
555 };
556
557 /* Defines for various bits that we will want to toggle. */
558 #define INST_IMMEDIATE 0x02000000
559 #define OFFSET_REG 0x02000000
560 #define HWOFFSET_IMM 0x00400000
561 #define SHIFT_BY_REG 0x00000010
562 #define PRE_INDEX 0x01000000
563 #define INDEX_UP 0x00800000
564 #define WRITE_BACK 0x00200000
565 #define LDM_TYPE_2_OR_3 0x00400000
566 #define CPSI_MMOD 0x00020000
567
568 #define LITERAL_MASK 0xf000f000
569 #define OPCODE_MASK 0xfe1fffff
570 #define V4_STR_BIT 0x00000020
571
572 #define T2_SUBS_PC_LR 0xf3de8f00
573
574 #define DATA_OP_SHIFT 21
575
576 #define T2_OPCODE_MASK 0xfe1fffff
577 #define T2_DATA_OP_SHIFT 21
578
579 /* Codes to distinguish the arithmetic instructions. */
580 #define OPCODE_AND 0
581 #define OPCODE_EOR 1
582 #define OPCODE_SUB 2
583 #define OPCODE_RSB 3
584 #define OPCODE_ADD 4
585 #define OPCODE_ADC 5
586 #define OPCODE_SBC 6
587 #define OPCODE_RSC 7
588 #define OPCODE_TST 8
589 #define OPCODE_TEQ 9
590 #define OPCODE_CMP 10
591 #define OPCODE_CMN 11
592 #define OPCODE_ORR 12
593 #define OPCODE_MOV 13
594 #define OPCODE_BIC 14
595 #define OPCODE_MVN 15
596
597 #define T2_OPCODE_AND 0
598 #define T2_OPCODE_BIC 1
599 #define T2_OPCODE_ORR 2
600 #define T2_OPCODE_ORN 3
601 #define T2_OPCODE_EOR 4
602 #define T2_OPCODE_ADD 8
603 #define T2_OPCODE_ADC 10
604 #define T2_OPCODE_SBC 11
605 #define T2_OPCODE_SUB 13
606 #define T2_OPCODE_RSB 14
607
608 #define T_OPCODE_MUL 0x4340
609 #define T_OPCODE_TST 0x4200
610 #define T_OPCODE_CMN 0x42c0
611 #define T_OPCODE_NEG 0x4240
612 #define T_OPCODE_MVN 0x43c0
613
614 #define T_OPCODE_ADD_R3 0x1800
615 #define T_OPCODE_SUB_R3 0x1a00
616 #define T_OPCODE_ADD_HI 0x4400
617 #define T_OPCODE_ADD_ST 0xb000
618 #define T_OPCODE_SUB_ST 0xb080
619 #define T_OPCODE_ADD_SP 0xa800
620 #define T_OPCODE_ADD_PC 0xa000
621 #define T_OPCODE_ADD_I8 0x3000
622 #define T_OPCODE_SUB_I8 0x3800
623 #define T_OPCODE_ADD_I3 0x1c00
624 #define T_OPCODE_SUB_I3 0x1e00
625
626 #define T_OPCODE_ASR_R 0x4100
627 #define T_OPCODE_LSL_R 0x4080
628 #define T_OPCODE_LSR_R 0x40c0
629 #define T_OPCODE_ROR_R 0x41c0
630 #define T_OPCODE_ASR_I 0x1000
631 #define T_OPCODE_LSL_I 0x0000
632 #define T_OPCODE_LSR_I 0x0800
633
634 #define T_OPCODE_MOV_I8 0x2000
635 #define T_OPCODE_CMP_I8 0x2800
636 #define T_OPCODE_CMP_LR 0x4280
637 #define T_OPCODE_MOV_HR 0x4600
638 #define T_OPCODE_CMP_HR 0x4500
639
640 #define T_OPCODE_LDR_PC 0x4800
641 #define T_OPCODE_LDR_SP 0x9800
642 #define T_OPCODE_STR_SP 0x9000
643 #define T_OPCODE_LDR_IW 0x6800
644 #define T_OPCODE_STR_IW 0x6000
645 #define T_OPCODE_LDR_IH 0x8800
646 #define T_OPCODE_STR_IH 0x8000
647 #define T_OPCODE_LDR_IB 0x7800
648 #define T_OPCODE_STR_IB 0x7000
649 #define T_OPCODE_LDR_RW 0x5800
650 #define T_OPCODE_STR_RW 0x5000
651 #define T_OPCODE_LDR_RH 0x5a00
652 #define T_OPCODE_STR_RH 0x5200
653 #define T_OPCODE_LDR_RB 0x5c00
654 #define T_OPCODE_STR_RB 0x5400
655
656 #define T_OPCODE_PUSH 0xb400
657 #define T_OPCODE_POP 0xbc00
658
659 #define T_OPCODE_BRANCH 0xe000
660
661 #define THUMB_SIZE 2 /* Size of thumb instruction. */
662 #define THUMB_PP_PC_LR 0x0100
663 #define THUMB_LOAD_BIT 0x0800
664 #define THUMB2_LOAD_BIT 0x00100000
665
666 #define BAD_ARGS _("bad arguments to instruction")
667 #define BAD_SP _("r13 not allowed here")
668 #define BAD_PC _("r15 not allowed here")
669 #define BAD_COND _("instruction cannot be conditional")
670 #define BAD_OVERLAP _("registers may not be the same")
671 #define BAD_HIREG _("lo register required")
672 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
673 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
674 #define BAD_BRANCH _("branch must be last instruction in IT block")
675 #define BAD_NOT_IT _("instruction not allowed in IT block")
676 #define BAD_FPU _("selected FPU does not support instruction")
677
678 static struct hash_control *arm_ops_hsh;
679 static struct hash_control *arm_cond_hsh;
680 static struct hash_control *arm_shift_hsh;
681 static struct hash_control *arm_psr_hsh;
682 static struct hash_control *arm_v7m_psr_hsh;
683 static struct hash_control *arm_reg_hsh;
684 static struct hash_control *arm_reloc_hsh;
685 static struct hash_control *arm_barrier_opt_hsh;
686
687 /* Stuff needed to resolve the label ambiguity
688 As:
689 ...
690 label: <insn>
691 may differ from:
692 ...
693 label:
694 <insn> */
695
696 symbolS * last_label_seen;
697 static int label_is_thumb_function_name = FALSE;
698 \f
699 /* Literal pool structure. Held on a per-section
700 and per-sub-section basis. */
701
702 #define MAX_LITERAL_POOL_SIZE 1024
703 typedef struct literal_pool
704 {
705 expressionS literals [MAX_LITERAL_POOL_SIZE];
706 unsigned int next_free_entry;
707 unsigned int id;
708 symbolS * symbol;
709 segT section;
710 subsegT sub_section;
711 struct literal_pool * next;
712 } literal_pool;
713
714 /* Pointer to a linked list of literal pools. */
715 literal_pool * list_of_pools = NULL;
716
717 /* State variables for IT block handling. */
718 static bfd_boolean current_it_mask = 0;
719 static int current_cc;
720 \f
721 /* Pure syntax. */
722
723 /* This array holds the chars that always start a comment. If the
724 pre-processor is disabled, these aren't very useful. */
725 const char comment_chars[] = "@";
726
727 /* This array holds the chars that only start a comment at the beginning of
728 a line. If the line seems to have the form '# 123 filename'
729 .line and .file directives will appear in the pre-processed output. */
730 /* Note that input_file.c hand checks for '#' at the beginning of the
731 first line of the input file. This is because the compiler outputs
732 #NO_APP at the beginning of its output. */
733 /* Also note that comments like this one will always work. */
734 const char line_comment_chars[] = "#";
735
736 const char line_separator_chars[] = ";";
737
738 /* Chars that can be used to separate mant
739 from exp in floating point numbers. */
740 const char EXP_CHARS[] = "eE";
741
742 /* Chars that mean this number is a floating point constant. */
743 /* As in 0f12.456 */
744 /* or 0d1.2345e12 */
745
746 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
747
748 /* Prefix characters that indicate the start of an immediate
749 value. */
750 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
751
752 /* Separator character handling. */
753
754 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
755
756 static inline int
757 skip_past_char (char ** str, char c)
758 {
759 if (**str == c)
760 {
761 (*str)++;
762 return SUCCESS;
763 }
764 else
765 return FAIL;
766 }
767 #define skip_past_comma(str) skip_past_char (str, ',')
768
769 /* Arithmetic expressions (possibly involving symbols). */
770
771 /* Return TRUE if anything in the expression is a bignum. */
772
773 static int
774 walk_no_bignums (symbolS * sp)
775 {
776 if (symbol_get_value_expression (sp)->X_op == O_big)
777 return 1;
778
779 if (symbol_get_value_expression (sp)->X_add_symbol)
780 {
781 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
782 || (symbol_get_value_expression (sp)->X_op_symbol
783 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
784 }
785
786 return 0;
787 }
788
789 static int in_my_get_expression = 0;
790
791 /* Third argument to my_get_expression. */
792 #define GE_NO_PREFIX 0
793 #define GE_IMM_PREFIX 1
794 #define GE_OPT_PREFIX 2
795 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
796 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
797 #define GE_OPT_PREFIX_BIG 3
798
799 static int
800 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
801 {
802 char * save_in;
803 segT seg;
804
805 /* In unified syntax, all prefixes are optional. */
806 if (unified_syntax)
807 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
808 : GE_OPT_PREFIX;
809
810 switch (prefix_mode)
811 {
812 case GE_NO_PREFIX: break;
813 case GE_IMM_PREFIX:
814 if (!is_immediate_prefix (**str))
815 {
816 inst.error = _("immediate expression requires a # prefix");
817 return FAIL;
818 }
819 (*str)++;
820 break;
821 case GE_OPT_PREFIX:
822 case GE_OPT_PREFIX_BIG:
823 if (is_immediate_prefix (**str))
824 (*str)++;
825 break;
826 default: abort ();
827 }
828
829 memset (ep, 0, sizeof (expressionS));
830
831 save_in = input_line_pointer;
832 input_line_pointer = *str;
833 in_my_get_expression = 1;
834 seg = expression (ep);
835 in_my_get_expression = 0;
836
837 if (ep->X_op == O_illegal)
838 {
839 /* We found a bad expression in md_operand(). */
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 if (inst.error == NULL)
843 inst.error = _("bad expression");
844 return 1;
845 }
846
847 #ifdef OBJ_AOUT
848 if (seg != absolute_section
849 && seg != text_section
850 && seg != data_section
851 && seg != bss_section
852 && seg != undefined_section)
853 {
854 inst.error = _("bad segment");
855 *str = input_line_pointer;
856 input_line_pointer = save_in;
857 return 1;
858 }
859 #endif
860
861 /* Get rid of any bignums now, so that we don't generate an error for which
862 we can't establish a line number later on. Big numbers are never valid
863 in instructions, which is where this routine is always called. */
864 if (prefix_mode != GE_OPT_PREFIX_BIG
865 && (ep->X_op == O_big
866 || (ep->X_add_symbol
867 && (walk_no_bignums (ep->X_add_symbol)
868 || (ep->X_op_symbol
869 && walk_no_bignums (ep->X_op_symbol))))))
870 {
871 inst.error = _("invalid constant");
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 1;
875 }
876
877 *str = input_line_pointer;
878 input_line_pointer = save_in;
879 return 0;
880 }
881
882 /* Turn a string in input_line_pointer into a floating point constant
883 of type TYPE, and store the appropriate bytes in *LITP. The number
884 of LITTLENUMS emitted is stored in *SIZEP. An error message is
885 returned, or NULL on OK.
886
887 Note that fp constants aren't represent in the normal way on the ARM.
888 In big endian mode, things are as expected. However, in little endian
889 mode fp constants are big-endian word-wise, and little-endian byte-wise
890 within the words. For example, (double) 1.1 in big endian mode is
891 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
892 the byte sequence 99 99 f1 3f 9a 99 99 99.
893
894 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
895
896 char *
897 md_atof (int type, char * litP, int * sizeP)
898 {
899 int prec;
900 LITTLENUM_TYPE words[MAX_LITTLENUMS];
901 char *t;
902 int i;
903
904 switch (type)
905 {
906 case 'f':
907 case 'F':
908 case 's':
909 case 'S':
910 prec = 2;
911 break;
912
913 case 'd':
914 case 'D':
915 case 'r':
916 case 'R':
917 prec = 4;
918 break;
919
920 case 'x':
921 case 'X':
922 prec = 5;
923 break;
924
925 case 'p':
926 case 'P':
927 prec = 5;
928 break;
929
930 default:
931 *sizeP = 0;
932 return _("Unrecognized or unsupported floating point constant");
933 }
934
935 t = atof_ieee (input_line_pointer, type, words);
936 if (t)
937 input_line_pointer = t;
938 *sizeP = prec * sizeof (LITTLENUM_TYPE);
939
940 if (target_big_endian)
941 {
942 for (i = 0; i < prec; i++)
943 {
944 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
945 litP += sizeof (LITTLENUM_TYPE);
946 }
947 }
948 else
949 {
950 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
951 for (i = prec - 1; i >= 0; i--)
952 {
953 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
954 litP += sizeof (LITTLENUM_TYPE);
955 }
956 else
957 /* For a 4 byte float the order of elements in `words' is 1 0.
958 For an 8 byte float the order is 1 0 3 2. */
959 for (i = 0; i < prec; i += 2)
960 {
961 md_number_to_chars (litP, (valueT) words[i + 1],
962 sizeof (LITTLENUM_TYPE));
963 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
964 (valueT) words[i], sizeof (LITTLENUM_TYPE));
965 litP += 2 * sizeof (LITTLENUM_TYPE);
966 }
967 }
968
969 return NULL;
970 }
971
972 /* We handle all bad expressions here, so that we can report the faulty
973 instruction in the error message. */
974 void
975 md_operand (expressionS * expr)
976 {
977 if (in_my_get_expression)
978 expr->X_op = O_illegal;
979 }
980
981 /* Immediate values. */
982
983 /* Generic immediate-value read function for use in directives.
984 Accepts anything that 'expression' can fold to a constant.
985 *val receives the number. */
986 #ifdef OBJ_ELF
987 static int
988 immediate_for_directive (int *val)
989 {
990 expressionS exp;
991 exp.X_op = O_illegal;
992
993 if (is_immediate_prefix (*input_line_pointer))
994 {
995 input_line_pointer++;
996 expression (&exp);
997 }
998
999 if (exp.X_op != O_constant)
1000 {
1001 as_bad (_("expected #constant"));
1002 ignore_rest_of_line ();
1003 return FAIL;
1004 }
1005 *val = exp.X_add_number;
1006 return SUCCESS;
1007 }
1008 #endif
1009
1010 /* Register parsing. */
1011
1012 /* Generic register parser. CCP points to what should be the
1013 beginning of a register name. If it is indeed a valid register
1014 name, advance CCP over it and return the reg_entry structure;
1015 otherwise return NULL. Does not issue diagnostics. */
1016
1017 static struct reg_entry *
1018 arm_reg_parse_multi (char **ccp)
1019 {
1020 char *start = *ccp;
1021 char *p;
1022 struct reg_entry *reg;
1023
1024 #ifdef REGISTER_PREFIX
1025 if (*start != REGISTER_PREFIX)
1026 return NULL;
1027 start++;
1028 #endif
1029 #ifdef OPTIONAL_REGISTER_PREFIX
1030 if (*start == OPTIONAL_REGISTER_PREFIX)
1031 start++;
1032 #endif
1033
1034 p = start;
1035 if (!ISALPHA (*p) || !is_name_beginner (*p))
1036 return NULL;
1037
1038 do
1039 p++;
1040 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1041
1042 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1043
1044 if (!reg)
1045 return NULL;
1046
1047 *ccp = p;
1048 return reg;
1049 }
1050
1051 static int
1052 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1053 enum arm_reg_type type)
1054 {
1055 /* Alternative syntaxes are accepted for a few register classes. */
1056 switch (type)
1057 {
1058 case REG_TYPE_MVF:
1059 case REG_TYPE_MVD:
1060 case REG_TYPE_MVFX:
1061 case REG_TYPE_MVDX:
1062 /* Generic coprocessor register names are allowed for these. */
1063 if (reg && reg->type == REG_TYPE_CN)
1064 return reg->number;
1065 break;
1066
1067 case REG_TYPE_CP:
1068 /* For backward compatibility, a bare number is valid here. */
1069 {
1070 unsigned long processor = strtoul (start, ccp, 10);
1071 if (*ccp != start && processor <= 15)
1072 return processor;
1073 }
1074
1075 case REG_TYPE_MMXWC:
1076 /* WC includes WCG. ??? I'm not sure this is true for all
1077 instructions that take WC registers. */
1078 if (reg && reg->type == REG_TYPE_MMXWCG)
1079 return reg->number;
1080 break;
1081
1082 default:
1083 break;
1084 }
1085
1086 return FAIL;
1087 }
1088
1089 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1090 return value is the register number or FAIL. */
1091
1092 static int
1093 arm_reg_parse (char **ccp, enum arm_reg_type type)
1094 {
1095 char *start = *ccp;
1096 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1097 int ret;
1098
1099 /* Do not allow a scalar (reg+index) to parse as a register. */
1100 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1101 return FAIL;
1102
1103 if (reg && reg->type == type)
1104 return reg->number;
1105
1106 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1107 return ret;
1108
1109 *ccp = start;
1110 return FAIL;
1111 }
1112
1113 /* Parse a Neon type specifier. *STR should point at the leading '.'
1114 character. Does no verification at this stage that the type fits the opcode
1115 properly. E.g.,
1116
1117 .i32.i32.s16
1118 .s32.f32
1119 .u16
1120
1121 Can all be legally parsed by this function.
1122
1123 Fills in neon_type struct pointer with parsed information, and updates STR
1124 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1125 type, FAIL if not. */
1126
1127 static int
1128 parse_neon_type (struct neon_type *type, char **str)
1129 {
1130 char *ptr = *str;
1131
1132 if (type)
1133 type->elems = 0;
1134
1135 while (type->elems < NEON_MAX_TYPE_ELS)
1136 {
1137 enum neon_el_type thistype = NT_untyped;
1138 unsigned thissize = -1u;
1139
1140 if (*ptr != '.')
1141 break;
1142
1143 ptr++;
1144
1145 /* Just a size without an explicit type. */
1146 if (ISDIGIT (*ptr))
1147 goto parsesize;
1148
1149 switch (TOLOWER (*ptr))
1150 {
1151 case 'i': thistype = NT_integer; break;
1152 case 'f': thistype = NT_float; break;
1153 case 'p': thistype = NT_poly; break;
1154 case 's': thistype = NT_signed; break;
1155 case 'u': thistype = NT_unsigned; break;
1156 case 'd':
1157 thistype = NT_float;
1158 thissize = 64;
1159 ptr++;
1160 goto done;
1161 default:
1162 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1163 return FAIL;
1164 }
1165
1166 ptr++;
1167
1168 /* .f is an abbreviation for .f32. */
1169 if (thistype == NT_float && !ISDIGIT (*ptr))
1170 thissize = 32;
1171 else
1172 {
1173 parsesize:
1174 thissize = strtoul (ptr, &ptr, 10);
1175
1176 if (thissize != 8 && thissize != 16 && thissize != 32
1177 && thissize != 64)
1178 {
1179 as_bad (_("bad size %d in type specifier"), thissize);
1180 return FAIL;
1181 }
1182 }
1183
1184 done:
1185 if (type)
1186 {
1187 type->el[type->elems].type = thistype;
1188 type->el[type->elems].size = thissize;
1189 type->elems++;
1190 }
1191 }
1192
1193 /* Empty/missing type is not a successful parse. */
1194 if (type->elems == 0)
1195 return FAIL;
1196
1197 *str = ptr;
1198
1199 return SUCCESS;
1200 }
1201
1202 /* Errors may be set multiple times during parsing or bit encoding
1203 (particularly in the Neon bits), but usually the earliest error which is set
1204 will be the most meaningful. Avoid overwriting it with later (cascading)
1205 errors by calling this function. */
1206
1207 static void
1208 first_error (const char *err)
1209 {
1210 if (!inst.error)
1211 inst.error = err;
1212 }
1213
1214 /* Parse a single type, e.g. ".s32", leading period included. */
1215 static int
1216 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1217 {
1218 char *str = *ccp;
1219 struct neon_type optype;
1220
1221 if (*str == '.')
1222 {
1223 if (parse_neon_type (&optype, &str) == SUCCESS)
1224 {
1225 if (optype.elems == 1)
1226 *vectype = optype.el[0];
1227 else
1228 {
1229 first_error (_("only one type should be specified for operand"));
1230 return FAIL;
1231 }
1232 }
1233 else
1234 {
1235 first_error (_("vector type expected"));
1236 return FAIL;
1237 }
1238 }
1239 else
1240 return FAIL;
1241
1242 *ccp = str;
1243
1244 return SUCCESS;
1245 }
1246
1247 /* Special meanings for indices (which have a range of 0-7), which will fit into
1248 a 4-bit integer. */
1249
1250 #define NEON_ALL_LANES 15
1251 #define NEON_INTERLEAVE_LANES 14
1252
1253 /* Parse either a register or a scalar, with an optional type. Return the
1254 register number, and optionally fill in the actual type of the register
1255 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1256 type/index information in *TYPEINFO. */
1257
1258 static int
1259 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1260 enum arm_reg_type *rtype,
1261 struct neon_typed_alias *typeinfo)
1262 {
1263 char *str = *ccp;
1264 struct reg_entry *reg = arm_reg_parse_multi (&str);
1265 struct neon_typed_alias atype;
1266 struct neon_type_el parsetype;
1267
1268 atype.defined = 0;
1269 atype.index = -1;
1270 atype.eltype.type = NT_invtype;
1271 atype.eltype.size = -1;
1272
1273 /* Try alternate syntax for some types of register. Note these are mutually
1274 exclusive with the Neon syntax extensions. */
1275 if (reg == NULL)
1276 {
1277 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1278 if (altreg != FAIL)
1279 *ccp = str;
1280 if (typeinfo)
1281 *typeinfo = atype;
1282 return altreg;
1283 }
1284
1285 /* Undo polymorphism when a set of register types may be accepted. */
1286 if ((type == REG_TYPE_NDQ
1287 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1288 || (type == REG_TYPE_VFSD
1289 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1290 || (type == REG_TYPE_NSDQ
1291 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1292 || reg->type == REG_TYPE_NQ))
1293 || (type == REG_TYPE_MMXWC
1294 && (reg->type == REG_TYPE_MMXWCG)))
1295 type = reg->type;
1296
1297 if (type != reg->type)
1298 return FAIL;
1299
1300 if (reg->neon)
1301 atype = *reg->neon;
1302
1303 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1304 {
1305 if ((atype.defined & NTA_HASTYPE) != 0)
1306 {
1307 first_error (_("can't redefine type for operand"));
1308 return FAIL;
1309 }
1310 atype.defined |= NTA_HASTYPE;
1311 atype.eltype = parsetype;
1312 }
1313
1314 if (skip_past_char (&str, '[') == SUCCESS)
1315 {
1316 if (type != REG_TYPE_VFD)
1317 {
1318 first_error (_("only D registers may be indexed"));
1319 return FAIL;
1320 }
1321
1322 if ((atype.defined & NTA_HASINDEX) != 0)
1323 {
1324 first_error (_("can't change index for operand"));
1325 return FAIL;
1326 }
1327
1328 atype.defined |= NTA_HASINDEX;
1329
1330 if (skip_past_char (&str, ']') == SUCCESS)
1331 atype.index = NEON_ALL_LANES;
1332 else
1333 {
1334 expressionS exp;
1335
1336 my_get_expression (&exp, &str, GE_NO_PREFIX);
1337
1338 if (exp.X_op != O_constant)
1339 {
1340 first_error (_("constant expression required"));
1341 return FAIL;
1342 }
1343
1344 if (skip_past_char (&str, ']') == FAIL)
1345 return FAIL;
1346
1347 atype.index = exp.X_add_number;
1348 }
1349 }
1350
1351 if (typeinfo)
1352 *typeinfo = atype;
1353
1354 if (rtype)
1355 *rtype = type;
1356
1357 *ccp = str;
1358
1359 return reg->number;
1360 }
1361
1362 /* Like arm_reg_parse, but allow allow the following extra features:
1363 - If RTYPE is non-zero, return the (possibly restricted) type of the
1364 register (e.g. Neon double or quad reg when either has been requested).
1365 - If this is a Neon vector type with additional type information, fill
1366 in the struct pointed to by VECTYPE (if non-NULL).
1367 This function will fault on encountering a scalar. */
1368
1369 static int
1370 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1371 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1372 {
1373 struct neon_typed_alias atype;
1374 char *str = *ccp;
1375 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1376
1377 if (reg == FAIL)
1378 return FAIL;
1379
1380 /* Do not allow a scalar (reg+index) to parse as a register. */
1381 if ((atype.defined & NTA_HASINDEX) != 0)
1382 {
1383 first_error (_("register operand expected, but got scalar"));
1384 return FAIL;
1385 }
1386
1387 if (vectype)
1388 *vectype = atype.eltype;
1389
1390 *ccp = str;
1391
1392 return reg;
1393 }
1394
1395 #define NEON_SCALAR_REG(X) ((X) >> 4)
1396 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1397
1398 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1399 have enough information to be able to do a good job bounds-checking. So, we
1400 just do easy checks here, and do further checks later. */
1401
1402 static int
1403 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1404 {
1405 int reg;
1406 char *str = *ccp;
1407 struct neon_typed_alias atype;
1408
1409 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1410
1411 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1412 return FAIL;
1413
1414 if (atype.index == NEON_ALL_LANES)
1415 {
1416 first_error (_("scalar must have an index"));
1417 return FAIL;
1418 }
1419 else if (atype.index >= 64 / elsize)
1420 {
1421 first_error (_("scalar index out of range"));
1422 return FAIL;
1423 }
1424
1425 if (type)
1426 *type = atype.eltype;
1427
1428 *ccp = str;
1429
1430 return reg * 16 + atype.index;
1431 }
1432
1433 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1434 static long
1435 parse_reg_list (char ** strp)
1436 {
1437 char * str = * strp;
1438 long range = 0;
1439 int another_range;
1440
1441 /* We come back here if we get ranges concatenated by '+' or '|'. */
1442 do
1443 {
1444 another_range = 0;
1445
1446 if (*str == '{')
1447 {
1448 int in_range = 0;
1449 int cur_reg = -1;
1450
1451 str++;
1452 do
1453 {
1454 int reg;
1455
1456 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1457 {
1458 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1459 return FAIL;
1460 }
1461
1462 if (in_range)
1463 {
1464 int i;
1465
1466 if (reg <= cur_reg)
1467 {
1468 first_error (_("bad range in register list"));
1469 return FAIL;
1470 }
1471
1472 for (i = cur_reg + 1; i < reg; i++)
1473 {
1474 if (range & (1 << i))
1475 as_tsktsk
1476 (_("Warning: duplicated register (r%d) in register list"),
1477 i);
1478 else
1479 range |= 1 << i;
1480 }
1481 in_range = 0;
1482 }
1483
1484 if (range & (1 << reg))
1485 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1486 reg);
1487 else if (reg <= cur_reg)
1488 as_tsktsk (_("Warning: register range not in ascending order"));
1489
1490 range |= 1 << reg;
1491 cur_reg = reg;
1492 }
1493 while (skip_past_comma (&str) != FAIL
1494 || (in_range = 1, *str++ == '-'));
1495 str--;
1496
1497 if (*str++ != '}')
1498 {
1499 first_error (_("missing `}'"));
1500 return FAIL;
1501 }
1502 }
1503 else
1504 {
1505 expressionS expr;
1506
1507 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1508 return FAIL;
1509
1510 if (expr.X_op == O_constant)
1511 {
1512 if (expr.X_add_number
1513 != (expr.X_add_number & 0x0000ffff))
1514 {
1515 inst.error = _("invalid register mask");
1516 return FAIL;
1517 }
1518
1519 if ((range & expr.X_add_number) != 0)
1520 {
1521 int regno = range & expr.X_add_number;
1522
1523 regno &= -regno;
1524 regno = (1 << regno) - 1;
1525 as_tsktsk
1526 (_("Warning: duplicated register (r%d) in register list"),
1527 regno);
1528 }
1529
1530 range |= expr.X_add_number;
1531 }
1532 else
1533 {
1534 if (inst.reloc.type != 0)
1535 {
1536 inst.error = _("expression too complex");
1537 return FAIL;
1538 }
1539
1540 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1541 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1542 inst.reloc.pc_rel = 0;
1543 }
1544 }
1545
1546 if (*str == '|' || *str == '+')
1547 {
1548 str++;
1549 another_range = 1;
1550 }
1551 }
1552 while (another_range);
1553
1554 *strp = str;
1555 return range;
1556 }
1557
1558 /* Types of registers in a list. */
1559
1560 enum reg_list_els
1561 {
1562 REGLIST_VFP_S,
1563 REGLIST_VFP_D,
1564 REGLIST_NEON_D
1565 };
1566
1567 /* Parse a VFP register list. If the string is invalid return FAIL.
1568 Otherwise return the number of registers, and set PBASE to the first
1569 register. Parses registers of type ETYPE.
1570 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1571 - Q registers can be used to specify pairs of D registers
1572 - { } can be omitted from around a singleton register list
1573 FIXME: This is not implemented, as it would require backtracking in
1574 some cases, e.g.:
1575 vtbl.8 d3,d4,d5
1576 This could be done (the meaning isn't really ambiguous), but doesn't
1577 fit in well with the current parsing framework.
1578 - 32 D registers may be used (also true for VFPv3).
1579 FIXME: Types are ignored in these register lists, which is probably a
1580 bug. */
1581
1582 static int
1583 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1584 {
1585 char *str = *ccp;
1586 int base_reg;
1587 int new_base;
1588 enum arm_reg_type regtype = 0;
1589 int max_regs = 0;
1590 int count = 0;
1591 int warned = 0;
1592 unsigned long mask = 0;
1593 int i;
1594
1595 if (*str != '{')
1596 {
1597 inst.error = _("expecting {");
1598 return FAIL;
1599 }
1600
1601 str++;
1602
1603 switch (etype)
1604 {
1605 case REGLIST_VFP_S:
1606 regtype = REG_TYPE_VFS;
1607 max_regs = 32;
1608 break;
1609
1610 case REGLIST_VFP_D:
1611 regtype = REG_TYPE_VFD;
1612 break;
1613
1614 case REGLIST_NEON_D:
1615 regtype = REG_TYPE_NDQ;
1616 break;
1617 }
1618
1619 if (etype != REGLIST_VFP_S)
1620 {
1621 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1622 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1623 {
1624 max_regs = 32;
1625 if (thumb_mode)
1626 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1627 fpu_vfp_ext_d32);
1628 else
1629 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1630 fpu_vfp_ext_d32);
1631 }
1632 else
1633 max_regs = 16;
1634 }
1635
1636 base_reg = max_regs;
1637
1638 do
1639 {
1640 int setmask = 1, addregs = 1;
1641
1642 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1643
1644 if (new_base == FAIL)
1645 {
1646 first_error (_(reg_expected_msgs[regtype]));
1647 return FAIL;
1648 }
1649
1650 if (new_base >= max_regs)
1651 {
1652 first_error (_("register out of range in list"));
1653 return FAIL;
1654 }
1655
1656 /* Note: a value of 2 * n is returned for the register Q<n>. */
1657 if (regtype == REG_TYPE_NQ)
1658 {
1659 setmask = 3;
1660 addregs = 2;
1661 }
1662
1663 if (new_base < base_reg)
1664 base_reg = new_base;
1665
1666 if (mask & (setmask << new_base))
1667 {
1668 first_error (_("invalid register list"));
1669 return FAIL;
1670 }
1671
1672 if ((mask >> new_base) != 0 && ! warned)
1673 {
1674 as_tsktsk (_("register list not in ascending order"));
1675 warned = 1;
1676 }
1677
1678 mask |= setmask << new_base;
1679 count += addregs;
1680
1681 if (*str == '-') /* We have the start of a range expression */
1682 {
1683 int high_range;
1684
1685 str++;
1686
1687 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1688 == FAIL)
1689 {
1690 inst.error = gettext (reg_expected_msgs[regtype]);
1691 return FAIL;
1692 }
1693
1694 if (high_range >= max_regs)
1695 {
1696 first_error (_("register out of range in list"));
1697 return FAIL;
1698 }
1699
1700 if (regtype == REG_TYPE_NQ)
1701 high_range = high_range + 1;
1702
1703 if (high_range <= new_base)
1704 {
1705 inst.error = _("register range not in ascending order");
1706 return FAIL;
1707 }
1708
1709 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1710 {
1711 if (mask & (setmask << new_base))
1712 {
1713 inst.error = _("invalid register list");
1714 return FAIL;
1715 }
1716
1717 mask |= setmask << new_base;
1718 count += addregs;
1719 }
1720 }
1721 }
1722 while (skip_past_comma (&str) != FAIL);
1723
1724 str++;
1725
1726 /* Sanity check -- should have raised a parse error above. */
1727 if (count == 0 || count > max_regs)
1728 abort ();
1729
1730 *pbase = base_reg;
1731
1732 /* Final test -- the registers must be consecutive. */
1733 mask >>= base_reg;
1734 for (i = 0; i < count; i++)
1735 {
1736 if ((mask & (1u << i)) == 0)
1737 {
1738 inst.error = _("non-contiguous register range");
1739 return FAIL;
1740 }
1741 }
1742
1743 *ccp = str;
1744
1745 return count;
1746 }
1747
1748 /* True if two alias types are the same. */
1749
1750 static int
1751 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1752 {
1753 if (!a && !b)
1754 return 1;
1755
1756 if (!a || !b)
1757 return 0;
1758
1759 if (a->defined != b->defined)
1760 return 0;
1761
1762 if ((a->defined & NTA_HASTYPE) != 0
1763 && (a->eltype.type != b->eltype.type
1764 || a->eltype.size != b->eltype.size))
1765 return 0;
1766
1767 if ((a->defined & NTA_HASINDEX) != 0
1768 && (a->index != b->index))
1769 return 0;
1770
1771 return 1;
1772 }
1773
1774 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1775 The base register is put in *PBASE.
1776 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1777 the return value.
1778 The register stride (minus one) is put in bit 4 of the return value.
1779 Bits [6:5] encode the list length (minus one).
1780 The type of the list elements is put in *ELTYPE, if non-NULL. */
1781
1782 #define NEON_LANE(X) ((X) & 0xf)
1783 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1784 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1785
1786 static int
1787 parse_neon_el_struct_list (char **str, unsigned *pbase,
1788 struct neon_type_el *eltype)
1789 {
1790 char *ptr = *str;
1791 int base_reg = -1;
1792 int reg_incr = -1;
1793 int count = 0;
1794 int lane = -1;
1795 int leading_brace = 0;
1796 enum arm_reg_type rtype = REG_TYPE_NDQ;
1797 int addregs = 1;
1798 const char *const incr_error = "register stride must be 1 or 2";
1799 const char *const type_error = "mismatched element/structure types in list";
1800 struct neon_typed_alias firsttype;
1801
1802 if (skip_past_char (&ptr, '{') == SUCCESS)
1803 leading_brace = 1;
1804
1805 do
1806 {
1807 struct neon_typed_alias atype;
1808 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1809
1810 if (getreg == FAIL)
1811 {
1812 first_error (_(reg_expected_msgs[rtype]));
1813 return FAIL;
1814 }
1815
1816 if (base_reg == -1)
1817 {
1818 base_reg = getreg;
1819 if (rtype == REG_TYPE_NQ)
1820 {
1821 reg_incr = 1;
1822 addregs = 2;
1823 }
1824 firsttype = atype;
1825 }
1826 else if (reg_incr == -1)
1827 {
1828 reg_incr = getreg - base_reg;
1829 if (reg_incr < 1 || reg_incr > 2)
1830 {
1831 first_error (_(incr_error));
1832 return FAIL;
1833 }
1834 }
1835 else if (getreg != base_reg + reg_incr * count)
1836 {
1837 first_error (_(incr_error));
1838 return FAIL;
1839 }
1840
1841 if (!neon_alias_types_same (&atype, &firsttype))
1842 {
1843 first_error (_(type_error));
1844 return FAIL;
1845 }
1846
1847 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1848 modes. */
1849 if (ptr[0] == '-')
1850 {
1851 struct neon_typed_alias htype;
1852 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1853 if (lane == -1)
1854 lane = NEON_INTERLEAVE_LANES;
1855 else if (lane != NEON_INTERLEAVE_LANES)
1856 {
1857 first_error (_(type_error));
1858 return FAIL;
1859 }
1860 if (reg_incr == -1)
1861 reg_incr = 1;
1862 else if (reg_incr != 1)
1863 {
1864 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1865 return FAIL;
1866 }
1867 ptr++;
1868 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1869 if (hireg == FAIL)
1870 {
1871 first_error (_(reg_expected_msgs[rtype]));
1872 return FAIL;
1873 }
1874 if (!neon_alias_types_same (&htype, &firsttype))
1875 {
1876 first_error (_(type_error));
1877 return FAIL;
1878 }
1879 count += hireg + dregs - getreg;
1880 continue;
1881 }
1882
1883 /* If we're using Q registers, we can't use [] or [n] syntax. */
1884 if (rtype == REG_TYPE_NQ)
1885 {
1886 count += 2;
1887 continue;
1888 }
1889
1890 if ((atype.defined & NTA_HASINDEX) != 0)
1891 {
1892 if (lane == -1)
1893 lane = atype.index;
1894 else if (lane != atype.index)
1895 {
1896 first_error (_(type_error));
1897 return FAIL;
1898 }
1899 }
1900 else if (lane == -1)
1901 lane = NEON_INTERLEAVE_LANES;
1902 else if (lane != NEON_INTERLEAVE_LANES)
1903 {
1904 first_error (_(type_error));
1905 return FAIL;
1906 }
1907 count++;
1908 }
1909 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1910
1911 /* No lane set by [x]. We must be interleaving structures. */
1912 if (lane == -1)
1913 lane = NEON_INTERLEAVE_LANES;
1914
1915 /* Sanity check. */
1916 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1917 || (count > 1 && reg_incr == -1))
1918 {
1919 first_error (_("error parsing element/structure list"));
1920 return FAIL;
1921 }
1922
1923 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1924 {
1925 first_error (_("expected }"));
1926 return FAIL;
1927 }
1928
1929 if (reg_incr == -1)
1930 reg_incr = 1;
1931
1932 if (eltype)
1933 *eltype = firsttype.eltype;
1934
1935 *pbase = base_reg;
1936 *str = ptr;
1937
1938 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1939 }
1940
1941 /* Parse an explicit relocation suffix on an expression. This is
1942 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1943 arm_reloc_hsh contains no entries, so this function can only
1944 succeed if there is no () after the word. Returns -1 on error,
1945 BFD_RELOC_UNUSED if there wasn't any suffix. */
1946 static int
1947 parse_reloc (char **str)
1948 {
1949 struct reloc_entry *r;
1950 char *p, *q;
1951
1952 if (**str != '(')
1953 return BFD_RELOC_UNUSED;
1954
1955 p = *str + 1;
1956 q = p;
1957
1958 while (*q && *q != ')' && *q != ',')
1959 q++;
1960 if (*q != ')')
1961 return -1;
1962
1963 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1964 return -1;
1965
1966 *str = q + 1;
1967 return r->reloc;
1968 }
1969
1970 /* Directives: register aliases. */
1971
1972 static struct reg_entry *
1973 insert_reg_alias (char *str, int number, int type)
1974 {
1975 struct reg_entry *new;
1976 const char *name;
1977
1978 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1979 {
1980 if (new->builtin)
1981 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1982
1983 /* Only warn about a redefinition if it's not defined as the
1984 same register. */
1985 else if (new->number != number || new->type != type)
1986 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1987
1988 return NULL;
1989 }
1990
1991 name = xstrdup (str);
1992 new = xmalloc (sizeof (struct reg_entry));
1993
1994 new->name = name;
1995 new->number = number;
1996 new->type = type;
1997 new->builtin = FALSE;
1998 new->neon = NULL;
1999
2000 if (hash_insert (arm_reg_hsh, name, (void *) new))
2001 abort ();
2002
2003 return new;
2004 }
2005
2006 static void
2007 insert_neon_reg_alias (char *str, int number, int type,
2008 struct neon_typed_alias *atype)
2009 {
2010 struct reg_entry *reg = insert_reg_alias (str, number, type);
2011
2012 if (!reg)
2013 {
2014 first_error (_("attempt to redefine typed alias"));
2015 return;
2016 }
2017
2018 if (atype)
2019 {
2020 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2021 *reg->neon = *atype;
2022 }
2023 }
2024
2025 /* Look for the .req directive. This is of the form:
2026
2027 new_register_name .req existing_register_name
2028
2029 If we find one, or if it looks sufficiently like one that we want to
2030 handle any error here, return TRUE. Otherwise return FALSE. */
2031
2032 static bfd_boolean
2033 create_register_alias (char * newname, char *p)
2034 {
2035 struct reg_entry *old;
2036 char *oldname, *nbuf;
2037 size_t nlen;
2038
2039 /* The input scrubber ensures that whitespace after the mnemonic is
2040 collapsed to single spaces. */
2041 oldname = p;
2042 if (strncmp (oldname, " .req ", 6) != 0)
2043 return FALSE;
2044
2045 oldname += 6;
2046 if (*oldname == '\0')
2047 return FALSE;
2048
2049 old = hash_find (arm_reg_hsh, oldname);
2050 if (!old)
2051 {
2052 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2053 return TRUE;
2054 }
2055
2056 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2057 the desired alias name, and p points to its end. If not, then
2058 the desired alias name is in the global original_case_string. */
2059 #ifdef TC_CASE_SENSITIVE
2060 nlen = p - newname;
2061 #else
2062 newname = original_case_string;
2063 nlen = strlen (newname);
2064 #endif
2065
2066 nbuf = alloca (nlen + 1);
2067 memcpy (nbuf, newname, nlen);
2068 nbuf[nlen] = '\0';
2069
2070 /* Create aliases under the new name as stated; an all-lowercase
2071 version of the new name; and an all-uppercase version of the new
2072 name. */
2073 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2074 {
2075 for (p = nbuf; *p; p++)
2076 *p = TOUPPER (*p);
2077
2078 if (strncmp (nbuf, newname, nlen))
2079 {
2080 /* If this attempt to create an additional alias fails, do not bother
2081 trying to create the all-lower case alias. We will fail and issue
2082 a second, duplicate error message. This situation arises when the
2083 programmer does something like:
2084 foo .req r0
2085 Foo .req r1
2086 The second .req creates the "Foo" alias but then fails to create
2087 the artificial FOO alias because it has already been created by the
2088 first .req. */
2089 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2090 return TRUE;
2091 }
2092
2093 for (p = nbuf; *p; p++)
2094 *p = TOLOWER (*p);
2095
2096 if (strncmp (nbuf, newname, nlen))
2097 insert_reg_alias (nbuf, old->number, old->type);
2098 }
2099
2100 return TRUE;
2101 }
2102
2103 /* Create a Neon typed/indexed register alias using directives, e.g.:
2104 X .dn d5.s32[1]
2105 Y .qn 6.s16
2106 Z .dn d7
2107 T .dn Z[0]
2108 These typed registers can be used instead of the types specified after the
2109 Neon mnemonic, so long as all operands given have types. Types can also be
2110 specified directly, e.g.:
2111 vadd d0.s32, d1.s32, d2.s32 */
2112
2113 static int
2114 create_neon_reg_alias (char *newname, char *p)
2115 {
2116 enum arm_reg_type basetype;
2117 struct reg_entry *basereg;
2118 struct reg_entry mybasereg;
2119 struct neon_type ntype;
2120 struct neon_typed_alias typeinfo;
2121 char *namebuf, *nameend;
2122 int namelen;
2123
2124 typeinfo.defined = 0;
2125 typeinfo.eltype.type = NT_invtype;
2126 typeinfo.eltype.size = -1;
2127 typeinfo.index = -1;
2128
2129 nameend = p;
2130
2131 if (strncmp (p, " .dn ", 5) == 0)
2132 basetype = REG_TYPE_VFD;
2133 else if (strncmp (p, " .qn ", 5) == 0)
2134 basetype = REG_TYPE_NQ;
2135 else
2136 return 0;
2137
2138 p += 5;
2139
2140 if (*p == '\0')
2141 return 0;
2142
2143 basereg = arm_reg_parse_multi (&p);
2144
2145 if (basereg && basereg->type != basetype)
2146 {
2147 as_bad (_("bad type for register"));
2148 return 0;
2149 }
2150
2151 if (basereg == NULL)
2152 {
2153 expressionS exp;
2154 /* Try parsing as an integer. */
2155 my_get_expression (&exp, &p, GE_NO_PREFIX);
2156 if (exp.X_op != O_constant)
2157 {
2158 as_bad (_("expression must be constant"));
2159 return 0;
2160 }
2161 basereg = &mybasereg;
2162 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2163 : exp.X_add_number;
2164 basereg->neon = 0;
2165 }
2166
2167 if (basereg->neon)
2168 typeinfo = *basereg->neon;
2169
2170 if (parse_neon_type (&ntype, &p) == SUCCESS)
2171 {
2172 /* We got a type. */
2173 if (typeinfo.defined & NTA_HASTYPE)
2174 {
2175 as_bad (_("can't redefine the type of a register alias"));
2176 return 0;
2177 }
2178
2179 typeinfo.defined |= NTA_HASTYPE;
2180 if (ntype.elems != 1)
2181 {
2182 as_bad (_("you must specify a single type only"));
2183 return 0;
2184 }
2185 typeinfo.eltype = ntype.el[0];
2186 }
2187
2188 if (skip_past_char (&p, '[') == SUCCESS)
2189 {
2190 expressionS exp;
2191 /* We got a scalar index. */
2192
2193 if (typeinfo.defined & NTA_HASINDEX)
2194 {
2195 as_bad (_("can't redefine the index of a scalar alias"));
2196 return 0;
2197 }
2198
2199 my_get_expression (&exp, &p, GE_NO_PREFIX);
2200
2201 if (exp.X_op != O_constant)
2202 {
2203 as_bad (_("scalar index must be constant"));
2204 return 0;
2205 }
2206
2207 typeinfo.defined |= NTA_HASINDEX;
2208 typeinfo.index = exp.X_add_number;
2209
2210 if (skip_past_char (&p, ']') == FAIL)
2211 {
2212 as_bad (_("expecting ]"));
2213 return 0;
2214 }
2215 }
2216
2217 namelen = nameend - newname;
2218 namebuf = alloca (namelen + 1);
2219 strncpy (namebuf, newname, namelen);
2220 namebuf[namelen] = '\0';
2221
2222 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2223 typeinfo.defined != 0 ? &typeinfo : NULL);
2224
2225 /* Insert name in all uppercase. */
2226 for (p = namebuf; *p; p++)
2227 *p = TOUPPER (*p);
2228
2229 if (strncmp (namebuf, newname, namelen))
2230 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2231 typeinfo.defined != 0 ? &typeinfo : NULL);
2232
2233 /* Insert name in all lowercase. */
2234 for (p = namebuf; *p; p++)
2235 *p = TOLOWER (*p);
2236
2237 if (strncmp (namebuf, newname, namelen))
2238 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2239 typeinfo.defined != 0 ? &typeinfo : NULL);
2240
2241 return 1;
2242 }
2243
2244 /* Should never be called, as .req goes between the alias and the
2245 register name, not at the beginning of the line. */
2246 static void
2247 s_req (int a ATTRIBUTE_UNUSED)
2248 {
2249 as_bad (_("invalid syntax for .req directive"));
2250 }
2251
2252 static void
2253 s_dn (int a ATTRIBUTE_UNUSED)
2254 {
2255 as_bad (_("invalid syntax for .dn directive"));
2256 }
2257
2258 static void
2259 s_qn (int a ATTRIBUTE_UNUSED)
2260 {
2261 as_bad (_("invalid syntax for .qn directive"));
2262 }
2263
2264 /* The .unreq directive deletes an alias which was previously defined
2265 by .req. For example:
2266
2267 my_alias .req r11
2268 .unreq my_alias */
2269
2270 static void
2271 s_unreq (int a ATTRIBUTE_UNUSED)
2272 {
2273 char * name;
2274 char saved_char;
2275
2276 name = input_line_pointer;
2277
2278 while (*input_line_pointer != 0
2279 && *input_line_pointer != ' '
2280 && *input_line_pointer != '\n')
2281 ++input_line_pointer;
2282
2283 saved_char = *input_line_pointer;
2284 *input_line_pointer = 0;
2285
2286 if (!*name)
2287 as_bad (_("invalid syntax for .unreq directive"));
2288 else
2289 {
2290 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2291
2292 if (!reg)
2293 as_bad (_("unknown register alias '%s'"), name);
2294 else if (reg->builtin)
2295 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2296 name);
2297 else
2298 {
2299 char * p;
2300 char * nbuf;
2301
2302 hash_delete (arm_reg_hsh, name, FALSE);
2303 free ((char *) reg->name);
2304 if (reg->neon)
2305 free (reg->neon);
2306 free (reg);
2307
2308 /* Also locate the all upper case and all lower case versions.
2309 Do not complain if we cannot find one or the other as it
2310 was probably deleted above. */
2311
2312 nbuf = strdup (name);
2313 for (p = nbuf; *p; p++)
2314 *p = TOUPPER (*p);
2315 reg = hash_find (arm_reg_hsh, nbuf);
2316 if (reg)
2317 {
2318 hash_delete (arm_reg_hsh, nbuf, FALSE);
2319 free ((char *) reg->name);
2320 if (reg->neon)
2321 free (reg->neon);
2322 free (reg);
2323 }
2324
2325 for (p = nbuf; *p; p++)
2326 *p = TOLOWER (*p);
2327 reg = hash_find (arm_reg_hsh, nbuf);
2328 if (reg)
2329 {
2330 hash_delete (arm_reg_hsh, nbuf, FALSE);
2331 free ((char *) reg->name);
2332 if (reg->neon)
2333 free (reg->neon);
2334 free (reg);
2335 }
2336
2337 free (nbuf);
2338 }
2339 }
2340
2341 *input_line_pointer = saved_char;
2342 demand_empty_rest_of_line ();
2343 }
2344
2345 /* Directives: Instruction set selection. */
2346
2347 #ifdef OBJ_ELF
2348 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2349 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2350 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2351 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2352
2353 static enum mstate mapstate = MAP_UNDEFINED;
2354
2355 void
2356 mapping_state (enum mstate state)
2357 {
2358 symbolS * symbolP;
2359 const char * symname;
2360 int type;
2361
2362 if (mapstate == state)
2363 /* The mapping symbol has already been emitted.
2364 There is nothing else to do. */
2365 return;
2366
2367 mapstate = state;
2368
2369 switch (state)
2370 {
2371 case MAP_DATA:
2372 symname = "$d";
2373 type = BSF_NO_FLAGS;
2374 break;
2375 case MAP_ARM:
2376 symname = "$a";
2377 type = BSF_NO_FLAGS;
2378 break;
2379 case MAP_THUMB:
2380 symname = "$t";
2381 type = BSF_NO_FLAGS;
2382 break;
2383 case MAP_UNDEFINED:
2384 return;
2385 default:
2386 abort ();
2387 }
2388
2389 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2390
2391 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2392 symbol_table_insert (symbolP);
2393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2394
2395 switch (state)
2396 {
2397 case MAP_ARM:
2398 THUMB_SET_FUNC (symbolP, 0);
2399 ARM_SET_THUMB (symbolP, 0);
2400 ARM_SET_INTERWORK (symbolP, support_interwork);
2401 break;
2402
2403 case MAP_THUMB:
2404 THUMB_SET_FUNC (symbolP, 1);
2405 ARM_SET_THUMB (symbolP, 1);
2406 ARM_SET_INTERWORK (symbolP, support_interwork);
2407 break;
2408
2409 case MAP_DATA:
2410 default:
2411 return;
2412 }
2413 }
2414 #else
2415 #define mapping_state(x) /* nothing */
2416 #endif
2417
2418 /* Find the real, Thumb encoded start of a Thumb function. */
2419
2420 #ifdef OBJ_COFF
2421 static symbolS *
2422 find_real_start (symbolS * symbolP)
2423 {
2424 char * real_start;
2425 const char * name = S_GET_NAME (symbolP);
2426 symbolS * new_target;
2427
2428 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2429 #define STUB_NAME ".real_start_of"
2430
2431 if (name == NULL)
2432 abort ();
2433
2434 /* The compiler may generate BL instructions to local labels because
2435 it needs to perform a branch to a far away location. These labels
2436 do not have a corresponding ".real_start_of" label. We check
2437 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2438 the ".real_start_of" convention for nonlocal branches. */
2439 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2440 return symbolP;
2441
2442 real_start = ACONCAT ((STUB_NAME, name, NULL));
2443 new_target = symbol_find (real_start);
2444
2445 if (new_target == NULL)
2446 {
2447 as_warn (_("Failed to find real start of function: %s\n"), name);
2448 new_target = symbolP;
2449 }
2450
2451 return new_target;
2452 }
2453 #endif
2454
2455 static void
2456 opcode_select (int width)
2457 {
2458 switch (width)
2459 {
2460 case 16:
2461 if (! thumb_mode)
2462 {
2463 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2464 as_bad (_("selected processor does not support THUMB opcodes"));
2465
2466 thumb_mode = 1;
2467 /* No need to force the alignment, since we will have been
2468 coming from ARM mode, which is word-aligned. */
2469 record_alignment (now_seg, 1);
2470 }
2471 mapping_state (MAP_THUMB);
2472 break;
2473
2474 case 32:
2475 if (thumb_mode)
2476 {
2477 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2478 as_bad (_("selected processor does not support ARM opcodes"));
2479
2480 thumb_mode = 0;
2481
2482 if (!need_pass_2)
2483 frag_align (2, 0, 0);
2484
2485 record_alignment (now_seg, 1);
2486 }
2487 mapping_state (MAP_ARM);
2488 break;
2489
2490 default:
2491 as_bad (_("invalid instruction size selected (%d)"), width);
2492 }
2493 }
2494
2495 static void
2496 s_arm (int ignore ATTRIBUTE_UNUSED)
2497 {
2498 opcode_select (32);
2499 demand_empty_rest_of_line ();
2500 }
2501
2502 static void
2503 s_thumb (int ignore ATTRIBUTE_UNUSED)
2504 {
2505 opcode_select (16);
2506 demand_empty_rest_of_line ();
2507 }
2508
2509 static void
2510 s_code (int unused ATTRIBUTE_UNUSED)
2511 {
2512 int temp;
2513
2514 temp = get_absolute_expression ();
2515 switch (temp)
2516 {
2517 case 16:
2518 case 32:
2519 opcode_select (temp);
2520 break;
2521
2522 default:
2523 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2524 }
2525 }
2526
2527 static void
2528 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2529 {
2530 /* If we are not already in thumb mode go into it, EVEN if
2531 the target processor does not support thumb instructions.
2532 This is used by gcc/config/arm/lib1funcs.asm for example
2533 to compile interworking support functions even if the
2534 target processor should not support interworking. */
2535 if (! thumb_mode)
2536 {
2537 thumb_mode = 2;
2538 record_alignment (now_seg, 1);
2539 }
2540
2541 demand_empty_rest_of_line ();
2542 }
2543
2544 static void
2545 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2546 {
2547 s_thumb (0);
2548
2549 /* The following label is the name/address of the start of a Thumb function.
2550 We need to know this for the interworking support. */
2551 label_is_thumb_function_name = TRUE;
2552 }
2553
2554 /* Perform a .set directive, but also mark the alias as
2555 being a thumb function. */
2556
2557 static void
2558 s_thumb_set (int equiv)
2559 {
2560 /* XXX the following is a duplicate of the code for s_set() in read.c
2561 We cannot just call that code as we need to get at the symbol that
2562 is created. */
2563 char * name;
2564 char delim;
2565 char * end_name;
2566 symbolS * symbolP;
2567
2568 /* Especial apologies for the random logic:
2569 This just grew, and could be parsed much more simply!
2570 Dean - in haste. */
2571 name = input_line_pointer;
2572 delim = get_symbol_end ();
2573 end_name = input_line_pointer;
2574 *end_name = delim;
2575
2576 if (*input_line_pointer != ',')
2577 {
2578 *end_name = 0;
2579 as_bad (_("expected comma after name \"%s\""), name);
2580 *end_name = delim;
2581 ignore_rest_of_line ();
2582 return;
2583 }
2584
2585 input_line_pointer++;
2586 *end_name = 0;
2587
2588 if (name[0] == '.' && name[1] == '\0')
2589 {
2590 /* XXX - this should not happen to .thumb_set. */
2591 abort ();
2592 }
2593
2594 if ((symbolP = symbol_find (name)) == NULL
2595 && (symbolP = md_undefined_symbol (name)) == NULL)
2596 {
2597 #ifndef NO_LISTING
2598 /* When doing symbol listings, play games with dummy fragments living
2599 outside the normal fragment chain to record the file and line info
2600 for this symbol. */
2601 if (listing & LISTING_SYMBOLS)
2602 {
2603 extern struct list_info_struct * listing_tail;
2604 fragS * dummy_frag = xmalloc (sizeof (fragS));
2605
2606 memset (dummy_frag, 0, sizeof (fragS));
2607 dummy_frag->fr_type = rs_fill;
2608 dummy_frag->line = listing_tail;
2609 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2610 dummy_frag->fr_symbol = symbolP;
2611 }
2612 else
2613 #endif
2614 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2615
2616 #ifdef OBJ_COFF
2617 /* "set" symbols are local unless otherwise specified. */
2618 SF_SET_LOCAL (symbolP);
2619 #endif /* OBJ_COFF */
2620 } /* Make a new symbol. */
2621
2622 symbol_table_insert (symbolP);
2623
2624 * end_name = delim;
2625
2626 if (equiv
2627 && S_IS_DEFINED (symbolP)
2628 && S_GET_SEGMENT (symbolP) != reg_section)
2629 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2630
2631 pseudo_set (symbolP);
2632
2633 demand_empty_rest_of_line ();
2634
2635 /* XXX Now we come to the Thumb specific bit of code. */
2636
2637 THUMB_SET_FUNC (symbolP, 1);
2638 ARM_SET_THUMB (symbolP, 1);
2639 #if defined OBJ_ELF || defined OBJ_COFF
2640 ARM_SET_INTERWORK (symbolP, support_interwork);
2641 #endif
2642 }
2643
2644 /* Directives: Mode selection. */
2645
2646 /* .syntax [unified|divided] - choose the new unified syntax
2647 (same for Arm and Thumb encoding, modulo slight differences in what
2648 can be represented) or the old divergent syntax for each mode. */
2649 static void
2650 s_syntax (int unused ATTRIBUTE_UNUSED)
2651 {
2652 char *name, delim;
2653
2654 name = input_line_pointer;
2655 delim = get_symbol_end ();
2656
2657 if (!strcasecmp (name, "unified"))
2658 unified_syntax = TRUE;
2659 else if (!strcasecmp (name, "divided"))
2660 unified_syntax = FALSE;
2661 else
2662 {
2663 as_bad (_("unrecognized syntax mode \"%s\""), name);
2664 return;
2665 }
2666 *input_line_pointer = delim;
2667 demand_empty_rest_of_line ();
2668 }
2669
2670 /* Directives: sectioning and alignment. */
2671
2672 /* Same as s_align_ptwo but align 0 => align 2. */
2673
2674 static void
2675 s_align (int unused ATTRIBUTE_UNUSED)
2676 {
2677 int temp;
2678 bfd_boolean fill_p;
2679 long temp_fill;
2680 long max_alignment = 15;
2681
2682 temp = get_absolute_expression ();
2683 if (temp > max_alignment)
2684 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2685 else if (temp < 0)
2686 {
2687 as_bad (_("alignment negative. 0 assumed."));
2688 temp = 0;
2689 }
2690
2691 if (*input_line_pointer == ',')
2692 {
2693 input_line_pointer++;
2694 temp_fill = get_absolute_expression ();
2695 fill_p = TRUE;
2696 }
2697 else
2698 {
2699 fill_p = FALSE;
2700 temp_fill = 0;
2701 }
2702
2703 if (!temp)
2704 temp = 2;
2705
2706 /* Only make a frag if we HAVE to. */
2707 if (temp && !need_pass_2)
2708 {
2709 if (!fill_p && subseg_text_p (now_seg))
2710 frag_align_code (temp, 0);
2711 else
2712 frag_align (temp, (int) temp_fill, 0);
2713 }
2714 demand_empty_rest_of_line ();
2715
2716 record_alignment (now_seg, temp);
2717 }
2718
2719 static void
2720 s_bss (int ignore ATTRIBUTE_UNUSED)
2721 {
2722 /* We don't support putting frags in the BSS segment, we fake it by
2723 marking in_bss, then looking at s_skip for clues. */
2724 subseg_set (bss_section, 0);
2725 demand_empty_rest_of_line ();
2726 mapping_state (MAP_DATA);
2727 }
2728
2729 static void
2730 s_even (int ignore ATTRIBUTE_UNUSED)
2731 {
2732 /* Never make frag if expect extra pass. */
2733 if (!need_pass_2)
2734 frag_align (1, 0, 0);
2735
2736 record_alignment (now_seg, 1);
2737
2738 demand_empty_rest_of_line ();
2739 }
2740
2741 /* Directives: Literal pools. */
2742
2743 static literal_pool *
2744 find_literal_pool (void)
2745 {
2746 literal_pool * pool;
2747
2748 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2749 {
2750 if (pool->section == now_seg
2751 && pool->sub_section == now_subseg)
2752 break;
2753 }
2754
2755 return pool;
2756 }
2757
2758 static literal_pool *
2759 find_or_make_literal_pool (void)
2760 {
2761 /* Next literal pool ID number. */
2762 static unsigned int latest_pool_num = 1;
2763 literal_pool * pool;
2764
2765 pool = find_literal_pool ();
2766
2767 if (pool == NULL)
2768 {
2769 /* Create a new pool. */
2770 pool = xmalloc (sizeof (* pool));
2771 if (! pool)
2772 return NULL;
2773
2774 pool->next_free_entry = 0;
2775 pool->section = now_seg;
2776 pool->sub_section = now_subseg;
2777 pool->next = list_of_pools;
2778 pool->symbol = NULL;
2779
2780 /* Add it to the list. */
2781 list_of_pools = pool;
2782 }
2783
2784 /* New pools, and emptied pools, will have a NULL symbol. */
2785 if (pool->symbol == NULL)
2786 {
2787 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2788 (valueT) 0, &zero_address_frag);
2789 pool->id = latest_pool_num ++;
2790 }
2791
2792 /* Done. */
2793 return pool;
2794 }
2795
2796 /* Add the literal in the global 'inst'
2797 structure to the relevant literal pool. */
2798
2799 static int
2800 add_to_lit_pool (void)
2801 {
2802 literal_pool * pool;
2803 unsigned int entry;
2804
2805 pool = find_or_make_literal_pool ();
2806
2807 /* Check if this literal value is already in the pool. */
2808 for (entry = 0; entry < pool->next_free_entry; entry ++)
2809 {
2810 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2811 && (inst.reloc.exp.X_op == O_constant)
2812 && (pool->literals[entry].X_add_number
2813 == inst.reloc.exp.X_add_number)
2814 && (pool->literals[entry].X_unsigned
2815 == inst.reloc.exp.X_unsigned))
2816 break;
2817
2818 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2819 && (inst.reloc.exp.X_op == O_symbol)
2820 && (pool->literals[entry].X_add_number
2821 == inst.reloc.exp.X_add_number)
2822 && (pool->literals[entry].X_add_symbol
2823 == inst.reloc.exp.X_add_symbol)
2824 && (pool->literals[entry].X_op_symbol
2825 == inst.reloc.exp.X_op_symbol))
2826 break;
2827 }
2828
2829 /* Do we need to create a new entry? */
2830 if (entry == pool->next_free_entry)
2831 {
2832 if (entry >= MAX_LITERAL_POOL_SIZE)
2833 {
2834 inst.error = _("literal pool overflow");
2835 return FAIL;
2836 }
2837
2838 pool->literals[entry] = inst.reloc.exp;
2839 pool->next_free_entry += 1;
2840 }
2841
2842 inst.reloc.exp.X_op = O_symbol;
2843 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2844 inst.reloc.exp.X_add_symbol = pool->symbol;
2845
2846 return SUCCESS;
2847 }
2848
2849 /* Can't use symbol_new here, so have to create a symbol and then at
2850 a later date assign it a value. Thats what these functions do. */
2851
2852 static void
2853 symbol_locate (symbolS * symbolP,
2854 const char * name, /* It is copied, the caller can modify. */
2855 segT segment, /* Segment identifier (SEG_<something>). */
2856 valueT valu, /* Symbol value. */
2857 fragS * frag) /* Associated fragment. */
2858 {
2859 unsigned int name_length;
2860 char * preserved_copy_of_name;
2861
2862 name_length = strlen (name) + 1; /* +1 for \0. */
2863 obstack_grow (&notes, name, name_length);
2864 preserved_copy_of_name = obstack_finish (&notes);
2865
2866 #ifdef tc_canonicalize_symbol_name
2867 preserved_copy_of_name =
2868 tc_canonicalize_symbol_name (preserved_copy_of_name);
2869 #endif
2870
2871 S_SET_NAME (symbolP, preserved_copy_of_name);
2872
2873 S_SET_SEGMENT (symbolP, segment);
2874 S_SET_VALUE (symbolP, valu);
2875 symbol_clear_list_pointers (symbolP);
2876
2877 symbol_set_frag (symbolP, frag);
2878
2879 /* Link to end of symbol chain. */
2880 {
2881 extern int symbol_table_frozen;
2882
2883 if (symbol_table_frozen)
2884 abort ();
2885 }
2886
2887 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2888
2889 obj_symbol_new_hook (symbolP);
2890
2891 #ifdef tc_symbol_new_hook
2892 tc_symbol_new_hook (symbolP);
2893 #endif
2894
2895 #ifdef DEBUG_SYMS
2896 verify_symbol_chain (symbol_rootP, symbol_lastP);
2897 #endif /* DEBUG_SYMS */
2898 }
2899
2900
2901 static void
2902 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2903 {
2904 unsigned int entry;
2905 literal_pool * pool;
2906 char sym_name[20];
2907
2908 pool = find_literal_pool ();
2909 if (pool == NULL
2910 || pool->symbol == NULL
2911 || pool->next_free_entry == 0)
2912 return;
2913
2914 mapping_state (MAP_DATA);
2915
2916 /* Align pool as you have word accesses.
2917 Only make a frag if we have to. */
2918 if (!need_pass_2)
2919 frag_align (2, 0, 0);
2920
2921 record_alignment (now_seg, 2);
2922
2923 sprintf (sym_name, "$$lit_\002%x", pool->id);
2924
2925 symbol_locate (pool->symbol, sym_name, now_seg,
2926 (valueT) frag_now_fix (), frag_now);
2927 symbol_table_insert (pool->symbol);
2928
2929 ARM_SET_THUMB (pool->symbol, thumb_mode);
2930
2931 #if defined OBJ_COFF || defined OBJ_ELF
2932 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2933 #endif
2934
2935 for (entry = 0; entry < pool->next_free_entry; entry ++)
2936 /* First output the expression in the instruction to the pool. */
2937 emit_expr (&(pool->literals[entry]), 4); /* .word */
2938
2939 /* Mark the pool as empty. */
2940 pool->next_free_entry = 0;
2941 pool->symbol = NULL;
2942 }
2943
2944 #ifdef OBJ_ELF
2945 /* Forward declarations for functions below, in the MD interface
2946 section. */
2947 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2948 static valueT create_unwind_entry (int);
2949 static void start_unwind_section (const segT, int);
2950 static void add_unwind_opcode (valueT, int);
2951 static void flush_pending_unwind (void);
2952
2953 /* Directives: Data. */
2954
2955 static void
2956 s_arm_elf_cons (int nbytes)
2957 {
2958 expressionS exp;
2959
2960 #ifdef md_flush_pending_output
2961 md_flush_pending_output ();
2962 #endif
2963
2964 if (is_it_end_of_statement ())
2965 {
2966 demand_empty_rest_of_line ();
2967 return;
2968 }
2969
2970 #ifdef md_cons_align
2971 md_cons_align (nbytes);
2972 #endif
2973
2974 mapping_state (MAP_DATA);
2975 do
2976 {
2977 int reloc;
2978 char *base = input_line_pointer;
2979
2980 expression (& exp);
2981
2982 if (exp.X_op != O_symbol)
2983 emit_expr (&exp, (unsigned int) nbytes);
2984 else
2985 {
2986 char *before_reloc = input_line_pointer;
2987 reloc = parse_reloc (&input_line_pointer);
2988 if (reloc == -1)
2989 {
2990 as_bad (_("unrecognized relocation suffix"));
2991 ignore_rest_of_line ();
2992 return;
2993 }
2994 else if (reloc == BFD_RELOC_UNUSED)
2995 emit_expr (&exp, (unsigned int) nbytes);
2996 else
2997 {
2998 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2999 int size = bfd_get_reloc_size (howto);
3000
3001 if (reloc == BFD_RELOC_ARM_PLT32)
3002 {
3003 as_bad (_("(plt) is only valid on branch targets"));
3004 reloc = BFD_RELOC_UNUSED;
3005 size = 0;
3006 }
3007
3008 if (size > nbytes)
3009 as_bad (_("%s relocations do not fit in %d bytes"),
3010 howto->name, nbytes);
3011 else
3012 {
3013 /* We've parsed an expression stopping at O_symbol.
3014 But there may be more expression left now that we
3015 have parsed the relocation marker. Parse it again.
3016 XXX Surely there is a cleaner way to do this. */
3017 char *p = input_line_pointer;
3018 int offset;
3019 char *save_buf = alloca (input_line_pointer - base);
3020 memcpy (save_buf, base, input_line_pointer - base);
3021 memmove (base + (input_line_pointer - before_reloc),
3022 base, before_reloc - base);
3023
3024 input_line_pointer = base + (input_line_pointer-before_reloc);
3025 expression (&exp);
3026 memcpy (base, save_buf, p - base);
3027
3028 offset = nbytes - size;
3029 p = frag_more ((int) nbytes);
3030 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3031 size, &exp, 0, reloc);
3032 }
3033 }
3034 }
3035 }
3036 while (*input_line_pointer++ == ',');
3037
3038 /* Put terminator back into stream. */
3039 input_line_pointer --;
3040 demand_empty_rest_of_line ();
3041 }
3042
3043
3044 /* Parse a .rel31 directive. */
3045
3046 static void
3047 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3048 {
3049 expressionS exp;
3050 char *p;
3051 valueT highbit;
3052
3053 highbit = 0;
3054 if (*input_line_pointer == '1')
3055 highbit = 0x80000000;
3056 else if (*input_line_pointer != '0')
3057 as_bad (_("expected 0 or 1"));
3058
3059 input_line_pointer++;
3060 if (*input_line_pointer != ',')
3061 as_bad (_("missing comma"));
3062 input_line_pointer++;
3063
3064 #ifdef md_flush_pending_output
3065 md_flush_pending_output ();
3066 #endif
3067
3068 #ifdef md_cons_align
3069 md_cons_align (4);
3070 #endif
3071
3072 mapping_state (MAP_DATA);
3073
3074 expression (&exp);
3075
3076 p = frag_more (4);
3077 md_number_to_chars (p, highbit, 4);
3078 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3079 BFD_RELOC_ARM_PREL31);
3080
3081 demand_empty_rest_of_line ();
3082 }
3083
3084 /* Directives: AEABI stack-unwind tables. */
3085
3086 /* Parse an unwind_fnstart directive. Simply records the current location. */
3087
3088 static void
3089 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3090 {
3091 demand_empty_rest_of_line ();
3092 /* Mark the start of the function. */
3093 unwind.proc_start = expr_build_dot ();
3094
3095 /* Reset the rest of the unwind info. */
3096 unwind.opcode_count = 0;
3097 unwind.table_entry = NULL;
3098 unwind.personality_routine = NULL;
3099 unwind.personality_index = -1;
3100 unwind.frame_size = 0;
3101 unwind.fp_offset = 0;
3102 unwind.fp_reg = REG_SP;
3103 unwind.fp_used = 0;
3104 unwind.sp_restored = 0;
3105 }
3106
3107
3108 /* Parse a handlerdata directive. Creates the exception handling table entry
3109 for the function. */
3110
3111 static void
3112 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3113 {
3114 demand_empty_rest_of_line ();
3115 if (unwind.table_entry)
3116 as_bad (_("duplicate .handlerdata directive"));
3117
3118 create_unwind_entry (1);
3119 }
3120
3121 /* Parse an unwind_fnend directive. Generates the index table entry. */
3122
3123 static void
3124 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3125 {
3126 long where;
3127 char *ptr;
3128 valueT val;
3129
3130 demand_empty_rest_of_line ();
3131
3132 /* Add eh table entry. */
3133 if (unwind.table_entry == NULL)
3134 val = create_unwind_entry (0);
3135 else
3136 val = 0;
3137
3138 /* Add index table entry. This is two words. */
3139 start_unwind_section (unwind.saved_seg, 1);
3140 frag_align (2, 0, 0);
3141 record_alignment (now_seg, 2);
3142
3143 ptr = frag_more (8);
3144 where = frag_now_fix () - 8;
3145
3146 /* Self relative offset of the function start. */
3147 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3148 BFD_RELOC_ARM_PREL31);
3149
3150 /* Indicate dependency on EHABI-defined personality routines to the
3151 linker, if it hasn't been done already. */
3152 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3153 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3154 {
3155 static const char *const name[] =
3156 {
3157 "__aeabi_unwind_cpp_pr0",
3158 "__aeabi_unwind_cpp_pr1",
3159 "__aeabi_unwind_cpp_pr2"
3160 };
3161 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3162 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3163 marked_pr_dependency |= 1 << unwind.personality_index;
3164 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3165 = marked_pr_dependency;
3166 }
3167
3168 if (val)
3169 /* Inline exception table entry. */
3170 md_number_to_chars (ptr + 4, val, 4);
3171 else
3172 /* Self relative offset of the table entry. */
3173 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3174 BFD_RELOC_ARM_PREL31);
3175
3176 /* Restore the original section. */
3177 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3178 }
3179
3180
3181 /* Parse an unwind_cantunwind directive. */
3182
3183 static void
3184 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3185 {
3186 demand_empty_rest_of_line ();
3187 if (unwind.personality_routine || unwind.personality_index != -1)
3188 as_bad (_("personality routine specified for cantunwind frame"));
3189
3190 unwind.personality_index = -2;
3191 }
3192
3193
3194 /* Parse a personalityindex directive. */
3195
3196 static void
3197 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3198 {
3199 expressionS exp;
3200
3201 if (unwind.personality_routine || unwind.personality_index != -1)
3202 as_bad (_("duplicate .personalityindex directive"));
3203
3204 expression (&exp);
3205
3206 if (exp.X_op != O_constant
3207 || exp.X_add_number < 0 || exp.X_add_number > 15)
3208 {
3209 as_bad (_("bad personality routine number"));
3210 ignore_rest_of_line ();
3211 return;
3212 }
3213
3214 unwind.personality_index = exp.X_add_number;
3215
3216 demand_empty_rest_of_line ();
3217 }
3218
3219
3220 /* Parse a personality directive. */
3221
3222 static void
3223 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3224 {
3225 char *name, *p, c;
3226
3227 if (unwind.personality_routine || unwind.personality_index != -1)
3228 as_bad (_("duplicate .personality directive"));
3229
3230 name = input_line_pointer;
3231 c = get_symbol_end ();
3232 p = input_line_pointer;
3233 unwind.personality_routine = symbol_find_or_make (name);
3234 *p = c;
3235 demand_empty_rest_of_line ();
3236 }
3237
3238
3239 /* Parse a directive saving core registers. */
3240
3241 static void
3242 s_arm_unwind_save_core (void)
3243 {
3244 valueT op;
3245 long range;
3246 int n;
3247
3248 range = parse_reg_list (&input_line_pointer);
3249 if (range == FAIL)
3250 {
3251 as_bad (_("expected register list"));
3252 ignore_rest_of_line ();
3253 return;
3254 }
3255
3256 demand_empty_rest_of_line ();
3257
3258 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3259 into .unwind_save {..., sp...}. We aren't bothered about the value of
3260 ip because it is clobbered by calls. */
3261 if (unwind.sp_restored && unwind.fp_reg == 12
3262 && (range & 0x3000) == 0x1000)
3263 {
3264 unwind.opcode_count--;
3265 unwind.sp_restored = 0;
3266 range = (range | 0x2000) & ~0x1000;
3267 unwind.pending_offset = 0;
3268 }
3269
3270 /* Pop r4-r15. */
3271 if (range & 0xfff0)
3272 {
3273 /* See if we can use the short opcodes. These pop a block of up to 8
3274 registers starting with r4, plus maybe r14. */
3275 for (n = 0; n < 8; n++)
3276 {
3277 /* Break at the first non-saved register. */
3278 if ((range & (1 << (n + 4))) == 0)
3279 break;
3280 }
3281 /* See if there are any other bits set. */
3282 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3283 {
3284 /* Use the long form. */
3285 op = 0x8000 | ((range >> 4) & 0xfff);
3286 add_unwind_opcode (op, 2);
3287 }
3288 else
3289 {
3290 /* Use the short form. */
3291 if (range & 0x4000)
3292 op = 0xa8; /* Pop r14. */
3293 else
3294 op = 0xa0; /* Do not pop r14. */
3295 op |= (n - 1);
3296 add_unwind_opcode (op, 1);
3297 }
3298 }
3299
3300 /* Pop r0-r3. */
3301 if (range & 0xf)
3302 {
3303 op = 0xb100 | (range & 0xf);
3304 add_unwind_opcode (op, 2);
3305 }
3306
3307 /* Record the number of bytes pushed. */
3308 for (n = 0; n < 16; n++)
3309 {
3310 if (range & (1 << n))
3311 unwind.frame_size += 4;
3312 }
3313 }
3314
3315
3316 /* Parse a directive saving FPA registers. */
3317
3318 static void
3319 s_arm_unwind_save_fpa (int reg)
3320 {
3321 expressionS exp;
3322 int num_regs;
3323 valueT op;
3324
3325 /* Get Number of registers to transfer. */
3326 if (skip_past_comma (&input_line_pointer) != FAIL)
3327 expression (&exp);
3328 else
3329 exp.X_op = O_illegal;
3330
3331 if (exp.X_op != O_constant)
3332 {
3333 as_bad (_("expected , <constant>"));
3334 ignore_rest_of_line ();
3335 return;
3336 }
3337
3338 num_regs = exp.X_add_number;
3339
3340 if (num_regs < 1 || num_regs > 4)
3341 {
3342 as_bad (_("number of registers must be in the range [1:4]"));
3343 ignore_rest_of_line ();
3344 return;
3345 }
3346
3347 demand_empty_rest_of_line ();
3348
3349 if (reg == 4)
3350 {
3351 /* Short form. */
3352 op = 0xb4 | (num_regs - 1);
3353 add_unwind_opcode (op, 1);
3354 }
3355 else
3356 {
3357 /* Long form. */
3358 op = 0xc800 | (reg << 4) | (num_regs - 1);
3359 add_unwind_opcode (op, 2);
3360 }
3361 unwind.frame_size += num_regs * 12;
3362 }
3363
3364
3365 /* Parse a directive saving VFP registers for ARMv6 and above. */
3366
3367 static void
3368 s_arm_unwind_save_vfp_armv6 (void)
3369 {
3370 int count;
3371 unsigned int start;
3372 valueT op;
3373 int num_vfpv3_regs = 0;
3374 int num_regs_below_16;
3375
3376 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3377 if (count == FAIL)
3378 {
3379 as_bad (_("expected register list"));
3380 ignore_rest_of_line ();
3381 return;
3382 }
3383
3384 demand_empty_rest_of_line ();
3385
3386 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3387 than FSTMX/FLDMX-style ones). */
3388
3389 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3390 if (start >= 16)
3391 num_vfpv3_regs = count;
3392 else if (start + count > 16)
3393 num_vfpv3_regs = start + count - 16;
3394
3395 if (num_vfpv3_regs > 0)
3396 {
3397 int start_offset = start > 16 ? start - 16 : 0;
3398 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3399 add_unwind_opcode (op, 2);
3400 }
3401
3402 /* Generate opcode for registers numbered in the range 0 .. 15. */
3403 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3404 assert (num_regs_below_16 + num_vfpv3_regs == count);
3405 if (num_regs_below_16 > 0)
3406 {
3407 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3408 add_unwind_opcode (op, 2);
3409 }
3410
3411 unwind.frame_size += count * 8;
3412 }
3413
3414
3415 /* Parse a directive saving VFP registers for pre-ARMv6. */
3416
3417 static void
3418 s_arm_unwind_save_vfp (void)
3419 {
3420 int count;
3421 unsigned int reg;
3422 valueT op;
3423
3424 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3425 if (count == FAIL)
3426 {
3427 as_bad (_("expected register list"));
3428 ignore_rest_of_line ();
3429 return;
3430 }
3431
3432 demand_empty_rest_of_line ();
3433
3434 if (reg == 8)
3435 {
3436 /* Short form. */
3437 op = 0xb8 | (count - 1);
3438 add_unwind_opcode (op, 1);
3439 }
3440 else
3441 {
3442 /* Long form. */
3443 op = 0xb300 | (reg << 4) | (count - 1);
3444 add_unwind_opcode (op, 2);
3445 }
3446 unwind.frame_size += count * 8 + 4;
3447 }
3448
3449
3450 /* Parse a directive saving iWMMXt data registers. */
3451
3452 static void
3453 s_arm_unwind_save_mmxwr (void)
3454 {
3455 int reg;
3456 int hi_reg;
3457 int i;
3458 unsigned mask = 0;
3459 valueT op;
3460
3461 if (*input_line_pointer == '{')
3462 input_line_pointer++;
3463
3464 do
3465 {
3466 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3467
3468 if (reg == FAIL)
3469 {
3470 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3471 goto error;
3472 }
3473
3474 if (mask >> reg)
3475 as_tsktsk (_("register list not in ascending order"));
3476 mask |= 1 << reg;
3477
3478 if (*input_line_pointer == '-')
3479 {
3480 input_line_pointer++;
3481 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3482 if (hi_reg == FAIL)
3483 {
3484 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3485 goto error;
3486 }
3487 else if (reg >= hi_reg)
3488 {
3489 as_bad (_("bad register range"));
3490 goto error;
3491 }
3492 for (; reg < hi_reg; reg++)
3493 mask |= 1 << reg;
3494 }
3495 }
3496 while (skip_past_comma (&input_line_pointer) != FAIL);
3497
3498 if (*input_line_pointer == '}')
3499 input_line_pointer++;
3500
3501 demand_empty_rest_of_line ();
3502
3503 /* Generate any deferred opcodes because we're going to be looking at
3504 the list. */
3505 flush_pending_unwind ();
3506
3507 for (i = 0; i < 16; i++)
3508 {
3509 if (mask & (1 << i))
3510 unwind.frame_size += 8;
3511 }
3512
3513 /* Attempt to combine with a previous opcode. We do this because gcc
3514 likes to output separate unwind directives for a single block of
3515 registers. */
3516 if (unwind.opcode_count > 0)
3517 {
3518 i = unwind.opcodes[unwind.opcode_count - 1];
3519 if ((i & 0xf8) == 0xc0)
3520 {
3521 i &= 7;
3522 /* Only merge if the blocks are contiguous. */
3523 if (i < 6)
3524 {
3525 if ((mask & 0xfe00) == (1 << 9))
3526 {
3527 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3528 unwind.opcode_count--;
3529 }
3530 }
3531 else if (i == 6 && unwind.opcode_count >= 2)
3532 {
3533 i = unwind.opcodes[unwind.opcode_count - 2];
3534 reg = i >> 4;
3535 i &= 0xf;
3536
3537 op = 0xffff << (reg - 1);
3538 if (reg > 0
3539 && ((mask & op) == (1u << (reg - 1))))
3540 {
3541 op = (1 << (reg + i + 1)) - 1;
3542 op &= ~((1 << reg) - 1);
3543 mask |= op;
3544 unwind.opcode_count -= 2;
3545 }
3546 }
3547 }
3548 }
3549
3550 hi_reg = 15;
3551 /* We want to generate opcodes in the order the registers have been
3552 saved, ie. descending order. */
3553 for (reg = 15; reg >= -1; reg--)
3554 {
3555 /* Save registers in blocks. */
3556 if (reg < 0
3557 || !(mask & (1 << reg)))
3558 {
3559 /* We found an unsaved reg. Generate opcodes to save the
3560 preceding block. */
3561 if (reg != hi_reg)
3562 {
3563 if (reg == 9)
3564 {
3565 /* Short form. */
3566 op = 0xc0 | (hi_reg - 10);
3567 add_unwind_opcode (op, 1);
3568 }
3569 else
3570 {
3571 /* Long form. */
3572 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3573 add_unwind_opcode (op, 2);
3574 }
3575 }
3576 hi_reg = reg - 1;
3577 }
3578 }
3579
3580 return;
3581 error:
3582 ignore_rest_of_line ();
3583 }
3584
3585 static void
3586 s_arm_unwind_save_mmxwcg (void)
3587 {
3588 int reg;
3589 int hi_reg;
3590 unsigned mask = 0;
3591 valueT op;
3592
3593 if (*input_line_pointer == '{')
3594 input_line_pointer++;
3595
3596 do
3597 {
3598 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3599
3600 if (reg == FAIL)
3601 {
3602 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3603 goto error;
3604 }
3605
3606 reg -= 8;
3607 if (mask >> reg)
3608 as_tsktsk (_("register list not in ascending order"));
3609 mask |= 1 << reg;
3610
3611 if (*input_line_pointer == '-')
3612 {
3613 input_line_pointer++;
3614 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3615 if (hi_reg == FAIL)
3616 {
3617 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3618 goto error;
3619 }
3620 else if (reg >= hi_reg)
3621 {
3622 as_bad (_("bad register range"));
3623 goto error;
3624 }
3625 for (; reg < hi_reg; reg++)
3626 mask |= 1 << reg;
3627 }
3628 }
3629 while (skip_past_comma (&input_line_pointer) != FAIL);
3630
3631 if (*input_line_pointer == '}')
3632 input_line_pointer++;
3633
3634 demand_empty_rest_of_line ();
3635
3636 /* Generate any deferred opcodes because we're going to be looking at
3637 the list. */
3638 flush_pending_unwind ();
3639
3640 for (reg = 0; reg < 16; reg++)
3641 {
3642 if (mask & (1 << reg))
3643 unwind.frame_size += 4;
3644 }
3645 op = 0xc700 | mask;
3646 add_unwind_opcode (op, 2);
3647 return;
3648 error:
3649 ignore_rest_of_line ();
3650 }
3651
3652
3653 /* Parse an unwind_save directive.
3654 If the argument is non-zero, this is a .vsave directive. */
3655
3656 static void
3657 s_arm_unwind_save (int arch_v6)
3658 {
3659 char *peek;
3660 struct reg_entry *reg;
3661 bfd_boolean had_brace = FALSE;
3662
3663 /* Figure out what sort of save we have. */
3664 peek = input_line_pointer;
3665
3666 if (*peek == '{')
3667 {
3668 had_brace = TRUE;
3669 peek++;
3670 }
3671
3672 reg = arm_reg_parse_multi (&peek);
3673
3674 if (!reg)
3675 {
3676 as_bad (_("register expected"));
3677 ignore_rest_of_line ();
3678 return;
3679 }
3680
3681 switch (reg->type)
3682 {
3683 case REG_TYPE_FN:
3684 if (had_brace)
3685 {
3686 as_bad (_("FPA .unwind_save does not take a register list"));
3687 ignore_rest_of_line ();
3688 return;
3689 }
3690 input_line_pointer = peek;
3691 s_arm_unwind_save_fpa (reg->number);
3692 return;
3693
3694 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3695 case REG_TYPE_VFD:
3696 if (arch_v6)
3697 s_arm_unwind_save_vfp_armv6 ();
3698 else
3699 s_arm_unwind_save_vfp ();
3700 return;
3701 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3702 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3703
3704 default:
3705 as_bad (_(".unwind_save does not support this kind of register"));
3706 ignore_rest_of_line ();
3707 }
3708 }
3709
3710
3711 /* Parse an unwind_movsp directive. */
3712
3713 static void
3714 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3715 {
3716 int reg;
3717 valueT op;
3718 int offset;
3719
3720 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3721 if (reg == FAIL)
3722 {
3723 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
3724 ignore_rest_of_line ();
3725 return;
3726 }
3727
3728 /* Optional constant. */
3729 if (skip_past_comma (&input_line_pointer) != FAIL)
3730 {
3731 if (immediate_for_directive (&offset) == FAIL)
3732 return;
3733 }
3734 else
3735 offset = 0;
3736
3737 demand_empty_rest_of_line ();
3738
3739 if (reg == REG_SP || reg == REG_PC)
3740 {
3741 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3742 return;
3743 }
3744
3745 if (unwind.fp_reg != REG_SP)
3746 as_bad (_("unexpected .unwind_movsp directive"));
3747
3748 /* Generate opcode to restore the value. */
3749 op = 0x90 | reg;
3750 add_unwind_opcode (op, 1);
3751
3752 /* Record the information for later. */
3753 unwind.fp_reg = reg;
3754 unwind.fp_offset = unwind.frame_size - offset;
3755 unwind.sp_restored = 1;
3756 }
3757
3758 /* Parse an unwind_pad directive. */
3759
3760 static void
3761 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3762 {
3763 int offset;
3764
3765 if (immediate_for_directive (&offset) == FAIL)
3766 return;
3767
3768 if (offset & 3)
3769 {
3770 as_bad (_("stack increment must be multiple of 4"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 /* Don't generate any opcodes, just record the details for later. */
3776 unwind.frame_size += offset;
3777 unwind.pending_offset += offset;
3778
3779 demand_empty_rest_of_line ();
3780 }
3781
3782 /* Parse an unwind_setfp directive. */
3783
3784 static void
3785 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3786 {
3787 int sp_reg;
3788 int fp_reg;
3789 int offset;
3790
3791 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3792 if (skip_past_comma (&input_line_pointer) == FAIL)
3793 sp_reg = FAIL;
3794 else
3795 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3796
3797 if (fp_reg == FAIL || sp_reg == FAIL)
3798 {
3799 as_bad (_("expected <reg>, <reg>"));
3800 ignore_rest_of_line ();
3801 return;
3802 }
3803
3804 /* Optional constant. */
3805 if (skip_past_comma (&input_line_pointer) != FAIL)
3806 {
3807 if (immediate_for_directive (&offset) == FAIL)
3808 return;
3809 }
3810 else
3811 offset = 0;
3812
3813 demand_empty_rest_of_line ();
3814
3815 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
3816 {
3817 as_bad (_("register must be either sp or set by a previous"
3818 "unwind_movsp directive"));
3819 return;
3820 }
3821
3822 /* Don't generate any opcodes, just record the information for later. */
3823 unwind.fp_reg = fp_reg;
3824 unwind.fp_used = 1;
3825 if (sp_reg == REG_SP)
3826 unwind.fp_offset = unwind.frame_size - offset;
3827 else
3828 unwind.fp_offset -= offset;
3829 }
3830
3831 /* Parse an unwind_raw directive. */
3832
3833 static void
3834 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3835 {
3836 expressionS exp;
3837 /* This is an arbitrary limit. */
3838 unsigned char op[16];
3839 int count;
3840
3841 expression (&exp);
3842 if (exp.X_op == O_constant
3843 && skip_past_comma (&input_line_pointer) != FAIL)
3844 {
3845 unwind.frame_size += exp.X_add_number;
3846 expression (&exp);
3847 }
3848 else
3849 exp.X_op = O_illegal;
3850
3851 if (exp.X_op != O_constant)
3852 {
3853 as_bad (_("expected <offset>, <opcode>"));
3854 ignore_rest_of_line ();
3855 return;
3856 }
3857
3858 count = 0;
3859
3860 /* Parse the opcode. */
3861 for (;;)
3862 {
3863 if (count >= 16)
3864 {
3865 as_bad (_("unwind opcode too long"));
3866 ignore_rest_of_line ();
3867 }
3868 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3869 {
3870 as_bad (_("invalid unwind opcode"));
3871 ignore_rest_of_line ();
3872 return;
3873 }
3874 op[count++] = exp.X_add_number;
3875
3876 /* Parse the next byte. */
3877 if (skip_past_comma (&input_line_pointer) == FAIL)
3878 break;
3879
3880 expression (&exp);
3881 }
3882
3883 /* Add the opcode bytes in reverse order. */
3884 while (count--)
3885 add_unwind_opcode (op[count], 1);
3886
3887 demand_empty_rest_of_line ();
3888 }
3889
3890
3891 /* Parse a .eabi_attribute directive. */
3892
3893 static void
3894 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3895 {
3896 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3897
3898 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3899 attributes_set_explicitly[tag] = 1;
3900 }
3901 #endif /* OBJ_ELF */
3902
3903 static void s_arm_arch (int);
3904 static void s_arm_object_arch (int);
3905 static void s_arm_cpu (int);
3906 static void s_arm_fpu (int);
3907
3908 #ifdef TE_PE
3909
3910 static void
3911 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3912 {
3913 expressionS exp;
3914
3915 do
3916 {
3917 expression (&exp);
3918 if (exp.X_op == O_symbol)
3919 exp.X_op = O_secrel;
3920
3921 emit_expr (&exp, 4);
3922 }
3923 while (*input_line_pointer++ == ',');
3924
3925 input_line_pointer--;
3926 demand_empty_rest_of_line ();
3927 }
3928 #endif /* TE_PE */
3929
3930 /* This table describes all the machine specific pseudo-ops the assembler
3931 has to support. The fields are:
3932 pseudo-op name without dot
3933 function to call to execute this pseudo-op
3934 Integer arg to pass to the function. */
3935
3936 const pseudo_typeS md_pseudo_table[] =
3937 {
3938 /* Never called because '.req' does not start a line. */
3939 { "req", s_req, 0 },
3940 /* Following two are likewise never called. */
3941 { "dn", s_dn, 0 },
3942 { "qn", s_qn, 0 },
3943 { "unreq", s_unreq, 0 },
3944 { "bss", s_bss, 0 },
3945 { "align", s_align, 0 },
3946 { "arm", s_arm, 0 },
3947 { "thumb", s_thumb, 0 },
3948 { "code", s_code, 0 },
3949 { "force_thumb", s_force_thumb, 0 },
3950 { "thumb_func", s_thumb_func, 0 },
3951 { "thumb_set", s_thumb_set, 0 },
3952 { "even", s_even, 0 },
3953 { "ltorg", s_ltorg, 0 },
3954 { "pool", s_ltorg, 0 },
3955 { "syntax", s_syntax, 0 },
3956 { "cpu", s_arm_cpu, 0 },
3957 { "arch", s_arm_arch, 0 },
3958 { "object_arch", s_arm_object_arch, 0 },
3959 { "fpu", s_arm_fpu, 0 },
3960 #ifdef OBJ_ELF
3961 { "word", s_arm_elf_cons, 4 },
3962 { "long", s_arm_elf_cons, 4 },
3963 { "rel31", s_arm_rel31, 0 },
3964 { "fnstart", s_arm_unwind_fnstart, 0 },
3965 { "fnend", s_arm_unwind_fnend, 0 },
3966 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3967 { "personality", s_arm_unwind_personality, 0 },
3968 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3969 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3970 { "save", s_arm_unwind_save, 0 },
3971 { "vsave", s_arm_unwind_save, 1 },
3972 { "movsp", s_arm_unwind_movsp, 0 },
3973 { "pad", s_arm_unwind_pad, 0 },
3974 { "setfp", s_arm_unwind_setfp, 0 },
3975 { "unwind_raw", s_arm_unwind_raw, 0 },
3976 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3977 #else
3978 { "word", cons, 4},
3979
3980 /* These are used for dwarf. */
3981 {"2byte", cons, 2},
3982 {"4byte", cons, 4},
3983 {"8byte", cons, 8},
3984 /* These are used for dwarf2. */
3985 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3986 { "loc", dwarf2_directive_loc, 0 },
3987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3988 #endif
3989 { "extend", float_cons, 'x' },
3990 { "ldouble", float_cons, 'x' },
3991 { "packed", float_cons, 'p' },
3992 #ifdef TE_PE
3993 {"secrel32", pe_directive_secrel, 0},
3994 #endif
3995 { 0, 0, 0 }
3996 };
3997 \f
3998 /* Parser functions used exclusively in instruction operands. */
3999
4000 /* Generic immediate-value read function for use in insn parsing.
4001 STR points to the beginning of the immediate (the leading #);
4002 VAL receives the value; if the value is outside [MIN, MAX]
4003 issue an error. PREFIX_OPT is true if the immediate prefix is
4004 optional. */
4005
4006 static int
4007 parse_immediate (char **str, int *val, int min, int max,
4008 bfd_boolean prefix_opt)
4009 {
4010 expressionS exp;
4011 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4012 if (exp.X_op != O_constant)
4013 {
4014 inst.error = _("constant expression required");
4015 return FAIL;
4016 }
4017
4018 if (exp.X_add_number < min || exp.X_add_number > max)
4019 {
4020 inst.error = _("immediate value out of range");
4021 return FAIL;
4022 }
4023
4024 *val = exp.X_add_number;
4025 return SUCCESS;
4026 }
4027
4028 /* Less-generic immediate-value read function with the possibility of loading a
4029 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4030 instructions. Puts the result directly in inst.operands[i]. */
4031
4032 static int
4033 parse_big_immediate (char **str, int i)
4034 {
4035 expressionS exp;
4036 char *ptr = *str;
4037
4038 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4039
4040 if (exp.X_op == O_constant)
4041 {
4042 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4043 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4044 O_constant. We have to be careful not to break compilation for
4045 32-bit X_add_number, though. */
4046 if ((exp.X_add_number & ~0xffffffffl) != 0)
4047 {
4048 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4049 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4050 inst.operands[i].regisimm = 1;
4051 }
4052 }
4053 else if (exp.X_op == O_big
4054 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4055 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4056 {
4057 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4058 /* Bignums have their least significant bits in
4059 generic_bignum[0]. Make sure we put 32 bits in imm and
4060 32 bits in reg, in a (hopefully) portable way. */
4061 assert (parts != 0);
4062 inst.operands[i].imm = 0;
4063 for (j = 0; j < parts; j++, idx++)
4064 inst.operands[i].imm |= generic_bignum[idx]
4065 << (LITTLENUM_NUMBER_OF_BITS * j);
4066 inst.operands[i].reg = 0;
4067 for (j = 0; j < parts; j++, idx++)
4068 inst.operands[i].reg |= generic_bignum[idx]
4069 << (LITTLENUM_NUMBER_OF_BITS * j);
4070 inst.operands[i].regisimm = 1;
4071 }
4072 else
4073 return FAIL;
4074
4075 *str = ptr;
4076
4077 return SUCCESS;
4078 }
4079
4080 /* Returns the pseudo-register number of an FPA immediate constant,
4081 or FAIL if there isn't a valid constant here. */
4082
4083 static int
4084 parse_fpa_immediate (char ** str)
4085 {
4086 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4087 char * save_in;
4088 expressionS exp;
4089 int i;
4090 int j;
4091
4092 /* First try and match exact strings, this is to guarantee
4093 that some formats will work even for cross assembly. */
4094
4095 for (i = 0; fp_const[i]; i++)
4096 {
4097 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4098 {
4099 char *start = *str;
4100
4101 *str += strlen (fp_const[i]);
4102 if (is_end_of_line[(unsigned char) **str])
4103 return i + 8;
4104 *str = start;
4105 }
4106 }
4107
4108 /* Just because we didn't get a match doesn't mean that the constant
4109 isn't valid, just that it is in a format that we don't
4110 automatically recognize. Try parsing it with the standard
4111 expression routines. */
4112
4113 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4114
4115 /* Look for a raw floating point number. */
4116 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4117 && is_end_of_line[(unsigned char) *save_in])
4118 {
4119 for (i = 0; i < NUM_FLOAT_VALS; i++)
4120 {
4121 for (j = 0; j < MAX_LITTLENUMS; j++)
4122 {
4123 if (words[j] != fp_values[i][j])
4124 break;
4125 }
4126
4127 if (j == MAX_LITTLENUMS)
4128 {
4129 *str = save_in;
4130 return i + 8;
4131 }
4132 }
4133 }
4134
4135 /* Try and parse a more complex expression, this will probably fail
4136 unless the code uses a floating point prefix (eg "0f"). */
4137 save_in = input_line_pointer;
4138 input_line_pointer = *str;
4139 if (expression (&exp) == absolute_section
4140 && exp.X_op == O_big
4141 && exp.X_add_number < 0)
4142 {
4143 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4144 Ditto for 15. */
4145 if (gen_to_words (words, 5, (long) 15) == 0)
4146 {
4147 for (i = 0; i < NUM_FLOAT_VALS; i++)
4148 {
4149 for (j = 0; j < MAX_LITTLENUMS; j++)
4150 {
4151 if (words[j] != fp_values[i][j])
4152 break;
4153 }
4154
4155 if (j == MAX_LITTLENUMS)
4156 {
4157 *str = input_line_pointer;
4158 input_line_pointer = save_in;
4159 return i + 8;
4160 }
4161 }
4162 }
4163 }
4164
4165 *str = input_line_pointer;
4166 input_line_pointer = save_in;
4167 inst.error = _("invalid FPA immediate expression");
4168 return FAIL;
4169 }
4170
4171 /* Returns 1 if a number has "quarter-precision" float format
4172 0baBbbbbbc defgh000 00000000 00000000. */
4173
4174 static int
4175 is_quarter_float (unsigned imm)
4176 {
4177 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4178 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4179 }
4180
4181 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4182 0baBbbbbbc defgh000 00000000 00000000.
4183 The zero and minus-zero cases need special handling, since they can't be
4184 encoded in the "quarter-precision" float format, but can nonetheless be
4185 loaded as integer constants. */
4186
4187 static unsigned
4188 parse_qfloat_immediate (char **ccp, int *immed)
4189 {
4190 char *str = *ccp;
4191 char *fpnum;
4192 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4193 int found_fpchar = 0;
4194
4195 skip_past_char (&str, '#');
4196
4197 /* We must not accidentally parse an integer as a floating-point number. Make
4198 sure that the value we parse is not an integer by checking for special
4199 characters '.' or 'e'.
4200 FIXME: This is a horrible hack, but doing better is tricky because type
4201 information isn't in a very usable state at parse time. */
4202 fpnum = str;
4203 skip_whitespace (fpnum);
4204
4205 if (strncmp (fpnum, "0x", 2) == 0)
4206 return FAIL;
4207 else
4208 {
4209 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4210 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4211 {
4212 found_fpchar = 1;
4213 break;
4214 }
4215
4216 if (!found_fpchar)
4217 return FAIL;
4218 }
4219
4220 if ((str = atof_ieee (str, 's', words)) != NULL)
4221 {
4222 unsigned fpword = 0;
4223 int i;
4224
4225 /* Our FP word must be 32 bits (single-precision FP). */
4226 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4227 {
4228 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4229 fpword |= words[i];
4230 }
4231
4232 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4233 *immed = fpword;
4234 else
4235 return FAIL;
4236
4237 *ccp = str;
4238
4239 return SUCCESS;
4240 }
4241
4242 return FAIL;
4243 }
4244
4245 /* Shift operands. */
4246 enum shift_kind
4247 {
4248 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4249 };
4250
4251 struct asm_shift_name
4252 {
4253 const char *name;
4254 enum shift_kind kind;
4255 };
4256
4257 /* Third argument to parse_shift. */
4258 enum parse_shift_mode
4259 {
4260 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4261 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4262 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4263 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4264 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4265 };
4266
4267 /* Parse a <shift> specifier on an ARM data processing instruction.
4268 This has three forms:
4269
4270 (LSL|LSR|ASL|ASR|ROR) Rs
4271 (LSL|LSR|ASL|ASR|ROR) #imm
4272 RRX
4273
4274 Note that ASL is assimilated to LSL in the instruction encoding, and
4275 RRX to ROR #0 (which cannot be written as such). */
4276
4277 static int
4278 parse_shift (char **str, int i, enum parse_shift_mode mode)
4279 {
4280 const struct asm_shift_name *shift_name;
4281 enum shift_kind shift;
4282 char *s = *str;
4283 char *p = s;
4284 int reg;
4285
4286 for (p = *str; ISALPHA (*p); p++)
4287 ;
4288
4289 if (p == *str)
4290 {
4291 inst.error = _("shift expression expected");
4292 return FAIL;
4293 }
4294
4295 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4296
4297 if (shift_name == NULL)
4298 {
4299 inst.error = _("shift expression expected");
4300 return FAIL;
4301 }
4302
4303 shift = shift_name->kind;
4304
4305 switch (mode)
4306 {
4307 case NO_SHIFT_RESTRICT:
4308 case SHIFT_IMMEDIATE: break;
4309
4310 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4311 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4312 {
4313 inst.error = _("'LSL' or 'ASR' required");
4314 return FAIL;
4315 }
4316 break;
4317
4318 case SHIFT_LSL_IMMEDIATE:
4319 if (shift != SHIFT_LSL)
4320 {
4321 inst.error = _("'LSL' required");
4322 return FAIL;
4323 }
4324 break;
4325
4326 case SHIFT_ASR_IMMEDIATE:
4327 if (shift != SHIFT_ASR)
4328 {
4329 inst.error = _("'ASR' required");
4330 return FAIL;
4331 }
4332 break;
4333
4334 default: abort ();
4335 }
4336
4337 if (shift != SHIFT_RRX)
4338 {
4339 /* Whitespace can appear here if the next thing is a bare digit. */
4340 skip_whitespace (p);
4341
4342 if (mode == NO_SHIFT_RESTRICT
4343 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4344 {
4345 inst.operands[i].imm = reg;
4346 inst.operands[i].immisreg = 1;
4347 }
4348 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4349 return FAIL;
4350 }
4351 inst.operands[i].shift_kind = shift;
4352 inst.operands[i].shifted = 1;
4353 *str = p;
4354 return SUCCESS;
4355 }
4356
4357 /* Parse a <shifter_operand> for an ARM data processing instruction:
4358
4359 #<immediate>
4360 #<immediate>, <rotate>
4361 <Rm>
4362 <Rm>, <shift>
4363
4364 where <shift> is defined by parse_shift above, and <rotate> is a
4365 multiple of 2 between 0 and 30. Validation of immediate operands
4366 is deferred to md_apply_fix. */
4367
4368 static int
4369 parse_shifter_operand (char **str, int i)
4370 {
4371 int value;
4372 expressionS expr;
4373
4374 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4375 {
4376 inst.operands[i].reg = value;
4377 inst.operands[i].isreg = 1;
4378
4379 /* parse_shift will override this if appropriate */
4380 inst.reloc.exp.X_op = O_constant;
4381 inst.reloc.exp.X_add_number = 0;
4382
4383 if (skip_past_comma (str) == FAIL)
4384 return SUCCESS;
4385
4386 /* Shift operation on register. */
4387 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4388 }
4389
4390 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4391 return FAIL;
4392
4393 if (skip_past_comma (str) == SUCCESS)
4394 {
4395 /* #x, y -- ie explicit rotation by Y. */
4396 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4397 return FAIL;
4398
4399 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4400 {
4401 inst.error = _("constant expression expected");
4402 return FAIL;
4403 }
4404
4405 value = expr.X_add_number;
4406 if (value < 0 || value > 30 || value % 2 != 0)
4407 {
4408 inst.error = _("invalid rotation");
4409 return FAIL;
4410 }
4411 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4412 {
4413 inst.error = _("invalid constant");
4414 return FAIL;
4415 }
4416
4417 /* Convert to decoded value. md_apply_fix will put it back. */
4418 inst.reloc.exp.X_add_number
4419 = (((inst.reloc.exp.X_add_number << (32 - value))
4420 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4421 }
4422
4423 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4424 inst.reloc.pc_rel = 0;
4425 return SUCCESS;
4426 }
4427
4428 /* Group relocation information. Each entry in the table contains the
4429 textual name of the relocation as may appear in assembler source
4430 and must end with a colon.
4431 Along with this textual name are the relocation codes to be used if
4432 the corresponding instruction is an ALU instruction (ADD or SUB only),
4433 an LDR, an LDRS, or an LDC. */
4434
4435 struct group_reloc_table_entry
4436 {
4437 const char *name;
4438 int alu_code;
4439 int ldr_code;
4440 int ldrs_code;
4441 int ldc_code;
4442 };
4443
4444 typedef enum
4445 {
4446 /* Varieties of non-ALU group relocation. */
4447
4448 GROUP_LDR,
4449 GROUP_LDRS,
4450 GROUP_LDC
4451 } group_reloc_type;
4452
4453 static struct group_reloc_table_entry group_reloc_table[] =
4454 { /* Program counter relative: */
4455 { "pc_g0_nc",
4456 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4457 0, /* LDR */
4458 0, /* LDRS */
4459 0 }, /* LDC */
4460 { "pc_g0",
4461 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4462 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4463 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4464 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4465 { "pc_g1_nc",
4466 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4467 0, /* LDR */
4468 0, /* LDRS */
4469 0 }, /* LDC */
4470 { "pc_g1",
4471 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4472 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4473 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4474 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4475 { "pc_g2",
4476 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4477 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4478 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4479 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4480 /* Section base relative */
4481 { "sb_g0_nc",
4482 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4483 0, /* LDR */
4484 0, /* LDRS */
4485 0 }, /* LDC */
4486 { "sb_g0",
4487 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4488 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4489 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4490 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4491 { "sb_g1_nc",
4492 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4493 0, /* LDR */
4494 0, /* LDRS */
4495 0 }, /* LDC */
4496 { "sb_g1",
4497 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4498 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4499 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4500 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4501 { "sb_g2",
4502 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4503 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4504 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4505 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4506
4507 /* Given the address of a pointer pointing to the textual name of a group
4508 relocation as may appear in assembler source, attempt to find its details
4509 in group_reloc_table. The pointer will be updated to the character after
4510 the trailing colon. On failure, FAIL will be returned; SUCCESS
4511 otherwise. On success, *entry will be updated to point at the relevant
4512 group_reloc_table entry. */
4513
4514 static int
4515 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4516 {
4517 unsigned int i;
4518 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4519 {
4520 int length = strlen (group_reloc_table[i].name);
4521
4522 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4523 && (*str)[length] == ':')
4524 {
4525 *out = &group_reloc_table[i];
4526 *str += (length + 1);
4527 return SUCCESS;
4528 }
4529 }
4530
4531 return FAIL;
4532 }
4533
4534 /* Parse a <shifter_operand> for an ARM data processing instruction
4535 (as for parse_shifter_operand) where group relocations are allowed:
4536
4537 #<immediate>
4538 #<immediate>, <rotate>
4539 #:<group_reloc>:<expression>
4540 <Rm>
4541 <Rm>, <shift>
4542
4543 where <group_reloc> is one of the strings defined in group_reloc_table.
4544 The hashes are optional.
4545
4546 Everything else is as for parse_shifter_operand. */
4547
4548 static parse_operand_result
4549 parse_shifter_operand_group_reloc (char **str, int i)
4550 {
4551 /* Determine if we have the sequence of characters #: or just :
4552 coming next. If we do, then we check for a group relocation.
4553 If we don't, punt the whole lot to parse_shifter_operand. */
4554
4555 if (((*str)[0] == '#' && (*str)[1] == ':')
4556 || (*str)[0] == ':')
4557 {
4558 struct group_reloc_table_entry *entry;
4559
4560 if ((*str)[0] == '#')
4561 (*str) += 2;
4562 else
4563 (*str)++;
4564
4565 /* Try to parse a group relocation. Anything else is an error. */
4566 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4567 {
4568 inst.error = _("unknown group relocation");
4569 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4570 }
4571
4572 /* We now have the group relocation table entry corresponding to
4573 the name in the assembler source. Next, we parse the expression. */
4574 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4575 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4576
4577 /* Record the relocation type (always the ALU variant here). */
4578 inst.reloc.type = entry->alu_code;
4579 assert (inst.reloc.type != 0);
4580
4581 return PARSE_OPERAND_SUCCESS;
4582 }
4583 else
4584 return parse_shifter_operand (str, i) == SUCCESS
4585 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4586
4587 /* Never reached. */
4588 }
4589
4590 /* Parse all forms of an ARM address expression. Information is written
4591 to inst.operands[i] and/or inst.reloc.
4592
4593 Preindexed addressing (.preind=1):
4594
4595 [Rn, #offset] .reg=Rn .reloc.exp=offset
4596 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4597 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4598 .shift_kind=shift .reloc.exp=shift_imm
4599
4600 These three may have a trailing ! which causes .writeback to be set also.
4601
4602 Postindexed addressing (.postind=1, .writeback=1):
4603
4604 [Rn], #offset .reg=Rn .reloc.exp=offset
4605 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4606 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4607 .shift_kind=shift .reloc.exp=shift_imm
4608
4609 Unindexed addressing (.preind=0, .postind=0):
4610
4611 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4612
4613 Other:
4614
4615 [Rn]{!} shorthand for [Rn,#0]{!}
4616 =immediate .isreg=0 .reloc.exp=immediate
4617 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4618
4619 It is the caller's responsibility to check for addressing modes not
4620 supported by the instruction, and to set inst.reloc.type. */
4621
4622 static parse_operand_result
4623 parse_address_main (char **str, int i, int group_relocations,
4624 group_reloc_type group_type)
4625 {
4626 char *p = *str;
4627 int reg;
4628
4629 if (skip_past_char (&p, '[') == FAIL)
4630 {
4631 if (skip_past_char (&p, '=') == FAIL)
4632 {
4633 /* bare address - translate to PC-relative offset */
4634 inst.reloc.pc_rel = 1;
4635 inst.operands[i].reg = REG_PC;
4636 inst.operands[i].isreg = 1;
4637 inst.operands[i].preind = 1;
4638 }
4639 /* else a load-constant pseudo op, no special treatment needed here */
4640
4641 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4642 return PARSE_OPERAND_FAIL;
4643
4644 *str = p;
4645 return PARSE_OPERAND_SUCCESS;
4646 }
4647
4648 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4649 {
4650 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4651 return PARSE_OPERAND_FAIL;
4652 }
4653 inst.operands[i].reg = reg;
4654 inst.operands[i].isreg = 1;
4655
4656 if (skip_past_comma (&p) == SUCCESS)
4657 {
4658 inst.operands[i].preind = 1;
4659
4660 if (*p == '+') p++;
4661 else if (*p == '-') p++, inst.operands[i].negative = 1;
4662
4663 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4664 {
4665 inst.operands[i].imm = reg;
4666 inst.operands[i].immisreg = 1;
4667
4668 if (skip_past_comma (&p) == SUCCESS)
4669 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4670 return PARSE_OPERAND_FAIL;
4671 }
4672 else if (skip_past_char (&p, ':') == SUCCESS)
4673 {
4674 /* FIXME: '@' should be used here, but it's filtered out by generic
4675 code before we get to see it here. This may be subject to
4676 change. */
4677 expressionS exp;
4678 my_get_expression (&exp, &p, GE_NO_PREFIX);
4679 if (exp.X_op != O_constant)
4680 {
4681 inst.error = _("alignment must be constant");
4682 return PARSE_OPERAND_FAIL;
4683 }
4684 inst.operands[i].imm = exp.X_add_number << 8;
4685 inst.operands[i].immisalign = 1;
4686 /* Alignments are not pre-indexes. */
4687 inst.operands[i].preind = 0;
4688 }
4689 else
4690 {
4691 if (inst.operands[i].negative)
4692 {
4693 inst.operands[i].negative = 0;
4694 p--;
4695 }
4696
4697 if (group_relocations
4698 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4699 {
4700 struct group_reloc_table_entry *entry;
4701
4702 /* Skip over the #: or : sequence. */
4703 if (*p == '#')
4704 p += 2;
4705 else
4706 p++;
4707
4708 /* Try to parse a group relocation. Anything else is an
4709 error. */
4710 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4711 {
4712 inst.error = _("unknown group relocation");
4713 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714 }
4715
4716 /* We now have the group relocation table entry corresponding to
4717 the name in the assembler source. Next, we parse the
4718 expression. */
4719 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4720 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4721
4722 /* Record the relocation type. */
4723 switch (group_type)
4724 {
4725 case GROUP_LDR:
4726 inst.reloc.type = entry->ldr_code;
4727 break;
4728
4729 case GROUP_LDRS:
4730 inst.reloc.type = entry->ldrs_code;
4731 break;
4732
4733 case GROUP_LDC:
4734 inst.reloc.type = entry->ldc_code;
4735 break;
4736
4737 default:
4738 assert (0);
4739 }
4740
4741 if (inst.reloc.type == 0)
4742 {
4743 inst.error = _("this group relocation is not allowed on this instruction");
4744 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4745 }
4746 }
4747 else
4748 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4749 return PARSE_OPERAND_FAIL;
4750 }
4751 }
4752
4753 if (skip_past_char (&p, ']') == FAIL)
4754 {
4755 inst.error = _("']' expected");
4756 return PARSE_OPERAND_FAIL;
4757 }
4758
4759 if (skip_past_char (&p, '!') == SUCCESS)
4760 inst.operands[i].writeback = 1;
4761
4762 else if (skip_past_comma (&p) == SUCCESS)
4763 {
4764 if (skip_past_char (&p, '{') == SUCCESS)
4765 {
4766 /* [Rn], {expr} - unindexed, with option */
4767 if (parse_immediate (&p, &inst.operands[i].imm,
4768 0, 255, TRUE) == FAIL)
4769 return PARSE_OPERAND_FAIL;
4770
4771 if (skip_past_char (&p, '}') == FAIL)
4772 {
4773 inst.error = _("'}' expected at end of 'option' field");
4774 return PARSE_OPERAND_FAIL;
4775 }
4776 if (inst.operands[i].preind)
4777 {
4778 inst.error = _("cannot combine index with option");
4779 return PARSE_OPERAND_FAIL;
4780 }
4781 *str = p;
4782 return PARSE_OPERAND_SUCCESS;
4783 }
4784 else
4785 {
4786 inst.operands[i].postind = 1;
4787 inst.operands[i].writeback = 1;
4788
4789 if (inst.operands[i].preind)
4790 {
4791 inst.error = _("cannot combine pre- and post-indexing");
4792 return PARSE_OPERAND_FAIL;
4793 }
4794
4795 if (*p == '+') p++;
4796 else if (*p == '-') p++, inst.operands[i].negative = 1;
4797
4798 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4799 {
4800 /* We might be using the immediate for alignment already. If we
4801 are, OR the register number into the low-order bits. */
4802 if (inst.operands[i].immisalign)
4803 inst.operands[i].imm |= reg;
4804 else
4805 inst.operands[i].imm = reg;
4806 inst.operands[i].immisreg = 1;
4807
4808 if (skip_past_comma (&p) == SUCCESS)
4809 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4810 return PARSE_OPERAND_FAIL;
4811 }
4812 else
4813 {
4814 if (inst.operands[i].negative)
4815 {
4816 inst.operands[i].negative = 0;
4817 p--;
4818 }
4819 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4820 return PARSE_OPERAND_FAIL;
4821 }
4822 }
4823 }
4824
4825 /* If at this point neither .preind nor .postind is set, we have a
4826 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4827 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4828 {
4829 inst.operands[i].preind = 1;
4830 inst.reloc.exp.X_op = O_constant;
4831 inst.reloc.exp.X_add_number = 0;
4832 }
4833 *str = p;
4834 return PARSE_OPERAND_SUCCESS;
4835 }
4836
4837 static int
4838 parse_address (char **str, int i)
4839 {
4840 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4841 ? SUCCESS : FAIL;
4842 }
4843
4844 static parse_operand_result
4845 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4846 {
4847 return parse_address_main (str, i, 1, type);
4848 }
4849
4850 /* Parse an operand for a MOVW or MOVT instruction. */
4851 static int
4852 parse_half (char **str)
4853 {
4854 char * p;
4855
4856 p = *str;
4857 skip_past_char (&p, '#');
4858 if (strncasecmp (p, ":lower16:", 9) == 0)
4859 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4860 else if (strncasecmp (p, ":upper16:", 9) == 0)
4861 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4862
4863 if (inst.reloc.type != BFD_RELOC_UNUSED)
4864 {
4865 p += 9;
4866 skip_whitespace (p);
4867 }
4868
4869 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4870 return FAIL;
4871
4872 if (inst.reloc.type == BFD_RELOC_UNUSED)
4873 {
4874 if (inst.reloc.exp.X_op != O_constant)
4875 {
4876 inst.error = _("constant expression expected");
4877 return FAIL;
4878 }
4879 if (inst.reloc.exp.X_add_number < 0
4880 || inst.reloc.exp.X_add_number > 0xffff)
4881 {
4882 inst.error = _("immediate value out of range");
4883 return FAIL;
4884 }
4885 }
4886 *str = p;
4887 return SUCCESS;
4888 }
4889
4890 /* Miscellaneous. */
4891
4892 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4893 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4894 static int
4895 parse_psr (char **str)
4896 {
4897 char *p;
4898 unsigned long psr_field;
4899 const struct asm_psr *psr;
4900 char *start;
4901
4902 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4903 feature for ease of use and backwards compatibility. */
4904 p = *str;
4905 if (strncasecmp (p, "SPSR", 4) == 0)
4906 psr_field = SPSR_BIT;
4907 else if (strncasecmp (p, "CPSR", 4) == 0)
4908 psr_field = 0;
4909 else
4910 {
4911 start = p;
4912 do
4913 p++;
4914 while (ISALNUM (*p) || *p == '_');
4915
4916 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4917 if (!psr)
4918 return FAIL;
4919
4920 *str = p;
4921 return psr->field;
4922 }
4923
4924 p += 4;
4925 if (*p == '_')
4926 {
4927 /* A suffix follows. */
4928 p++;
4929 start = p;
4930
4931 do
4932 p++;
4933 while (ISALNUM (*p) || *p == '_');
4934
4935 psr = hash_find_n (arm_psr_hsh, start, p - start);
4936 if (!psr)
4937 goto error;
4938
4939 psr_field |= psr->field;
4940 }
4941 else
4942 {
4943 if (ISALNUM (*p))
4944 goto error; /* Garbage after "[CS]PSR". */
4945
4946 psr_field |= (PSR_c | PSR_f);
4947 }
4948 *str = p;
4949 return psr_field;
4950
4951 error:
4952 inst.error = _("flag for {c}psr instruction expected");
4953 return FAIL;
4954 }
4955
4956 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4957 value suitable for splatting into the AIF field of the instruction. */
4958
4959 static int
4960 parse_cps_flags (char **str)
4961 {
4962 int val = 0;
4963 int saw_a_flag = 0;
4964 char *s = *str;
4965
4966 for (;;)
4967 switch (*s++)
4968 {
4969 case '\0': case ',':
4970 goto done;
4971
4972 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4973 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4974 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4975
4976 default:
4977 inst.error = _("unrecognized CPS flag");
4978 return FAIL;
4979 }
4980
4981 done:
4982 if (saw_a_flag == 0)
4983 {
4984 inst.error = _("missing CPS flags");
4985 return FAIL;
4986 }
4987
4988 *str = s - 1;
4989 return val;
4990 }
4991
4992 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4993 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4994
4995 static int
4996 parse_endian_specifier (char **str)
4997 {
4998 int little_endian;
4999 char *s = *str;
5000
5001 if (strncasecmp (s, "BE", 2))
5002 little_endian = 0;
5003 else if (strncasecmp (s, "LE", 2))
5004 little_endian = 1;
5005 else
5006 {
5007 inst.error = _("valid endian specifiers are be or le");
5008 return FAIL;
5009 }
5010
5011 if (ISALNUM (s[2]) || s[2] == '_')
5012 {
5013 inst.error = _("valid endian specifiers are be or le");
5014 return FAIL;
5015 }
5016
5017 *str = s + 2;
5018 return little_endian;
5019 }
5020
5021 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5022 value suitable for poking into the rotate field of an sxt or sxta
5023 instruction, or FAIL on error. */
5024
5025 static int
5026 parse_ror (char **str)
5027 {
5028 int rot;
5029 char *s = *str;
5030
5031 if (strncasecmp (s, "ROR", 3) == 0)
5032 s += 3;
5033 else
5034 {
5035 inst.error = _("missing rotation field after comma");
5036 return FAIL;
5037 }
5038
5039 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5040 return FAIL;
5041
5042 switch (rot)
5043 {
5044 case 0: *str = s; return 0x0;
5045 case 8: *str = s; return 0x1;
5046 case 16: *str = s; return 0x2;
5047 case 24: *str = s; return 0x3;
5048
5049 default:
5050 inst.error = _("rotation can only be 0, 8, 16, or 24");
5051 return FAIL;
5052 }
5053 }
5054
5055 /* Parse a conditional code (from conds[] below). The value returned is in the
5056 range 0 .. 14, or FAIL. */
5057 static int
5058 parse_cond (char **str)
5059 {
5060 char *q;
5061 const struct asm_cond *c;
5062 int n;
5063 /* Condition codes are always 2 characters, so matching up to
5064 3 characters is sufficient. */
5065 char cond[3];
5066
5067 q = *str;
5068 n = 0;
5069 while (ISALPHA (*q) && n < 3)
5070 {
5071 cond[n] = TOLOWER(*q);
5072 q++;
5073 n++;
5074 }
5075
5076 c = hash_find_n (arm_cond_hsh, cond, n);
5077 if (!c)
5078 {
5079 inst.error = _("condition required");
5080 return FAIL;
5081 }
5082
5083 *str = q;
5084 return c->value;
5085 }
5086
5087 /* Parse an option for a barrier instruction. Returns the encoding for the
5088 option, or FAIL. */
5089 static int
5090 parse_barrier (char **str)
5091 {
5092 char *p, *q;
5093 const struct asm_barrier_opt *o;
5094
5095 p = q = *str;
5096 while (ISALPHA (*q))
5097 q++;
5098
5099 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5100 if (!o)
5101 return FAIL;
5102
5103 *str = q;
5104 return o->value;
5105 }
5106
5107 /* Parse the operands of a table branch instruction. Similar to a memory
5108 operand. */
5109 static int
5110 parse_tb (char **str)
5111 {
5112 char * p = *str;
5113 int reg;
5114
5115 if (skip_past_char (&p, '[') == FAIL)
5116 {
5117 inst.error = _("'[' expected");
5118 return FAIL;
5119 }
5120
5121 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5122 {
5123 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5124 return FAIL;
5125 }
5126 inst.operands[0].reg = reg;
5127
5128 if (skip_past_comma (&p) == FAIL)
5129 {
5130 inst.error = _("',' expected");
5131 return FAIL;
5132 }
5133
5134 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5135 {
5136 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5137 return FAIL;
5138 }
5139 inst.operands[0].imm = reg;
5140
5141 if (skip_past_comma (&p) == SUCCESS)
5142 {
5143 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5144 return FAIL;
5145 if (inst.reloc.exp.X_add_number != 1)
5146 {
5147 inst.error = _("invalid shift");
5148 return FAIL;
5149 }
5150 inst.operands[0].shifted = 1;
5151 }
5152
5153 if (skip_past_char (&p, ']') == FAIL)
5154 {
5155 inst.error = _("']' expected");
5156 return FAIL;
5157 }
5158 *str = p;
5159 return SUCCESS;
5160 }
5161
5162 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5163 information on the types the operands can take and how they are encoded.
5164 Up to four operands may be read; this function handles setting the
5165 ".present" field for each read operand itself.
5166 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5167 else returns FAIL. */
5168
5169 static int
5170 parse_neon_mov (char **str, int *which_operand)
5171 {
5172 int i = *which_operand, val;
5173 enum arm_reg_type rtype;
5174 char *ptr = *str;
5175 struct neon_type_el optype;
5176
5177 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5178 {
5179 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5180 inst.operands[i].reg = val;
5181 inst.operands[i].isscalar = 1;
5182 inst.operands[i].vectype = optype;
5183 inst.operands[i++].present = 1;
5184
5185 if (skip_past_comma (&ptr) == FAIL)
5186 goto wanted_comma;
5187
5188 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5189 goto wanted_arm;
5190
5191 inst.operands[i].reg = val;
5192 inst.operands[i].isreg = 1;
5193 inst.operands[i].present = 1;
5194 }
5195 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5196 != FAIL)
5197 {
5198 /* Cases 0, 1, 2, 3, 5 (D only). */
5199 if (skip_past_comma (&ptr) == FAIL)
5200 goto wanted_comma;
5201
5202 inst.operands[i].reg = val;
5203 inst.operands[i].isreg = 1;
5204 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5205 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5206 inst.operands[i].isvec = 1;
5207 inst.operands[i].vectype = optype;
5208 inst.operands[i++].present = 1;
5209
5210 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5211 {
5212 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5213 Case 13: VMOV <Sd>, <Rm> */
5214 inst.operands[i].reg = val;
5215 inst.operands[i].isreg = 1;
5216 inst.operands[i].present = 1;
5217
5218 if (rtype == REG_TYPE_NQ)
5219 {
5220 first_error (_("can't use Neon quad register here"));
5221 return FAIL;
5222 }
5223 else if (rtype != REG_TYPE_VFS)
5224 {
5225 i++;
5226 if (skip_past_comma (&ptr) == FAIL)
5227 goto wanted_comma;
5228 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5229 goto wanted_arm;
5230 inst.operands[i].reg = val;
5231 inst.operands[i].isreg = 1;
5232 inst.operands[i].present = 1;
5233 }
5234 }
5235 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5236 &optype)) != FAIL)
5237 {
5238 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5239 Case 1: VMOV<c><q> <Dd>, <Dm>
5240 Case 8: VMOV.F32 <Sd>, <Sm>
5241 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5242
5243 inst.operands[i].reg = val;
5244 inst.operands[i].isreg = 1;
5245 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5246 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5247 inst.operands[i].isvec = 1;
5248 inst.operands[i].vectype = optype;
5249 inst.operands[i].present = 1;
5250
5251 if (skip_past_comma (&ptr) == SUCCESS)
5252 {
5253 /* Case 15. */
5254 i++;
5255
5256 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5257 goto wanted_arm;
5258
5259 inst.operands[i].reg = val;
5260 inst.operands[i].isreg = 1;
5261 inst.operands[i++].present = 1;
5262
5263 if (skip_past_comma (&ptr) == FAIL)
5264 goto wanted_comma;
5265
5266 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5267 goto wanted_arm;
5268
5269 inst.operands[i].reg = val;
5270 inst.operands[i].isreg = 1;
5271 inst.operands[i++].present = 1;
5272 }
5273 }
5274 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5275 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5276 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5277 Case 10: VMOV.F32 <Sd>, #<imm>
5278 Case 11: VMOV.F64 <Dd>, #<imm> */
5279 inst.operands[i].immisfloat = 1;
5280 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5281 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5282 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5283 ;
5284 else
5285 {
5286 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287 return FAIL;
5288 }
5289 }
5290 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5291 {
5292 /* Cases 6, 7. */
5293 inst.operands[i].reg = val;
5294 inst.operands[i].isreg = 1;
5295 inst.operands[i++].present = 1;
5296
5297 if (skip_past_comma (&ptr) == FAIL)
5298 goto wanted_comma;
5299
5300 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5301 {
5302 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5303 inst.operands[i].reg = val;
5304 inst.operands[i].isscalar = 1;
5305 inst.operands[i].present = 1;
5306 inst.operands[i].vectype = optype;
5307 }
5308 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5309 {
5310 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5311 inst.operands[i].reg = val;
5312 inst.operands[i].isreg = 1;
5313 inst.operands[i++].present = 1;
5314
5315 if (skip_past_comma (&ptr) == FAIL)
5316 goto wanted_comma;
5317
5318 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5319 == FAIL)
5320 {
5321 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5322 return FAIL;
5323 }
5324
5325 inst.operands[i].reg = val;
5326 inst.operands[i].isreg = 1;
5327 inst.operands[i].isvec = 1;
5328 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5329 inst.operands[i].vectype = optype;
5330 inst.operands[i].present = 1;
5331
5332 if (rtype == REG_TYPE_VFS)
5333 {
5334 /* Case 14. */
5335 i++;
5336 if (skip_past_comma (&ptr) == FAIL)
5337 goto wanted_comma;
5338 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5339 &optype)) == FAIL)
5340 {
5341 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5342 return FAIL;
5343 }
5344 inst.operands[i].reg = val;
5345 inst.operands[i].isreg = 1;
5346 inst.operands[i].isvec = 1;
5347 inst.operands[i].issingle = 1;
5348 inst.operands[i].vectype = optype;
5349 inst.operands[i].present = 1;
5350 }
5351 }
5352 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5353 != FAIL)
5354 {
5355 /* Case 13. */
5356 inst.operands[i].reg = val;
5357 inst.operands[i].isreg = 1;
5358 inst.operands[i].isvec = 1;
5359 inst.operands[i].issingle = 1;
5360 inst.operands[i].vectype = optype;
5361 inst.operands[i++].present = 1;
5362 }
5363 }
5364 else
5365 {
5366 first_error (_("parse error"));
5367 return FAIL;
5368 }
5369
5370 /* Successfully parsed the operands. Update args. */
5371 *which_operand = i;
5372 *str = ptr;
5373 return SUCCESS;
5374
5375 wanted_comma:
5376 first_error (_("expected comma"));
5377 return FAIL;
5378
5379 wanted_arm:
5380 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5381 return FAIL;
5382 }
5383
5384 /* Matcher codes for parse_operands. */
5385 enum operand_parse_code
5386 {
5387 OP_stop, /* end of line */
5388
5389 OP_RR, /* ARM register */
5390 OP_RRnpc, /* ARM register, not r15 */
5391 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5392 OP_RRw, /* ARM register, not r15, optional trailing ! */
5393 OP_RCP, /* Coprocessor number */
5394 OP_RCN, /* Coprocessor register */
5395 OP_RF, /* FPA register */
5396 OP_RVS, /* VFP single precision register */
5397 OP_RVD, /* VFP double precision register (0..15) */
5398 OP_RND, /* Neon double precision register (0..31) */
5399 OP_RNQ, /* Neon quad precision register */
5400 OP_RVSD, /* VFP single or double precision register */
5401 OP_RNDQ, /* Neon double or quad precision register */
5402 OP_RNSDQ, /* Neon single, double or quad precision register */
5403 OP_RNSC, /* Neon scalar D[X] */
5404 OP_RVC, /* VFP control register */
5405 OP_RMF, /* Maverick F register */
5406 OP_RMD, /* Maverick D register */
5407 OP_RMFX, /* Maverick FX register */
5408 OP_RMDX, /* Maverick DX register */
5409 OP_RMAX, /* Maverick AX register */
5410 OP_RMDS, /* Maverick DSPSC register */
5411 OP_RIWR, /* iWMMXt wR register */
5412 OP_RIWC, /* iWMMXt wC register */
5413 OP_RIWG, /* iWMMXt wCG register */
5414 OP_RXA, /* XScale accumulator register */
5415
5416 OP_REGLST, /* ARM register list */
5417 OP_VRSLST, /* VFP single-precision register list */
5418 OP_VRDLST, /* VFP double-precision register list */
5419 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5420 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5421 OP_NSTRLST, /* Neon element/structure list */
5422
5423 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5424 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5425 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5426 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5427 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5428 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5429 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5430 OP_VMOV, /* Neon VMOV operands. */
5431 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5432 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5433 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5434
5435 OP_I0, /* immediate zero */
5436 OP_I7, /* immediate value 0 .. 7 */
5437 OP_I15, /* 0 .. 15 */
5438 OP_I16, /* 1 .. 16 */
5439 OP_I16z, /* 0 .. 16 */
5440 OP_I31, /* 0 .. 31 */
5441 OP_I31w, /* 0 .. 31, optional trailing ! */
5442 OP_I32, /* 1 .. 32 */
5443 OP_I32z, /* 0 .. 32 */
5444 OP_I63, /* 0 .. 63 */
5445 OP_I63s, /* -64 .. 63 */
5446 OP_I64, /* 1 .. 64 */
5447 OP_I64z, /* 0 .. 64 */
5448 OP_I255, /* 0 .. 255 */
5449
5450 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5451 OP_I7b, /* 0 .. 7 */
5452 OP_I15b, /* 0 .. 15 */
5453 OP_I31b, /* 0 .. 31 */
5454
5455 OP_SH, /* shifter operand */
5456 OP_SHG, /* shifter operand with possible group relocation */
5457 OP_ADDR, /* Memory address expression (any mode) */
5458 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5459 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5460 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5461 OP_EXP, /* arbitrary expression */
5462 OP_EXPi, /* same, with optional immediate prefix */
5463 OP_EXPr, /* same, with optional relocation suffix */
5464 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5465
5466 OP_CPSF, /* CPS flags */
5467 OP_ENDI, /* Endianness specifier */
5468 OP_PSR, /* CPSR/SPSR mask for msr */
5469 OP_COND, /* conditional code */
5470 OP_TB, /* Table branch. */
5471
5472 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5473 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5474
5475 OP_RRnpc_I0, /* ARM register or literal 0 */
5476 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5477 OP_RR_EXi, /* ARM register or expression with imm prefix */
5478 OP_RF_IF, /* FPA register or immediate */
5479 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5480 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5481
5482 /* Optional operands. */
5483 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5484 OP_oI31b, /* 0 .. 31 */
5485 OP_oI32b, /* 1 .. 32 */
5486 OP_oIffffb, /* 0 .. 65535 */
5487 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5488
5489 OP_oRR, /* ARM register */
5490 OP_oRRnpc, /* ARM register, not the PC */
5491 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5492 OP_oRND, /* Optional Neon double precision register */
5493 OP_oRNQ, /* Optional Neon quad precision register */
5494 OP_oRNDQ, /* Optional Neon double or quad precision register */
5495 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5496 OP_oSHll, /* LSL immediate */
5497 OP_oSHar, /* ASR immediate */
5498 OP_oSHllar, /* LSL or ASR immediate */
5499 OP_oROR, /* ROR 0/8/16/24 */
5500 OP_oBARRIER, /* Option argument for a barrier instruction. */
5501
5502 OP_FIRST_OPTIONAL = OP_oI7b
5503 };
5504
5505 /* Generic instruction operand parser. This does no encoding and no
5506 semantic validation; it merely squirrels values away in the inst
5507 structure. Returns SUCCESS or FAIL depending on whether the
5508 specified grammar matched. */
5509 static int
5510 parse_operands (char *str, const unsigned char *pattern)
5511 {
5512 unsigned const char *upat = pattern;
5513 char *backtrack_pos = 0;
5514 const char *backtrack_error = 0;
5515 int i, val, backtrack_index = 0;
5516 enum arm_reg_type rtype;
5517 parse_operand_result result;
5518
5519 #define po_char_or_fail(chr) do { \
5520 if (skip_past_char (&str, chr) == FAIL) \
5521 goto bad_args; \
5522 } while (0)
5523
5524 #define po_reg_or_fail(regtype) do { \
5525 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5526 &inst.operands[i].vectype); \
5527 if (val == FAIL) \
5528 { \
5529 first_error (_(reg_expected_msgs[regtype])); \
5530 goto failure; \
5531 } \
5532 inst.operands[i].reg = val; \
5533 inst.operands[i].isreg = 1; \
5534 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5535 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5536 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5537 || rtype == REG_TYPE_VFD \
5538 || rtype == REG_TYPE_NQ); \
5539 } while (0)
5540
5541 #define po_reg_or_goto(regtype, label) do { \
5542 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5543 &inst.operands[i].vectype); \
5544 if (val == FAIL) \
5545 goto label; \
5546 \
5547 inst.operands[i].reg = val; \
5548 inst.operands[i].isreg = 1; \
5549 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5550 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5551 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5552 || rtype == REG_TYPE_VFD \
5553 || rtype == REG_TYPE_NQ); \
5554 } while (0)
5555
5556 #define po_imm_or_fail(min, max, popt) do { \
5557 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5558 goto failure; \
5559 inst.operands[i].imm = val; \
5560 } while (0)
5561
5562 #define po_scalar_or_goto(elsz, label) do { \
5563 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5564 if (val == FAIL) \
5565 goto label; \
5566 inst.operands[i].reg = val; \
5567 inst.operands[i].isscalar = 1; \
5568 } while (0)
5569
5570 #define po_misc_or_fail(expr) do { \
5571 if (expr) \
5572 goto failure; \
5573 } while (0)
5574
5575 #define po_misc_or_fail_no_backtrack(expr) do { \
5576 result = expr; \
5577 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5578 backtrack_pos = 0; \
5579 if (result != PARSE_OPERAND_SUCCESS) \
5580 goto failure; \
5581 } while (0)
5582
5583 skip_whitespace (str);
5584
5585 for (i = 0; upat[i] != OP_stop; i++)
5586 {
5587 if (upat[i] >= OP_FIRST_OPTIONAL)
5588 {
5589 /* Remember where we are in case we need to backtrack. */
5590 assert (!backtrack_pos);
5591 backtrack_pos = str;
5592 backtrack_error = inst.error;
5593 backtrack_index = i;
5594 }
5595
5596 if (i > 0 && (i > 1 || inst.operands[0].present))
5597 po_char_or_fail (',');
5598
5599 switch (upat[i])
5600 {
5601 /* Registers */
5602 case OP_oRRnpc:
5603 case OP_RRnpc:
5604 case OP_oRR:
5605 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5606 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5607 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5608 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5609 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5610 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5611 case OP_oRND:
5612 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5613 case OP_RVC:
5614 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5615 break;
5616 /* Also accept generic coprocessor regs for unknown registers. */
5617 coproc_reg:
5618 po_reg_or_fail (REG_TYPE_CN);
5619 break;
5620 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5621 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5622 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5623 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5624 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5625 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5626 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5627 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5628 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5629 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5630 case OP_oRNQ:
5631 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5632 case OP_oRNDQ:
5633 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5634 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5635 case OP_oRNSDQ:
5636 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5637
5638 /* Neon scalar. Using an element size of 8 means that some invalid
5639 scalars are accepted here, so deal with those in later code. */
5640 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5641
5642 /* WARNING: We can expand to two operands here. This has the potential
5643 to totally confuse the backtracking mechanism! It will be OK at
5644 least as long as we don't try to use optional args as well,
5645 though. */
5646 case OP_NILO:
5647 {
5648 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5649 inst.operands[i].present = 1;
5650 i++;
5651 skip_past_comma (&str);
5652 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5653 break;
5654 one_reg_only:
5655 /* Optional register operand was omitted. Unfortunately, it's in
5656 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5657 here (this is a bit grotty). */
5658 inst.operands[i] = inst.operands[i-1];
5659 inst.operands[i-1].present = 0;
5660 break;
5661 try_imm:
5662 /* There's a possibility of getting a 64-bit immediate here, so
5663 we need special handling. */
5664 if (parse_big_immediate (&str, i) == FAIL)
5665 {
5666 inst.error = _("immediate value is out of range");
5667 goto failure;
5668 }
5669 }
5670 break;
5671
5672 case OP_RNDQ_I0:
5673 {
5674 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5675 break;
5676 try_imm0:
5677 po_imm_or_fail (0, 0, TRUE);
5678 }
5679 break;
5680
5681 case OP_RVSD_I0:
5682 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5683 break;
5684
5685 case OP_RR_RNSC:
5686 {
5687 po_scalar_or_goto (8, try_rr);
5688 break;
5689 try_rr:
5690 po_reg_or_fail (REG_TYPE_RN);
5691 }
5692 break;
5693
5694 case OP_RNSDQ_RNSC:
5695 {
5696 po_scalar_or_goto (8, try_nsdq);
5697 break;
5698 try_nsdq:
5699 po_reg_or_fail (REG_TYPE_NSDQ);
5700 }
5701 break;
5702
5703 case OP_RNDQ_RNSC:
5704 {
5705 po_scalar_or_goto (8, try_ndq);
5706 break;
5707 try_ndq:
5708 po_reg_or_fail (REG_TYPE_NDQ);
5709 }
5710 break;
5711
5712 case OP_RND_RNSC:
5713 {
5714 po_scalar_or_goto (8, try_vfd);
5715 break;
5716 try_vfd:
5717 po_reg_or_fail (REG_TYPE_VFD);
5718 }
5719 break;
5720
5721 case OP_VMOV:
5722 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5723 not careful then bad things might happen. */
5724 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5725 break;
5726
5727 case OP_RNDQ_IMVNb:
5728 {
5729 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5730 break;
5731 try_mvnimm:
5732 /* There's a possibility of getting a 64-bit immediate here, so
5733 we need special handling. */
5734 if (parse_big_immediate (&str, i) == FAIL)
5735 {
5736 inst.error = _("immediate value is out of range");
5737 goto failure;
5738 }
5739 }
5740 break;
5741
5742 case OP_RNDQ_I63b:
5743 {
5744 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5745 break;
5746 try_shimm:
5747 po_imm_or_fail (0, 63, TRUE);
5748 }
5749 break;
5750
5751 case OP_RRnpcb:
5752 po_char_or_fail ('[');
5753 po_reg_or_fail (REG_TYPE_RN);
5754 po_char_or_fail (']');
5755 break;
5756
5757 case OP_RRw:
5758 case OP_oRRw:
5759 po_reg_or_fail (REG_TYPE_RN);
5760 if (skip_past_char (&str, '!') == SUCCESS)
5761 inst.operands[i].writeback = 1;
5762 break;
5763
5764 /* Immediates */
5765 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5766 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5767 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5768 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5769 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5770 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5771 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5772 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5773 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5774 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5775 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5776 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5777
5778 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5779 case OP_oI7b:
5780 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5781 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5782 case OP_oI31b:
5783 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5784 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5785 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5786
5787 /* Immediate variants */
5788 case OP_oI255c:
5789 po_char_or_fail ('{');
5790 po_imm_or_fail (0, 255, TRUE);
5791 po_char_or_fail ('}');
5792 break;
5793
5794 case OP_I31w:
5795 /* The expression parser chokes on a trailing !, so we have
5796 to find it first and zap it. */
5797 {
5798 char *s = str;
5799 while (*s && *s != ',')
5800 s++;
5801 if (s[-1] == '!')
5802 {
5803 s[-1] = '\0';
5804 inst.operands[i].writeback = 1;
5805 }
5806 po_imm_or_fail (0, 31, TRUE);
5807 if (str == s - 1)
5808 str = s;
5809 }
5810 break;
5811
5812 /* Expressions */
5813 case OP_EXPi: EXPi:
5814 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5815 GE_OPT_PREFIX));
5816 break;
5817
5818 case OP_EXP:
5819 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5820 GE_NO_PREFIX));
5821 break;
5822
5823 case OP_EXPr: EXPr:
5824 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5825 GE_NO_PREFIX));
5826 if (inst.reloc.exp.X_op == O_symbol)
5827 {
5828 val = parse_reloc (&str);
5829 if (val == -1)
5830 {
5831 inst.error = _("unrecognized relocation suffix");
5832 goto failure;
5833 }
5834 else if (val != BFD_RELOC_UNUSED)
5835 {
5836 inst.operands[i].imm = val;
5837 inst.operands[i].hasreloc = 1;
5838 }
5839 }
5840 break;
5841
5842 /* Operand for MOVW or MOVT. */
5843 case OP_HALF:
5844 po_misc_or_fail (parse_half (&str));
5845 break;
5846
5847 /* Register or expression */
5848 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5849 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5850
5851 /* Register or immediate */
5852 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5853 I0: po_imm_or_fail (0, 0, FALSE); break;
5854
5855 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5856 IF:
5857 if (!is_immediate_prefix (*str))
5858 goto bad_args;
5859 str++;
5860 val = parse_fpa_immediate (&str);
5861 if (val == FAIL)
5862 goto failure;
5863 /* FPA immediates are encoded as registers 8-15.
5864 parse_fpa_immediate has already applied the offset. */
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 break;
5868
5869 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5870 I32z: po_imm_or_fail (0, 32, FALSE); break;
5871
5872 /* Two kinds of register */
5873 case OP_RIWR_RIWC:
5874 {
5875 struct reg_entry *rege = arm_reg_parse_multi (&str);
5876 if (!rege
5877 || (rege->type != REG_TYPE_MMXWR
5878 && rege->type != REG_TYPE_MMXWC
5879 && rege->type != REG_TYPE_MMXWCG))
5880 {
5881 inst.error = _("iWMMXt data or control register expected");
5882 goto failure;
5883 }
5884 inst.operands[i].reg = rege->number;
5885 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5886 }
5887 break;
5888
5889 case OP_RIWC_RIWG:
5890 {
5891 struct reg_entry *rege = arm_reg_parse_multi (&str);
5892 if (!rege
5893 || (rege->type != REG_TYPE_MMXWC
5894 && rege->type != REG_TYPE_MMXWCG))
5895 {
5896 inst.error = _("iWMMXt control register expected");
5897 goto failure;
5898 }
5899 inst.operands[i].reg = rege->number;
5900 inst.operands[i].isreg = 1;
5901 }
5902 break;
5903
5904 /* Misc */
5905 case OP_CPSF: val = parse_cps_flags (&str); break;
5906 case OP_ENDI: val = parse_endian_specifier (&str); break;
5907 case OP_oROR: val = parse_ror (&str); break;
5908 case OP_PSR: val = parse_psr (&str); break;
5909 case OP_COND: val = parse_cond (&str); break;
5910 case OP_oBARRIER:val = parse_barrier (&str); break;
5911
5912 case OP_RVC_PSR:
5913 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5914 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5915 break;
5916 try_psr:
5917 val = parse_psr (&str);
5918 break;
5919
5920 case OP_APSR_RR:
5921 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5922 break;
5923 try_apsr:
5924 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5925 instruction). */
5926 if (strncasecmp (str, "APSR_", 5) == 0)
5927 {
5928 unsigned found = 0;
5929 str += 5;
5930 while (found < 15)
5931 switch (*str++)
5932 {
5933 case 'c': found = (found & 1) ? 16 : found | 1; break;
5934 case 'n': found = (found & 2) ? 16 : found | 2; break;
5935 case 'z': found = (found & 4) ? 16 : found | 4; break;
5936 case 'v': found = (found & 8) ? 16 : found | 8; break;
5937 default: found = 16;
5938 }
5939 if (found != 15)
5940 goto failure;
5941 inst.operands[i].isvec = 1;
5942 }
5943 else
5944 goto failure;
5945 break;
5946
5947 case OP_TB:
5948 po_misc_or_fail (parse_tb (&str));
5949 break;
5950
5951 /* Register lists */
5952 case OP_REGLST:
5953 val = parse_reg_list (&str);
5954 if (*str == '^')
5955 {
5956 inst.operands[1].writeback = 1;
5957 str++;
5958 }
5959 break;
5960
5961 case OP_VRSLST:
5962 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5963 break;
5964
5965 case OP_VRDLST:
5966 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5967 break;
5968
5969 case OP_VRSDLST:
5970 /* Allow Q registers too. */
5971 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5972 REGLIST_NEON_D);
5973 if (val == FAIL)
5974 {
5975 inst.error = NULL;
5976 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5977 REGLIST_VFP_S);
5978 inst.operands[i].issingle = 1;
5979 }
5980 break;
5981
5982 case OP_NRDLST:
5983 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5984 REGLIST_NEON_D);
5985 break;
5986
5987 case OP_NSTRLST:
5988 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5989 &inst.operands[i].vectype);
5990 break;
5991
5992 /* Addressing modes */
5993 case OP_ADDR:
5994 po_misc_or_fail (parse_address (&str, i));
5995 break;
5996
5997 case OP_ADDRGLDR:
5998 po_misc_or_fail_no_backtrack (
5999 parse_address_group_reloc (&str, i, GROUP_LDR));
6000 break;
6001
6002 case OP_ADDRGLDRS:
6003 po_misc_or_fail_no_backtrack (
6004 parse_address_group_reloc (&str, i, GROUP_LDRS));
6005 break;
6006
6007 case OP_ADDRGLDC:
6008 po_misc_or_fail_no_backtrack (
6009 parse_address_group_reloc (&str, i, GROUP_LDC));
6010 break;
6011
6012 case OP_SH:
6013 po_misc_or_fail (parse_shifter_operand (&str, i));
6014 break;
6015
6016 case OP_SHG:
6017 po_misc_or_fail_no_backtrack (
6018 parse_shifter_operand_group_reloc (&str, i));
6019 break;
6020
6021 case OP_oSHll:
6022 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6023 break;
6024
6025 case OP_oSHar:
6026 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6027 break;
6028
6029 case OP_oSHllar:
6030 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6031 break;
6032
6033 default:
6034 as_fatal (_("unhandled operand code %d"), upat[i]);
6035 }
6036
6037 /* Various value-based sanity checks and shared operations. We
6038 do not signal immediate failures for the register constraints;
6039 this allows a syntax error to take precedence. */
6040 switch (upat[i])
6041 {
6042 case OP_oRRnpc:
6043 case OP_RRnpc:
6044 case OP_RRnpcb:
6045 case OP_RRw:
6046 case OP_oRRw:
6047 case OP_RRnpc_I0:
6048 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6049 inst.error = BAD_PC;
6050 break;
6051
6052 case OP_CPSF:
6053 case OP_ENDI:
6054 case OP_oROR:
6055 case OP_PSR:
6056 case OP_RVC_PSR:
6057 case OP_COND:
6058 case OP_oBARRIER:
6059 case OP_REGLST:
6060 case OP_VRSLST:
6061 case OP_VRDLST:
6062 case OP_VRSDLST:
6063 case OP_NRDLST:
6064 case OP_NSTRLST:
6065 if (val == FAIL)
6066 goto failure;
6067 inst.operands[i].imm = val;
6068 break;
6069
6070 default:
6071 break;
6072 }
6073
6074 /* If we get here, this operand was successfully parsed. */
6075 inst.operands[i].present = 1;
6076 continue;
6077
6078 bad_args:
6079 inst.error = BAD_ARGS;
6080
6081 failure:
6082 if (!backtrack_pos)
6083 {
6084 /* The parse routine should already have set inst.error, but set a
6085 default here just in case. */
6086 if (!inst.error)
6087 inst.error = _("syntax error");
6088 return FAIL;
6089 }
6090
6091 /* Do not backtrack over a trailing optional argument that
6092 absorbed some text. We will only fail again, with the
6093 'garbage following instruction' error message, which is
6094 probably less helpful than the current one. */
6095 if (backtrack_index == i && backtrack_pos != str
6096 && upat[i+1] == OP_stop)
6097 {
6098 if (!inst.error)
6099 inst.error = _("syntax error");
6100 return FAIL;
6101 }
6102
6103 /* Try again, skipping the optional argument at backtrack_pos. */
6104 str = backtrack_pos;
6105 inst.error = backtrack_error;
6106 inst.operands[backtrack_index].present = 0;
6107 i = backtrack_index;
6108 backtrack_pos = 0;
6109 }
6110
6111 /* Check that we have parsed all the arguments. */
6112 if (*str != '\0' && !inst.error)
6113 inst.error = _("garbage following instruction");
6114
6115 return inst.error ? FAIL : SUCCESS;
6116 }
6117
6118 #undef po_char_or_fail
6119 #undef po_reg_or_fail
6120 #undef po_reg_or_goto
6121 #undef po_imm_or_fail
6122 #undef po_scalar_or_fail
6123 \f
6124 /* Shorthand macro for instruction encoding functions issuing errors. */
6125 #define constraint(expr, err) do { \
6126 if (expr) \
6127 { \
6128 inst.error = err; \
6129 return; \
6130 } \
6131 } while (0)
6132
6133 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6134 instructions are unpredictable if these registers are used. This
6135 is the BadReg predicate in ARM's Thumb-2 documentation. */
6136 #define reject_bad_reg(reg) \
6137 do \
6138 if (reg == REG_SP || reg == REG_PC) \
6139 { \
6140 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6141 return; \
6142 } \
6143 while (0)
6144
6145 /* If REG is R13 (the stack pointer), warn that its use is
6146 deprecated. */
6147 #define warn_deprecated_sp(reg) \
6148 do \
6149 if (warn_on_deprecated && reg == REG_SP) \
6150 as_warn (_("use of r13 is deprecated")); \
6151 while (0)
6152
6153 /* Functions for operand encoding. ARM, then Thumb. */
6154
6155 #define rotate_left(v, n) (v << n | v >> (32 - n))
6156
6157 /* If VAL can be encoded in the immediate field of an ARM instruction,
6158 return the encoded form. Otherwise, return FAIL. */
6159
6160 static unsigned int
6161 encode_arm_immediate (unsigned int val)
6162 {
6163 unsigned int a, i;
6164
6165 for (i = 0; i < 32; i += 2)
6166 if ((a = rotate_left (val, i)) <= 0xff)
6167 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6168
6169 return FAIL;
6170 }
6171
6172 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6173 return the encoded form. Otherwise, return FAIL. */
6174 static unsigned int
6175 encode_thumb32_immediate (unsigned int val)
6176 {
6177 unsigned int a, i;
6178
6179 if (val <= 0xff)
6180 return val;
6181
6182 for (i = 1; i <= 24; i++)
6183 {
6184 a = val >> i;
6185 if ((val & ~(0xff << i)) == 0)
6186 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6187 }
6188
6189 a = val & 0xff;
6190 if (val == ((a << 16) | a))
6191 return 0x100 | a;
6192 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6193 return 0x300 | a;
6194
6195 a = val & 0xff00;
6196 if (val == ((a << 16) | a))
6197 return 0x200 | (a >> 8);
6198
6199 return FAIL;
6200 }
6201 /* Encode a VFP SP or DP register number into inst.instruction. */
6202
6203 static void
6204 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6205 {
6206 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6207 && reg > 15)
6208 {
6209 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6210 {
6211 if (thumb_mode)
6212 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6213 fpu_vfp_ext_d32);
6214 else
6215 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6216 fpu_vfp_ext_d32);
6217 }
6218 else
6219 {
6220 first_error (_("D register out of range for selected VFP version"));
6221 return;
6222 }
6223 }
6224
6225 switch (pos)
6226 {
6227 case VFP_REG_Sd:
6228 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6229 break;
6230
6231 case VFP_REG_Sn:
6232 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6233 break;
6234
6235 case VFP_REG_Sm:
6236 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6237 break;
6238
6239 case VFP_REG_Dd:
6240 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6241 break;
6242
6243 case VFP_REG_Dn:
6244 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6245 break;
6246
6247 case VFP_REG_Dm:
6248 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6249 break;
6250
6251 default:
6252 abort ();
6253 }
6254 }
6255
6256 /* Encode a <shift> in an ARM-format instruction. The immediate,
6257 if any, is handled by md_apply_fix. */
6258 static void
6259 encode_arm_shift (int i)
6260 {
6261 if (inst.operands[i].shift_kind == SHIFT_RRX)
6262 inst.instruction |= SHIFT_ROR << 5;
6263 else
6264 {
6265 inst.instruction |= inst.operands[i].shift_kind << 5;
6266 if (inst.operands[i].immisreg)
6267 {
6268 inst.instruction |= SHIFT_BY_REG;
6269 inst.instruction |= inst.operands[i].imm << 8;
6270 }
6271 else
6272 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6273 }
6274 }
6275
6276 static void
6277 encode_arm_shifter_operand (int i)
6278 {
6279 if (inst.operands[i].isreg)
6280 {
6281 inst.instruction |= inst.operands[i].reg;
6282 encode_arm_shift (i);
6283 }
6284 else
6285 inst.instruction |= INST_IMMEDIATE;
6286 }
6287
6288 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6289 static void
6290 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6291 {
6292 assert (inst.operands[i].isreg);
6293 inst.instruction |= inst.operands[i].reg << 16;
6294
6295 if (inst.operands[i].preind)
6296 {
6297 if (is_t)
6298 {
6299 inst.error = _("instruction does not accept preindexed addressing");
6300 return;
6301 }
6302 inst.instruction |= PRE_INDEX;
6303 if (inst.operands[i].writeback)
6304 inst.instruction |= WRITE_BACK;
6305
6306 }
6307 else if (inst.operands[i].postind)
6308 {
6309 assert (inst.operands[i].writeback);
6310 if (is_t)
6311 inst.instruction |= WRITE_BACK;
6312 }
6313 else /* unindexed - only for coprocessor */
6314 {
6315 inst.error = _("instruction does not accept unindexed addressing");
6316 return;
6317 }
6318
6319 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6320 && (((inst.instruction & 0x000f0000) >> 16)
6321 == ((inst.instruction & 0x0000f000) >> 12)))
6322 as_warn ((inst.instruction & LOAD_BIT)
6323 ? _("destination register same as write-back base")
6324 : _("source register same as write-back base"));
6325 }
6326
6327 /* inst.operands[i] was set up by parse_address. Encode it into an
6328 ARM-format mode 2 load or store instruction. If is_t is true,
6329 reject forms that cannot be used with a T instruction (i.e. not
6330 post-indexed). */
6331 static void
6332 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6333 {
6334 encode_arm_addr_mode_common (i, is_t);
6335
6336 if (inst.operands[i].immisreg)
6337 {
6338 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6339 inst.instruction |= inst.operands[i].imm;
6340 if (!inst.operands[i].negative)
6341 inst.instruction |= INDEX_UP;
6342 if (inst.operands[i].shifted)
6343 {
6344 if (inst.operands[i].shift_kind == SHIFT_RRX)
6345 inst.instruction |= SHIFT_ROR << 5;
6346 else
6347 {
6348 inst.instruction |= inst.operands[i].shift_kind << 5;
6349 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6350 }
6351 }
6352 }
6353 else /* immediate offset in inst.reloc */
6354 {
6355 if (inst.reloc.type == BFD_RELOC_UNUSED)
6356 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6357 }
6358 }
6359
6360 /* inst.operands[i] was set up by parse_address. Encode it into an
6361 ARM-format mode 3 load or store instruction. Reject forms that
6362 cannot be used with such instructions. If is_t is true, reject
6363 forms that cannot be used with a T instruction (i.e. not
6364 post-indexed). */
6365 static void
6366 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6367 {
6368 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6369 {
6370 inst.error = _("instruction does not accept scaled register index");
6371 return;
6372 }
6373
6374 encode_arm_addr_mode_common (i, is_t);
6375
6376 if (inst.operands[i].immisreg)
6377 {
6378 inst.instruction |= inst.operands[i].imm;
6379 if (!inst.operands[i].negative)
6380 inst.instruction |= INDEX_UP;
6381 }
6382 else /* immediate offset in inst.reloc */
6383 {
6384 inst.instruction |= HWOFFSET_IMM;
6385 if (inst.reloc.type == BFD_RELOC_UNUSED)
6386 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6387 }
6388 }
6389
6390 /* inst.operands[i] was set up by parse_address. Encode it into an
6391 ARM-format instruction. Reject all forms which cannot be encoded
6392 into a coprocessor load/store instruction. If wb_ok is false,
6393 reject use of writeback; if unind_ok is false, reject use of
6394 unindexed addressing. If reloc_override is not 0, use it instead
6395 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6396 (in which case it is preserved). */
6397
6398 static int
6399 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6400 {
6401 inst.instruction |= inst.operands[i].reg << 16;
6402
6403 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6404
6405 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6406 {
6407 assert (!inst.operands[i].writeback);
6408 if (!unind_ok)
6409 {
6410 inst.error = _("instruction does not support unindexed addressing");
6411 return FAIL;
6412 }
6413 inst.instruction |= inst.operands[i].imm;
6414 inst.instruction |= INDEX_UP;
6415 return SUCCESS;
6416 }
6417
6418 if (inst.operands[i].preind)
6419 inst.instruction |= PRE_INDEX;
6420
6421 if (inst.operands[i].writeback)
6422 {
6423 if (inst.operands[i].reg == REG_PC)
6424 {
6425 inst.error = _("pc may not be used with write-back");
6426 return FAIL;
6427 }
6428 if (!wb_ok)
6429 {
6430 inst.error = _("instruction does not support writeback");
6431 return FAIL;
6432 }
6433 inst.instruction |= WRITE_BACK;
6434 }
6435
6436 if (reloc_override)
6437 inst.reloc.type = reloc_override;
6438 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6439 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6440 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6441 {
6442 if (thumb_mode)
6443 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6444 else
6445 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6446 }
6447
6448 return SUCCESS;
6449 }
6450
6451 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6452 Determine whether it can be performed with a move instruction; if
6453 it can, convert inst.instruction to that move instruction and
6454 return 1; if it can't, convert inst.instruction to a literal-pool
6455 load and return 0. If this is not a valid thing to do in the
6456 current context, set inst.error and return 1.
6457
6458 inst.operands[i] describes the destination register. */
6459
6460 static int
6461 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6462 {
6463 unsigned long tbit;
6464
6465 if (thumb_p)
6466 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6467 else
6468 tbit = LOAD_BIT;
6469
6470 if ((inst.instruction & tbit) == 0)
6471 {
6472 inst.error = _("invalid pseudo operation");
6473 return 1;
6474 }
6475 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6476 {
6477 inst.error = _("constant expression expected");
6478 return 1;
6479 }
6480 if (inst.reloc.exp.X_op == O_constant)
6481 {
6482 if (thumb_p)
6483 {
6484 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6485 {
6486 /* This can be done with a mov(1) instruction. */
6487 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6488 inst.instruction |= inst.reloc.exp.X_add_number;
6489 return 1;
6490 }
6491 }
6492 else
6493 {
6494 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6495 if (value != FAIL)
6496 {
6497 /* This can be done with a mov instruction. */
6498 inst.instruction &= LITERAL_MASK;
6499 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6500 inst.instruction |= value & 0xfff;
6501 return 1;
6502 }
6503
6504 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6505 if (value != FAIL)
6506 {
6507 /* This can be done with a mvn instruction. */
6508 inst.instruction &= LITERAL_MASK;
6509 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6510 inst.instruction |= value & 0xfff;
6511 return 1;
6512 }
6513 }
6514 }
6515
6516 if (add_to_lit_pool () == FAIL)
6517 {
6518 inst.error = _("literal pool insertion failed");
6519 return 1;
6520 }
6521 inst.operands[1].reg = REG_PC;
6522 inst.operands[1].isreg = 1;
6523 inst.operands[1].preind = 1;
6524 inst.reloc.pc_rel = 1;
6525 inst.reloc.type = (thumb_p
6526 ? BFD_RELOC_ARM_THUMB_OFFSET
6527 : (mode_3
6528 ? BFD_RELOC_ARM_HWLITERAL
6529 : BFD_RELOC_ARM_LITERAL));
6530 return 0;
6531 }
6532
6533 /* Functions for instruction encoding, sorted by sub-architecture.
6534 First some generics; their names are taken from the conventional
6535 bit positions for register arguments in ARM format instructions. */
6536
6537 static void
6538 do_noargs (void)
6539 {
6540 }
6541
6542 static void
6543 do_rd (void)
6544 {
6545 inst.instruction |= inst.operands[0].reg << 12;
6546 }
6547
6548 static void
6549 do_rd_rm (void)
6550 {
6551 inst.instruction |= inst.operands[0].reg << 12;
6552 inst.instruction |= inst.operands[1].reg;
6553 }
6554
6555 static void
6556 do_rd_rn (void)
6557 {
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 inst.instruction |= inst.operands[1].reg << 16;
6560 }
6561
6562 static void
6563 do_rn_rd (void)
6564 {
6565 inst.instruction |= inst.operands[0].reg << 16;
6566 inst.instruction |= inst.operands[1].reg << 12;
6567 }
6568
6569 static void
6570 do_rd_rm_rn (void)
6571 {
6572 unsigned Rn = inst.operands[2].reg;
6573 /* Enforce restrictions on SWP instruction. */
6574 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6575 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6576 _("Rn must not overlap other operands"));
6577 inst.instruction |= inst.operands[0].reg << 12;
6578 inst.instruction |= inst.operands[1].reg;
6579 inst.instruction |= Rn << 16;
6580 }
6581
6582 static void
6583 do_rd_rn_rm (void)
6584 {
6585 inst.instruction |= inst.operands[0].reg << 12;
6586 inst.instruction |= inst.operands[1].reg << 16;
6587 inst.instruction |= inst.operands[2].reg;
6588 }
6589
6590 static void
6591 do_rm_rd_rn (void)
6592 {
6593 inst.instruction |= inst.operands[0].reg;
6594 inst.instruction |= inst.operands[1].reg << 12;
6595 inst.instruction |= inst.operands[2].reg << 16;
6596 }
6597
6598 static void
6599 do_imm0 (void)
6600 {
6601 inst.instruction |= inst.operands[0].imm;
6602 }
6603
6604 static void
6605 do_rd_cpaddr (void)
6606 {
6607 inst.instruction |= inst.operands[0].reg << 12;
6608 encode_arm_cp_address (1, TRUE, TRUE, 0);
6609 }
6610
6611 /* ARM instructions, in alphabetical order by function name (except
6612 that wrapper functions appear immediately after the function they
6613 wrap). */
6614
6615 /* This is a pseudo-op of the form "adr rd, label" to be converted
6616 into a relative address of the form "add rd, pc, #label-.-8". */
6617
6618 static void
6619 do_adr (void)
6620 {
6621 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6622
6623 /* Frag hacking will turn this into a sub instruction if the offset turns
6624 out to be negative. */
6625 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6626 inst.reloc.pc_rel = 1;
6627 inst.reloc.exp.X_add_number -= 8;
6628 }
6629
6630 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6631 into a relative address of the form:
6632 add rd, pc, #low(label-.-8)"
6633 add rd, rd, #high(label-.-8)" */
6634
6635 static void
6636 do_adrl (void)
6637 {
6638 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6639
6640 /* Frag hacking will turn this into a sub instruction if the offset turns
6641 out to be negative. */
6642 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6643 inst.reloc.pc_rel = 1;
6644 inst.size = INSN_SIZE * 2;
6645 inst.reloc.exp.X_add_number -= 8;
6646 }
6647
6648 static void
6649 do_arit (void)
6650 {
6651 if (!inst.operands[1].present)
6652 inst.operands[1].reg = inst.operands[0].reg;
6653 inst.instruction |= inst.operands[0].reg << 12;
6654 inst.instruction |= inst.operands[1].reg << 16;
6655 encode_arm_shifter_operand (2);
6656 }
6657
6658 static void
6659 do_barrier (void)
6660 {
6661 if (inst.operands[0].present)
6662 {
6663 constraint ((inst.instruction & 0xf0) != 0x40
6664 && inst.operands[0].imm != 0xf,
6665 _("bad barrier type"));
6666 inst.instruction |= inst.operands[0].imm;
6667 }
6668 else
6669 inst.instruction |= 0xf;
6670 }
6671
6672 static void
6673 do_bfc (void)
6674 {
6675 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6676 constraint (msb > 32, _("bit-field extends past end of register"));
6677 /* The instruction encoding stores the LSB and MSB,
6678 not the LSB and width. */
6679 inst.instruction |= inst.operands[0].reg << 12;
6680 inst.instruction |= inst.operands[1].imm << 7;
6681 inst.instruction |= (msb - 1) << 16;
6682 }
6683
6684 static void
6685 do_bfi (void)
6686 {
6687 unsigned int msb;
6688
6689 /* #0 in second position is alternative syntax for bfc, which is
6690 the same instruction but with REG_PC in the Rm field. */
6691 if (!inst.operands[1].isreg)
6692 inst.operands[1].reg = REG_PC;
6693
6694 msb = inst.operands[2].imm + inst.operands[3].imm;
6695 constraint (msb > 32, _("bit-field extends past end of register"));
6696 /* The instruction encoding stores the LSB and MSB,
6697 not the LSB and width. */
6698 inst.instruction |= inst.operands[0].reg << 12;
6699 inst.instruction |= inst.operands[1].reg;
6700 inst.instruction |= inst.operands[2].imm << 7;
6701 inst.instruction |= (msb - 1) << 16;
6702 }
6703
6704 static void
6705 do_bfx (void)
6706 {
6707 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6708 _("bit-field extends past end of register"));
6709 inst.instruction |= inst.operands[0].reg << 12;
6710 inst.instruction |= inst.operands[1].reg;
6711 inst.instruction |= inst.operands[2].imm << 7;
6712 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6713 }
6714
6715 /* ARM V5 breakpoint instruction (argument parse)
6716 BKPT <16 bit unsigned immediate>
6717 Instruction is not conditional.
6718 The bit pattern given in insns[] has the COND_ALWAYS condition,
6719 and it is an error if the caller tried to override that. */
6720
6721 static void
6722 do_bkpt (void)
6723 {
6724 /* Top 12 of 16 bits to bits 19:8. */
6725 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6726
6727 /* Bottom 4 of 16 bits to bits 3:0. */
6728 inst.instruction |= inst.operands[0].imm & 0xf;
6729 }
6730
6731 static void
6732 encode_branch (int default_reloc)
6733 {
6734 if (inst.operands[0].hasreloc)
6735 {
6736 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6737 _("the only suffix valid here is '(plt)'"));
6738 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6739 }
6740 else
6741 {
6742 inst.reloc.type = default_reloc;
6743 }
6744 inst.reloc.pc_rel = 1;
6745 }
6746
6747 static void
6748 do_branch (void)
6749 {
6750 #ifdef OBJ_ELF
6751 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6752 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6753 else
6754 #endif
6755 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6756 }
6757
6758 static void
6759 do_bl (void)
6760 {
6761 #ifdef OBJ_ELF
6762 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6763 {
6764 if (inst.cond == COND_ALWAYS)
6765 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6766 else
6767 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6768 }
6769 else
6770 #endif
6771 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6772 }
6773
6774 /* ARM V5 branch-link-exchange instruction (argument parse)
6775 BLX <target_addr> ie BLX(1)
6776 BLX{<condition>} <Rm> ie BLX(2)
6777 Unfortunately, there are two different opcodes for this mnemonic.
6778 So, the insns[].value is not used, and the code here zaps values
6779 into inst.instruction.
6780 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6781
6782 static void
6783 do_blx (void)
6784 {
6785 if (inst.operands[0].isreg)
6786 {
6787 /* Arg is a register; the opcode provided by insns[] is correct.
6788 It is not illegal to do "blx pc", just useless. */
6789 if (inst.operands[0].reg == REG_PC)
6790 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6791
6792 inst.instruction |= inst.operands[0].reg;
6793 }
6794 else
6795 {
6796 /* Arg is an address; this instruction cannot be executed
6797 conditionally, and the opcode must be adjusted.
6798 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
6799 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
6800 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6801 inst.instruction = 0xfa000000;
6802 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6803 }
6804 }
6805
6806 static void
6807 do_bx (void)
6808 {
6809 bfd_boolean want_reloc;
6810
6811 if (inst.operands[0].reg == REG_PC)
6812 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6813
6814 inst.instruction |= inst.operands[0].reg;
6815 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6816 it is for ARMv4t or earlier. */
6817 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6818 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6819 want_reloc = TRUE;
6820
6821 #ifdef OBJ_ELF
6822 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
6823 #endif
6824 want_reloc = FALSE;
6825
6826 if (want_reloc)
6827 inst.reloc.type = BFD_RELOC_ARM_V4BX;
6828 }
6829
6830
6831 /* ARM v5TEJ. Jump to Jazelle code. */
6832
6833 static void
6834 do_bxj (void)
6835 {
6836 if (inst.operands[0].reg == REG_PC)
6837 as_tsktsk (_("use of r15 in bxj is not really useful"));
6838
6839 inst.instruction |= inst.operands[0].reg;
6840 }
6841
6842 /* Co-processor data operation:
6843 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6844 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6845 static void
6846 do_cdp (void)
6847 {
6848 inst.instruction |= inst.operands[0].reg << 8;
6849 inst.instruction |= inst.operands[1].imm << 20;
6850 inst.instruction |= inst.operands[2].reg << 12;
6851 inst.instruction |= inst.operands[3].reg << 16;
6852 inst.instruction |= inst.operands[4].reg;
6853 inst.instruction |= inst.operands[5].imm << 5;
6854 }
6855
6856 static void
6857 do_cmp (void)
6858 {
6859 inst.instruction |= inst.operands[0].reg << 16;
6860 encode_arm_shifter_operand (1);
6861 }
6862
6863 /* Transfer between coprocessor and ARM registers.
6864 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6865 MRC2
6866 MCR{cond}
6867 MCR2
6868
6869 No special properties. */
6870
6871 static void
6872 do_co_reg (void)
6873 {
6874 unsigned Rd;
6875
6876 Rd = inst.operands[2].reg;
6877 if (thumb_mode)
6878 {
6879 if (inst.instruction == 0xee000010
6880 || inst.instruction == 0xfe000010)
6881 /* MCR, MCR2 */
6882 reject_bad_reg (Rd);
6883 else
6884 /* MRC, MRC2 */
6885 constraint (Rd == REG_SP, BAD_SP);
6886 }
6887 else
6888 {
6889 /* MCR */
6890 if (inst.instruction == 0xe000010)
6891 constraint (Rd == REG_PC, BAD_PC);
6892 }
6893
6894
6895 inst.instruction |= inst.operands[0].reg << 8;
6896 inst.instruction |= inst.operands[1].imm << 21;
6897 inst.instruction |= Rd << 12;
6898 inst.instruction |= inst.operands[3].reg << 16;
6899 inst.instruction |= inst.operands[4].reg;
6900 inst.instruction |= inst.operands[5].imm << 5;
6901 }
6902
6903 /* Transfer between coprocessor register and pair of ARM registers.
6904 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6905 MCRR2
6906 MRRC{cond}
6907 MRRC2
6908
6909 Two XScale instructions are special cases of these:
6910
6911 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6912 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6913
6914 Result unpredictable if Rd or Rn is R15. */
6915
6916 static void
6917 do_co_reg2c (void)
6918 {
6919 unsigned Rd, Rn;
6920
6921 Rd = inst.operands[2].reg;
6922 Rn = inst.operands[3].reg;
6923
6924 if (thumb_mode)
6925 {
6926 reject_bad_reg (Rd);
6927 reject_bad_reg (Rn);
6928 }
6929 else
6930 {
6931 constraint (Rd == REG_PC, BAD_PC);
6932 constraint (Rn == REG_PC, BAD_PC);
6933 }
6934
6935 inst.instruction |= inst.operands[0].reg << 8;
6936 inst.instruction |= inst.operands[1].imm << 4;
6937 inst.instruction |= Rd << 12;
6938 inst.instruction |= Rn << 16;
6939 inst.instruction |= inst.operands[4].reg;
6940 }
6941
6942 static void
6943 do_cpsi (void)
6944 {
6945 inst.instruction |= inst.operands[0].imm << 6;
6946 if (inst.operands[1].present)
6947 {
6948 inst.instruction |= CPSI_MMOD;
6949 inst.instruction |= inst.operands[1].imm;
6950 }
6951 }
6952
6953 static void
6954 do_dbg (void)
6955 {
6956 inst.instruction |= inst.operands[0].imm;
6957 }
6958
6959 static void
6960 do_it (void)
6961 {
6962 /* There is no IT instruction in ARM mode. We
6963 process it but do not generate code for it. */
6964 inst.size = 0;
6965 }
6966
6967 static void
6968 do_ldmstm (void)
6969 {
6970 int base_reg = inst.operands[0].reg;
6971 int range = inst.operands[1].imm;
6972
6973 inst.instruction |= base_reg << 16;
6974 inst.instruction |= range;
6975
6976 if (inst.operands[1].writeback)
6977 inst.instruction |= LDM_TYPE_2_OR_3;
6978
6979 if (inst.operands[0].writeback)
6980 {
6981 inst.instruction |= WRITE_BACK;
6982 /* Check for unpredictable uses of writeback. */
6983 if (inst.instruction & LOAD_BIT)
6984 {
6985 /* Not allowed in LDM type 2. */
6986 if ((inst.instruction & LDM_TYPE_2_OR_3)
6987 && ((range & (1 << REG_PC)) == 0))
6988 as_warn (_("writeback of base register is UNPREDICTABLE"));
6989 /* Only allowed if base reg not in list for other types. */
6990 else if (range & (1 << base_reg))
6991 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6992 }
6993 else /* STM. */
6994 {
6995 /* Not allowed for type 2. */
6996 if (inst.instruction & LDM_TYPE_2_OR_3)
6997 as_warn (_("writeback of base register is UNPREDICTABLE"));
6998 /* Only allowed if base reg not in list, or first in list. */
6999 else if ((range & (1 << base_reg))
7000 && (range & ((1 << base_reg) - 1)))
7001 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7002 }
7003 }
7004 }
7005
7006 /* ARMv5TE load-consecutive (argument parse)
7007 Mode is like LDRH.
7008
7009 LDRccD R, mode
7010 STRccD R, mode. */
7011
7012 static void
7013 do_ldrd (void)
7014 {
7015 constraint (inst.operands[0].reg % 2 != 0,
7016 _("first destination register must be even"));
7017 constraint (inst.operands[1].present
7018 && inst.operands[1].reg != inst.operands[0].reg + 1,
7019 _("can only load two consecutive registers"));
7020 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7021 constraint (!inst.operands[2].isreg, _("'[' expected"));
7022
7023 if (!inst.operands[1].present)
7024 inst.operands[1].reg = inst.operands[0].reg + 1;
7025
7026 if (inst.instruction & LOAD_BIT)
7027 {
7028 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7029 register and the first register written; we have to diagnose
7030 overlap between the base and the second register written here. */
7031
7032 if (inst.operands[2].reg == inst.operands[1].reg
7033 && (inst.operands[2].writeback || inst.operands[2].postind))
7034 as_warn (_("base register written back, and overlaps "
7035 "second destination register"));
7036
7037 /* For an index-register load, the index register must not overlap the
7038 destination (even if not write-back). */
7039 else if (inst.operands[2].immisreg
7040 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7041 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7042 as_warn (_("index register overlaps destination register"));
7043 }
7044
7045 inst.instruction |= inst.operands[0].reg << 12;
7046 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7047 }
7048
7049 static void
7050 do_ldrex (void)
7051 {
7052 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7053 || inst.operands[1].postind || inst.operands[1].writeback
7054 || inst.operands[1].immisreg || inst.operands[1].shifted
7055 || inst.operands[1].negative
7056 /* This can arise if the programmer has written
7057 strex rN, rM, foo
7058 or if they have mistakenly used a register name as the last
7059 operand, eg:
7060 strex rN, rM, rX
7061 It is very difficult to distinguish between these two cases
7062 because "rX" might actually be a label. ie the register
7063 name has been occluded by a symbol of the same name. So we
7064 just generate a general 'bad addressing mode' type error
7065 message and leave it up to the programmer to discover the
7066 true cause and fix their mistake. */
7067 || (inst.operands[1].reg == REG_PC),
7068 BAD_ADDR_MODE);
7069
7070 constraint (inst.reloc.exp.X_op != O_constant
7071 || inst.reloc.exp.X_add_number != 0,
7072 _("offset must be zero in ARM encoding"));
7073
7074 inst.instruction |= inst.operands[0].reg << 12;
7075 inst.instruction |= inst.operands[1].reg << 16;
7076 inst.reloc.type = BFD_RELOC_UNUSED;
7077 }
7078
7079 static void
7080 do_ldrexd (void)
7081 {
7082 constraint (inst.operands[0].reg % 2 != 0,
7083 _("even register required"));
7084 constraint (inst.operands[1].present
7085 && inst.operands[1].reg != inst.operands[0].reg + 1,
7086 _("can only load two consecutive registers"));
7087 /* If op 1 were present and equal to PC, this function wouldn't
7088 have been called in the first place. */
7089 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7090
7091 inst.instruction |= inst.operands[0].reg << 12;
7092 inst.instruction |= inst.operands[2].reg << 16;
7093 }
7094
7095 static void
7096 do_ldst (void)
7097 {
7098 inst.instruction |= inst.operands[0].reg << 12;
7099 if (!inst.operands[1].isreg)
7100 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7101 return;
7102 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7103 }
7104
7105 static void
7106 do_ldstt (void)
7107 {
7108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7109 reject [Rn,...]. */
7110 if (inst.operands[1].preind)
7111 {
7112 constraint (inst.reloc.exp.X_op != O_constant
7113 || inst.reloc.exp.X_add_number != 0,
7114 _("this instruction requires a post-indexed address"));
7115
7116 inst.operands[1].preind = 0;
7117 inst.operands[1].postind = 1;
7118 inst.operands[1].writeback = 1;
7119 }
7120 inst.instruction |= inst.operands[0].reg << 12;
7121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7122 }
7123
7124 /* Halfword and signed-byte load/store operations. */
7125
7126 static void
7127 do_ldstv4 (void)
7128 {
7129 inst.instruction |= inst.operands[0].reg << 12;
7130 if (!inst.operands[1].isreg)
7131 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7132 return;
7133 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7134 }
7135
7136 static void
7137 do_ldsttv4 (void)
7138 {
7139 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7140 reject [Rn,...]. */
7141 if (inst.operands[1].preind)
7142 {
7143 constraint (inst.reloc.exp.X_op != O_constant
7144 || inst.reloc.exp.X_add_number != 0,
7145 _("this instruction requires a post-indexed address"));
7146
7147 inst.operands[1].preind = 0;
7148 inst.operands[1].postind = 1;
7149 inst.operands[1].writeback = 1;
7150 }
7151 inst.instruction |= inst.operands[0].reg << 12;
7152 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7153 }
7154
7155 /* Co-processor register load/store.
7156 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7157 static void
7158 do_lstc (void)
7159 {
7160 inst.instruction |= inst.operands[0].reg << 8;
7161 inst.instruction |= inst.operands[1].reg << 12;
7162 encode_arm_cp_address (2, TRUE, TRUE, 0);
7163 }
7164
7165 static void
7166 do_mlas (void)
7167 {
7168 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7169 if (inst.operands[0].reg == inst.operands[1].reg
7170 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7171 && !(inst.instruction & 0x00400000))
7172 as_tsktsk (_("Rd and Rm should be different in mla"));
7173
7174 inst.instruction |= inst.operands[0].reg << 16;
7175 inst.instruction |= inst.operands[1].reg;
7176 inst.instruction |= inst.operands[2].reg << 8;
7177 inst.instruction |= inst.operands[3].reg << 12;
7178 }
7179
7180 static void
7181 do_mov (void)
7182 {
7183 inst.instruction |= inst.operands[0].reg << 12;
7184 encode_arm_shifter_operand (1);
7185 }
7186
7187 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7188 static void
7189 do_mov16 (void)
7190 {
7191 bfd_vma imm;
7192 bfd_boolean top;
7193
7194 top = (inst.instruction & 0x00400000) != 0;
7195 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7196 _(":lower16: not allowed this instruction"));
7197 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7198 _(":upper16: not allowed instruction"));
7199 inst.instruction |= inst.operands[0].reg << 12;
7200 if (inst.reloc.type == BFD_RELOC_UNUSED)
7201 {
7202 imm = inst.reloc.exp.X_add_number;
7203 /* The value is in two pieces: 0:11, 16:19. */
7204 inst.instruction |= (imm & 0x00000fff);
7205 inst.instruction |= (imm & 0x0000f000) << 4;
7206 }
7207 }
7208
7209 static void do_vfp_nsyn_opcode (const char *);
7210
7211 static int
7212 do_vfp_nsyn_mrs (void)
7213 {
7214 if (inst.operands[0].isvec)
7215 {
7216 if (inst.operands[1].reg != 1)
7217 first_error (_("operand 1 must be FPSCR"));
7218 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7219 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7220 do_vfp_nsyn_opcode ("fmstat");
7221 }
7222 else if (inst.operands[1].isvec)
7223 do_vfp_nsyn_opcode ("fmrx");
7224 else
7225 return FAIL;
7226
7227 return SUCCESS;
7228 }
7229
7230 static int
7231 do_vfp_nsyn_msr (void)
7232 {
7233 if (inst.operands[0].isvec)
7234 do_vfp_nsyn_opcode ("fmxr");
7235 else
7236 return FAIL;
7237
7238 return SUCCESS;
7239 }
7240
7241 static void
7242 do_mrs (void)
7243 {
7244 if (do_vfp_nsyn_mrs () == SUCCESS)
7245 return;
7246
7247 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7248 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7249 != (PSR_c|PSR_f),
7250 _("'CPSR' or 'SPSR' expected"));
7251 inst.instruction |= inst.operands[0].reg << 12;
7252 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7253 }
7254
7255 /* Two possible forms:
7256 "{C|S}PSR_<field>, Rm",
7257 "{C|S}PSR_f, #expression". */
7258
7259 static void
7260 do_msr (void)
7261 {
7262 if (do_vfp_nsyn_msr () == SUCCESS)
7263 return;
7264
7265 inst.instruction |= inst.operands[0].imm;
7266 if (inst.operands[1].isreg)
7267 inst.instruction |= inst.operands[1].reg;
7268 else
7269 {
7270 inst.instruction |= INST_IMMEDIATE;
7271 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7272 inst.reloc.pc_rel = 0;
7273 }
7274 }
7275
7276 static void
7277 do_mul (void)
7278 {
7279 if (!inst.operands[2].present)
7280 inst.operands[2].reg = inst.operands[0].reg;
7281 inst.instruction |= inst.operands[0].reg << 16;
7282 inst.instruction |= inst.operands[1].reg;
7283 inst.instruction |= inst.operands[2].reg << 8;
7284
7285 if (inst.operands[0].reg == inst.operands[1].reg
7286 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7287 as_tsktsk (_("Rd and Rm should be different in mul"));
7288 }
7289
7290 /* Long Multiply Parser
7291 UMULL RdLo, RdHi, Rm, Rs
7292 SMULL RdLo, RdHi, Rm, Rs
7293 UMLAL RdLo, RdHi, Rm, Rs
7294 SMLAL RdLo, RdHi, Rm, Rs. */
7295
7296 static void
7297 do_mull (void)
7298 {
7299 inst.instruction |= inst.operands[0].reg << 12;
7300 inst.instruction |= inst.operands[1].reg << 16;
7301 inst.instruction |= inst.operands[2].reg;
7302 inst.instruction |= inst.operands[3].reg << 8;
7303
7304 /* rdhi and rdlo must be different. */
7305 if (inst.operands[0].reg == inst.operands[1].reg)
7306 as_tsktsk (_("rdhi and rdlo must be different"));
7307
7308 /* rdhi, rdlo and rm must all be different before armv6. */
7309 if ((inst.operands[0].reg == inst.operands[2].reg
7310 || inst.operands[1].reg == inst.operands[2].reg)
7311 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7312 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7313 }
7314
7315 static void
7316 do_nop (void)
7317 {
7318 if (inst.operands[0].present
7319 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7320 {
7321 /* Architectural NOP hints are CPSR sets with no bits selected. */
7322 inst.instruction &= 0xf0000000;
7323 inst.instruction |= 0x0320f000;
7324 if (inst.operands[0].present)
7325 inst.instruction |= inst.operands[0].imm;
7326 }
7327 }
7328
7329 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7330 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7331 Condition defaults to COND_ALWAYS.
7332 Error if Rd, Rn or Rm are R15. */
7333
7334 static void
7335 do_pkhbt (void)
7336 {
7337 inst.instruction |= inst.operands[0].reg << 12;
7338 inst.instruction |= inst.operands[1].reg << 16;
7339 inst.instruction |= inst.operands[2].reg;
7340 if (inst.operands[3].present)
7341 encode_arm_shift (3);
7342 }
7343
7344 /* ARM V6 PKHTB (Argument Parse). */
7345
7346 static void
7347 do_pkhtb (void)
7348 {
7349 if (!inst.operands[3].present)
7350 {
7351 /* If the shift specifier is omitted, turn the instruction
7352 into pkhbt rd, rm, rn. */
7353 inst.instruction &= 0xfff00010;
7354 inst.instruction |= inst.operands[0].reg << 12;
7355 inst.instruction |= inst.operands[1].reg;
7356 inst.instruction |= inst.operands[2].reg << 16;
7357 }
7358 else
7359 {
7360 inst.instruction |= inst.operands[0].reg << 12;
7361 inst.instruction |= inst.operands[1].reg << 16;
7362 inst.instruction |= inst.operands[2].reg;
7363 encode_arm_shift (3);
7364 }
7365 }
7366
7367 /* ARMv5TE: Preload-Cache
7368
7369 PLD <addr_mode>
7370
7371 Syntactically, like LDR with B=1, W=0, L=1. */
7372
7373 static void
7374 do_pld (void)
7375 {
7376 constraint (!inst.operands[0].isreg,
7377 _("'[' expected after PLD mnemonic"));
7378 constraint (inst.operands[0].postind,
7379 _("post-indexed expression used in preload instruction"));
7380 constraint (inst.operands[0].writeback,
7381 _("writeback used in preload instruction"));
7382 constraint (!inst.operands[0].preind,
7383 _("unindexed addressing used in preload instruction"));
7384 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7385 }
7386
7387 /* ARMv7: PLI <addr_mode> */
7388 static void
7389 do_pli (void)
7390 {
7391 constraint (!inst.operands[0].isreg,
7392 _("'[' expected after PLI mnemonic"));
7393 constraint (inst.operands[0].postind,
7394 _("post-indexed expression used in preload instruction"));
7395 constraint (inst.operands[0].writeback,
7396 _("writeback used in preload instruction"));
7397 constraint (!inst.operands[0].preind,
7398 _("unindexed addressing used in preload instruction"));
7399 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7400 inst.instruction &= ~PRE_INDEX;
7401 }
7402
7403 static void
7404 do_push_pop (void)
7405 {
7406 inst.operands[1] = inst.operands[0];
7407 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7408 inst.operands[0].isreg = 1;
7409 inst.operands[0].writeback = 1;
7410 inst.operands[0].reg = REG_SP;
7411 do_ldmstm ();
7412 }
7413
7414 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7415 word at the specified address and the following word
7416 respectively.
7417 Unconditionally executed.
7418 Error if Rn is R15. */
7419
7420 static void
7421 do_rfe (void)
7422 {
7423 inst.instruction |= inst.operands[0].reg << 16;
7424 if (inst.operands[0].writeback)
7425 inst.instruction |= WRITE_BACK;
7426 }
7427
7428 /* ARM V6 ssat (argument parse). */
7429
7430 static void
7431 do_ssat (void)
7432 {
7433 inst.instruction |= inst.operands[0].reg << 12;
7434 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7435 inst.instruction |= inst.operands[2].reg;
7436
7437 if (inst.operands[3].present)
7438 encode_arm_shift (3);
7439 }
7440
7441 /* ARM V6 usat (argument parse). */
7442
7443 static void
7444 do_usat (void)
7445 {
7446 inst.instruction |= inst.operands[0].reg << 12;
7447 inst.instruction |= inst.operands[1].imm << 16;
7448 inst.instruction |= inst.operands[2].reg;
7449
7450 if (inst.operands[3].present)
7451 encode_arm_shift (3);
7452 }
7453
7454 /* ARM V6 ssat16 (argument parse). */
7455
7456 static void
7457 do_ssat16 (void)
7458 {
7459 inst.instruction |= inst.operands[0].reg << 12;
7460 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7461 inst.instruction |= inst.operands[2].reg;
7462 }
7463
7464 static void
7465 do_usat16 (void)
7466 {
7467 inst.instruction |= inst.operands[0].reg << 12;
7468 inst.instruction |= inst.operands[1].imm << 16;
7469 inst.instruction |= inst.operands[2].reg;
7470 }
7471
7472 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7473 preserving the other bits.
7474
7475 setend <endian_specifier>, where <endian_specifier> is either
7476 BE or LE. */
7477
7478 static void
7479 do_setend (void)
7480 {
7481 if (inst.operands[0].imm)
7482 inst.instruction |= 0x200;
7483 }
7484
7485 static void
7486 do_shift (void)
7487 {
7488 unsigned int Rm = (inst.operands[1].present
7489 ? inst.operands[1].reg
7490 : inst.operands[0].reg);
7491
7492 inst.instruction |= inst.operands[0].reg << 12;
7493 inst.instruction |= Rm;
7494 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7495 {
7496 inst.instruction |= inst.operands[2].reg << 8;
7497 inst.instruction |= SHIFT_BY_REG;
7498 }
7499 else
7500 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7501 }
7502
7503 static void
7504 do_smc (void)
7505 {
7506 inst.reloc.type = BFD_RELOC_ARM_SMC;
7507 inst.reloc.pc_rel = 0;
7508 }
7509
7510 static void
7511 do_swi (void)
7512 {
7513 inst.reloc.type = BFD_RELOC_ARM_SWI;
7514 inst.reloc.pc_rel = 0;
7515 }
7516
7517 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7518 SMLAxy{cond} Rd,Rm,Rs,Rn
7519 SMLAWy{cond} Rd,Rm,Rs,Rn
7520 Error if any register is R15. */
7521
7522 static void
7523 do_smla (void)
7524 {
7525 inst.instruction |= inst.operands[0].reg << 16;
7526 inst.instruction |= inst.operands[1].reg;
7527 inst.instruction |= inst.operands[2].reg << 8;
7528 inst.instruction |= inst.operands[3].reg << 12;
7529 }
7530
7531 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7532 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7533 Error if any register is R15.
7534 Warning if Rdlo == Rdhi. */
7535
7536 static void
7537 do_smlal (void)
7538 {
7539 inst.instruction |= inst.operands[0].reg << 12;
7540 inst.instruction |= inst.operands[1].reg << 16;
7541 inst.instruction |= inst.operands[2].reg;
7542 inst.instruction |= inst.operands[3].reg << 8;
7543
7544 if (inst.operands[0].reg == inst.operands[1].reg)
7545 as_tsktsk (_("rdhi and rdlo must be different"));
7546 }
7547
7548 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7549 SMULxy{cond} Rd,Rm,Rs
7550 Error if any register is R15. */
7551
7552 static void
7553 do_smul (void)
7554 {
7555 inst.instruction |= inst.operands[0].reg << 16;
7556 inst.instruction |= inst.operands[1].reg;
7557 inst.instruction |= inst.operands[2].reg << 8;
7558 }
7559
7560 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7561 the same for both ARM and Thumb-2. */
7562
7563 static void
7564 do_srs (void)
7565 {
7566 int reg;
7567
7568 if (inst.operands[0].present)
7569 {
7570 reg = inst.operands[0].reg;
7571 constraint (reg != REG_SP, _("SRS base register must be r13"));
7572 }
7573 else
7574 reg = REG_SP;
7575
7576 inst.instruction |= reg << 16;
7577 inst.instruction |= inst.operands[1].imm;
7578 if (inst.operands[0].writeback || inst.operands[1].writeback)
7579 inst.instruction |= WRITE_BACK;
7580 }
7581
7582 /* ARM V6 strex (argument parse). */
7583
7584 static void
7585 do_strex (void)
7586 {
7587 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7588 || inst.operands[2].postind || inst.operands[2].writeback
7589 || inst.operands[2].immisreg || inst.operands[2].shifted
7590 || inst.operands[2].negative
7591 /* See comment in do_ldrex(). */
7592 || (inst.operands[2].reg == REG_PC),
7593 BAD_ADDR_MODE);
7594
7595 constraint (inst.operands[0].reg == inst.operands[1].reg
7596 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7597
7598 constraint (inst.reloc.exp.X_op != O_constant
7599 || inst.reloc.exp.X_add_number != 0,
7600 _("offset must be zero in ARM encoding"));
7601
7602 inst.instruction |= inst.operands[0].reg << 12;
7603 inst.instruction |= inst.operands[1].reg;
7604 inst.instruction |= inst.operands[2].reg << 16;
7605 inst.reloc.type = BFD_RELOC_UNUSED;
7606 }
7607
7608 static void
7609 do_strexd (void)
7610 {
7611 constraint (inst.operands[1].reg % 2 != 0,
7612 _("even register required"));
7613 constraint (inst.operands[2].present
7614 && inst.operands[2].reg != inst.operands[1].reg + 1,
7615 _("can only store two consecutive registers"));
7616 /* If op 2 were present and equal to PC, this function wouldn't
7617 have been called in the first place. */
7618 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7619
7620 constraint (inst.operands[0].reg == inst.operands[1].reg
7621 || inst.operands[0].reg == inst.operands[1].reg + 1
7622 || inst.operands[0].reg == inst.operands[3].reg,
7623 BAD_OVERLAP);
7624
7625 inst.instruction |= inst.operands[0].reg << 12;
7626 inst.instruction |= inst.operands[1].reg;
7627 inst.instruction |= inst.operands[3].reg << 16;
7628 }
7629
7630 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7631 extends it to 32-bits, and adds the result to a value in another
7632 register. You can specify a rotation by 0, 8, 16, or 24 bits
7633 before extracting the 16-bit value.
7634 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7635 Condition defaults to COND_ALWAYS.
7636 Error if any register uses R15. */
7637
7638 static void
7639 do_sxtah (void)
7640 {
7641 inst.instruction |= inst.operands[0].reg << 12;
7642 inst.instruction |= inst.operands[1].reg << 16;
7643 inst.instruction |= inst.operands[2].reg;
7644 inst.instruction |= inst.operands[3].imm << 10;
7645 }
7646
7647 /* ARM V6 SXTH.
7648
7649 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7650 Condition defaults to COND_ALWAYS.
7651 Error if any register uses R15. */
7652
7653 static void
7654 do_sxth (void)
7655 {
7656 inst.instruction |= inst.operands[0].reg << 12;
7657 inst.instruction |= inst.operands[1].reg;
7658 inst.instruction |= inst.operands[2].imm << 10;
7659 }
7660 \f
7661 /* VFP instructions. In a logical order: SP variant first, monad
7662 before dyad, arithmetic then move then load/store. */
7663
7664 static void
7665 do_vfp_sp_monadic (void)
7666 {
7667 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7668 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7669 }
7670
7671 static void
7672 do_vfp_sp_dyadic (void)
7673 {
7674 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7675 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7676 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7677 }
7678
7679 static void
7680 do_vfp_sp_compare_z (void)
7681 {
7682 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7683 }
7684
7685 static void
7686 do_vfp_dp_sp_cvt (void)
7687 {
7688 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7689 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7690 }
7691
7692 static void
7693 do_vfp_sp_dp_cvt (void)
7694 {
7695 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7696 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7697 }
7698
7699 static void
7700 do_vfp_reg_from_sp (void)
7701 {
7702 inst.instruction |= inst.operands[0].reg << 12;
7703 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7704 }
7705
7706 static void
7707 do_vfp_reg2_from_sp2 (void)
7708 {
7709 constraint (inst.operands[2].imm != 2,
7710 _("only two consecutive VFP SP registers allowed here"));
7711 inst.instruction |= inst.operands[0].reg << 12;
7712 inst.instruction |= inst.operands[1].reg << 16;
7713 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7714 }
7715
7716 static void
7717 do_vfp_sp_from_reg (void)
7718 {
7719 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7720 inst.instruction |= inst.operands[1].reg << 12;
7721 }
7722
7723 static void
7724 do_vfp_sp2_from_reg2 (void)
7725 {
7726 constraint (inst.operands[0].imm != 2,
7727 _("only two consecutive VFP SP registers allowed here"));
7728 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7729 inst.instruction |= inst.operands[1].reg << 12;
7730 inst.instruction |= inst.operands[2].reg << 16;
7731 }
7732
7733 static void
7734 do_vfp_sp_ldst (void)
7735 {
7736 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7737 encode_arm_cp_address (1, FALSE, TRUE, 0);
7738 }
7739
7740 static void
7741 do_vfp_dp_ldst (void)
7742 {
7743 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7744 encode_arm_cp_address (1, FALSE, TRUE, 0);
7745 }
7746
7747
7748 static void
7749 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7750 {
7751 if (inst.operands[0].writeback)
7752 inst.instruction |= WRITE_BACK;
7753 else
7754 constraint (ldstm_type != VFP_LDSTMIA,
7755 _("this addressing mode requires base-register writeback"));
7756 inst.instruction |= inst.operands[0].reg << 16;
7757 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7758 inst.instruction |= inst.operands[1].imm;
7759 }
7760
7761 static void
7762 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7763 {
7764 int count;
7765
7766 if (inst.operands[0].writeback)
7767 inst.instruction |= WRITE_BACK;
7768 else
7769 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7770 _("this addressing mode requires base-register writeback"));
7771
7772 inst.instruction |= inst.operands[0].reg << 16;
7773 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7774
7775 count = inst.operands[1].imm << 1;
7776 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7777 count += 1;
7778
7779 inst.instruction |= count;
7780 }
7781
7782 static void
7783 do_vfp_sp_ldstmia (void)
7784 {
7785 vfp_sp_ldstm (VFP_LDSTMIA);
7786 }
7787
7788 static void
7789 do_vfp_sp_ldstmdb (void)
7790 {
7791 vfp_sp_ldstm (VFP_LDSTMDB);
7792 }
7793
7794 static void
7795 do_vfp_dp_ldstmia (void)
7796 {
7797 vfp_dp_ldstm (VFP_LDSTMIA);
7798 }
7799
7800 static void
7801 do_vfp_dp_ldstmdb (void)
7802 {
7803 vfp_dp_ldstm (VFP_LDSTMDB);
7804 }
7805
7806 static void
7807 do_vfp_xp_ldstmia (void)
7808 {
7809 vfp_dp_ldstm (VFP_LDSTMIAX);
7810 }
7811
7812 static void
7813 do_vfp_xp_ldstmdb (void)
7814 {
7815 vfp_dp_ldstm (VFP_LDSTMDBX);
7816 }
7817
7818 static void
7819 do_vfp_dp_rd_rm (void)
7820 {
7821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7823 }
7824
7825 static void
7826 do_vfp_dp_rn_rd (void)
7827 {
7828 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7829 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7830 }
7831
7832 static void
7833 do_vfp_dp_rd_rn (void)
7834 {
7835 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7836 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7837 }
7838
7839 static void
7840 do_vfp_dp_rd_rn_rm (void)
7841 {
7842 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7843 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7844 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7845 }
7846
7847 static void
7848 do_vfp_dp_rd (void)
7849 {
7850 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7851 }
7852
7853 static void
7854 do_vfp_dp_rm_rd_rn (void)
7855 {
7856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7857 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7858 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7859 }
7860
7861 /* VFPv3 instructions. */
7862 static void
7863 do_vfp_sp_const (void)
7864 {
7865 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7866 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7867 inst.instruction |= (inst.operands[1].imm & 0x0f);
7868 }
7869
7870 static void
7871 do_vfp_dp_const (void)
7872 {
7873 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7874 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7875 inst.instruction |= (inst.operands[1].imm & 0x0f);
7876 }
7877
7878 static void
7879 vfp_conv (int srcsize)
7880 {
7881 unsigned immbits = srcsize - inst.operands[1].imm;
7882 inst.instruction |= (immbits & 1) << 5;
7883 inst.instruction |= (immbits >> 1);
7884 }
7885
7886 static void
7887 do_vfp_sp_conv_16 (void)
7888 {
7889 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7890 vfp_conv (16);
7891 }
7892
7893 static void
7894 do_vfp_dp_conv_16 (void)
7895 {
7896 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7897 vfp_conv (16);
7898 }
7899
7900 static void
7901 do_vfp_sp_conv_32 (void)
7902 {
7903 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7904 vfp_conv (32);
7905 }
7906
7907 static void
7908 do_vfp_dp_conv_32 (void)
7909 {
7910 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7911 vfp_conv (32);
7912 }
7913 \f
7914 /* FPA instructions. Also in a logical order. */
7915
7916 static void
7917 do_fpa_cmp (void)
7918 {
7919 inst.instruction |= inst.operands[0].reg << 16;
7920 inst.instruction |= inst.operands[1].reg;
7921 }
7922
7923 static void
7924 do_fpa_ldmstm (void)
7925 {
7926 inst.instruction |= inst.operands[0].reg << 12;
7927 switch (inst.operands[1].imm)
7928 {
7929 case 1: inst.instruction |= CP_T_X; break;
7930 case 2: inst.instruction |= CP_T_Y; break;
7931 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7932 case 4: break;
7933 default: abort ();
7934 }
7935
7936 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7937 {
7938 /* The instruction specified "ea" or "fd", so we can only accept
7939 [Rn]{!}. The instruction does not really support stacking or
7940 unstacking, so we have to emulate these by setting appropriate
7941 bits and offsets. */
7942 constraint (inst.reloc.exp.X_op != O_constant
7943 || inst.reloc.exp.X_add_number != 0,
7944 _("this instruction does not support indexing"));
7945
7946 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7947 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7948
7949 if (!(inst.instruction & INDEX_UP))
7950 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7951
7952 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7953 {
7954 inst.operands[2].preind = 0;
7955 inst.operands[2].postind = 1;
7956 }
7957 }
7958
7959 encode_arm_cp_address (2, TRUE, TRUE, 0);
7960 }
7961 \f
7962 /* iWMMXt instructions: strictly in alphabetical order. */
7963
7964 static void
7965 do_iwmmxt_tandorc (void)
7966 {
7967 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7968 }
7969
7970 static void
7971 do_iwmmxt_textrc (void)
7972 {
7973 inst.instruction |= inst.operands[0].reg << 12;
7974 inst.instruction |= inst.operands[1].imm;
7975 }
7976
7977 static void
7978 do_iwmmxt_textrm (void)
7979 {
7980 inst.instruction |= inst.operands[0].reg << 12;
7981 inst.instruction |= inst.operands[1].reg << 16;
7982 inst.instruction |= inst.operands[2].imm;
7983 }
7984
7985 static void
7986 do_iwmmxt_tinsr (void)
7987 {
7988 inst.instruction |= inst.operands[0].reg << 16;
7989 inst.instruction |= inst.operands[1].reg << 12;
7990 inst.instruction |= inst.operands[2].imm;
7991 }
7992
7993 static void
7994 do_iwmmxt_tmia (void)
7995 {
7996 inst.instruction |= inst.operands[0].reg << 5;
7997 inst.instruction |= inst.operands[1].reg;
7998 inst.instruction |= inst.operands[2].reg << 12;
7999 }
8000
8001 static void
8002 do_iwmmxt_waligni (void)
8003 {
8004 inst.instruction |= inst.operands[0].reg << 12;
8005 inst.instruction |= inst.operands[1].reg << 16;
8006 inst.instruction |= inst.operands[2].reg;
8007 inst.instruction |= inst.operands[3].imm << 20;
8008 }
8009
8010 static void
8011 do_iwmmxt_wmerge (void)
8012 {
8013 inst.instruction |= inst.operands[0].reg << 12;
8014 inst.instruction |= inst.operands[1].reg << 16;
8015 inst.instruction |= inst.operands[2].reg;
8016 inst.instruction |= inst.operands[3].imm << 21;
8017 }
8018
8019 static void
8020 do_iwmmxt_wmov (void)
8021 {
8022 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 inst.instruction |= inst.operands[1].reg << 16;
8025 inst.instruction |= inst.operands[1].reg;
8026 }
8027
8028 static void
8029 do_iwmmxt_wldstbh (void)
8030 {
8031 int reloc;
8032 inst.instruction |= inst.operands[0].reg << 12;
8033 if (thumb_mode)
8034 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8035 else
8036 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8037 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8038 }
8039
8040 static void
8041 do_iwmmxt_wldstw (void)
8042 {
8043 /* RIWR_RIWC clears .isreg for a control register. */
8044 if (!inst.operands[0].isreg)
8045 {
8046 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8047 inst.instruction |= 0xf0000000;
8048 }
8049
8050 inst.instruction |= inst.operands[0].reg << 12;
8051 encode_arm_cp_address (1, TRUE, TRUE, 0);
8052 }
8053
8054 static void
8055 do_iwmmxt_wldstd (void)
8056 {
8057 inst.instruction |= inst.operands[0].reg << 12;
8058 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8059 && inst.operands[1].immisreg)
8060 {
8061 inst.instruction &= ~0x1a000ff;
8062 inst.instruction |= (0xf << 28);
8063 if (inst.operands[1].preind)
8064 inst.instruction |= PRE_INDEX;
8065 if (!inst.operands[1].negative)
8066 inst.instruction |= INDEX_UP;
8067 if (inst.operands[1].writeback)
8068 inst.instruction |= WRITE_BACK;
8069 inst.instruction |= inst.operands[1].reg << 16;
8070 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8071 inst.instruction |= inst.operands[1].imm;
8072 }
8073 else
8074 encode_arm_cp_address (1, TRUE, FALSE, 0);
8075 }
8076
8077 static void
8078 do_iwmmxt_wshufh (void)
8079 {
8080 inst.instruction |= inst.operands[0].reg << 12;
8081 inst.instruction |= inst.operands[1].reg << 16;
8082 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8083 inst.instruction |= (inst.operands[2].imm & 0x0f);
8084 }
8085
8086 static void
8087 do_iwmmxt_wzero (void)
8088 {
8089 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8090 inst.instruction |= inst.operands[0].reg;
8091 inst.instruction |= inst.operands[0].reg << 12;
8092 inst.instruction |= inst.operands[0].reg << 16;
8093 }
8094
8095 static void
8096 do_iwmmxt_wrwrwr_or_imm5 (void)
8097 {
8098 if (inst.operands[2].isreg)
8099 do_rd_rn_rm ();
8100 else {
8101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8102 _("immediate operand requires iWMMXt2"));
8103 do_rd_rn ();
8104 if (inst.operands[2].imm == 0)
8105 {
8106 switch ((inst.instruction >> 20) & 0xf)
8107 {
8108 case 4:
8109 case 5:
8110 case 6:
8111 case 7:
8112 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8113 inst.operands[2].imm = 16;
8114 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8115 break;
8116 case 8:
8117 case 9:
8118 case 10:
8119 case 11:
8120 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8121 inst.operands[2].imm = 32;
8122 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8123 break;
8124 case 12:
8125 case 13:
8126 case 14:
8127 case 15:
8128 {
8129 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8130 unsigned long wrn;
8131 wrn = (inst.instruction >> 16) & 0xf;
8132 inst.instruction &= 0xff0fff0f;
8133 inst.instruction |= wrn;
8134 /* Bail out here; the instruction is now assembled. */
8135 return;
8136 }
8137 }
8138 }
8139 /* Map 32 -> 0, etc. */
8140 inst.operands[2].imm &= 0x1f;
8141 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8142 }
8143 }
8144 \f
8145 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8146 operations first, then control, shift, and load/store. */
8147
8148 /* Insns like "foo X,Y,Z". */
8149
8150 static void
8151 do_mav_triple (void)
8152 {
8153 inst.instruction |= inst.operands[0].reg << 16;
8154 inst.instruction |= inst.operands[1].reg;
8155 inst.instruction |= inst.operands[2].reg << 12;
8156 }
8157
8158 /* Insns like "foo W,X,Y,Z".
8159 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8160
8161 static void
8162 do_mav_quad (void)
8163 {
8164 inst.instruction |= inst.operands[0].reg << 5;
8165 inst.instruction |= inst.operands[1].reg << 12;
8166 inst.instruction |= inst.operands[2].reg << 16;
8167 inst.instruction |= inst.operands[3].reg;
8168 }
8169
8170 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8171 static void
8172 do_mav_dspsc (void)
8173 {
8174 inst.instruction |= inst.operands[1].reg << 12;
8175 }
8176
8177 /* Maverick shift immediate instructions.
8178 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8179 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8180
8181 static void
8182 do_mav_shift (void)
8183 {
8184 int imm = inst.operands[2].imm;
8185
8186 inst.instruction |= inst.operands[0].reg << 12;
8187 inst.instruction |= inst.operands[1].reg << 16;
8188
8189 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8190 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8191 Bit 4 should be 0. */
8192 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8193
8194 inst.instruction |= imm;
8195 }
8196 \f
8197 /* XScale instructions. Also sorted arithmetic before move. */
8198
8199 /* Xscale multiply-accumulate (argument parse)
8200 MIAcc acc0,Rm,Rs
8201 MIAPHcc acc0,Rm,Rs
8202 MIAxycc acc0,Rm,Rs. */
8203
8204 static void
8205 do_xsc_mia (void)
8206 {
8207 inst.instruction |= inst.operands[1].reg;
8208 inst.instruction |= inst.operands[2].reg << 12;
8209 }
8210
8211 /* Xscale move-accumulator-register (argument parse)
8212
8213 MARcc acc0,RdLo,RdHi. */
8214
8215 static void
8216 do_xsc_mar (void)
8217 {
8218 inst.instruction |= inst.operands[1].reg << 12;
8219 inst.instruction |= inst.operands[2].reg << 16;
8220 }
8221
8222 /* Xscale move-register-accumulator (argument parse)
8223
8224 MRAcc RdLo,RdHi,acc0. */
8225
8226 static void
8227 do_xsc_mra (void)
8228 {
8229 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8230 inst.instruction |= inst.operands[0].reg << 12;
8231 inst.instruction |= inst.operands[1].reg << 16;
8232 }
8233 \f
8234 /* Encoding functions relevant only to Thumb. */
8235
8236 /* inst.operands[i] is a shifted-register operand; encode
8237 it into inst.instruction in the format used by Thumb32. */
8238
8239 static void
8240 encode_thumb32_shifted_operand (int i)
8241 {
8242 unsigned int value = inst.reloc.exp.X_add_number;
8243 unsigned int shift = inst.operands[i].shift_kind;
8244
8245 constraint (inst.operands[i].immisreg,
8246 _("shift by register not allowed in thumb mode"));
8247 inst.instruction |= inst.operands[i].reg;
8248 if (shift == SHIFT_RRX)
8249 inst.instruction |= SHIFT_ROR << 4;
8250 else
8251 {
8252 constraint (inst.reloc.exp.X_op != O_constant,
8253 _("expression too complex"));
8254
8255 constraint (value > 32
8256 || (value == 32 && (shift == SHIFT_LSL
8257 || shift == SHIFT_ROR)),
8258 _("shift expression is too large"));
8259
8260 if (value == 0)
8261 shift = SHIFT_LSL;
8262 else if (value == 32)
8263 value = 0;
8264
8265 inst.instruction |= shift << 4;
8266 inst.instruction |= (value & 0x1c) << 10;
8267 inst.instruction |= (value & 0x03) << 6;
8268 }
8269 }
8270
8271
8272 /* inst.operands[i] was set up by parse_address. Encode it into a
8273 Thumb32 format load or store instruction. Reject forms that cannot
8274 be used with such instructions. If is_t is true, reject forms that
8275 cannot be used with a T instruction; if is_d is true, reject forms
8276 that cannot be used with a D instruction. */
8277
8278 static void
8279 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8280 {
8281 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8282
8283 constraint (!inst.operands[i].isreg,
8284 _("Instruction does not support =N addresses"));
8285
8286 inst.instruction |= inst.operands[i].reg << 16;
8287 if (inst.operands[i].immisreg)
8288 {
8289 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8290 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8291 constraint (inst.operands[i].negative,
8292 _("Thumb does not support negative register indexing"));
8293 constraint (inst.operands[i].postind,
8294 _("Thumb does not support register post-indexing"));
8295 constraint (inst.operands[i].writeback,
8296 _("Thumb does not support register indexing with writeback"));
8297 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8298 _("Thumb supports only LSL in shifted register indexing"));
8299
8300 inst.instruction |= inst.operands[i].imm;
8301 if (inst.operands[i].shifted)
8302 {
8303 constraint (inst.reloc.exp.X_op != O_constant,
8304 _("expression too complex"));
8305 constraint (inst.reloc.exp.X_add_number < 0
8306 || inst.reloc.exp.X_add_number > 3,
8307 _("shift out of range"));
8308 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8309 }
8310 inst.reloc.type = BFD_RELOC_UNUSED;
8311 }
8312 else if (inst.operands[i].preind)
8313 {
8314 constraint (is_pc && inst.operands[i].writeback,
8315 _("cannot use writeback with PC-relative addressing"));
8316 constraint (is_t && inst.operands[i].writeback,
8317 _("cannot use writeback with this instruction"));
8318
8319 if (is_d)
8320 {
8321 inst.instruction |= 0x01000000;
8322 if (inst.operands[i].writeback)
8323 inst.instruction |= 0x00200000;
8324 }
8325 else
8326 {
8327 inst.instruction |= 0x00000c00;
8328 if (inst.operands[i].writeback)
8329 inst.instruction |= 0x00000100;
8330 }
8331 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8332 }
8333 else if (inst.operands[i].postind)
8334 {
8335 assert (inst.operands[i].writeback);
8336 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8337 constraint (is_t, _("cannot use post-indexing with this instruction"));
8338
8339 if (is_d)
8340 inst.instruction |= 0x00200000;
8341 else
8342 inst.instruction |= 0x00000900;
8343 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8344 }
8345 else /* unindexed - only for coprocessor */
8346 inst.error = _("instruction does not accept unindexed addressing");
8347 }
8348
8349 /* Table of Thumb instructions which exist in both 16- and 32-bit
8350 encodings (the latter only in post-V6T2 cores). The index is the
8351 value used in the insns table below. When there is more than one
8352 possible 16-bit encoding for the instruction, this table always
8353 holds variant (1).
8354 Also contains several pseudo-instructions used during relaxation. */
8355 #define T16_32_TAB \
8356 X(adc, 4140, eb400000), \
8357 X(adcs, 4140, eb500000), \
8358 X(add, 1c00, eb000000), \
8359 X(adds, 1c00, eb100000), \
8360 X(addi, 0000, f1000000), \
8361 X(addis, 0000, f1100000), \
8362 X(add_pc,000f, f20f0000), \
8363 X(add_sp,000d, f10d0000), \
8364 X(adr, 000f, f20f0000), \
8365 X(and, 4000, ea000000), \
8366 X(ands, 4000, ea100000), \
8367 X(asr, 1000, fa40f000), \
8368 X(asrs, 1000, fa50f000), \
8369 X(b, e000, f000b000), \
8370 X(bcond, d000, f0008000), \
8371 X(bic, 4380, ea200000), \
8372 X(bics, 4380, ea300000), \
8373 X(cmn, 42c0, eb100f00), \
8374 X(cmp, 2800, ebb00f00), \
8375 X(cpsie, b660, f3af8400), \
8376 X(cpsid, b670, f3af8600), \
8377 X(cpy, 4600, ea4f0000), \
8378 X(dec_sp,80dd, f1ad0d00), \
8379 X(eor, 4040, ea800000), \
8380 X(eors, 4040, ea900000), \
8381 X(inc_sp,00dd, f10d0d00), \
8382 X(ldmia, c800, e8900000), \
8383 X(ldr, 6800, f8500000), \
8384 X(ldrb, 7800, f8100000), \
8385 X(ldrh, 8800, f8300000), \
8386 X(ldrsb, 5600, f9100000), \
8387 X(ldrsh, 5e00, f9300000), \
8388 X(ldr_pc,4800, f85f0000), \
8389 X(ldr_pc2,4800, f85f0000), \
8390 X(ldr_sp,9800, f85d0000), \
8391 X(lsl, 0000, fa00f000), \
8392 X(lsls, 0000, fa10f000), \
8393 X(lsr, 0800, fa20f000), \
8394 X(lsrs, 0800, fa30f000), \
8395 X(mov, 2000, ea4f0000), \
8396 X(movs, 2000, ea5f0000), \
8397 X(mul, 4340, fb00f000), \
8398 X(muls, 4340, ffffffff), /* no 32b muls */ \
8399 X(mvn, 43c0, ea6f0000), \
8400 X(mvns, 43c0, ea7f0000), \
8401 X(neg, 4240, f1c00000), /* rsb #0 */ \
8402 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8403 X(orr, 4300, ea400000), \
8404 X(orrs, 4300, ea500000), \
8405 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8406 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8407 X(rev, ba00, fa90f080), \
8408 X(rev16, ba40, fa90f090), \
8409 X(revsh, bac0, fa90f0b0), \
8410 X(ror, 41c0, fa60f000), \
8411 X(rors, 41c0, fa70f000), \
8412 X(sbc, 4180, eb600000), \
8413 X(sbcs, 4180, eb700000), \
8414 X(stmia, c000, e8800000), \
8415 X(str, 6000, f8400000), \
8416 X(strb, 7000, f8000000), \
8417 X(strh, 8000, f8200000), \
8418 X(str_sp,9000, f84d0000), \
8419 X(sub, 1e00, eba00000), \
8420 X(subs, 1e00, ebb00000), \
8421 X(subi, 8000, f1a00000), \
8422 X(subis, 8000, f1b00000), \
8423 X(sxtb, b240, fa4ff080), \
8424 X(sxth, b200, fa0ff080), \
8425 X(tst, 4200, ea100f00), \
8426 X(uxtb, b2c0, fa5ff080), \
8427 X(uxth, b280, fa1ff080), \
8428 X(nop, bf00, f3af8000), \
8429 X(yield, bf10, f3af8001), \
8430 X(wfe, bf20, f3af8002), \
8431 X(wfi, bf30, f3af8003), \
8432 X(sev, bf40, f3af8004),
8433
8434 /* To catch errors in encoding functions, the codes are all offset by
8435 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8436 as 16-bit instructions. */
8437 #define X(a,b,c) T_MNEM_##a
8438 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8439 #undef X
8440
8441 #define X(a,b,c) 0x##b
8442 static const unsigned short thumb_op16[] = { T16_32_TAB };
8443 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8444 #undef X
8445
8446 #define X(a,b,c) 0x##c
8447 static const unsigned int thumb_op32[] = { T16_32_TAB };
8448 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8449 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8450 #undef X
8451 #undef T16_32_TAB
8452
8453 /* Thumb instruction encoders, in alphabetical order. */
8454
8455 /* ADDW or SUBW. */
8456 static void
8457 do_t_add_sub_w (void)
8458 {
8459 int Rd, Rn;
8460
8461 Rd = inst.operands[0].reg;
8462 Rn = inst.operands[1].reg;
8463
8464 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the
8465 SP-{plus,minute}-immediate form of the instruction. */
8466 reject_bad_reg (Rd);
8467
8468 inst.instruction |= (Rn << 16) | (Rd << 8);
8469 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8470 }
8471
8472 /* Parse an add or subtract instruction. We get here with inst.instruction
8473 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8474
8475 static void
8476 do_t_add_sub (void)
8477 {
8478 int Rd, Rs, Rn;
8479
8480 Rd = inst.operands[0].reg;
8481 Rs = (inst.operands[1].present
8482 ? inst.operands[1].reg /* Rd, Rs, foo */
8483 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8484
8485 if (unified_syntax)
8486 {
8487 bfd_boolean flags;
8488 bfd_boolean narrow;
8489 int opcode;
8490
8491 flags = (inst.instruction == T_MNEM_adds
8492 || inst.instruction == T_MNEM_subs);
8493 if (flags)
8494 narrow = (current_it_mask == 0);
8495 else
8496 narrow = (current_it_mask != 0);
8497 if (!inst.operands[2].isreg)
8498 {
8499 int add;
8500
8501 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8502
8503 add = (inst.instruction == T_MNEM_add
8504 || inst.instruction == T_MNEM_adds);
8505 opcode = 0;
8506 if (inst.size_req != 4)
8507 {
8508 /* Attempt to use a narrow opcode, with relaxation if
8509 appropriate. */
8510 if (Rd == REG_SP && Rs == REG_SP && !flags)
8511 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8512 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8513 opcode = T_MNEM_add_sp;
8514 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8515 opcode = T_MNEM_add_pc;
8516 else if (Rd <= 7 && Rs <= 7 && narrow)
8517 {
8518 if (flags)
8519 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8520 else
8521 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8522 }
8523 if (opcode)
8524 {
8525 inst.instruction = THUMB_OP16(opcode);
8526 inst.instruction |= (Rd << 4) | Rs;
8527 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8528 if (inst.size_req != 2)
8529 inst.relax = opcode;
8530 }
8531 else
8532 constraint (inst.size_req == 2, BAD_HIREG);
8533 }
8534 if (inst.size_req == 4
8535 || (inst.size_req != 2 && !opcode))
8536 {
8537 if (Rd == REG_PC)
8538 {
8539 constraint (add, BAD_PC);
8540 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8541 _("only SUBS PC, LR, #const allowed"));
8542 constraint (inst.reloc.exp.X_op != O_constant,
8543 _("expression too complex"));
8544 constraint (inst.reloc.exp.X_add_number < 0
8545 || inst.reloc.exp.X_add_number > 0xff,
8546 _("immediate value out of range"));
8547 inst.instruction = T2_SUBS_PC_LR
8548 | inst.reloc.exp.X_add_number;
8549 inst.reloc.type = BFD_RELOC_UNUSED;
8550 return;
8551 }
8552 else if (Rs == REG_PC)
8553 {
8554 /* Always use addw/subw. */
8555 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8556 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8557 }
8558 else
8559 {
8560 inst.instruction = THUMB_OP32 (inst.instruction);
8561 inst.instruction = (inst.instruction & 0xe1ffffff)
8562 | 0x10000000;
8563 if (flags)
8564 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8565 else
8566 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8567 }
8568 inst.instruction |= Rd << 8;
8569 inst.instruction |= Rs << 16;
8570 }
8571 }
8572 else
8573 {
8574 Rn = inst.operands[2].reg;
8575 /* See if we can do this with a 16-bit instruction. */
8576 if (!inst.operands[2].shifted && inst.size_req != 4)
8577 {
8578 if (Rd > 7 || Rs > 7 || Rn > 7)
8579 narrow = FALSE;
8580
8581 if (narrow)
8582 {
8583 inst.instruction = ((inst.instruction == T_MNEM_adds
8584 || inst.instruction == T_MNEM_add)
8585 ? T_OPCODE_ADD_R3
8586 : T_OPCODE_SUB_R3);
8587 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8588 return;
8589 }
8590
8591 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8592 {
8593 /* Thumb-1 cores (except v6-M) require at least one high
8594 register in a narrow non flag setting add. */
8595 if (Rd > 7 || Rn > 7
8596 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8597 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8598 {
8599 if (Rd == Rn)
8600 {
8601 Rn = Rs;
8602 Rs = Rd;
8603 }
8604 inst.instruction = T_OPCODE_ADD_HI;
8605 inst.instruction |= (Rd & 8) << 4;
8606 inst.instruction |= (Rd & 7);
8607 inst.instruction |= Rn << 3;
8608 return;
8609 }
8610 }
8611 }
8612
8613 constraint (Rd == REG_PC, BAD_PC);
8614 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8615 constraint (Rs == REG_PC, BAD_PC);
8616 reject_bad_reg (Rn);
8617
8618 /* If we get here, it can't be done in 16 bits. */
8619 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8620 _("shift must be constant"));
8621 inst.instruction = THUMB_OP32 (inst.instruction);
8622 inst.instruction |= Rd << 8;
8623 inst.instruction |= Rs << 16;
8624 encode_thumb32_shifted_operand (2);
8625 }
8626 }
8627 else
8628 {
8629 constraint (inst.instruction == T_MNEM_adds
8630 || inst.instruction == T_MNEM_subs,
8631 BAD_THUMB32);
8632
8633 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8634 {
8635 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8636 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8637 BAD_HIREG);
8638
8639 inst.instruction = (inst.instruction == T_MNEM_add
8640 ? 0x0000 : 0x8000);
8641 inst.instruction |= (Rd << 4) | Rs;
8642 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8643 return;
8644 }
8645
8646 Rn = inst.operands[2].reg;
8647 constraint (inst.operands[2].shifted, _("unshifted register required"));
8648
8649 /* We now have Rd, Rs, and Rn set to registers. */
8650 if (Rd > 7 || Rs > 7 || Rn > 7)
8651 {
8652 /* Can't do this for SUB. */
8653 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8654 inst.instruction = T_OPCODE_ADD_HI;
8655 inst.instruction |= (Rd & 8) << 4;
8656 inst.instruction |= (Rd & 7);
8657 if (Rs == Rd)
8658 inst.instruction |= Rn << 3;
8659 else if (Rn == Rd)
8660 inst.instruction |= Rs << 3;
8661 else
8662 constraint (1, _("dest must overlap one source register"));
8663 }
8664 else
8665 {
8666 inst.instruction = (inst.instruction == T_MNEM_add
8667 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8668 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8669 }
8670 }
8671 }
8672
8673 static void
8674 do_t_adr (void)
8675 {
8676 unsigned Rd;
8677
8678 Rd = inst.operands[0].reg;
8679 reject_bad_reg (Rd);
8680
8681 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
8682 {
8683 /* Defer to section relaxation. */
8684 inst.relax = inst.instruction;
8685 inst.instruction = THUMB_OP16 (inst.instruction);
8686 inst.instruction |= Rd << 4;
8687 }
8688 else if (unified_syntax && inst.size_req != 2)
8689 {
8690 /* Generate a 32-bit opcode. */
8691 inst.instruction = THUMB_OP32 (inst.instruction);
8692 inst.instruction |= Rd << 8;
8693 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8694 inst.reloc.pc_rel = 1;
8695 }
8696 else
8697 {
8698 /* Generate a 16-bit opcode. */
8699 inst.instruction = THUMB_OP16 (inst.instruction);
8700 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8701 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8702 inst.reloc.pc_rel = 1;
8703
8704 inst.instruction |= Rd << 4;
8705 }
8706 }
8707
8708 /* Arithmetic instructions for which there is just one 16-bit
8709 instruction encoding, and it allows only two low registers.
8710 For maximal compatibility with ARM syntax, we allow three register
8711 operands even when Thumb-32 instructions are not available, as long
8712 as the first two are identical. For instance, both "sbc r0,r1" and
8713 "sbc r0,r0,r1" are allowed. */
8714 static void
8715 do_t_arit3 (void)
8716 {
8717 int Rd, Rs, Rn;
8718
8719 Rd = inst.operands[0].reg;
8720 Rs = (inst.operands[1].present
8721 ? inst.operands[1].reg /* Rd, Rs, foo */
8722 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8723 Rn = inst.operands[2].reg;
8724
8725 reject_bad_reg (Rd);
8726 reject_bad_reg (Rs);
8727 if (inst.operands[2].isreg)
8728 reject_bad_reg (Rn);
8729
8730 if (unified_syntax)
8731 {
8732 if (!inst.operands[2].isreg)
8733 {
8734 /* For an immediate, we always generate a 32-bit opcode;
8735 section relaxation will shrink it later if possible. */
8736 inst.instruction = THUMB_OP32 (inst.instruction);
8737 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8738 inst.instruction |= Rd << 8;
8739 inst.instruction |= Rs << 16;
8740 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8741 }
8742 else
8743 {
8744 bfd_boolean narrow;
8745
8746 /* See if we can do this with a 16-bit instruction. */
8747 if (THUMB_SETS_FLAGS (inst.instruction))
8748 narrow = current_it_mask == 0;
8749 else
8750 narrow = current_it_mask != 0;
8751
8752 if (Rd > 7 || Rn > 7 || Rs > 7)
8753 narrow = FALSE;
8754 if (inst.operands[2].shifted)
8755 narrow = FALSE;
8756 if (inst.size_req == 4)
8757 narrow = FALSE;
8758
8759 if (narrow
8760 && Rd == Rs)
8761 {
8762 inst.instruction = THUMB_OP16 (inst.instruction);
8763 inst.instruction |= Rd;
8764 inst.instruction |= Rn << 3;
8765 return;
8766 }
8767
8768 /* If we get here, it can't be done in 16 bits. */
8769 constraint (inst.operands[2].shifted
8770 && inst.operands[2].immisreg,
8771 _("shift must be constant"));
8772 inst.instruction = THUMB_OP32 (inst.instruction);
8773 inst.instruction |= Rd << 8;
8774 inst.instruction |= Rs << 16;
8775 encode_thumb32_shifted_operand (2);
8776 }
8777 }
8778 else
8779 {
8780 /* On its face this is a lie - the instruction does set the
8781 flags. However, the only supported mnemonic in this mode
8782 says it doesn't. */
8783 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8784
8785 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8786 _("unshifted register required"));
8787 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8788 constraint (Rd != Rs,
8789 _("dest and source1 must be the same register"));
8790
8791 inst.instruction = THUMB_OP16 (inst.instruction);
8792 inst.instruction |= Rd;
8793 inst.instruction |= Rn << 3;
8794 }
8795 }
8796
8797 /* Similarly, but for instructions where the arithmetic operation is
8798 commutative, so we can allow either of them to be different from
8799 the destination operand in a 16-bit instruction. For instance, all
8800 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8801 accepted. */
8802 static void
8803 do_t_arit3c (void)
8804 {
8805 int Rd, Rs, Rn;
8806
8807 Rd = inst.operands[0].reg;
8808 Rs = (inst.operands[1].present
8809 ? inst.operands[1].reg /* Rd, Rs, foo */
8810 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8811 Rn = inst.operands[2].reg;
8812
8813 reject_bad_reg (Rd);
8814 reject_bad_reg (Rs);
8815 if (inst.operands[2].isreg)
8816 reject_bad_reg (Rn);
8817
8818 if (unified_syntax)
8819 {
8820 if (!inst.operands[2].isreg)
8821 {
8822 /* For an immediate, we always generate a 32-bit opcode;
8823 section relaxation will shrink it later if possible. */
8824 inst.instruction = THUMB_OP32 (inst.instruction);
8825 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8826 inst.instruction |= Rd << 8;
8827 inst.instruction |= Rs << 16;
8828 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8829 }
8830 else
8831 {
8832 bfd_boolean narrow;
8833
8834 /* See if we can do this with a 16-bit instruction. */
8835 if (THUMB_SETS_FLAGS (inst.instruction))
8836 narrow = current_it_mask == 0;
8837 else
8838 narrow = current_it_mask != 0;
8839
8840 if (Rd > 7 || Rn > 7 || Rs > 7)
8841 narrow = FALSE;
8842 if (inst.operands[2].shifted)
8843 narrow = FALSE;
8844 if (inst.size_req == 4)
8845 narrow = FALSE;
8846
8847 if (narrow)
8848 {
8849 if (Rd == Rs)
8850 {
8851 inst.instruction = THUMB_OP16 (inst.instruction);
8852 inst.instruction |= Rd;
8853 inst.instruction |= Rn << 3;
8854 return;
8855 }
8856 if (Rd == Rn)
8857 {
8858 inst.instruction = THUMB_OP16 (inst.instruction);
8859 inst.instruction |= Rd;
8860 inst.instruction |= Rs << 3;
8861 return;
8862 }
8863 }
8864
8865 /* If we get here, it can't be done in 16 bits. */
8866 constraint (inst.operands[2].shifted
8867 && inst.operands[2].immisreg,
8868 _("shift must be constant"));
8869 inst.instruction = THUMB_OP32 (inst.instruction);
8870 inst.instruction |= Rd << 8;
8871 inst.instruction |= Rs << 16;
8872 encode_thumb32_shifted_operand (2);
8873 }
8874 }
8875 else
8876 {
8877 /* On its face this is a lie - the instruction does set the
8878 flags. However, the only supported mnemonic in this mode
8879 says it doesn't. */
8880 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8881
8882 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8883 _("unshifted register required"));
8884 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8885
8886 inst.instruction = THUMB_OP16 (inst.instruction);
8887 inst.instruction |= Rd;
8888
8889 if (Rd == Rs)
8890 inst.instruction |= Rn << 3;
8891 else if (Rd == Rn)
8892 inst.instruction |= Rs << 3;
8893 else
8894 constraint (1, _("dest must overlap one source register"));
8895 }
8896 }
8897
8898 static void
8899 do_t_barrier (void)
8900 {
8901 if (inst.operands[0].present)
8902 {
8903 constraint ((inst.instruction & 0xf0) != 0x40
8904 && inst.operands[0].imm != 0xf,
8905 _("bad barrier type"));
8906 inst.instruction |= inst.operands[0].imm;
8907 }
8908 else
8909 inst.instruction |= 0xf;
8910 }
8911
8912 static void
8913 do_t_bfc (void)
8914 {
8915 unsigned Rd;
8916 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8917 constraint (msb > 32, _("bit-field extends past end of register"));
8918 /* The instruction encoding stores the LSB and MSB,
8919 not the LSB and width. */
8920 Rd = inst.operands[0].reg;
8921 reject_bad_reg (Rd);
8922 inst.instruction |= Rd << 8;
8923 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8924 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8925 inst.instruction |= msb - 1;
8926 }
8927
8928 static void
8929 do_t_bfi (void)
8930 {
8931 int Rd, Rn;
8932 unsigned int msb;
8933
8934 Rd = inst.operands[0].reg;
8935 reject_bad_reg (Rd);
8936
8937 /* #0 in second position is alternative syntax for bfc, which is
8938 the same instruction but with REG_PC in the Rm field. */
8939 if (!inst.operands[1].isreg)
8940 Rn = REG_PC;
8941 else
8942 {
8943 Rn = inst.operands[1].reg;
8944 reject_bad_reg (Rn);
8945 }
8946
8947 msb = inst.operands[2].imm + inst.operands[3].imm;
8948 constraint (msb > 32, _("bit-field extends past end of register"));
8949 /* The instruction encoding stores the LSB and MSB,
8950 not the LSB and width. */
8951 inst.instruction |= Rd << 8;
8952 inst.instruction |= Rn << 16;
8953 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8954 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8955 inst.instruction |= msb - 1;
8956 }
8957
8958 static void
8959 do_t_bfx (void)
8960 {
8961 unsigned Rd, Rn;
8962
8963 Rd = inst.operands[0].reg;
8964 Rn = inst.operands[1].reg;
8965
8966 reject_bad_reg (Rd);
8967 reject_bad_reg (Rn);
8968
8969 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8970 _("bit-field extends past end of register"));
8971 inst.instruction |= Rd << 8;
8972 inst.instruction |= Rn << 16;
8973 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8974 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8975 inst.instruction |= inst.operands[3].imm - 1;
8976 }
8977
8978 /* ARM V5 Thumb BLX (argument parse)
8979 BLX <target_addr> which is BLX(1)
8980 BLX <Rm> which is BLX(2)
8981 Unfortunately, there are two different opcodes for this mnemonic.
8982 So, the insns[].value is not used, and the code here zaps values
8983 into inst.instruction.
8984
8985 ??? How to take advantage of the additional two bits of displacement
8986 available in Thumb32 mode? Need new relocation? */
8987
8988 static void
8989 do_t_blx (void)
8990 {
8991 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8992 if (inst.operands[0].isreg)
8993 {
8994 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8995 /* We have a register, so this is BLX(2). */
8996 inst.instruction |= inst.operands[0].reg << 3;
8997 }
8998 else
8999 {
9000 /* No register. This must be BLX(1). */
9001 inst.instruction = 0xf000e800;
9002 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9003 inst.reloc.pc_rel = 1;
9004 }
9005 }
9006
9007 static void
9008 do_t_branch (void)
9009 {
9010 int opcode;
9011 int cond;
9012
9013 if (current_it_mask)
9014 {
9015 /* Conditional branches inside IT blocks are encoded as unconditional
9016 branches. */
9017 cond = COND_ALWAYS;
9018 /* A branch must be the last instruction in an IT block. */
9019 constraint (current_it_mask != 0x10, BAD_BRANCH);
9020 }
9021 else
9022 cond = inst.cond;
9023
9024 if (cond != COND_ALWAYS)
9025 opcode = T_MNEM_bcond;
9026 else
9027 opcode = inst.instruction;
9028
9029 if (unified_syntax && inst.size_req == 4)
9030 {
9031 inst.instruction = THUMB_OP32(opcode);
9032 if (cond == COND_ALWAYS)
9033 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9034 else
9035 {
9036 assert (cond != 0xF);
9037 inst.instruction |= cond << 22;
9038 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9039 }
9040 }
9041 else
9042 {
9043 inst.instruction = THUMB_OP16(opcode);
9044 if (cond == COND_ALWAYS)
9045 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9046 else
9047 {
9048 inst.instruction |= cond << 8;
9049 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9050 }
9051 /* Allow section relaxation. */
9052 if (unified_syntax && inst.size_req != 2)
9053 inst.relax = opcode;
9054 }
9055
9056 inst.reloc.pc_rel = 1;
9057 }
9058
9059 static void
9060 do_t_bkpt (void)
9061 {
9062 constraint (inst.cond != COND_ALWAYS,
9063 _("instruction is always unconditional"));
9064 if (inst.operands[0].present)
9065 {
9066 constraint (inst.operands[0].imm > 255,
9067 _("immediate value out of range"));
9068 inst.instruction |= inst.operands[0].imm;
9069 }
9070 }
9071
9072 static void
9073 do_t_branch23 (void)
9074 {
9075 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9076 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9077 inst.reloc.pc_rel = 1;
9078
9079 #if defined(OBJ_COFF)
9080 /* If the destination of the branch is a defined symbol which does not have
9081 the THUMB_FUNC attribute, then we must be calling a function which has
9082 the (interfacearm) attribute. We look for the Thumb entry point to that
9083 function and change the branch to refer to that function instead. */
9084 if ( inst.reloc.exp.X_op == O_symbol
9085 && inst.reloc.exp.X_add_symbol != NULL
9086 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9087 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9088 inst.reloc.exp.X_add_symbol =
9089 find_real_start (inst.reloc.exp.X_add_symbol);
9090 #endif
9091 }
9092
9093 static void
9094 do_t_bx (void)
9095 {
9096 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9097 inst.instruction |= inst.operands[0].reg << 3;
9098 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9099 should cause the alignment to be checked once it is known. This is
9100 because BX PC only works if the instruction is word aligned. */
9101 }
9102
9103 static void
9104 do_t_bxj (void)
9105 {
9106 int Rm;
9107
9108 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9109 Rm = inst.operands[0].reg;
9110 reject_bad_reg (Rm);
9111 inst.instruction |= Rm << 16;
9112 }
9113
9114 static void
9115 do_t_clz (void)
9116 {
9117 unsigned Rd;
9118 unsigned Rm;
9119
9120 Rd = inst.operands[0].reg;
9121 Rm = inst.operands[1].reg;
9122
9123 reject_bad_reg (Rd);
9124 reject_bad_reg (Rm);
9125
9126 inst.instruction |= Rd << 8;
9127 inst.instruction |= Rm << 16;
9128 inst.instruction |= Rm;
9129 }
9130
9131 static void
9132 do_t_cps (void)
9133 {
9134 constraint (current_it_mask, BAD_NOT_IT);
9135 inst.instruction |= inst.operands[0].imm;
9136 }
9137
9138 static void
9139 do_t_cpsi (void)
9140 {
9141 constraint (current_it_mask, BAD_NOT_IT);
9142 if (unified_syntax
9143 && (inst.operands[1].present || inst.size_req == 4)
9144 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9145 {
9146 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9147 inst.instruction = 0xf3af8000;
9148 inst.instruction |= imod << 9;
9149 inst.instruction |= inst.operands[0].imm << 5;
9150 if (inst.operands[1].present)
9151 inst.instruction |= 0x100 | inst.operands[1].imm;
9152 }
9153 else
9154 {
9155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9156 && (inst.operands[0].imm & 4),
9157 _("selected processor does not support 'A' form "
9158 "of this instruction"));
9159 constraint (inst.operands[1].present || inst.size_req == 4,
9160 _("Thumb does not support the 2-argument "
9161 "form of this instruction"));
9162 inst.instruction |= inst.operands[0].imm;
9163 }
9164 }
9165
9166 /* THUMB CPY instruction (argument parse). */
9167
9168 static void
9169 do_t_cpy (void)
9170 {
9171 if (inst.size_req == 4)
9172 {
9173 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9174 inst.instruction |= inst.operands[0].reg << 8;
9175 inst.instruction |= inst.operands[1].reg;
9176 }
9177 else
9178 {
9179 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9180 inst.instruction |= (inst.operands[0].reg & 0x7);
9181 inst.instruction |= inst.operands[1].reg << 3;
9182 }
9183 }
9184
9185 static void
9186 do_t_cbz (void)
9187 {
9188 constraint (current_it_mask, BAD_NOT_IT);
9189 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9190 inst.instruction |= inst.operands[0].reg;
9191 inst.reloc.pc_rel = 1;
9192 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9193 }
9194
9195 static void
9196 do_t_dbg (void)
9197 {
9198 inst.instruction |= inst.operands[0].imm;
9199 }
9200
9201 static void
9202 do_t_div (void)
9203 {
9204 unsigned Rd, Rn, Rm;
9205
9206 Rd = inst.operands[0].reg;
9207 Rn = (inst.operands[1].present
9208 ? inst.operands[1].reg : Rd);
9209 Rm = inst.operands[2].reg;
9210
9211 reject_bad_reg (Rd);
9212 reject_bad_reg (Rn);
9213 reject_bad_reg (Rm);
9214
9215 inst.instruction |= Rd << 8;
9216 inst.instruction |= Rn << 16;
9217 inst.instruction |= Rm;
9218 }
9219
9220 static void
9221 do_t_hint (void)
9222 {
9223 if (unified_syntax && inst.size_req == 4)
9224 inst.instruction = THUMB_OP32 (inst.instruction);
9225 else
9226 inst.instruction = THUMB_OP16 (inst.instruction);
9227 }
9228
9229 static void
9230 do_t_it (void)
9231 {
9232 unsigned int cond = inst.operands[0].imm;
9233
9234 constraint (current_it_mask, BAD_NOT_IT);
9235 current_it_mask = (inst.instruction & 0xf) | 0x10;
9236 current_cc = cond;
9237
9238 /* If the condition is a negative condition, invert the mask. */
9239 if ((cond & 0x1) == 0x0)
9240 {
9241 unsigned int mask = inst.instruction & 0x000f;
9242
9243 if ((mask & 0x7) == 0)
9244 /* no conversion needed */;
9245 else if ((mask & 0x3) == 0)
9246 mask ^= 0x8;
9247 else if ((mask & 0x1) == 0)
9248 mask ^= 0xC;
9249 else
9250 mask ^= 0xE;
9251
9252 inst.instruction &= 0xfff0;
9253 inst.instruction |= mask;
9254 }
9255
9256 inst.instruction |= cond << 4;
9257 }
9258
9259 /* Helper function used for both push/pop and ldm/stm. */
9260 static void
9261 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9262 {
9263 bfd_boolean load;
9264
9265 load = (inst.instruction & (1 << 20)) != 0;
9266
9267 if (mask & (1 << 13))
9268 inst.error = _("SP not allowed in register list");
9269 if (load)
9270 {
9271 if (mask & (1 << 14)
9272 && mask & (1 << 15))
9273 inst.error = _("LR and PC should not both be in register list");
9274
9275 if ((mask & (1 << base)) != 0
9276 && writeback)
9277 as_warn (_("base register should not be in register list "
9278 "when written back"));
9279 }
9280 else
9281 {
9282 if (mask & (1 << 15))
9283 inst.error = _("PC not allowed in register list");
9284
9285 if (mask & (1 << base))
9286 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9287 }
9288
9289 if ((mask & (mask - 1)) == 0)
9290 {
9291 /* Single register transfers implemented as str/ldr. */
9292 if (writeback)
9293 {
9294 if (inst.instruction & (1 << 23))
9295 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9296 else
9297 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9298 }
9299 else
9300 {
9301 if (inst.instruction & (1 << 23))
9302 inst.instruction = 0x00800000; /* ia -> [base] */
9303 else
9304 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9305 }
9306
9307 inst.instruction |= 0xf8400000;
9308 if (load)
9309 inst.instruction |= 0x00100000;
9310
9311 mask = ffs (mask) - 1;
9312 mask <<= 12;
9313 }
9314 else if (writeback)
9315 inst.instruction |= WRITE_BACK;
9316
9317 inst.instruction |= mask;
9318 inst.instruction |= base << 16;
9319 }
9320
9321 static void
9322 do_t_ldmstm (void)
9323 {
9324 /* This really doesn't seem worth it. */
9325 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9326 _("expression too complex"));
9327 constraint (inst.operands[1].writeback,
9328 _("Thumb load/store multiple does not support {reglist}^"));
9329
9330 if (unified_syntax)
9331 {
9332 bfd_boolean narrow;
9333 unsigned mask;
9334
9335 narrow = FALSE;
9336 /* See if we can use a 16-bit instruction. */
9337 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9338 && inst.size_req != 4
9339 && !(inst.operands[1].imm & ~0xff))
9340 {
9341 mask = 1 << inst.operands[0].reg;
9342
9343 if (inst.operands[0].reg <= 7
9344 && (inst.instruction == T_MNEM_stmia
9345 ? inst.operands[0].writeback
9346 : (inst.operands[0].writeback
9347 == !(inst.operands[1].imm & mask))))
9348 {
9349 if (inst.instruction == T_MNEM_stmia
9350 && (inst.operands[1].imm & mask)
9351 && (inst.operands[1].imm & (mask - 1)))
9352 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9353 inst.operands[0].reg);
9354
9355 inst.instruction = THUMB_OP16 (inst.instruction);
9356 inst.instruction |= inst.operands[0].reg << 8;
9357 inst.instruction |= inst.operands[1].imm;
9358 narrow = TRUE;
9359 }
9360 else if (inst.operands[0] .reg == REG_SP
9361 && inst.operands[0].writeback)
9362 {
9363 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9364 ? T_MNEM_push : T_MNEM_pop);
9365 inst.instruction |= inst.operands[1].imm;
9366 narrow = TRUE;
9367 }
9368 }
9369
9370 if (!narrow)
9371 {
9372 if (inst.instruction < 0xffff)
9373 inst.instruction = THUMB_OP32 (inst.instruction);
9374
9375 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9376 inst.operands[0].writeback);
9377 }
9378 }
9379 else
9380 {
9381 constraint (inst.operands[0].reg > 7
9382 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9383 constraint (inst.instruction != T_MNEM_ldmia
9384 && inst.instruction != T_MNEM_stmia,
9385 _("Thumb-2 instruction only valid in unified syntax"));
9386 if (inst.instruction == T_MNEM_stmia)
9387 {
9388 if (!inst.operands[0].writeback)
9389 as_warn (_("this instruction will write back the base register"));
9390 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9391 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9392 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9393 inst.operands[0].reg);
9394 }
9395 else
9396 {
9397 if (!inst.operands[0].writeback
9398 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9399 as_warn (_("this instruction will write back the base register"));
9400 else if (inst.operands[0].writeback
9401 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9402 as_warn (_("this instruction will not write back the base register"));
9403 }
9404
9405 inst.instruction = THUMB_OP16 (inst.instruction);
9406 inst.instruction |= inst.operands[0].reg << 8;
9407 inst.instruction |= inst.operands[1].imm;
9408 }
9409 }
9410
9411 static void
9412 do_t_ldrex (void)
9413 {
9414 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9415 || inst.operands[1].postind || inst.operands[1].writeback
9416 || inst.operands[1].immisreg || inst.operands[1].shifted
9417 || inst.operands[1].negative,
9418 BAD_ADDR_MODE);
9419
9420 inst.instruction |= inst.operands[0].reg << 12;
9421 inst.instruction |= inst.operands[1].reg << 16;
9422 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9423 }
9424
9425 static void
9426 do_t_ldrexd (void)
9427 {
9428 if (!inst.operands[1].present)
9429 {
9430 constraint (inst.operands[0].reg == REG_LR,
9431 _("r14 not allowed as first register "
9432 "when second register is omitted"));
9433 inst.operands[1].reg = inst.operands[0].reg + 1;
9434 }
9435 constraint (inst.operands[0].reg == inst.operands[1].reg,
9436 BAD_OVERLAP);
9437
9438 inst.instruction |= inst.operands[0].reg << 12;
9439 inst.instruction |= inst.operands[1].reg << 8;
9440 inst.instruction |= inst.operands[2].reg << 16;
9441 }
9442
9443 static void
9444 do_t_ldst (void)
9445 {
9446 unsigned long opcode;
9447 int Rn;
9448
9449 opcode = inst.instruction;
9450 if (unified_syntax)
9451 {
9452 if (!inst.operands[1].isreg)
9453 {
9454 if (opcode <= 0xffff)
9455 inst.instruction = THUMB_OP32 (opcode);
9456 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9457 return;
9458 }
9459 if (inst.operands[1].isreg
9460 && !inst.operands[1].writeback
9461 && !inst.operands[1].shifted && !inst.operands[1].postind
9462 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9463 && opcode <= 0xffff
9464 && inst.size_req != 4)
9465 {
9466 /* Insn may have a 16-bit form. */
9467 Rn = inst.operands[1].reg;
9468 if (inst.operands[1].immisreg)
9469 {
9470 inst.instruction = THUMB_OP16 (opcode);
9471 /* [Rn, Rik] */
9472 if (Rn <= 7 && inst.operands[1].imm <= 7)
9473 goto op16;
9474 }
9475 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9476 && opcode != T_MNEM_ldrsb)
9477 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9478 || (Rn == REG_SP && opcode == T_MNEM_str))
9479 {
9480 /* [Rn, #const] */
9481 if (Rn > 7)
9482 {
9483 if (Rn == REG_PC)
9484 {
9485 if (inst.reloc.pc_rel)
9486 opcode = T_MNEM_ldr_pc2;
9487 else
9488 opcode = T_MNEM_ldr_pc;
9489 }
9490 else
9491 {
9492 if (opcode == T_MNEM_ldr)
9493 opcode = T_MNEM_ldr_sp;
9494 else
9495 opcode = T_MNEM_str_sp;
9496 }
9497 inst.instruction = inst.operands[0].reg << 8;
9498 }
9499 else
9500 {
9501 inst.instruction = inst.operands[0].reg;
9502 inst.instruction |= inst.operands[1].reg << 3;
9503 }
9504 inst.instruction |= THUMB_OP16 (opcode);
9505 if (inst.size_req == 2)
9506 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9507 else
9508 inst.relax = opcode;
9509 return;
9510 }
9511 }
9512 /* Definitely a 32-bit variant. */
9513 inst.instruction = THUMB_OP32 (opcode);
9514 inst.instruction |= inst.operands[0].reg << 12;
9515 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9516 return;
9517 }
9518
9519 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9520
9521 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9522 {
9523 /* Only [Rn,Rm] is acceptable. */
9524 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9525 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9526 || inst.operands[1].postind || inst.operands[1].shifted
9527 || inst.operands[1].negative,
9528 _("Thumb does not support this addressing mode"));
9529 inst.instruction = THUMB_OP16 (inst.instruction);
9530 goto op16;
9531 }
9532
9533 inst.instruction = THUMB_OP16 (inst.instruction);
9534 if (!inst.operands[1].isreg)
9535 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9536 return;
9537
9538 constraint (!inst.operands[1].preind
9539 || inst.operands[1].shifted
9540 || inst.operands[1].writeback,
9541 _("Thumb does not support this addressing mode"));
9542 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9543 {
9544 constraint (inst.instruction & 0x0600,
9545 _("byte or halfword not valid for base register"));
9546 constraint (inst.operands[1].reg == REG_PC
9547 && !(inst.instruction & THUMB_LOAD_BIT),
9548 _("r15 based store not allowed"));
9549 constraint (inst.operands[1].immisreg,
9550 _("invalid base register for register offset"));
9551
9552 if (inst.operands[1].reg == REG_PC)
9553 inst.instruction = T_OPCODE_LDR_PC;
9554 else if (inst.instruction & THUMB_LOAD_BIT)
9555 inst.instruction = T_OPCODE_LDR_SP;
9556 else
9557 inst.instruction = T_OPCODE_STR_SP;
9558
9559 inst.instruction |= inst.operands[0].reg << 8;
9560 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9561 return;
9562 }
9563
9564 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9565 if (!inst.operands[1].immisreg)
9566 {
9567 /* Immediate offset. */
9568 inst.instruction |= inst.operands[0].reg;
9569 inst.instruction |= inst.operands[1].reg << 3;
9570 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9571 return;
9572 }
9573
9574 /* Register offset. */
9575 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9576 constraint (inst.operands[1].negative,
9577 _("Thumb does not support this addressing mode"));
9578
9579 op16:
9580 switch (inst.instruction)
9581 {
9582 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9583 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9584 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9585 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9586 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9587 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9588 case 0x5600 /* ldrsb */:
9589 case 0x5e00 /* ldrsh */: break;
9590 default: abort ();
9591 }
9592
9593 inst.instruction |= inst.operands[0].reg;
9594 inst.instruction |= inst.operands[1].reg << 3;
9595 inst.instruction |= inst.operands[1].imm << 6;
9596 }
9597
9598 static void
9599 do_t_ldstd (void)
9600 {
9601 if (!inst.operands[1].present)
9602 {
9603 inst.operands[1].reg = inst.operands[0].reg + 1;
9604 constraint (inst.operands[0].reg == REG_LR,
9605 _("r14 not allowed here"));
9606 }
9607 inst.instruction |= inst.operands[0].reg << 12;
9608 inst.instruction |= inst.operands[1].reg << 8;
9609 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9610 }
9611
9612 static void
9613 do_t_ldstt (void)
9614 {
9615 inst.instruction |= inst.operands[0].reg << 12;
9616 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9617 }
9618
9619 static void
9620 do_t_mla (void)
9621 {
9622 unsigned Rd, Rn, Rm, Ra;
9623
9624 Rd = inst.operands[0].reg;
9625 Rn = inst.operands[1].reg;
9626 Rm = inst.operands[2].reg;
9627 Ra = inst.operands[3].reg;
9628
9629 reject_bad_reg (Rd);
9630 reject_bad_reg (Rn);
9631 reject_bad_reg (Rm);
9632 reject_bad_reg (Ra);
9633
9634 inst.instruction |= Rd << 8;
9635 inst.instruction |= Rn << 16;
9636 inst.instruction |= Rm;
9637 inst.instruction |= Ra << 12;
9638 }
9639
9640 static void
9641 do_t_mlal (void)
9642 {
9643 unsigned RdLo, RdHi, Rn, Rm;
9644
9645 RdLo = inst.operands[0].reg;
9646 RdHi = inst.operands[1].reg;
9647 Rn = inst.operands[2].reg;
9648 Rm = inst.operands[3].reg;
9649
9650 reject_bad_reg (RdLo);
9651 reject_bad_reg (RdHi);
9652 reject_bad_reg (Rn);
9653 reject_bad_reg (Rm);
9654
9655 inst.instruction |= RdLo << 12;
9656 inst.instruction |= RdHi << 8;
9657 inst.instruction |= Rn << 16;
9658 inst.instruction |= Rm;
9659 }
9660
9661 static void
9662 do_t_mov_cmp (void)
9663 {
9664 unsigned Rn, Rm;
9665
9666 Rn = inst.operands[0].reg;
9667 Rm = inst.operands[1].reg;
9668
9669 if (unified_syntax)
9670 {
9671 int r0off = (inst.instruction == T_MNEM_mov
9672 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9673 unsigned long opcode;
9674 bfd_boolean narrow;
9675 bfd_boolean low_regs;
9676
9677 low_regs = (Rn <= 7 && Rm <= 7);
9678 opcode = inst.instruction;
9679 if (current_it_mask)
9680 narrow = opcode != T_MNEM_movs;
9681 else
9682 narrow = opcode != T_MNEM_movs || low_regs;
9683 if (inst.size_req == 4
9684 || inst.operands[1].shifted)
9685 narrow = FALSE;
9686
9687 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9688 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9689 && !inst.operands[1].shifted
9690 && Rn == REG_PC
9691 && Rm == REG_LR)
9692 {
9693 inst.instruction = T2_SUBS_PC_LR;
9694 return;
9695 }
9696
9697 if (opcode == T_MNEM_cmp)
9698 {
9699 constraint (Rn == REG_PC, BAD_PC);
9700 if (narrow)
9701 {
9702 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
9703 but valid. */
9704 warn_deprecated_sp (Rm);
9705 /* R15 was documented as a valid choice for Rm in ARMv6,
9706 but as UNPREDICTABLE in ARMv7. ARM's proprietary
9707 tools reject R15, so we do too. */
9708 constraint (Rm == REG_PC, BAD_PC);
9709 }
9710 else
9711 reject_bad_reg (Rm);
9712 }
9713 else if (opcode == T_MNEM_mov
9714 || opcode == T_MNEM_movs)
9715 {
9716 if (inst.operands[1].isreg)
9717 {
9718 if (opcode == T_MNEM_movs)
9719 {
9720 reject_bad_reg (Rn);
9721 reject_bad_reg (Rm);
9722 }
9723 else if ((Rn == REG_SP || Rn == REG_PC)
9724 && (Rm == REG_SP || Rm == REG_PC))
9725 reject_bad_reg (Rm);
9726 }
9727 else
9728 reject_bad_reg (Rn);
9729 }
9730
9731 if (!inst.operands[1].isreg)
9732 {
9733 /* Immediate operand. */
9734 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9735 narrow = 0;
9736 if (low_regs && narrow)
9737 {
9738 inst.instruction = THUMB_OP16 (opcode);
9739 inst.instruction |= Rn << 8;
9740 if (inst.size_req == 2)
9741 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9742 else
9743 inst.relax = opcode;
9744 }
9745 else
9746 {
9747 inst.instruction = THUMB_OP32 (inst.instruction);
9748 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9749 inst.instruction |= Rn << r0off;
9750 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9751 }
9752 }
9753 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9754 && (inst.instruction == T_MNEM_mov
9755 || inst.instruction == T_MNEM_movs))
9756 {
9757 /* Register shifts are encoded as separate shift instructions. */
9758 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9759
9760 if (current_it_mask)
9761 narrow = !flags;
9762 else
9763 narrow = flags;
9764
9765 if (inst.size_req == 4)
9766 narrow = FALSE;
9767
9768 if (!low_regs || inst.operands[1].imm > 7)
9769 narrow = FALSE;
9770
9771 if (Rn != Rm)
9772 narrow = FALSE;
9773
9774 switch (inst.operands[1].shift_kind)
9775 {
9776 case SHIFT_LSL:
9777 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9778 break;
9779 case SHIFT_ASR:
9780 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9781 break;
9782 case SHIFT_LSR:
9783 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9784 break;
9785 case SHIFT_ROR:
9786 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9787 break;
9788 default:
9789 abort ();
9790 }
9791
9792 inst.instruction = opcode;
9793 if (narrow)
9794 {
9795 inst.instruction |= Rn;
9796 inst.instruction |= inst.operands[1].imm << 3;
9797 }
9798 else
9799 {
9800 if (flags)
9801 inst.instruction |= CONDS_BIT;
9802
9803 inst.instruction |= Rn << 8;
9804 inst.instruction |= Rm << 16;
9805 inst.instruction |= inst.operands[1].imm;
9806 }
9807 }
9808 else if (!narrow)
9809 {
9810 /* Some mov with immediate shift have narrow variants.
9811 Register shifts are handled above. */
9812 if (low_regs && inst.operands[1].shifted
9813 && (inst.instruction == T_MNEM_mov
9814 || inst.instruction == T_MNEM_movs))
9815 {
9816 if (current_it_mask)
9817 narrow = (inst.instruction == T_MNEM_mov);
9818 else
9819 narrow = (inst.instruction == T_MNEM_movs);
9820 }
9821
9822 if (narrow)
9823 {
9824 switch (inst.operands[1].shift_kind)
9825 {
9826 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9827 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9828 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9829 default: narrow = FALSE; break;
9830 }
9831 }
9832
9833 if (narrow)
9834 {
9835 inst.instruction |= Rn;
9836 inst.instruction |= Rm << 3;
9837 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9838 }
9839 else
9840 {
9841 inst.instruction = THUMB_OP32 (inst.instruction);
9842 inst.instruction |= Rn << r0off;
9843 encode_thumb32_shifted_operand (1);
9844 }
9845 }
9846 else
9847 switch (inst.instruction)
9848 {
9849 case T_MNEM_mov:
9850 inst.instruction = T_OPCODE_MOV_HR;
9851 inst.instruction |= (Rn & 0x8) << 4;
9852 inst.instruction |= (Rn & 0x7);
9853 inst.instruction |= Rm << 3;
9854 break;
9855
9856 case T_MNEM_movs:
9857 /* We know we have low registers at this point.
9858 Generate ADD Rd, Rs, #0. */
9859 inst.instruction = T_OPCODE_ADD_I3;
9860 inst.instruction |= Rn;
9861 inst.instruction |= Rm << 3;
9862 break;
9863
9864 case T_MNEM_cmp:
9865 if (low_regs)
9866 {
9867 inst.instruction = T_OPCODE_CMP_LR;
9868 inst.instruction |= Rn;
9869 inst.instruction |= Rm << 3;
9870 }
9871 else
9872 {
9873 inst.instruction = T_OPCODE_CMP_HR;
9874 inst.instruction |= (Rn & 0x8) << 4;
9875 inst.instruction |= (Rn & 0x7);
9876 inst.instruction |= Rm << 3;
9877 }
9878 break;
9879 }
9880 return;
9881 }
9882
9883 inst.instruction = THUMB_OP16 (inst.instruction);
9884 if (inst.operands[1].isreg)
9885 {
9886 if (Rn < 8 && Rm < 8)
9887 {
9888 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9889 since a MOV instruction produces unpredictable results. */
9890 if (inst.instruction == T_OPCODE_MOV_I8)
9891 inst.instruction = T_OPCODE_ADD_I3;
9892 else
9893 inst.instruction = T_OPCODE_CMP_LR;
9894
9895 inst.instruction |= Rn;
9896 inst.instruction |= Rm << 3;
9897 }
9898 else
9899 {
9900 if (inst.instruction == T_OPCODE_MOV_I8)
9901 inst.instruction = T_OPCODE_MOV_HR;
9902 else
9903 inst.instruction = T_OPCODE_CMP_HR;
9904 do_t_cpy ();
9905 }
9906 }
9907 else
9908 {
9909 constraint (Rn > 7,
9910 _("only lo regs allowed with immediate"));
9911 inst.instruction |= Rn << 8;
9912 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9913 }
9914 }
9915
9916 static void
9917 do_t_mov16 (void)
9918 {
9919 unsigned Rd;
9920 bfd_vma imm;
9921 bfd_boolean top;
9922
9923 top = (inst.instruction & 0x00800000) != 0;
9924 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9925 {
9926 constraint (top, _(":lower16: not allowed this instruction"));
9927 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9928 }
9929 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9930 {
9931 constraint (!top, _(":upper16: not allowed this instruction"));
9932 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9933 }
9934
9935 Rd = inst.operands[0].reg;
9936 reject_bad_reg (Rd);
9937
9938 inst.instruction |= Rd << 8;
9939 if (inst.reloc.type == BFD_RELOC_UNUSED)
9940 {
9941 imm = inst.reloc.exp.X_add_number;
9942 inst.instruction |= (imm & 0xf000) << 4;
9943 inst.instruction |= (imm & 0x0800) << 15;
9944 inst.instruction |= (imm & 0x0700) << 4;
9945 inst.instruction |= (imm & 0x00ff);
9946 }
9947 }
9948
9949 static void
9950 do_t_mvn_tst (void)
9951 {
9952 unsigned Rn, Rm;
9953
9954 Rn = inst.operands[0].reg;
9955 Rm = inst.operands[1].reg;
9956
9957 if (inst.instruction == T_MNEM_cmp
9958 || inst.instruction == T_MNEM_cmn)
9959 constraint (Rn == REG_PC, BAD_PC);
9960 else
9961 reject_bad_reg (Rn);
9962 reject_bad_reg (Rm);
9963
9964 if (unified_syntax)
9965 {
9966 int r0off = (inst.instruction == T_MNEM_mvn
9967 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9968 bfd_boolean narrow;
9969
9970 if (inst.size_req == 4
9971 || inst.instruction > 0xffff
9972 || inst.operands[1].shifted
9973 || Rn > 7 || Rm > 7)
9974 narrow = FALSE;
9975 else if (inst.instruction == T_MNEM_cmn)
9976 narrow = TRUE;
9977 else if (THUMB_SETS_FLAGS (inst.instruction))
9978 narrow = (current_it_mask == 0);
9979 else
9980 narrow = (current_it_mask != 0);
9981
9982 if (!inst.operands[1].isreg)
9983 {
9984 /* For an immediate, we always generate a 32-bit opcode;
9985 section relaxation will shrink it later if possible. */
9986 if (inst.instruction < 0xffff)
9987 inst.instruction = THUMB_OP32 (inst.instruction);
9988 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9989 inst.instruction |= Rn << r0off;
9990 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9991 }
9992 else
9993 {
9994 /* See if we can do this with a 16-bit instruction. */
9995 if (narrow)
9996 {
9997 inst.instruction = THUMB_OP16 (inst.instruction);
9998 inst.instruction |= Rn;
9999 inst.instruction |= Rm << 3;
10000 }
10001 else
10002 {
10003 constraint (inst.operands[1].shifted
10004 && inst.operands[1].immisreg,
10005 _("shift must be constant"));
10006 if (inst.instruction < 0xffff)
10007 inst.instruction = THUMB_OP32 (inst.instruction);
10008 inst.instruction |= Rn << r0off;
10009 encode_thumb32_shifted_operand (1);
10010 }
10011 }
10012 }
10013 else
10014 {
10015 constraint (inst.instruction > 0xffff
10016 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10017 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10018 _("unshifted register required"));
10019 constraint (Rn > 7 || Rm > 7,
10020 BAD_HIREG);
10021
10022 inst.instruction = THUMB_OP16 (inst.instruction);
10023 inst.instruction |= Rn;
10024 inst.instruction |= Rm << 3;
10025 }
10026 }
10027
10028 static void
10029 do_t_mrs (void)
10030 {
10031 unsigned Rd;
10032 int flags;
10033
10034 if (do_vfp_nsyn_mrs () == SUCCESS)
10035 return;
10036
10037 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10038 if (flags == 0)
10039 {
10040 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10041 _("selected processor does not support "
10042 "requested special purpose register"));
10043 }
10044 else
10045 {
10046 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10047 _("selected processor does not support "
10048 "requested special purpose register"));
10049 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10050 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10051 _("'CPSR' or 'SPSR' expected"));
10052 }
10053
10054 Rd = inst.operands[0].reg;
10055 reject_bad_reg (Rd);
10056
10057 inst.instruction |= Rd << 8;
10058 inst.instruction |= (flags & SPSR_BIT) >> 2;
10059 inst.instruction |= inst.operands[1].imm & 0xff;
10060 }
10061
10062 static void
10063 do_t_msr (void)
10064 {
10065 int flags;
10066 unsigned Rn;
10067
10068 if (do_vfp_nsyn_msr () == SUCCESS)
10069 return;
10070
10071 constraint (!inst.operands[1].isreg,
10072 _("Thumb encoding does not support an immediate here"));
10073 flags = inst.operands[0].imm;
10074 if (flags & ~0xff)
10075 {
10076 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10077 _("selected processor does not support "
10078 "requested special purpose register"));
10079 }
10080 else
10081 {
10082 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10083 _("selected processor does not support "
10084 "requested special purpose register"));
10085 flags |= PSR_f;
10086 }
10087
10088 Rn = inst.operands[1].reg;
10089 reject_bad_reg (Rn);
10090
10091 inst.instruction |= (flags & SPSR_BIT) >> 2;
10092 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10093 inst.instruction |= (flags & 0xff);
10094 inst.instruction |= Rn << 16;
10095 }
10096
10097 static void
10098 do_t_mul (void)
10099 {
10100 bfd_boolean narrow;
10101 unsigned Rd, Rn, Rm;
10102
10103 if (!inst.operands[2].present)
10104 inst.operands[2].reg = inst.operands[0].reg;
10105
10106 Rd = inst.operands[0].reg;
10107 Rn = inst.operands[1].reg;
10108 Rm = inst.operands[2].reg;
10109
10110 if (unified_syntax)
10111 {
10112 if (inst.size_req == 4
10113 || (Rd != Rn
10114 && Rd != Rm)
10115 || Rn > 7
10116 || Rm > 7)
10117 narrow = FALSE;
10118 else if (inst.instruction == T_MNEM_muls)
10119 narrow = (current_it_mask == 0);
10120 else
10121 narrow = (current_it_mask != 0);
10122 }
10123 else
10124 {
10125 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10126 constraint (Rn > 7 || Rm > 7,
10127 BAD_HIREG);
10128 narrow = TRUE;
10129 }
10130
10131 if (narrow)
10132 {
10133 /* 16-bit MULS/Conditional MUL. */
10134 inst.instruction = THUMB_OP16 (inst.instruction);
10135 inst.instruction |= Rd;
10136
10137 if (Rd == Rn)
10138 inst.instruction |= Rm << 3;
10139 else if (Rd == Rm)
10140 inst.instruction |= Rn << 3;
10141 else
10142 constraint (1, _("dest must overlap one source register"));
10143 }
10144 else
10145 {
10146 constraint(inst.instruction != T_MNEM_mul,
10147 _("Thumb-2 MUL must not set flags"));
10148 /* 32-bit MUL. */
10149 inst.instruction = THUMB_OP32 (inst.instruction);
10150 inst.instruction |= Rd << 8;
10151 inst.instruction |= Rn << 16;
10152 inst.instruction |= Rm << 0;
10153
10154 reject_bad_reg (Rd);
10155 reject_bad_reg (Rn);
10156 reject_bad_reg (Rm);
10157 }
10158 }
10159
10160 static void
10161 do_t_mull (void)
10162 {
10163 unsigned RdLo, RdHi, Rn, Rm;
10164
10165 RdLo = inst.operands[0].reg;
10166 RdHi = inst.operands[1].reg;
10167 Rn = inst.operands[2].reg;
10168 Rm = inst.operands[3].reg;
10169
10170 reject_bad_reg (RdLo);
10171 reject_bad_reg (RdHi);
10172 reject_bad_reg (Rn);
10173 reject_bad_reg (Rm);
10174
10175 inst.instruction |= RdLo << 12;
10176 inst.instruction |= RdHi << 8;
10177 inst.instruction |= Rn << 16;
10178 inst.instruction |= Rm;
10179
10180 if (RdLo == RdHi)
10181 as_tsktsk (_("rdhi and rdlo must be different"));
10182 }
10183
10184 static void
10185 do_t_nop (void)
10186 {
10187 if (unified_syntax)
10188 {
10189 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10190 {
10191 inst.instruction = THUMB_OP32 (inst.instruction);
10192 inst.instruction |= inst.operands[0].imm;
10193 }
10194 else
10195 {
10196 /* PR9722: Check for Thumb2 availability before
10197 generating a thumb2 nop instruction. */
10198 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10199 {
10200 inst.instruction = THUMB_OP16 (inst.instruction);
10201 inst.instruction |= inst.operands[0].imm << 4;
10202 }
10203 else
10204 inst.instruction = 0x46c0;
10205 }
10206 }
10207 else
10208 {
10209 constraint (inst.operands[0].present,
10210 _("Thumb does not support NOP with hints"));
10211 inst.instruction = 0x46c0;
10212 }
10213 }
10214
10215 static void
10216 do_t_neg (void)
10217 {
10218 if (unified_syntax)
10219 {
10220 bfd_boolean narrow;
10221
10222 if (THUMB_SETS_FLAGS (inst.instruction))
10223 narrow = (current_it_mask == 0);
10224 else
10225 narrow = (current_it_mask != 0);
10226 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10227 narrow = FALSE;
10228 if (inst.size_req == 4)
10229 narrow = FALSE;
10230
10231 if (!narrow)
10232 {
10233 inst.instruction = THUMB_OP32 (inst.instruction);
10234 inst.instruction |= inst.operands[0].reg << 8;
10235 inst.instruction |= inst.operands[1].reg << 16;
10236 }
10237 else
10238 {
10239 inst.instruction = THUMB_OP16 (inst.instruction);
10240 inst.instruction |= inst.operands[0].reg;
10241 inst.instruction |= inst.operands[1].reg << 3;
10242 }
10243 }
10244 else
10245 {
10246 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10247 BAD_HIREG);
10248 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10249
10250 inst.instruction = THUMB_OP16 (inst.instruction);
10251 inst.instruction |= inst.operands[0].reg;
10252 inst.instruction |= inst.operands[1].reg << 3;
10253 }
10254 }
10255
10256 static void
10257 do_t_orn (void)
10258 {
10259 unsigned Rd, Rn;
10260
10261 Rd = inst.operands[0].reg;
10262 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10263
10264 reject_bad_reg (Rd);
10265 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10266 reject_bad_reg (Rn);
10267
10268 inst.instruction |= Rd << 8;
10269 inst.instruction |= Rn << 16;
10270
10271 if (!inst.operands[2].isreg)
10272 {
10273 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10274 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10275 }
10276 else
10277 {
10278 unsigned Rm;
10279
10280 Rm = inst.operands[2].reg;
10281 reject_bad_reg (Rm);
10282
10283 constraint (inst.operands[2].shifted
10284 && inst.operands[2].immisreg,
10285 _("shift must be constant"));
10286 encode_thumb32_shifted_operand (2);
10287 }
10288 }
10289
10290 static void
10291 do_t_pkhbt (void)
10292 {
10293 unsigned Rd, Rn, Rm;
10294
10295 Rd = inst.operands[0].reg;
10296 Rn = inst.operands[1].reg;
10297 Rm = inst.operands[2].reg;
10298
10299 reject_bad_reg (Rd);
10300 reject_bad_reg (Rn);
10301 reject_bad_reg (Rm);
10302
10303 inst.instruction |= Rd << 8;
10304 inst.instruction |= Rn << 16;
10305 inst.instruction |= Rm;
10306 if (inst.operands[3].present)
10307 {
10308 unsigned int val = inst.reloc.exp.X_add_number;
10309 constraint (inst.reloc.exp.X_op != O_constant,
10310 _("expression too complex"));
10311 inst.instruction |= (val & 0x1c) << 10;
10312 inst.instruction |= (val & 0x03) << 6;
10313 }
10314 }
10315
10316 static void
10317 do_t_pkhtb (void)
10318 {
10319 if (!inst.operands[3].present)
10320 inst.instruction &= ~0x00000020;
10321 do_t_pkhbt ();
10322 }
10323
10324 static void
10325 do_t_pld (void)
10326 {
10327 if (inst.operands[0].immisreg)
10328 reject_bad_reg (inst.operands[0].imm);
10329
10330 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10331 }
10332
10333 static void
10334 do_t_push_pop (void)
10335 {
10336 unsigned mask;
10337
10338 constraint (inst.operands[0].writeback,
10339 _("push/pop do not support {reglist}^"));
10340 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10341 _("expression too complex"));
10342
10343 mask = inst.operands[0].imm;
10344 if ((mask & ~0xff) == 0)
10345 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10346 else if ((inst.instruction == T_MNEM_push
10347 && (mask & ~0xff) == 1 << REG_LR)
10348 || (inst.instruction == T_MNEM_pop
10349 && (mask & ~0xff) == 1 << REG_PC))
10350 {
10351 inst.instruction = THUMB_OP16 (inst.instruction);
10352 inst.instruction |= THUMB_PP_PC_LR;
10353 inst.instruction |= mask & 0xff;
10354 }
10355 else if (unified_syntax)
10356 {
10357 inst.instruction = THUMB_OP32 (inst.instruction);
10358 encode_thumb2_ldmstm (13, mask, TRUE);
10359 }
10360 else
10361 {
10362 inst.error = _("invalid register list to push/pop instruction");
10363 return;
10364 }
10365 }
10366
10367 static void
10368 do_t_rbit (void)
10369 {
10370 unsigned Rd, Rm;
10371
10372 Rd = inst.operands[0].reg;
10373 Rm = inst.operands[1].reg;
10374
10375 reject_bad_reg (Rd);
10376 reject_bad_reg (Rm);
10377
10378 inst.instruction |= Rd << 8;
10379 inst.instruction |= Rm << 16;
10380 inst.instruction |= Rm;
10381 }
10382
10383 static void
10384 do_t_rev (void)
10385 {
10386 unsigned Rd, Rm;
10387
10388 Rd = inst.operands[0].reg;
10389 Rm = inst.operands[1].reg;
10390
10391 reject_bad_reg (Rd);
10392 reject_bad_reg (Rm);
10393
10394 if (Rd <= 7 && Rm <= 7
10395 && inst.size_req != 4)
10396 {
10397 inst.instruction = THUMB_OP16 (inst.instruction);
10398 inst.instruction |= Rd;
10399 inst.instruction |= Rm << 3;
10400 }
10401 else if (unified_syntax)
10402 {
10403 inst.instruction = THUMB_OP32 (inst.instruction);
10404 inst.instruction |= Rd << 8;
10405 inst.instruction |= Rm << 16;
10406 inst.instruction |= Rm;
10407 }
10408 else
10409 inst.error = BAD_HIREG;
10410 }
10411
10412 static void
10413 do_t_rrx (void)
10414 {
10415 unsigned Rd, Rm;
10416
10417 Rd = inst.operands[0].reg;
10418 Rm = inst.operands[1].reg;
10419
10420 reject_bad_reg (Rd);
10421 reject_bad_reg (Rm);
10422
10423 inst.instruction |= Rd << 8;
10424 inst.instruction |= Rm;
10425 }
10426
10427 static void
10428 do_t_rsb (void)
10429 {
10430 unsigned Rd, Rs;
10431
10432 Rd = inst.operands[0].reg;
10433 Rs = (inst.operands[1].present
10434 ? inst.operands[1].reg /* Rd, Rs, foo */
10435 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10436
10437 reject_bad_reg (Rd);
10438 reject_bad_reg (Rs);
10439 if (inst.operands[2].isreg)
10440 reject_bad_reg (inst.operands[2].reg);
10441
10442 inst.instruction |= Rd << 8;
10443 inst.instruction |= Rs << 16;
10444 if (!inst.operands[2].isreg)
10445 {
10446 bfd_boolean narrow;
10447
10448 if ((inst.instruction & 0x00100000) != 0)
10449 narrow = (current_it_mask == 0);
10450 else
10451 narrow = (current_it_mask != 0);
10452
10453 if (Rd > 7 || Rs > 7)
10454 narrow = FALSE;
10455
10456 if (inst.size_req == 4 || !unified_syntax)
10457 narrow = FALSE;
10458
10459 if (inst.reloc.exp.X_op != O_constant
10460 || inst.reloc.exp.X_add_number != 0)
10461 narrow = FALSE;
10462
10463 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10464 relaxation, but it doesn't seem worth the hassle. */
10465 if (narrow)
10466 {
10467 inst.reloc.type = BFD_RELOC_UNUSED;
10468 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10469 inst.instruction |= Rs << 3;
10470 inst.instruction |= Rd;
10471 }
10472 else
10473 {
10474 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10475 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10476 }
10477 }
10478 else
10479 encode_thumb32_shifted_operand (2);
10480 }
10481
10482 static void
10483 do_t_setend (void)
10484 {
10485 constraint (current_it_mask, BAD_NOT_IT);
10486 if (inst.operands[0].imm)
10487 inst.instruction |= 0x8;
10488 }
10489
10490 static void
10491 do_t_shift (void)
10492 {
10493 if (!inst.operands[1].present)
10494 inst.operands[1].reg = inst.operands[0].reg;
10495
10496 if (unified_syntax)
10497 {
10498 bfd_boolean narrow;
10499 int shift_kind;
10500
10501 switch (inst.instruction)
10502 {
10503 case T_MNEM_asr:
10504 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10505 case T_MNEM_lsl:
10506 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10507 case T_MNEM_lsr:
10508 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10509 case T_MNEM_ror:
10510 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10511 default: abort ();
10512 }
10513
10514 if (THUMB_SETS_FLAGS (inst.instruction))
10515 narrow = (current_it_mask == 0);
10516 else
10517 narrow = (current_it_mask != 0);
10518 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10519 narrow = FALSE;
10520 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10521 narrow = FALSE;
10522 if (inst.operands[2].isreg
10523 && (inst.operands[1].reg != inst.operands[0].reg
10524 || inst.operands[2].reg > 7))
10525 narrow = FALSE;
10526 if (inst.size_req == 4)
10527 narrow = FALSE;
10528
10529 reject_bad_reg (inst.operands[0].reg);
10530 reject_bad_reg (inst.operands[1].reg);
10531
10532 if (!narrow)
10533 {
10534 if (inst.operands[2].isreg)
10535 {
10536 reject_bad_reg (inst.operands[2].reg);
10537 inst.instruction = THUMB_OP32 (inst.instruction);
10538 inst.instruction |= inst.operands[0].reg << 8;
10539 inst.instruction |= inst.operands[1].reg << 16;
10540 inst.instruction |= inst.operands[2].reg;
10541 }
10542 else
10543 {
10544 inst.operands[1].shifted = 1;
10545 inst.operands[1].shift_kind = shift_kind;
10546 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10547 ? T_MNEM_movs : T_MNEM_mov);
10548 inst.instruction |= inst.operands[0].reg << 8;
10549 encode_thumb32_shifted_operand (1);
10550 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10551 inst.reloc.type = BFD_RELOC_UNUSED;
10552 }
10553 }
10554 else
10555 {
10556 if (inst.operands[2].isreg)
10557 {
10558 switch (shift_kind)
10559 {
10560 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10561 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10562 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10563 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10564 default: abort ();
10565 }
10566
10567 inst.instruction |= inst.operands[0].reg;
10568 inst.instruction |= inst.operands[2].reg << 3;
10569 }
10570 else
10571 {
10572 switch (shift_kind)
10573 {
10574 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10575 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10576 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10577 default: abort ();
10578 }
10579 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10580 inst.instruction |= inst.operands[0].reg;
10581 inst.instruction |= inst.operands[1].reg << 3;
10582 }
10583 }
10584 }
10585 else
10586 {
10587 constraint (inst.operands[0].reg > 7
10588 || inst.operands[1].reg > 7, BAD_HIREG);
10589 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10590
10591 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10592 {
10593 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10594 constraint (inst.operands[0].reg != inst.operands[1].reg,
10595 _("source1 and dest must be same register"));
10596
10597 switch (inst.instruction)
10598 {
10599 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10600 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10601 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10602 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10603 default: abort ();
10604 }
10605
10606 inst.instruction |= inst.operands[0].reg;
10607 inst.instruction |= inst.operands[2].reg << 3;
10608 }
10609 else
10610 {
10611 switch (inst.instruction)
10612 {
10613 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10614 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10615 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10616 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10617 default: abort ();
10618 }
10619 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10620 inst.instruction |= inst.operands[0].reg;
10621 inst.instruction |= inst.operands[1].reg << 3;
10622 }
10623 }
10624 }
10625
10626 static void
10627 do_t_simd (void)
10628 {
10629 unsigned Rd, Rn, Rm;
10630
10631 Rd = inst.operands[0].reg;
10632 Rn = inst.operands[1].reg;
10633 Rm = inst.operands[2].reg;
10634
10635 reject_bad_reg (Rd);
10636 reject_bad_reg (Rn);
10637 reject_bad_reg (Rm);
10638
10639 inst.instruction |= Rd << 8;
10640 inst.instruction |= Rn << 16;
10641 inst.instruction |= Rm;
10642 }
10643
10644 static void
10645 do_t_smc (void)
10646 {
10647 unsigned int value = inst.reloc.exp.X_add_number;
10648 constraint (inst.reloc.exp.X_op != O_constant,
10649 _("expression too complex"));
10650 inst.reloc.type = BFD_RELOC_UNUSED;
10651 inst.instruction |= (value & 0xf000) >> 12;
10652 inst.instruction |= (value & 0x0ff0);
10653 inst.instruction |= (value & 0x000f) << 16;
10654 }
10655
10656 static void
10657 do_t_ssat_usat (int bias)
10658 {
10659 unsigned Rd, Rn;
10660
10661 Rd = inst.operands[0].reg;
10662 Rn = inst.operands[2].reg;
10663
10664 reject_bad_reg (Rd);
10665 reject_bad_reg (Rn);
10666
10667 inst.instruction |= Rd << 8;
10668 inst.instruction |= inst.operands[1].imm - bias;
10669 inst.instruction |= Rn << 16;
10670
10671 if (inst.operands[3].present)
10672 {
10673 offsetT shift_amount = inst.reloc.exp.X_add_number;
10674
10675 inst.reloc.type = BFD_RELOC_UNUSED;
10676
10677 constraint (inst.reloc.exp.X_op != O_constant,
10678 _("expression too complex"));
10679
10680 if (shift_amount != 0)
10681 {
10682 constraint (shift_amount > 31,
10683 _("shift expression is too large"));
10684
10685 if (inst.operands[3].shift_kind == SHIFT_ASR)
10686 inst.instruction |= 0x00200000; /* sh bit. */
10687
10688 inst.instruction |= (shift_amount & 0x1c) << 10;
10689 inst.instruction |= (shift_amount & 0x03) << 6;
10690 }
10691 }
10692 }
10693
10694 static void
10695 do_t_ssat (void)
10696 {
10697 do_t_ssat_usat (1);
10698 }
10699
10700 static void
10701 do_t_ssat16 (void)
10702 {
10703 unsigned Rd, Rn;
10704
10705 Rd = inst.operands[0].reg;
10706 Rn = inst.operands[2].reg;
10707
10708 reject_bad_reg (Rd);
10709 reject_bad_reg (Rn);
10710
10711 inst.instruction |= Rd << 8;
10712 inst.instruction |= inst.operands[1].imm - 1;
10713 inst.instruction |= Rn << 16;
10714 }
10715
10716 static void
10717 do_t_strex (void)
10718 {
10719 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10720 || inst.operands[2].postind || inst.operands[2].writeback
10721 || inst.operands[2].immisreg || inst.operands[2].shifted
10722 || inst.operands[2].negative,
10723 BAD_ADDR_MODE);
10724
10725 inst.instruction |= inst.operands[0].reg << 8;
10726 inst.instruction |= inst.operands[1].reg << 12;
10727 inst.instruction |= inst.operands[2].reg << 16;
10728 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10729 }
10730
10731 static void
10732 do_t_strexd (void)
10733 {
10734 if (!inst.operands[2].present)
10735 inst.operands[2].reg = inst.operands[1].reg + 1;
10736
10737 constraint (inst.operands[0].reg == inst.operands[1].reg
10738 || inst.operands[0].reg == inst.operands[2].reg
10739 || inst.operands[0].reg == inst.operands[3].reg
10740 || inst.operands[1].reg == inst.operands[2].reg,
10741 BAD_OVERLAP);
10742
10743 inst.instruction |= inst.operands[0].reg;
10744 inst.instruction |= inst.operands[1].reg << 12;
10745 inst.instruction |= inst.operands[2].reg << 8;
10746 inst.instruction |= inst.operands[3].reg << 16;
10747 }
10748
10749 static void
10750 do_t_sxtah (void)
10751 {
10752 unsigned Rd, Rn, Rm;
10753
10754 Rd = inst.operands[0].reg;
10755 Rn = inst.operands[1].reg;
10756 Rm = inst.operands[2].reg;
10757
10758 reject_bad_reg (Rd);
10759 reject_bad_reg (Rn);
10760 reject_bad_reg (Rm);
10761
10762 inst.instruction |= Rd << 8;
10763 inst.instruction |= Rn << 16;
10764 inst.instruction |= Rm;
10765 inst.instruction |= inst.operands[3].imm << 4;
10766 }
10767
10768 static void
10769 do_t_sxth (void)
10770 {
10771 unsigned Rd, Rm;
10772
10773 Rd = inst.operands[0].reg;
10774 Rm = inst.operands[1].reg;
10775
10776 reject_bad_reg (Rd);
10777 reject_bad_reg (Rm);
10778
10779 if (inst.instruction <= 0xffff && inst.size_req != 4
10780 && Rd <= 7 && Rm <= 7
10781 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10782 {
10783 inst.instruction = THUMB_OP16 (inst.instruction);
10784 inst.instruction |= Rd;
10785 inst.instruction |= Rm << 3;
10786 }
10787 else if (unified_syntax)
10788 {
10789 if (inst.instruction <= 0xffff)
10790 inst.instruction = THUMB_OP32 (inst.instruction);
10791 inst.instruction |= Rd << 8;
10792 inst.instruction |= Rm;
10793 inst.instruction |= inst.operands[2].imm << 4;
10794 }
10795 else
10796 {
10797 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10798 _("Thumb encoding does not support rotation"));
10799 constraint (1, BAD_HIREG);
10800 }
10801 }
10802
10803 static void
10804 do_t_swi (void)
10805 {
10806 inst.reloc.type = BFD_RELOC_ARM_SWI;
10807 }
10808
10809 static void
10810 do_t_tb (void)
10811 {
10812 unsigned Rn, Rm;
10813 int half;
10814
10815 half = (inst.instruction & 0x10) != 0;
10816 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10817 constraint (inst.operands[0].immisreg,
10818 _("instruction requires register index"));
10819
10820 Rn = inst.operands[0].reg;
10821 Rm = inst.operands[0].imm;
10822
10823 constraint (Rn == REG_SP, BAD_SP);
10824 reject_bad_reg (Rm);
10825
10826 constraint (!half && inst.operands[0].shifted,
10827 _("instruction does not allow shifted index"));
10828 inst.instruction |= (Rn << 16) | Rm;
10829 }
10830
10831 static void
10832 do_t_usat (void)
10833 {
10834 do_t_ssat_usat (0);
10835 }
10836
10837 static void
10838 do_t_usat16 (void)
10839 {
10840 unsigned Rd, Rn;
10841
10842 Rd = inst.operands[0].reg;
10843 Rn = inst.operands[2].reg;
10844
10845 reject_bad_reg (Rd);
10846 reject_bad_reg (Rn);
10847
10848 inst.instruction |= Rd << 8;
10849 inst.instruction |= inst.operands[1].imm;
10850 inst.instruction |= Rn << 16;
10851 }
10852
10853 /* Neon instruction encoder helpers. */
10854
10855 /* Encodings for the different types for various Neon opcodes. */
10856
10857 /* An "invalid" code for the following tables. */
10858 #define N_INV -1u
10859
10860 struct neon_tab_entry
10861 {
10862 unsigned integer;
10863 unsigned float_or_poly;
10864 unsigned scalar_or_imm;
10865 };
10866
10867 /* Map overloaded Neon opcodes to their respective encodings. */
10868 #define NEON_ENC_TAB \
10869 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10870 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10871 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10872 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10873 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10874 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10875 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10876 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10877 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10878 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10879 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10880 /* Register variants of the following two instructions are encoded as
10881 vcge / vcgt with the operands reversed. */ \
10882 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10883 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10884 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10885 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10886 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10887 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10888 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10889 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10890 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10891 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10892 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10893 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10894 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10895 X(vshl, 0x0000400, N_INV, 0x0800510), \
10896 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10897 X(vand, 0x0000110, N_INV, 0x0800030), \
10898 X(vbic, 0x0100110, N_INV, 0x0800030), \
10899 X(veor, 0x1000110, N_INV, N_INV), \
10900 X(vorn, 0x0300110, N_INV, 0x0800010), \
10901 X(vorr, 0x0200110, N_INV, 0x0800010), \
10902 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10903 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10904 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10905 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10906 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10907 X(vst1, 0x0000000, 0x0800000, N_INV), \
10908 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10909 X(vst2, 0x0000100, 0x0800100, N_INV), \
10910 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10911 X(vst3, 0x0000200, 0x0800200, N_INV), \
10912 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10913 X(vst4, 0x0000300, 0x0800300, N_INV), \
10914 X(vmovn, 0x1b20200, N_INV, N_INV), \
10915 X(vtrn, 0x1b20080, N_INV, N_INV), \
10916 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10917 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10918 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10919 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10920 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10921 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10922 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10923 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10924 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10925
10926 enum neon_opc
10927 {
10928 #define X(OPC,I,F,S) N_MNEM_##OPC
10929 NEON_ENC_TAB
10930 #undef X
10931 };
10932
10933 static const struct neon_tab_entry neon_enc_tab[] =
10934 {
10935 #define X(OPC,I,F,S) { (I), (F), (S) }
10936 NEON_ENC_TAB
10937 #undef X
10938 };
10939
10940 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10941 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10942 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10943 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10944 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10945 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10946 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10947 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10948 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10949 #define NEON_ENC_SINGLE(X) \
10950 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10951 #define NEON_ENC_DOUBLE(X) \
10952 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10953
10954 /* Define shapes for instruction operands. The following mnemonic characters
10955 are used in this table:
10956
10957 F - VFP S<n> register
10958 D - Neon D<n> register
10959 Q - Neon Q<n> register
10960 I - Immediate
10961 S - Scalar
10962 R - ARM register
10963 L - D<n> register list
10964
10965 This table is used to generate various data:
10966 - enumerations of the form NS_DDR to be used as arguments to
10967 neon_select_shape.
10968 - a table classifying shapes into single, double, quad, mixed.
10969 - a table used to drive neon_select_shape. */
10970
10971 #define NEON_SHAPE_DEF \
10972 X(3, (D, D, D), DOUBLE), \
10973 X(3, (Q, Q, Q), QUAD), \
10974 X(3, (D, D, I), DOUBLE), \
10975 X(3, (Q, Q, I), QUAD), \
10976 X(3, (D, D, S), DOUBLE), \
10977 X(3, (Q, Q, S), QUAD), \
10978 X(2, (D, D), DOUBLE), \
10979 X(2, (Q, Q), QUAD), \
10980 X(2, (D, S), DOUBLE), \
10981 X(2, (Q, S), QUAD), \
10982 X(2, (D, R), DOUBLE), \
10983 X(2, (Q, R), QUAD), \
10984 X(2, (D, I), DOUBLE), \
10985 X(2, (Q, I), QUAD), \
10986 X(3, (D, L, D), DOUBLE), \
10987 X(2, (D, Q), MIXED), \
10988 X(2, (Q, D), MIXED), \
10989 X(3, (D, Q, I), MIXED), \
10990 X(3, (Q, D, I), MIXED), \
10991 X(3, (Q, D, D), MIXED), \
10992 X(3, (D, Q, Q), MIXED), \
10993 X(3, (Q, Q, D), MIXED), \
10994 X(3, (Q, D, S), MIXED), \
10995 X(3, (D, Q, S), MIXED), \
10996 X(4, (D, D, D, I), DOUBLE), \
10997 X(4, (Q, Q, Q, I), QUAD), \
10998 X(2, (F, F), SINGLE), \
10999 X(3, (F, F, F), SINGLE), \
11000 X(2, (F, I), SINGLE), \
11001 X(2, (F, D), MIXED), \
11002 X(2, (D, F), MIXED), \
11003 X(3, (F, F, I), MIXED), \
11004 X(4, (R, R, F, F), SINGLE), \
11005 X(4, (F, F, R, R), SINGLE), \
11006 X(3, (D, R, R), DOUBLE), \
11007 X(3, (R, R, D), DOUBLE), \
11008 X(2, (S, R), SINGLE), \
11009 X(2, (R, S), SINGLE), \
11010 X(2, (F, R), SINGLE), \
11011 X(2, (R, F), SINGLE)
11012
11013 #define S2(A,B) NS_##A##B
11014 #define S3(A,B,C) NS_##A##B##C
11015 #define S4(A,B,C,D) NS_##A##B##C##D
11016
11017 #define X(N, L, C) S##N L
11018
11019 enum neon_shape
11020 {
11021 NEON_SHAPE_DEF,
11022 NS_NULL
11023 };
11024
11025 #undef X
11026 #undef S2
11027 #undef S3
11028 #undef S4
11029
11030 enum neon_shape_class
11031 {
11032 SC_SINGLE,
11033 SC_DOUBLE,
11034 SC_QUAD,
11035 SC_MIXED
11036 };
11037
11038 #define X(N, L, C) SC_##C
11039
11040 static enum neon_shape_class neon_shape_class[] =
11041 {
11042 NEON_SHAPE_DEF
11043 };
11044
11045 #undef X
11046
11047 enum neon_shape_el
11048 {
11049 SE_F,
11050 SE_D,
11051 SE_Q,
11052 SE_I,
11053 SE_S,
11054 SE_R,
11055 SE_L
11056 };
11057
11058 /* Register widths of above. */
11059 static unsigned neon_shape_el_size[] =
11060 {
11061 32,
11062 64,
11063 128,
11064 0,
11065 32,
11066 32,
11067 0
11068 };
11069
11070 struct neon_shape_info
11071 {
11072 unsigned els;
11073 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11074 };
11075
11076 #define S2(A,B) { SE_##A, SE_##B }
11077 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11078 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11079
11080 #define X(N, L, C) { N, S##N L }
11081
11082 static struct neon_shape_info neon_shape_tab[] =
11083 {
11084 NEON_SHAPE_DEF
11085 };
11086
11087 #undef X
11088 #undef S2
11089 #undef S3
11090 #undef S4
11091
11092 /* Bit masks used in type checking given instructions.
11093 'N_EQK' means the type must be the same as (or based on in some way) the key
11094 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11095 set, various other bits can be set as well in order to modify the meaning of
11096 the type constraint. */
11097
11098 enum neon_type_mask
11099 {
11100 N_S8 = 0x0000001,
11101 N_S16 = 0x0000002,
11102 N_S32 = 0x0000004,
11103 N_S64 = 0x0000008,
11104 N_U8 = 0x0000010,
11105 N_U16 = 0x0000020,
11106 N_U32 = 0x0000040,
11107 N_U64 = 0x0000080,
11108 N_I8 = 0x0000100,
11109 N_I16 = 0x0000200,
11110 N_I32 = 0x0000400,
11111 N_I64 = 0x0000800,
11112 N_8 = 0x0001000,
11113 N_16 = 0x0002000,
11114 N_32 = 0x0004000,
11115 N_64 = 0x0008000,
11116 N_P8 = 0x0010000,
11117 N_P16 = 0x0020000,
11118 N_F16 = 0x0040000,
11119 N_F32 = 0x0080000,
11120 N_F64 = 0x0100000,
11121 N_KEY = 0x1000000, /* key element (main type specifier). */
11122 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
11123 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11124 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
11125 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
11126 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
11127 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
11128 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
11129 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
11130 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
11131 N_UTYP = 0,
11132 N_MAX_NONSPECIAL = N_F64
11133 };
11134
11135 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11136
11137 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11138 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11139 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11140 #define N_SUF_32 (N_SU_32 | N_F32)
11141 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11142 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11143
11144 /* Pass this as the first type argument to neon_check_type to ignore types
11145 altogether. */
11146 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11147
11148 /* Select a "shape" for the current instruction (describing register types or
11149 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11150 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11151 function of operand parsing, so this function doesn't need to be called.
11152 Shapes should be listed in order of decreasing length. */
11153
11154 static enum neon_shape
11155 neon_select_shape (enum neon_shape shape, ...)
11156 {
11157 va_list ap;
11158 enum neon_shape first_shape = shape;
11159
11160 /* Fix missing optional operands. FIXME: we don't know at this point how
11161 many arguments we should have, so this makes the assumption that we have
11162 > 1. This is true of all current Neon opcodes, I think, but may not be
11163 true in the future. */
11164 if (!inst.operands[1].present)
11165 inst.operands[1] = inst.operands[0];
11166
11167 va_start (ap, shape);
11168
11169 for (; shape != NS_NULL; shape = va_arg (ap, int))
11170 {
11171 unsigned j;
11172 int matches = 1;
11173
11174 for (j = 0; j < neon_shape_tab[shape].els; j++)
11175 {
11176 if (!inst.operands[j].present)
11177 {
11178 matches = 0;
11179 break;
11180 }
11181
11182 switch (neon_shape_tab[shape].el[j])
11183 {
11184 case SE_F:
11185 if (!(inst.operands[j].isreg
11186 && inst.operands[j].isvec
11187 && inst.operands[j].issingle
11188 && !inst.operands[j].isquad))
11189 matches = 0;
11190 break;
11191
11192 case SE_D:
11193 if (!(inst.operands[j].isreg
11194 && inst.operands[j].isvec
11195 && !inst.operands[j].isquad
11196 && !inst.operands[j].issingle))
11197 matches = 0;
11198 break;
11199
11200 case SE_R:
11201 if (!(inst.operands[j].isreg
11202 && !inst.operands[j].isvec))
11203 matches = 0;
11204 break;
11205
11206 case SE_Q:
11207 if (!(inst.operands[j].isreg
11208 && inst.operands[j].isvec
11209 && inst.operands[j].isquad
11210 && !inst.operands[j].issingle))
11211 matches = 0;
11212 break;
11213
11214 case SE_I:
11215 if (!(!inst.operands[j].isreg
11216 && !inst.operands[j].isscalar))
11217 matches = 0;
11218 break;
11219
11220 case SE_S:
11221 if (!(!inst.operands[j].isreg
11222 && inst.operands[j].isscalar))
11223 matches = 0;
11224 break;
11225
11226 case SE_L:
11227 break;
11228 }
11229 }
11230 if (matches)
11231 break;
11232 }
11233
11234 va_end (ap);
11235
11236 if (shape == NS_NULL && first_shape != NS_NULL)
11237 first_error (_("invalid instruction shape"));
11238
11239 return shape;
11240 }
11241
11242 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11243 means the Q bit should be set). */
11244
11245 static int
11246 neon_quad (enum neon_shape shape)
11247 {
11248 return neon_shape_class[shape] == SC_QUAD;
11249 }
11250
11251 static void
11252 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11253 unsigned *g_size)
11254 {
11255 /* Allow modification to be made to types which are constrained to be
11256 based on the key element, based on bits set alongside N_EQK. */
11257 if ((typebits & N_EQK) != 0)
11258 {
11259 if ((typebits & N_HLF) != 0)
11260 *g_size /= 2;
11261 else if ((typebits & N_DBL) != 0)
11262 *g_size *= 2;
11263 if ((typebits & N_SGN) != 0)
11264 *g_type = NT_signed;
11265 else if ((typebits & N_UNS) != 0)
11266 *g_type = NT_unsigned;
11267 else if ((typebits & N_INT) != 0)
11268 *g_type = NT_integer;
11269 else if ((typebits & N_FLT) != 0)
11270 *g_type = NT_float;
11271 else if ((typebits & N_SIZ) != 0)
11272 *g_type = NT_untyped;
11273 }
11274 }
11275
11276 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11277 operand type, i.e. the single type specified in a Neon instruction when it
11278 is the only one given. */
11279
11280 static struct neon_type_el
11281 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11282 {
11283 struct neon_type_el dest = *key;
11284
11285 assert ((thisarg & N_EQK) != 0);
11286
11287 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11288
11289 return dest;
11290 }
11291
11292 /* Convert Neon type and size into compact bitmask representation. */
11293
11294 static enum neon_type_mask
11295 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11296 {
11297 switch (type)
11298 {
11299 case NT_untyped:
11300 switch (size)
11301 {
11302 case 8: return N_8;
11303 case 16: return N_16;
11304 case 32: return N_32;
11305 case 64: return N_64;
11306 default: ;
11307 }
11308 break;
11309
11310 case NT_integer:
11311 switch (size)
11312 {
11313 case 8: return N_I8;
11314 case 16: return N_I16;
11315 case 32: return N_I32;
11316 case 64: return N_I64;
11317 default: ;
11318 }
11319 break;
11320
11321 case NT_float:
11322 switch (size)
11323 {
11324 case 16: return N_F16;
11325 case 32: return N_F32;
11326 case 64: return N_F64;
11327 default: ;
11328 }
11329 break;
11330
11331 case NT_poly:
11332 switch (size)
11333 {
11334 case 8: return N_P8;
11335 case 16: return N_P16;
11336 default: ;
11337 }
11338 break;
11339
11340 case NT_signed:
11341 switch (size)
11342 {
11343 case 8: return N_S8;
11344 case 16: return N_S16;
11345 case 32: return N_S32;
11346 case 64: return N_S64;
11347 default: ;
11348 }
11349 break;
11350
11351 case NT_unsigned:
11352 switch (size)
11353 {
11354 case 8: return N_U8;
11355 case 16: return N_U16;
11356 case 32: return N_U32;
11357 case 64: return N_U64;
11358 default: ;
11359 }
11360 break;
11361
11362 default: ;
11363 }
11364
11365 return N_UTYP;
11366 }
11367
11368 /* Convert compact Neon bitmask type representation to a type and size. Only
11369 handles the case where a single bit is set in the mask. */
11370
11371 static int
11372 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11373 enum neon_type_mask mask)
11374 {
11375 if ((mask & N_EQK) != 0)
11376 return FAIL;
11377
11378 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11379 *size = 8;
11380 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11381 *size = 16;
11382 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11383 *size = 32;
11384 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11385 *size = 64;
11386 else
11387 return FAIL;
11388
11389 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11390 *type = NT_signed;
11391 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11392 *type = NT_unsigned;
11393 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11394 *type = NT_integer;
11395 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11396 *type = NT_untyped;
11397 else if ((mask & (N_P8 | N_P16)) != 0)
11398 *type = NT_poly;
11399 else if ((mask & (N_F32 | N_F64)) != 0)
11400 *type = NT_float;
11401 else
11402 return FAIL;
11403
11404 return SUCCESS;
11405 }
11406
11407 /* Modify a bitmask of allowed types. This is only needed for type
11408 relaxation. */
11409
11410 static unsigned
11411 modify_types_allowed (unsigned allowed, unsigned mods)
11412 {
11413 unsigned size;
11414 enum neon_el_type type;
11415 unsigned destmask;
11416 int i;
11417
11418 destmask = 0;
11419
11420 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11421 {
11422 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11423 {
11424 neon_modify_type_size (mods, &type, &size);
11425 destmask |= type_chk_of_el_type (type, size);
11426 }
11427 }
11428
11429 return destmask;
11430 }
11431
11432 /* Check type and return type classification.
11433 The manual states (paraphrase): If one datatype is given, it indicates the
11434 type given in:
11435 - the second operand, if there is one
11436 - the operand, if there is no second operand
11437 - the result, if there are no operands.
11438 This isn't quite good enough though, so we use a concept of a "key" datatype
11439 which is set on a per-instruction basis, which is the one which matters when
11440 only one data type is written.
11441 Note: this function has side-effects (e.g. filling in missing operands). All
11442 Neon instructions should call it before performing bit encoding. */
11443
11444 static struct neon_type_el
11445 neon_check_type (unsigned els, enum neon_shape ns, ...)
11446 {
11447 va_list ap;
11448 unsigned i, pass, key_el = 0;
11449 unsigned types[NEON_MAX_TYPE_ELS];
11450 enum neon_el_type k_type = NT_invtype;
11451 unsigned k_size = -1u;
11452 struct neon_type_el badtype = {NT_invtype, -1};
11453 unsigned key_allowed = 0;
11454
11455 /* Optional registers in Neon instructions are always (not) in operand 1.
11456 Fill in the missing operand here, if it was omitted. */
11457 if (els > 1 && !inst.operands[1].present)
11458 inst.operands[1] = inst.operands[0];
11459
11460 /* Suck up all the varargs. */
11461 va_start (ap, ns);
11462 for (i = 0; i < els; i++)
11463 {
11464 unsigned thisarg = va_arg (ap, unsigned);
11465 if (thisarg == N_IGNORE_TYPE)
11466 {
11467 va_end (ap);
11468 return badtype;
11469 }
11470 types[i] = thisarg;
11471 if ((thisarg & N_KEY) != 0)
11472 key_el = i;
11473 }
11474 va_end (ap);
11475
11476 if (inst.vectype.elems > 0)
11477 for (i = 0; i < els; i++)
11478 if (inst.operands[i].vectype.type != NT_invtype)
11479 {
11480 first_error (_("types specified in both the mnemonic and operands"));
11481 return badtype;
11482 }
11483
11484 /* Duplicate inst.vectype elements here as necessary.
11485 FIXME: No idea if this is exactly the same as the ARM assembler,
11486 particularly when an insn takes one register and one non-register
11487 operand. */
11488 if (inst.vectype.elems == 1 && els > 1)
11489 {
11490 unsigned j;
11491 inst.vectype.elems = els;
11492 inst.vectype.el[key_el] = inst.vectype.el[0];
11493 for (j = 0; j < els; j++)
11494 if (j != key_el)
11495 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11496 types[j]);
11497 }
11498 else if (inst.vectype.elems == 0 && els > 0)
11499 {
11500 unsigned j;
11501 /* No types were given after the mnemonic, so look for types specified
11502 after each operand. We allow some flexibility here; as long as the
11503 "key" operand has a type, we can infer the others. */
11504 for (j = 0; j < els; j++)
11505 if (inst.operands[j].vectype.type != NT_invtype)
11506 inst.vectype.el[j] = inst.operands[j].vectype;
11507
11508 if (inst.operands[key_el].vectype.type != NT_invtype)
11509 {
11510 for (j = 0; j < els; j++)
11511 if (inst.operands[j].vectype.type == NT_invtype)
11512 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11513 types[j]);
11514 }
11515 else
11516 {
11517 first_error (_("operand types can't be inferred"));
11518 return badtype;
11519 }
11520 }
11521 else if (inst.vectype.elems != els)
11522 {
11523 first_error (_("type specifier has the wrong number of parts"));
11524 return badtype;
11525 }
11526
11527 for (pass = 0; pass < 2; pass++)
11528 {
11529 for (i = 0; i < els; i++)
11530 {
11531 unsigned thisarg = types[i];
11532 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11533 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11534 enum neon_el_type g_type = inst.vectype.el[i].type;
11535 unsigned g_size = inst.vectype.el[i].size;
11536
11537 /* Decay more-specific signed & unsigned types to sign-insensitive
11538 integer types if sign-specific variants are unavailable. */
11539 if ((g_type == NT_signed || g_type == NT_unsigned)
11540 && (types_allowed & N_SU_ALL) == 0)
11541 g_type = NT_integer;
11542
11543 /* If only untyped args are allowed, decay any more specific types to
11544 them. Some instructions only care about signs for some element
11545 sizes, so handle that properly. */
11546 if ((g_size == 8 && (types_allowed & N_8) != 0)
11547 || (g_size == 16 && (types_allowed & N_16) != 0)
11548 || (g_size == 32 && (types_allowed & N_32) != 0)
11549 || (g_size == 64 && (types_allowed & N_64) != 0))
11550 g_type = NT_untyped;
11551
11552 if (pass == 0)
11553 {
11554 if ((thisarg & N_KEY) != 0)
11555 {
11556 k_type = g_type;
11557 k_size = g_size;
11558 key_allowed = thisarg & ~N_KEY;
11559 }
11560 }
11561 else
11562 {
11563 if ((thisarg & N_VFP) != 0)
11564 {
11565 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11566 unsigned regwidth = neon_shape_el_size[regshape], match;
11567
11568 /* In VFP mode, operands must match register widths. If we
11569 have a key operand, use its width, else use the width of
11570 the current operand. */
11571 if (k_size != -1u)
11572 match = k_size;
11573 else
11574 match = g_size;
11575
11576 if (regwidth != match)
11577 {
11578 first_error (_("operand size must match register width"));
11579 return badtype;
11580 }
11581 }
11582
11583 if ((thisarg & N_EQK) == 0)
11584 {
11585 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11586
11587 if ((given_type & types_allowed) == 0)
11588 {
11589 first_error (_("bad type in Neon instruction"));
11590 return badtype;
11591 }
11592 }
11593 else
11594 {
11595 enum neon_el_type mod_k_type = k_type;
11596 unsigned mod_k_size = k_size;
11597 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11598 if (g_type != mod_k_type || g_size != mod_k_size)
11599 {
11600 first_error (_("inconsistent types in Neon instruction"));
11601 return badtype;
11602 }
11603 }
11604 }
11605 }
11606 }
11607
11608 return inst.vectype.el[key_el];
11609 }
11610
11611 /* Neon-style VFP instruction forwarding. */
11612
11613 /* Thumb VFP instructions have 0xE in the condition field. */
11614
11615 static void
11616 do_vfp_cond_or_thumb (void)
11617 {
11618 if (thumb_mode)
11619 inst.instruction |= 0xe0000000;
11620 else
11621 inst.instruction |= inst.cond << 28;
11622 }
11623
11624 /* Look up and encode a simple mnemonic, for use as a helper function for the
11625 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11626 etc. It is assumed that operand parsing has already been done, and that the
11627 operands are in the form expected by the given opcode (this isn't necessarily
11628 the same as the form in which they were parsed, hence some massaging must
11629 take place before this function is called).
11630 Checks current arch version against that in the looked-up opcode. */
11631
11632 static void
11633 do_vfp_nsyn_opcode (const char *opname)
11634 {
11635 const struct asm_opcode *opcode;
11636
11637 opcode = hash_find (arm_ops_hsh, opname);
11638
11639 if (!opcode)
11640 abort ();
11641
11642 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11643 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11644 _(BAD_FPU));
11645
11646 if (thumb_mode)
11647 {
11648 inst.instruction = opcode->tvalue;
11649 opcode->tencode ();
11650 }
11651 else
11652 {
11653 inst.instruction = (inst.cond << 28) | opcode->avalue;
11654 opcode->aencode ();
11655 }
11656 }
11657
11658 static void
11659 do_vfp_nsyn_add_sub (enum neon_shape rs)
11660 {
11661 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11662
11663 if (rs == NS_FFF)
11664 {
11665 if (is_add)
11666 do_vfp_nsyn_opcode ("fadds");
11667 else
11668 do_vfp_nsyn_opcode ("fsubs");
11669 }
11670 else
11671 {
11672 if (is_add)
11673 do_vfp_nsyn_opcode ("faddd");
11674 else
11675 do_vfp_nsyn_opcode ("fsubd");
11676 }
11677 }
11678
11679 /* Check operand types to see if this is a VFP instruction, and if so call
11680 PFN (). */
11681
11682 static int
11683 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11684 {
11685 enum neon_shape rs;
11686 struct neon_type_el et;
11687
11688 switch (args)
11689 {
11690 case 2:
11691 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11692 et = neon_check_type (2, rs,
11693 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11694 break;
11695
11696 case 3:
11697 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11698 et = neon_check_type (3, rs,
11699 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11700 break;
11701
11702 default:
11703 abort ();
11704 }
11705
11706 if (et.type != NT_invtype)
11707 {
11708 pfn (rs);
11709 return SUCCESS;
11710 }
11711 else
11712 inst.error = NULL;
11713
11714 return FAIL;
11715 }
11716
11717 static void
11718 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11719 {
11720 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11721
11722 if (rs == NS_FFF)
11723 {
11724 if (is_mla)
11725 do_vfp_nsyn_opcode ("fmacs");
11726 else
11727 do_vfp_nsyn_opcode ("fmscs");
11728 }
11729 else
11730 {
11731 if (is_mla)
11732 do_vfp_nsyn_opcode ("fmacd");
11733 else
11734 do_vfp_nsyn_opcode ("fmscd");
11735 }
11736 }
11737
11738 static void
11739 do_vfp_nsyn_mul (enum neon_shape rs)
11740 {
11741 if (rs == NS_FFF)
11742 do_vfp_nsyn_opcode ("fmuls");
11743 else
11744 do_vfp_nsyn_opcode ("fmuld");
11745 }
11746
11747 static void
11748 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11749 {
11750 int is_neg = (inst.instruction & 0x80) != 0;
11751 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11752
11753 if (rs == NS_FF)
11754 {
11755 if (is_neg)
11756 do_vfp_nsyn_opcode ("fnegs");
11757 else
11758 do_vfp_nsyn_opcode ("fabss");
11759 }
11760 else
11761 {
11762 if (is_neg)
11763 do_vfp_nsyn_opcode ("fnegd");
11764 else
11765 do_vfp_nsyn_opcode ("fabsd");
11766 }
11767 }
11768
11769 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11770 insns belong to Neon, and are handled elsewhere. */
11771
11772 static void
11773 do_vfp_nsyn_ldm_stm (int is_dbmode)
11774 {
11775 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11776 if (is_ldm)
11777 {
11778 if (is_dbmode)
11779 do_vfp_nsyn_opcode ("fldmdbs");
11780 else
11781 do_vfp_nsyn_opcode ("fldmias");
11782 }
11783 else
11784 {
11785 if (is_dbmode)
11786 do_vfp_nsyn_opcode ("fstmdbs");
11787 else
11788 do_vfp_nsyn_opcode ("fstmias");
11789 }
11790 }
11791
11792 static void
11793 do_vfp_nsyn_sqrt (void)
11794 {
11795 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11796 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11797
11798 if (rs == NS_FF)
11799 do_vfp_nsyn_opcode ("fsqrts");
11800 else
11801 do_vfp_nsyn_opcode ("fsqrtd");
11802 }
11803
11804 static void
11805 do_vfp_nsyn_div (void)
11806 {
11807 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11808 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11809 N_F32 | N_F64 | N_KEY | N_VFP);
11810
11811 if (rs == NS_FFF)
11812 do_vfp_nsyn_opcode ("fdivs");
11813 else
11814 do_vfp_nsyn_opcode ("fdivd");
11815 }
11816
11817 static void
11818 do_vfp_nsyn_nmul (void)
11819 {
11820 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11821 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11822 N_F32 | N_F64 | N_KEY | N_VFP);
11823
11824 if (rs == NS_FFF)
11825 {
11826 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11827 do_vfp_sp_dyadic ();
11828 }
11829 else
11830 {
11831 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11832 do_vfp_dp_rd_rn_rm ();
11833 }
11834 do_vfp_cond_or_thumb ();
11835 }
11836
11837 static void
11838 do_vfp_nsyn_cmp (void)
11839 {
11840 if (inst.operands[1].isreg)
11841 {
11842 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11843 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11844
11845 if (rs == NS_FF)
11846 {
11847 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11848 do_vfp_sp_monadic ();
11849 }
11850 else
11851 {
11852 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11853 do_vfp_dp_rd_rm ();
11854 }
11855 }
11856 else
11857 {
11858 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11859 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11860
11861 switch (inst.instruction & 0x0fffffff)
11862 {
11863 case N_MNEM_vcmp:
11864 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11865 break;
11866 case N_MNEM_vcmpe:
11867 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11868 break;
11869 default:
11870 abort ();
11871 }
11872
11873 if (rs == NS_FI)
11874 {
11875 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11876 do_vfp_sp_compare_z ();
11877 }
11878 else
11879 {
11880 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11881 do_vfp_dp_rd ();
11882 }
11883 }
11884 do_vfp_cond_or_thumb ();
11885 }
11886
11887 static void
11888 nsyn_insert_sp (void)
11889 {
11890 inst.operands[1] = inst.operands[0];
11891 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11892 inst.operands[0].reg = REG_SP;
11893 inst.operands[0].isreg = 1;
11894 inst.operands[0].writeback = 1;
11895 inst.operands[0].present = 1;
11896 }
11897
11898 static void
11899 do_vfp_nsyn_push (void)
11900 {
11901 nsyn_insert_sp ();
11902 if (inst.operands[1].issingle)
11903 do_vfp_nsyn_opcode ("fstmdbs");
11904 else
11905 do_vfp_nsyn_opcode ("fstmdbd");
11906 }
11907
11908 static void
11909 do_vfp_nsyn_pop (void)
11910 {
11911 nsyn_insert_sp ();
11912 if (inst.operands[1].issingle)
11913 do_vfp_nsyn_opcode ("fldmias");
11914 else
11915 do_vfp_nsyn_opcode ("fldmiad");
11916 }
11917
11918 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11919 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11920
11921 static unsigned
11922 neon_dp_fixup (unsigned i)
11923 {
11924 if (thumb_mode)
11925 {
11926 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11927 if (i & (1 << 24))
11928 i |= 1 << 28;
11929
11930 i &= ~(1 << 24);
11931
11932 i |= 0xef000000;
11933 }
11934 else
11935 i |= 0xf2000000;
11936
11937 return i;
11938 }
11939
11940 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11941 (0, 1, 2, 3). */
11942
11943 static unsigned
11944 neon_logbits (unsigned x)
11945 {
11946 return ffs (x) - 4;
11947 }
11948
11949 #define LOW4(R) ((R) & 0xf)
11950 #define HI1(R) (((R) >> 4) & 1)
11951
11952 /* Encode insns with bit pattern:
11953
11954 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11955 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11956
11957 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11958 different meaning for some instruction. */
11959
11960 static void
11961 neon_three_same (int isquad, int ubit, int size)
11962 {
11963 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11964 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11965 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11966 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11967 inst.instruction |= LOW4 (inst.operands[2].reg);
11968 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11969 inst.instruction |= (isquad != 0) << 6;
11970 inst.instruction |= (ubit != 0) << 24;
11971 if (size != -1)
11972 inst.instruction |= neon_logbits (size) << 20;
11973
11974 inst.instruction = neon_dp_fixup (inst.instruction);
11975 }
11976
11977 /* Encode instructions of the form:
11978
11979 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11980 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11981
11982 Don't write size if SIZE == -1. */
11983
11984 static void
11985 neon_two_same (int qbit, int ubit, int size)
11986 {
11987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11989 inst.instruction |= LOW4 (inst.operands[1].reg);
11990 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11991 inst.instruction |= (qbit != 0) << 6;
11992 inst.instruction |= (ubit != 0) << 24;
11993
11994 if (size != -1)
11995 inst.instruction |= neon_logbits (size) << 18;
11996
11997 inst.instruction = neon_dp_fixup (inst.instruction);
11998 }
11999
12000 /* Neon instruction encoders, in approximate order of appearance. */
12001
12002 static void
12003 do_neon_dyadic_i_su (void)
12004 {
12005 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12006 struct neon_type_el et = neon_check_type (3, rs,
12007 N_EQK, N_EQK, N_SU_32 | N_KEY);
12008 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12009 }
12010
12011 static void
12012 do_neon_dyadic_i64_su (void)
12013 {
12014 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12015 struct neon_type_el et = neon_check_type (3, rs,
12016 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12017 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12018 }
12019
12020 static void
12021 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12022 unsigned immbits)
12023 {
12024 unsigned size = et.size >> 3;
12025 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12026 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12027 inst.instruction |= LOW4 (inst.operands[1].reg);
12028 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12029 inst.instruction |= (isquad != 0) << 6;
12030 inst.instruction |= immbits << 16;
12031 inst.instruction |= (size >> 3) << 7;
12032 inst.instruction |= (size & 0x7) << 19;
12033 if (write_ubit)
12034 inst.instruction |= (uval != 0) << 24;
12035
12036 inst.instruction = neon_dp_fixup (inst.instruction);
12037 }
12038
12039 static void
12040 do_neon_shl_imm (void)
12041 {
12042 if (!inst.operands[2].isreg)
12043 {
12044 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12045 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12046 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12047 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12048 }
12049 else
12050 {
12051 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12052 struct neon_type_el et = neon_check_type (3, rs,
12053 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12054 unsigned int tmp;
12055
12056 /* VSHL/VQSHL 3-register variants have syntax such as:
12057 vshl.xx Dd, Dm, Dn
12058 whereas other 3-register operations encoded by neon_three_same have
12059 syntax like:
12060 vadd.xx Dd, Dn, Dm
12061 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12062 here. */
12063 tmp = inst.operands[2].reg;
12064 inst.operands[2].reg = inst.operands[1].reg;
12065 inst.operands[1].reg = tmp;
12066 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12067 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12068 }
12069 }
12070
12071 static void
12072 do_neon_qshl_imm (void)
12073 {
12074 if (!inst.operands[2].isreg)
12075 {
12076 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12077 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12078
12079 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12080 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12081 inst.operands[2].imm);
12082 }
12083 else
12084 {
12085 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12086 struct neon_type_el et = neon_check_type (3, rs,
12087 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12088 unsigned int tmp;
12089
12090 /* See note in do_neon_shl_imm. */
12091 tmp = inst.operands[2].reg;
12092 inst.operands[2].reg = inst.operands[1].reg;
12093 inst.operands[1].reg = tmp;
12094 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12095 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12096 }
12097 }
12098
12099 static void
12100 do_neon_rshl (void)
12101 {
12102 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12103 struct neon_type_el et = neon_check_type (3, rs,
12104 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12105 unsigned int tmp;
12106
12107 tmp = inst.operands[2].reg;
12108 inst.operands[2].reg = inst.operands[1].reg;
12109 inst.operands[1].reg = tmp;
12110 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12111 }
12112
12113 static int
12114 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12115 {
12116 /* Handle .I8 pseudo-instructions. */
12117 if (size == 8)
12118 {
12119 /* Unfortunately, this will make everything apart from zero out-of-range.
12120 FIXME is this the intended semantics? There doesn't seem much point in
12121 accepting .I8 if so. */
12122 immediate |= immediate << 8;
12123 size = 16;
12124 }
12125
12126 if (size >= 32)
12127 {
12128 if (immediate == (immediate & 0x000000ff))
12129 {
12130 *immbits = immediate;
12131 return 0x1;
12132 }
12133 else if (immediate == (immediate & 0x0000ff00))
12134 {
12135 *immbits = immediate >> 8;
12136 return 0x3;
12137 }
12138 else if (immediate == (immediate & 0x00ff0000))
12139 {
12140 *immbits = immediate >> 16;
12141 return 0x5;
12142 }
12143 else if (immediate == (immediate & 0xff000000))
12144 {
12145 *immbits = immediate >> 24;
12146 return 0x7;
12147 }
12148 if ((immediate & 0xffff) != (immediate >> 16))
12149 goto bad_immediate;
12150 immediate &= 0xffff;
12151 }
12152
12153 if (immediate == (immediate & 0x000000ff))
12154 {
12155 *immbits = immediate;
12156 return 0x9;
12157 }
12158 else if (immediate == (immediate & 0x0000ff00))
12159 {
12160 *immbits = immediate >> 8;
12161 return 0xb;
12162 }
12163
12164 bad_immediate:
12165 first_error (_("immediate value out of range"));
12166 return FAIL;
12167 }
12168
12169 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12170 A, B, C, D. */
12171
12172 static int
12173 neon_bits_same_in_bytes (unsigned imm)
12174 {
12175 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12176 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12177 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12178 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12179 }
12180
12181 /* For immediate of above form, return 0bABCD. */
12182
12183 static unsigned
12184 neon_squash_bits (unsigned imm)
12185 {
12186 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12187 | ((imm & 0x01000000) >> 21);
12188 }
12189
12190 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12191
12192 static unsigned
12193 neon_qfloat_bits (unsigned imm)
12194 {
12195 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12196 }
12197
12198 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12199 the instruction. *OP is passed as the initial value of the op field, and
12200 may be set to a different value depending on the constant (i.e.
12201 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12202 MVN). If the immediate looks like a repeated pattern then also
12203 try smaller element sizes. */
12204
12205 static int
12206 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12207 unsigned *immbits, int *op, int size,
12208 enum neon_el_type type)
12209 {
12210 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12211 float. */
12212 if (type == NT_float && !float_p)
12213 return FAIL;
12214
12215 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12216 {
12217 if (size != 32 || *op == 1)
12218 return FAIL;
12219 *immbits = neon_qfloat_bits (immlo);
12220 return 0xf;
12221 }
12222
12223 if (size == 64)
12224 {
12225 if (neon_bits_same_in_bytes (immhi)
12226 && neon_bits_same_in_bytes (immlo))
12227 {
12228 if (*op == 1)
12229 return FAIL;
12230 *immbits = (neon_squash_bits (immhi) << 4)
12231 | neon_squash_bits (immlo);
12232 *op = 1;
12233 return 0xe;
12234 }
12235
12236 if (immhi != immlo)
12237 return FAIL;
12238 }
12239
12240 if (size >= 32)
12241 {
12242 if (immlo == (immlo & 0x000000ff))
12243 {
12244 *immbits = immlo;
12245 return 0x0;
12246 }
12247 else if (immlo == (immlo & 0x0000ff00))
12248 {
12249 *immbits = immlo >> 8;
12250 return 0x2;
12251 }
12252 else if (immlo == (immlo & 0x00ff0000))
12253 {
12254 *immbits = immlo >> 16;
12255 return 0x4;
12256 }
12257 else if (immlo == (immlo & 0xff000000))
12258 {
12259 *immbits = immlo >> 24;
12260 return 0x6;
12261 }
12262 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12263 {
12264 *immbits = (immlo >> 8) & 0xff;
12265 return 0xc;
12266 }
12267 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12268 {
12269 *immbits = (immlo >> 16) & 0xff;
12270 return 0xd;
12271 }
12272
12273 if ((immlo & 0xffff) != (immlo >> 16))
12274 return FAIL;
12275 immlo &= 0xffff;
12276 }
12277
12278 if (size >= 16)
12279 {
12280 if (immlo == (immlo & 0x000000ff))
12281 {
12282 *immbits = immlo;
12283 return 0x8;
12284 }
12285 else if (immlo == (immlo & 0x0000ff00))
12286 {
12287 *immbits = immlo >> 8;
12288 return 0xa;
12289 }
12290
12291 if ((immlo & 0xff) != (immlo >> 8))
12292 return FAIL;
12293 immlo &= 0xff;
12294 }
12295
12296 if (immlo == (immlo & 0x000000ff))
12297 {
12298 /* Don't allow MVN with 8-bit immediate. */
12299 if (*op == 1)
12300 return FAIL;
12301 *immbits = immlo;
12302 return 0xe;
12303 }
12304
12305 return FAIL;
12306 }
12307
12308 /* Write immediate bits [7:0] to the following locations:
12309
12310 |28/24|23 19|18 16|15 4|3 0|
12311 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12312
12313 This function is used by VMOV/VMVN/VORR/VBIC. */
12314
12315 static void
12316 neon_write_immbits (unsigned immbits)
12317 {
12318 inst.instruction |= immbits & 0xf;
12319 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12320 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12321 }
12322
12323 /* Invert low-order SIZE bits of XHI:XLO. */
12324
12325 static void
12326 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12327 {
12328 unsigned immlo = xlo ? *xlo : 0;
12329 unsigned immhi = xhi ? *xhi : 0;
12330
12331 switch (size)
12332 {
12333 case 8:
12334 immlo = (~immlo) & 0xff;
12335 break;
12336
12337 case 16:
12338 immlo = (~immlo) & 0xffff;
12339 break;
12340
12341 case 64:
12342 immhi = (~immhi) & 0xffffffff;
12343 /* fall through. */
12344
12345 case 32:
12346 immlo = (~immlo) & 0xffffffff;
12347 break;
12348
12349 default:
12350 abort ();
12351 }
12352
12353 if (xlo)
12354 *xlo = immlo;
12355
12356 if (xhi)
12357 *xhi = immhi;
12358 }
12359
12360 static void
12361 do_neon_logic (void)
12362 {
12363 if (inst.operands[2].present && inst.operands[2].isreg)
12364 {
12365 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12366 neon_check_type (3, rs, N_IGNORE_TYPE);
12367 /* U bit and size field were set as part of the bitmask. */
12368 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12369 neon_three_same (neon_quad (rs), 0, -1);
12370 }
12371 else
12372 {
12373 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12374 struct neon_type_el et = neon_check_type (2, rs,
12375 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12376 enum neon_opc opcode = inst.instruction & 0x0fffffff;
12377 unsigned immbits;
12378 int cmode;
12379
12380 if (et.type == NT_invtype)
12381 return;
12382
12383 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12384
12385 immbits = inst.operands[1].imm;
12386 if (et.size == 64)
12387 {
12388 /* .i64 is a pseudo-op, so the immediate must be a repeating
12389 pattern. */
12390 if (immbits != (inst.operands[1].regisimm ?
12391 inst.operands[1].reg : 0))
12392 {
12393 /* Set immbits to an invalid constant. */
12394 immbits = 0xdeadbeef;
12395 }
12396 }
12397
12398 switch (opcode)
12399 {
12400 case N_MNEM_vbic:
12401 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12402 break;
12403
12404 case N_MNEM_vorr:
12405 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12406 break;
12407
12408 case N_MNEM_vand:
12409 /* Pseudo-instruction for VBIC. */
12410 neon_invert_size (&immbits, 0, et.size);
12411 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12412 break;
12413
12414 case N_MNEM_vorn:
12415 /* Pseudo-instruction for VORR. */
12416 neon_invert_size (&immbits, 0, et.size);
12417 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12418 break;
12419
12420 default:
12421 abort ();
12422 }
12423
12424 if (cmode == FAIL)
12425 return;
12426
12427 inst.instruction |= neon_quad (rs) << 6;
12428 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12429 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12430 inst.instruction |= cmode << 8;
12431 neon_write_immbits (immbits);
12432
12433 inst.instruction = neon_dp_fixup (inst.instruction);
12434 }
12435 }
12436
12437 static void
12438 do_neon_bitfield (void)
12439 {
12440 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12441 neon_check_type (3, rs, N_IGNORE_TYPE);
12442 neon_three_same (neon_quad (rs), 0, -1);
12443 }
12444
12445 static void
12446 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12447 unsigned destbits)
12448 {
12449 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12450 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12451 types | N_KEY);
12452 if (et.type == NT_float)
12453 {
12454 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12455 neon_three_same (neon_quad (rs), 0, -1);
12456 }
12457 else
12458 {
12459 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12460 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12461 }
12462 }
12463
12464 static void
12465 do_neon_dyadic_if_su (void)
12466 {
12467 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12468 }
12469
12470 static void
12471 do_neon_dyadic_if_su_d (void)
12472 {
12473 /* This version only allow D registers, but that constraint is enforced during
12474 operand parsing so we don't need to do anything extra here. */
12475 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12476 }
12477
12478 static void
12479 do_neon_dyadic_if_i_d (void)
12480 {
12481 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12482 affected if we specify unsigned args. */
12483 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12484 }
12485
12486 enum vfp_or_neon_is_neon_bits
12487 {
12488 NEON_CHECK_CC = 1,
12489 NEON_CHECK_ARCH = 2
12490 };
12491
12492 /* Call this function if an instruction which may have belonged to the VFP or
12493 Neon instruction sets, but turned out to be a Neon instruction (due to the
12494 operand types involved, etc.). We have to check and/or fix-up a couple of
12495 things:
12496
12497 - Make sure the user hasn't attempted to make a Neon instruction
12498 conditional.
12499 - Alter the value in the condition code field if necessary.
12500 - Make sure that the arch supports Neon instructions.
12501
12502 Which of these operations take place depends on bits from enum
12503 vfp_or_neon_is_neon_bits.
12504
12505 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12506 current instruction's condition is COND_ALWAYS, the condition field is
12507 changed to inst.uncond_value. This is necessary because instructions shared
12508 between VFP and Neon may be conditional for the VFP variants only, and the
12509 unconditional Neon version must have, e.g., 0xF in the condition field. */
12510
12511 static int
12512 vfp_or_neon_is_neon (unsigned check)
12513 {
12514 /* Conditions are always legal in Thumb mode (IT blocks). */
12515 if (!thumb_mode && (check & NEON_CHECK_CC))
12516 {
12517 if (inst.cond != COND_ALWAYS)
12518 {
12519 first_error (_(BAD_COND));
12520 return FAIL;
12521 }
12522 if (inst.uncond_value != -1)
12523 inst.instruction |= inst.uncond_value << 28;
12524 }
12525
12526 if ((check & NEON_CHECK_ARCH)
12527 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12528 {
12529 first_error (_(BAD_FPU));
12530 return FAIL;
12531 }
12532
12533 return SUCCESS;
12534 }
12535
12536 static void
12537 do_neon_addsub_if_i (void)
12538 {
12539 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12540 return;
12541
12542 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12543 return;
12544
12545 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12546 affected if we specify unsigned args. */
12547 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12548 }
12549
12550 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12551 result to be:
12552 V<op> A,B (A is operand 0, B is operand 2)
12553 to mean:
12554 V<op> A,B,A
12555 not:
12556 V<op> A,B,B
12557 so handle that case specially. */
12558
12559 static void
12560 neon_exchange_operands (void)
12561 {
12562 void *scratch = alloca (sizeof (inst.operands[0]));
12563 if (inst.operands[1].present)
12564 {
12565 /* Swap operands[1] and operands[2]. */
12566 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12567 inst.operands[1] = inst.operands[2];
12568 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12569 }
12570 else
12571 {
12572 inst.operands[1] = inst.operands[2];
12573 inst.operands[2] = inst.operands[0];
12574 }
12575 }
12576
12577 static void
12578 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12579 {
12580 if (inst.operands[2].isreg)
12581 {
12582 if (invert)
12583 neon_exchange_operands ();
12584 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12585 }
12586 else
12587 {
12588 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12589 struct neon_type_el et = neon_check_type (2, rs,
12590 N_EQK | N_SIZ, immtypes | N_KEY);
12591
12592 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12594 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12595 inst.instruction |= LOW4 (inst.operands[1].reg);
12596 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12597 inst.instruction |= neon_quad (rs) << 6;
12598 inst.instruction |= (et.type == NT_float) << 10;
12599 inst.instruction |= neon_logbits (et.size) << 18;
12600
12601 inst.instruction = neon_dp_fixup (inst.instruction);
12602 }
12603 }
12604
12605 static void
12606 do_neon_cmp (void)
12607 {
12608 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12609 }
12610
12611 static void
12612 do_neon_cmp_inv (void)
12613 {
12614 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12615 }
12616
12617 static void
12618 do_neon_ceq (void)
12619 {
12620 neon_compare (N_IF_32, N_IF_32, FALSE);
12621 }
12622
12623 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12624 scalars, which are encoded in 5 bits, M : Rm.
12625 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12626 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12627 index in M. */
12628
12629 static unsigned
12630 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12631 {
12632 unsigned regno = NEON_SCALAR_REG (scalar);
12633 unsigned elno = NEON_SCALAR_INDEX (scalar);
12634
12635 switch (elsize)
12636 {
12637 case 16:
12638 if (regno > 7 || elno > 3)
12639 goto bad_scalar;
12640 return regno | (elno << 3);
12641
12642 case 32:
12643 if (regno > 15 || elno > 1)
12644 goto bad_scalar;
12645 return regno | (elno << 4);
12646
12647 default:
12648 bad_scalar:
12649 first_error (_("scalar out of range for multiply instruction"));
12650 }
12651
12652 return 0;
12653 }
12654
12655 /* Encode multiply / multiply-accumulate scalar instructions. */
12656
12657 static void
12658 neon_mul_mac (struct neon_type_el et, int ubit)
12659 {
12660 unsigned scalar;
12661
12662 /* Give a more helpful error message if we have an invalid type. */
12663 if (et.type == NT_invtype)
12664 return;
12665
12666 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12667 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12668 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12669 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12670 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12671 inst.instruction |= LOW4 (scalar);
12672 inst.instruction |= HI1 (scalar) << 5;
12673 inst.instruction |= (et.type == NT_float) << 8;
12674 inst.instruction |= neon_logbits (et.size) << 20;
12675 inst.instruction |= (ubit != 0) << 24;
12676
12677 inst.instruction = neon_dp_fixup (inst.instruction);
12678 }
12679
12680 static void
12681 do_neon_mac_maybe_scalar (void)
12682 {
12683 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12684 return;
12685
12686 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12687 return;
12688
12689 if (inst.operands[2].isscalar)
12690 {
12691 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12692 struct neon_type_el et = neon_check_type (3, rs,
12693 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12694 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12695 neon_mul_mac (et, neon_quad (rs));
12696 }
12697 else
12698 {
12699 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12700 affected if we specify unsigned args. */
12701 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12702 }
12703 }
12704
12705 static void
12706 do_neon_tst (void)
12707 {
12708 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12709 struct neon_type_el et = neon_check_type (3, rs,
12710 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12711 neon_three_same (neon_quad (rs), 0, et.size);
12712 }
12713
12714 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12715 same types as the MAC equivalents. The polynomial type for this instruction
12716 is encoded the same as the integer type. */
12717
12718 static void
12719 do_neon_mul (void)
12720 {
12721 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12722 return;
12723
12724 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12725 return;
12726
12727 if (inst.operands[2].isscalar)
12728 do_neon_mac_maybe_scalar ();
12729 else
12730 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12731 }
12732
12733 static void
12734 do_neon_qdmulh (void)
12735 {
12736 if (inst.operands[2].isscalar)
12737 {
12738 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12739 struct neon_type_el et = neon_check_type (3, rs,
12740 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12741 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12742 neon_mul_mac (et, neon_quad (rs));
12743 }
12744 else
12745 {
12746 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12747 struct neon_type_el et = neon_check_type (3, rs,
12748 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12749 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12750 /* The U bit (rounding) comes from bit mask. */
12751 neon_three_same (neon_quad (rs), 0, et.size);
12752 }
12753 }
12754
12755 static void
12756 do_neon_fcmp_absolute (void)
12757 {
12758 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12759 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12760 /* Size field comes from bit mask. */
12761 neon_three_same (neon_quad (rs), 1, -1);
12762 }
12763
12764 static void
12765 do_neon_fcmp_absolute_inv (void)
12766 {
12767 neon_exchange_operands ();
12768 do_neon_fcmp_absolute ();
12769 }
12770
12771 static void
12772 do_neon_step (void)
12773 {
12774 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12775 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12776 neon_three_same (neon_quad (rs), 0, -1);
12777 }
12778
12779 static void
12780 do_neon_abs_neg (void)
12781 {
12782 enum neon_shape rs;
12783 struct neon_type_el et;
12784
12785 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12786 return;
12787
12788 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12789 return;
12790
12791 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12792 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12793
12794 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12795 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12796 inst.instruction |= LOW4 (inst.operands[1].reg);
12797 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12798 inst.instruction |= neon_quad (rs) << 6;
12799 inst.instruction |= (et.type == NT_float) << 10;
12800 inst.instruction |= neon_logbits (et.size) << 18;
12801
12802 inst.instruction = neon_dp_fixup (inst.instruction);
12803 }
12804
12805 static void
12806 do_neon_sli (void)
12807 {
12808 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12809 struct neon_type_el et = neon_check_type (2, rs,
12810 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12811 int imm = inst.operands[2].imm;
12812 constraint (imm < 0 || (unsigned)imm >= et.size,
12813 _("immediate out of range for insert"));
12814 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12815 }
12816
12817 static void
12818 do_neon_sri (void)
12819 {
12820 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12821 struct neon_type_el et = neon_check_type (2, rs,
12822 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12823 int imm = inst.operands[2].imm;
12824 constraint (imm < 1 || (unsigned)imm > et.size,
12825 _("immediate out of range for insert"));
12826 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12827 }
12828
12829 static void
12830 do_neon_qshlu_imm (void)
12831 {
12832 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12833 struct neon_type_el et = neon_check_type (2, rs,
12834 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12835 int imm = inst.operands[2].imm;
12836 constraint (imm < 0 || (unsigned)imm >= et.size,
12837 _("immediate out of range for shift"));
12838 /* Only encodes the 'U present' variant of the instruction.
12839 In this case, signed types have OP (bit 8) set to 0.
12840 Unsigned types have OP set to 1. */
12841 inst.instruction |= (et.type == NT_unsigned) << 8;
12842 /* The rest of the bits are the same as other immediate shifts. */
12843 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12844 }
12845
12846 static void
12847 do_neon_qmovn (void)
12848 {
12849 struct neon_type_el et = neon_check_type (2, NS_DQ,
12850 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12851 /* Saturating move where operands can be signed or unsigned, and the
12852 destination has the same signedness. */
12853 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12854 if (et.type == NT_unsigned)
12855 inst.instruction |= 0xc0;
12856 else
12857 inst.instruction |= 0x80;
12858 neon_two_same (0, 1, et.size / 2);
12859 }
12860
12861 static void
12862 do_neon_qmovun (void)
12863 {
12864 struct neon_type_el et = neon_check_type (2, NS_DQ,
12865 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12866 /* Saturating move with unsigned results. Operands must be signed. */
12867 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12868 neon_two_same (0, 1, et.size / 2);
12869 }
12870
12871 static void
12872 do_neon_rshift_sat_narrow (void)
12873 {
12874 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12875 or unsigned. If operands are unsigned, results must also be unsigned. */
12876 struct neon_type_el et = neon_check_type (2, NS_DQI,
12877 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12878 int imm = inst.operands[2].imm;
12879 /* This gets the bounds check, size encoding and immediate bits calculation
12880 right. */
12881 et.size /= 2;
12882
12883 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12884 VQMOVN.I<size> <Dd>, <Qm>. */
12885 if (imm == 0)
12886 {
12887 inst.operands[2].present = 0;
12888 inst.instruction = N_MNEM_vqmovn;
12889 do_neon_qmovn ();
12890 return;
12891 }
12892
12893 constraint (imm < 1 || (unsigned)imm > et.size,
12894 _("immediate out of range"));
12895 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12896 }
12897
12898 static void
12899 do_neon_rshift_sat_narrow_u (void)
12900 {
12901 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12902 or unsigned. If operands are unsigned, results must also be unsigned. */
12903 struct neon_type_el et = neon_check_type (2, NS_DQI,
12904 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12905 int imm = inst.operands[2].imm;
12906 /* This gets the bounds check, size encoding and immediate bits calculation
12907 right. */
12908 et.size /= 2;
12909
12910 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12911 VQMOVUN.I<size> <Dd>, <Qm>. */
12912 if (imm == 0)
12913 {
12914 inst.operands[2].present = 0;
12915 inst.instruction = N_MNEM_vqmovun;
12916 do_neon_qmovun ();
12917 return;
12918 }
12919
12920 constraint (imm < 1 || (unsigned)imm > et.size,
12921 _("immediate out of range"));
12922 /* FIXME: The manual is kind of unclear about what value U should have in
12923 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12924 must be 1. */
12925 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12926 }
12927
12928 static void
12929 do_neon_movn (void)
12930 {
12931 struct neon_type_el et = neon_check_type (2, NS_DQ,
12932 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12933 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12934 neon_two_same (0, 1, et.size / 2);
12935 }
12936
12937 static void
12938 do_neon_rshift_narrow (void)
12939 {
12940 struct neon_type_el et = neon_check_type (2, NS_DQI,
12941 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12942 int imm = inst.operands[2].imm;
12943 /* This gets the bounds check, size encoding and immediate bits calculation
12944 right. */
12945 et.size /= 2;
12946
12947 /* If immediate is zero then we are a pseudo-instruction for
12948 VMOVN.I<size> <Dd>, <Qm> */
12949 if (imm == 0)
12950 {
12951 inst.operands[2].present = 0;
12952 inst.instruction = N_MNEM_vmovn;
12953 do_neon_movn ();
12954 return;
12955 }
12956
12957 constraint (imm < 1 || (unsigned)imm > et.size,
12958 _("immediate out of range for narrowing operation"));
12959 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12960 }
12961
12962 static void
12963 do_neon_shll (void)
12964 {
12965 /* FIXME: Type checking when lengthening. */
12966 struct neon_type_el et = neon_check_type (2, NS_QDI,
12967 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12968 unsigned imm = inst.operands[2].imm;
12969
12970 if (imm == et.size)
12971 {
12972 /* Maximum shift variant. */
12973 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12974 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12975 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12976 inst.instruction |= LOW4 (inst.operands[1].reg);
12977 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12978 inst.instruction |= neon_logbits (et.size) << 18;
12979
12980 inst.instruction = neon_dp_fixup (inst.instruction);
12981 }
12982 else
12983 {
12984 /* A more-specific type check for non-max versions. */
12985 et = neon_check_type (2, NS_QDI,
12986 N_EQK | N_DBL, N_SU_32 | N_KEY);
12987 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12988 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12989 }
12990 }
12991
12992 /* Check the various types for the VCVT instruction, and return which version
12993 the current instruction is. */
12994
12995 static int
12996 neon_cvt_flavour (enum neon_shape rs)
12997 {
12998 #define CVT_VAR(C,X,Y) \
12999 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13000 if (et.type != NT_invtype) \
13001 { \
13002 inst.error = NULL; \
13003 return (C); \
13004 }
13005 struct neon_type_el et;
13006 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13007 || rs == NS_FF) ? N_VFP : 0;
13008 /* The instruction versions which take an immediate take one register
13009 argument, which is extended to the width of the full register. Thus the
13010 "source" and "destination" registers must have the same width. Hack that
13011 here by making the size equal to the key (wider, in this case) operand. */
13012 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13013
13014 CVT_VAR (0, N_S32, N_F32);
13015 CVT_VAR (1, N_U32, N_F32);
13016 CVT_VAR (2, N_F32, N_S32);
13017 CVT_VAR (3, N_F32, N_U32);
13018 /* Half-precision conversions. */
13019 CVT_VAR (4, N_F32, N_F16);
13020 CVT_VAR (5, N_F16, N_F32);
13021
13022 whole_reg = N_VFP;
13023
13024 /* VFP instructions. */
13025 CVT_VAR (6, N_F32, N_F64);
13026 CVT_VAR (7, N_F64, N_F32);
13027 CVT_VAR (8, N_S32, N_F64 | key);
13028 CVT_VAR (9, N_U32, N_F64 | key);
13029 CVT_VAR (10, N_F64 | key, N_S32);
13030 CVT_VAR (11, N_F64 | key, N_U32);
13031 /* VFP instructions with bitshift. */
13032 CVT_VAR (12, N_F32 | key, N_S16);
13033 CVT_VAR (13, N_F32 | key, N_U16);
13034 CVT_VAR (14, N_F64 | key, N_S16);
13035 CVT_VAR (15, N_F64 | key, N_U16);
13036 CVT_VAR (16, N_S16, N_F32 | key);
13037 CVT_VAR (17, N_U16, N_F32 | key);
13038 CVT_VAR (18, N_S16, N_F64 | key);
13039 CVT_VAR (19, N_U16, N_F64 | key);
13040
13041 return -1;
13042 #undef CVT_VAR
13043 }
13044
13045 /* Neon-syntax VFP conversions. */
13046
13047 static void
13048 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13049 {
13050 const char *opname = 0;
13051
13052 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13053 {
13054 /* Conversions with immediate bitshift. */
13055 const char *enc[] =
13056 {
13057 "ftosls",
13058 "ftouls",
13059 "fsltos",
13060 "fultos",
13061 NULL,
13062 NULL,
13063 NULL,
13064 NULL,
13065 "ftosld",
13066 "ftould",
13067 "fsltod",
13068 "fultod",
13069 "fshtos",
13070 "fuhtos",
13071 "fshtod",
13072 "fuhtod",
13073 "ftoshs",
13074 "ftouhs",
13075 "ftoshd",
13076 "ftouhd"
13077 };
13078
13079 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13080 {
13081 opname = enc[flavour];
13082 constraint (inst.operands[0].reg != inst.operands[1].reg,
13083 _("operands 0 and 1 must be the same register"));
13084 inst.operands[1] = inst.operands[2];
13085 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13086 }
13087 }
13088 else
13089 {
13090 /* Conversions without bitshift. */
13091 const char *enc[] =
13092 {
13093 "ftosis",
13094 "ftouis",
13095 "fsitos",
13096 "fuitos",
13097 "NULL",
13098 "NULL",
13099 "fcvtsd",
13100 "fcvtds",
13101 "ftosid",
13102 "ftouid",
13103 "fsitod",
13104 "fuitod"
13105 };
13106
13107 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13108 opname = enc[flavour];
13109 }
13110
13111 if (opname)
13112 do_vfp_nsyn_opcode (opname);
13113 }
13114
13115 static void
13116 do_vfp_nsyn_cvtz (void)
13117 {
13118 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13119 int flavour = neon_cvt_flavour (rs);
13120 const char *enc[] =
13121 {
13122 "ftosizs",
13123 "ftouizs",
13124 NULL,
13125 NULL,
13126 NULL,
13127 NULL,
13128 NULL,
13129 NULL,
13130 "ftosizd",
13131 "ftouizd"
13132 };
13133
13134 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13135 do_vfp_nsyn_opcode (enc[flavour]);
13136 }
13137
13138 static void
13139 do_neon_cvt (void)
13140 {
13141 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13142 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13143 int flavour = neon_cvt_flavour (rs);
13144
13145 /* VFP rather than Neon conversions. */
13146 if (flavour >= 6)
13147 {
13148 do_vfp_nsyn_cvt (rs, flavour);
13149 return;
13150 }
13151
13152 switch (rs)
13153 {
13154 case NS_DDI:
13155 case NS_QQI:
13156 {
13157 unsigned immbits;
13158 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13159
13160 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13161 return;
13162
13163 /* Fixed-point conversion with #0 immediate is encoded as an
13164 integer conversion. */
13165 if (inst.operands[2].present && inst.operands[2].imm == 0)
13166 goto int_encode;
13167 immbits = 32 - inst.operands[2].imm;
13168 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13169 if (flavour != -1)
13170 inst.instruction |= enctab[flavour];
13171 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13172 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13173 inst.instruction |= LOW4 (inst.operands[1].reg);
13174 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13175 inst.instruction |= neon_quad (rs) << 6;
13176 inst.instruction |= 1 << 21;
13177 inst.instruction |= immbits << 16;
13178
13179 inst.instruction = neon_dp_fixup (inst.instruction);
13180 }
13181 break;
13182
13183 case NS_DD:
13184 case NS_QQ:
13185 int_encode:
13186 {
13187 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13188
13189 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13190
13191 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13192 return;
13193
13194 if (flavour != -1)
13195 inst.instruction |= enctab[flavour];
13196
13197 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13198 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13199 inst.instruction |= LOW4 (inst.operands[1].reg);
13200 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13201 inst.instruction |= neon_quad (rs) << 6;
13202 inst.instruction |= 2 << 18;
13203
13204 inst.instruction = neon_dp_fixup (inst.instruction);
13205 }
13206 break;
13207
13208 /* Half-precision conversions for Advanced SIMD -- neon. */
13209 case NS_QD:
13210 case NS_DQ:
13211
13212 if ((rs == NS_DQ)
13213 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13214 {
13215 as_bad (_("operand size must match register width"));
13216 break;
13217 }
13218
13219 if ((rs == NS_QD)
13220 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13221 {
13222 as_bad (_("operand size must match register width"));
13223 break;
13224 }
13225
13226 if (rs == NS_DQ)
13227 inst.instruction = 0x3b60600;
13228 else
13229 inst.instruction = 0x3b60700;
13230
13231 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13232 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13233 inst.instruction |= LOW4 (inst.operands[1].reg);
13234 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13235 inst.instruction = neon_dp_fixup (inst.instruction);
13236 break;
13237
13238 default:
13239 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13240 do_vfp_nsyn_cvt (rs, flavour);
13241 }
13242 }
13243
13244 static void
13245 do_neon_cvtb (void)
13246 {
13247 inst.instruction = 0xeb20a40;
13248
13249 /* The sizes are attached to the mnemonic. */
13250 if (inst.vectype.el[0].type != NT_invtype
13251 && inst.vectype.el[0].size == 16)
13252 inst.instruction |= 0x00010000;
13253
13254 /* Programmer's syntax: the sizes are attached to the operands. */
13255 else if (inst.operands[0].vectype.type != NT_invtype
13256 && inst.operands[0].vectype.size == 16)
13257 inst.instruction |= 0x00010000;
13258
13259 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13260 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13261 do_vfp_cond_or_thumb ();
13262 }
13263
13264
13265 static void
13266 do_neon_cvtt (void)
13267 {
13268 do_neon_cvtb ();
13269 inst.instruction |= 0x80;
13270 }
13271
13272 static void
13273 neon_move_immediate (void)
13274 {
13275 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13276 struct neon_type_el et = neon_check_type (2, rs,
13277 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13278 unsigned immlo, immhi = 0, immbits;
13279 int op, cmode, float_p;
13280
13281 constraint (et.type == NT_invtype,
13282 _("operand size must be specified for immediate VMOV"));
13283
13284 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13285 op = (inst.instruction & (1 << 5)) != 0;
13286
13287 immlo = inst.operands[1].imm;
13288 if (inst.operands[1].regisimm)
13289 immhi = inst.operands[1].reg;
13290
13291 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13292 _("immediate has bits set outside the operand size"));
13293
13294 float_p = inst.operands[1].immisfloat;
13295
13296 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13297 et.size, et.type)) == FAIL)
13298 {
13299 /* Invert relevant bits only. */
13300 neon_invert_size (&immlo, &immhi, et.size);
13301 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13302 with one or the other; those cases are caught by
13303 neon_cmode_for_move_imm. */
13304 op = !op;
13305 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13306 &op, et.size, et.type)) == FAIL)
13307 {
13308 first_error (_("immediate out of range"));
13309 return;
13310 }
13311 }
13312
13313 inst.instruction &= ~(1 << 5);
13314 inst.instruction |= op << 5;
13315
13316 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13318 inst.instruction |= neon_quad (rs) << 6;
13319 inst.instruction |= cmode << 8;
13320
13321 neon_write_immbits (immbits);
13322 }
13323
13324 static void
13325 do_neon_mvn (void)
13326 {
13327 if (inst.operands[1].isreg)
13328 {
13329 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13330
13331 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13332 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13333 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13334 inst.instruction |= LOW4 (inst.operands[1].reg);
13335 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13336 inst.instruction |= neon_quad (rs) << 6;
13337 }
13338 else
13339 {
13340 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13341 neon_move_immediate ();
13342 }
13343
13344 inst.instruction = neon_dp_fixup (inst.instruction);
13345 }
13346
13347 /* Encode instructions of form:
13348
13349 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13350 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13351
13352 static void
13353 neon_mixed_length (struct neon_type_el et, unsigned size)
13354 {
13355 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13356 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13357 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13358 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13359 inst.instruction |= LOW4 (inst.operands[2].reg);
13360 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13361 inst.instruction |= (et.type == NT_unsigned) << 24;
13362 inst.instruction |= neon_logbits (size) << 20;
13363
13364 inst.instruction = neon_dp_fixup (inst.instruction);
13365 }
13366
13367 static void
13368 do_neon_dyadic_long (void)
13369 {
13370 /* FIXME: Type checking for lengthening op. */
13371 struct neon_type_el et = neon_check_type (3, NS_QDD,
13372 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13373 neon_mixed_length (et, et.size);
13374 }
13375
13376 static void
13377 do_neon_abal (void)
13378 {
13379 struct neon_type_el et = neon_check_type (3, NS_QDD,
13380 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13381 neon_mixed_length (et, et.size);
13382 }
13383
13384 static void
13385 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13386 {
13387 if (inst.operands[2].isscalar)
13388 {
13389 struct neon_type_el et = neon_check_type (3, NS_QDS,
13390 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13391 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13392 neon_mul_mac (et, et.type == NT_unsigned);
13393 }
13394 else
13395 {
13396 struct neon_type_el et = neon_check_type (3, NS_QDD,
13397 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13398 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13399 neon_mixed_length (et, et.size);
13400 }
13401 }
13402
13403 static void
13404 do_neon_mac_maybe_scalar_long (void)
13405 {
13406 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13407 }
13408
13409 static void
13410 do_neon_dyadic_wide (void)
13411 {
13412 struct neon_type_el et = neon_check_type (3, NS_QQD,
13413 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13414 neon_mixed_length (et, et.size);
13415 }
13416
13417 static void
13418 do_neon_dyadic_narrow (void)
13419 {
13420 struct neon_type_el et = neon_check_type (3, NS_QDD,
13421 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13422 /* Operand sign is unimportant, and the U bit is part of the opcode,
13423 so force the operand type to integer. */
13424 et.type = NT_integer;
13425 neon_mixed_length (et, et.size / 2);
13426 }
13427
13428 static void
13429 do_neon_mul_sat_scalar_long (void)
13430 {
13431 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13432 }
13433
13434 static void
13435 do_neon_vmull (void)
13436 {
13437 if (inst.operands[2].isscalar)
13438 do_neon_mac_maybe_scalar_long ();
13439 else
13440 {
13441 struct neon_type_el et = neon_check_type (3, NS_QDD,
13442 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13443 if (et.type == NT_poly)
13444 inst.instruction = NEON_ENC_POLY (inst.instruction);
13445 else
13446 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13447 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13448 zero. Should be OK as-is. */
13449 neon_mixed_length (et, et.size);
13450 }
13451 }
13452
13453 static void
13454 do_neon_ext (void)
13455 {
13456 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13457 struct neon_type_el et = neon_check_type (3, rs,
13458 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13459 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13460
13461 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13462 _("shift out of range"));
13463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13465 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13466 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13467 inst.instruction |= LOW4 (inst.operands[2].reg);
13468 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13469 inst.instruction |= neon_quad (rs) << 6;
13470 inst.instruction |= imm << 8;
13471
13472 inst.instruction = neon_dp_fixup (inst.instruction);
13473 }
13474
13475 static void
13476 do_neon_rev (void)
13477 {
13478 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13479 struct neon_type_el et = neon_check_type (2, rs,
13480 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13481 unsigned op = (inst.instruction >> 7) & 3;
13482 /* N (width of reversed regions) is encoded as part of the bitmask. We
13483 extract it here to check the elements to be reversed are smaller.
13484 Otherwise we'd get a reserved instruction. */
13485 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13486 assert (elsize != 0);
13487 constraint (et.size >= elsize,
13488 _("elements must be smaller than reversal region"));
13489 neon_two_same (neon_quad (rs), 1, et.size);
13490 }
13491
13492 static void
13493 do_neon_dup (void)
13494 {
13495 if (inst.operands[1].isscalar)
13496 {
13497 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13498 struct neon_type_el et = neon_check_type (2, rs,
13499 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13500 unsigned sizebits = et.size >> 3;
13501 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13502 int logsize = neon_logbits (et.size);
13503 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13504
13505 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13506 return;
13507
13508 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13509 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13510 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13511 inst.instruction |= LOW4 (dm);
13512 inst.instruction |= HI1 (dm) << 5;
13513 inst.instruction |= neon_quad (rs) << 6;
13514 inst.instruction |= x << 17;
13515 inst.instruction |= sizebits << 16;
13516
13517 inst.instruction = neon_dp_fixup (inst.instruction);
13518 }
13519 else
13520 {
13521 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13522 struct neon_type_el et = neon_check_type (2, rs,
13523 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13524 /* Duplicate ARM register to lanes of vector. */
13525 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13526 switch (et.size)
13527 {
13528 case 8: inst.instruction |= 0x400000; break;
13529 case 16: inst.instruction |= 0x000020; break;
13530 case 32: inst.instruction |= 0x000000; break;
13531 default: break;
13532 }
13533 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13534 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13535 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13536 inst.instruction |= neon_quad (rs) << 21;
13537 /* The encoding for this instruction is identical for the ARM and Thumb
13538 variants, except for the condition field. */
13539 do_vfp_cond_or_thumb ();
13540 }
13541 }
13542
13543 /* VMOV has particularly many variations. It can be one of:
13544 0. VMOV<c><q> <Qd>, <Qm>
13545 1. VMOV<c><q> <Dd>, <Dm>
13546 (Register operations, which are VORR with Rm = Rn.)
13547 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13548 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13549 (Immediate loads.)
13550 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13551 (ARM register to scalar.)
13552 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13553 (Two ARM registers to vector.)
13554 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13555 (Scalar to ARM register.)
13556 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13557 (Vector to two ARM registers.)
13558 8. VMOV.F32 <Sd>, <Sm>
13559 9. VMOV.F64 <Dd>, <Dm>
13560 (VFP register moves.)
13561 10. VMOV.F32 <Sd>, #imm
13562 11. VMOV.F64 <Dd>, #imm
13563 (VFP float immediate load.)
13564 12. VMOV <Rd>, <Sm>
13565 (VFP single to ARM reg.)
13566 13. VMOV <Sd>, <Rm>
13567 (ARM reg to VFP single.)
13568 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13569 (Two ARM regs to two VFP singles.)
13570 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13571 (Two VFP singles to two ARM regs.)
13572
13573 These cases can be disambiguated using neon_select_shape, except cases 1/9
13574 and 3/11 which depend on the operand type too.
13575
13576 All the encoded bits are hardcoded by this function.
13577
13578 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13579 Cases 5, 7 may be used with VFPv2 and above.
13580
13581 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13582 can specify a type where it doesn't make sense to, and is ignored). */
13583
13584 static void
13585 do_neon_mov (void)
13586 {
13587 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13588 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13589 NS_NULL);
13590 struct neon_type_el et;
13591 const char *ldconst = 0;
13592
13593 switch (rs)
13594 {
13595 case NS_DD: /* case 1/9. */
13596 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13597 /* It is not an error here if no type is given. */
13598 inst.error = NULL;
13599 if (et.type == NT_float && et.size == 64)
13600 {
13601 do_vfp_nsyn_opcode ("fcpyd");
13602 break;
13603 }
13604 /* fall through. */
13605
13606 case NS_QQ: /* case 0/1. */
13607 {
13608 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13609 return;
13610 /* The architecture manual I have doesn't explicitly state which
13611 value the U bit should have for register->register moves, but
13612 the equivalent VORR instruction has U = 0, so do that. */
13613 inst.instruction = 0x0200110;
13614 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13615 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13616 inst.instruction |= LOW4 (inst.operands[1].reg);
13617 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13618 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13619 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13620 inst.instruction |= neon_quad (rs) << 6;
13621
13622 inst.instruction = neon_dp_fixup (inst.instruction);
13623 }
13624 break;
13625
13626 case NS_DI: /* case 3/11. */
13627 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13628 inst.error = NULL;
13629 if (et.type == NT_float && et.size == 64)
13630 {
13631 /* case 11 (fconstd). */
13632 ldconst = "fconstd";
13633 goto encode_fconstd;
13634 }
13635 /* fall through. */
13636
13637 case NS_QI: /* case 2/3. */
13638 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13639 return;
13640 inst.instruction = 0x0800010;
13641 neon_move_immediate ();
13642 inst.instruction = neon_dp_fixup (inst.instruction);
13643 break;
13644
13645 case NS_SR: /* case 4. */
13646 {
13647 unsigned bcdebits = 0;
13648 struct neon_type_el et = neon_check_type (2, NS_NULL,
13649 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13650 int logsize = neon_logbits (et.size);
13651 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13652 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13653
13654 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13655 _(BAD_FPU));
13656 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13657 && et.size != 32, _(BAD_FPU));
13658 constraint (et.type == NT_invtype, _("bad type for scalar"));
13659 constraint (x >= 64 / et.size, _("scalar index out of range"));
13660
13661 switch (et.size)
13662 {
13663 case 8: bcdebits = 0x8; break;
13664 case 16: bcdebits = 0x1; break;
13665 case 32: bcdebits = 0x0; break;
13666 default: ;
13667 }
13668
13669 bcdebits |= x << logsize;
13670
13671 inst.instruction = 0xe000b10;
13672 do_vfp_cond_or_thumb ();
13673 inst.instruction |= LOW4 (dn) << 16;
13674 inst.instruction |= HI1 (dn) << 7;
13675 inst.instruction |= inst.operands[1].reg << 12;
13676 inst.instruction |= (bcdebits & 3) << 5;
13677 inst.instruction |= (bcdebits >> 2) << 21;
13678 }
13679 break;
13680
13681 case NS_DRR: /* case 5 (fmdrr). */
13682 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13683 _(BAD_FPU));
13684
13685 inst.instruction = 0xc400b10;
13686 do_vfp_cond_or_thumb ();
13687 inst.instruction |= LOW4 (inst.operands[0].reg);
13688 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13689 inst.instruction |= inst.operands[1].reg << 12;
13690 inst.instruction |= inst.operands[2].reg << 16;
13691 break;
13692
13693 case NS_RS: /* case 6. */
13694 {
13695 struct neon_type_el et = neon_check_type (2, NS_NULL,
13696 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13697 unsigned logsize = neon_logbits (et.size);
13698 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13699 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13700 unsigned abcdebits = 0;
13701
13702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13703 _(BAD_FPU));
13704 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13705 && et.size != 32, _(BAD_FPU));
13706 constraint (et.type == NT_invtype, _("bad type for scalar"));
13707 constraint (x >= 64 / et.size, _("scalar index out of range"));
13708
13709 switch (et.size)
13710 {
13711 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13712 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13713 case 32: abcdebits = 0x00; break;
13714 default: ;
13715 }
13716
13717 abcdebits |= x << logsize;
13718 inst.instruction = 0xe100b10;
13719 do_vfp_cond_or_thumb ();
13720 inst.instruction |= LOW4 (dn) << 16;
13721 inst.instruction |= HI1 (dn) << 7;
13722 inst.instruction |= inst.operands[0].reg << 12;
13723 inst.instruction |= (abcdebits & 3) << 5;
13724 inst.instruction |= (abcdebits >> 2) << 21;
13725 }
13726 break;
13727
13728 case NS_RRD: /* case 7 (fmrrd). */
13729 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13730 _(BAD_FPU));
13731
13732 inst.instruction = 0xc500b10;
13733 do_vfp_cond_or_thumb ();
13734 inst.instruction |= inst.operands[0].reg << 12;
13735 inst.instruction |= inst.operands[1].reg << 16;
13736 inst.instruction |= LOW4 (inst.operands[2].reg);
13737 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13738 break;
13739
13740 case NS_FF: /* case 8 (fcpys). */
13741 do_vfp_nsyn_opcode ("fcpys");
13742 break;
13743
13744 case NS_FI: /* case 10 (fconsts). */
13745 ldconst = "fconsts";
13746 encode_fconstd:
13747 if (is_quarter_float (inst.operands[1].imm))
13748 {
13749 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13750 do_vfp_nsyn_opcode (ldconst);
13751 }
13752 else
13753 first_error (_("immediate out of range"));
13754 break;
13755
13756 case NS_RF: /* case 12 (fmrs). */
13757 do_vfp_nsyn_opcode ("fmrs");
13758 break;
13759
13760 case NS_FR: /* case 13 (fmsr). */
13761 do_vfp_nsyn_opcode ("fmsr");
13762 break;
13763
13764 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13765 (one of which is a list), but we have parsed four. Do some fiddling to
13766 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13767 expect. */
13768 case NS_RRFF: /* case 14 (fmrrs). */
13769 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13770 _("VFP registers must be adjacent"));
13771 inst.operands[2].imm = 2;
13772 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13773 do_vfp_nsyn_opcode ("fmrrs");
13774 break;
13775
13776 case NS_FFRR: /* case 15 (fmsrr). */
13777 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13778 _("VFP registers must be adjacent"));
13779 inst.operands[1] = inst.operands[2];
13780 inst.operands[2] = inst.operands[3];
13781 inst.operands[0].imm = 2;
13782 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13783 do_vfp_nsyn_opcode ("fmsrr");
13784 break;
13785
13786 default:
13787 abort ();
13788 }
13789 }
13790
13791 static void
13792 do_neon_rshift_round_imm (void)
13793 {
13794 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13795 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13796 int imm = inst.operands[2].imm;
13797
13798 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13799 if (imm == 0)
13800 {
13801 inst.operands[2].present = 0;
13802 do_neon_mov ();
13803 return;
13804 }
13805
13806 constraint (imm < 1 || (unsigned)imm > et.size,
13807 _("immediate out of range for shift"));
13808 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13809 et.size - imm);
13810 }
13811
13812 static void
13813 do_neon_movl (void)
13814 {
13815 struct neon_type_el et = neon_check_type (2, NS_QD,
13816 N_EQK | N_DBL, N_SU_32 | N_KEY);
13817 unsigned sizebits = et.size >> 3;
13818 inst.instruction |= sizebits << 19;
13819 neon_two_same (0, et.type == NT_unsigned, -1);
13820 }
13821
13822 static void
13823 do_neon_trn (void)
13824 {
13825 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13826 struct neon_type_el et = neon_check_type (2, rs,
13827 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13828 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13829 neon_two_same (neon_quad (rs), 1, et.size);
13830 }
13831
13832 static void
13833 do_neon_zip_uzp (void)
13834 {
13835 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13836 struct neon_type_el et = neon_check_type (2, rs,
13837 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13838 if (rs == NS_DD && et.size == 32)
13839 {
13840 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13841 inst.instruction = N_MNEM_vtrn;
13842 do_neon_trn ();
13843 return;
13844 }
13845 neon_two_same (neon_quad (rs), 1, et.size);
13846 }
13847
13848 static void
13849 do_neon_sat_abs_neg (void)
13850 {
13851 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13852 struct neon_type_el et = neon_check_type (2, rs,
13853 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13854 neon_two_same (neon_quad (rs), 1, et.size);
13855 }
13856
13857 static void
13858 do_neon_pair_long (void)
13859 {
13860 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13861 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13862 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13863 inst.instruction |= (et.type == NT_unsigned) << 7;
13864 neon_two_same (neon_quad (rs), 1, et.size);
13865 }
13866
13867 static void
13868 do_neon_recip_est (void)
13869 {
13870 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13871 struct neon_type_el et = neon_check_type (2, rs,
13872 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13873 inst.instruction |= (et.type == NT_float) << 8;
13874 neon_two_same (neon_quad (rs), 1, et.size);
13875 }
13876
13877 static void
13878 do_neon_cls (void)
13879 {
13880 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13881 struct neon_type_el et = neon_check_type (2, rs,
13882 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13883 neon_two_same (neon_quad (rs), 1, et.size);
13884 }
13885
13886 static void
13887 do_neon_clz (void)
13888 {
13889 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13890 struct neon_type_el et = neon_check_type (2, rs,
13891 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13892 neon_two_same (neon_quad (rs), 1, et.size);
13893 }
13894
13895 static void
13896 do_neon_cnt (void)
13897 {
13898 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13899 struct neon_type_el et = neon_check_type (2, rs,
13900 N_EQK | N_INT, N_8 | N_KEY);
13901 neon_two_same (neon_quad (rs), 1, et.size);
13902 }
13903
13904 static void
13905 do_neon_swp (void)
13906 {
13907 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13908 neon_two_same (neon_quad (rs), 1, -1);
13909 }
13910
13911 static void
13912 do_neon_tbl_tbx (void)
13913 {
13914 unsigned listlenbits;
13915 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13916
13917 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13918 {
13919 first_error (_("bad list length for table lookup"));
13920 return;
13921 }
13922
13923 listlenbits = inst.operands[1].imm - 1;
13924 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13925 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13926 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13927 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13928 inst.instruction |= LOW4 (inst.operands[2].reg);
13929 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13930 inst.instruction |= listlenbits << 8;
13931
13932 inst.instruction = neon_dp_fixup (inst.instruction);
13933 }
13934
13935 static void
13936 do_neon_ldm_stm (void)
13937 {
13938 /* P, U and L bits are part of bitmask. */
13939 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13940 unsigned offsetbits = inst.operands[1].imm * 2;
13941
13942 if (inst.operands[1].issingle)
13943 {
13944 do_vfp_nsyn_ldm_stm (is_dbmode);
13945 return;
13946 }
13947
13948 constraint (is_dbmode && !inst.operands[0].writeback,
13949 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13950
13951 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13952 _("register list must contain at least 1 and at most 16 "
13953 "registers"));
13954
13955 inst.instruction |= inst.operands[0].reg << 16;
13956 inst.instruction |= inst.operands[0].writeback << 21;
13957 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13958 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13959
13960 inst.instruction |= offsetbits;
13961
13962 do_vfp_cond_or_thumb ();
13963 }
13964
13965 static void
13966 do_neon_ldr_str (void)
13967 {
13968 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13969
13970 if (inst.operands[0].issingle)
13971 {
13972 if (is_ldr)
13973 do_vfp_nsyn_opcode ("flds");
13974 else
13975 do_vfp_nsyn_opcode ("fsts");
13976 }
13977 else
13978 {
13979 if (is_ldr)
13980 do_vfp_nsyn_opcode ("fldd");
13981 else
13982 do_vfp_nsyn_opcode ("fstd");
13983 }
13984 }
13985
13986 /* "interleave" version also handles non-interleaving register VLD1/VST1
13987 instructions. */
13988
13989 static void
13990 do_neon_ld_st_interleave (void)
13991 {
13992 struct neon_type_el et = neon_check_type (1, NS_NULL,
13993 N_8 | N_16 | N_32 | N_64);
13994 unsigned alignbits = 0;
13995 unsigned idx;
13996 /* The bits in this table go:
13997 0: register stride of one (0) or two (1)
13998 1,2: register list length, minus one (1, 2, 3, 4).
13999 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14000 We use -1 for invalid entries. */
14001 const int typetable[] =
14002 {
14003 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14004 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14005 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14006 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14007 };
14008 int typebits;
14009
14010 if (et.type == NT_invtype)
14011 return;
14012
14013 if (inst.operands[1].immisalign)
14014 switch (inst.operands[1].imm >> 8)
14015 {
14016 case 64: alignbits = 1; break;
14017 case 128:
14018 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14019 goto bad_alignment;
14020 alignbits = 2;
14021 break;
14022 case 256:
14023 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14024 goto bad_alignment;
14025 alignbits = 3;
14026 break;
14027 default:
14028 bad_alignment:
14029 first_error (_("bad alignment"));
14030 return;
14031 }
14032
14033 inst.instruction |= alignbits << 4;
14034 inst.instruction |= neon_logbits (et.size) << 6;
14035
14036 /* Bits [4:6] of the immediate in a list specifier encode register stride
14037 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14038 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14039 up the right value for "type" in a table based on this value and the given
14040 list style, then stick it back. */
14041 idx = ((inst.operands[0].imm >> 4) & 7)
14042 | (((inst.instruction >> 8) & 3) << 3);
14043
14044 typebits = typetable[idx];
14045
14046 constraint (typebits == -1, _("bad list type for instruction"));
14047
14048 inst.instruction &= ~0xf00;
14049 inst.instruction |= typebits << 8;
14050 }
14051
14052 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14053 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14054 otherwise. The variable arguments are a list of pairs of legal (size, align)
14055 values, terminated with -1. */
14056
14057 static int
14058 neon_alignment_bit (int size, int align, int *do_align, ...)
14059 {
14060 va_list ap;
14061 int result = FAIL, thissize, thisalign;
14062
14063 if (!inst.operands[1].immisalign)
14064 {
14065 *do_align = 0;
14066 return SUCCESS;
14067 }
14068
14069 va_start (ap, do_align);
14070
14071 do
14072 {
14073 thissize = va_arg (ap, int);
14074 if (thissize == -1)
14075 break;
14076 thisalign = va_arg (ap, int);
14077
14078 if (size == thissize && align == thisalign)
14079 result = SUCCESS;
14080 }
14081 while (result != SUCCESS);
14082
14083 va_end (ap);
14084
14085 if (result == SUCCESS)
14086 *do_align = 1;
14087 else
14088 first_error (_("unsupported alignment for instruction"));
14089
14090 return result;
14091 }
14092
14093 static void
14094 do_neon_ld_st_lane (void)
14095 {
14096 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14097 int align_good, do_align = 0;
14098 int logsize = neon_logbits (et.size);
14099 int align = inst.operands[1].imm >> 8;
14100 int n = (inst.instruction >> 8) & 3;
14101 int max_el = 64 / et.size;
14102
14103 if (et.type == NT_invtype)
14104 return;
14105
14106 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14107 _("bad list length"));
14108 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14109 _("scalar index out of range"));
14110 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14111 && et.size == 8,
14112 _("stride of 2 unavailable when element size is 8"));
14113
14114 switch (n)
14115 {
14116 case 0: /* VLD1 / VST1. */
14117 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14118 32, 32, -1);
14119 if (align_good == FAIL)
14120 return;
14121 if (do_align)
14122 {
14123 unsigned alignbits = 0;
14124 switch (et.size)
14125 {
14126 case 16: alignbits = 0x1; break;
14127 case 32: alignbits = 0x3; break;
14128 default: ;
14129 }
14130 inst.instruction |= alignbits << 4;
14131 }
14132 break;
14133
14134 case 1: /* VLD2 / VST2. */
14135 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14136 32, 64, -1);
14137 if (align_good == FAIL)
14138 return;
14139 if (do_align)
14140 inst.instruction |= 1 << 4;
14141 break;
14142
14143 case 2: /* VLD3 / VST3. */
14144 constraint (inst.operands[1].immisalign,
14145 _("can't use alignment with this instruction"));
14146 break;
14147
14148 case 3: /* VLD4 / VST4. */
14149 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14150 16, 64, 32, 64, 32, 128, -1);
14151 if (align_good == FAIL)
14152 return;
14153 if (do_align)
14154 {
14155 unsigned alignbits = 0;
14156 switch (et.size)
14157 {
14158 case 8: alignbits = 0x1; break;
14159 case 16: alignbits = 0x1; break;
14160 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14161 default: ;
14162 }
14163 inst.instruction |= alignbits << 4;
14164 }
14165 break;
14166
14167 default: ;
14168 }
14169
14170 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14171 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14172 inst.instruction |= 1 << (4 + logsize);
14173
14174 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14175 inst.instruction |= logsize << 10;
14176 }
14177
14178 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14179
14180 static void
14181 do_neon_ld_dup (void)
14182 {
14183 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14184 int align_good, do_align = 0;
14185
14186 if (et.type == NT_invtype)
14187 return;
14188
14189 switch ((inst.instruction >> 8) & 3)
14190 {
14191 case 0: /* VLD1. */
14192 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14193 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14194 &do_align, 16, 16, 32, 32, -1);
14195 if (align_good == FAIL)
14196 return;
14197 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14198 {
14199 case 1: break;
14200 case 2: inst.instruction |= 1 << 5; break;
14201 default: first_error (_("bad list length")); return;
14202 }
14203 inst.instruction |= neon_logbits (et.size) << 6;
14204 break;
14205
14206 case 1: /* VLD2. */
14207 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14208 &do_align, 8, 16, 16, 32, 32, 64, -1);
14209 if (align_good == FAIL)
14210 return;
14211 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14212 _("bad list length"));
14213 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14214 inst.instruction |= 1 << 5;
14215 inst.instruction |= neon_logbits (et.size) << 6;
14216 break;
14217
14218 case 2: /* VLD3. */
14219 constraint (inst.operands[1].immisalign,
14220 _("can't use alignment with this instruction"));
14221 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14222 _("bad list length"));
14223 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14224 inst.instruction |= 1 << 5;
14225 inst.instruction |= neon_logbits (et.size) << 6;
14226 break;
14227
14228 case 3: /* VLD4. */
14229 {
14230 int align = inst.operands[1].imm >> 8;
14231 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14232 16, 64, 32, 64, 32, 128, -1);
14233 if (align_good == FAIL)
14234 return;
14235 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14236 _("bad list length"));
14237 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14238 inst.instruction |= 1 << 5;
14239 if (et.size == 32 && align == 128)
14240 inst.instruction |= 0x3 << 6;
14241 else
14242 inst.instruction |= neon_logbits (et.size) << 6;
14243 }
14244 break;
14245
14246 default: ;
14247 }
14248
14249 inst.instruction |= do_align << 4;
14250 }
14251
14252 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14253 apart from bits [11:4]. */
14254
14255 static void
14256 do_neon_ldx_stx (void)
14257 {
14258 switch (NEON_LANE (inst.operands[0].imm))
14259 {
14260 case NEON_INTERLEAVE_LANES:
14261 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14262 do_neon_ld_st_interleave ();
14263 break;
14264
14265 case NEON_ALL_LANES:
14266 inst.instruction = NEON_ENC_DUP (inst.instruction);
14267 do_neon_ld_dup ();
14268 break;
14269
14270 default:
14271 inst.instruction = NEON_ENC_LANE (inst.instruction);
14272 do_neon_ld_st_lane ();
14273 }
14274
14275 /* L bit comes from bit mask. */
14276 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14277 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14278 inst.instruction |= inst.operands[1].reg << 16;
14279
14280 if (inst.operands[1].postind)
14281 {
14282 int postreg = inst.operands[1].imm & 0xf;
14283 constraint (!inst.operands[1].immisreg,
14284 _("post-index must be a register"));
14285 constraint (postreg == 0xd || postreg == 0xf,
14286 _("bad register for post-index"));
14287 inst.instruction |= postreg;
14288 }
14289 else if (inst.operands[1].writeback)
14290 {
14291 inst.instruction |= 0xd;
14292 }
14293 else
14294 inst.instruction |= 0xf;
14295
14296 if (thumb_mode)
14297 inst.instruction |= 0xf9000000;
14298 else
14299 inst.instruction |= 0xf4000000;
14300 }
14301 \f
14302 /* Overall per-instruction processing. */
14303
14304 /* We need to be able to fix up arbitrary expressions in some statements.
14305 This is so that we can handle symbols that are an arbitrary distance from
14306 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14307 which returns part of an address in a form which will be valid for
14308 a data instruction. We do this by pushing the expression into a symbol
14309 in the expr_section, and creating a fix for that. */
14310
14311 static void
14312 fix_new_arm (fragS * frag,
14313 int where,
14314 short int size,
14315 expressionS * exp,
14316 int pc_rel,
14317 int reloc)
14318 {
14319 fixS * new_fix;
14320
14321 switch (exp->X_op)
14322 {
14323 case O_constant:
14324 case O_symbol:
14325 case O_add:
14326 case O_subtract:
14327 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
14328 break;
14329
14330 default:
14331 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
14332 pc_rel, reloc);
14333 break;
14334 }
14335
14336 /* Mark whether the fix is to a THUMB instruction, or an ARM
14337 instruction. */
14338 new_fix->tc_fix_data = thumb_mode;
14339 }
14340
14341 /* Create a frg for an instruction requiring relaxation. */
14342 static void
14343 output_relax_insn (void)
14344 {
14345 char * to;
14346 symbolS *sym;
14347 int offset;
14348
14349 /* The size of the instruction is unknown, so tie the debug info to the
14350 start of the instruction. */
14351 dwarf2_emit_insn (0);
14352
14353 switch (inst.reloc.exp.X_op)
14354 {
14355 case O_symbol:
14356 sym = inst.reloc.exp.X_add_symbol;
14357 offset = inst.reloc.exp.X_add_number;
14358 break;
14359 case O_constant:
14360 sym = NULL;
14361 offset = inst.reloc.exp.X_add_number;
14362 break;
14363 default:
14364 sym = make_expr_symbol (&inst.reloc.exp);
14365 offset = 0;
14366 break;
14367 }
14368 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14369 inst.relax, sym, offset, NULL/*offset, opcode*/);
14370 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14371 }
14372
14373 /* Write a 32-bit thumb instruction to buf. */
14374 static void
14375 put_thumb32_insn (char * buf, unsigned long insn)
14376 {
14377 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14378 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14379 }
14380
14381 static void
14382 output_inst (const char * str)
14383 {
14384 char * to = NULL;
14385
14386 if (inst.error)
14387 {
14388 as_bad ("%s -- `%s'", inst.error, str);
14389 return;
14390 }
14391 if (inst.relax)
14392 {
14393 output_relax_insn ();
14394 return;
14395 }
14396 if (inst.size == 0)
14397 return;
14398
14399 to = frag_more (inst.size);
14400 /* PR 9814: Record the thumb mode into the current frag so that we know
14401 what type of NOP padding to use, if necessary. We override any previous
14402 setting so that if the mode has changed then the NOPS that we use will
14403 match the encoding of the last instruction in the frag. */
14404 frag_now->tc_frag_data = thumb_mode | MODE_RECORDED;
14405
14406 if (thumb_mode && (inst.size > THUMB_SIZE))
14407 {
14408 assert (inst.size == (2 * THUMB_SIZE));
14409 put_thumb32_insn (to, inst.instruction);
14410 }
14411 else if (inst.size > INSN_SIZE)
14412 {
14413 assert (inst.size == (2 * INSN_SIZE));
14414 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14415 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14416 }
14417 else
14418 md_number_to_chars (to, inst.instruction, inst.size);
14419
14420 if (inst.reloc.type != BFD_RELOC_UNUSED)
14421 fix_new_arm (frag_now, to - frag_now->fr_literal,
14422 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14423 inst.reloc.type);
14424
14425 dwarf2_emit_insn (inst.size);
14426 }
14427
14428 /* Tag values used in struct asm_opcode's tag field. */
14429 enum opcode_tag
14430 {
14431 OT_unconditional, /* Instruction cannot be conditionalized.
14432 The ARM condition field is still 0xE. */
14433 OT_unconditionalF, /* Instruction cannot be conditionalized
14434 and carries 0xF in its ARM condition field. */
14435 OT_csuffix, /* Instruction takes a conditional suffix. */
14436 OT_csuffixF, /* Some forms of the instruction take a conditional
14437 suffix, others place 0xF where the condition field
14438 would be. */
14439 OT_cinfix3, /* Instruction takes a conditional infix,
14440 beginning at character index 3. (In
14441 unified mode, it becomes a suffix.) */
14442 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14443 tsts, cmps, cmns, and teqs. */
14444 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14445 character index 3, even in unified mode. Used for
14446 legacy instructions where suffix and infix forms
14447 may be ambiguous. */
14448 OT_csuf_or_in3, /* Instruction takes either a conditional
14449 suffix or an infix at character index 3. */
14450 OT_odd_infix_unc, /* This is the unconditional variant of an
14451 instruction that takes a conditional infix
14452 at an unusual position. In unified mode,
14453 this variant will accept a suffix. */
14454 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14455 are the conditional variants of instructions that
14456 take conditional infixes in unusual positions.
14457 The infix appears at character index
14458 (tag - OT_odd_infix_0). These are not accepted
14459 in unified mode. */
14460 };
14461
14462 /* Subroutine of md_assemble, responsible for looking up the primary
14463 opcode from the mnemonic the user wrote. STR points to the
14464 beginning of the mnemonic.
14465
14466 This is not simply a hash table lookup, because of conditional
14467 variants. Most instructions have conditional variants, which are
14468 expressed with a _conditional affix_ to the mnemonic. If we were
14469 to encode each conditional variant as a literal string in the opcode
14470 table, it would have approximately 20,000 entries.
14471
14472 Most mnemonics take this affix as a suffix, and in unified syntax,
14473 'most' is upgraded to 'all'. However, in the divided syntax, some
14474 instructions take the affix as an infix, notably the s-variants of
14475 the arithmetic instructions. Of those instructions, all but six
14476 have the infix appear after the third character of the mnemonic.
14477
14478 Accordingly, the algorithm for looking up primary opcodes given
14479 an identifier is:
14480
14481 1. Look up the identifier in the opcode table.
14482 If we find a match, go to step U.
14483
14484 2. Look up the last two characters of the identifier in the
14485 conditions table. If we find a match, look up the first N-2
14486 characters of the identifier in the opcode table. If we
14487 find a match, go to step CE.
14488
14489 3. Look up the fourth and fifth characters of the identifier in
14490 the conditions table. If we find a match, extract those
14491 characters from the identifier, and look up the remaining
14492 characters in the opcode table. If we find a match, go
14493 to step CM.
14494
14495 4. Fail.
14496
14497 U. Examine the tag field of the opcode structure, in case this is
14498 one of the six instructions with its conditional infix in an
14499 unusual place. If it is, the tag tells us where to find the
14500 infix; look it up in the conditions table and set inst.cond
14501 accordingly. Otherwise, this is an unconditional instruction.
14502 Again set inst.cond accordingly. Return the opcode structure.
14503
14504 CE. Examine the tag field to make sure this is an instruction that
14505 should receive a conditional suffix. If it is not, fail.
14506 Otherwise, set inst.cond from the suffix we already looked up,
14507 and return the opcode structure.
14508
14509 CM. Examine the tag field to make sure this is an instruction that
14510 should receive a conditional infix after the third character.
14511 If it is not, fail. Otherwise, undo the edits to the current
14512 line of input and proceed as for case CE. */
14513
14514 static const struct asm_opcode *
14515 opcode_lookup (char **str)
14516 {
14517 char *end, *base;
14518 char *affix;
14519 const struct asm_opcode *opcode;
14520 const struct asm_cond *cond;
14521 char save[2];
14522 bfd_boolean neon_supported;
14523
14524 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14525
14526 /* Scan up to the end of the mnemonic, which must end in white space,
14527 '.' (in unified mode, or for Neon instructions), or end of string. */
14528 for (base = end = *str; *end != '\0'; end++)
14529 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14530 break;
14531
14532 if (end == base)
14533 return 0;
14534
14535 /* Handle a possible width suffix and/or Neon type suffix. */
14536 if (end[0] == '.')
14537 {
14538 int offset = 2;
14539
14540 /* The .w and .n suffixes are only valid if the unified syntax is in
14541 use. */
14542 if (unified_syntax && end[1] == 'w')
14543 inst.size_req = 4;
14544 else if (unified_syntax && end[1] == 'n')
14545 inst.size_req = 2;
14546 else
14547 offset = 0;
14548
14549 inst.vectype.elems = 0;
14550
14551 *str = end + offset;
14552
14553 if (end[offset] == '.')
14554 {
14555 /* See if we have a Neon type suffix (possible in either unified or
14556 non-unified ARM syntax mode). */
14557 if (parse_neon_type (&inst.vectype, str) == FAIL)
14558 return 0;
14559 }
14560 else if (end[offset] != '\0' && end[offset] != ' ')
14561 return 0;
14562 }
14563 else
14564 *str = end;
14565
14566 /* Look for unaffixed or special-case affixed mnemonic. */
14567 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14568 if (opcode)
14569 {
14570 /* step U */
14571 if (opcode->tag < OT_odd_infix_0)
14572 {
14573 inst.cond = COND_ALWAYS;
14574 return opcode;
14575 }
14576
14577 if (warn_on_deprecated && unified_syntax)
14578 as_warn (_("conditional infixes are deprecated in unified syntax"));
14579 affix = base + (opcode->tag - OT_odd_infix_0);
14580 cond = hash_find_n (arm_cond_hsh, affix, 2);
14581 assert (cond);
14582
14583 inst.cond = cond->value;
14584 return opcode;
14585 }
14586
14587 /* Cannot have a conditional suffix on a mnemonic of less than two
14588 characters. */
14589 if (end - base < 3)
14590 return 0;
14591
14592 /* Look for suffixed mnemonic. */
14593 affix = end - 2;
14594 cond = hash_find_n (arm_cond_hsh, affix, 2);
14595 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14596 if (opcode && cond)
14597 {
14598 /* step CE */
14599 switch (opcode->tag)
14600 {
14601 case OT_cinfix3_legacy:
14602 /* Ignore conditional suffixes matched on infix only mnemonics. */
14603 break;
14604
14605 case OT_cinfix3:
14606 case OT_cinfix3_deprecated:
14607 case OT_odd_infix_unc:
14608 if (!unified_syntax)
14609 return 0;
14610 /* else fall through */
14611
14612 case OT_csuffix:
14613 case OT_csuffixF:
14614 case OT_csuf_or_in3:
14615 inst.cond = cond->value;
14616 return opcode;
14617
14618 case OT_unconditional:
14619 case OT_unconditionalF:
14620 if (thumb_mode)
14621 {
14622 inst.cond = cond->value;
14623 }
14624 else
14625 {
14626 /* delayed diagnostic */
14627 inst.error = BAD_COND;
14628 inst.cond = COND_ALWAYS;
14629 }
14630 return opcode;
14631
14632 default:
14633 return 0;
14634 }
14635 }
14636
14637 /* Cannot have a usual-position infix on a mnemonic of less than
14638 six characters (five would be a suffix). */
14639 if (end - base < 6)
14640 return 0;
14641
14642 /* Look for infixed mnemonic in the usual position. */
14643 affix = base + 3;
14644 cond = hash_find_n (arm_cond_hsh, affix, 2);
14645 if (!cond)
14646 return 0;
14647
14648 memcpy (save, affix, 2);
14649 memmove (affix, affix + 2, (end - affix) - 2);
14650 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14651 memmove (affix + 2, affix, (end - affix) - 2);
14652 memcpy (affix, save, 2);
14653
14654 if (opcode
14655 && (opcode->tag == OT_cinfix3
14656 || opcode->tag == OT_cinfix3_deprecated
14657 || opcode->tag == OT_csuf_or_in3
14658 || opcode->tag == OT_cinfix3_legacy))
14659 {
14660 /* step CM */
14661 if (warn_on_deprecated && unified_syntax
14662 && (opcode->tag == OT_cinfix3
14663 || opcode->tag == OT_cinfix3_deprecated))
14664 as_warn (_("conditional infixes are deprecated in unified syntax"));
14665
14666 inst.cond = cond->value;
14667 return opcode;
14668 }
14669
14670 return 0;
14671 }
14672
14673 void
14674 md_assemble (char *str)
14675 {
14676 char *p = str;
14677 const struct asm_opcode * opcode;
14678
14679 /* Align the previous label if needed. */
14680 if (last_label_seen != NULL)
14681 {
14682 symbol_set_frag (last_label_seen, frag_now);
14683 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14684 S_SET_SEGMENT (last_label_seen, now_seg);
14685 }
14686
14687 memset (&inst, '\0', sizeof (inst));
14688 inst.reloc.type = BFD_RELOC_UNUSED;
14689
14690 opcode = opcode_lookup (&p);
14691 if (!opcode)
14692 {
14693 /* It wasn't an instruction, but it might be a register alias of
14694 the form alias .req reg, or a Neon .dn/.qn directive. */
14695 if (!create_register_alias (str, p)
14696 && !create_neon_reg_alias (str, p))
14697 as_bad (_("bad instruction `%s'"), str);
14698
14699 return;
14700 }
14701
14702 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
14703 as_warn (_("s suffix on comparison instruction is deprecated"));
14704
14705 /* The value which unconditional instructions should have in place of the
14706 condition field. */
14707 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14708
14709 if (thumb_mode)
14710 {
14711 arm_feature_set variant;
14712
14713 variant = cpu_variant;
14714 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14715 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14716 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14717 /* Check that this instruction is supported for this CPU. */
14718 if (!opcode->tvariant
14719 || (thumb_mode == 1
14720 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14721 {
14722 as_bad (_("selected processor does not support `%s'"), str);
14723 return;
14724 }
14725 if (inst.cond != COND_ALWAYS && !unified_syntax
14726 && opcode->tencode != do_t_branch)
14727 {
14728 as_bad (_("Thumb does not support conditional execution"));
14729 return;
14730 }
14731
14732 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14733 {
14734 /* Implicit require narrow instructions on Thumb-1. This avoids
14735 relaxation accidentally introducing Thumb-2 instructions. */
14736 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14737 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14738 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
14739 inst.size_req = 2;
14740 }
14741
14742 /* Check conditional suffixes. */
14743 if (current_it_mask)
14744 {
14745 int cond;
14746 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14747 current_it_mask <<= 1;
14748 current_it_mask &= 0x1f;
14749 /* The BKPT instruction is unconditional even in an IT block. */
14750 if (!inst.error
14751 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14752 {
14753 as_bad (_("incorrect condition in IT block"));
14754 return;
14755 }
14756 }
14757 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14758 {
14759 as_bad (_("thumb conditional instruction not in IT block"));
14760 return;
14761 }
14762
14763 mapping_state (MAP_THUMB);
14764 inst.instruction = opcode->tvalue;
14765
14766 if (!parse_operands (p, opcode->operands))
14767 opcode->tencode ();
14768
14769 /* Clear current_it_mask at the end of an IT block. */
14770 if (current_it_mask == 0x10)
14771 current_it_mask = 0;
14772
14773 if (!(inst.error || inst.relax))
14774 {
14775 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14776 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14777 if (inst.size_req && inst.size_req != inst.size)
14778 {
14779 as_bad (_("cannot honor width suffix -- `%s'"), str);
14780 return;
14781 }
14782 }
14783
14784 /* Something has gone badly wrong if we try to relax a fixed size
14785 instruction. */
14786 assert (inst.size_req == 0 || !inst.relax);
14787
14788 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14789 *opcode->tvariant);
14790 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14791 set those bits when Thumb-2 32-bit instructions are seen. ie.
14792 anything other than bl/blx and v6-M instructions.
14793 This is overly pessimistic for relaxable instructions. */
14794 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14795 || inst.relax)
14796 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
14797 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
14798 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14799 arm_ext_v6t2);
14800 }
14801 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14802 {
14803 bfd_boolean is_bx;
14804
14805 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14806 is_bx = (opcode->aencode == do_bx);
14807
14808 /* Check that this instruction is supported for this CPU. */
14809 if (!(is_bx && fix_v4bx)
14810 && !(opcode->avariant &&
14811 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
14812 {
14813 as_bad (_("selected processor does not support `%s'"), str);
14814 return;
14815 }
14816 if (inst.size_req)
14817 {
14818 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14819 return;
14820 }
14821
14822 mapping_state (MAP_ARM);
14823 inst.instruction = opcode->avalue;
14824 if (opcode->tag == OT_unconditionalF)
14825 inst.instruction |= 0xF << 28;
14826 else
14827 inst.instruction |= inst.cond << 28;
14828 inst.size = INSN_SIZE;
14829 if (!parse_operands (p, opcode->operands))
14830 opcode->aencode ();
14831 /* Arm mode bx is marked as both v4T and v5 because it's still required
14832 on a hypothetical non-thumb v5 core. */
14833 if (is_bx)
14834 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14835 else
14836 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14837 *opcode->avariant);
14838 }
14839 else
14840 {
14841 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14842 "-- `%s'"), str);
14843 return;
14844 }
14845 output_inst (str);
14846 }
14847
14848 /* Various frobbings of labels and their addresses. */
14849
14850 void
14851 arm_start_line_hook (void)
14852 {
14853 last_label_seen = NULL;
14854 }
14855
14856 void
14857 arm_frob_label (symbolS * sym)
14858 {
14859 last_label_seen = sym;
14860
14861 ARM_SET_THUMB (sym, thumb_mode);
14862
14863 #if defined OBJ_COFF || defined OBJ_ELF
14864 ARM_SET_INTERWORK (sym, support_interwork);
14865 #endif
14866
14867 /* Note - do not allow local symbols (.Lxxx) to be labelled
14868 as Thumb functions. This is because these labels, whilst
14869 they exist inside Thumb code, are not the entry points for
14870 possible ARM->Thumb calls. Also, these labels can be used
14871 as part of a computed goto or switch statement. eg gcc
14872 can generate code that looks like this:
14873
14874 ldr r2, [pc, .Laaa]
14875 lsl r3, r3, #2
14876 ldr r2, [r3, r2]
14877 mov pc, r2
14878
14879 .Lbbb: .word .Lxxx
14880 .Lccc: .word .Lyyy
14881 ..etc...
14882 .Laaa: .word Lbbb
14883
14884 The first instruction loads the address of the jump table.
14885 The second instruction converts a table index into a byte offset.
14886 The third instruction gets the jump address out of the table.
14887 The fourth instruction performs the jump.
14888
14889 If the address stored at .Laaa is that of a symbol which has the
14890 Thumb_Func bit set, then the linker will arrange for this address
14891 to have the bottom bit set, which in turn would mean that the
14892 address computation performed by the third instruction would end
14893 up with the bottom bit set. Since the ARM is capable of unaligned
14894 word loads, the instruction would then load the incorrect address
14895 out of the jump table, and chaos would ensue. */
14896 if (label_is_thumb_function_name
14897 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14898 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14899 {
14900 /* When the address of a Thumb function is taken the bottom
14901 bit of that address should be set. This will allow
14902 interworking between Arm and Thumb functions to work
14903 correctly. */
14904
14905 THUMB_SET_FUNC (sym, 1);
14906
14907 label_is_thumb_function_name = FALSE;
14908 }
14909
14910 dwarf2_emit_label (sym);
14911 }
14912
14913 int
14914 arm_data_in_code (void)
14915 {
14916 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14917 {
14918 *input_line_pointer = '/';
14919 input_line_pointer += 5;
14920 *input_line_pointer = 0;
14921 return 1;
14922 }
14923
14924 return 0;
14925 }
14926
14927 char *
14928 arm_canonicalize_symbol_name (char * name)
14929 {
14930 int len;
14931
14932 if (thumb_mode && (len = strlen (name)) > 5
14933 && streq (name + len - 5, "/data"))
14934 *(name + len - 5) = 0;
14935
14936 return name;
14937 }
14938 \f
14939 /* Table of all register names defined by default. The user can
14940 define additional names with .req. Note that all register names
14941 should appear in both upper and lowercase variants. Some registers
14942 also have mixed-case names. */
14943
14944 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14945 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14946 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14947 #define REGSET(p,t) \
14948 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14949 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14950 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14951 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14952 #define REGSETH(p,t) \
14953 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14954 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14955 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14956 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14957 #define REGSET2(p,t) \
14958 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14959 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14960 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14961 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14962
14963 static const struct reg_entry reg_names[] =
14964 {
14965 /* ARM integer registers. */
14966 REGSET(r, RN), REGSET(R, RN),
14967
14968 /* ATPCS synonyms. */
14969 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14970 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14971 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14972
14973 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14974 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14975 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14976
14977 /* Well-known aliases. */
14978 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14979 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14980
14981 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14982 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14983
14984 /* Coprocessor numbers. */
14985 REGSET(p, CP), REGSET(P, CP),
14986
14987 /* Coprocessor register numbers. The "cr" variants are for backward
14988 compatibility. */
14989 REGSET(c, CN), REGSET(C, CN),
14990 REGSET(cr, CN), REGSET(CR, CN),
14991
14992 /* FPA registers. */
14993 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14994 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14995
14996 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14997 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14998
14999 /* VFP SP registers. */
15000 REGSET(s,VFS), REGSET(S,VFS),
15001 REGSETH(s,VFS), REGSETH(S,VFS),
15002
15003 /* VFP DP Registers. */
15004 REGSET(d,VFD), REGSET(D,VFD),
15005 /* Extra Neon DP registers. */
15006 REGSETH(d,VFD), REGSETH(D,VFD),
15007
15008 /* Neon QP registers. */
15009 REGSET2(q,NQ), REGSET2(Q,NQ),
15010
15011 /* VFP control registers. */
15012 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15013 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15014 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15015 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15016 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15017 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15018
15019 /* Maverick DSP coprocessor registers. */
15020 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15021 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15022
15023 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15024 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15025 REGDEF(dspsc,0,DSPSC),
15026
15027 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15028 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15029 REGDEF(DSPSC,0,DSPSC),
15030
15031 /* iWMMXt data registers - p0, c0-15. */
15032 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15033
15034 /* iWMMXt control registers - p1, c0-3. */
15035 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15036 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15037 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15038 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15039
15040 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15041 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15042 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15043 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15044 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15045
15046 /* XScale accumulator registers. */
15047 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15048 };
15049 #undef REGDEF
15050 #undef REGNUM
15051 #undef REGSET
15052
15053 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15054 within psr_required_here. */
15055 static const struct asm_psr psrs[] =
15056 {
15057 /* Backward compatibility notation. Note that "all" is no longer
15058 truly all possible PSR bits. */
15059 {"all", PSR_c | PSR_f},
15060 {"flg", PSR_f},
15061 {"ctl", PSR_c},
15062
15063 /* Individual flags. */
15064 {"f", PSR_f},
15065 {"c", PSR_c},
15066 {"x", PSR_x},
15067 {"s", PSR_s},
15068 /* Combinations of flags. */
15069 {"fs", PSR_f | PSR_s},
15070 {"fx", PSR_f | PSR_x},
15071 {"fc", PSR_f | PSR_c},
15072 {"sf", PSR_s | PSR_f},
15073 {"sx", PSR_s | PSR_x},
15074 {"sc", PSR_s | PSR_c},
15075 {"xf", PSR_x | PSR_f},
15076 {"xs", PSR_x | PSR_s},
15077 {"xc", PSR_x | PSR_c},
15078 {"cf", PSR_c | PSR_f},
15079 {"cs", PSR_c | PSR_s},
15080 {"cx", PSR_c | PSR_x},
15081 {"fsx", PSR_f | PSR_s | PSR_x},
15082 {"fsc", PSR_f | PSR_s | PSR_c},
15083 {"fxs", PSR_f | PSR_x | PSR_s},
15084 {"fxc", PSR_f | PSR_x | PSR_c},
15085 {"fcs", PSR_f | PSR_c | PSR_s},
15086 {"fcx", PSR_f | PSR_c | PSR_x},
15087 {"sfx", PSR_s | PSR_f | PSR_x},
15088 {"sfc", PSR_s | PSR_f | PSR_c},
15089 {"sxf", PSR_s | PSR_x | PSR_f},
15090 {"sxc", PSR_s | PSR_x | PSR_c},
15091 {"scf", PSR_s | PSR_c | PSR_f},
15092 {"scx", PSR_s | PSR_c | PSR_x},
15093 {"xfs", PSR_x | PSR_f | PSR_s},
15094 {"xfc", PSR_x | PSR_f | PSR_c},
15095 {"xsf", PSR_x | PSR_s | PSR_f},
15096 {"xsc", PSR_x | PSR_s | PSR_c},
15097 {"xcf", PSR_x | PSR_c | PSR_f},
15098 {"xcs", PSR_x | PSR_c | PSR_s},
15099 {"cfs", PSR_c | PSR_f | PSR_s},
15100 {"cfx", PSR_c | PSR_f | PSR_x},
15101 {"csf", PSR_c | PSR_s | PSR_f},
15102 {"csx", PSR_c | PSR_s | PSR_x},
15103 {"cxf", PSR_c | PSR_x | PSR_f},
15104 {"cxs", PSR_c | PSR_x | PSR_s},
15105 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15106 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15107 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15108 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15109 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15110 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15111 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15112 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15113 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15114 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15115 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15116 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15117 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15118 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15119 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15120 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15121 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15122 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15123 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15124 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15125 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15126 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15127 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15128 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15129 };
15130
15131 /* Table of V7M psr names. */
15132 static const struct asm_psr v7m_psrs[] =
15133 {
15134 {"apsr", 0 }, {"APSR", 0 },
15135 {"iapsr", 1 }, {"IAPSR", 1 },
15136 {"eapsr", 2 }, {"EAPSR", 2 },
15137 {"psr", 3 }, {"PSR", 3 },
15138 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15139 {"ipsr", 5 }, {"IPSR", 5 },
15140 {"epsr", 6 }, {"EPSR", 6 },
15141 {"iepsr", 7 }, {"IEPSR", 7 },
15142 {"msp", 8 }, {"MSP", 8 },
15143 {"psp", 9 }, {"PSP", 9 },
15144 {"primask", 16}, {"PRIMASK", 16},
15145 {"basepri", 17}, {"BASEPRI", 17},
15146 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15147 {"faultmask", 19}, {"FAULTMASK", 19},
15148 {"control", 20}, {"CONTROL", 20}
15149 };
15150
15151 /* Table of all shift-in-operand names. */
15152 static const struct asm_shift_name shift_names [] =
15153 {
15154 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15155 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15156 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15157 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15158 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15159 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15160 };
15161
15162 /* Table of all explicit relocation names. */
15163 #ifdef OBJ_ELF
15164 static struct reloc_entry reloc_names[] =
15165 {
15166 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15167 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15168 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15169 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15170 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15171 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15172 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15173 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15174 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15175 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15176 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15177 };
15178 #endif
15179
15180 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
15181 static const struct asm_cond conds[] =
15182 {
15183 {"eq", 0x0},
15184 {"ne", 0x1},
15185 {"cs", 0x2}, {"hs", 0x2},
15186 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15187 {"mi", 0x4},
15188 {"pl", 0x5},
15189 {"vs", 0x6},
15190 {"vc", 0x7},
15191 {"hi", 0x8},
15192 {"ls", 0x9},
15193 {"ge", 0xa},
15194 {"lt", 0xb},
15195 {"gt", 0xc},
15196 {"le", 0xd},
15197 {"al", 0xe}
15198 };
15199
15200 static struct asm_barrier_opt barrier_opt_names[] =
15201 {
15202 { "sy", 0xf },
15203 { "un", 0x7 },
15204 { "st", 0xe },
15205 { "unst", 0x6 }
15206 };
15207
15208 /* Table of ARM-format instructions. */
15209
15210 /* Macros for gluing together operand strings. N.B. In all cases
15211 other than OPS0, the trailing OP_stop comes from default
15212 zero-initialization of the unspecified elements of the array. */
15213 #define OPS0() { OP_stop, }
15214 #define OPS1(a) { OP_##a, }
15215 #define OPS2(a,b) { OP_##a,OP_##b, }
15216 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15217 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15218 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15219 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15220
15221 /* These macros abstract out the exact format of the mnemonic table and
15222 save some repeated characters. */
15223
15224 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
15225 #define TxCE(mnem, op, top, nops, ops, ae, te) \
15226 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
15227 THUMB_VARIANT, do_##ae, do_##te }
15228
15229 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
15230 a T_MNEM_xyz enumerator. */
15231 #define TCE(mnem, aop, top, nops, ops, ae, te) \
15232 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
15233 #define tCE(mnem, aop, top, nops, ops, ae, te) \
15234 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15235
15236 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
15237 infix after the third character. */
15238 #define TxC3(mnem, op, top, nops, ops, ae, te) \
15239 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
15240 THUMB_VARIANT, do_##ae, do_##te }
15241 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
15242 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
15243 THUMB_VARIANT, do_##ae, do_##te }
15244 #define TC3(mnem, aop, top, nops, ops, ae, te) \
15245 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
15246 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
15247 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
15248 #define tC3(mnem, aop, top, nops, ops, ae, te) \
15249 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15250 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
15251 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15252
15253 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
15254 appear in the condition table. */
15255 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
15256 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15257 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
15258
15259 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
15260 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
15261 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
15262 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
15263 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
15264 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
15265 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
15266 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
15267 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
15268 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
15269 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
15270 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
15271 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
15272 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
15273 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
15274 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
15275 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
15276 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
15277 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
15278 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
15279
15280 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
15281 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
15282 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
15283 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
15284
15285 /* Mnemonic that cannot be conditionalized. The ARM condition-code
15286 field is still 0xE. Many of the Thumb variants can be executed
15287 conditionally, so this is checked separately. */
15288 #define TUE(mnem, op, top, nops, ops, ae, te) \
15289 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
15290 THUMB_VARIANT, do_##ae, do_##te }
15291
15292 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
15293 condition code field. */
15294 #define TUF(mnem, op, top, nops, ops, ae, te) \
15295 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
15296 THUMB_VARIANT, do_##ae, do_##te }
15297
15298 /* ARM-only variants of all the above. */
15299 #define CE(mnem, op, nops, ops, ae) \
15300 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15301
15302 #define C3(mnem, op, nops, ops, ae) \
15303 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15304
15305 /* Legacy mnemonics that always have conditional infix after the third
15306 character. */
15307 #define CL(mnem, op, nops, ops, ae) \
15308 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15309 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15310
15311 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
15312 #define cCE(mnem, op, nops, ops, ae) \
15313 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15314
15315 /* Legacy coprocessor instructions where conditional infix and conditional
15316 suffix are ambiguous. For consistency this includes all FPA instructions,
15317 not just the potentially ambiguous ones. */
15318 #define cCL(mnem, op, nops, ops, ae) \
15319 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15320 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15321
15322 /* Coprocessor, takes either a suffix or a position-3 infix
15323 (for an FPA corner case). */
15324 #define C3E(mnem, op, nops, ops, ae) \
15325 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
15326 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15327
15328 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
15329 { #m1 #m2 #m3, OPS##nops ops, \
15330 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15331 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15332
15333 #define CM(m1, m2, op, nops, ops, ae) \
15334 xCM_(m1, , m2, op, nops, ops, ae), \
15335 xCM_(m1, eq, m2, op, nops, ops, ae), \
15336 xCM_(m1, ne, m2, op, nops, ops, ae), \
15337 xCM_(m1, cs, m2, op, nops, ops, ae), \
15338 xCM_(m1, hs, m2, op, nops, ops, ae), \
15339 xCM_(m1, cc, m2, op, nops, ops, ae), \
15340 xCM_(m1, ul, m2, op, nops, ops, ae), \
15341 xCM_(m1, lo, m2, op, nops, ops, ae), \
15342 xCM_(m1, mi, m2, op, nops, ops, ae), \
15343 xCM_(m1, pl, m2, op, nops, ops, ae), \
15344 xCM_(m1, vs, m2, op, nops, ops, ae), \
15345 xCM_(m1, vc, m2, op, nops, ops, ae), \
15346 xCM_(m1, hi, m2, op, nops, ops, ae), \
15347 xCM_(m1, ls, m2, op, nops, ops, ae), \
15348 xCM_(m1, ge, m2, op, nops, ops, ae), \
15349 xCM_(m1, lt, m2, op, nops, ops, ae), \
15350 xCM_(m1, gt, m2, op, nops, ops, ae), \
15351 xCM_(m1, le, m2, op, nops, ops, ae), \
15352 xCM_(m1, al, m2, op, nops, ops, ae)
15353
15354 #define UE(mnem, op, nops, ops, ae) \
15355 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15356
15357 #define UF(mnem, op, nops, ops, ae) \
15358 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15359
15360 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
15361 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
15362 use the same encoding function for each. */
15363 #define NUF(mnem, op, nops, ops, enc) \
15364 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
15365 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15366
15367 /* Neon data processing, version which indirects through neon_enc_tab for
15368 the various overloaded versions of opcodes. */
15369 #define nUF(mnem, op, nops, ops, enc) \
15370 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
15371 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15372
15373 /* Neon insn with conditional suffix for the ARM version, non-overloaded
15374 version. */
15375 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
15376 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
15377 THUMB_VARIANT, do_##enc, do_##enc }
15378
15379 #define NCE(mnem, op, nops, ops, enc) \
15380 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15381
15382 #define NCEF(mnem, op, nops, ops, enc) \
15383 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15384
15385 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
15386 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
15387 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
15388 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15389
15390 #define nCE(mnem, op, nops, ops, enc) \
15391 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15392
15393 #define nCEF(mnem, op, nops, ops, enc) \
15394 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15395
15396 #define do_0 0
15397
15398 /* Thumb-only, unconditional. */
15399 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
15400
15401 static const struct asm_opcode insns[] =
15402 {
15403 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
15404 #define THUMB_VARIANT &arm_ext_v4t
15405 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
15406 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
15407 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15408 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15409 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15410 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
15411 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15412 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
15413 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15414 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15415 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15416 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15417 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15418 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15419 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15420 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15421
15422 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15423 for setting PSR flag bits. They are obsolete in V6 and do not
15424 have Thumb equivalents. */
15425 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15426 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15427 CL(tstp, 110f000, 2, (RR, SH), cmp),
15428 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15429 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15430 CL(cmpp, 150f000, 2, (RR, SH), cmp),
15431 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15432 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15433 CL(cmnp, 170f000, 2, (RR, SH), cmp),
15434
15435 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15436 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15437 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15438 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15439
15440 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15441 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15442 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15443 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15444
15445 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15446 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15447 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15448 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15449 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15450 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15451
15452 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
15453 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
15454 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
15455 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
15456
15457 /* Pseudo ops. */
15458 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
15459 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15460 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
15461
15462 /* Thumb-compatibility pseudo ops. */
15463 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15464 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15465 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15466 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15467 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
15468 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
15469 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15470 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15471 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15472 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15473 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15474 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15475
15476 /* These may simplify to neg. */
15477 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15478 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15479
15480 #undef THUMB_VARIANT
15481 #define THUMB_VARIANT &arm_ext_v6
15482 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
15483
15484 /* V1 instructions with no Thumb analogue prior to V6T2. */
15485 #undef THUMB_VARIANT
15486 #define THUMB_VARIANT &arm_ext_v6t2
15487 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15488 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15489 CL(teqp, 130f000, 2, (RR, SH), cmp),
15490
15491 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
15492 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
15493 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
15494 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
15495
15496 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15497 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15498
15499 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15500 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15501
15502 /* V1 instructions with no Thumb analogue at all. */
15503 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15504 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15505
15506 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15507 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15508 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15509 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15510 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15511 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15512 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15513 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15514
15515 #undef ARM_VARIANT
15516 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
15517 #undef THUMB_VARIANT
15518 #define THUMB_VARIANT &arm_ext_v4t
15519 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15520 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15521
15522 #undef THUMB_VARIANT
15523 #define THUMB_VARIANT &arm_ext_v6t2
15524 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15525 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15526
15527 /* Generic coprocessor instructions. */
15528 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15529 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15530 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15531 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15532 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15533 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15534 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15535
15536 #undef ARM_VARIANT
15537 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15538 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15539 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15540
15541 #undef ARM_VARIANT
15542 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15543 #undef THUMB_VARIANT
15544 #define THUMB_VARIANT &arm_ext_msr
15545 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15546 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15547
15548 #undef ARM_VARIANT
15549 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15550 #undef THUMB_VARIANT
15551 #define THUMB_VARIANT &arm_ext_v6t2
15552 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15553 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15554 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15555 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15556 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15557 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15558 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15559 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15560
15561 #undef ARM_VARIANT
15562 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15563 #undef THUMB_VARIANT
15564 #define THUMB_VARIANT &arm_ext_v4t
15565 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15566 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15567 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15568 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15569 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15570 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15571
15572 #undef ARM_VARIANT
15573 #define ARM_VARIANT &arm_ext_v4t_5
15574 /* ARM Architecture 4T. */
15575 /* Note: bx (and blx) are required on V5, even if the processor does
15576 not support Thumb. */
15577 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15578
15579 #undef ARM_VARIANT
15580 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15581 #undef THUMB_VARIANT
15582 #define THUMB_VARIANT &arm_ext_v5t
15583 /* Note: blx has 2 variants; the .value coded here is for
15584 BLX(2). Only this variant has conditional execution. */
15585 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15586 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15587
15588 #undef THUMB_VARIANT
15589 #define THUMB_VARIANT &arm_ext_v6t2
15590 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15591 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15592 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15593 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15594 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15595 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15596 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15597 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15598
15599 #undef ARM_VARIANT
15600 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15601 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15602 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15603 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15604 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15605
15606 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15607 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15608
15609 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15610 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15611 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15612 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15613
15614 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15615 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15616 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15617 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15618
15619 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15620 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15621
15622 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15623 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15624 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15625 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15626
15627 #undef ARM_VARIANT
15628 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15629 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15630 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15631 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15632
15633 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15634 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15635
15636 #undef ARM_VARIANT
15637 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15638 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15639
15640 #undef ARM_VARIANT
15641 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15642 #undef THUMB_VARIANT
15643 #define THUMB_VARIANT &arm_ext_v6
15644 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15645 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15646 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15647 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15648 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15649 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15650 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15651 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15652 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15653 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15654
15655 #undef THUMB_VARIANT
15656 #define THUMB_VARIANT &arm_ext_v6t2
15657 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15658 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15659 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15660 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15661
15662 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15663 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15664
15665 /* ARM V6 not included in V7M (eg. integer SIMD). */
15666 #undef THUMB_VARIANT
15667 #define THUMB_VARIANT &arm_ext_v6_notm
15668 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15669 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15670 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15671 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15672 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15673 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15674 /* Old name for QASX. */
15675 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15676 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15677 /* Old name for QSAX. */
15678 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15679 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15680 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15681 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15682 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15683 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15684 /* Old name for SASX. */
15685 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15686 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15687 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15688 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15689 /* Old name for SHASX. */
15690 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15691 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15692 /* Old name for SHSAX. */
15693 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15694 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15695 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15696 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15697 /* Old name for SSAX. */
15698 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15699 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15700 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15701 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15702 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15703 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15704 /* Old name for UASX. */
15705 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15706 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15707 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15708 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15709 /* Old name for UHASX. */
15710 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15711 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15712 /* Old name for UHSAX. */
15713 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15714 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15715 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15716 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15717 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15718 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15719 /* Old name for UQASX. */
15720 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15721 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15722 /* Old name for UQSAX. */
15723 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15724 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15725 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15726 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15727 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15728 /* Old name for USAX. */
15729 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15730 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15731 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15732 UF(rfeib, 9900a00, 1, (RRw), rfe),
15733 UF(rfeda, 8100a00, 1, (RRw), rfe),
15734 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15735 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15736 UF(rfefa, 9900a00, 1, (RRw), rfe),
15737 UF(rfeea, 8100a00, 1, (RRw), rfe),
15738 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15739 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15740 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15741 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15742 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15743 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15744 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15745 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15746 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15747 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15748 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15749 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15750 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15751 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15752 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15753 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15754 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15755 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15756 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15757 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15758 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15759 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15760 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15761 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15762 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15763 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15764 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15765 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15766 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15767 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15768 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15769 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15770 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15771 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15772 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15773 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15774 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15775
15776 #undef ARM_VARIANT
15777 #define ARM_VARIANT &arm_ext_v6k
15778 #undef THUMB_VARIANT
15779 #define THUMB_VARIANT &arm_ext_v6k
15780 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15781 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15782 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15783 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15784
15785 #undef THUMB_VARIANT
15786 #define THUMB_VARIANT &arm_ext_v6_notm
15787 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15788 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15789
15790 #undef THUMB_VARIANT
15791 #define THUMB_VARIANT &arm_ext_v6t2
15792 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15793 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15794 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15795 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15796 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15797
15798 #undef ARM_VARIANT
15799 #define ARM_VARIANT &arm_ext_v6z
15800 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15801
15802 #undef ARM_VARIANT
15803 #define ARM_VARIANT &arm_ext_v6t2
15804 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15805 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15806 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15807 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15808
15809 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15810 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15811 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15812 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15813
15814 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15815 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15816 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15817 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15818
15819 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15820 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15821 /* ARM does not really have an IT instruction, so always allow it. */
15822 #undef ARM_VARIANT
15823 #define ARM_VARIANT &arm_ext_v1
15824 TUE(it, 0, bf08, 1, (COND), it, t_it),
15825 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15826 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15827 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15828 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15829 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15830 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15831 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15832 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15833 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15834 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15835 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15836 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15837 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15838 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15839 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
15840 TC3(rrx, 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
15841 TC3(rrxs, 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
15842
15843 /* Thumb2 only instructions. */
15844 #undef ARM_VARIANT
15845 #define ARM_VARIANT NULL
15846
15847 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15848 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15849 TCE(orn, 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
15850 TCE(orns, 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
15851 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15852 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15853
15854 /* Thumb-2 hardware division instructions (R and M profiles only). */
15855 #undef THUMB_VARIANT
15856 #define THUMB_VARIANT &arm_ext_div
15857 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15858 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15859
15860 /* ARM V6M/V7 instructions. */
15861 #undef ARM_VARIANT
15862 #define ARM_VARIANT &arm_ext_barrier
15863 #undef THUMB_VARIANT
15864 #define THUMB_VARIANT &arm_ext_barrier
15865 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15866 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15867 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15868
15869 /* ARM V7 instructions. */
15870 #undef ARM_VARIANT
15871 #define ARM_VARIANT &arm_ext_v7
15872 #undef THUMB_VARIANT
15873 #define THUMB_VARIANT &arm_ext_v7
15874 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15875 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15876
15877 #undef ARM_VARIANT
15878 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15879 cCE(wfs, e200110, 1, (RR), rd),
15880 cCE(rfs, e300110, 1, (RR), rd),
15881 cCE(wfc, e400110, 1, (RR), rd),
15882 cCE(rfc, e500110, 1, (RR), rd),
15883
15884 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15885 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15886 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15887 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15888
15889 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15890 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15891 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15892 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15893
15894 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15895 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15896 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15897 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15898 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15899 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15900 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15901 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15902 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15903 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15904 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15905 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15906
15907 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15908 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15909 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15910 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15911 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15912 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15913 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15914 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15915 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15916 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15917 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15918 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15919
15920 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15921 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15922 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15923 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15924 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15925 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15926 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15927 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15928 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15929 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15930 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15931 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15932
15933 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15934 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15935 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15936 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15937 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15938 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15939 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15940 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15941 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15942 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15943 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15944 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15945
15946 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15947 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15948 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15949 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15950 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15951 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15952 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15953 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15954 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15955 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15956 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15957 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15958
15959 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15960 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15961 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15962 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15963 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15964 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15965 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15966 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15967 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15968 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15969 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15970 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15971
15972 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15973 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15974 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15975 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15976 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15977 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15978 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15979 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15980 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15981 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15982 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15983 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15984
15985 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15986 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15987 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15988 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15989 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15990 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15991 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15992 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15993 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15994 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15995 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15996 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15997
15998 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15999 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
16000 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
16001 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
16002 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
16003 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
16004 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
16005 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
16006 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
16007 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
16008 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
16009 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
16010
16011 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
16012 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
16013 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
16014 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
16015 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
16016 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
16017 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
16018 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
16019 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
16020 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
16021 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
16022 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
16023
16024 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
16025 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
16026 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
16027 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
16028 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
16029 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
16030 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
16031 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
16032 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
16033 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
16034 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
16035 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
16036
16037 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
16038 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
16039 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
16040 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
16041 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
16042 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
16043 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
16044 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
16045 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
16046 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
16047 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
16048 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
16049
16050 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
16051 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
16052 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
16053 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
16054 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
16055 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
16056 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
16057 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
16058 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
16059 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
16060 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
16061 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
16062
16063 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
16064 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
16065 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
16066 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
16067 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
16068 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
16069 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
16070 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
16071 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
16072 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
16073 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
16074 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
16075
16076 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
16077 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
16078 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
16079 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
16080 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
16081 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
16082 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
16083 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
16084 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
16085 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
16086 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
16087 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
16088
16089 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
16090 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
16091 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
16092 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
16093 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
16094 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
16095 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
16096 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
16097 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
16098 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
16099 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
16100 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
16101
16102 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16103 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16104 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16105 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16106 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16107 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16108 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16109 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16110 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16111 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16112 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16113 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16114
16115 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16116 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16117 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16118 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16119 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16120 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16121 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16122 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16123 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16124 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16125 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16126 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16127
16128 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16129 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16130 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16131 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16132 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16133 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16134 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16135 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16136 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16137 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16138 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16139 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16140
16141 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16142 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16143 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16144 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16145 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16146 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16147 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16148 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16149 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16150 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16151 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16152 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16153
16154 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16155 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16156 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16157 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16158 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16159 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16160 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16161 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16162 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16163 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16164 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16165 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16166
16167 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16168 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16169 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16170 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16171 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16172 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16173 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16174 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16175 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16176 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16177 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16178 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16179
16180 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16181 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16182 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16183 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16184 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16185 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16186 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16187 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16188 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16189 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16190 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16191 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16192
16193 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
16194 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
16195 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
16196 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
16197 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
16198 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16199 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16200 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16201 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
16202 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
16203 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
16204 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
16205
16206 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
16207 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
16208 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
16209 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
16210 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
16211 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16212 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16213 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16214 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
16215 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
16216 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
16217 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
16218
16219 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
16220 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
16221 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
16222 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
16223 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
16224 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16225 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16226 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16227 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
16228 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
16229 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
16230 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
16231
16232 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16233 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16234 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16235 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16236 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16237 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16238 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16239 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16240 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16241 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16242 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16243 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16244
16245 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16246 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16247 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16248 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16249 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16250 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16251 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16252 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16253 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16254 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16255 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16256 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16257
16258 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16259 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16260 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16261 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16262 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16263 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16264 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16265 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16266 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16267 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16268 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16269 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16270
16271 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
16272 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
16273 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
16274 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
16275
16276 cCL(flts, e000110, 2, (RF, RR), rn_rd),
16277 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
16278 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
16279 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
16280 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
16281 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
16282 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
16283 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
16284 cCL(flte, e080110, 2, (RF, RR), rn_rd),
16285 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
16286 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
16287 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
16288
16289 /* The implementation of the FIX instruction is broken on some
16290 assemblers, in that it accepts a precision specifier as well as a
16291 rounding specifier, despite the fact that this is meaningless.
16292 To be more compatible, we accept it as well, though of course it
16293 does not set any bits. */
16294 cCE(fix, e100110, 2, (RR, RF), rd_rm),
16295 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
16296 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
16297 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
16298 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
16299 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
16300 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
16301 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
16302 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
16303 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
16304 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
16305 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
16306 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
16307
16308 /* Instructions that were new with the real FPA, call them V2. */
16309 #undef ARM_VARIANT
16310 #define ARM_VARIANT &fpu_fpa_ext_v2
16311 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16312 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16313 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16314 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16315 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16316 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16317
16318 #undef ARM_VARIANT
16319 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
16320 /* Moves and type conversions. */
16321 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
16322 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
16323 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
16324 cCE(fmstat, ef1fa10, 0, (), noargs),
16325 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
16326 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
16327 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
16328 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16329 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
16330 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16331 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
16332 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
16333
16334 /* Memory operations. */
16335 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16336 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16337 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16338 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16339 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16340 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16341 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16342 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16343 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16344 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16345 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16346 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16347 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16348 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16349 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16350 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16351 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16352 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16353
16354 /* Monadic operations. */
16355 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
16356 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
16357 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
16358
16359 /* Dyadic operations. */
16360 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16361 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16362 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16363 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16364 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16365 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16366 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16367 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16368 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16369
16370 /* Comparisons. */
16371 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
16372 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
16373 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
16374 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
16375
16376 #undef ARM_VARIANT
16377 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
16378 /* Moves and type conversions. */
16379 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16380 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16381 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16382 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
16383 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
16384 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
16385 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
16386 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16387 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
16388 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16389 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16390 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16391 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16392
16393 /* Memory operations. */
16394 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16395 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16396 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16397 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16398 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16399 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16400 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16401 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16402 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16403 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16404
16405 /* Monadic operations. */
16406 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16407 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16408 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16409
16410 /* Dyadic operations. */
16411 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16412 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16413 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16414 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16415 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16416 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16417 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16418 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16419 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16420
16421 /* Comparisons. */
16422 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16423 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
16424 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16425 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
16426
16427 #undef ARM_VARIANT
16428 #define ARM_VARIANT &fpu_vfp_ext_v2
16429 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
16430 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
16431 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
16432 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
16433
16434 /* Instructions which may belong to either the Neon or VFP instruction sets.
16435 Individual encoder functions perform additional architecture checks. */
16436 #undef ARM_VARIANT
16437 #define ARM_VARIANT &fpu_vfp_ext_v1xd
16438 #undef THUMB_VARIANT
16439 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
16440 /* These mnemonics are unique to VFP. */
16441 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16442 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16443 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16444 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16445 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16446 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16447 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16448 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16449 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16450 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16451
16452 /* Mnemonics shared by Neon and VFP. */
16453 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16454 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16455 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16456
16457 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16458 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16459
16460 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16461 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16462
16463 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16464 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16465 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16466 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16467 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16468 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16469 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16470 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16471
16472 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
16473 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16474 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
16475
16476
16477 /* NOTE: All VMOV encoding is special-cased! */
16478 NCE(vmov, 0, 1, (VMOV), neon_mov),
16479 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16480
16481 #undef THUMB_VARIANT
16482 #define THUMB_VARIANT &fpu_neon_ext_v1
16483 #undef ARM_VARIANT
16484 #define ARM_VARIANT &fpu_neon_ext_v1
16485 /* Data processing with three registers of the same length. */
16486 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16487 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16488 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16489 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16490 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16491 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16492 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16493 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16494 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16495 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16496 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16497 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16498 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16499 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16500 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16501 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16502 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16503 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16504 /* If not immediate, fall back to neon_dyadic_i64_su.
16505 shl_imm should accept I8 I16 I32 I64,
16506 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16507 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16508 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16509 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16510 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16511 /* Logic ops, types optional & ignored. */
16512 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16513 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16514 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16515 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16516 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16517 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16518 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16519 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16520 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16521 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16522 /* Bitfield ops, untyped. */
16523 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16524 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16525 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16526 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16527 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16528 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16529 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16530 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16531 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16532 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16533 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16534 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16535 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16536 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16537 back to neon_dyadic_if_su. */
16538 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16539 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16540 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16541 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16542 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16543 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16544 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16545 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16546 /* Comparison. Type I8 I16 I32 F32. */
16547 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16548 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16549 /* As above, D registers only. */
16550 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16551 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16552 /* Int and float variants, signedness unimportant. */
16553 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16554 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16555 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16556 /* Add/sub take types I8 I16 I32 I64 F32. */
16557 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16558 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16559 /* vtst takes sizes 8, 16, 32. */
16560 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16561 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16562 /* VMUL takes I8 I16 I32 F32 P8. */
16563 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
16564 /* VQD{R}MULH takes S16 S32. */
16565 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16566 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16567 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16568 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16569 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16570 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16571 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16572 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16573 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16574 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16575 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16576 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16577 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16578 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16579 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16580 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16581
16582 /* Two address, int/float. Types S8 S16 S32 F32. */
16583 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16584 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16585
16586 /* Data processing with two registers and a shift amount. */
16587 /* Right shifts, and variants with rounding.
16588 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16589 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16590 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16591 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16592 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16593 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16594 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16595 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16596 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16597 /* Shift and insert. Sizes accepted 8 16 32 64. */
16598 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16599 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16600 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16601 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16602 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16603 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16604 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16605 /* Right shift immediate, saturating & narrowing, with rounding variants.
16606 Types accepted S16 S32 S64 U16 U32 U64. */
16607 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16608 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16609 /* As above, unsigned. Types accepted S16 S32 S64. */
16610 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16611 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16612 /* Right shift narrowing. Types accepted I16 I32 I64. */
16613 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16614 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16615 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16616 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16617 /* CVT with optional immediate for fixed-point variant. */
16618 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16619
16620 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16621 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16622
16623 /* Data processing, three registers of different lengths. */
16624 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16625 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16626 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16627 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16628 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16629 /* If not scalar, fall back to neon_dyadic_long.
16630 Vector types as above, scalar types S16 S32 U16 U32. */
16631 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16632 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16633 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16634 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16635 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16636 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16637 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16638 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16639 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16640 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16641 /* Saturating doubling multiplies. Types S16 S32. */
16642 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16643 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16644 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16645 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16646 S16 S32 U16 U32. */
16647 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16648
16649 /* Extract. Size 8. */
16650 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16651 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16652
16653 /* Two registers, miscellaneous. */
16654 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16655 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16656 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16657 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16658 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16659 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16660 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16661 /* Vector replicate. Sizes 8 16 32. */
16662 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16663 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16664 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16665 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16666 /* VMOVN. Types I16 I32 I64. */
16667 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16668 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16669 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16670 /* VQMOVUN. Types S16 S32 S64. */
16671 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16672 /* VZIP / VUZP. Sizes 8 16 32. */
16673 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16674 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16675 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16676 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16677 /* VQABS / VQNEG. Types S8 S16 S32. */
16678 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16679 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16680 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16681 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16682 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16683 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16684 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16685 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16686 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16687 /* Reciprocal estimates. Types U32 F32. */
16688 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16689 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16690 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16691 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16692 /* VCLS. Types S8 S16 S32. */
16693 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16694 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16695 /* VCLZ. Types I8 I16 I32. */
16696 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16697 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16698 /* VCNT. Size 8. */
16699 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16700 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16701 /* Two address, untyped. */
16702 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16703 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16704 /* VTRN. Sizes 8 16 32. */
16705 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16706 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16707
16708 /* Table lookup. Size 8. */
16709 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16710 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16711
16712 #undef THUMB_VARIANT
16713 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16714 #undef ARM_VARIANT
16715 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16716 /* Neon element/structure load/store. */
16717 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16718 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16719 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16720 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16721 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16722 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16723 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16724 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16725
16726 #undef THUMB_VARIANT
16727 #define THUMB_VARIANT &fpu_vfp_ext_v3
16728 #undef ARM_VARIANT
16729 #define ARM_VARIANT &fpu_vfp_ext_v3
16730 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16731 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16732 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16733 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16734 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16735 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16736 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16737 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16738 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16739 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16740 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16741 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16742 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16743 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16744 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16745 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16746 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16747 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16748
16749 #undef THUMB_VARIANT
16750 #undef ARM_VARIANT
16751 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16752 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16753 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16754 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16755 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16756 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16757 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16758 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16759 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16760
16761 #undef ARM_VARIANT
16762 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16763 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16764 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16765 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16766 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16767 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16768 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16769 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16770 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16771 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16772 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16773 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16774 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16775 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16776 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16777 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16778 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16779 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16780 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16781 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16782 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16783 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16784 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16785 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16786 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16787 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16788 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16789 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16790 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16791 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16792 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16793 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16794 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16795 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16796 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16797 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16798 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16799 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16800 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16801 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16802 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16803 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16804 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16805 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16806 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16807 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16808 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16809 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16810 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16811 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16812 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16813 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16814 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16815 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16816 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16817 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16818 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16819 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16820 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16821 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16822 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16823 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16824 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16825 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16826 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16827 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16828 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16829 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16830 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16831 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16832 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16833 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16834 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16835 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16836 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16837 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16838 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16839 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16840 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16841 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16842 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16843 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16844 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16845 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16846 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16847 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16848 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16849 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16850 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16851 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16852 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16853 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16854 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16855 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16856 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16857 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16858 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16859 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16860 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16861 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16862 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16863 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16864 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16865 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16866 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16867 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16868 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16869 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16870 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16871 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16872 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16873 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16874 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16875 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16876 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16877 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16878 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16879 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16880 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16881 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16882 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16883 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16884 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16885 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16886 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16887 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16888 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16889 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16890 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16891 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16892 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16893 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16894 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16895 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16896 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16897 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16898 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16899 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16900 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16901 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16902 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16903 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16904 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16905 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16906 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16907 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16908 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16909 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16910 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16911 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16912 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16913 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16914 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16915 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16916 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16917 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16918 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16919 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16920 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16921 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16922 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16923 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16924 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16925
16926 #undef ARM_VARIANT
16927 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16928 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16929 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16930 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16931 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16932 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16933 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16934 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16935 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16936 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16937 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16938 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16939 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16940 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16941 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16942 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16943 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16944 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16945 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16946 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16947 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16948 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16949 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16950 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16951 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16952 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16953 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16954 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16955 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16956 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16957 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16958 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16959 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16960 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16961 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16962 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16963 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16964 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16965 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16966 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16967 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16968 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16969 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16970 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16971 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16972 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16973 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16974 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16975 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16976 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16977 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16978 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16979 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16980 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16981 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16982 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16983 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16984 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16985
16986 #undef ARM_VARIANT
16987 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16988 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16989 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16990 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16991 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16992 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16993 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16994 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16995 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16996 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16997 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16998 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16999 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
17000 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
17001 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
17002 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
17003 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
17004 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
17005 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
17006 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
17007 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
17008 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
17009 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
17010 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
17011 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
17012 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
17013 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
17014 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
17015 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
17016 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17017 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
17018 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
17019 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
17020 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
17021 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
17022 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
17023 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
17024 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
17025 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
17026 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
17027 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
17028 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
17029 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
17030 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
17031 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
17032 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17033 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17034 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17035 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17036 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17037 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17038 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
17039 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
17040 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
17041 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
17042 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17043 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17044 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17045 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17046 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17047 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17048 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
17049 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
17050 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
17051 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
17052 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17053 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17054 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17055 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17056 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17057 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17058 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17059 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17060 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17061 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17062 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17063 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17064 };
17065 #undef ARM_VARIANT
17066 #undef THUMB_VARIANT
17067 #undef TCE
17068 #undef TCM
17069 #undef TUE
17070 #undef TUF
17071 #undef TCC
17072 #undef cCE
17073 #undef cCL
17074 #undef C3E
17075 #undef CE
17076 #undef CM
17077 #undef UE
17078 #undef UF
17079 #undef UT
17080 #undef NUF
17081 #undef nUF
17082 #undef NCE
17083 #undef nCE
17084 #undef OPS0
17085 #undef OPS1
17086 #undef OPS2
17087 #undef OPS3
17088 #undef OPS4
17089 #undef OPS5
17090 #undef OPS6
17091 #undef do_0
17092 \f
17093 /* MD interface: bits in the object file. */
17094
17095 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17096 for use in the a.out file, and stores them in the array pointed to by buf.
17097 This knows about the endian-ness of the target machine and does
17098 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17099 2 (short) and 4 (long) Floating numbers are put out as a series of
17100 LITTLENUMS (shorts, here at least). */
17101
17102 void
17103 md_number_to_chars (char * buf, valueT val, int n)
17104 {
17105 if (target_big_endian)
17106 number_to_chars_bigendian (buf, val, n);
17107 else
17108 number_to_chars_littleendian (buf, val, n);
17109 }
17110
17111 static valueT
17112 md_chars_to_number (char * buf, int n)
17113 {
17114 valueT result = 0;
17115 unsigned char * where = (unsigned char *) buf;
17116
17117 if (target_big_endian)
17118 {
17119 while (n--)
17120 {
17121 result <<= 8;
17122 result |= (*where++ & 255);
17123 }
17124 }
17125 else
17126 {
17127 while (n--)
17128 {
17129 result <<= 8;
17130 result |= (where[n] & 255);
17131 }
17132 }
17133
17134 return result;
17135 }
17136
17137 /* MD interface: Sections. */
17138
17139 /* Estimate the size of a frag before relaxing. Assume everything fits in
17140 2 bytes. */
17141
17142 int
17143 md_estimate_size_before_relax (fragS * fragp,
17144 segT segtype ATTRIBUTE_UNUSED)
17145 {
17146 fragp->fr_var = 2;
17147 return 2;
17148 }
17149
17150 /* Convert a machine dependent frag. */
17151
17152 void
17153 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17154 {
17155 unsigned long insn;
17156 unsigned long old_op;
17157 char *buf;
17158 expressionS exp;
17159 fixS *fixp;
17160 int reloc_type;
17161 int pc_rel;
17162 int opcode;
17163
17164 buf = fragp->fr_literal + fragp->fr_fix;
17165
17166 old_op = bfd_get_16(abfd, buf);
17167 if (fragp->fr_symbol)
17168 {
17169 exp.X_op = O_symbol;
17170 exp.X_add_symbol = fragp->fr_symbol;
17171 }
17172 else
17173 {
17174 exp.X_op = O_constant;
17175 }
17176 exp.X_add_number = fragp->fr_offset;
17177 opcode = fragp->fr_subtype;
17178 switch (opcode)
17179 {
17180 case T_MNEM_ldr_pc:
17181 case T_MNEM_ldr_pc2:
17182 case T_MNEM_ldr_sp:
17183 case T_MNEM_str_sp:
17184 case T_MNEM_ldr:
17185 case T_MNEM_ldrb:
17186 case T_MNEM_ldrh:
17187 case T_MNEM_str:
17188 case T_MNEM_strb:
17189 case T_MNEM_strh:
17190 if (fragp->fr_var == 4)
17191 {
17192 insn = THUMB_OP32 (opcode);
17193 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
17194 {
17195 insn |= (old_op & 0x700) << 4;
17196 }
17197 else
17198 {
17199 insn |= (old_op & 7) << 12;
17200 insn |= (old_op & 0x38) << 13;
17201 }
17202 insn |= 0x00000c00;
17203 put_thumb32_insn (buf, insn);
17204 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
17205 }
17206 else
17207 {
17208 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
17209 }
17210 pc_rel = (opcode == T_MNEM_ldr_pc2);
17211 break;
17212 case T_MNEM_adr:
17213 if (fragp->fr_var == 4)
17214 {
17215 insn = THUMB_OP32 (opcode);
17216 insn |= (old_op & 0xf0) << 4;
17217 put_thumb32_insn (buf, insn);
17218 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
17219 }
17220 else
17221 {
17222 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17223 exp.X_add_number -= 4;
17224 }
17225 pc_rel = 1;
17226 break;
17227 case T_MNEM_mov:
17228 case T_MNEM_movs:
17229 case T_MNEM_cmp:
17230 case T_MNEM_cmn:
17231 if (fragp->fr_var == 4)
17232 {
17233 int r0off = (opcode == T_MNEM_mov
17234 || opcode == T_MNEM_movs) ? 0 : 8;
17235 insn = THUMB_OP32 (opcode);
17236 insn = (insn & 0xe1ffffff) | 0x10000000;
17237 insn |= (old_op & 0x700) << r0off;
17238 put_thumb32_insn (buf, insn);
17239 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17240 }
17241 else
17242 {
17243 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
17244 }
17245 pc_rel = 0;
17246 break;
17247 case T_MNEM_b:
17248 if (fragp->fr_var == 4)
17249 {
17250 insn = THUMB_OP32(opcode);
17251 put_thumb32_insn (buf, insn);
17252 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
17253 }
17254 else
17255 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
17256 pc_rel = 1;
17257 break;
17258 case T_MNEM_bcond:
17259 if (fragp->fr_var == 4)
17260 {
17261 insn = THUMB_OP32(opcode);
17262 insn |= (old_op & 0xf00) << 14;
17263 put_thumb32_insn (buf, insn);
17264 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
17265 }
17266 else
17267 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
17268 pc_rel = 1;
17269 break;
17270 case T_MNEM_add_sp:
17271 case T_MNEM_add_pc:
17272 case T_MNEM_inc_sp:
17273 case T_MNEM_dec_sp:
17274 if (fragp->fr_var == 4)
17275 {
17276 /* ??? Choose between add and addw. */
17277 insn = THUMB_OP32 (opcode);
17278 insn |= (old_op & 0xf0) << 4;
17279 put_thumb32_insn (buf, insn);
17280 if (opcode == T_MNEM_add_pc)
17281 reloc_type = BFD_RELOC_ARM_T32_IMM12;
17282 else
17283 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17284 }
17285 else
17286 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17287 pc_rel = 0;
17288 break;
17289
17290 case T_MNEM_addi:
17291 case T_MNEM_addis:
17292 case T_MNEM_subi:
17293 case T_MNEM_subis:
17294 if (fragp->fr_var == 4)
17295 {
17296 insn = THUMB_OP32 (opcode);
17297 insn |= (old_op & 0xf0) << 4;
17298 insn |= (old_op & 0xf) << 16;
17299 put_thumb32_insn (buf, insn);
17300 if (insn & (1 << 20))
17301 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17302 else
17303 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17304 }
17305 else
17306 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17307 pc_rel = 0;
17308 break;
17309 default:
17310 abort ();
17311 }
17312 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
17313 reloc_type);
17314 fixp->fx_file = fragp->fr_file;
17315 fixp->fx_line = fragp->fr_line;
17316 fragp->fr_fix += fragp->fr_var;
17317 }
17318
17319 /* Return the size of a relaxable immediate operand instruction.
17320 SHIFT and SIZE specify the form of the allowable immediate. */
17321 static int
17322 relax_immediate (fragS *fragp, int size, int shift)
17323 {
17324 offsetT offset;
17325 offsetT mask;
17326 offsetT low;
17327
17328 /* ??? Should be able to do better than this. */
17329 if (fragp->fr_symbol)
17330 return 4;
17331
17332 low = (1 << shift) - 1;
17333 mask = (1 << (shift + size)) - (1 << shift);
17334 offset = fragp->fr_offset;
17335 /* Force misaligned offsets to 32-bit variant. */
17336 if (offset & low)
17337 return 4;
17338 if (offset & ~mask)
17339 return 4;
17340 return 2;
17341 }
17342
17343 /* Get the address of a symbol during relaxation. */
17344 static addressT
17345 relaxed_symbol_addr (fragS *fragp, long stretch)
17346 {
17347 fragS *sym_frag;
17348 addressT addr;
17349 symbolS *sym;
17350
17351 sym = fragp->fr_symbol;
17352 sym_frag = symbol_get_frag (sym);
17353 know (S_GET_SEGMENT (sym) != absolute_section
17354 || sym_frag == &zero_address_frag);
17355 addr = S_GET_VALUE (sym) + fragp->fr_offset;
17356
17357 /* If frag has yet to be reached on this pass, assume it will
17358 move by STRETCH just as we did. If this is not so, it will
17359 be because some frag between grows, and that will force
17360 another pass. */
17361
17362 if (stretch != 0
17363 && sym_frag->relax_marker != fragp->relax_marker)
17364 {
17365 fragS *f;
17366
17367 /* Adjust stretch for any alignment frag. Note that if have
17368 been expanding the earlier code, the symbol may be
17369 defined in what appears to be an earlier frag. FIXME:
17370 This doesn't handle the fr_subtype field, which specifies
17371 a maximum number of bytes to skip when doing an
17372 alignment. */
17373 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17374 {
17375 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17376 {
17377 if (stretch < 0)
17378 stretch = - ((- stretch)
17379 & ~ ((1 << (int) f->fr_offset) - 1));
17380 else
17381 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17382 if (stretch == 0)
17383 break;
17384 }
17385 }
17386 if (f != NULL)
17387 addr += stretch;
17388 }
17389
17390 return addr;
17391 }
17392
17393 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
17394 load. */
17395 static int
17396 relax_adr (fragS *fragp, asection *sec, long stretch)
17397 {
17398 addressT addr;
17399 offsetT val;
17400
17401 /* Assume worst case for symbols not known to be in the same section. */
17402 if (!S_IS_DEFINED (fragp->fr_symbol)
17403 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17404 return 4;
17405
17406 val = relaxed_symbol_addr (fragp, stretch);
17407 addr = fragp->fr_address + fragp->fr_fix;
17408 addr = (addr + 4) & ~3;
17409 /* Force misaligned targets to 32-bit variant. */
17410 if (val & 3)
17411 return 4;
17412 val -= addr;
17413 if (val < 0 || val > 1020)
17414 return 4;
17415 return 2;
17416 }
17417
17418 /* Return the size of a relaxable add/sub immediate instruction. */
17419 static int
17420 relax_addsub (fragS *fragp, asection *sec)
17421 {
17422 char *buf;
17423 int op;
17424
17425 buf = fragp->fr_literal + fragp->fr_fix;
17426 op = bfd_get_16(sec->owner, buf);
17427 if ((op & 0xf) == ((op >> 4) & 0xf))
17428 return relax_immediate (fragp, 8, 0);
17429 else
17430 return relax_immediate (fragp, 3, 0);
17431 }
17432
17433
17434 /* Return the size of a relaxable branch instruction. BITS is the
17435 size of the offset field in the narrow instruction. */
17436
17437 static int
17438 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
17439 {
17440 addressT addr;
17441 offsetT val;
17442 offsetT limit;
17443
17444 /* Assume worst case for symbols not known to be in the same section. */
17445 if (!S_IS_DEFINED (fragp->fr_symbol)
17446 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17447 return 4;
17448
17449 #ifdef OBJ_ELF
17450 if (S_IS_DEFINED (fragp->fr_symbol)
17451 && ARM_IS_FUNC (fragp->fr_symbol))
17452 return 4;
17453 #endif
17454
17455 val = relaxed_symbol_addr (fragp, stretch);
17456 addr = fragp->fr_address + fragp->fr_fix + 4;
17457 val -= addr;
17458
17459 /* Offset is a signed value *2 */
17460 limit = 1 << bits;
17461 if (val >= limit || val < -limit)
17462 return 4;
17463 return 2;
17464 }
17465
17466
17467 /* Relax a machine dependent frag. This returns the amount by which
17468 the current size of the frag should change. */
17469
17470 int
17471 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
17472 {
17473 int oldsize;
17474 int newsize;
17475
17476 oldsize = fragp->fr_var;
17477 switch (fragp->fr_subtype)
17478 {
17479 case T_MNEM_ldr_pc2:
17480 newsize = relax_adr (fragp, sec, stretch);
17481 break;
17482 case T_MNEM_ldr_pc:
17483 case T_MNEM_ldr_sp:
17484 case T_MNEM_str_sp:
17485 newsize = relax_immediate (fragp, 8, 2);
17486 break;
17487 case T_MNEM_ldr:
17488 case T_MNEM_str:
17489 newsize = relax_immediate (fragp, 5, 2);
17490 break;
17491 case T_MNEM_ldrh:
17492 case T_MNEM_strh:
17493 newsize = relax_immediate (fragp, 5, 1);
17494 break;
17495 case T_MNEM_ldrb:
17496 case T_MNEM_strb:
17497 newsize = relax_immediate (fragp, 5, 0);
17498 break;
17499 case T_MNEM_adr:
17500 newsize = relax_adr (fragp, sec, stretch);
17501 break;
17502 case T_MNEM_mov:
17503 case T_MNEM_movs:
17504 case T_MNEM_cmp:
17505 case T_MNEM_cmn:
17506 newsize = relax_immediate (fragp, 8, 0);
17507 break;
17508 case T_MNEM_b:
17509 newsize = relax_branch (fragp, sec, 11, stretch);
17510 break;
17511 case T_MNEM_bcond:
17512 newsize = relax_branch (fragp, sec, 8, stretch);
17513 break;
17514 case T_MNEM_add_sp:
17515 case T_MNEM_add_pc:
17516 newsize = relax_immediate (fragp, 8, 2);
17517 break;
17518 case T_MNEM_inc_sp:
17519 case T_MNEM_dec_sp:
17520 newsize = relax_immediate (fragp, 7, 2);
17521 break;
17522 case T_MNEM_addi:
17523 case T_MNEM_addis:
17524 case T_MNEM_subi:
17525 case T_MNEM_subis:
17526 newsize = relax_addsub (fragp, sec);
17527 break;
17528 default:
17529 abort ();
17530 }
17531
17532 fragp->fr_var = newsize;
17533 /* Freeze wide instructions that are at or before the same location as
17534 in the previous pass. This avoids infinite loops.
17535 Don't freeze them unconditionally because targets may be artificially
17536 misaligned by the expansion of preceding frags. */
17537 if (stretch <= 0 && newsize > 2)
17538 {
17539 md_convert_frag (sec->owner, sec, fragp);
17540 frag_wane (fragp);
17541 }
17542
17543 return newsize - oldsize;
17544 }
17545
17546 /* Round up a section size to the appropriate boundary. */
17547
17548 valueT
17549 md_section_align (segT segment ATTRIBUTE_UNUSED,
17550 valueT size)
17551 {
17552 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17553 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17554 {
17555 /* For a.out, force the section size to be aligned. If we don't do
17556 this, BFD will align it for us, but it will not write out the
17557 final bytes of the section. This may be a bug in BFD, but it is
17558 easier to fix it here since that is how the other a.out targets
17559 work. */
17560 int align;
17561
17562 align = bfd_get_section_alignment (stdoutput, segment);
17563 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17564 }
17565 #endif
17566
17567 return size;
17568 }
17569
17570 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17571 of an rs_align_code fragment. */
17572
17573 void
17574 arm_handle_align (fragS * fragP)
17575 {
17576 static char const arm_noop[2][2][4] =
17577 {
17578 { /* ARMv1 */
17579 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
17580 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
17581 },
17582 { /* ARMv6k */
17583 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
17584 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
17585 },
17586 };
17587 static char const thumb_noop[2][2][2] =
17588 {
17589 { /* Thumb-1 */
17590 {0xc0, 0x46}, /* LE */
17591 {0x46, 0xc0}, /* BE */
17592 },
17593 { /* Thumb-2 */
17594 {0x00, 0xbf}, /* LE */
17595 {0xbf, 0x00} /* BE */
17596 }
17597 };
17598 static char const wide_thumb_noop[2][4] =
17599 { /* Wide Thumb-2 */
17600 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
17601 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
17602 };
17603
17604 unsigned bytes, fix, noop_size;
17605 char * p;
17606 const char * noop;
17607 const char *narrow_noop = NULL;
17608
17609 if (fragP->fr_type != rs_align_code)
17610 return;
17611
17612 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17613 p = fragP->fr_literal + fragP->fr_fix;
17614 fix = 0;
17615
17616 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17617 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17618
17619 assert ((fragP->tc_frag_data & MODE_RECORDED) != 0);
17620
17621 if (fragP->tc_frag_data & (~ MODE_RECORDED))
17622 {
17623 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
17624 {
17625 narrow_noop = thumb_noop[1][target_big_endian];
17626 noop = wide_thumb_noop[target_big_endian];
17627 }
17628 else
17629 noop = thumb_noop[0][target_big_endian];
17630 noop_size = 2;
17631 }
17632 else
17633 {
17634 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
17635 [target_big_endian];
17636 noop_size = 4;
17637 }
17638
17639 fragP->fr_var = noop_size;
17640
17641 if (bytes & (noop_size - 1))
17642 {
17643 fix = bytes & (noop_size - 1);
17644 memset (p, 0, fix);
17645 p += fix;
17646 bytes -= fix;
17647 }
17648
17649 if (narrow_noop)
17650 {
17651 if (bytes & noop_size)
17652 {
17653 /* Insert a narrow noop. */
17654 memcpy (p, narrow_noop, noop_size);
17655 p += noop_size;
17656 bytes -= noop_size;
17657 fix += noop_size;
17658 }
17659
17660 /* Use wide noops for the remainder */
17661 noop_size = 4;
17662 }
17663
17664 while (bytes >= noop_size)
17665 {
17666 memcpy (p, noop, noop_size);
17667 p += noop_size;
17668 bytes -= noop_size;
17669 fix += noop_size;
17670 }
17671
17672 fragP->fr_fix += fix;
17673 }
17674
17675 /* Called from md_do_align. Used to create an alignment
17676 frag in a code section. */
17677
17678 void
17679 arm_frag_align_code (int n, int max)
17680 {
17681 char * p;
17682
17683 /* We assume that there will never be a requirement
17684 to support alignments greater than 32 bytes. */
17685 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17686 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17687
17688 p = frag_var (rs_align_code,
17689 MAX_MEM_FOR_RS_ALIGN_CODE,
17690 1,
17691 (relax_substateT) max,
17692 (symbolS *) NULL,
17693 (offsetT) n,
17694 (char *) NULL);
17695 *p = 0;
17696 }
17697
17698 /* Perform target specific initialisation of a frag.
17699 Note - despite the name this initialisation is not done when the frag
17700 is created, but only when its type is assigned. A frag can be created
17701 and used a long time before its type is set, so beware of assuming that
17702 this initialisationis performed first. */
17703
17704 void
17705 arm_init_frag (fragS * fragP)
17706 {
17707 /* If the current ARM vs THUMB mode has not already
17708 been recorded into this frag then do so now. */
17709 if ((fragP->tc_frag_data & MODE_RECORDED) == 0)
17710 fragP->tc_frag_data = thumb_mode | MODE_RECORDED;
17711 }
17712
17713 #ifdef OBJ_ELF
17714 /* When we change sections we need to issue a new mapping symbol. */
17715
17716 void
17717 arm_elf_change_section (void)
17718 {
17719 flagword flags;
17720 segment_info_type *seginfo;
17721
17722 /* Link an unlinked unwind index table section to the .text section. */
17723 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17724 && elf_linked_to_section (now_seg) == NULL)
17725 elf_linked_to_section (now_seg) = text_section;
17726
17727 if (!SEG_NORMAL (now_seg))
17728 return;
17729
17730 flags = bfd_get_section_flags (stdoutput, now_seg);
17731
17732 /* We can ignore sections that only contain debug info. */
17733 if ((flags & SEC_ALLOC) == 0)
17734 return;
17735
17736 seginfo = seg_info (now_seg);
17737 mapstate = seginfo->tc_segment_info_data.mapstate;
17738 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17739 }
17740
17741 int
17742 arm_elf_section_type (const char * str, size_t len)
17743 {
17744 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17745 return SHT_ARM_EXIDX;
17746
17747 return -1;
17748 }
17749 \f
17750 /* Code to deal with unwinding tables. */
17751
17752 static void add_unwind_adjustsp (offsetT);
17753
17754 /* Generate any deferred unwind frame offset. */
17755
17756 static void
17757 flush_pending_unwind (void)
17758 {
17759 offsetT offset;
17760
17761 offset = unwind.pending_offset;
17762 unwind.pending_offset = 0;
17763 if (offset != 0)
17764 add_unwind_adjustsp (offset);
17765 }
17766
17767 /* Add an opcode to this list for this function. Two-byte opcodes should
17768 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17769 order. */
17770
17771 static void
17772 add_unwind_opcode (valueT op, int length)
17773 {
17774 /* Add any deferred stack adjustment. */
17775 if (unwind.pending_offset)
17776 flush_pending_unwind ();
17777
17778 unwind.sp_restored = 0;
17779
17780 if (unwind.opcode_count + length > unwind.opcode_alloc)
17781 {
17782 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17783 if (unwind.opcodes)
17784 unwind.opcodes = xrealloc (unwind.opcodes,
17785 unwind.opcode_alloc);
17786 else
17787 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17788 }
17789 while (length > 0)
17790 {
17791 length--;
17792 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17793 op >>= 8;
17794 unwind.opcode_count++;
17795 }
17796 }
17797
17798 /* Add unwind opcodes to adjust the stack pointer. */
17799
17800 static void
17801 add_unwind_adjustsp (offsetT offset)
17802 {
17803 valueT op;
17804
17805 if (offset > 0x200)
17806 {
17807 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17808 char bytes[5];
17809 int n;
17810 valueT o;
17811
17812 /* Long form: 0xb2, uleb128. */
17813 /* This might not fit in a word so add the individual bytes,
17814 remembering the list is built in reverse order. */
17815 o = (valueT) ((offset - 0x204) >> 2);
17816 if (o == 0)
17817 add_unwind_opcode (0, 1);
17818
17819 /* Calculate the uleb128 encoding of the offset. */
17820 n = 0;
17821 while (o)
17822 {
17823 bytes[n] = o & 0x7f;
17824 o >>= 7;
17825 if (o)
17826 bytes[n] |= 0x80;
17827 n++;
17828 }
17829 /* Add the insn. */
17830 for (; n; n--)
17831 add_unwind_opcode (bytes[n - 1], 1);
17832 add_unwind_opcode (0xb2, 1);
17833 }
17834 else if (offset > 0x100)
17835 {
17836 /* Two short opcodes. */
17837 add_unwind_opcode (0x3f, 1);
17838 op = (offset - 0x104) >> 2;
17839 add_unwind_opcode (op, 1);
17840 }
17841 else if (offset > 0)
17842 {
17843 /* Short opcode. */
17844 op = (offset - 4) >> 2;
17845 add_unwind_opcode (op, 1);
17846 }
17847 else if (offset < 0)
17848 {
17849 offset = -offset;
17850 while (offset > 0x100)
17851 {
17852 add_unwind_opcode (0x7f, 1);
17853 offset -= 0x100;
17854 }
17855 op = ((offset - 4) >> 2) | 0x40;
17856 add_unwind_opcode (op, 1);
17857 }
17858 }
17859
17860 /* Finish the list of unwind opcodes for this function. */
17861 static void
17862 finish_unwind_opcodes (void)
17863 {
17864 valueT op;
17865
17866 if (unwind.fp_used)
17867 {
17868 /* Adjust sp as necessary. */
17869 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17870 flush_pending_unwind ();
17871
17872 /* After restoring sp from the frame pointer. */
17873 op = 0x90 | unwind.fp_reg;
17874 add_unwind_opcode (op, 1);
17875 }
17876 else
17877 flush_pending_unwind ();
17878 }
17879
17880
17881 /* Start an exception table entry. If idx is nonzero this is an index table
17882 entry. */
17883
17884 static void
17885 start_unwind_section (const segT text_seg, int idx)
17886 {
17887 const char * text_name;
17888 const char * prefix;
17889 const char * prefix_once;
17890 const char * group_name;
17891 size_t prefix_len;
17892 size_t text_len;
17893 char * sec_name;
17894 size_t sec_name_len;
17895 int type;
17896 int flags;
17897 int linkonce;
17898
17899 if (idx)
17900 {
17901 prefix = ELF_STRING_ARM_unwind;
17902 prefix_once = ELF_STRING_ARM_unwind_once;
17903 type = SHT_ARM_EXIDX;
17904 }
17905 else
17906 {
17907 prefix = ELF_STRING_ARM_unwind_info;
17908 prefix_once = ELF_STRING_ARM_unwind_info_once;
17909 type = SHT_PROGBITS;
17910 }
17911
17912 text_name = segment_name (text_seg);
17913 if (streq (text_name, ".text"))
17914 text_name = "";
17915
17916 if (strncmp (text_name, ".gnu.linkonce.t.",
17917 strlen (".gnu.linkonce.t.")) == 0)
17918 {
17919 prefix = prefix_once;
17920 text_name += strlen (".gnu.linkonce.t.");
17921 }
17922
17923 prefix_len = strlen (prefix);
17924 text_len = strlen (text_name);
17925 sec_name_len = prefix_len + text_len;
17926 sec_name = xmalloc (sec_name_len + 1);
17927 memcpy (sec_name, prefix, prefix_len);
17928 memcpy (sec_name + prefix_len, text_name, text_len);
17929 sec_name[prefix_len + text_len] = '\0';
17930
17931 flags = SHF_ALLOC;
17932 linkonce = 0;
17933 group_name = 0;
17934
17935 /* Handle COMDAT group. */
17936 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17937 {
17938 group_name = elf_group_name (text_seg);
17939 if (group_name == NULL)
17940 {
17941 as_bad (_("Group section `%s' has no group signature"),
17942 segment_name (text_seg));
17943 ignore_rest_of_line ();
17944 return;
17945 }
17946 flags |= SHF_GROUP;
17947 linkonce = 1;
17948 }
17949
17950 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17951
17952 /* Set the section link for index tables. */
17953 if (idx)
17954 elf_linked_to_section (now_seg) = text_seg;
17955 }
17956
17957
17958 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17959 personality routine data. Returns zero, or the index table value for
17960 and inline entry. */
17961
17962 static valueT
17963 create_unwind_entry (int have_data)
17964 {
17965 int size;
17966 addressT where;
17967 char *ptr;
17968 /* The current word of data. */
17969 valueT data;
17970 /* The number of bytes left in this word. */
17971 int n;
17972
17973 finish_unwind_opcodes ();
17974
17975 /* Remember the current text section. */
17976 unwind.saved_seg = now_seg;
17977 unwind.saved_subseg = now_subseg;
17978
17979 start_unwind_section (now_seg, 0);
17980
17981 if (unwind.personality_routine == NULL)
17982 {
17983 if (unwind.personality_index == -2)
17984 {
17985 if (have_data)
17986 as_bad (_("handlerdata in cantunwind frame"));
17987 return 1; /* EXIDX_CANTUNWIND. */
17988 }
17989
17990 /* Use a default personality routine if none is specified. */
17991 if (unwind.personality_index == -1)
17992 {
17993 if (unwind.opcode_count > 3)
17994 unwind.personality_index = 1;
17995 else
17996 unwind.personality_index = 0;
17997 }
17998
17999 /* Space for the personality routine entry. */
18000 if (unwind.personality_index == 0)
18001 {
18002 if (unwind.opcode_count > 3)
18003 as_bad (_("too many unwind opcodes for personality routine 0"));
18004
18005 if (!have_data)
18006 {
18007 /* All the data is inline in the index table. */
18008 data = 0x80;
18009 n = 3;
18010 while (unwind.opcode_count > 0)
18011 {
18012 unwind.opcode_count--;
18013 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18014 n--;
18015 }
18016
18017 /* Pad with "finish" opcodes. */
18018 while (n--)
18019 data = (data << 8) | 0xb0;
18020
18021 return data;
18022 }
18023 size = 0;
18024 }
18025 else
18026 /* We get two opcodes "free" in the first word. */
18027 size = unwind.opcode_count - 2;
18028 }
18029 else
18030 /* An extra byte is required for the opcode count. */
18031 size = unwind.opcode_count + 1;
18032
18033 size = (size + 3) >> 2;
18034 if (size > 0xff)
18035 as_bad (_("too many unwind opcodes"));
18036
18037 frag_align (2, 0, 0);
18038 record_alignment (now_seg, 2);
18039 unwind.table_entry = expr_build_dot ();
18040
18041 /* Allocate the table entry. */
18042 ptr = frag_more ((size << 2) + 4);
18043 where = frag_now_fix () - ((size << 2) + 4);
18044
18045 switch (unwind.personality_index)
18046 {
18047 case -1:
18048 /* ??? Should this be a PLT generating relocation? */
18049 /* Custom personality routine. */
18050 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18051 BFD_RELOC_ARM_PREL31);
18052
18053 where += 4;
18054 ptr += 4;
18055
18056 /* Set the first byte to the number of additional words. */
18057 data = size - 1;
18058 n = 3;
18059 break;
18060
18061 /* ABI defined personality routines. */
18062 case 0:
18063 /* Three opcodes bytes are packed into the first word. */
18064 data = 0x80;
18065 n = 3;
18066 break;
18067
18068 case 1:
18069 case 2:
18070 /* The size and first two opcode bytes go in the first word. */
18071 data = ((0x80 + unwind.personality_index) << 8) | size;
18072 n = 2;
18073 break;
18074
18075 default:
18076 /* Should never happen. */
18077 abort ();
18078 }
18079
18080 /* Pack the opcodes into words (MSB first), reversing the list at the same
18081 time. */
18082 while (unwind.opcode_count > 0)
18083 {
18084 if (n == 0)
18085 {
18086 md_number_to_chars (ptr, data, 4);
18087 ptr += 4;
18088 n = 4;
18089 data = 0;
18090 }
18091 unwind.opcode_count--;
18092 n--;
18093 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18094 }
18095
18096 /* Finish off the last word. */
18097 if (n < 4)
18098 {
18099 /* Pad with "finish" opcodes. */
18100 while (n--)
18101 data = (data << 8) | 0xb0;
18102
18103 md_number_to_chars (ptr, data, 4);
18104 }
18105
18106 if (!have_data)
18107 {
18108 /* Add an empty descriptor if there is no user-specified data. */
18109 ptr = frag_more (4);
18110 md_number_to_chars (ptr, 0, 4);
18111 }
18112
18113 return 0;
18114 }
18115
18116
18117 /* Initialize the DWARF-2 unwind information for this procedure. */
18118
18119 void
18120 tc_arm_frame_initial_instructions (void)
18121 {
18122 cfi_add_CFA_def_cfa (REG_SP, 0);
18123 }
18124 #endif /* OBJ_ELF */
18125
18126 /* Convert REGNAME to a DWARF-2 register number. */
18127
18128 int
18129 tc_arm_regname_to_dw2regnum (char *regname)
18130 {
18131 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
18132
18133 if (reg == FAIL)
18134 return -1;
18135
18136 return reg;
18137 }
18138
18139 #ifdef TE_PE
18140 void
18141 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
18142 {
18143 expressionS expr;
18144
18145 expr.X_op = O_secrel;
18146 expr.X_add_symbol = symbol;
18147 expr.X_add_number = 0;
18148 emit_expr (&expr, size);
18149 }
18150 #endif
18151
18152 /* MD interface: Symbol and relocation handling. */
18153
18154 /* Return the address within the segment that a PC-relative fixup is
18155 relative to. For ARM, PC-relative fixups applied to instructions
18156 are generally relative to the location of the fixup plus 8 bytes.
18157 Thumb branches are offset by 4, and Thumb loads relative to PC
18158 require special handling. */
18159
18160 long
18161 md_pcrel_from_section (fixS * fixP, segT seg)
18162 {
18163 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
18164
18165 /* If this is pc-relative and we are going to emit a relocation
18166 then we just want to put out any pipeline compensation that the linker
18167 will need. Otherwise we want to use the calculated base.
18168 For WinCE we skip the bias for externals as well, since this
18169 is how the MS ARM-CE assembler behaves and we want to be compatible. */
18170 if (fixP->fx_pcrel
18171 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18172 || (arm_force_relocation (fixP)
18173 #ifdef TE_WINCE
18174 && !S_IS_EXTERNAL (fixP->fx_addsy)
18175 #endif
18176 )))
18177 base = 0;
18178
18179
18180 switch (fixP->fx_r_type)
18181 {
18182 /* PC relative addressing on the Thumb is slightly odd as the
18183 bottom two bits of the PC are forced to zero for the
18184 calculation. This happens *after* application of the
18185 pipeline offset. However, Thumb adrl already adjusts for
18186 this, so we need not do it again. */
18187 case BFD_RELOC_ARM_THUMB_ADD:
18188 return base & ~3;
18189
18190 case BFD_RELOC_ARM_THUMB_OFFSET:
18191 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18192 case BFD_RELOC_ARM_T32_ADD_PC12:
18193 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18194 return (base + 4) & ~3;
18195
18196 /* Thumb branches are simply offset by +4. */
18197 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18198 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18199 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18200 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18201 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18202 return base + 4;
18203
18204 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18205 if (fixP->fx_addsy
18206 && ARM_IS_FUNC (fixP->fx_addsy)
18207 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18208 base = fixP->fx_where + fixP->fx_frag->fr_address;
18209 return base + 4;
18210
18211 /* BLX is like branches above, but forces the low two bits of PC to
18212 zero. */
18213 case BFD_RELOC_THUMB_PCREL_BLX:
18214 if (fixP->fx_addsy
18215 && THUMB_IS_FUNC (fixP->fx_addsy)
18216 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18217 base = fixP->fx_where + fixP->fx_frag->fr_address;
18218 return (base + 4) & ~3;
18219
18220 /* ARM mode branches are offset by +8. However, the Windows CE
18221 loader expects the relocation not to take this into account. */
18222 case BFD_RELOC_ARM_PCREL_BLX:
18223 if (fixP->fx_addsy
18224 && ARM_IS_FUNC (fixP->fx_addsy)
18225 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18226 base = fixP->fx_where + fixP->fx_frag->fr_address;
18227 return base + 8;
18228
18229 case BFD_RELOC_ARM_PCREL_CALL:
18230 if (fixP->fx_addsy
18231 && THUMB_IS_FUNC (fixP->fx_addsy)
18232 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18233 base = fixP->fx_where + fixP->fx_frag->fr_address;
18234 return base + 8;
18235
18236 case BFD_RELOC_ARM_PCREL_BRANCH:
18237 case BFD_RELOC_ARM_PCREL_JUMP:
18238 case BFD_RELOC_ARM_PLT32:
18239 #ifdef TE_WINCE
18240 /* When handling fixups immediately, because we have already
18241 discovered the value of a symbol, or the address of the frag involved
18242 we must account for the offset by +8, as the OS loader will never see the reloc.
18243 see fixup_segment() in write.c
18244 The S_IS_EXTERNAL test handles the case of global symbols.
18245 Those need the calculated base, not just the pipe compensation the linker will need. */
18246 if (fixP->fx_pcrel
18247 && fixP->fx_addsy != NULL
18248 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
18249 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
18250 return base + 8;
18251 return base;
18252 #else
18253 return base + 8;
18254 #endif
18255
18256
18257 /* ARM mode loads relative to PC are also offset by +8. Unlike
18258 branches, the Windows CE loader *does* expect the relocation
18259 to take this into account. */
18260 case BFD_RELOC_ARM_OFFSET_IMM:
18261 case BFD_RELOC_ARM_OFFSET_IMM8:
18262 case BFD_RELOC_ARM_HWLITERAL:
18263 case BFD_RELOC_ARM_LITERAL:
18264 case BFD_RELOC_ARM_CP_OFF_IMM:
18265 return base + 8;
18266
18267
18268 /* Other PC-relative relocations are un-offset. */
18269 default:
18270 return base;
18271 }
18272 }
18273
18274 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
18275 Otherwise we have no need to default values of symbols. */
18276
18277 symbolS *
18278 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
18279 {
18280 #ifdef OBJ_ELF
18281 if (name[0] == '_' && name[1] == 'G'
18282 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
18283 {
18284 if (!GOT_symbol)
18285 {
18286 if (symbol_find (name))
18287 as_bad (_("GOT already in the symbol table"));
18288
18289 GOT_symbol = symbol_new (name, undefined_section,
18290 (valueT) 0, & zero_address_frag);
18291 }
18292
18293 return GOT_symbol;
18294 }
18295 #endif
18296
18297 return 0;
18298 }
18299
18300 /* Subroutine of md_apply_fix. Check to see if an immediate can be
18301 computed as two separate immediate values, added together. We
18302 already know that this value cannot be computed by just one ARM
18303 instruction. */
18304
18305 static unsigned int
18306 validate_immediate_twopart (unsigned int val,
18307 unsigned int * highpart)
18308 {
18309 unsigned int a;
18310 unsigned int i;
18311
18312 for (i = 0; i < 32; i += 2)
18313 if (((a = rotate_left (val, i)) & 0xff) != 0)
18314 {
18315 if (a & 0xff00)
18316 {
18317 if (a & ~ 0xffff)
18318 continue;
18319 * highpart = (a >> 8) | ((i + 24) << 7);
18320 }
18321 else if (a & 0xff0000)
18322 {
18323 if (a & 0xff000000)
18324 continue;
18325 * highpart = (a >> 16) | ((i + 16) << 7);
18326 }
18327 else
18328 {
18329 assert (a & 0xff000000);
18330 * highpart = (a >> 24) | ((i + 8) << 7);
18331 }
18332
18333 return (a & 0xff) | (i << 7);
18334 }
18335
18336 return FAIL;
18337 }
18338
18339 static int
18340 validate_offset_imm (unsigned int val, int hwse)
18341 {
18342 if ((hwse && val > 255) || val > 4095)
18343 return FAIL;
18344 return val;
18345 }
18346
18347 /* Subroutine of md_apply_fix. Do those data_ops which can take a
18348 negative immediate constant by altering the instruction. A bit of
18349 a hack really.
18350 MOV <-> MVN
18351 AND <-> BIC
18352 ADC <-> SBC
18353 by inverting the second operand, and
18354 ADD <-> SUB
18355 CMP <-> CMN
18356 by negating the second operand. */
18357
18358 static int
18359 negate_data_op (unsigned long * instruction,
18360 unsigned long value)
18361 {
18362 int op, new_inst;
18363 unsigned long negated, inverted;
18364
18365 negated = encode_arm_immediate (-value);
18366 inverted = encode_arm_immediate (~value);
18367
18368 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
18369 switch (op)
18370 {
18371 /* First negates. */
18372 case OPCODE_SUB: /* ADD <-> SUB */
18373 new_inst = OPCODE_ADD;
18374 value = negated;
18375 break;
18376
18377 case OPCODE_ADD:
18378 new_inst = OPCODE_SUB;
18379 value = negated;
18380 break;
18381
18382 case OPCODE_CMP: /* CMP <-> CMN */
18383 new_inst = OPCODE_CMN;
18384 value = negated;
18385 break;
18386
18387 case OPCODE_CMN:
18388 new_inst = OPCODE_CMP;
18389 value = negated;
18390 break;
18391
18392 /* Now Inverted ops. */
18393 case OPCODE_MOV: /* MOV <-> MVN */
18394 new_inst = OPCODE_MVN;
18395 value = inverted;
18396 break;
18397
18398 case OPCODE_MVN:
18399 new_inst = OPCODE_MOV;
18400 value = inverted;
18401 break;
18402
18403 case OPCODE_AND: /* AND <-> BIC */
18404 new_inst = OPCODE_BIC;
18405 value = inverted;
18406 break;
18407
18408 case OPCODE_BIC:
18409 new_inst = OPCODE_AND;
18410 value = inverted;
18411 break;
18412
18413 case OPCODE_ADC: /* ADC <-> SBC */
18414 new_inst = OPCODE_SBC;
18415 value = inverted;
18416 break;
18417
18418 case OPCODE_SBC:
18419 new_inst = OPCODE_ADC;
18420 value = inverted;
18421 break;
18422
18423 /* We cannot do anything. */
18424 default:
18425 return FAIL;
18426 }
18427
18428 if (value == (unsigned) FAIL)
18429 return FAIL;
18430
18431 *instruction &= OPCODE_MASK;
18432 *instruction |= new_inst << DATA_OP_SHIFT;
18433 return value;
18434 }
18435
18436 /* Like negate_data_op, but for Thumb-2. */
18437
18438 static unsigned int
18439 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
18440 {
18441 int op, new_inst;
18442 int rd;
18443 unsigned int negated, inverted;
18444
18445 negated = encode_thumb32_immediate (-value);
18446 inverted = encode_thumb32_immediate (~value);
18447
18448 rd = (*instruction >> 8) & 0xf;
18449 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
18450 switch (op)
18451 {
18452 /* ADD <-> SUB. Includes CMP <-> CMN. */
18453 case T2_OPCODE_SUB:
18454 new_inst = T2_OPCODE_ADD;
18455 value = negated;
18456 break;
18457
18458 case T2_OPCODE_ADD:
18459 new_inst = T2_OPCODE_SUB;
18460 value = negated;
18461 break;
18462
18463 /* ORR <-> ORN. Includes MOV <-> MVN. */
18464 case T2_OPCODE_ORR:
18465 new_inst = T2_OPCODE_ORN;
18466 value = inverted;
18467 break;
18468
18469 case T2_OPCODE_ORN:
18470 new_inst = T2_OPCODE_ORR;
18471 value = inverted;
18472 break;
18473
18474 /* AND <-> BIC. TST has no inverted equivalent. */
18475 case T2_OPCODE_AND:
18476 new_inst = T2_OPCODE_BIC;
18477 if (rd == 15)
18478 value = FAIL;
18479 else
18480 value = inverted;
18481 break;
18482
18483 case T2_OPCODE_BIC:
18484 new_inst = T2_OPCODE_AND;
18485 value = inverted;
18486 break;
18487
18488 /* ADC <-> SBC */
18489 case T2_OPCODE_ADC:
18490 new_inst = T2_OPCODE_SBC;
18491 value = inverted;
18492 break;
18493
18494 case T2_OPCODE_SBC:
18495 new_inst = T2_OPCODE_ADC;
18496 value = inverted;
18497 break;
18498
18499 /* We cannot do anything. */
18500 default:
18501 return FAIL;
18502 }
18503
18504 if (value == (unsigned int)FAIL)
18505 return FAIL;
18506
18507 *instruction &= T2_OPCODE_MASK;
18508 *instruction |= new_inst << T2_DATA_OP_SHIFT;
18509 return value;
18510 }
18511
18512 /* Read a 32-bit thumb instruction from buf. */
18513 static unsigned long
18514 get_thumb32_insn (char * buf)
18515 {
18516 unsigned long insn;
18517 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
18518 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18519
18520 return insn;
18521 }
18522
18523
18524 /* We usually want to set the low bit on the address of thumb function
18525 symbols. In particular .word foo - . should have the low bit set.
18526 Generic code tries to fold the difference of two symbols to
18527 a constant. Prevent this and force a relocation when the first symbols
18528 is a thumb function. */
18529 int
18530 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18531 {
18532 if (op == O_subtract
18533 && l->X_op == O_symbol
18534 && r->X_op == O_symbol
18535 && THUMB_IS_FUNC (l->X_add_symbol))
18536 {
18537 l->X_op = O_subtract;
18538 l->X_op_symbol = r->X_add_symbol;
18539 l->X_add_number -= r->X_add_number;
18540 return 1;
18541 }
18542 /* Process as normal. */
18543 return 0;
18544 }
18545
18546 void
18547 md_apply_fix (fixS * fixP,
18548 valueT * valP,
18549 segT seg)
18550 {
18551 offsetT value = * valP;
18552 offsetT newval;
18553 unsigned int newimm;
18554 unsigned long temp;
18555 int sign;
18556 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
18557
18558 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
18559
18560 /* Note whether this will delete the relocation. */
18561
18562 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18563 fixP->fx_done = 1;
18564
18565 /* On a 64-bit host, silently truncate 'value' to 32 bits for
18566 consistency with the behaviour on 32-bit hosts. Remember value
18567 for emit_reloc. */
18568 value &= 0xffffffff;
18569 value ^= 0x80000000;
18570 value -= 0x80000000;
18571
18572 *valP = value;
18573 fixP->fx_addnumber = value;
18574
18575 /* Same treatment for fixP->fx_offset. */
18576 fixP->fx_offset &= 0xffffffff;
18577 fixP->fx_offset ^= 0x80000000;
18578 fixP->fx_offset -= 0x80000000;
18579
18580 switch (fixP->fx_r_type)
18581 {
18582 case BFD_RELOC_NONE:
18583 /* This will need to go in the object file. */
18584 fixP->fx_done = 0;
18585 break;
18586
18587 case BFD_RELOC_ARM_IMMEDIATE:
18588 /* We claim that this fixup has been processed here,
18589 even if in fact we generate an error because we do
18590 not have a reloc for it, so tc_gen_reloc will reject it. */
18591 fixP->fx_done = 1;
18592
18593 if (fixP->fx_addsy
18594 && ! S_IS_DEFINED (fixP->fx_addsy))
18595 {
18596 as_bad_where (fixP->fx_file, fixP->fx_line,
18597 _("undefined symbol %s used as an immediate value"),
18598 S_GET_NAME (fixP->fx_addsy));
18599 break;
18600 }
18601
18602 if (fixP->fx_addsy
18603 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18604 {
18605 as_bad_where (fixP->fx_file, fixP->fx_line,
18606 _("symbol %s is in a different section"),
18607 S_GET_NAME (fixP->fx_addsy));
18608 break;
18609 }
18610
18611 newimm = encode_arm_immediate (value);
18612 temp = md_chars_to_number (buf, INSN_SIZE);
18613
18614 /* If the instruction will fail, see if we can fix things up by
18615 changing the opcode. */
18616 if (newimm == (unsigned int) FAIL
18617 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
18618 {
18619 as_bad_where (fixP->fx_file, fixP->fx_line,
18620 _("invalid constant (%lx) after fixup"),
18621 (unsigned long) value);
18622 break;
18623 }
18624
18625 newimm |= (temp & 0xfffff000);
18626 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18627 break;
18628
18629 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18630 {
18631 unsigned int highpart = 0;
18632 unsigned int newinsn = 0xe1a00000; /* nop. */
18633
18634 if (fixP->fx_addsy
18635 && ! S_IS_DEFINED (fixP->fx_addsy))
18636 {
18637 as_bad_where (fixP->fx_file, fixP->fx_line,
18638 _("undefined symbol %s used as an immediate value"),
18639 S_GET_NAME (fixP->fx_addsy));
18640 break;
18641 }
18642
18643 if (fixP->fx_addsy
18644 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18645 {
18646 as_bad_where (fixP->fx_file, fixP->fx_line,
18647 _("symbol %s is in a different section"),
18648 S_GET_NAME (fixP->fx_addsy));
18649 break;
18650 }
18651
18652 newimm = encode_arm_immediate (value);
18653 temp = md_chars_to_number (buf, INSN_SIZE);
18654
18655 /* If the instruction will fail, see if we can fix things up by
18656 changing the opcode. */
18657 if (newimm == (unsigned int) FAIL
18658 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18659 {
18660 /* No ? OK - try using two ADD instructions to generate
18661 the value. */
18662 newimm = validate_immediate_twopart (value, & highpart);
18663
18664 /* Yes - then make sure that the second instruction is
18665 also an add. */
18666 if (newimm != (unsigned int) FAIL)
18667 newinsn = temp;
18668 /* Still No ? Try using a negated value. */
18669 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18670 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18671 /* Otherwise - give up. */
18672 else
18673 {
18674 as_bad_where (fixP->fx_file, fixP->fx_line,
18675 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18676 (long) value);
18677 break;
18678 }
18679
18680 /* Replace the first operand in the 2nd instruction (which
18681 is the PC) with the destination register. We have
18682 already added in the PC in the first instruction and we
18683 do not want to do it again. */
18684 newinsn &= ~ 0xf0000;
18685 newinsn |= ((newinsn & 0x0f000) << 4);
18686 }
18687
18688 newimm |= (temp & 0xfffff000);
18689 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18690
18691 highpart |= (newinsn & 0xfffff000);
18692 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18693 }
18694 break;
18695
18696 case BFD_RELOC_ARM_OFFSET_IMM:
18697 if (!fixP->fx_done && seg->use_rela_p)
18698 value = 0;
18699
18700 case BFD_RELOC_ARM_LITERAL:
18701 sign = value >= 0;
18702
18703 if (value < 0)
18704 value = - value;
18705
18706 if (validate_offset_imm (value, 0) == FAIL)
18707 {
18708 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18709 as_bad_where (fixP->fx_file, fixP->fx_line,
18710 _("invalid literal constant: pool needs to be closer"));
18711 else
18712 as_bad_where (fixP->fx_file, fixP->fx_line,
18713 _("bad immediate value for offset (%ld)"),
18714 (long) value);
18715 break;
18716 }
18717
18718 newval = md_chars_to_number (buf, INSN_SIZE);
18719 newval &= 0xff7ff000;
18720 newval |= value | (sign ? INDEX_UP : 0);
18721 md_number_to_chars (buf, newval, INSN_SIZE);
18722 break;
18723
18724 case BFD_RELOC_ARM_OFFSET_IMM8:
18725 case BFD_RELOC_ARM_HWLITERAL:
18726 sign = value >= 0;
18727
18728 if (value < 0)
18729 value = - value;
18730
18731 if (validate_offset_imm (value, 1) == FAIL)
18732 {
18733 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18734 as_bad_where (fixP->fx_file, fixP->fx_line,
18735 _("invalid literal constant: pool needs to be closer"));
18736 else
18737 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18738 (long) value);
18739 break;
18740 }
18741
18742 newval = md_chars_to_number (buf, INSN_SIZE);
18743 newval &= 0xff7ff0f0;
18744 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18745 md_number_to_chars (buf, newval, INSN_SIZE);
18746 break;
18747
18748 case BFD_RELOC_ARM_T32_OFFSET_U8:
18749 if (value < 0 || value > 1020 || value % 4 != 0)
18750 as_bad_where (fixP->fx_file, fixP->fx_line,
18751 _("bad immediate value for offset (%ld)"), (long) value);
18752 value /= 4;
18753
18754 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18755 newval |= value;
18756 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18757 break;
18758
18759 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18760 /* This is a complicated relocation used for all varieties of Thumb32
18761 load/store instruction with immediate offset:
18762
18763 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18764 *4, optional writeback(W)
18765 (doubleword load/store)
18766
18767 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18768 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18769 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18770 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18771 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18772
18773 Uppercase letters indicate bits that are already encoded at
18774 this point. Lowercase letters are our problem. For the
18775 second block of instructions, the secondary opcode nybble
18776 (bits 8..11) is present, and bit 23 is zero, even if this is
18777 a PC-relative operation. */
18778 newval = md_chars_to_number (buf, THUMB_SIZE);
18779 newval <<= 16;
18780 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18781
18782 if ((newval & 0xf0000000) == 0xe0000000)
18783 {
18784 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18785 if (value >= 0)
18786 newval |= (1 << 23);
18787 else
18788 value = -value;
18789 if (value % 4 != 0)
18790 {
18791 as_bad_where (fixP->fx_file, fixP->fx_line,
18792 _("offset not a multiple of 4"));
18793 break;
18794 }
18795 value /= 4;
18796 if (value > 0xff)
18797 {
18798 as_bad_where (fixP->fx_file, fixP->fx_line,
18799 _("offset out of range"));
18800 break;
18801 }
18802 newval &= ~0xff;
18803 }
18804 else if ((newval & 0x000f0000) == 0x000f0000)
18805 {
18806 /* PC-relative, 12-bit offset. */
18807 if (value >= 0)
18808 newval |= (1 << 23);
18809 else
18810 value = -value;
18811 if (value > 0xfff)
18812 {
18813 as_bad_where (fixP->fx_file, fixP->fx_line,
18814 _("offset out of range"));
18815 break;
18816 }
18817 newval &= ~0xfff;
18818 }
18819 else if ((newval & 0x00000100) == 0x00000100)
18820 {
18821 /* Writeback: 8-bit, +/- offset. */
18822 if (value >= 0)
18823 newval |= (1 << 9);
18824 else
18825 value = -value;
18826 if (value > 0xff)
18827 {
18828 as_bad_where (fixP->fx_file, fixP->fx_line,
18829 _("offset out of range"));
18830 break;
18831 }
18832 newval &= ~0xff;
18833 }
18834 else if ((newval & 0x00000f00) == 0x00000e00)
18835 {
18836 /* T-instruction: positive 8-bit offset. */
18837 if (value < 0 || value > 0xff)
18838 {
18839 as_bad_where (fixP->fx_file, fixP->fx_line,
18840 _("offset out of range"));
18841 break;
18842 }
18843 newval &= ~0xff;
18844 newval |= value;
18845 }
18846 else
18847 {
18848 /* Positive 12-bit or negative 8-bit offset. */
18849 int limit;
18850 if (value >= 0)
18851 {
18852 newval |= (1 << 23);
18853 limit = 0xfff;
18854 }
18855 else
18856 {
18857 value = -value;
18858 limit = 0xff;
18859 }
18860 if (value > limit)
18861 {
18862 as_bad_where (fixP->fx_file, fixP->fx_line,
18863 _("offset out of range"));
18864 break;
18865 }
18866 newval &= ~limit;
18867 }
18868
18869 newval |= value;
18870 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18871 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18872 break;
18873
18874 case BFD_RELOC_ARM_SHIFT_IMM:
18875 newval = md_chars_to_number (buf, INSN_SIZE);
18876 if (((unsigned long) value) > 32
18877 || (value == 32
18878 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18879 {
18880 as_bad_where (fixP->fx_file, fixP->fx_line,
18881 _("shift expression is too large"));
18882 break;
18883 }
18884
18885 if (value == 0)
18886 /* Shifts of zero must be done as lsl. */
18887 newval &= ~0x60;
18888 else if (value == 32)
18889 value = 0;
18890 newval &= 0xfffff07f;
18891 newval |= (value & 0x1f) << 7;
18892 md_number_to_chars (buf, newval, INSN_SIZE);
18893 break;
18894
18895 case BFD_RELOC_ARM_T32_IMMEDIATE:
18896 case BFD_RELOC_ARM_T32_ADD_IMM:
18897 case BFD_RELOC_ARM_T32_IMM12:
18898 case BFD_RELOC_ARM_T32_ADD_PC12:
18899 /* We claim that this fixup has been processed here,
18900 even if in fact we generate an error because we do
18901 not have a reloc for it, so tc_gen_reloc will reject it. */
18902 fixP->fx_done = 1;
18903
18904 if (fixP->fx_addsy
18905 && ! S_IS_DEFINED (fixP->fx_addsy))
18906 {
18907 as_bad_where (fixP->fx_file, fixP->fx_line,
18908 _("undefined symbol %s used as an immediate value"),
18909 S_GET_NAME (fixP->fx_addsy));
18910 break;
18911 }
18912
18913 newval = md_chars_to_number (buf, THUMB_SIZE);
18914 newval <<= 16;
18915 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18916
18917 newimm = FAIL;
18918 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18919 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18920 {
18921 newimm = encode_thumb32_immediate (value);
18922 if (newimm == (unsigned int) FAIL)
18923 newimm = thumb32_negate_data_op (&newval, value);
18924 }
18925 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18926 && newimm == (unsigned int) FAIL)
18927 {
18928 /* Turn add/sum into addw/subw. */
18929 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18930 newval = (newval & 0xfeffffff) | 0x02000000;
18931
18932 /* 12 bit immediate for addw/subw. */
18933 if (value < 0)
18934 {
18935 value = -value;
18936 newval ^= 0x00a00000;
18937 }
18938 if (value > 0xfff)
18939 newimm = (unsigned int) FAIL;
18940 else
18941 newimm = value;
18942 }
18943
18944 if (newimm == (unsigned int)FAIL)
18945 {
18946 as_bad_where (fixP->fx_file, fixP->fx_line,
18947 _("invalid constant (%lx) after fixup"),
18948 (unsigned long) value);
18949 break;
18950 }
18951
18952 newval |= (newimm & 0x800) << 15;
18953 newval |= (newimm & 0x700) << 4;
18954 newval |= (newimm & 0x0ff);
18955
18956 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18957 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18958 break;
18959
18960 case BFD_RELOC_ARM_SMC:
18961 if (((unsigned long) value) > 0xffff)
18962 as_bad_where (fixP->fx_file, fixP->fx_line,
18963 _("invalid smc expression"));
18964 newval = md_chars_to_number (buf, INSN_SIZE);
18965 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18966 md_number_to_chars (buf, newval, INSN_SIZE);
18967 break;
18968
18969 case BFD_RELOC_ARM_SWI:
18970 if (fixP->tc_fix_data != 0)
18971 {
18972 if (((unsigned long) value) > 0xff)
18973 as_bad_where (fixP->fx_file, fixP->fx_line,
18974 _("invalid swi expression"));
18975 newval = md_chars_to_number (buf, THUMB_SIZE);
18976 newval |= value;
18977 md_number_to_chars (buf, newval, THUMB_SIZE);
18978 }
18979 else
18980 {
18981 if (((unsigned long) value) > 0x00ffffff)
18982 as_bad_where (fixP->fx_file, fixP->fx_line,
18983 _("invalid swi expression"));
18984 newval = md_chars_to_number (buf, INSN_SIZE);
18985 newval |= value;
18986 md_number_to_chars (buf, newval, INSN_SIZE);
18987 }
18988 break;
18989
18990 case BFD_RELOC_ARM_MULTI:
18991 if (((unsigned long) value) > 0xffff)
18992 as_bad_where (fixP->fx_file, fixP->fx_line,
18993 _("invalid expression in load/store multiple"));
18994 newval = value | md_chars_to_number (buf, INSN_SIZE);
18995 md_number_to_chars (buf, newval, INSN_SIZE);
18996 break;
18997
18998 #ifdef OBJ_ELF
18999 case BFD_RELOC_ARM_PCREL_CALL:
19000
19001 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19002 && fixP->fx_addsy
19003 && !S_IS_EXTERNAL (fixP->fx_addsy)
19004 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19005 && THUMB_IS_FUNC (fixP->fx_addsy))
19006 /* Flip the bl to blx. This is a simple flip
19007 bit here because we generate PCREL_CALL for
19008 unconditional bls. */
19009 {
19010 newval = md_chars_to_number (buf, INSN_SIZE);
19011 newval = newval | 0x10000000;
19012 md_number_to_chars (buf, newval, INSN_SIZE);
19013 temp = 1;
19014 fixP->fx_done = 1;
19015 }
19016 else
19017 temp = 3;
19018 goto arm_branch_common;
19019
19020 case BFD_RELOC_ARM_PCREL_JUMP:
19021 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19022 && fixP->fx_addsy
19023 && !S_IS_EXTERNAL (fixP->fx_addsy)
19024 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19025 && THUMB_IS_FUNC (fixP->fx_addsy))
19026 {
19027 /* This would map to a bl<cond>, b<cond>,
19028 b<always> to a Thumb function. We
19029 need to force a relocation for this particular
19030 case. */
19031 newval = md_chars_to_number (buf, INSN_SIZE);
19032 fixP->fx_done = 0;
19033 }
19034
19035 case BFD_RELOC_ARM_PLT32:
19036 #endif
19037 case BFD_RELOC_ARM_PCREL_BRANCH:
19038 temp = 3;
19039 goto arm_branch_common;
19040
19041 case BFD_RELOC_ARM_PCREL_BLX:
19042
19043 temp = 1;
19044 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19045 && fixP->fx_addsy
19046 && !S_IS_EXTERNAL (fixP->fx_addsy)
19047 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19048 && ARM_IS_FUNC (fixP->fx_addsy))
19049 {
19050 /* Flip the blx to a bl and warn. */
19051 const char *name = S_GET_NAME (fixP->fx_addsy);
19052 newval = 0xeb000000;
19053 as_warn_where (fixP->fx_file, fixP->fx_line,
19054 _("blx to '%s' an ARM ISA state function changed to bl"),
19055 name);
19056 md_number_to_chars (buf, newval, INSN_SIZE);
19057 temp = 3;
19058 fixP->fx_done = 1;
19059 }
19060
19061 #ifdef OBJ_ELF
19062 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
19063 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
19064 #endif
19065
19066 arm_branch_common:
19067 /* We are going to store value (shifted right by two) in the
19068 instruction, in a 24 bit, signed field. Bits 26 through 32 either
19069 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
19070 also be be clear. */
19071 if (value & temp)
19072 as_bad_where (fixP->fx_file, fixP->fx_line,
19073 _("misaligned branch destination"));
19074 if ((value & (offsetT)0xfe000000) != (offsetT)0
19075 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
19076 as_bad_where (fixP->fx_file, fixP->fx_line,
19077 _("branch out of range"));
19078
19079 if (fixP->fx_done || !seg->use_rela_p)
19080 {
19081 newval = md_chars_to_number (buf, INSN_SIZE);
19082 newval |= (value >> 2) & 0x00ffffff;
19083 /* Set the H bit on BLX instructions. */
19084 if (temp == 1)
19085 {
19086 if (value & 2)
19087 newval |= 0x01000000;
19088 else
19089 newval &= ~0x01000000;
19090 }
19091 md_number_to_chars (buf, newval, INSN_SIZE);
19092 }
19093 break;
19094
19095 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
19096 /* CBZ can only branch forward. */
19097
19098 /* Attempts to use CBZ to branch to the next instruction
19099 (which, strictly speaking, are prohibited) will be turned into
19100 no-ops.
19101
19102 FIXME: It may be better to remove the instruction completely and
19103 perform relaxation. */
19104 if (value == -2)
19105 {
19106 newval = md_chars_to_number (buf, THUMB_SIZE);
19107 newval = 0xbf00; /* NOP encoding T1 */
19108 md_number_to_chars (buf, newval, THUMB_SIZE);
19109 }
19110 else
19111 {
19112 if (value & ~0x7e)
19113 as_bad_where (fixP->fx_file, fixP->fx_line,
19114 _("branch out of range"));
19115
19116 if (fixP->fx_done || !seg->use_rela_p)
19117 {
19118 newval = md_chars_to_number (buf, THUMB_SIZE);
19119 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
19120 md_number_to_chars (buf, newval, THUMB_SIZE);
19121 }
19122 }
19123 break;
19124
19125 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
19126 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
19127 as_bad_where (fixP->fx_file, fixP->fx_line,
19128 _("branch out of range"));
19129
19130 if (fixP->fx_done || !seg->use_rela_p)
19131 {
19132 newval = md_chars_to_number (buf, THUMB_SIZE);
19133 newval |= (value & 0x1ff) >> 1;
19134 md_number_to_chars (buf, newval, THUMB_SIZE);
19135 }
19136 break;
19137
19138 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
19139 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
19140 as_bad_where (fixP->fx_file, fixP->fx_line,
19141 _("branch out of range"));
19142
19143 if (fixP->fx_done || !seg->use_rela_p)
19144 {
19145 newval = md_chars_to_number (buf, THUMB_SIZE);
19146 newval |= (value & 0xfff) >> 1;
19147 md_number_to_chars (buf, newval, THUMB_SIZE);
19148 }
19149 break;
19150
19151 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19152 if (fixP->fx_addsy
19153 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19154 && !S_IS_EXTERNAL (fixP->fx_addsy)
19155 && S_IS_DEFINED (fixP->fx_addsy)
19156 && ARM_IS_FUNC (fixP->fx_addsy)
19157 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19158 {
19159 /* Force a relocation for a branch 20 bits wide. */
19160 fixP->fx_done = 0;
19161 }
19162 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
19163 as_bad_where (fixP->fx_file, fixP->fx_line,
19164 _("conditional branch out of range"));
19165
19166 if (fixP->fx_done || !seg->use_rela_p)
19167 {
19168 offsetT newval2;
19169 addressT S, J1, J2, lo, hi;
19170
19171 S = (value & 0x00100000) >> 20;
19172 J2 = (value & 0x00080000) >> 19;
19173 J1 = (value & 0x00040000) >> 18;
19174 hi = (value & 0x0003f000) >> 12;
19175 lo = (value & 0x00000ffe) >> 1;
19176
19177 newval = md_chars_to_number (buf, THUMB_SIZE);
19178 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19179 newval |= (S << 10) | hi;
19180 newval2 |= (J1 << 13) | (J2 << 11) | lo;
19181 md_number_to_chars (buf, newval, THUMB_SIZE);
19182 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19183 }
19184 break;
19185
19186 case BFD_RELOC_THUMB_PCREL_BLX:
19187
19188 /* If there is a blx from a thumb state function to
19189 another thumb function flip this to a bl and warn
19190 about it. */
19191
19192 if (fixP->fx_addsy
19193 && S_IS_DEFINED (fixP->fx_addsy)
19194 && !S_IS_EXTERNAL (fixP->fx_addsy)
19195 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19196 && THUMB_IS_FUNC (fixP->fx_addsy))
19197 {
19198 const char *name = S_GET_NAME (fixP->fx_addsy);
19199 as_warn_where (fixP->fx_file, fixP->fx_line,
19200 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
19201 name);
19202 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19203 newval = newval | 0x1000;
19204 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
19205 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
19206 fixP->fx_done = 1;
19207 }
19208
19209
19210 goto thumb_bl_common;
19211
19212 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19213
19214 /* A bl from Thumb state ISA to an internal ARM state function
19215 is converted to a blx. */
19216 if (fixP->fx_addsy
19217 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19218 && !S_IS_EXTERNAL (fixP->fx_addsy)
19219 && S_IS_DEFINED (fixP->fx_addsy)
19220 && ARM_IS_FUNC (fixP->fx_addsy)
19221 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19222 {
19223 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19224 newval = newval & ~0x1000;
19225 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
19226 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
19227 fixP->fx_done = 1;
19228 }
19229
19230 thumb_bl_common:
19231
19232 #ifdef OBJ_ELF
19233 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
19234 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19235 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
19236 #endif
19237
19238 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
19239 as_bad_where (fixP->fx_file, fixP->fx_line,
19240 _("branch out of range"));
19241
19242 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19243 /* For a BLX instruction, make sure that the relocation is rounded up
19244 to a word boundary. This follows the semantics of the instruction
19245 which specifies that bit 1 of the target address will come from bit
19246 1 of the base address. */
19247 value = (value + 1) & ~ 1;
19248
19249 if (fixP->fx_done || !seg->use_rela_p)
19250 {
19251 offsetT newval2;
19252
19253 newval = md_chars_to_number (buf, THUMB_SIZE);
19254 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19255 newval |= (value & 0x7fffff) >> 12;
19256 newval2 |= (value & 0xfff) >> 1;
19257 md_number_to_chars (buf, newval, THUMB_SIZE);
19258 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19259 }
19260 break;
19261
19262 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19263 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
19264 as_bad_where (fixP->fx_file, fixP->fx_line,
19265 _("branch out of range"));
19266
19267 if (fixP->fx_done || !seg->use_rela_p)
19268 {
19269 offsetT newval2;
19270 addressT S, I1, I2, lo, hi;
19271
19272 S = (value & 0x01000000) >> 24;
19273 I1 = (value & 0x00800000) >> 23;
19274 I2 = (value & 0x00400000) >> 22;
19275 hi = (value & 0x003ff000) >> 12;
19276 lo = (value & 0x00000ffe) >> 1;
19277
19278 I1 = !(I1 ^ S);
19279 I2 = !(I2 ^ S);
19280
19281 newval = md_chars_to_number (buf, THUMB_SIZE);
19282 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19283 newval |= (S << 10) | hi;
19284 newval2 |= (I1 << 13) | (I2 << 11) | lo;
19285 md_number_to_chars (buf, newval, THUMB_SIZE);
19286 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19287 }
19288 break;
19289
19290 case BFD_RELOC_8:
19291 if (fixP->fx_done || !seg->use_rela_p)
19292 md_number_to_chars (buf, value, 1);
19293 break;
19294
19295 case BFD_RELOC_16:
19296 if (fixP->fx_done || !seg->use_rela_p)
19297 md_number_to_chars (buf, value, 2);
19298 break;
19299
19300 #ifdef OBJ_ELF
19301 case BFD_RELOC_ARM_TLS_GD32:
19302 case BFD_RELOC_ARM_TLS_LE32:
19303 case BFD_RELOC_ARM_TLS_IE32:
19304 case BFD_RELOC_ARM_TLS_LDM32:
19305 case BFD_RELOC_ARM_TLS_LDO32:
19306 S_SET_THREAD_LOCAL (fixP->fx_addsy);
19307 /* fall through */
19308
19309 case BFD_RELOC_ARM_GOT32:
19310 case BFD_RELOC_ARM_GOTOFF:
19311 case BFD_RELOC_ARM_TARGET2:
19312 if (fixP->fx_done || !seg->use_rela_p)
19313 md_number_to_chars (buf, 0, 4);
19314 break;
19315 #endif
19316
19317 case BFD_RELOC_RVA:
19318 case BFD_RELOC_32:
19319 case BFD_RELOC_ARM_TARGET1:
19320 case BFD_RELOC_ARM_ROSEGREL32:
19321 case BFD_RELOC_ARM_SBREL32:
19322 case BFD_RELOC_32_PCREL:
19323 #ifdef TE_PE
19324 case BFD_RELOC_32_SECREL:
19325 #endif
19326 if (fixP->fx_done || !seg->use_rela_p)
19327 #ifdef TE_WINCE
19328 /* For WinCE we only do this for pcrel fixups. */
19329 if (fixP->fx_done || fixP->fx_pcrel)
19330 #endif
19331 md_number_to_chars (buf, value, 4);
19332 break;
19333
19334 #ifdef OBJ_ELF
19335 case BFD_RELOC_ARM_PREL31:
19336 if (fixP->fx_done || !seg->use_rela_p)
19337 {
19338 newval = md_chars_to_number (buf, 4) & 0x80000000;
19339 if ((value ^ (value >> 1)) & 0x40000000)
19340 {
19341 as_bad_where (fixP->fx_file, fixP->fx_line,
19342 _("rel31 relocation overflow"));
19343 }
19344 newval |= value & 0x7fffffff;
19345 md_number_to_chars (buf, newval, 4);
19346 }
19347 break;
19348 #endif
19349
19350 case BFD_RELOC_ARM_CP_OFF_IMM:
19351 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19352 if (value < -1023 || value > 1023 || (value & 3))
19353 as_bad_where (fixP->fx_file, fixP->fx_line,
19354 _("co-processor offset out of range"));
19355 cp_off_common:
19356 sign = value >= 0;
19357 if (value < 0)
19358 value = -value;
19359 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19360 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19361 newval = md_chars_to_number (buf, INSN_SIZE);
19362 else
19363 newval = get_thumb32_insn (buf);
19364 newval &= 0xff7fff00;
19365 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
19366 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19367 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19368 md_number_to_chars (buf, newval, INSN_SIZE);
19369 else
19370 put_thumb32_insn (buf, newval);
19371 break;
19372
19373 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
19374 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
19375 if (value < -255 || value > 255)
19376 as_bad_where (fixP->fx_file, fixP->fx_line,
19377 _("co-processor offset out of range"));
19378 value *= 4;
19379 goto cp_off_common;
19380
19381 case BFD_RELOC_ARM_THUMB_OFFSET:
19382 newval = md_chars_to_number (buf, THUMB_SIZE);
19383 /* Exactly what ranges, and where the offset is inserted depends
19384 on the type of instruction, we can establish this from the
19385 top 4 bits. */
19386 switch (newval >> 12)
19387 {
19388 case 4: /* PC load. */
19389 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
19390 forced to zero for these loads; md_pcrel_from has already
19391 compensated for this. */
19392 if (value & 3)
19393 as_bad_where (fixP->fx_file, fixP->fx_line,
19394 _("invalid offset, target not word aligned (0x%08lX)"),
19395 (((unsigned long) fixP->fx_frag->fr_address
19396 + (unsigned long) fixP->fx_where) & ~3)
19397 + (unsigned long) value);
19398
19399 if (value & ~0x3fc)
19400 as_bad_where (fixP->fx_file, fixP->fx_line,
19401 _("invalid offset, value too big (0x%08lX)"),
19402 (long) value);
19403
19404 newval |= value >> 2;
19405 break;
19406
19407 case 9: /* SP load/store. */
19408 if (value & ~0x3fc)
19409 as_bad_where (fixP->fx_file, fixP->fx_line,
19410 _("invalid offset, value too big (0x%08lX)"),
19411 (long) value);
19412 newval |= value >> 2;
19413 break;
19414
19415 case 6: /* Word load/store. */
19416 if (value & ~0x7c)
19417 as_bad_where (fixP->fx_file, fixP->fx_line,
19418 _("invalid offset, value too big (0x%08lX)"),
19419 (long) value);
19420 newval |= value << 4; /* 6 - 2. */
19421 break;
19422
19423 case 7: /* Byte load/store. */
19424 if (value & ~0x1f)
19425 as_bad_where (fixP->fx_file, fixP->fx_line,
19426 _("invalid offset, value too big (0x%08lX)"),
19427 (long) value);
19428 newval |= value << 6;
19429 break;
19430
19431 case 8: /* Halfword load/store. */
19432 if (value & ~0x3e)
19433 as_bad_where (fixP->fx_file, fixP->fx_line,
19434 _("invalid offset, value too big (0x%08lX)"),
19435 (long) value);
19436 newval |= value << 5; /* 6 - 1. */
19437 break;
19438
19439 default:
19440 as_bad_where (fixP->fx_file, fixP->fx_line,
19441 "Unable to process relocation for thumb opcode: %lx",
19442 (unsigned long) newval);
19443 break;
19444 }
19445 md_number_to_chars (buf, newval, THUMB_SIZE);
19446 break;
19447
19448 case BFD_RELOC_ARM_THUMB_ADD:
19449 /* This is a complicated relocation, since we use it for all of
19450 the following immediate relocations:
19451
19452 3bit ADD/SUB
19453 8bit ADD/SUB
19454 9bit ADD/SUB SP word-aligned
19455 10bit ADD PC/SP word-aligned
19456
19457 The type of instruction being processed is encoded in the
19458 instruction field:
19459
19460 0x8000 SUB
19461 0x00F0 Rd
19462 0x000F Rs
19463 */
19464 newval = md_chars_to_number (buf, THUMB_SIZE);
19465 {
19466 int rd = (newval >> 4) & 0xf;
19467 int rs = newval & 0xf;
19468 int subtract = !!(newval & 0x8000);
19469
19470 /* Check for HI regs, only very restricted cases allowed:
19471 Adjusting SP, and using PC or SP to get an address. */
19472 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
19473 || (rs > 7 && rs != REG_SP && rs != REG_PC))
19474 as_bad_where (fixP->fx_file, fixP->fx_line,
19475 _("invalid Hi register with immediate"));
19476
19477 /* If value is negative, choose the opposite instruction. */
19478 if (value < 0)
19479 {
19480 value = -value;
19481 subtract = !subtract;
19482 if (value < 0)
19483 as_bad_where (fixP->fx_file, fixP->fx_line,
19484 _("immediate value out of range"));
19485 }
19486
19487 if (rd == REG_SP)
19488 {
19489 if (value & ~0x1fc)
19490 as_bad_where (fixP->fx_file, fixP->fx_line,
19491 _("invalid immediate for stack address calculation"));
19492 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
19493 newval |= value >> 2;
19494 }
19495 else if (rs == REG_PC || rs == REG_SP)
19496 {
19497 if (subtract || value & ~0x3fc)
19498 as_bad_where (fixP->fx_file, fixP->fx_line,
19499 _("invalid immediate for address calculation (value = 0x%08lX)"),
19500 (unsigned long) value);
19501 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
19502 newval |= rd << 8;
19503 newval |= value >> 2;
19504 }
19505 else if (rs == rd)
19506 {
19507 if (value & ~0xff)
19508 as_bad_where (fixP->fx_file, fixP->fx_line,
19509 _("immediate value out of range"));
19510 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
19511 newval |= (rd << 8) | value;
19512 }
19513 else
19514 {
19515 if (value & ~0x7)
19516 as_bad_where (fixP->fx_file, fixP->fx_line,
19517 _("immediate value out of range"));
19518 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
19519 newval |= rd | (rs << 3) | (value << 6);
19520 }
19521 }
19522 md_number_to_chars (buf, newval, THUMB_SIZE);
19523 break;
19524
19525 case BFD_RELOC_ARM_THUMB_IMM:
19526 newval = md_chars_to_number (buf, THUMB_SIZE);
19527 if (value < 0 || value > 255)
19528 as_bad_where (fixP->fx_file, fixP->fx_line,
19529 _("invalid immediate: %ld is out of range"),
19530 (long) value);
19531 newval |= value;
19532 md_number_to_chars (buf, newval, THUMB_SIZE);
19533 break;
19534
19535 case BFD_RELOC_ARM_THUMB_SHIFT:
19536 /* 5bit shift value (0..32). LSL cannot take 32. */
19537 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
19538 temp = newval & 0xf800;
19539 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
19540 as_bad_where (fixP->fx_file, fixP->fx_line,
19541 _("invalid shift value: %ld"), (long) value);
19542 /* Shifts of zero must be encoded as LSL. */
19543 if (value == 0)
19544 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
19545 /* Shifts of 32 are encoded as zero. */
19546 else if (value == 32)
19547 value = 0;
19548 newval |= value << 6;
19549 md_number_to_chars (buf, newval, THUMB_SIZE);
19550 break;
19551
19552 case BFD_RELOC_VTABLE_INHERIT:
19553 case BFD_RELOC_VTABLE_ENTRY:
19554 fixP->fx_done = 0;
19555 return;
19556
19557 case BFD_RELOC_ARM_MOVW:
19558 case BFD_RELOC_ARM_MOVT:
19559 case BFD_RELOC_ARM_THUMB_MOVW:
19560 case BFD_RELOC_ARM_THUMB_MOVT:
19561 if (fixP->fx_done || !seg->use_rela_p)
19562 {
19563 /* REL format relocations are limited to a 16-bit addend. */
19564 if (!fixP->fx_done)
19565 {
19566 if (value < -0x8000 || value > 0x7fff)
19567 as_bad_where (fixP->fx_file, fixP->fx_line,
19568 _("offset out of range"));
19569 }
19570 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19571 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19572 {
19573 value >>= 16;
19574 }
19575
19576 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19577 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19578 {
19579 newval = get_thumb32_insn (buf);
19580 newval &= 0xfbf08f00;
19581 newval |= (value & 0xf000) << 4;
19582 newval |= (value & 0x0800) << 15;
19583 newval |= (value & 0x0700) << 4;
19584 newval |= (value & 0x00ff);
19585 put_thumb32_insn (buf, newval);
19586 }
19587 else
19588 {
19589 newval = md_chars_to_number (buf, 4);
19590 newval &= 0xfff0f000;
19591 newval |= value & 0x0fff;
19592 newval |= (value & 0xf000) << 4;
19593 md_number_to_chars (buf, newval, 4);
19594 }
19595 }
19596 return;
19597
19598 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19599 case BFD_RELOC_ARM_ALU_PC_G0:
19600 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19601 case BFD_RELOC_ARM_ALU_PC_G1:
19602 case BFD_RELOC_ARM_ALU_PC_G2:
19603 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19604 case BFD_RELOC_ARM_ALU_SB_G0:
19605 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19606 case BFD_RELOC_ARM_ALU_SB_G1:
19607 case BFD_RELOC_ARM_ALU_SB_G2:
19608 assert (!fixP->fx_done);
19609 if (!seg->use_rela_p)
19610 {
19611 bfd_vma insn;
19612 bfd_vma encoded_addend;
19613 bfd_vma addend_abs = abs (value);
19614
19615 /* Check that the absolute value of the addend can be
19616 expressed as an 8-bit constant plus a rotation. */
19617 encoded_addend = encode_arm_immediate (addend_abs);
19618 if (encoded_addend == (unsigned int) FAIL)
19619 as_bad_where (fixP->fx_file, fixP->fx_line,
19620 _("the offset 0x%08lX is not representable"),
19621 (unsigned long) addend_abs);
19622
19623 /* Extract the instruction. */
19624 insn = md_chars_to_number (buf, INSN_SIZE);
19625
19626 /* If the addend is positive, use an ADD instruction.
19627 Otherwise use a SUB. Take care not to destroy the S bit. */
19628 insn &= 0xff1fffff;
19629 if (value < 0)
19630 insn |= 1 << 22;
19631 else
19632 insn |= 1 << 23;
19633
19634 /* Place the encoded addend into the first 12 bits of the
19635 instruction. */
19636 insn &= 0xfffff000;
19637 insn |= encoded_addend;
19638
19639 /* Update the instruction. */
19640 md_number_to_chars (buf, insn, INSN_SIZE);
19641 }
19642 break;
19643
19644 case BFD_RELOC_ARM_LDR_PC_G0:
19645 case BFD_RELOC_ARM_LDR_PC_G1:
19646 case BFD_RELOC_ARM_LDR_PC_G2:
19647 case BFD_RELOC_ARM_LDR_SB_G0:
19648 case BFD_RELOC_ARM_LDR_SB_G1:
19649 case BFD_RELOC_ARM_LDR_SB_G2:
19650 assert (!fixP->fx_done);
19651 if (!seg->use_rela_p)
19652 {
19653 bfd_vma insn;
19654 bfd_vma addend_abs = abs (value);
19655
19656 /* Check that the absolute value of the addend can be
19657 encoded in 12 bits. */
19658 if (addend_abs >= 0x1000)
19659 as_bad_where (fixP->fx_file, fixP->fx_line,
19660 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
19661 (unsigned long) addend_abs);
19662
19663 /* Extract the instruction. */
19664 insn = md_chars_to_number (buf, INSN_SIZE);
19665
19666 /* If the addend is negative, clear bit 23 of the instruction.
19667 Otherwise set it. */
19668 if (value < 0)
19669 insn &= ~(1 << 23);
19670 else
19671 insn |= 1 << 23;
19672
19673 /* Place the absolute value of the addend into the first 12 bits
19674 of the instruction. */
19675 insn &= 0xfffff000;
19676 insn |= addend_abs;
19677
19678 /* Update the instruction. */
19679 md_number_to_chars (buf, insn, INSN_SIZE);
19680 }
19681 break;
19682
19683 case BFD_RELOC_ARM_LDRS_PC_G0:
19684 case BFD_RELOC_ARM_LDRS_PC_G1:
19685 case BFD_RELOC_ARM_LDRS_PC_G2:
19686 case BFD_RELOC_ARM_LDRS_SB_G0:
19687 case BFD_RELOC_ARM_LDRS_SB_G1:
19688 case BFD_RELOC_ARM_LDRS_SB_G2:
19689 assert (!fixP->fx_done);
19690 if (!seg->use_rela_p)
19691 {
19692 bfd_vma insn;
19693 bfd_vma addend_abs = abs (value);
19694
19695 /* Check that the absolute value of the addend can be
19696 encoded in 8 bits. */
19697 if (addend_abs >= 0x100)
19698 as_bad_where (fixP->fx_file, fixP->fx_line,
19699 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
19700 (unsigned long) addend_abs);
19701
19702 /* Extract the instruction. */
19703 insn = md_chars_to_number (buf, INSN_SIZE);
19704
19705 /* If the addend is negative, clear bit 23 of the instruction.
19706 Otherwise set it. */
19707 if (value < 0)
19708 insn &= ~(1 << 23);
19709 else
19710 insn |= 1 << 23;
19711
19712 /* Place the first four bits of the absolute value of the addend
19713 into the first 4 bits of the instruction, and the remaining
19714 four into bits 8 .. 11. */
19715 insn &= 0xfffff0f0;
19716 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
19717
19718 /* Update the instruction. */
19719 md_number_to_chars (buf, insn, INSN_SIZE);
19720 }
19721 break;
19722
19723 case BFD_RELOC_ARM_LDC_PC_G0:
19724 case BFD_RELOC_ARM_LDC_PC_G1:
19725 case BFD_RELOC_ARM_LDC_PC_G2:
19726 case BFD_RELOC_ARM_LDC_SB_G0:
19727 case BFD_RELOC_ARM_LDC_SB_G1:
19728 case BFD_RELOC_ARM_LDC_SB_G2:
19729 assert (!fixP->fx_done);
19730 if (!seg->use_rela_p)
19731 {
19732 bfd_vma insn;
19733 bfd_vma addend_abs = abs (value);
19734
19735 /* Check that the absolute value of the addend is a multiple of
19736 four and, when divided by four, fits in 8 bits. */
19737 if (addend_abs & 0x3)
19738 as_bad_where (fixP->fx_file, fixP->fx_line,
19739 _("bad offset 0x%08lX (must be word-aligned)"),
19740 (unsigned long) addend_abs);
19741
19742 if ((addend_abs >> 2) > 0xff)
19743 as_bad_where (fixP->fx_file, fixP->fx_line,
19744 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
19745 (unsigned long) addend_abs);
19746
19747 /* Extract the instruction. */
19748 insn = md_chars_to_number (buf, INSN_SIZE);
19749
19750 /* If the addend is negative, clear bit 23 of the instruction.
19751 Otherwise set it. */
19752 if (value < 0)
19753 insn &= ~(1 << 23);
19754 else
19755 insn |= 1 << 23;
19756
19757 /* Place the addend (divided by four) into the first eight
19758 bits of the instruction. */
19759 insn &= 0xfffffff0;
19760 insn |= addend_abs >> 2;
19761
19762 /* Update the instruction. */
19763 md_number_to_chars (buf, insn, INSN_SIZE);
19764 }
19765 break;
19766
19767 case BFD_RELOC_ARM_V4BX:
19768 /* This will need to go in the object file. */
19769 fixP->fx_done = 0;
19770 break;
19771
19772 case BFD_RELOC_UNUSED:
19773 default:
19774 as_bad_where (fixP->fx_file, fixP->fx_line,
19775 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19776 }
19777 }
19778
19779 /* Translate internal representation of relocation info to BFD target
19780 format. */
19781
19782 arelent *
19783 tc_gen_reloc (asection *section, fixS *fixp)
19784 {
19785 arelent * reloc;
19786 bfd_reloc_code_real_type code;
19787
19788 reloc = xmalloc (sizeof (arelent));
19789
19790 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19791 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19792 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
19793
19794 if (fixp->fx_pcrel)
19795 {
19796 if (section->use_rela_p)
19797 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19798 else
19799 fixp->fx_offset = reloc->address;
19800 }
19801 reloc->addend = fixp->fx_offset;
19802
19803 switch (fixp->fx_r_type)
19804 {
19805 case BFD_RELOC_8:
19806 if (fixp->fx_pcrel)
19807 {
19808 code = BFD_RELOC_8_PCREL;
19809 break;
19810 }
19811
19812 case BFD_RELOC_16:
19813 if (fixp->fx_pcrel)
19814 {
19815 code = BFD_RELOC_16_PCREL;
19816 break;
19817 }
19818
19819 case BFD_RELOC_32:
19820 if (fixp->fx_pcrel)
19821 {
19822 code = BFD_RELOC_32_PCREL;
19823 break;
19824 }
19825
19826 case BFD_RELOC_ARM_MOVW:
19827 if (fixp->fx_pcrel)
19828 {
19829 code = BFD_RELOC_ARM_MOVW_PCREL;
19830 break;
19831 }
19832
19833 case BFD_RELOC_ARM_MOVT:
19834 if (fixp->fx_pcrel)
19835 {
19836 code = BFD_RELOC_ARM_MOVT_PCREL;
19837 break;
19838 }
19839
19840 case BFD_RELOC_ARM_THUMB_MOVW:
19841 if (fixp->fx_pcrel)
19842 {
19843 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19844 break;
19845 }
19846
19847 case BFD_RELOC_ARM_THUMB_MOVT:
19848 if (fixp->fx_pcrel)
19849 {
19850 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19851 break;
19852 }
19853
19854 case BFD_RELOC_NONE:
19855 case BFD_RELOC_ARM_PCREL_BRANCH:
19856 case BFD_RELOC_ARM_PCREL_BLX:
19857 case BFD_RELOC_RVA:
19858 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19859 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19860 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19861 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19862 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19863 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19864 case BFD_RELOC_VTABLE_ENTRY:
19865 case BFD_RELOC_VTABLE_INHERIT:
19866 #ifdef TE_PE
19867 case BFD_RELOC_32_SECREL:
19868 #endif
19869 code = fixp->fx_r_type;
19870 break;
19871
19872 case BFD_RELOC_THUMB_PCREL_BLX:
19873 #ifdef OBJ_ELF
19874 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
19875 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
19876 else
19877 #endif
19878 code = BFD_RELOC_THUMB_PCREL_BLX;
19879 break;
19880
19881 case BFD_RELOC_ARM_LITERAL:
19882 case BFD_RELOC_ARM_HWLITERAL:
19883 /* If this is called then the a literal has
19884 been referenced across a section boundary. */
19885 as_bad_where (fixp->fx_file, fixp->fx_line,
19886 _("literal referenced across section boundary"));
19887 return NULL;
19888
19889 #ifdef OBJ_ELF
19890 case BFD_RELOC_ARM_GOT32:
19891 case BFD_RELOC_ARM_GOTOFF:
19892 case BFD_RELOC_ARM_PLT32:
19893 case BFD_RELOC_ARM_TARGET1:
19894 case BFD_RELOC_ARM_ROSEGREL32:
19895 case BFD_RELOC_ARM_SBREL32:
19896 case BFD_RELOC_ARM_PREL31:
19897 case BFD_RELOC_ARM_TARGET2:
19898 case BFD_RELOC_ARM_TLS_LE32:
19899 case BFD_RELOC_ARM_TLS_LDO32:
19900 case BFD_RELOC_ARM_PCREL_CALL:
19901 case BFD_RELOC_ARM_PCREL_JUMP:
19902 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19903 case BFD_RELOC_ARM_ALU_PC_G0:
19904 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19905 case BFD_RELOC_ARM_ALU_PC_G1:
19906 case BFD_RELOC_ARM_ALU_PC_G2:
19907 case BFD_RELOC_ARM_LDR_PC_G0:
19908 case BFD_RELOC_ARM_LDR_PC_G1:
19909 case BFD_RELOC_ARM_LDR_PC_G2:
19910 case BFD_RELOC_ARM_LDRS_PC_G0:
19911 case BFD_RELOC_ARM_LDRS_PC_G1:
19912 case BFD_RELOC_ARM_LDRS_PC_G2:
19913 case BFD_RELOC_ARM_LDC_PC_G0:
19914 case BFD_RELOC_ARM_LDC_PC_G1:
19915 case BFD_RELOC_ARM_LDC_PC_G2:
19916 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19917 case BFD_RELOC_ARM_ALU_SB_G0:
19918 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19919 case BFD_RELOC_ARM_ALU_SB_G1:
19920 case BFD_RELOC_ARM_ALU_SB_G2:
19921 case BFD_RELOC_ARM_LDR_SB_G0:
19922 case BFD_RELOC_ARM_LDR_SB_G1:
19923 case BFD_RELOC_ARM_LDR_SB_G2:
19924 case BFD_RELOC_ARM_LDRS_SB_G0:
19925 case BFD_RELOC_ARM_LDRS_SB_G1:
19926 case BFD_RELOC_ARM_LDRS_SB_G2:
19927 case BFD_RELOC_ARM_LDC_SB_G0:
19928 case BFD_RELOC_ARM_LDC_SB_G1:
19929 case BFD_RELOC_ARM_LDC_SB_G2:
19930 case BFD_RELOC_ARM_V4BX:
19931 code = fixp->fx_r_type;
19932 break;
19933
19934 case BFD_RELOC_ARM_TLS_GD32:
19935 case BFD_RELOC_ARM_TLS_IE32:
19936 case BFD_RELOC_ARM_TLS_LDM32:
19937 /* BFD will include the symbol's address in the addend.
19938 But we don't want that, so subtract it out again here. */
19939 if (!S_IS_COMMON (fixp->fx_addsy))
19940 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19941 code = fixp->fx_r_type;
19942 break;
19943 #endif
19944
19945 case BFD_RELOC_ARM_IMMEDIATE:
19946 as_bad_where (fixp->fx_file, fixp->fx_line,
19947 _("internal relocation (type: IMMEDIATE) not fixed up"));
19948 return NULL;
19949
19950 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19951 as_bad_where (fixp->fx_file, fixp->fx_line,
19952 _("ADRL used for a symbol not defined in the same file"));
19953 return NULL;
19954
19955 case BFD_RELOC_ARM_OFFSET_IMM:
19956 if (section->use_rela_p)
19957 {
19958 code = fixp->fx_r_type;
19959 break;
19960 }
19961
19962 if (fixp->fx_addsy != NULL
19963 && !S_IS_DEFINED (fixp->fx_addsy)
19964 && S_IS_LOCAL (fixp->fx_addsy))
19965 {
19966 as_bad_where (fixp->fx_file, fixp->fx_line,
19967 _("undefined local label `%s'"),
19968 S_GET_NAME (fixp->fx_addsy));
19969 return NULL;
19970 }
19971
19972 as_bad_where (fixp->fx_file, fixp->fx_line,
19973 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19974 return NULL;
19975
19976 default:
19977 {
19978 char * type;
19979
19980 switch (fixp->fx_r_type)
19981 {
19982 case BFD_RELOC_NONE: type = "NONE"; break;
19983 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19984 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19985 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19986 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19987 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19988 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19989 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19990 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19991 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19992 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19993 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19994 default: type = _("<unknown>"); break;
19995 }
19996 as_bad_where (fixp->fx_file, fixp->fx_line,
19997 _("cannot represent %s relocation in this object file format"),
19998 type);
19999 return NULL;
20000 }
20001 }
20002
20003 #ifdef OBJ_ELF
20004 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
20005 && GOT_symbol
20006 && fixp->fx_addsy == GOT_symbol)
20007 {
20008 code = BFD_RELOC_ARM_GOTPC;
20009 reloc->addend = fixp->fx_offset = reloc->address;
20010 }
20011 #endif
20012
20013 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
20014
20015 if (reloc->howto == NULL)
20016 {
20017 as_bad_where (fixp->fx_file, fixp->fx_line,
20018 _("cannot represent %s relocation in this object file format"),
20019 bfd_get_reloc_code_name (code));
20020 return NULL;
20021 }
20022
20023 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
20024 vtable entry to be used in the relocation's section offset. */
20025 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20026 reloc->address = fixp->fx_offset;
20027
20028 return reloc;
20029 }
20030
20031 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
20032
20033 void
20034 cons_fix_new_arm (fragS * frag,
20035 int where,
20036 int size,
20037 expressionS * exp)
20038 {
20039 bfd_reloc_code_real_type type;
20040 int pcrel = 0;
20041
20042 /* Pick a reloc.
20043 FIXME: @@ Should look at CPU word size. */
20044 switch (size)
20045 {
20046 case 1:
20047 type = BFD_RELOC_8;
20048 break;
20049 case 2:
20050 type = BFD_RELOC_16;
20051 break;
20052 case 4:
20053 default:
20054 type = BFD_RELOC_32;
20055 break;
20056 case 8:
20057 type = BFD_RELOC_64;
20058 break;
20059 }
20060
20061 #ifdef TE_PE
20062 if (exp->X_op == O_secrel)
20063 {
20064 exp->X_op = O_symbol;
20065 type = BFD_RELOC_32_SECREL;
20066 }
20067 #endif
20068
20069 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
20070 }
20071
20072 #if defined (OBJ_COFF)
20073 void
20074 arm_validate_fix (fixS * fixP)
20075 {
20076 /* If the destination of the branch is a defined symbol which does not have
20077 the THUMB_FUNC attribute, then we must be calling a function which has
20078 the (interfacearm) attribute. We look for the Thumb entry point to that
20079 function and change the branch to refer to that function instead. */
20080 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
20081 && fixP->fx_addsy != NULL
20082 && S_IS_DEFINED (fixP->fx_addsy)
20083 && ! THUMB_IS_FUNC (fixP->fx_addsy))
20084 {
20085 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
20086 }
20087 }
20088 #endif
20089
20090
20091 int
20092 arm_force_relocation (struct fix * fixp)
20093 {
20094 #if defined (OBJ_COFF) && defined (TE_PE)
20095 if (fixp->fx_r_type == BFD_RELOC_RVA)
20096 return 1;
20097 #endif
20098
20099 /* In case we have a call or a branch to a function in ARM ISA mode from
20100 a thumb function or vice-versa force the relocation. These relocations
20101 are cleared off for some cores that might have blx and simple transformations
20102 are possible. */
20103
20104 #ifdef OBJ_ELF
20105 switch (fixp->fx_r_type)
20106 {
20107 case BFD_RELOC_ARM_PCREL_JUMP:
20108 case BFD_RELOC_ARM_PCREL_CALL:
20109 case BFD_RELOC_THUMB_PCREL_BLX:
20110 if (THUMB_IS_FUNC (fixp->fx_addsy))
20111 return 1;
20112 break;
20113
20114 case BFD_RELOC_ARM_PCREL_BLX:
20115 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20116 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20117 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20118 if (ARM_IS_FUNC (fixp->fx_addsy))
20119 return 1;
20120 break;
20121
20122 default:
20123 break;
20124 }
20125 #endif
20126
20127 /* Resolve these relocations even if the symbol is extern or weak. */
20128 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
20129 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
20130 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
20131 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
20132 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20133 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
20134 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
20135 return 0;
20136
20137 /* Always leave these relocations for the linker. */
20138 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20139 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20140 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
20141 return 1;
20142
20143 /* Always generate relocations against function symbols. */
20144 if (fixp->fx_r_type == BFD_RELOC_32
20145 && fixp->fx_addsy
20146 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
20147 return 1;
20148
20149 return generic_force_reloc (fixp);
20150 }
20151
20152 #if defined (OBJ_ELF) || defined (OBJ_COFF)
20153 /* Relocations against function names must be left unadjusted,
20154 so that the linker can use this information to generate interworking
20155 stubs. The MIPS version of this function
20156 also prevents relocations that are mips-16 specific, but I do not
20157 know why it does this.
20158
20159 FIXME:
20160 There is one other problem that ought to be addressed here, but
20161 which currently is not: Taking the address of a label (rather
20162 than a function) and then later jumping to that address. Such
20163 addresses also ought to have their bottom bit set (assuming that
20164 they reside in Thumb code), but at the moment they will not. */
20165
20166 bfd_boolean
20167 arm_fix_adjustable (fixS * fixP)
20168 {
20169 if (fixP->fx_addsy == NULL)
20170 return 1;
20171
20172 /* Preserve relocations against symbols with function type. */
20173 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
20174 return 0;
20175
20176 if (THUMB_IS_FUNC (fixP->fx_addsy)
20177 && fixP->fx_subsy == NULL)
20178 return 0;
20179
20180 /* We need the symbol name for the VTABLE entries. */
20181 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
20182 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20183 return 0;
20184
20185 /* Don't allow symbols to be discarded on GOT related relocs. */
20186 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
20187 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
20188 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
20189 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
20190 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
20191 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
20192 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
20193 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
20194 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
20195 return 0;
20196
20197 /* Similarly for group relocations. */
20198 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20199 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20200 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
20201 return 0;
20202
20203 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
20204 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
20205 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20206 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
20207 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
20208 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20209 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
20210 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
20211 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
20212 return 0;
20213
20214 return 1;
20215 }
20216 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
20217
20218 #ifdef OBJ_ELF
20219
20220 const char *
20221 elf32_arm_target_format (void)
20222 {
20223 #ifdef TE_SYMBIAN
20224 return (target_big_endian
20225 ? "elf32-bigarm-symbian"
20226 : "elf32-littlearm-symbian");
20227 #elif defined (TE_VXWORKS)
20228 return (target_big_endian
20229 ? "elf32-bigarm-vxworks"
20230 : "elf32-littlearm-vxworks");
20231 #else
20232 if (target_big_endian)
20233 return "elf32-bigarm";
20234 else
20235 return "elf32-littlearm";
20236 #endif
20237 }
20238
20239 void
20240 armelf_frob_symbol (symbolS * symp,
20241 int * puntp)
20242 {
20243 elf_frob_symbol (symp, puntp);
20244 }
20245 #endif
20246
20247 /* MD interface: Finalization. */
20248
20249 /* A good place to do this, although this was probably not intended
20250 for this kind of use. We need to dump the literal pool before
20251 references are made to a null symbol pointer. */
20252
20253 void
20254 arm_cleanup (void)
20255 {
20256 literal_pool * pool;
20257
20258 for (pool = list_of_pools; pool; pool = pool->next)
20259 {
20260 /* Put it at the end of the relevant section. */
20261 subseg_set (pool->section, pool->sub_section);
20262 #ifdef OBJ_ELF
20263 arm_elf_change_section ();
20264 #endif
20265 s_ltorg (0);
20266 }
20267 }
20268
20269 /* Adjust the symbol table. This marks Thumb symbols as distinct from
20270 ARM ones. */
20271
20272 void
20273 arm_adjust_symtab (void)
20274 {
20275 #ifdef OBJ_COFF
20276 symbolS * sym;
20277
20278 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20279 {
20280 if (ARM_IS_THUMB (sym))
20281 {
20282 if (THUMB_IS_FUNC (sym))
20283 {
20284 /* Mark the symbol as a Thumb function. */
20285 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
20286 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
20287 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
20288
20289 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
20290 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
20291 else
20292 as_bad (_("%s: unexpected function type: %d"),
20293 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
20294 }
20295 else switch (S_GET_STORAGE_CLASS (sym))
20296 {
20297 case C_EXT:
20298 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
20299 break;
20300 case C_STAT:
20301 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
20302 break;
20303 case C_LABEL:
20304 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
20305 break;
20306 default:
20307 /* Do nothing. */
20308 break;
20309 }
20310 }
20311
20312 if (ARM_IS_INTERWORK (sym))
20313 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
20314 }
20315 #endif
20316 #ifdef OBJ_ELF
20317 symbolS * sym;
20318 char bind;
20319
20320 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20321 {
20322 if (ARM_IS_THUMB (sym))
20323 {
20324 elf_symbol_type * elf_sym;
20325
20326 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
20327 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
20328
20329 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
20330 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
20331 {
20332 /* If it's a .thumb_func, declare it as so,
20333 otherwise tag label as .code 16. */
20334 if (THUMB_IS_FUNC (sym))
20335 elf_sym->internal_elf_sym.st_info =
20336 ELF_ST_INFO (bind, STT_ARM_TFUNC);
20337 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20338 elf_sym->internal_elf_sym.st_info =
20339 ELF_ST_INFO (bind, STT_ARM_16BIT);
20340 }
20341 }
20342 }
20343 #endif
20344 }
20345
20346 /* MD interface: Initialization. */
20347
20348 static void
20349 set_constant_flonums (void)
20350 {
20351 int i;
20352
20353 for (i = 0; i < NUM_FLOAT_VALS; i++)
20354 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
20355 abort ();
20356 }
20357
20358 /* Auto-select Thumb mode if it's the only available instruction set for the
20359 given architecture. */
20360
20361 static void
20362 autoselect_thumb_from_cpu_variant (void)
20363 {
20364 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
20365 opcode_select (16);
20366 }
20367
20368 void
20369 md_begin (void)
20370 {
20371 unsigned mach;
20372 unsigned int i;
20373
20374 if ( (arm_ops_hsh = hash_new ()) == NULL
20375 || (arm_cond_hsh = hash_new ()) == NULL
20376 || (arm_shift_hsh = hash_new ()) == NULL
20377 || (arm_psr_hsh = hash_new ()) == NULL
20378 || (arm_v7m_psr_hsh = hash_new ()) == NULL
20379 || (arm_reg_hsh = hash_new ()) == NULL
20380 || (arm_reloc_hsh = hash_new ()) == NULL
20381 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
20382 as_fatal (_("virtual memory exhausted"));
20383
20384 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
20385 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
20386 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
20387 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
20388 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
20389 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
20390 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
20391 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
20392 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
20393 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
20394 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
20395 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
20396 for (i = 0;
20397 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
20398 i++)
20399 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
20400 (void *) (barrier_opt_names + i));
20401 #ifdef OBJ_ELF
20402 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
20403 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
20404 #endif
20405
20406 set_constant_flonums ();
20407
20408 /* Set the cpu variant based on the command-line options. We prefer
20409 -mcpu= over -march= if both are set (as for GCC); and we prefer
20410 -mfpu= over any other way of setting the floating point unit.
20411 Use of legacy options with new options are faulted. */
20412 if (legacy_cpu)
20413 {
20414 if (mcpu_cpu_opt || march_cpu_opt)
20415 as_bad (_("use of old and new-style options to set CPU type"));
20416
20417 mcpu_cpu_opt = legacy_cpu;
20418 }
20419 else if (!mcpu_cpu_opt)
20420 mcpu_cpu_opt = march_cpu_opt;
20421
20422 if (legacy_fpu)
20423 {
20424 if (mfpu_opt)
20425 as_bad (_("use of old and new-style options to set FPU type"));
20426
20427 mfpu_opt = legacy_fpu;
20428 }
20429 else if (!mfpu_opt)
20430 {
20431 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
20432 || defined (TE_NetBSD) || defined (TE_VXWORKS))
20433 /* Some environments specify a default FPU. If they don't, infer it
20434 from the processor. */
20435 if (mcpu_fpu_opt)
20436 mfpu_opt = mcpu_fpu_opt;
20437 else
20438 mfpu_opt = march_fpu_opt;
20439 #else
20440 mfpu_opt = &fpu_default;
20441 #endif
20442 }
20443
20444 if (!mfpu_opt)
20445 {
20446 if (mcpu_cpu_opt != NULL)
20447 mfpu_opt = &fpu_default;
20448 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
20449 mfpu_opt = &fpu_arch_vfp_v2;
20450 else
20451 mfpu_opt = &fpu_arch_fpa;
20452 }
20453
20454 #ifdef CPU_DEFAULT
20455 if (!mcpu_cpu_opt)
20456 {
20457 mcpu_cpu_opt = &cpu_default;
20458 selected_cpu = cpu_default;
20459 }
20460 #else
20461 if (mcpu_cpu_opt)
20462 selected_cpu = *mcpu_cpu_opt;
20463 else
20464 mcpu_cpu_opt = &arm_arch_any;
20465 #endif
20466
20467 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20468
20469 autoselect_thumb_from_cpu_variant ();
20470
20471 arm_arch_used = thumb_arch_used = arm_arch_none;
20472
20473 #if defined OBJ_COFF || defined OBJ_ELF
20474 {
20475 unsigned int flags = 0;
20476
20477 #if defined OBJ_ELF
20478 flags = meabi_flags;
20479
20480 switch (meabi_flags)
20481 {
20482 case EF_ARM_EABI_UNKNOWN:
20483 #endif
20484 /* Set the flags in the private structure. */
20485 if (uses_apcs_26) flags |= F_APCS26;
20486 if (support_interwork) flags |= F_INTERWORK;
20487 if (uses_apcs_float) flags |= F_APCS_FLOAT;
20488 if (pic_code) flags |= F_PIC;
20489 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
20490 flags |= F_SOFT_FLOAT;
20491
20492 switch (mfloat_abi_opt)
20493 {
20494 case ARM_FLOAT_ABI_SOFT:
20495 case ARM_FLOAT_ABI_SOFTFP:
20496 flags |= F_SOFT_FLOAT;
20497 break;
20498
20499 case ARM_FLOAT_ABI_HARD:
20500 if (flags & F_SOFT_FLOAT)
20501 as_bad (_("hard-float conflicts with specified fpu"));
20502 break;
20503 }
20504
20505 /* Using pure-endian doubles (even if soft-float). */
20506 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
20507 flags |= F_VFP_FLOAT;
20508
20509 #if defined OBJ_ELF
20510 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
20511 flags |= EF_ARM_MAVERICK_FLOAT;
20512 break;
20513
20514 case EF_ARM_EABI_VER4:
20515 case EF_ARM_EABI_VER5:
20516 /* No additional flags to set. */
20517 break;
20518
20519 default:
20520 abort ();
20521 }
20522 #endif
20523 bfd_set_private_flags (stdoutput, flags);
20524
20525 /* We have run out flags in the COFF header to encode the
20526 status of ATPCS support, so instead we create a dummy,
20527 empty, debug section called .arm.atpcs. */
20528 if (atpcs)
20529 {
20530 asection * sec;
20531
20532 sec = bfd_make_section (stdoutput, ".arm.atpcs");
20533
20534 if (sec != NULL)
20535 {
20536 bfd_set_section_flags
20537 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
20538 bfd_set_section_size (stdoutput, sec, 0);
20539 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
20540 }
20541 }
20542 }
20543 #endif
20544
20545 /* Record the CPU type as well. */
20546 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
20547 mach = bfd_mach_arm_iWMMXt2;
20548 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
20549 mach = bfd_mach_arm_iWMMXt;
20550 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
20551 mach = bfd_mach_arm_XScale;
20552 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
20553 mach = bfd_mach_arm_ep9312;
20554 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
20555 mach = bfd_mach_arm_5TE;
20556 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
20557 {
20558 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
20559 mach = bfd_mach_arm_5T;
20560 else
20561 mach = bfd_mach_arm_5;
20562 }
20563 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
20564 {
20565 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
20566 mach = bfd_mach_arm_4T;
20567 else
20568 mach = bfd_mach_arm_4;
20569 }
20570 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
20571 mach = bfd_mach_arm_3M;
20572 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
20573 mach = bfd_mach_arm_3;
20574 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
20575 mach = bfd_mach_arm_2a;
20576 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
20577 mach = bfd_mach_arm_2;
20578 else
20579 mach = bfd_mach_arm_unknown;
20580
20581 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
20582 }
20583
20584 /* Command line processing. */
20585
20586 /* md_parse_option
20587 Invocation line includes a switch not recognized by the base assembler.
20588 See if it's a processor-specific option.
20589
20590 This routine is somewhat complicated by the need for backwards
20591 compatibility (since older releases of gcc can't be changed).
20592 The new options try to make the interface as compatible as
20593 possible with GCC.
20594
20595 New options (supported) are:
20596
20597 -mcpu=<cpu name> Assemble for selected processor
20598 -march=<architecture name> Assemble for selected architecture
20599 -mfpu=<fpu architecture> Assemble for selected FPU.
20600 -EB/-mbig-endian Big-endian
20601 -EL/-mlittle-endian Little-endian
20602 -k Generate PIC code
20603 -mthumb Start in Thumb mode
20604 -mthumb-interwork Code supports ARM/Thumb interworking
20605
20606 -m[no-]warn-deprecated Warn about deprecated features
20607
20608 For now we will also provide support for:
20609
20610 -mapcs-32 32-bit Program counter
20611 -mapcs-26 26-bit Program counter
20612 -macps-float Floats passed in FP registers
20613 -mapcs-reentrant Reentrant code
20614 -matpcs
20615 (sometime these will probably be replaced with -mapcs=<list of options>
20616 and -matpcs=<list of options>)
20617
20618 The remaining options are only supported for back-wards compatibility.
20619 Cpu variants, the arm part is optional:
20620 -m[arm]1 Currently not supported.
20621 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
20622 -m[arm]3 Arm 3 processor
20623 -m[arm]6[xx], Arm 6 processors
20624 -m[arm]7[xx][t][[d]m] Arm 7 processors
20625 -m[arm]8[10] Arm 8 processors
20626 -m[arm]9[20][tdmi] Arm 9 processors
20627 -mstrongarm[110[0]] StrongARM processors
20628 -mxscale XScale processors
20629 -m[arm]v[2345[t[e]]] Arm architectures
20630 -mall All (except the ARM1)
20631 FP variants:
20632 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
20633 -mfpe-old (No float load/store multiples)
20634 -mvfpxd VFP Single precision
20635 -mvfp All VFP
20636 -mno-fpu Disable all floating point instructions
20637
20638 The following CPU names are recognized:
20639 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
20640 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
20641 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
20642 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
20643 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
20644 arm10t arm10e, arm1020t, arm1020e, arm10200e,
20645 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
20646
20647 */
20648
20649 const char * md_shortopts = "m:k";
20650
20651 #ifdef ARM_BI_ENDIAN
20652 #define OPTION_EB (OPTION_MD_BASE + 0)
20653 #define OPTION_EL (OPTION_MD_BASE + 1)
20654 #else
20655 #if TARGET_BYTES_BIG_ENDIAN
20656 #define OPTION_EB (OPTION_MD_BASE + 0)
20657 #else
20658 #define OPTION_EL (OPTION_MD_BASE + 1)
20659 #endif
20660 #endif
20661 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
20662
20663 struct option md_longopts[] =
20664 {
20665 #ifdef OPTION_EB
20666 {"EB", no_argument, NULL, OPTION_EB},
20667 #endif
20668 #ifdef OPTION_EL
20669 {"EL", no_argument, NULL, OPTION_EL},
20670 #endif
20671 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
20672 {NULL, no_argument, NULL, 0}
20673 };
20674
20675 size_t md_longopts_size = sizeof (md_longopts);
20676
20677 struct arm_option_table
20678 {
20679 char *option; /* Option name to match. */
20680 char *help; /* Help information. */
20681 int *var; /* Variable to change. */
20682 int value; /* What to change it to. */
20683 char *deprecated; /* If non-null, print this message. */
20684 };
20685
20686 struct arm_option_table arm_opts[] =
20687 {
20688 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
20689 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
20690 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
20691 &support_interwork, 1, NULL},
20692 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
20693 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
20694 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20695 1, NULL},
20696 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20697 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20698 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20699 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20700 NULL},
20701
20702 /* These are recognized by the assembler, but have no affect on code. */
20703 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20704 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
20705
20706 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20707 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20708 &warn_on_deprecated, 0, NULL},
20709 {NULL, NULL, NULL, 0, NULL}
20710 };
20711
20712 struct arm_legacy_option_table
20713 {
20714 char *option; /* Option name to match. */
20715 const arm_feature_set **var; /* Variable to change. */
20716 const arm_feature_set value; /* What to change it to. */
20717 char *deprecated; /* If non-null, print this message. */
20718 };
20719
20720 const struct arm_legacy_option_table arm_legacy_opts[] =
20721 {
20722 /* DON'T add any new processors to this list -- we want the whole list
20723 to go away... Add them to the processors table instead. */
20724 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20725 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20726 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20727 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20728 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20729 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20730 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20731 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20732 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20733 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20734 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20735 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20736 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20737 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20738 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20739 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20740 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20741 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20742 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20743 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20744 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20745 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20746 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20747 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20748 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20749 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20750 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20751 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20752 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20753 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20754 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20755 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20756 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20757 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20758 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20759 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20760 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20761 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20762 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20763 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20764 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20765 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20766 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20767 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20768 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20769 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20770 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20771 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20772 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20773 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20774 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20775 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20776 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20777 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20778 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20779 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20780 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20781 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20782 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20783 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20784 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20785 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20786 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20787 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20788 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20789 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20790 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20791 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20792 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20793 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
20794 N_("use -mcpu=strongarm110")},
20795 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
20796 N_("use -mcpu=strongarm1100")},
20797 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
20798 N_("use -mcpu=strongarm1110")},
20799 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20800 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20801 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
20802
20803 /* Architecture variants -- don't add any more to this list either. */
20804 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20805 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20806 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20807 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20808 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20809 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20810 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20811 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20812 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20813 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20814 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20815 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20816 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20817 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20818 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20819 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20820 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20821 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20822
20823 /* Floating point variants -- don't add any more to this list either. */
20824 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20825 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20826 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20827 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
20828 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
20829
20830 {NULL, NULL, ARM_ARCH_NONE, NULL}
20831 };
20832
20833 struct arm_cpu_option_table
20834 {
20835 char *name;
20836 const arm_feature_set value;
20837 /* For some CPUs we assume an FPU unless the user explicitly sets
20838 -mfpu=... */
20839 const arm_feature_set default_fpu;
20840 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20841 case. */
20842 const char *canonical_name;
20843 };
20844
20845 /* This list should, at a minimum, contain all the cpu names
20846 recognized by GCC. */
20847 static const struct arm_cpu_option_table arm_cpus[] =
20848 {
20849 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20850 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20851 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20852 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20853 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20854 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20855 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20856 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20857 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20858 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20859 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20860 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20861 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20862 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20863 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20864 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20865 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20866 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20867 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20868 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20869 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20870 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20871 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20872 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20873 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20874 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20875 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20876 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20877 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20878 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20879 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20880 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20881 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20882 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20883 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20884 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20885 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20886 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20887 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20888 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20889 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20890 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20891 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20892 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20893 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20894 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20895 /* For V5 or later processors we default to using VFP; but the user
20896 should really set the FPU type explicitly. */
20897 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20898 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20899 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20900 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20901 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20902 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20903 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20904 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20905 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20906 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20907 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20908 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20909 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20910 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20911 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20912 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20913 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20914 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20915 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20916 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20917 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20918 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20919 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20920 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20921 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20922 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20923 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20924 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20925 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20926 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20927 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20928 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20929 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20930 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20931 | FPU_NEON_EXT_V1),
20932 NULL},
20933 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20934 | FPU_NEON_EXT_V1),
20935 NULL},
20936 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20937 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20938 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
20939 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
20940 /* ??? XSCALE is really an architecture. */
20941 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20942 /* ??? iwmmxt is not a processor. */
20943 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20944 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20945 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20946 /* Maverick */
20947 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20948 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20949 };
20950
20951 struct arm_arch_option_table
20952 {
20953 char *name;
20954 const arm_feature_set value;
20955 const arm_feature_set default_fpu;
20956 };
20957
20958 /* This list should, at a minimum, contain all the architecture names
20959 recognized by GCC. */
20960 static const struct arm_arch_option_table arm_archs[] =
20961 {
20962 {"all", ARM_ANY, FPU_ARCH_FPA},
20963 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20964 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20965 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20966 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20967 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20968 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20969 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20970 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20971 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20972 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20973 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20974 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20975 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20976 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20977 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20978 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20979 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20980 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20981 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20982 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20983 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20984 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20985 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20986 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20987 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20988 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
20989 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20990 /* The official spelling of the ARMv7 profile variants is the dashed form.
20991 Accept the non-dashed form for compatibility with old toolchains. */
20992 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20993 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20994 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20995 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20996 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20997 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20998 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20999 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
21000 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
21001 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
21002 };
21003
21004 /* ISA extensions in the co-processor space. */
21005 struct arm_option_cpu_value_table
21006 {
21007 char *name;
21008 const arm_feature_set value;
21009 };
21010
21011 static const struct arm_option_cpu_value_table arm_extensions[] =
21012 {
21013 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
21014 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
21015 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
21016 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
21017 {NULL, ARM_ARCH_NONE}
21018 };
21019
21020 /* This list should, at a minimum, contain all the fpu names
21021 recognized by GCC. */
21022 static const struct arm_option_cpu_value_table arm_fpus[] =
21023 {
21024 {"softfpa", FPU_NONE},
21025 {"fpe", FPU_ARCH_FPE},
21026 {"fpe2", FPU_ARCH_FPE},
21027 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
21028 {"fpa", FPU_ARCH_FPA},
21029 {"fpa10", FPU_ARCH_FPA},
21030 {"fpa11", FPU_ARCH_FPA},
21031 {"arm7500fe", FPU_ARCH_FPA},
21032 {"softvfp", FPU_ARCH_VFP},
21033 {"softvfp+vfp", FPU_ARCH_VFP_V2},
21034 {"vfp", FPU_ARCH_VFP_V2},
21035 {"vfp9", FPU_ARCH_VFP_V2},
21036 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
21037 {"vfp10", FPU_ARCH_VFP_V2},
21038 {"vfp10-r0", FPU_ARCH_VFP_V1},
21039 {"vfpxd", FPU_ARCH_VFP_V1xD},
21040 {"vfpv2", FPU_ARCH_VFP_V2},
21041 {"vfpv3", FPU_ARCH_VFP_V3},
21042 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
21043 {"arm1020t", FPU_ARCH_VFP_V1},
21044 {"arm1020e", FPU_ARCH_VFP_V2},
21045 {"arm1136jfs", FPU_ARCH_VFP_V2},
21046 {"arm1136jf-s", FPU_ARCH_VFP_V2},
21047 {"maverick", FPU_ARCH_MAVERICK},
21048 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
21049 {"neon-fp16", FPU_ARCH_NEON_FP16},
21050 {NULL, ARM_ARCH_NONE}
21051 };
21052
21053 struct arm_option_value_table
21054 {
21055 char *name;
21056 long value;
21057 };
21058
21059 static const struct arm_option_value_table arm_float_abis[] =
21060 {
21061 {"hard", ARM_FLOAT_ABI_HARD},
21062 {"softfp", ARM_FLOAT_ABI_SOFTFP},
21063 {"soft", ARM_FLOAT_ABI_SOFT},
21064 {NULL, 0}
21065 };
21066
21067 #ifdef OBJ_ELF
21068 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
21069 static const struct arm_option_value_table arm_eabis[] =
21070 {
21071 {"gnu", EF_ARM_EABI_UNKNOWN},
21072 {"4", EF_ARM_EABI_VER4},
21073 {"5", EF_ARM_EABI_VER5},
21074 {NULL, 0}
21075 };
21076 #endif
21077
21078 struct arm_long_option_table
21079 {
21080 char * option; /* Substring to match. */
21081 char * help; /* Help information. */
21082 int (* func) (char * subopt); /* Function to decode sub-option. */
21083 char * deprecated; /* If non-null, print this message. */
21084 };
21085
21086 static int
21087 arm_parse_extension (char * str, const arm_feature_set **opt_p)
21088 {
21089 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
21090
21091 /* Copy the feature set, so that we can modify it. */
21092 *ext_set = **opt_p;
21093 *opt_p = ext_set;
21094
21095 while (str != NULL && *str != 0)
21096 {
21097 const struct arm_option_cpu_value_table * opt;
21098 char * ext;
21099 int optlen;
21100
21101 if (*str != '+')
21102 {
21103 as_bad (_("invalid architectural extension"));
21104 return 0;
21105 }
21106
21107 str++;
21108 ext = strchr (str, '+');
21109
21110 if (ext != NULL)
21111 optlen = ext - str;
21112 else
21113 optlen = strlen (str);
21114
21115 if (optlen == 0)
21116 {
21117 as_bad (_("missing architectural extension"));
21118 return 0;
21119 }
21120
21121 for (opt = arm_extensions; opt->name != NULL; opt++)
21122 if (strncmp (opt->name, str, optlen) == 0)
21123 {
21124 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
21125 break;
21126 }
21127
21128 if (opt->name == NULL)
21129 {
21130 as_bad (_("unknown architectural extension `%s'"), str);
21131 return 0;
21132 }
21133
21134 str = ext;
21135 };
21136
21137 return 1;
21138 }
21139
21140 static int
21141 arm_parse_cpu (char * str)
21142 {
21143 const struct arm_cpu_option_table * opt;
21144 char * ext = strchr (str, '+');
21145 int optlen;
21146
21147 if (ext != NULL)
21148 optlen = ext - str;
21149 else
21150 optlen = strlen (str);
21151
21152 if (optlen == 0)
21153 {
21154 as_bad (_("missing cpu name `%s'"), str);
21155 return 0;
21156 }
21157
21158 for (opt = arm_cpus; opt->name != NULL; opt++)
21159 if (strncmp (opt->name, str, optlen) == 0)
21160 {
21161 mcpu_cpu_opt = &opt->value;
21162 mcpu_fpu_opt = &opt->default_fpu;
21163 if (opt->canonical_name)
21164 strcpy (selected_cpu_name, opt->canonical_name);
21165 else
21166 {
21167 int i;
21168 for (i = 0; i < optlen; i++)
21169 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21170 selected_cpu_name[i] = 0;
21171 }
21172
21173 if (ext != NULL)
21174 return arm_parse_extension (ext, &mcpu_cpu_opt);
21175
21176 return 1;
21177 }
21178
21179 as_bad (_("unknown cpu `%s'"), str);
21180 return 0;
21181 }
21182
21183 static int
21184 arm_parse_arch (char * str)
21185 {
21186 const struct arm_arch_option_table *opt;
21187 char *ext = strchr (str, '+');
21188 int optlen;
21189
21190 if (ext != NULL)
21191 optlen = ext - str;
21192 else
21193 optlen = strlen (str);
21194
21195 if (optlen == 0)
21196 {
21197 as_bad (_("missing architecture name `%s'"), str);
21198 return 0;
21199 }
21200
21201 for (opt = arm_archs; opt->name != NULL; opt++)
21202 if (streq (opt->name, str))
21203 {
21204 march_cpu_opt = &opt->value;
21205 march_fpu_opt = &opt->default_fpu;
21206 strcpy (selected_cpu_name, opt->name);
21207
21208 if (ext != NULL)
21209 return arm_parse_extension (ext, &march_cpu_opt);
21210
21211 return 1;
21212 }
21213
21214 as_bad (_("unknown architecture `%s'\n"), str);
21215 return 0;
21216 }
21217
21218 static int
21219 arm_parse_fpu (char * str)
21220 {
21221 const struct arm_option_cpu_value_table * opt;
21222
21223 for (opt = arm_fpus; opt->name != NULL; opt++)
21224 if (streq (opt->name, str))
21225 {
21226 mfpu_opt = &opt->value;
21227 return 1;
21228 }
21229
21230 as_bad (_("unknown floating point format `%s'\n"), str);
21231 return 0;
21232 }
21233
21234 static int
21235 arm_parse_float_abi (char * str)
21236 {
21237 const struct arm_option_value_table * opt;
21238
21239 for (opt = arm_float_abis; opt->name != NULL; opt++)
21240 if (streq (opt->name, str))
21241 {
21242 mfloat_abi_opt = opt->value;
21243 return 1;
21244 }
21245
21246 as_bad (_("unknown floating point abi `%s'\n"), str);
21247 return 0;
21248 }
21249
21250 #ifdef OBJ_ELF
21251 static int
21252 arm_parse_eabi (char * str)
21253 {
21254 const struct arm_option_value_table *opt;
21255
21256 for (opt = arm_eabis; opt->name != NULL; opt++)
21257 if (streq (opt->name, str))
21258 {
21259 meabi_flags = opt->value;
21260 return 1;
21261 }
21262 as_bad (_("unknown EABI `%s'\n"), str);
21263 return 0;
21264 }
21265 #endif
21266
21267 struct arm_long_option_table arm_long_opts[] =
21268 {
21269 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
21270 arm_parse_cpu, NULL},
21271 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
21272 arm_parse_arch, NULL},
21273 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
21274 arm_parse_fpu, NULL},
21275 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
21276 arm_parse_float_abi, NULL},
21277 #ifdef OBJ_ELF
21278 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
21279 arm_parse_eabi, NULL},
21280 #endif
21281 {NULL, NULL, 0, NULL}
21282 };
21283
21284 int
21285 md_parse_option (int c, char * arg)
21286 {
21287 struct arm_option_table *opt;
21288 const struct arm_legacy_option_table *fopt;
21289 struct arm_long_option_table *lopt;
21290
21291 switch (c)
21292 {
21293 #ifdef OPTION_EB
21294 case OPTION_EB:
21295 target_big_endian = 1;
21296 break;
21297 #endif
21298
21299 #ifdef OPTION_EL
21300 case OPTION_EL:
21301 target_big_endian = 0;
21302 break;
21303 #endif
21304
21305 case OPTION_FIX_V4BX:
21306 fix_v4bx = TRUE;
21307 break;
21308
21309 case 'a':
21310 /* Listing option. Just ignore these, we don't support additional
21311 ones. */
21312 return 0;
21313
21314 default:
21315 for (opt = arm_opts; opt->option != NULL; opt++)
21316 {
21317 if (c == opt->option[0]
21318 && ((arg == NULL && opt->option[1] == 0)
21319 || streq (arg, opt->option + 1)))
21320 {
21321 /* If the option is deprecated, tell the user. */
21322 if (warn_on_deprecated && opt->deprecated != NULL)
21323 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21324 arg ? arg : "", _(opt->deprecated));
21325
21326 if (opt->var != NULL)
21327 *opt->var = opt->value;
21328
21329 return 1;
21330 }
21331 }
21332
21333 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
21334 {
21335 if (c == fopt->option[0]
21336 && ((arg == NULL && fopt->option[1] == 0)
21337 || streq (arg, fopt->option + 1)))
21338 {
21339 /* If the option is deprecated, tell the user. */
21340 if (warn_on_deprecated && fopt->deprecated != NULL)
21341 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21342 arg ? arg : "", _(fopt->deprecated));
21343
21344 if (fopt->var != NULL)
21345 *fopt->var = &fopt->value;
21346
21347 return 1;
21348 }
21349 }
21350
21351 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21352 {
21353 /* These options are expected to have an argument. */
21354 if (c == lopt->option[0]
21355 && arg != NULL
21356 && strncmp (arg, lopt->option + 1,
21357 strlen (lopt->option + 1)) == 0)
21358 {
21359 /* If the option is deprecated, tell the user. */
21360 if (warn_on_deprecated && lopt->deprecated != NULL)
21361 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
21362 _(lopt->deprecated));
21363
21364 /* Call the sup-option parser. */
21365 return lopt->func (arg + strlen (lopt->option) - 1);
21366 }
21367 }
21368
21369 return 0;
21370 }
21371
21372 return 1;
21373 }
21374
21375 void
21376 md_show_usage (FILE * fp)
21377 {
21378 struct arm_option_table *opt;
21379 struct arm_long_option_table *lopt;
21380
21381 fprintf (fp, _(" ARM-specific assembler options:\n"));
21382
21383 for (opt = arm_opts; opt->option != NULL; opt++)
21384 if (opt->help != NULL)
21385 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
21386
21387 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21388 if (lopt->help != NULL)
21389 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
21390
21391 #ifdef OPTION_EB
21392 fprintf (fp, _("\
21393 -EB assemble code for a big-endian cpu\n"));
21394 #endif
21395
21396 #ifdef OPTION_EL
21397 fprintf (fp, _("\
21398 -EL assemble code for a little-endian cpu\n"));
21399 #endif
21400
21401 fprintf (fp, _("\
21402 --fix-v4bx Allow BX in ARMv4 code\n"));
21403 }
21404
21405
21406 #ifdef OBJ_ELF
21407 typedef struct
21408 {
21409 int val;
21410 arm_feature_set flags;
21411 } cpu_arch_ver_table;
21412
21413 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
21414 least features first. */
21415 static const cpu_arch_ver_table cpu_arch_ver[] =
21416 {
21417 {1, ARM_ARCH_V4},
21418 {2, ARM_ARCH_V4T},
21419 {3, ARM_ARCH_V5},
21420 {3, ARM_ARCH_V5T},
21421 {4, ARM_ARCH_V5TE},
21422 {5, ARM_ARCH_V5TEJ},
21423 {6, ARM_ARCH_V6},
21424 {7, ARM_ARCH_V6Z},
21425 {9, ARM_ARCH_V6K},
21426 {11, ARM_ARCH_V6M},
21427 {8, ARM_ARCH_V6T2},
21428 {10, ARM_ARCH_V7A},
21429 {10, ARM_ARCH_V7R},
21430 {10, ARM_ARCH_V7M},
21431 {0, ARM_ARCH_NONE}
21432 };
21433
21434 /* Set an attribute if it has not already been set by the user. */
21435 static void
21436 aeabi_set_attribute_int (int tag, int value)
21437 {
21438 if (tag < 1
21439 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21440 || !attributes_set_explicitly[tag])
21441 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
21442 }
21443
21444 static void
21445 aeabi_set_attribute_string (int tag, const char *value)
21446 {
21447 if (tag < 1
21448 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21449 || !attributes_set_explicitly[tag])
21450 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
21451 }
21452
21453 /* Set the public EABI object attributes. */
21454 static void
21455 aeabi_set_public_attributes (void)
21456 {
21457 int arch;
21458 arm_feature_set flags;
21459 arm_feature_set tmp;
21460 const cpu_arch_ver_table *p;
21461
21462 /* Choose the architecture based on the capabilities of the requested cpu
21463 (if any) and/or the instructions actually used. */
21464 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
21465 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
21466 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
21467 /*Allow the user to override the reported architecture. */
21468 if (object_arch)
21469 {
21470 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
21471 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
21472 }
21473
21474 tmp = flags;
21475 arch = 0;
21476 for (p = cpu_arch_ver; p->val; p++)
21477 {
21478 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
21479 {
21480 arch = p->val;
21481 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
21482 }
21483 }
21484
21485 /* Tag_CPU_name. */
21486 if (selected_cpu_name[0])
21487 {
21488 char *p;
21489
21490 p = selected_cpu_name;
21491 if (strncmp (p, "armv", 4) == 0)
21492 {
21493 int i;
21494
21495 p += 4;
21496 for (i = 0; p[i]; i++)
21497 p[i] = TOUPPER (p[i]);
21498 }
21499 aeabi_set_attribute_string (Tag_CPU_name, p);
21500 }
21501 /* Tag_CPU_arch. */
21502 aeabi_set_attribute_int (Tag_CPU_arch, arch);
21503 /* Tag_CPU_arch_profile. */
21504 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
21505 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
21506 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
21507 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
21508 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
21509 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
21510 /* Tag_ARM_ISA_use. */
21511 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
21512 || arch == 0)
21513 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
21514 /* Tag_THUMB_ISA_use. */
21515 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
21516 || arch == 0)
21517 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
21518 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
21519 /* Tag_VFP_arch. */
21520 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
21521 aeabi_set_attribute_int (Tag_VFP_arch, 3);
21522 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
21523 aeabi_set_attribute_int (Tag_VFP_arch, 4);
21524 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
21525 aeabi_set_attribute_int (Tag_VFP_arch, 2);
21526 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
21527 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
21528 aeabi_set_attribute_int (Tag_VFP_arch, 1);
21529 /* Tag_WMMX_arch. */
21530 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
21531 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
21532 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
21533 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
21534 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
21535 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
21536 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
21537 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
21538 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
21539 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
21540 }
21541
21542 /* Add the default contents for the .ARM.attributes section. */
21543 void
21544 arm_md_end (void)
21545 {
21546 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21547 return;
21548
21549 aeabi_set_public_attributes ();
21550 }
21551 #endif /* OBJ_ELF */
21552
21553
21554 /* Parse a .cpu directive. */
21555
21556 static void
21557 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
21558 {
21559 const struct arm_cpu_option_table *opt;
21560 char *name;
21561 char saved_char;
21562
21563 name = input_line_pointer;
21564 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21565 input_line_pointer++;
21566 saved_char = *input_line_pointer;
21567 *input_line_pointer = 0;
21568
21569 /* Skip the first "all" entry. */
21570 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
21571 if (streq (opt->name, name))
21572 {
21573 mcpu_cpu_opt = &opt->value;
21574 selected_cpu = opt->value;
21575 if (opt->canonical_name)
21576 strcpy (selected_cpu_name, opt->canonical_name);
21577 else
21578 {
21579 int i;
21580 for (i = 0; opt->name[i]; i++)
21581 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21582 selected_cpu_name[i] = 0;
21583 }
21584 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21585 *input_line_pointer = saved_char;
21586 demand_empty_rest_of_line ();
21587 return;
21588 }
21589 as_bad (_("unknown cpu `%s'"), name);
21590 *input_line_pointer = saved_char;
21591 ignore_rest_of_line ();
21592 }
21593
21594
21595 /* Parse a .arch directive. */
21596
21597 static void
21598 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
21599 {
21600 const struct arm_arch_option_table *opt;
21601 char saved_char;
21602 char *name;
21603
21604 name = input_line_pointer;
21605 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21606 input_line_pointer++;
21607 saved_char = *input_line_pointer;
21608 *input_line_pointer = 0;
21609
21610 /* Skip the first "all" entry. */
21611 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21612 if (streq (opt->name, name))
21613 {
21614 mcpu_cpu_opt = &opt->value;
21615 selected_cpu = opt->value;
21616 strcpy (selected_cpu_name, opt->name);
21617 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21618 *input_line_pointer = saved_char;
21619 demand_empty_rest_of_line ();
21620 return;
21621 }
21622
21623 as_bad (_("unknown architecture `%s'\n"), name);
21624 *input_line_pointer = saved_char;
21625 ignore_rest_of_line ();
21626 }
21627
21628
21629 /* Parse a .object_arch directive. */
21630
21631 static void
21632 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
21633 {
21634 const struct arm_arch_option_table *opt;
21635 char saved_char;
21636 char *name;
21637
21638 name = input_line_pointer;
21639 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21640 input_line_pointer++;
21641 saved_char = *input_line_pointer;
21642 *input_line_pointer = 0;
21643
21644 /* Skip the first "all" entry. */
21645 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21646 if (streq (opt->name, name))
21647 {
21648 object_arch = &opt->value;
21649 *input_line_pointer = saved_char;
21650 demand_empty_rest_of_line ();
21651 return;
21652 }
21653
21654 as_bad (_("unknown architecture `%s'\n"), name);
21655 *input_line_pointer = saved_char;
21656 ignore_rest_of_line ();
21657 }
21658
21659 /* Parse a .fpu directive. */
21660
21661 static void
21662 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
21663 {
21664 const struct arm_option_cpu_value_table *opt;
21665 char saved_char;
21666 char *name;
21667
21668 name = input_line_pointer;
21669 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21670 input_line_pointer++;
21671 saved_char = *input_line_pointer;
21672 *input_line_pointer = 0;
21673
21674 for (opt = arm_fpus; opt->name != NULL; opt++)
21675 if (streq (opt->name, name))
21676 {
21677 mfpu_opt = &opt->value;
21678 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21679 *input_line_pointer = saved_char;
21680 demand_empty_rest_of_line ();
21681 return;
21682 }
21683
21684 as_bad (_("unknown floating point format `%s'\n"), name);
21685 *input_line_pointer = saved_char;
21686 ignore_rest_of_line ();
21687 }
21688
21689 /* Copy symbol information. */
21690
21691 void
21692 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
21693 {
21694 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
21695 }
21696
21697 #ifdef OBJ_ELF
21698 /* Given a symbolic attribute NAME, return the proper integer value.
21699 Returns -1 if the attribute is not known. */
21700
21701 int
21702 arm_convert_symbolic_attribute (const char *name)
21703 {
21704 static const struct
21705 {
21706 const char * name;
21707 const int tag;
21708 }
21709 attribute_table[] =
21710 {
21711 /* When you modify this table you should
21712 also modify the list in doc/c-arm.texi. */
21713 #define T(tag) {#tag, tag}
21714 T (Tag_CPU_raw_name),
21715 T (Tag_CPU_name),
21716 T (Tag_CPU_arch),
21717 T (Tag_CPU_arch_profile),
21718 T (Tag_ARM_ISA_use),
21719 T (Tag_THUMB_ISA_use),
21720 T (Tag_VFP_arch),
21721 T (Tag_WMMX_arch),
21722 T (Tag_Advanced_SIMD_arch),
21723 T (Tag_PCS_config),
21724 T (Tag_ABI_PCS_R9_use),
21725 T (Tag_ABI_PCS_RW_data),
21726 T (Tag_ABI_PCS_RO_data),
21727 T (Tag_ABI_PCS_GOT_use),
21728 T (Tag_ABI_PCS_wchar_t),
21729 T (Tag_ABI_FP_rounding),
21730 T (Tag_ABI_FP_denormal),
21731 T (Tag_ABI_FP_exceptions),
21732 T (Tag_ABI_FP_user_exceptions),
21733 T (Tag_ABI_FP_number_model),
21734 T (Tag_ABI_align8_needed),
21735 T (Tag_ABI_align8_preserved),
21736 T (Tag_ABI_enum_size),
21737 T (Tag_ABI_HardFP_use),
21738 T (Tag_ABI_VFP_args),
21739 T (Tag_ABI_WMMX_args),
21740 T (Tag_ABI_optimization_goals),
21741 T (Tag_ABI_FP_optimization_goals),
21742 T (Tag_compatibility),
21743 T (Tag_CPU_unaligned_access),
21744 T (Tag_VFP_HP_extension),
21745 T (Tag_ABI_FP_16bit_format),
21746 T (Tag_nodefaults),
21747 T (Tag_also_compatible_with),
21748 T (Tag_conformance),
21749 T (Tag_T2EE_use),
21750 T (Tag_Virtualization_use),
21751 T (Tag_MPextension_use)
21752 #undef T
21753 };
21754 unsigned int i;
21755
21756 if (name == NULL)
21757 return -1;
21758
21759 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
21760 if (strcmp (name, attribute_table[i].name) == 0)
21761 return attribute_table[i].tag;
21762
21763 return -1;
21764 }
21765
21766
21767 /* Apply sym value for relocations only in the case that
21768 they are for local symbols and you have the respective
21769 architectural feature for blx and simple switches. */
21770 int
21771 arm_apply_sym_value (struct fix * fixP)
21772 {
21773 if (fixP->fx_addsy
21774 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21775 && !S_IS_EXTERNAL (fixP->fx_addsy))
21776 {
21777 switch (fixP->fx_r_type)
21778 {
21779 case BFD_RELOC_ARM_PCREL_BLX:
21780 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21781 if (ARM_IS_FUNC (fixP->fx_addsy))
21782 return 1;
21783 break;
21784
21785 case BFD_RELOC_ARM_PCREL_CALL:
21786 case BFD_RELOC_THUMB_PCREL_BLX:
21787 if (THUMB_IS_FUNC (fixP->fx_addsy))
21788 return 1;
21789 break;
21790
21791 default:
21792 break;
21793 }
21794
21795 }
21796 return 0;
21797 }
21798 #endif /* OBJ_ELF */
21799
21800
This page took 0.592318 seconds and 4 git commands to generate.