Power10 VSX load/store rightmost element operations
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35 #include "cpu-arm.h"
36
37 #ifdef OBJ_ELF
38 #include "elf/arm.h"
39 #include "dw2gencfi.h"
40 #endif
41
42 #include "dwarf2dbg.h"
43
44 #ifdef OBJ_ELF
45 /* Must be at least the size of the largest unwind opcode (currently two). */
46 #define ARM_OPCODE_CHUNK_SIZE 8
47
48 /* This structure holds the unwinding state. */
49
50 static struct
51 {
52 symbolS * proc_start;
53 symbolS * table_entry;
54 symbolS * personality_routine;
55 int personality_index;
56 /* The segment containing the function. */
57 segT saved_seg;
58 subsegT saved_subseg;
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes;
61 int opcode_count;
62 int opcode_alloc;
63 /* The number of bytes pushed to the stack. */
64 offsetT frame_size;
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
68 offsetT pending_offset;
69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
70 hold the reg+offset to use when restoring sp from a frame pointer. */
71 offsetT fp_offset;
72 int fp_reg;
73 /* Nonzero if an unwind_setfp directive has been seen. */
74 unsigned fp_used:1;
75 /* Nonzero if the last opcode restores sp from fp_reg. */
76 unsigned sp_restored:1;
77 } unwind;
78
79 /* Whether --fdpic was given. */
80 static int arm_fdpic;
81
82 #endif /* OBJ_ELF */
83
84 /* Results from operand parsing worker functions. */
85
86 typedef enum
87 {
88 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91 } parse_operand_result;
92
93 enum arm_float_abi
94 {
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98 };
99
100 /* Types of processor to assemble for. */
101 #ifndef CPU_DEFAULT
102 /* The code that was here used to select a default CPU depending on compiler
103 pre-defines which were only present when doing native builds, thus
104 changing gas' default behaviour depending upon the build host.
105
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
108 #endif
109
110 /* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112 static bfd_boolean out_of_range_p (offsetT value, offsetT bits)
113 {
114 gas_assert (bits < (offsetT)(sizeof (value) * 8));
115 return (value & ~((1 << bits)-1))
116 && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1));
117 }
118
119 #ifndef FPU_DEFAULT
120 # ifdef TE_LINUX
121 # define FPU_DEFAULT FPU_ARCH_FPA
122 # elif defined (TE_NetBSD)
123 # ifdef OBJ_ELF
124 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
125 # else
126 /* Legacy a.out format. */
127 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
128 # endif
129 # elif defined (TE_VXWORKS)
130 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
131 # else
132 /* For backwards compatibility, default to FPA. */
133 # define FPU_DEFAULT FPU_ARCH_FPA
134 # endif
135 #endif /* ifndef FPU_DEFAULT */
136
137 #define streq(a, b) (strcmp (a, b) == 0)
138
139 /* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
142 static arm_feature_set cpu_variant;
143 /* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
145 static arm_feature_set arm_arch_used;
146 static arm_feature_set thumb_arch_used;
147
148 /* Flags stored in private area of BFD structure. */
149 static int uses_apcs_26 = FALSE;
150 static int atpcs = FALSE;
151 static int support_interwork = FALSE;
152 static int uses_apcs_float = FALSE;
153 static int pic_code = FALSE;
154 static int fix_v4bx = FALSE;
155 /* Warn on using deprecated features. */
156 static int warn_on_deprecated = TRUE;
157 static int warn_on_restrict_it = FALSE;
158
159 /* Understand CodeComposer Studio assembly syntax. */
160 bfd_boolean codecomposer_syntax = FALSE;
161
162 /* Variables that we set while parsing command-line options. Once all
163 options have been read we re-process these values to set the real
164 assembly flags. */
165
166 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
167 instead of -mcpu=arm1). */
168 static const arm_feature_set *legacy_cpu = NULL;
169 static const arm_feature_set *legacy_fpu = NULL;
170
171 /* CPU, extension and FPU feature bits selected by -mcpu. */
172 static const arm_feature_set *mcpu_cpu_opt = NULL;
173 static arm_feature_set *mcpu_ext_opt = NULL;
174 static const arm_feature_set *mcpu_fpu_opt = NULL;
175
176 /* CPU, extension and FPU feature bits selected by -march. */
177 static const arm_feature_set *march_cpu_opt = NULL;
178 static arm_feature_set *march_ext_opt = NULL;
179 static const arm_feature_set *march_fpu_opt = NULL;
180
181 /* Feature bits selected by -mfpu. */
182 static const arm_feature_set *mfpu_opt = NULL;
183
184 /* Constants for known architecture features. */
185 static const arm_feature_set fpu_default = FPU_DEFAULT;
186 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
187 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
188 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
189 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
190 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
191 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
192 #ifdef OBJ_ELF
193 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
194 #endif
195 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
196
197 #ifdef CPU_DEFAULT
198 static const arm_feature_set cpu_default = CPU_DEFAULT;
199 #endif
200
201 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
202 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
203 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
204 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
205 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
206 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
207 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
208 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
209 static const arm_feature_set arm_ext_v4t_5 =
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
211 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
212 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
213 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
214 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
215 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
216 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
217 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
218 /* Only for compatability of hint instructions. */
219 static const arm_feature_set arm_ext_v6k_v6t2 =
220 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
221 static const arm_feature_set arm_ext_v6_notm =
222 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
223 static const arm_feature_set arm_ext_v6_dsp =
224 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
225 static const arm_feature_set arm_ext_barrier =
226 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
227 static const arm_feature_set arm_ext_msr =
228 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
229 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
230 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
231 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
232 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
233 #ifdef OBJ_ELF
234 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
235 #endif
236 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
237 static const arm_feature_set arm_ext_m =
238 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
239 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
240 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
241 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
242 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
243 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
244 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
245 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
246 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
247 static const arm_feature_set arm_ext_v8m_main =
248 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
249 static const arm_feature_set arm_ext_v8_1m_main =
250 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
251 /* Instructions in ARMv8-M only found in M profile architectures. */
252 static const arm_feature_set arm_ext_v8m_m_only =
253 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
254 static const arm_feature_set arm_ext_v6t2_v8m =
255 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
256 /* Instructions shared between ARMv8-A and ARMv8-M. */
257 static const arm_feature_set arm_ext_atomics =
258 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
259 #ifdef OBJ_ELF
260 /* DSP instructions Tag_DSP_extension refers to. */
261 static const arm_feature_set arm_ext_dsp =
262 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
263 #endif
264 static const arm_feature_set arm_ext_ras =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
266 /* FP16 instructions. */
267 static const arm_feature_set arm_ext_fp16 =
268 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
269 static const arm_feature_set arm_ext_fp16_fml =
270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
271 static const arm_feature_set arm_ext_v8_2 =
272 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
273 static const arm_feature_set arm_ext_v8_3 =
274 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
275 static const arm_feature_set arm_ext_sb =
276 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
277 static const arm_feature_set arm_ext_predres =
278 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
279 static const arm_feature_set arm_ext_bf16 =
280 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16);
281 static const arm_feature_set arm_ext_i8mm =
282 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM);
283 static const arm_feature_set arm_ext_crc =
284 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC);
285 static const arm_feature_set arm_ext_cde =
286 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE);
287 static const arm_feature_set arm_ext_cde0 =
288 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE0);
289 static const arm_feature_set arm_ext_cde1 =
290 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE1);
291 static const arm_feature_set arm_ext_cde2 =
292 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE2);
293 static const arm_feature_set arm_ext_cde3 =
294 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE3);
295 static const arm_feature_set arm_ext_cde4 =
296 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE4);
297 static const arm_feature_set arm_ext_cde5 =
298 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE5);
299 static const arm_feature_set arm_ext_cde6 =
300 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE6);
301 static const arm_feature_set arm_ext_cde7 =
302 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE7);
303
304 static const arm_feature_set arm_arch_any = ARM_ANY;
305 static const arm_feature_set fpu_any = FPU_ANY;
306 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
307 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
308 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
309
310 static const arm_feature_set arm_cext_iwmmxt2 =
311 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
312 static const arm_feature_set arm_cext_iwmmxt =
313 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
314 static const arm_feature_set arm_cext_xscale =
315 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
316 static const arm_feature_set arm_cext_maverick =
317 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
318 static const arm_feature_set fpu_fpa_ext_v1 =
319 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
320 static const arm_feature_set fpu_fpa_ext_v2 =
321 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
322 static const arm_feature_set fpu_vfp_ext_v1xd =
323 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
324 static const arm_feature_set fpu_vfp_ext_v1 =
325 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
326 static const arm_feature_set fpu_vfp_ext_v2 =
327 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
328 static const arm_feature_set fpu_vfp_ext_v3xd =
329 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
330 static const arm_feature_set fpu_vfp_ext_v3 =
331 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
332 static const arm_feature_set fpu_vfp_ext_d32 =
333 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
334 static const arm_feature_set fpu_neon_ext_v1 =
335 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
336 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
337 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
338 static const arm_feature_set mve_ext =
339 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE);
340 static const arm_feature_set mve_fp_ext =
341 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE_FP);
342 /* Note: This has more than one bit set, which means using it with
343 mark_feature_used (which returns if *any* of the bits are set in the current
344 cpu variant) can give surprising results. */
345 static const arm_feature_set armv8m_fp =
346 ARM_FEATURE_COPROC (FPU_VFP_V5_SP_D16);
347 #ifdef OBJ_ELF
348 static const arm_feature_set fpu_vfp_fp16 =
349 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
350 static const arm_feature_set fpu_neon_ext_fma =
351 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
352 #endif
353 static const arm_feature_set fpu_vfp_ext_fma =
354 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
355 static const arm_feature_set fpu_vfp_ext_armv8 =
356 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
357 static const arm_feature_set fpu_vfp_ext_armv8xd =
358 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
359 static const arm_feature_set fpu_neon_ext_armv8 =
360 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
361 static const arm_feature_set fpu_crypto_ext_armv8 =
362 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
363 static const arm_feature_set fpu_neon_ext_v8_1 =
364 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
365 static const arm_feature_set fpu_neon_ext_dotprod =
366 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
367
368 static int mfloat_abi_opt = -1;
369 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
370 directive. */
371 static arm_feature_set selected_arch = ARM_ARCH_NONE;
372 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
373 directive. */
374 static arm_feature_set selected_ext = ARM_ARCH_NONE;
375 /* Feature bits selected by the last -mcpu/-march or by the combination of the
376 last .cpu/.arch directive .arch_extension directives since that
377 directive. */
378 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
379 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
380 static arm_feature_set selected_fpu = FPU_NONE;
381 /* Feature bits selected by the last .object_arch directive. */
382 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
383 /* Must be long enough to hold any of the names in arm_cpus. */
384 static const struct arm_ext_table * selected_ctx_ext_table = NULL;
385 static char selected_cpu_name[20];
386
387 extern FLONUM_TYPE generic_floating_point_number;
388
389 /* Return if no cpu was selected on command-line. */
390 static bfd_boolean
391 no_cpu_selected (void)
392 {
393 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
394 }
395
396 #ifdef OBJ_ELF
397 # ifdef EABI_DEFAULT
398 static int meabi_flags = EABI_DEFAULT;
399 # else
400 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
401 # endif
402
403 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
404
405 bfd_boolean
406 arm_is_eabi (void)
407 {
408 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
409 }
410 #endif
411
412 #ifdef OBJ_ELF
413 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
414 symbolS * GOT_symbol;
415 #endif
416
417 /* 0: assemble for ARM,
418 1: assemble for Thumb,
419 2: assemble for Thumb even though target CPU does not support thumb
420 instructions. */
421 static int thumb_mode = 0;
422 /* A value distinct from the possible values for thumb_mode that we
423 can use to record whether thumb_mode has been copied into the
424 tc_frag_data field of a frag. */
425 #define MODE_RECORDED (1 << 4)
426
427 /* Specifies the intrinsic IT insn behavior mode. */
428 enum implicit_it_mode
429 {
430 IMPLICIT_IT_MODE_NEVER = 0x00,
431 IMPLICIT_IT_MODE_ARM = 0x01,
432 IMPLICIT_IT_MODE_THUMB = 0x02,
433 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
434 };
435 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
436
437 /* If unified_syntax is true, we are processing the new unified
438 ARM/Thumb syntax. Important differences from the old ARM mode:
439
440 - Immediate operands do not require a # prefix.
441 - Conditional affixes always appear at the end of the
442 instruction. (For backward compatibility, those instructions
443 that formerly had them in the middle, continue to accept them
444 there.)
445 - The IT instruction may appear, and if it does is validated
446 against subsequent conditional affixes. It does not generate
447 machine code.
448
449 Important differences from the old Thumb mode:
450
451 - Immediate operands do not require a # prefix.
452 - Most of the V6T2 instructions are only available in unified mode.
453 - The .N and .W suffixes are recognized and honored (it is an error
454 if they cannot be honored).
455 - All instructions set the flags if and only if they have an 's' affix.
456 - Conditional affixes may be used. They are validated against
457 preceding IT instructions. Unlike ARM mode, you cannot use a
458 conditional affix except in the scope of an IT instruction. */
459
460 static bfd_boolean unified_syntax = FALSE;
461
462 /* An immediate operand can start with #, and ld*, st*, pld operands
463 can contain [ and ]. We need to tell APP not to elide whitespace
464 before a [, which can appear as the first operand for pld.
465 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
466 const char arm_symbol_chars[] = "#[]{}";
467
468 enum neon_el_type
469 {
470 NT_invtype,
471 NT_untyped,
472 NT_integer,
473 NT_float,
474 NT_poly,
475 NT_signed,
476 NT_bfloat,
477 NT_unsigned
478 };
479
480 struct neon_type_el
481 {
482 enum neon_el_type type;
483 unsigned size;
484 };
485
486 #define NEON_MAX_TYPE_ELS 5
487
488 struct neon_type
489 {
490 struct neon_type_el el[NEON_MAX_TYPE_ELS];
491 unsigned elems;
492 };
493
494 enum pred_instruction_type
495 {
496 OUTSIDE_PRED_INSN,
497 INSIDE_VPT_INSN,
498 INSIDE_IT_INSN,
499 INSIDE_IT_LAST_INSN,
500 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
501 if inside, should be the last one. */
502 NEUTRAL_IT_INSN, /* This could be either inside or outside,
503 i.e. BKPT and NOP. */
504 IT_INSN, /* The IT insn has been parsed. */
505 VPT_INSN, /* The VPT/VPST insn has been parsed. */
506 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
507 a predication code. */
508 MVE_UNPREDICABLE_INSN, /* MVE instruction that is non-predicable. */
509 };
510
511 /* The maximum number of operands we need. */
512 #define ARM_IT_MAX_OPERANDS 6
513 #define ARM_IT_MAX_RELOCS 3
514
515 struct arm_it
516 {
517 const char * error;
518 unsigned long instruction;
519 int size;
520 int size_req;
521 int cond;
522 /* "uncond_value" is set to the value in place of the conditional field in
523 unconditional versions of the instruction, or -1 if nothing is
524 appropriate. */
525 int uncond_value;
526 struct neon_type vectype;
527 /* This does not indicate an actual NEON instruction, only that
528 the mnemonic accepts neon-style type suffixes. */
529 int is_neon;
530 /* Set to the opcode if the instruction needs relaxation.
531 Zero if the instruction is not relaxed. */
532 unsigned long relax;
533 struct
534 {
535 bfd_reloc_code_real_type type;
536 expressionS exp;
537 int pc_rel;
538 } relocs[ARM_IT_MAX_RELOCS];
539
540 enum pred_instruction_type pred_insn_type;
541
542 struct
543 {
544 unsigned reg;
545 signed int imm;
546 struct neon_type_el vectype;
547 unsigned present : 1; /* Operand present. */
548 unsigned isreg : 1; /* Operand was a register. */
549 unsigned immisreg : 2; /* .imm field is a second register.
550 0: imm, 1: gpr, 2: MVE Q-register. */
551 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
552 0) not scalar,
553 1) Neon scalar,
554 2) MVE scalar. */
555 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
556 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
557 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
558 instructions. This allows us to disambiguate ARM <-> vector insns. */
559 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
560 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
561 unsigned isquad : 1; /* Operand is SIMD quad register. */
562 unsigned issingle : 1; /* Operand is VFP single-precision register. */
563 unsigned iszr : 1; /* Operand is ZR register. */
564 unsigned hasreloc : 1; /* Operand has relocation suffix. */
565 unsigned writeback : 1; /* Operand has trailing ! */
566 unsigned preind : 1; /* Preindexed address. */
567 unsigned postind : 1; /* Postindexed address. */
568 unsigned negative : 1; /* Index register was negated. */
569 unsigned shifted : 1; /* Shift applied to operation. */
570 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
571 } operands[ARM_IT_MAX_OPERANDS];
572 };
573
574 static struct arm_it inst;
575
576 #define NUM_FLOAT_VALS 8
577
578 const char * fp_const[] =
579 {
580 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
581 };
582
583 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
584
585 #define FAIL (-1)
586 #define SUCCESS (0)
587
588 #define SUFF_S 1
589 #define SUFF_D 2
590 #define SUFF_E 3
591 #define SUFF_P 4
592
593 #define CP_T_X 0x00008000
594 #define CP_T_Y 0x00400000
595
596 #define CONDS_BIT 0x00100000
597 #define LOAD_BIT 0x00100000
598
599 #define DOUBLE_LOAD_FLAG 0x00000001
600
601 struct asm_cond
602 {
603 const char * template_name;
604 unsigned long value;
605 };
606
607 #define COND_ALWAYS 0xE
608
609 struct asm_psr
610 {
611 const char * template_name;
612 unsigned long field;
613 };
614
615 struct asm_barrier_opt
616 {
617 const char * template_name;
618 unsigned long value;
619 const arm_feature_set arch;
620 };
621
622 /* The bit that distinguishes CPSR and SPSR. */
623 #define SPSR_BIT (1 << 22)
624
625 /* The individual PSR flag bits. */
626 #define PSR_c (1 << 16)
627 #define PSR_x (1 << 17)
628 #define PSR_s (1 << 18)
629 #define PSR_f (1 << 19)
630
631 struct reloc_entry
632 {
633 const char * name;
634 bfd_reloc_code_real_type reloc;
635 };
636
637 enum vfp_reg_pos
638 {
639 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
640 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
641 };
642
643 enum vfp_ldstm_type
644 {
645 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
646 };
647
648 /* Bits for DEFINED field in neon_typed_alias. */
649 #define NTA_HASTYPE 1
650 #define NTA_HASINDEX 2
651
652 struct neon_typed_alias
653 {
654 unsigned char defined;
655 unsigned char index;
656 struct neon_type_el eltype;
657 };
658
659 /* ARM register categories. This includes coprocessor numbers and various
660 architecture extensions' registers. Each entry should have an error message
661 in reg_expected_msgs below. */
662 enum arm_reg_type
663 {
664 REG_TYPE_RN,
665 REG_TYPE_CP,
666 REG_TYPE_CN,
667 REG_TYPE_FN,
668 REG_TYPE_VFS,
669 REG_TYPE_VFD,
670 REG_TYPE_NQ,
671 REG_TYPE_VFSD,
672 REG_TYPE_NDQ,
673 REG_TYPE_NSD,
674 REG_TYPE_NSDQ,
675 REG_TYPE_VFC,
676 REG_TYPE_MVF,
677 REG_TYPE_MVD,
678 REG_TYPE_MVFX,
679 REG_TYPE_MVDX,
680 REG_TYPE_MVAX,
681 REG_TYPE_MQ,
682 REG_TYPE_DSPSC,
683 REG_TYPE_MMXWR,
684 REG_TYPE_MMXWC,
685 REG_TYPE_MMXWCG,
686 REG_TYPE_XSCALE,
687 REG_TYPE_RNB,
688 REG_TYPE_ZR
689 };
690
691 /* Structure for a hash table entry for a register.
692 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
693 information which states whether a vector type or index is specified (for a
694 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
695 struct reg_entry
696 {
697 const char * name;
698 unsigned int number;
699 unsigned char type;
700 unsigned char builtin;
701 struct neon_typed_alias * neon;
702 };
703
704 /* Diagnostics used when we don't get a register of the expected type. */
705 const char * const reg_expected_msgs[] =
706 {
707 [REG_TYPE_RN] = N_("ARM register expected"),
708 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
709 [REG_TYPE_CN] = N_("co-processor register expected"),
710 [REG_TYPE_FN] = N_("FPA register expected"),
711 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
712 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
713 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
714 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
715 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
716 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
717 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
718 " expected"),
719 [REG_TYPE_VFC] = N_("VFP system register expected"),
720 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
721 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
722 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
723 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
724 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
725 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
726 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
727 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
728 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
729 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
730 [REG_TYPE_MQ] = N_("MVE vector register expected"),
731 [REG_TYPE_RNB] = ""
732 };
733
734 /* Some well known registers that we refer to directly elsewhere. */
735 #define REG_R12 12
736 #define REG_SP 13
737 #define REG_LR 14
738 #define REG_PC 15
739
740 /* ARM instructions take 4bytes in the object file, Thumb instructions
741 take 2: */
742 #define INSN_SIZE 4
743
744 struct asm_opcode
745 {
746 /* Basic string to match. */
747 const char * template_name;
748
749 /* Parameters to instruction. */
750 unsigned int operands[8];
751
752 /* Conditional tag - see opcode_lookup. */
753 unsigned int tag : 4;
754
755 /* Basic instruction code. */
756 unsigned int avalue;
757
758 /* Thumb-format instruction code. */
759 unsigned int tvalue;
760
761 /* Which architecture variant provides this instruction. */
762 const arm_feature_set * avariant;
763 const arm_feature_set * tvariant;
764
765 /* Function to call to encode instruction in ARM format. */
766 void (* aencode) (void);
767
768 /* Function to call to encode instruction in Thumb format. */
769 void (* tencode) (void);
770
771 /* Indicates whether this instruction may be vector predicated. */
772 unsigned int mayBeVecPred : 1;
773 };
774
775 /* Defines for various bits that we will want to toggle. */
776 #define INST_IMMEDIATE 0x02000000
777 #define OFFSET_REG 0x02000000
778 #define HWOFFSET_IMM 0x00400000
779 #define SHIFT_BY_REG 0x00000010
780 #define PRE_INDEX 0x01000000
781 #define INDEX_UP 0x00800000
782 #define WRITE_BACK 0x00200000
783 #define LDM_TYPE_2_OR_3 0x00400000
784 #define CPSI_MMOD 0x00020000
785
786 #define LITERAL_MASK 0xf000f000
787 #define OPCODE_MASK 0xfe1fffff
788 #define V4_STR_BIT 0x00000020
789 #define VLDR_VMOV_SAME 0x0040f000
790
791 #define T2_SUBS_PC_LR 0xf3de8f00
792
793 #define DATA_OP_SHIFT 21
794 #define SBIT_SHIFT 20
795
796 #define T2_OPCODE_MASK 0xfe1fffff
797 #define T2_DATA_OP_SHIFT 21
798 #define T2_SBIT_SHIFT 20
799
800 #define A_COND_MASK 0xf0000000
801 #define A_PUSH_POP_OP_MASK 0x0fff0000
802
803 /* Opcodes for pushing/poping registers to/from the stack. */
804 #define A1_OPCODE_PUSH 0x092d0000
805 #define A2_OPCODE_PUSH 0x052d0004
806 #define A2_OPCODE_POP 0x049d0004
807
808 /* Codes to distinguish the arithmetic instructions. */
809 #define OPCODE_AND 0
810 #define OPCODE_EOR 1
811 #define OPCODE_SUB 2
812 #define OPCODE_RSB 3
813 #define OPCODE_ADD 4
814 #define OPCODE_ADC 5
815 #define OPCODE_SBC 6
816 #define OPCODE_RSC 7
817 #define OPCODE_TST 8
818 #define OPCODE_TEQ 9
819 #define OPCODE_CMP 10
820 #define OPCODE_CMN 11
821 #define OPCODE_ORR 12
822 #define OPCODE_MOV 13
823 #define OPCODE_BIC 14
824 #define OPCODE_MVN 15
825
826 #define T2_OPCODE_AND 0
827 #define T2_OPCODE_BIC 1
828 #define T2_OPCODE_ORR 2
829 #define T2_OPCODE_ORN 3
830 #define T2_OPCODE_EOR 4
831 #define T2_OPCODE_ADD 8
832 #define T2_OPCODE_ADC 10
833 #define T2_OPCODE_SBC 11
834 #define T2_OPCODE_SUB 13
835 #define T2_OPCODE_RSB 14
836
837 #define T_OPCODE_MUL 0x4340
838 #define T_OPCODE_TST 0x4200
839 #define T_OPCODE_CMN 0x42c0
840 #define T_OPCODE_NEG 0x4240
841 #define T_OPCODE_MVN 0x43c0
842
843 #define T_OPCODE_ADD_R3 0x1800
844 #define T_OPCODE_SUB_R3 0x1a00
845 #define T_OPCODE_ADD_HI 0x4400
846 #define T_OPCODE_ADD_ST 0xb000
847 #define T_OPCODE_SUB_ST 0xb080
848 #define T_OPCODE_ADD_SP 0xa800
849 #define T_OPCODE_ADD_PC 0xa000
850 #define T_OPCODE_ADD_I8 0x3000
851 #define T_OPCODE_SUB_I8 0x3800
852 #define T_OPCODE_ADD_I3 0x1c00
853 #define T_OPCODE_SUB_I3 0x1e00
854
855 #define T_OPCODE_ASR_R 0x4100
856 #define T_OPCODE_LSL_R 0x4080
857 #define T_OPCODE_LSR_R 0x40c0
858 #define T_OPCODE_ROR_R 0x41c0
859 #define T_OPCODE_ASR_I 0x1000
860 #define T_OPCODE_LSL_I 0x0000
861 #define T_OPCODE_LSR_I 0x0800
862
863 #define T_OPCODE_MOV_I8 0x2000
864 #define T_OPCODE_CMP_I8 0x2800
865 #define T_OPCODE_CMP_LR 0x4280
866 #define T_OPCODE_MOV_HR 0x4600
867 #define T_OPCODE_CMP_HR 0x4500
868
869 #define T_OPCODE_LDR_PC 0x4800
870 #define T_OPCODE_LDR_SP 0x9800
871 #define T_OPCODE_STR_SP 0x9000
872 #define T_OPCODE_LDR_IW 0x6800
873 #define T_OPCODE_STR_IW 0x6000
874 #define T_OPCODE_LDR_IH 0x8800
875 #define T_OPCODE_STR_IH 0x8000
876 #define T_OPCODE_LDR_IB 0x7800
877 #define T_OPCODE_STR_IB 0x7000
878 #define T_OPCODE_LDR_RW 0x5800
879 #define T_OPCODE_STR_RW 0x5000
880 #define T_OPCODE_LDR_RH 0x5a00
881 #define T_OPCODE_STR_RH 0x5200
882 #define T_OPCODE_LDR_RB 0x5c00
883 #define T_OPCODE_STR_RB 0x5400
884
885 #define T_OPCODE_PUSH 0xb400
886 #define T_OPCODE_POP 0xbc00
887
888 #define T_OPCODE_BRANCH 0xe000
889
890 #define THUMB_SIZE 2 /* Size of thumb instruction. */
891 #define THUMB_PP_PC_LR 0x0100
892 #define THUMB_LOAD_BIT 0x0800
893 #define THUMB2_LOAD_BIT 0x00100000
894
895 #define BAD_SYNTAX _("syntax error")
896 #define BAD_ARGS _("bad arguments to instruction")
897 #define BAD_SP _("r13 not allowed here")
898 #define BAD_PC _("r15 not allowed here")
899 #define BAD_ODD _("Odd register not allowed here")
900 #define BAD_EVEN _("Even register not allowed here")
901 #define BAD_COND _("instruction cannot be conditional")
902 #define BAD_OVERLAP _("registers may not be the same")
903 #define BAD_HIREG _("lo register required")
904 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
905 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
906 #define BAD_BRANCH _("branch must be last instruction in IT block")
907 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
908 #define BAD_NO_VPT _("instruction not allowed in VPT block")
909 #define BAD_NOT_IT _("instruction not allowed in IT block")
910 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
911 #define BAD_FPU _("selected FPU does not support instruction")
912 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
913 #define BAD_OUT_VPT \
914 _("vector predicated instruction should be in VPT/VPST block")
915 #define BAD_IT_COND _("incorrect condition in IT block")
916 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
917 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
918 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
919 #define BAD_PC_ADDRESSING \
920 _("cannot use register index with PC-relative addressing")
921 #define BAD_PC_WRITEBACK \
922 _("cannot use writeback with PC-relative addressing")
923 #define BAD_RANGE _("branch out of range")
924 #define BAD_FP16 _("selected processor does not support fp16 instruction")
925 #define BAD_BF16 _("selected processor does not support bf16 instruction")
926 #define BAD_CDE _("selected processor does not support cde instruction")
927 #define BAD_CDE_COPROC _("coprocessor for insn is not enabled for cde")
928 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
929 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
930 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
931 "block")
932 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
933 "block")
934 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
935 " operand")
936 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
937 " operand")
938 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
939 #define BAD_MVE_AUTO \
940 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
941 " use a valid -march or -mcpu option.")
942 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
943 "and source operands makes instruction UNPREDICTABLE")
944 #define BAD_EL_TYPE _("bad element type for instruction")
945 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
946
947 static struct hash_control * arm_ops_hsh;
948 static struct hash_control * arm_cond_hsh;
949 static struct hash_control * arm_vcond_hsh;
950 static struct hash_control * arm_shift_hsh;
951 static struct hash_control * arm_psr_hsh;
952 static struct hash_control * arm_v7m_psr_hsh;
953 static struct hash_control * arm_reg_hsh;
954 static struct hash_control * arm_reloc_hsh;
955 static struct hash_control * arm_barrier_opt_hsh;
956
957 /* Stuff needed to resolve the label ambiguity
958 As:
959 ...
960 label: <insn>
961 may differ from:
962 ...
963 label:
964 <insn> */
965
966 symbolS * last_label_seen;
967 static int label_is_thumb_function_name = FALSE;
968
969 /* Literal pool structure. Held on a per-section
970 and per-sub-section basis. */
971
972 #define MAX_LITERAL_POOL_SIZE 1024
973 typedef struct literal_pool
974 {
975 expressionS literals [MAX_LITERAL_POOL_SIZE];
976 unsigned int next_free_entry;
977 unsigned int id;
978 symbolS * symbol;
979 segT section;
980 subsegT sub_section;
981 #ifdef OBJ_ELF
982 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
983 #endif
984 struct literal_pool * next;
985 unsigned int alignment;
986 } literal_pool;
987
988 /* Pointer to a linked list of literal pools. */
989 literal_pool * list_of_pools = NULL;
990
991 typedef enum asmfunc_states
992 {
993 OUTSIDE_ASMFUNC,
994 WAITING_ASMFUNC_NAME,
995 WAITING_ENDASMFUNC
996 } asmfunc_states;
997
998 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
999
1000 #ifdef OBJ_ELF
1001 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
1002 #else
1003 static struct current_pred now_pred;
1004 #endif
1005
1006 static inline int
1007 now_pred_compatible (int cond)
1008 {
1009 return (cond & ~1) == (now_pred.cc & ~1);
1010 }
1011
1012 static inline int
1013 conditional_insn (void)
1014 {
1015 return inst.cond != COND_ALWAYS;
1016 }
1017
1018 static int in_pred_block (void);
1019
1020 static int handle_pred_state (void);
1021
1022 static void force_automatic_it_block_close (void);
1023
1024 static void it_fsm_post_encode (void);
1025
1026 #define set_pred_insn_type(type) \
1027 do \
1028 { \
1029 inst.pred_insn_type = type; \
1030 if (handle_pred_state () == FAIL) \
1031 return; \
1032 } \
1033 while (0)
1034
1035 #define set_pred_insn_type_nonvoid(type, failret) \
1036 do \
1037 { \
1038 inst.pred_insn_type = type; \
1039 if (handle_pred_state () == FAIL) \
1040 return failret; \
1041 } \
1042 while(0)
1043
1044 #define set_pred_insn_type_last() \
1045 do \
1046 { \
1047 if (inst.cond == COND_ALWAYS) \
1048 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1049 else \
1050 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1051 } \
1052 while (0)
1053
1054 /* Toggle value[pos]. */
1055 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1056
1057 /* Pure syntax. */
1058
1059 /* This array holds the chars that always start a comment. If the
1060 pre-processor is disabled, these aren't very useful. */
1061 char arm_comment_chars[] = "@";
1062
1063 /* This array holds the chars that only start a comment at the beginning of
1064 a line. If the line seems to have the form '# 123 filename'
1065 .line and .file directives will appear in the pre-processed output. */
1066 /* Note that input_file.c hand checks for '#' at the beginning of the
1067 first line of the input file. This is because the compiler outputs
1068 #NO_APP at the beginning of its output. */
1069 /* Also note that comments like this one will always work. */
1070 const char line_comment_chars[] = "#";
1071
1072 char arm_line_separator_chars[] = ";";
1073
1074 /* Chars that can be used to separate mant
1075 from exp in floating point numbers. */
1076 const char EXP_CHARS[] = "eE";
1077
1078 /* Chars that mean this number is a floating point constant. */
1079 /* As in 0f12.456 */
1080 /* or 0d1.2345e12 */
1081
1082 const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1083
1084 /* Prefix characters that indicate the start of an immediate
1085 value. */
1086 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1087
1088 /* Separator character handling. */
1089
1090 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1091
1092 enum fp_16bit_format
1093 {
1094 ARM_FP16_FORMAT_IEEE = 0x1,
1095 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1096 ARM_FP16_FORMAT_DEFAULT = 0x3
1097 };
1098
1099 static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1100
1101
1102 static inline int
1103 skip_past_char (char ** str, char c)
1104 {
1105 /* PR gas/14987: Allow for whitespace before the expected character. */
1106 skip_whitespace (*str);
1107
1108 if (**str == c)
1109 {
1110 (*str)++;
1111 return SUCCESS;
1112 }
1113 else
1114 return FAIL;
1115 }
1116
1117 #define skip_past_comma(str) skip_past_char (str, ',')
1118
1119 /* Arithmetic expressions (possibly involving symbols). */
1120
1121 /* Return TRUE if anything in the expression is a bignum. */
1122
1123 static bfd_boolean
1124 walk_no_bignums (symbolS * sp)
1125 {
1126 if (symbol_get_value_expression (sp)->X_op == O_big)
1127 return TRUE;
1128
1129 if (symbol_get_value_expression (sp)->X_add_symbol)
1130 {
1131 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1132 || (symbol_get_value_expression (sp)->X_op_symbol
1133 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1134 }
1135
1136 return FALSE;
1137 }
1138
1139 static bfd_boolean in_my_get_expression = FALSE;
1140
1141 /* Third argument to my_get_expression. */
1142 #define GE_NO_PREFIX 0
1143 #define GE_IMM_PREFIX 1
1144 #define GE_OPT_PREFIX 2
1145 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1146 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1147 #define GE_OPT_PREFIX_BIG 3
1148
1149 static int
1150 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1151 {
1152 char * save_in;
1153
1154 /* In unified syntax, all prefixes are optional. */
1155 if (unified_syntax)
1156 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1157 : GE_OPT_PREFIX;
1158
1159 switch (prefix_mode)
1160 {
1161 case GE_NO_PREFIX: break;
1162 case GE_IMM_PREFIX:
1163 if (!is_immediate_prefix (**str))
1164 {
1165 inst.error = _("immediate expression requires a # prefix");
1166 return FAIL;
1167 }
1168 (*str)++;
1169 break;
1170 case GE_OPT_PREFIX:
1171 case GE_OPT_PREFIX_BIG:
1172 if (is_immediate_prefix (**str))
1173 (*str)++;
1174 break;
1175 default:
1176 abort ();
1177 }
1178
1179 memset (ep, 0, sizeof (expressionS));
1180
1181 save_in = input_line_pointer;
1182 input_line_pointer = *str;
1183 in_my_get_expression = TRUE;
1184 expression (ep);
1185 in_my_get_expression = FALSE;
1186
1187 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1188 {
1189 /* We found a bad or missing expression in md_operand(). */
1190 *str = input_line_pointer;
1191 input_line_pointer = save_in;
1192 if (inst.error == NULL)
1193 inst.error = (ep->X_op == O_absent
1194 ? _("missing expression") :_("bad expression"));
1195 return 1;
1196 }
1197
1198 /* Get rid of any bignums now, so that we don't generate an error for which
1199 we can't establish a line number later on. Big numbers are never valid
1200 in instructions, which is where this routine is always called. */
1201 if (prefix_mode != GE_OPT_PREFIX_BIG
1202 && (ep->X_op == O_big
1203 || (ep->X_add_symbol
1204 && (walk_no_bignums (ep->X_add_symbol)
1205 || (ep->X_op_symbol
1206 && walk_no_bignums (ep->X_op_symbol))))))
1207 {
1208 inst.error = _("invalid constant");
1209 *str = input_line_pointer;
1210 input_line_pointer = save_in;
1211 return 1;
1212 }
1213
1214 *str = input_line_pointer;
1215 input_line_pointer = save_in;
1216 return SUCCESS;
1217 }
1218
1219 /* Turn a string in input_line_pointer into a floating point constant
1220 of type TYPE, and store the appropriate bytes in *LITP. The number
1221 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1222 returned, or NULL on OK.
1223
1224 Note that fp constants aren't represent in the normal way on the ARM.
1225 In big endian mode, things are as expected. However, in little endian
1226 mode fp constants are big-endian word-wise, and little-endian byte-wise
1227 within the words. For example, (double) 1.1 in big endian mode is
1228 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1229 the byte sequence 99 99 f1 3f 9a 99 99 99.
1230
1231 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1232
1233 const char *
1234 md_atof (int type, char * litP, int * sizeP)
1235 {
1236 int prec;
1237 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1238 char *t;
1239 int i;
1240
1241 switch (type)
1242 {
1243 case 'H':
1244 case 'h':
1245 prec = 1;
1246 break;
1247
1248 /* If this is a bfloat16, then parse it slightly differently, as it
1249 does not follow the IEEE specification for floating point numbers
1250 exactly. */
1251 case 'b':
1252 {
1253 FLONUM_TYPE generic_float;
1254
1255 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
1256
1257 if (t)
1258 input_line_pointer = t;
1259 else
1260 return _("invalid floating point number");
1261
1262 switch (generic_float.sign)
1263 {
1264 /* Is +Inf. */
1265 case 'P':
1266 words[0] = 0x7f80;
1267 break;
1268
1269 /* Is -Inf. */
1270 case 'N':
1271 words[0] = 0xff80;
1272 break;
1273
1274 /* Is NaN. */
1275 /* bfloat16 has two types of NaN - quiet and signalling.
1276 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1277 signalling NaN's have bit[0] == 0 && fraction != 0.
1278 Chosen this specific encoding as it is the same form
1279 as used by other IEEE 754 encodings in GAS. */
1280 case 0:
1281 words[0] = 0x7fff;
1282 break;
1283
1284 default:
1285 break;
1286 }
1287
1288 *sizeP = 2;
1289
1290 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
1291
1292 return NULL;
1293 }
1294 case 'f':
1295 case 'F':
1296 case 's':
1297 case 'S':
1298 prec = 2;
1299 break;
1300
1301 case 'd':
1302 case 'D':
1303 case 'r':
1304 case 'R':
1305 prec = 4;
1306 break;
1307
1308 case 'x':
1309 case 'X':
1310 prec = 5;
1311 break;
1312
1313 case 'p':
1314 case 'P':
1315 prec = 5;
1316 break;
1317
1318 default:
1319 *sizeP = 0;
1320 return _("Unrecognized or unsupported floating point constant");
1321 }
1322
1323 t = atof_ieee (input_line_pointer, type, words);
1324 if (t)
1325 input_line_pointer = t;
1326 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1327
1328 if (target_big_endian || prec == 1)
1329 for (i = 0; i < prec; i++)
1330 {
1331 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1332 litP += sizeof (LITTLENUM_TYPE);
1333 }
1334 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1335 for (i = prec - 1; i >= 0; i--)
1336 {
1337 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1338 litP += sizeof (LITTLENUM_TYPE);
1339 }
1340 else
1341 /* For a 4 byte float the order of elements in `words' is 1 0.
1342 For an 8 byte float the order is 1 0 3 2. */
1343 for (i = 0; i < prec; i += 2)
1344 {
1345 md_number_to_chars (litP, (valueT) words[i + 1],
1346 sizeof (LITTLENUM_TYPE));
1347 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1348 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1349 litP += 2 * sizeof (LITTLENUM_TYPE);
1350 }
1351
1352 return NULL;
1353 }
1354
1355 /* We handle all bad expressions here, so that we can report the faulty
1356 instruction in the error message. */
1357
1358 void
1359 md_operand (expressionS * exp)
1360 {
1361 if (in_my_get_expression)
1362 exp->X_op = O_illegal;
1363 }
1364
1365 /* Immediate values. */
1366
1367 #ifdef OBJ_ELF
1368 /* Generic immediate-value read function for use in directives.
1369 Accepts anything that 'expression' can fold to a constant.
1370 *val receives the number. */
1371
1372 static int
1373 immediate_for_directive (int *val)
1374 {
1375 expressionS exp;
1376 exp.X_op = O_illegal;
1377
1378 if (is_immediate_prefix (*input_line_pointer))
1379 {
1380 input_line_pointer++;
1381 expression (&exp);
1382 }
1383
1384 if (exp.X_op != O_constant)
1385 {
1386 as_bad (_("expected #constant"));
1387 ignore_rest_of_line ();
1388 return FAIL;
1389 }
1390 *val = exp.X_add_number;
1391 return SUCCESS;
1392 }
1393 #endif
1394
1395 /* Register parsing. */
1396
1397 /* Generic register parser. CCP points to what should be the
1398 beginning of a register name. If it is indeed a valid register
1399 name, advance CCP over it and return the reg_entry structure;
1400 otherwise return NULL. Does not issue diagnostics. */
1401
1402 static struct reg_entry *
1403 arm_reg_parse_multi (char **ccp)
1404 {
1405 char *start = *ccp;
1406 char *p;
1407 struct reg_entry *reg;
1408
1409 skip_whitespace (start);
1410
1411 #ifdef REGISTER_PREFIX
1412 if (*start != REGISTER_PREFIX)
1413 return NULL;
1414 start++;
1415 #endif
1416 #ifdef OPTIONAL_REGISTER_PREFIX
1417 if (*start == OPTIONAL_REGISTER_PREFIX)
1418 start++;
1419 #endif
1420
1421 p = start;
1422 if (!ISALPHA (*p) || !is_name_beginner (*p))
1423 return NULL;
1424
1425 do
1426 p++;
1427 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1428
1429 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1430
1431 if (!reg)
1432 return NULL;
1433
1434 *ccp = p;
1435 return reg;
1436 }
1437
1438 static int
1439 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1440 enum arm_reg_type type)
1441 {
1442 /* Alternative syntaxes are accepted for a few register classes. */
1443 switch (type)
1444 {
1445 case REG_TYPE_MVF:
1446 case REG_TYPE_MVD:
1447 case REG_TYPE_MVFX:
1448 case REG_TYPE_MVDX:
1449 /* Generic coprocessor register names are allowed for these. */
1450 if (reg && reg->type == REG_TYPE_CN)
1451 return reg->number;
1452 break;
1453
1454 case REG_TYPE_CP:
1455 /* For backward compatibility, a bare number is valid here. */
1456 {
1457 unsigned long processor = strtoul (start, ccp, 10);
1458 if (*ccp != start && processor <= 15)
1459 return processor;
1460 }
1461 /* Fall through. */
1462
1463 case REG_TYPE_MMXWC:
1464 /* WC includes WCG. ??? I'm not sure this is true for all
1465 instructions that take WC registers. */
1466 if (reg && reg->type == REG_TYPE_MMXWCG)
1467 return reg->number;
1468 break;
1469
1470 default:
1471 break;
1472 }
1473
1474 return FAIL;
1475 }
1476
1477 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1478 return value is the register number or FAIL. */
1479
1480 static int
1481 arm_reg_parse (char **ccp, enum arm_reg_type type)
1482 {
1483 char *start = *ccp;
1484 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1485 int ret;
1486
1487 /* Do not allow a scalar (reg+index) to parse as a register. */
1488 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1489 return FAIL;
1490
1491 if (reg && reg->type == type)
1492 return reg->number;
1493
1494 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1495 return ret;
1496
1497 *ccp = start;
1498 return FAIL;
1499 }
1500
1501 /* Parse a Neon type specifier. *STR should point at the leading '.'
1502 character. Does no verification at this stage that the type fits the opcode
1503 properly. E.g.,
1504
1505 .i32.i32.s16
1506 .s32.f32
1507 .u16
1508
1509 Can all be legally parsed by this function.
1510
1511 Fills in neon_type struct pointer with parsed information, and updates STR
1512 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1513 type, FAIL if not. */
1514
1515 static int
1516 parse_neon_type (struct neon_type *type, char **str)
1517 {
1518 char *ptr = *str;
1519
1520 if (type)
1521 type->elems = 0;
1522
1523 while (type->elems < NEON_MAX_TYPE_ELS)
1524 {
1525 enum neon_el_type thistype = NT_untyped;
1526 unsigned thissize = -1u;
1527
1528 if (*ptr != '.')
1529 break;
1530
1531 ptr++;
1532
1533 /* Just a size without an explicit type. */
1534 if (ISDIGIT (*ptr))
1535 goto parsesize;
1536
1537 switch (TOLOWER (*ptr))
1538 {
1539 case 'i': thistype = NT_integer; break;
1540 case 'f': thistype = NT_float; break;
1541 case 'p': thistype = NT_poly; break;
1542 case 's': thistype = NT_signed; break;
1543 case 'u': thistype = NT_unsigned; break;
1544 case 'd':
1545 thistype = NT_float;
1546 thissize = 64;
1547 ptr++;
1548 goto done;
1549 case 'b':
1550 thistype = NT_bfloat;
1551 switch (TOLOWER (*(++ptr)))
1552 {
1553 case 'f':
1554 ptr += 1;
1555 thissize = strtoul (ptr, &ptr, 10);
1556 if (thissize != 16)
1557 {
1558 as_bad (_("bad size %d in type specifier"), thissize);
1559 return FAIL;
1560 }
1561 goto done;
1562 case '0': case '1': case '2': case '3': case '4':
1563 case '5': case '6': case '7': case '8': case '9':
1564 case ' ': case '.':
1565 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1566 return FAIL;
1567 default:
1568 break;
1569 }
1570 break;
1571 default:
1572 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1573 return FAIL;
1574 }
1575
1576 ptr++;
1577
1578 /* .f is an abbreviation for .f32. */
1579 if (thistype == NT_float && !ISDIGIT (*ptr))
1580 thissize = 32;
1581 else
1582 {
1583 parsesize:
1584 thissize = strtoul (ptr, &ptr, 10);
1585
1586 if (thissize != 8 && thissize != 16 && thissize != 32
1587 && thissize != 64)
1588 {
1589 as_bad (_("bad size %d in type specifier"), thissize);
1590 return FAIL;
1591 }
1592 }
1593
1594 done:
1595 if (type)
1596 {
1597 type->el[type->elems].type = thistype;
1598 type->el[type->elems].size = thissize;
1599 type->elems++;
1600 }
1601 }
1602
1603 /* Empty/missing type is not a successful parse. */
1604 if (type->elems == 0)
1605 return FAIL;
1606
1607 *str = ptr;
1608
1609 return SUCCESS;
1610 }
1611
1612 /* Errors may be set multiple times during parsing or bit encoding
1613 (particularly in the Neon bits), but usually the earliest error which is set
1614 will be the most meaningful. Avoid overwriting it with later (cascading)
1615 errors by calling this function. */
1616
1617 static void
1618 first_error (const char *err)
1619 {
1620 if (!inst.error)
1621 inst.error = err;
1622 }
1623
1624 /* Parse a single type, e.g. ".s32", leading period included. */
1625 static int
1626 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1627 {
1628 char *str = *ccp;
1629 struct neon_type optype;
1630
1631 if (*str == '.')
1632 {
1633 if (parse_neon_type (&optype, &str) == SUCCESS)
1634 {
1635 if (optype.elems == 1)
1636 *vectype = optype.el[0];
1637 else
1638 {
1639 first_error (_("only one type should be specified for operand"));
1640 return FAIL;
1641 }
1642 }
1643 else
1644 {
1645 first_error (_("vector type expected"));
1646 return FAIL;
1647 }
1648 }
1649 else
1650 return FAIL;
1651
1652 *ccp = str;
1653
1654 return SUCCESS;
1655 }
1656
1657 /* Special meanings for indices (which have a range of 0-7), which will fit into
1658 a 4-bit integer. */
1659
1660 #define NEON_ALL_LANES 15
1661 #define NEON_INTERLEAVE_LANES 14
1662
1663 /* Record a use of the given feature. */
1664 static void
1665 record_feature_use (const arm_feature_set *feature)
1666 {
1667 if (thumb_mode)
1668 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1669 else
1670 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1671 }
1672
1673 /* If the given feature available in the selected CPU, mark it as used.
1674 Returns TRUE iff feature is available. */
1675 static bfd_boolean
1676 mark_feature_used (const arm_feature_set *feature)
1677 {
1678
1679 /* Do not support the use of MVE only instructions when in auto-detection or
1680 -march=all. */
1681 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1682 && ARM_CPU_IS_ANY (cpu_variant))
1683 {
1684 first_error (BAD_MVE_AUTO);
1685 return FALSE;
1686 }
1687 /* Ensure the option is valid on the current architecture. */
1688 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1689 return FALSE;
1690
1691 /* Add the appropriate architecture feature for the barrier option used.
1692 */
1693 record_feature_use (feature);
1694
1695 return TRUE;
1696 }
1697
1698 /* Parse either a register or a scalar, with an optional type. Return the
1699 register number, and optionally fill in the actual type of the register
1700 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1701 type/index information in *TYPEINFO. */
1702
1703 static int
1704 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1705 enum arm_reg_type *rtype,
1706 struct neon_typed_alias *typeinfo)
1707 {
1708 char *str = *ccp;
1709 struct reg_entry *reg = arm_reg_parse_multi (&str);
1710 struct neon_typed_alias atype;
1711 struct neon_type_el parsetype;
1712
1713 atype.defined = 0;
1714 atype.index = -1;
1715 atype.eltype.type = NT_invtype;
1716 atype.eltype.size = -1;
1717
1718 /* Try alternate syntax for some types of register. Note these are mutually
1719 exclusive with the Neon syntax extensions. */
1720 if (reg == NULL)
1721 {
1722 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1723 if (altreg != FAIL)
1724 *ccp = str;
1725 if (typeinfo)
1726 *typeinfo = atype;
1727 return altreg;
1728 }
1729
1730 /* Undo polymorphism when a set of register types may be accepted. */
1731 if ((type == REG_TYPE_NDQ
1732 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1733 || (type == REG_TYPE_VFSD
1734 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1735 || (type == REG_TYPE_NSDQ
1736 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1737 || reg->type == REG_TYPE_NQ))
1738 || (type == REG_TYPE_NSD
1739 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1740 || (type == REG_TYPE_MMXWC
1741 && (reg->type == REG_TYPE_MMXWCG)))
1742 type = (enum arm_reg_type) reg->type;
1743
1744 if (type == REG_TYPE_MQ)
1745 {
1746 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1747 return FAIL;
1748
1749 if (!reg || reg->type != REG_TYPE_NQ)
1750 return FAIL;
1751
1752 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1753 {
1754 first_error (_("expected MVE register [q0..q7]"));
1755 return FAIL;
1756 }
1757 type = REG_TYPE_NQ;
1758 }
1759 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1760 && (type == REG_TYPE_NQ))
1761 return FAIL;
1762
1763
1764 if (type != reg->type)
1765 return FAIL;
1766
1767 if (reg->neon)
1768 atype = *reg->neon;
1769
1770 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1771 {
1772 if ((atype.defined & NTA_HASTYPE) != 0)
1773 {
1774 first_error (_("can't redefine type for operand"));
1775 return FAIL;
1776 }
1777 atype.defined |= NTA_HASTYPE;
1778 atype.eltype = parsetype;
1779 }
1780
1781 if (skip_past_char (&str, '[') == SUCCESS)
1782 {
1783 if (type != REG_TYPE_VFD
1784 && !(type == REG_TYPE_VFS
1785 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1786 && !(type == REG_TYPE_NQ
1787 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1788 {
1789 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1790 first_error (_("only D and Q registers may be indexed"));
1791 else
1792 first_error (_("only D registers may be indexed"));
1793 return FAIL;
1794 }
1795
1796 if ((atype.defined & NTA_HASINDEX) != 0)
1797 {
1798 first_error (_("can't change index for operand"));
1799 return FAIL;
1800 }
1801
1802 atype.defined |= NTA_HASINDEX;
1803
1804 if (skip_past_char (&str, ']') == SUCCESS)
1805 atype.index = NEON_ALL_LANES;
1806 else
1807 {
1808 expressionS exp;
1809
1810 my_get_expression (&exp, &str, GE_NO_PREFIX);
1811
1812 if (exp.X_op != O_constant)
1813 {
1814 first_error (_("constant expression required"));
1815 return FAIL;
1816 }
1817
1818 if (skip_past_char (&str, ']') == FAIL)
1819 return FAIL;
1820
1821 atype.index = exp.X_add_number;
1822 }
1823 }
1824
1825 if (typeinfo)
1826 *typeinfo = atype;
1827
1828 if (rtype)
1829 *rtype = type;
1830
1831 *ccp = str;
1832
1833 return reg->number;
1834 }
1835
1836 /* Like arm_reg_parse, but also allow the following extra features:
1837 - If RTYPE is non-zero, return the (possibly restricted) type of the
1838 register (e.g. Neon double or quad reg when either has been requested).
1839 - If this is a Neon vector type with additional type information, fill
1840 in the struct pointed to by VECTYPE (if non-NULL).
1841 This function will fault on encountering a scalar. */
1842
1843 static int
1844 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1845 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1846 {
1847 struct neon_typed_alias atype;
1848 char *str = *ccp;
1849 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1850
1851 if (reg == FAIL)
1852 return FAIL;
1853
1854 /* Do not allow regname(... to parse as a register. */
1855 if (*str == '(')
1856 return FAIL;
1857
1858 /* Do not allow a scalar (reg+index) to parse as a register. */
1859 if ((atype.defined & NTA_HASINDEX) != 0)
1860 {
1861 first_error (_("register operand expected, but got scalar"));
1862 return FAIL;
1863 }
1864
1865 if (vectype)
1866 *vectype = atype.eltype;
1867
1868 *ccp = str;
1869
1870 return reg;
1871 }
1872
1873 #define NEON_SCALAR_REG(X) ((X) >> 4)
1874 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1875
1876 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1877 have enough information to be able to do a good job bounds-checking. So, we
1878 just do easy checks here, and do further checks later. */
1879
1880 static int
1881 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1882 arm_reg_type reg_type)
1883 {
1884 int reg;
1885 char *str = *ccp;
1886 struct neon_typed_alias atype;
1887 unsigned reg_size;
1888
1889 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1890
1891 switch (reg_type)
1892 {
1893 case REG_TYPE_VFS:
1894 reg_size = 32;
1895 break;
1896 case REG_TYPE_VFD:
1897 reg_size = 64;
1898 break;
1899 case REG_TYPE_MQ:
1900 reg_size = 128;
1901 break;
1902 default:
1903 gas_assert (0);
1904 return FAIL;
1905 }
1906
1907 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1908 return FAIL;
1909
1910 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1911 {
1912 first_error (_("scalar must have an index"));
1913 return FAIL;
1914 }
1915 else if (atype.index >= reg_size / elsize)
1916 {
1917 first_error (_("scalar index out of range"));
1918 return FAIL;
1919 }
1920
1921 if (type)
1922 *type = atype.eltype;
1923
1924 *ccp = str;
1925
1926 return reg * 16 + atype.index;
1927 }
1928
1929 /* Types of registers in a list. */
1930
1931 enum reg_list_els
1932 {
1933 REGLIST_RN,
1934 REGLIST_CLRM,
1935 REGLIST_VFP_S,
1936 REGLIST_VFP_S_VPR,
1937 REGLIST_VFP_D,
1938 REGLIST_VFP_D_VPR,
1939 REGLIST_NEON_D
1940 };
1941
1942 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1943
1944 static long
1945 parse_reg_list (char ** strp, enum reg_list_els etype)
1946 {
1947 char *str = *strp;
1948 long range = 0;
1949 int another_range;
1950
1951 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1952
1953 /* We come back here if we get ranges concatenated by '+' or '|'. */
1954 do
1955 {
1956 skip_whitespace (str);
1957
1958 another_range = 0;
1959
1960 if (*str == '{')
1961 {
1962 int in_range = 0;
1963 int cur_reg = -1;
1964
1965 str++;
1966 do
1967 {
1968 int reg;
1969 const char apsr_str[] = "apsr";
1970 int apsr_str_len = strlen (apsr_str);
1971
1972 reg = arm_reg_parse (&str, REG_TYPE_RN);
1973 if (etype == REGLIST_CLRM)
1974 {
1975 if (reg == REG_SP || reg == REG_PC)
1976 reg = FAIL;
1977 else if (reg == FAIL
1978 && !strncasecmp (str, apsr_str, apsr_str_len)
1979 && !ISALPHA (*(str + apsr_str_len)))
1980 {
1981 reg = 15;
1982 str += apsr_str_len;
1983 }
1984
1985 if (reg == FAIL)
1986 {
1987 first_error (_("r0-r12, lr or APSR expected"));
1988 return FAIL;
1989 }
1990 }
1991 else /* etype == REGLIST_RN. */
1992 {
1993 if (reg == FAIL)
1994 {
1995 first_error (_(reg_expected_msgs[REGLIST_RN]));
1996 return FAIL;
1997 }
1998 }
1999
2000 if (in_range)
2001 {
2002 int i;
2003
2004 if (reg <= cur_reg)
2005 {
2006 first_error (_("bad range in register list"));
2007 return FAIL;
2008 }
2009
2010 for (i = cur_reg + 1; i < reg; i++)
2011 {
2012 if (range & (1 << i))
2013 as_tsktsk
2014 (_("Warning: duplicated register (r%d) in register list"),
2015 i);
2016 else
2017 range |= 1 << i;
2018 }
2019 in_range = 0;
2020 }
2021
2022 if (range & (1 << reg))
2023 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
2024 reg);
2025 else if (reg <= cur_reg)
2026 as_tsktsk (_("Warning: register range not in ascending order"));
2027
2028 range |= 1 << reg;
2029 cur_reg = reg;
2030 }
2031 while (skip_past_comma (&str) != FAIL
2032 || (in_range = 1, *str++ == '-'));
2033 str--;
2034
2035 if (skip_past_char (&str, '}') == FAIL)
2036 {
2037 first_error (_("missing `}'"));
2038 return FAIL;
2039 }
2040 }
2041 else if (etype == REGLIST_RN)
2042 {
2043 expressionS exp;
2044
2045 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
2046 return FAIL;
2047
2048 if (exp.X_op == O_constant)
2049 {
2050 if (exp.X_add_number
2051 != (exp.X_add_number & 0x0000ffff))
2052 {
2053 inst.error = _("invalid register mask");
2054 return FAIL;
2055 }
2056
2057 if ((range & exp.X_add_number) != 0)
2058 {
2059 int regno = range & exp.X_add_number;
2060
2061 regno &= -regno;
2062 regno = (1 << regno) - 1;
2063 as_tsktsk
2064 (_("Warning: duplicated register (r%d) in register list"),
2065 regno);
2066 }
2067
2068 range |= exp.X_add_number;
2069 }
2070 else
2071 {
2072 if (inst.relocs[0].type != 0)
2073 {
2074 inst.error = _("expression too complex");
2075 return FAIL;
2076 }
2077
2078 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
2079 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
2080 inst.relocs[0].pc_rel = 0;
2081 }
2082 }
2083
2084 if (*str == '|' || *str == '+')
2085 {
2086 str++;
2087 another_range = 1;
2088 }
2089 }
2090 while (another_range);
2091
2092 *strp = str;
2093 return range;
2094 }
2095
2096 /* Parse a VFP register list. If the string is invalid return FAIL.
2097 Otherwise return the number of registers, and set PBASE to the first
2098 register. Parses registers of type ETYPE.
2099 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2100 - Q registers can be used to specify pairs of D registers
2101 - { } can be omitted from around a singleton register list
2102 FIXME: This is not implemented, as it would require backtracking in
2103 some cases, e.g.:
2104 vtbl.8 d3,d4,d5
2105 This could be done (the meaning isn't really ambiguous), but doesn't
2106 fit in well with the current parsing framework.
2107 - 32 D registers may be used (also true for VFPv3).
2108 FIXME: Types are ignored in these register lists, which is probably a
2109 bug. */
2110
2111 static int
2112 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2113 bfd_boolean *partial_match)
2114 {
2115 char *str = *ccp;
2116 int base_reg;
2117 int new_base;
2118 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2119 int max_regs = 0;
2120 int count = 0;
2121 int warned = 0;
2122 unsigned long mask = 0;
2123 int i;
2124 bfd_boolean vpr_seen = FALSE;
2125 bfd_boolean expect_vpr =
2126 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2127
2128 if (skip_past_char (&str, '{') == FAIL)
2129 {
2130 inst.error = _("expecting {");
2131 return FAIL;
2132 }
2133
2134 switch (etype)
2135 {
2136 case REGLIST_VFP_S:
2137 case REGLIST_VFP_S_VPR:
2138 regtype = REG_TYPE_VFS;
2139 max_regs = 32;
2140 break;
2141
2142 case REGLIST_VFP_D:
2143 case REGLIST_VFP_D_VPR:
2144 regtype = REG_TYPE_VFD;
2145 break;
2146
2147 case REGLIST_NEON_D:
2148 regtype = REG_TYPE_NDQ;
2149 break;
2150
2151 default:
2152 gas_assert (0);
2153 }
2154
2155 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2156 {
2157 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2158 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2159 {
2160 max_regs = 32;
2161 if (thumb_mode)
2162 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2163 fpu_vfp_ext_d32);
2164 else
2165 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2166 fpu_vfp_ext_d32);
2167 }
2168 else
2169 max_regs = 16;
2170 }
2171
2172 base_reg = max_regs;
2173 *partial_match = FALSE;
2174
2175 do
2176 {
2177 int setmask = 1, addregs = 1;
2178 const char vpr_str[] = "vpr";
2179 int vpr_str_len = strlen (vpr_str);
2180
2181 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2182
2183 if (expect_vpr)
2184 {
2185 if (new_base == FAIL
2186 && !strncasecmp (str, vpr_str, vpr_str_len)
2187 && !ISALPHA (*(str + vpr_str_len))
2188 && !vpr_seen)
2189 {
2190 vpr_seen = TRUE;
2191 str += vpr_str_len;
2192 if (count == 0)
2193 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2194 }
2195 else if (vpr_seen)
2196 {
2197 first_error (_("VPR expected last"));
2198 return FAIL;
2199 }
2200 else if (new_base == FAIL)
2201 {
2202 if (regtype == REG_TYPE_VFS)
2203 first_error (_("VFP single precision register or VPR "
2204 "expected"));
2205 else /* regtype == REG_TYPE_VFD. */
2206 first_error (_("VFP/Neon double precision register or VPR "
2207 "expected"));
2208 return FAIL;
2209 }
2210 }
2211 else if (new_base == FAIL)
2212 {
2213 first_error (_(reg_expected_msgs[regtype]));
2214 return FAIL;
2215 }
2216
2217 *partial_match = TRUE;
2218 if (vpr_seen)
2219 continue;
2220
2221 if (new_base >= max_regs)
2222 {
2223 first_error (_("register out of range in list"));
2224 return FAIL;
2225 }
2226
2227 /* Note: a value of 2 * n is returned for the register Q<n>. */
2228 if (regtype == REG_TYPE_NQ)
2229 {
2230 setmask = 3;
2231 addregs = 2;
2232 }
2233
2234 if (new_base < base_reg)
2235 base_reg = new_base;
2236
2237 if (mask & (setmask << new_base))
2238 {
2239 first_error (_("invalid register list"));
2240 return FAIL;
2241 }
2242
2243 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2244 {
2245 as_tsktsk (_("register list not in ascending order"));
2246 warned = 1;
2247 }
2248
2249 mask |= setmask << new_base;
2250 count += addregs;
2251
2252 if (*str == '-') /* We have the start of a range expression */
2253 {
2254 int high_range;
2255
2256 str++;
2257
2258 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2259 == FAIL)
2260 {
2261 inst.error = gettext (reg_expected_msgs[regtype]);
2262 return FAIL;
2263 }
2264
2265 if (high_range >= max_regs)
2266 {
2267 first_error (_("register out of range in list"));
2268 return FAIL;
2269 }
2270
2271 if (regtype == REG_TYPE_NQ)
2272 high_range = high_range + 1;
2273
2274 if (high_range <= new_base)
2275 {
2276 inst.error = _("register range not in ascending order");
2277 return FAIL;
2278 }
2279
2280 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2281 {
2282 if (mask & (setmask << new_base))
2283 {
2284 inst.error = _("invalid register list");
2285 return FAIL;
2286 }
2287
2288 mask |= setmask << new_base;
2289 count += addregs;
2290 }
2291 }
2292 }
2293 while (skip_past_comma (&str) != FAIL);
2294
2295 str++;
2296
2297 /* Sanity check -- should have raised a parse error above. */
2298 if ((!vpr_seen && count == 0) || count > max_regs)
2299 abort ();
2300
2301 *pbase = base_reg;
2302
2303 if (expect_vpr && !vpr_seen)
2304 {
2305 first_error (_("VPR expected last"));
2306 return FAIL;
2307 }
2308
2309 /* Final test -- the registers must be consecutive. */
2310 mask >>= base_reg;
2311 for (i = 0; i < count; i++)
2312 {
2313 if ((mask & (1u << i)) == 0)
2314 {
2315 inst.error = _("non-contiguous register range");
2316 return FAIL;
2317 }
2318 }
2319
2320 *ccp = str;
2321
2322 return count;
2323 }
2324
2325 /* True if two alias types are the same. */
2326
2327 static bfd_boolean
2328 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2329 {
2330 if (!a && !b)
2331 return TRUE;
2332
2333 if (!a || !b)
2334 return FALSE;
2335
2336 if (a->defined != b->defined)
2337 return FALSE;
2338
2339 if ((a->defined & NTA_HASTYPE) != 0
2340 && (a->eltype.type != b->eltype.type
2341 || a->eltype.size != b->eltype.size))
2342 return FALSE;
2343
2344 if ((a->defined & NTA_HASINDEX) != 0
2345 && (a->index != b->index))
2346 return FALSE;
2347
2348 return TRUE;
2349 }
2350
2351 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2352 The base register is put in *PBASE.
2353 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2354 the return value.
2355 The register stride (minus one) is put in bit 4 of the return value.
2356 Bits [6:5] encode the list length (minus one).
2357 The type of the list elements is put in *ELTYPE, if non-NULL. */
2358
2359 #define NEON_LANE(X) ((X) & 0xf)
2360 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2361 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2362
2363 static int
2364 parse_neon_el_struct_list (char **str, unsigned *pbase,
2365 int mve,
2366 struct neon_type_el *eltype)
2367 {
2368 char *ptr = *str;
2369 int base_reg = -1;
2370 int reg_incr = -1;
2371 int count = 0;
2372 int lane = -1;
2373 int leading_brace = 0;
2374 enum arm_reg_type rtype = REG_TYPE_NDQ;
2375 const char *const incr_error = mve ? _("register stride must be 1") :
2376 _("register stride must be 1 or 2");
2377 const char *const type_error = _("mismatched element/structure types in list");
2378 struct neon_typed_alias firsttype;
2379 firsttype.defined = 0;
2380 firsttype.eltype.type = NT_invtype;
2381 firsttype.eltype.size = -1;
2382 firsttype.index = -1;
2383
2384 if (skip_past_char (&ptr, '{') == SUCCESS)
2385 leading_brace = 1;
2386
2387 do
2388 {
2389 struct neon_typed_alias atype;
2390 if (mve)
2391 rtype = REG_TYPE_MQ;
2392 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2393
2394 if (getreg == FAIL)
2395 {
2396 first_error (_(reg_expected_msgs[rtype]));
2397 return FAIL;
2398 }
2399
2400 if (base_reg == -1)
2401 {
2402 base_reg = getreg;
2403 if (rtype == REG_TYPE_NQ)
2404 {
2405 reg_incr = 1;
2406 }
2407 firsttype = atype;
2408 }
2409 else if (reg_incr == -1)
2410 {
2411 reg_incr = getreg - base_reg;
2412 if (reg_incr < 1 || reg_incr > 2)
2413 {
2414 first_error (_(incr_error));
2415 return FAIL;
2416 }
2417 }
2418 else if (getreg != base_reg + reg_incr * count)
2419 {
2420 first_error (_(incr_error));
2421 return FAIL;
2422 }
2423
2424 if (! neon_alias_types_same (&atype, &firsttype))
2425 {
2426 first_error (_(type_error));
2427 return FAIL;
2428 }
2429
2430 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2431 modes. */
2432 if (ptr[0] == '-')
2433 {
2434 struct neon_typed_alias htype;
2435 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2436 if (lane == -1)
2437 lane = NEON_INTERLEAVE_LANES;
2438 else if (lane != NEON_INTERLEAVE_LANES)
2439 {
2440 first_error (_(type_error));
2441 return FAIL;
2442 }
2443 if (reg_incr == -1)
2444 reg_incr = 1;
2445 else if (reg_incr != 1)
2446 {
2447 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2448 return FAIL;
2449 }
2450 ptr++;
2451 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2452 if (hireg == FAIL)
2453 {
2454 first_error (_(reg_expected_msgs[rtype]));
2455 return FAIL;
2456 }
2457 if (! neon_alias_types_same (&htype, &firsttype))
2458 {
2459 first_error (_(type_error));
2460 return FAIL;
2461 }
2462 count += hireg + dregs - getreg;
2463 continue;
2464 }
2465
2466 /* If we're using Q registers, we can't use [] or [n] syntax. */
2467 if (rtype == REG_TYPE_NQ)
2468 {
2469 count += 2;
2470 continue;
2471 }
2472
2473 if ((atype.defined & NTA_HASINDEX) != 0)
2474 {
2475 if (lane == -1)
2476 lane = atype.index;
2477 else if (lane != atype.index)
2478 {
2479 first_error (_(type_error));
2480 return FAIL;
2481 }
2482 }
2483 else if (lane == -1)
2484 lane = NEON_INTERLEAVE_LANES;
2485 else if (lane != NEON_INTERLEAVE_LANES)
2486 {
2487 first_error (_(type_error));
2488 return FAIL;
2489 }
2490 count++;
2491 }
2492 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2493
2494 /* No lane set by [x]. We must be interleaving structures. */
2495 if (lane == -1)
2496 lane = NEON_INTERLEAVE_LANES;
2497
2498 /* Sanity check. */
2499 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2500 || (count > 1 && reg_incr == -1))
2501 {
2502 first_error (_("error parsing element/structure list"));
2503 return FAIL;
2504 }
2505
2506 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2507 {
2508 first_error (_("expected }"));
2509 return FAIL;
2510 }
2511
2512 if (reg_incr == -1)
2513 reg_incr = 1;
2514
2515 if (eltype)
2516 *eltype = firsttype.eltype;
2517
2518 *pbase = base_reg;
2519 *str = ptr;
2520
2521 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2522 }
2523
2524 /* Parse an explicit relocation suffix on an expression. This is
2525 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2526 arm_reloc_hsh contains no entries, so this function can only
2527 succeed if there is no () after the word. Returns -1 on error,
2528 BFD_RELOC_UNUSED if there wasn't any suffix. */
2529
2530 static int
2531 parse_reloc (char **str)
2532 {
2533 struct reloc_entry *r;
2534 char *p, *q;
2535
2536 if (**str != '(')
2537 return BFD_RELOC_UNUSED;
2538
2539 p = *str + 1;
2540 q = p;
2541
2542 while (*q && *q != ')' && *q != ',')
2543 q++;
2544 if (*q != ')')
2545 return -1;
2546
2547 if ((r = (struct reloc_entry *)
2548 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2549 return -1;
2550
2551 *str = q + 1;
2552 return r->reloc;
2553 }
2554
2555 /* Directives: register aliases. */
2556
2557 static struct reg_entry *
2558 insert_reg_alias (char *str, unsigned number, int type)
2559 {
2560 struct reg_entry *new_reg;
2561 const char *name;
2562
2563 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2564 {
2565 if (new_reg->builtin)
2566 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2567
2568 /* Only warn about a redefinition if it's not defined as the
2569 same register. */
2570 else if (new_reg->number != number || new_reg->type != type)
2571 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2572
2573 return NULL;
2574 }
2575
2576 name = xstrdup (str);
2577 new_reg = XNEW (struct reg_entry);
2578
2579 new_reg->name = name;
2580 new_reg->number = number;
2581 new_reg->type = type;
2582 new_reg->builtin = FALSE;
2583 new_reg->neon = NULL;
2584
2585 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2586 abort ();
2587
2588 return new_reg;
2589 }
2590
2591 static void
2592 insert_neon_reg_alias (char *str, int number, int type,
2593 struct neon_typed_alias *atype)
2594 {
2595 struct reg_entry *reg = insert_reg_alias (str, number, type);
2596
2597 if (!reg)
2598 {
2599 first_error (_("attempt to redefine typed alias"));
2600 return;
2601 }
2602
2603 if (atype)
2604 {
2605 reg->neon = XNEW (struct neon_typed_alias);
2606 *reg->neon = *atype;
2607 }
2608 }
2609
2610 /* Look for the .req directive. This is of the form:
2611
2612 new_register_name .req existing_register_name
2613
2614 If we find one, or if it looks sufficiently like one that we want to
2615 handle any error here, return TRUE. Otherwise return FALSE. */
2616
2617 static bfd_boolean
2618 create_register_alias (char * newname, char *p)
2619 {
2620 struct reg_entry *old;
2621 char *oldname, *nbuf;
2622 size_t nlen;
2623
2624 /* The input scrubber ensures that whitespace after the mnemonic is
2625 collapsed to single spaces. */
2626 oldname = p;
2627 if (strncmp (oldname, " .req ", 6) != 0)
2628 return FALSE;
2629
2630 oldname += 6;
2631 if (*oldname == '\0')
2632 return FALSE;
2633
2634 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2635 if (!old)
2636 {
2637 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2638 return TRUE;
2639 }
2640
2641 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2642 the desired alias name, and p points to its end. If not, then
2643 the desired alias name is in the global original_case_string. */
2644 #ifdef TC_CASE_SENSITIVE
2645 nlen = p - newname;
2646 #else
2647 newname = original_case_string;
2648 nlen = strlen (newname);
2649 #endif
2650
2651 nbuf = xmemdup0 (newname, nlen);
2652
2653 /* Create aliases under the new name as stated; an all-lowercase
2654 version of the new name; and an all-uppercase version of the new
2655 name. */
2656 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2657 {
2658 for (p = nbuf; *p; p++)
2659 *p = TOUPPER (*p);
2660
2661 if (strncmp (nbuf, newname, nlen))
2662 {
2663 /* If this attempt to create an additional alias fails, do not bother
2664 trying to create the all-lower case alias. We will fail and issue
2665 a second, duplicate error message. This situation arises when the
2666 programmer does something like:
2667 foo .req r0
2668 Foo .req r1
2669 The second .req creates the "Foo" alias but then fails to create
2670 the artificial FOO alias because it has already been created by the
2671 first .req. */
2672 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2673 {
2674 free (nbuf);
2675 return TRUE;
2676 }
2677 }
2678
2679 for (p = nbuf; *p; p++)
2680 *p = TOLOWER (*p);
2681
2682 if (strncmp (nbuf, newname, nlen))
2683 insert_reg_alias (nbuf, old->number, old->type);
2684 }
2685
2686 free (nbuf);
2687 return TRUE;
2688 }
2689
2690 /* Create a Neon typed/indexed register alias using directives, e.g.:
2691 X .dn d5.s32[1]
2692 Y .qn 6.s16
2693 Z .dn d7
2694 T .dn Z[0]
2695 These typed registers can be used instead of the types specified after the
2696 Neon mnemonic, so long as all operands given have types. Types can also be
2697 specified directly, e.g.:
2698 vadd d0.s32, d1.s32, d2.s32 */
2699
2700 static bfd_boolean
2701 create_neon_reg_alias (char *newname, char *p)
2702 {
2703 enum arm_reg_type basetype;
2704 struct reg_entry *basereg;
2705 struct reg_entry mybasereg;
2706 struct neon_type ntype;
2707 struct neon_typed_alias typeinfo;
2708 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2709 int namelen;
2710
2711 typeinfo.defined = 0;
2712 typeinfo.eltype.type = NT_invtype;
2713 typeinfo.eltype.size = -1;
2714 typeinfo.index = -1;
2715
2716 nameend = p;
2717
2718 if (strncmp (p, " .dn ", 5) == 0)
2719 basetype = REG_TYPE_VFD;
2720 else if (strncmp (p, " .qn ", 5) == 0)
2721 basetype = REG_TYPE_NQ;
2722 else
2723 return FALSE;
2724
2725 p += 5;
2726
2727 if (*p == '\0')
2728 return FALSE;
2729
2730 basereg = arm_reg_parse_multi (&p);
2731
2732 if (basereg && basereg->type != basetype)
2733 {
2734 as_bad (_("bad type for register"));
2735 return FALSE;
2736 }
2737
2738 if (basereg == NULL)
2739 {
2740 expressionS exp;
2741 /* Try parsing as an integer. */
2742 my_get_expression (&exp, &p, GE_NO_PREFIX);
2743 if (exp.X_op != O_constant)
2744 {
2745 as_bad (_("expression must be constant"));
2746 return FALSE;
2747 }
2748 basereg = &mybasereg;
2749 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2750 : exp.X_add_number;
2751 basereg->neon = 0;
2752 }
2753
2754 if (basereg->neon)
2755 typeinfo = *basereg->neon;
2756
2757 if (parse_neon_type (&ntype, &p) == SUCCESS)
2758 {
2759 /* We got a type. */
2760 if (typeinfo.defined & NTA_HASTYPE)
2761 {
2762 as_bad (_("can't redefine the type of a register alias"));
2763 return FALSE;
2764 }
2765
2766 typeinfo.defined |= NTA_HASTYPE;
2767 if (ntype.elems != 1)
2768 {
2769 as_bad (_("you must specify a single type only"));
2770 return FALSE;
2771 }
2772 typeinfo.eltype = ntype.el[0];
2773 }
2774
2775 if (skip_past_char (&p, '[') == SUCCESS)
2776 {
2777 expressionS exp;
2778 /* We got a scalar index. */
2779
2780 if (typeinfo.defined & NTA_HASINDEX)
2781 {
2782 as_bad (_("can't redefine the index of a scalar alias"));
2783 return FALSE;
2784 }
2785
2786 my_get_expression (&exp, &p, GE_NO_PREFIX);
2787
2788 if (exp.X_op != O_constant)
2789 {
2790 as_bad (_("scalar index must be constant"));
2791 return FALSE;
2792 }
2793
2794 typeinfo.defined |= NTA_HASINDEX;
2795 typeinfo.index = exp.X_add_number;
2796
2797 if (skip_past_char (&p, ']') == FAIL)
2798 {
2799 as_bad (_("expecting ]"));
2800 return FALSE;
2801 }
2802 }
2803
2804 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2805 the desired alias name, and p points to its end. If not, then
2806 the desired alias name is in the global original_case_string. */
2807 #ifdef TC_CASE_SENSITIVE
2808 namelen = nameend - newname;
2809 #else
2810 newname = original_case_string;
2811 namelen = strlen (newname);
2812 #endif
2813
2814 namebuf = xmemdup0 (newname, namelen);
2815
2816 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2817 typeinfo.defined != 0 ? &typeinfo : NULL);
2818
2819 /* Insert name in all uppercase. */
2820 for (p = namebuf; *p; p++)
2821 *p = TOUPPER (*p);
2822
2823 if (strncmp (namebuf, newname, namelen))
2824 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2825 typeinfo.defined != 0 ? &typeinfo : NULL);
2826
2827 /* Insert name in all lowercase. */
2828 for (p = namebuf; *p; p++)
2829 *p = TOLOWER (*p);
2830
2831 if (strncmp (namebuf, newname, namelen))
2832 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2833 typeinfo.defined != 0 ? &typeinfo : NULL);
2834
2835 free (namebuf);
2836 return TRUE;
2837 }
2838
2839 /* Should never be called, as .req goes between the alias and the
2840 register name, not at the beginning of the line. */
2841
2842 static void
2843 s_req (int a ATTRIBUTE_UNUSED)
2844 {
2845 as_bad (_("invalid syntax for .req directive"));
2846 }
2847
2848 static void
2849 s_dn (int a ATTRIBUTE_UNUSED)
2850 {
2851 as_bad (_("invalid syntax for .dn directive"));
2852 }
2853
2854 static void
2855 s_qn (int a ATTRIBUTE_UNUSED)
2856 {
2857 as_bad (_("invalid syntax for .qn directive"));
2858 }
2859
2860 /* The .unreq directive deletes an alias which was previously defined
2861 by .req. For example:
2862
2863 my_alias .req r11
2864 .unreq my_alias */
2865
2866 static void
2867 s_unreq (int a ATTRIBUTE_UNUSED)
2868 {
2869 char * name;
2870 char saved_char;
2871
2872 name = input_line_pointer;
2873
2874 while (*input_line_pointer != 0
2875 && *input_line_pointer != ' '
2876 && *input_line_pointer != '\n')
2877 ++input_line_pointer;
2878
2879 saved_char = *input_line_pointer;
2880 *input_line_pointer = 0;
2881
2882 if (!*name)
2883 as_bad (_("invalid syntax for .unreq directive"));
2884 else
2885 {
2886 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2887 name);
2888
2889 if (!reg)
2890 as_bad (_("unknown register alias '%s'"), name);
2891 else if (reg->builtin)
2892 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2893 name);
2894 else
2895 {
2896 char * p;
2897 char * nbuf;
2898
2899 hash_delete (arm_reg_hsh, name, FALSE);
2900 free ((char *) reg->name);
2901 if (reg->neon)
2902 free (reg->neon);
2903 free (reg);
2904
2905 /* Also locate the all upper case and all lower case versions.
2906 Do not complain if we cannot find one or the other as it
2907 was probably deleted above. */
2908
2909 nbuf = strdup (name);
2910 for (p = nbuf; *p; p++)
2911 *p = TOUPPER (*p);
2912 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2913 if (reg)
2914 {
2915 hash_delete (arm_reg_hsh, nbuf, FALSE);
2916 free ((char *) reg->name);
2917 if (reg->neon)
2918 free (reg->neon);
2919 free (reg);
2920 }
2921
2922 for (p = nbuf; *p; p++)
2923 *p = TOLOWER (*p);
2924 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2925 if (reg)
2926 {
2927 hash_delete (arm_reg_hsh, nbuf, FALSE);
2928 free ((char *) reg->name);
2929 if (reg->neon)
2930 free (reg->neon);
2931 free (reg);
2932 }
2933
2934 free (nbuf);
2935 }
2936 }
2937
2938 *input_line_pointer = saved_char;
2939 demand_empty_rest_of_line ();
2940 }
2941
2942 /* Directives: Instruction set selection. */
2943
2944 #ifdef OBJ_ELF
2945 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2946 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2947 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2948 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2949
2950 /* Create a new mapping symbol for the transition to STATE. */
2951
2952 static void
2953 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2954 {
2955 symbolS * symbolP;
2956 const char * symname;
2957 int type;
2958
2959 switch (state)
2960 {
2961 case MAP_DATA:
2962 symname = "$d";
2963 type = BSF_NO_FLAGS;
2964 break;
2965 case MAP_ARM:
2966 symname = "$a";
2967 type = BSF_NO_FLAGS;
2968 break;
2969 case MAP_THUMB:
2970 symname = "$t";
2971 type = BSF_NO_FLAGS;
2972 break;
2973 default:
2974 abort ();
2975 }
2976
2977 symbolP = symbol_new (symname, now_seg, value, frag);
2978 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2979
2980 switch (state)
2981 {
2982 case MAP_ARM:
2983 THUMB_SET_FUNC (symbolP, 0);
2984 ARM_SET_THUMB (symbolP, 0);
2985 ARM_SET_INTERWORK (symbolP, support_interwork);
2986 break;
2987
2988 case MAP_THUMB:
2989 THUMB_SET_FUNC (symbolP, 1);
2990 ARM_SET_THUMB (symbolP, 1);
2991 ARM_SET_INTERWORK (symbolP, support_interwork);
2992 break;
2993
2994 case MAP_DATA:
2995 default:
2996 break;
2997 }
2998
2999 /* Save the mapping symbols for future reference. Also check that
3000 we do not place two mapping symbols at the same offset within a
3001 frag. We'll handle overlap between frags in
3002 check_mapping_symbols.
3003
3004 If .fill or other data filling directive generates zero sized data,
3005 the mapping symbol for the following code will have the same value
3006 as the one generated for the data filling directive. In this case,
3007 we replace the old symbol with the new one at the same address. */
3008 if (value == 0)
3009 {
3010 if (frag->tc_frag_data.first_map != NULL)
3011 {
3012 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
3013 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
3014 }
3015 frag->tc_frag_data.first_map = symbolP;
3016 }
3017 if (frag->tc_frag_data.last_map != NULL)
3018 {
3019 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
3020 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
3021 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
3022 }
3023 frag->tc_frag_data.last_map = symbolP;
3024 }
3025
3026 /* We must sometimes convert a region marked as code to data during
3027 code alignment, if an odd number of bytes have to be padded. The
3028 code mapping symbol is pushed to an aligned address. */
3029
3030 static void
3031 insert_data_mapping_symbol (enum mstate state,
3032 valueT value, fragS *frag, offsetT bytes)
3033 {
3034 /* If there was already a mapping symbol, remove it. */
3035 if (frag->tc_frag_data.last_map != NULL
3036 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
3037 {
3038 symbolS *symp = frag->tc_frag_data.last_map;
3039
3040 if (value == 0)
3041 {
3042 know (frag->tc_frag_data.first_map == symp);
3043 frag->tc_frag_data.first_map = NULL;
3044 }
3045 frag->tc_frag_data.last_map = NULL;
3046 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
3047 }
3048
3049 make_mapping_symbol (MAP_DATA, value, frag);
3050 make_mapping_symbol (state, value + bytes, frag);
3051 }
3052
3053 static void mapping_state_2 (enum mstate state, int max_chars);
3054
3055 /* Set the mapping state to STATE. Only call this when about to
3056 emit some STATE bytes to the file. */
3057
3058 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
3059 void
3060 mapping_state (enum mstate state)
3061 {
3062 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3063
3064 if (mapstate == state)
3065 /* The mapping symbol has already been emitted.
3066 There is nothing else to do. */
3067 return;
3068
3069 if (state == MAP_ARM || state == MAP_THUMB)
3070 /* PR gas/12931
3071 All ARM instructions require 4-byte alignment.
3072 (Almost) all Thumb instructions require 2-byte alignment.
3073
3074 When emitting instructions into any section, mark the section
3075 appropriately.
3076
3077 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3078 but themselves require 2-byte alignment; this applies to some
3079 PC- relative forms. However, these cases will involve implicit
3080 literal pool generation or an explicit .align >=2, both of
3081 which will cause the section to me marked with sufficient
3082 alignment. Thus, we don't handle those cases here. */
3083 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
3084
3085 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
3086 /* This case will be evaluated later. */
3087 return;
3088
3089 mapping_state_2 (state, 0);
3090 }
3091
3092 /* Same as mapping_state, but MAX_CHARS bytes have already been
3093 allocated. Put the mapping symbol that far back. */
3094
3095 static void
3096 mapping_state_2 (enum mstate state, int max_chars)
3097 {
3098 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3099
3100 if (!SEG_NORMAL (now_seg))
3101 return;
3102
3103 if (mapstate == state)
3104 /* The mapping symbol has already been emitted.
3105 There is nothing else to do. */
3106 return;
3107
3108 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3109 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3110 {
3111 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3112 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3113
3114 if (add_symbol)
3115 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3116 }
3117
3118 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3119 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3120 }
3121 #undef TRANSITION
3122 #else
3123 #define mapping_state(x) ((void)0)
3124 #define mapping_state_2(x, y) ((void)0)
3125 #endif
3126
3127 /* Find the real, Thumb encoded start of a Thumb function. */
3128
3129 #ifdef OBJ_COFF
3130 static symbolS *
3131 find_real_start (symbolS * symbolP)
3132 {
3133 char * real_start;
3134 const char * name = S_GET_NAME (symbolP);
3135 symbolS * new_target;
3136
3137 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3138 #define STUB_NAME ".real_start_of"
3139
3140 if (name == NULL)
3141 abort ();
3142
3143 /* The compiler may generate BL instructions to local labels because
3144 it needs to perform a branch to a far away location. These labels
3145 do not have a corresponding ".real_start_of" label. We check
3146 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3147 the ".real_start_of" convention for nonlocal branches. */
3148 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3149 return symbolP;
3150
3151 real_start = concat (STUB_NAME, name, NULL);
3152 new_target = symbol_find (real_start);
3153 free (real_start);
3154
3155 if (new_target == NULL)
3156 {
3157 as_warn (_("Failed to find real start of function: %s\n"), name);
3158 new_target = symbolP;
3159 }
3160
3161 return new_target;
3162 }
3163 #endif
3164
3165 static void
3166 opcode_select (int width)
3167 {
3168 switch (width)
3169 {
3170 case 16:
3171 if (! thumb_mode)
3172 {
3173 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3174 as_bad (_("selected processor does not support THUMB opcodes"));
3175
3176 thumb_mode = 1;
3177 /* No need to force the alignment, since we will have been
3178 coming from ARM mode, which is word-aligned. */
3179 record_alignment (now_seg, 1);
3180 }
3181 break;
3182
3183 case 32:
3184 if (thumb_mode)
3185 {
3186 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3187 as_bad (_("selected processor does not support ARM opcodes"));
3188
3189 thumb_mode = 0;
3190
3191 if (!need_pass_2)
3192 frag_align (2, 0, 0);
3193
3194 record_alignment (now_seg, 1);
3195 }
3196 break;
3197
3198 default:
3199 as_bad (_("invalid instruction size selected (%d)"), width);
3200 }
3201 }
3202
3203 static void
3204 s_arm (int ignore ATTRIBUTE_UNUSED)
3205 {
3206 opcode_select (32);
3207 demand_empty_rest_of_line ();
3208 }
3209
3210 static void
3211 s_thumb (int ignore ATTRIBUTE_UNUSED)
3212 {
3213 opcode_select (16);
3214 demand_empty_rest_of_line ();
3215 }
3216
3217 static void
3218 s_code (int unused ATTRIBUTE_UNUSED)
3219 {
3220 int temp;
3221
3222 temp = get_absolute_expression ();
3223 switch (temp)
3224 {
3225 case 16:
3226 case 32:
3227 opcode_select (temp);
3228 break;
3229
3230 default:
3231 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3232 }
3233 }
3234
3235 static void
3236 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3237 {
3238 /* If we are not already in thumb mode go into it, EVEN if
3239 the target processor does not support thumb instructions.
3240 This is used by gcc/config/arm/lib1funcs.asm for example
3241 to compile interworking support functions even if the
3242 target processor should not support interworking. */
3243 if (! thumb_mode)
3244 {
3245 thumb_mode = 2;
3246 record_alignment (now_seg, 1);
3247 }
3248
3249 demand_empty_rest_of_line ();
3250 }
3251
3252 static void
3253 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3254 {
3255 s_thumb (0);
3256
3257 /* The following label is the name/address of the start of a Thumb function.
3258 We need to know this for the interworking support. */
3259 label_is_thumb_function_name = TRUE;
3260 }
3261
3262 /* Perform a .set directive, but also mark the alias as
3263 being a thumb function. */
3264
3265 static void
3266 s_thumb_set (int equiv)
3267 {
3268 /* XXX the following is a duplicate of the code for s_set() in read.c
3269 We cannot just call that code as we need to get at the symbol that
3270 is created. */
3271 char * name;
3272 char delim;
3273 char * end_name;
3274 symbolS * symbolP;
3275
3276 /* Especial apologies for the random logic:
3277 This just grew, and could be parsed much more simply!
3278 Dean - in haste. */
3279 delim = get_symbol_name (& name);
3280 end_name = input_line_pointer;
3281 (void) restore_line_pointer (delim);
3282
3283 if (*input_line_pointer != ',')
3284 {
3285 *end_name = 0;
3286 as_bad (_("expected comma after name \"%s\""), name);
3287 *end_name = delim;
3288 ignore_rest_of_line ();
3289 return;
3290 }
3291
3292 input_line_pointer++;
3293 *end_name = 0;
3294
3295 if (name[0] == '.' && name[1] == '\0')
3296 {
3297 /* XXX - this should not happen to .thumb_set. */
3298 abort ();
3299 }
3300
3301 if ((symbolP = symbol_find (name)) == NULL
3302 && (symbolP = md_undefined_symbol (name)) == NULL)
3303 {
3304 #ifndef NO_LISTING
3305 /* When doing symbol listings, play games with dummy fragments living
3306 outside the normal fragment chain to record the file and line info
3307 for this symbol. */
3308 if (listing & LISTING_SYMBOLS)
3309 {
3310 extern struct list_info_struct * listing_tail;
3311 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3312
3313 memset (dummy_frag, 0, sizeof (fragS));
3314 dummy_frag->fr_type = rs_fill;
3315 dummy_frag->line = listing_tail;
3316 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3317 dummy_frag->fr_symbol = symbolP;
3318 }
3319 else
3320 #endif
3321 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3322
3323 #ifdef OBJ_COFF
3324 /* "set" symbols are local unless otherwise specified. */
3325 SF_SET_LOCAL (symbolP);
3326 #endif /* OBJ_COFF */
3327 } /* Make a new symbol. */
3328
3329 symbol_table_insert (symbolP);
3330
3331 * end_name = delim;
3332
3333 if (equiv
3334 && S_IS_DEFINED (symbolP)
3335 && S_GET_SEGMENT (symbolP) != reg_section)
3336 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3337
3338 pseudo_set (symbolP);
3339
3340 demand_empty_rest_of_line ();
3341
3342 /* XXX Now we come to the Thumb specific bit of code. */
3343
3344 THUMB_SET_FUNC (symbolP, 1);
3345 ARM_SET_THUMB (symbolP, 1);
3346 #if defined OBJ_ELF || defined OBJ_COFF
3347 ARM_SET_INTERWORK (symbolP, support_interwork);
3348 #endif
3349 }
3350
3351 /* Directives: Mode selection. */
3352
3353 /* .syntax [unified|divided] - choose the new unified syntax
3354 (same for Arm and Thumb encoding, modulo slight differences in what
3355 can be represented) or the old divergent syntax for each mode. */
3356 static void
3357 s_syntax (int unused ATTRIBUTE_UNUSED)
3358 {
3359 char *name, delim;
3360
3361 delim = get_symbol_name (& name);
3362
3363 if (!strcasecmp (name, "unified"))
3364 unified_syntax = TRUE;
3365 else if (!strcasecmp (name, "divided"))
3366 unified_syntax = FALSE;
3367 else
3368 {
3369 as_bad (_("unrecognized syntax mode \"%s\""), name);
3370 return;
3371 }
3372 (void) restore_line_pointer (delim);
3373 demand_empty_rest_of_line ();
3374 }
3375
3376 /* Directives: sectioning and alignment. */
3377
3378 static void
3379 s_bss (int ignore ATTRIBUTE_UNUSED)
3380 {
3381 /* We don't support putting frags in the BSS segment, we fake it by
3382 marking in_bss, then looking at s_skip for clues. */
3383 subseg_set (bss_section, 0);
3384 demand_empty_rest_of_line ();
3385
3386 #ifdef md_elf_section_change_hook
3387 md_elf_section_change_hook ();
3388 #endif
3389 }
3390
3391 static void
3392 s_even (int ignore ATTRIBUTE_UNUSED)
3393 {
3394 /* Never make frag if expect extra pass. */
3395 if (!need_pass_2)
3396 frag_align (1, 0, 0);
3397
3398 record_alignment (now_seg, 1);
3399
3400 demand_empty_rest_of_line ();
3401 }
3402
3403 /* Directives: CodeComposer Studio. */
3404
3405 /* .ref (for CodeComposer Studio syntax only). */
3406 static void
3407 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3408 {
3409 if (codecomposer_syntax)
3410 ignore_rest_of_line ();
3411 else
3412 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3413 }
3414
3415 /* If name is not NULL, then it is used for marking the beginning of a
3416 function, whereas if it is NULL then it means the function end. */
3417 static void
3418 asmfunc_debug (const char * name)
3419 {
3420 static const char * last_name = NULL;
3421
3422 if (name != NULL)
3423 {
3424 gas_assert (last_name == NULL);
3425 last_name = name;
3426
3427 if (debug_type == DEBUG_STABS)
3428 stabs_generate_asm_func (name, name);
3429 }
3430 else
3431 {
3432 gas_assert (last_name != NULL);
3433
3434 if (debug_type == DEBUG_STABS)
3435 stabs_generate_asm_endfunc (last_name, last_name);
3436
3437 last_name = NULL;
3438 }
3439 }
3440
3441 static void
3442 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3443 {
3444 if (codecomposer_syntax)
3445 {
3446 switch (asmfunc_state)
3447 {
3448 case OUTSIDE_ASMFUNC:
3449 asmfunc_state = WAITING_ASMFUNC_NAME;
3450 break;
3451
3452 case WAITING_ASMFUNC_NAME:
3453 as_bad (_(".asmfunc repeated."));
3454 break;
3455
3456 case WAITING_ENDASMFUNC:
3457 as_bad (_(".asmfunc without function."));
3458 break;
3459 }
3460 demand_empty_rest_of_line ();
3461 }
3462 else
3463 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3464 }
3465
3466 static void
3467 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3468 {
3469 if (codecomposer_syntax)
3470 {
3471 switch (asmfunc_state)
3472 {
3473 case OUTSIDE_ASMFUNC:
3474 as_bad (_(".endasmfunc without a .asmfunc."));
3475 break;
3476
3477 case WAITING_ASMFUNC_NAME:
3478 as_bad (_(".endasmfunc without function."));
3479 break;
3480
3481 case WAITING_ENDASMFUNC:
3482 asmfunc_state = OUTSIDE_ASMFUNC;
3483 asmfunc_debug (NULL);
3484 break;
3485 }
3486 demand_empty_rest_of_line ();
3487 }
3488 else
3489 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3490 }
3491
3492 static void
3493 s_ccs_def (int name)
3494 {
3495 if (codecomposer_syntax)
3496 s_globl (name);
3497 else
3498 as_bad (_(".def pseudo-op only available with -mccs flag."));
3499 }
3500
3501 /* Directives: Literal pools. */
3502
3503 static literal_pool *
3504 find_literal_pool (void)
3505 {
3506 literal_pool * pool;
3507
3508 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3509 {
3510 if (pool->section == now_seg
3511 && pool->sub_section == now_subseg)
3512 break;
3513 }
3514
3515 return pool;
3516 }
3517
3518 static literal_pool *
3519 find_or_make_literal_pool (void)
3520 {
3521 /* Next literal pool ID number. */
3522 static unsigned int latest_pool_num = 1;
3523 literal_pool * pool;
3524
3525 pool = find_literal_pool ();
3526
3527 if (pool == NULL)
3528 {
3529 /* Create a new pool. */
3530 pool = XNEW (literal_pool);
3531 if (! pool)
3532 return NULL;
3533
3534 pool->next_free_entry = 0;
3535 pool->section = now_seg;
3536 pool->sub_section = now_subseg;
3537 pool->next = list_of_pools;
3538 pool->symbol = NULL;
3539 pool->alignment = 2;
3540
3541 /* Add it to the list. */
3542 list_of_pools = pool;
3543 }
3544
3545 /* New pools, and emptied pools, will have a NULL symbol. */
3546 if (pool->symbol == NULL)
3547 {
3548 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3549 (valueT) 0, &zero_address_frag);
3550 pool->id = latest_pool_num ++;
3551 }
3552
3553 /* Done. */
3554 return pool;
3555 }
3556
3557 /* Add the literal in the global 'inst'
3558 structure to the relevant literal pool. */
3559
3560 static int
3561 add_to_lit_pool (unsigned int nbytes)
3562 {
3563 #define PADDING_SLOT 0x1
3564 #define LIT_ENTRY_SIZE_MASK 0xFF
3565 literal_pool * pool;
3566 unsigned int entry, pool_size = 0;
3567 bfd_boolean padding_slot_p = FALSE;
3568 unsigned imm1 = 0;
3569 unsigned imm2 = 0;
3570
3571 if (nbytes == 8)
3572 {
3573 imm1 = inst.operands[1].imm;
3574 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3575 : inst.relocs[0].exp.X_unsigned ? 0
3576 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3577 if (target_big_endian)
3578 {
3579 imm1 = imm2;
3580 imm2 = inst.operands[1].imm;
3581 }
3582 }
3583
3584 pool = find_or_make_literal_pool ();
3585
3586 /* Check if this literal value is already in the pool. */
3587 for (entry = 0; entry < pool->next_free_entry; entry ++)
3588 {
3589 if (nbytes == 4)
3590 {
3591 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3592 && (inst.relocs[0].exp.X_op == O_constant)
3593 && (pool->literals[entry].X_add_number
3594 == inst.relocs[0].exp.X_add_number)
3595 && (pool->literals[entry].X_md == nbytes)
3596 && (pool->literals[entry].X_unsigned
3597 == inst.relocs[0].exp.X_unsigned))
3598 break;
3599
3600 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3601 && (inst.relocs[0].exp.X_op == O_symbol)
3602 && (pool->literals[entry].X_add_number
3603 == inst.relocs[0].exp.X_add_number)
3604 && (pool->literals[entry].X_add_symbol
3605 == inst.relocs[0].exp.X_add_symbol)
3606 && (pool->literals[entry].X_op_symbol
3607 == inst.relocs[0].exp.X_op_symbol)
3608 && (pool->literals[entry].X_md == nbytes))
3609 break;
3610 }
3611 else if ((nbytes == 8)
3612 && !(pool_size & 0x7)
3613 && ((entry + 1) != pool->next_free_entry)
3614 && (pool->literals[entry].X_op == O_constant)
3615 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3616 && (pool->literals[entry].X_unsigned
3617 == inst.relocs[0].exp.X_unsigned)
3618 && (pool->literals[entry + 1].X_op == O_constant)
3619 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3620 && (pool->literals[entry + 1].X_unsigned
3621 == inst.relocs[0].exp.X_unsigned))
3622 break;
3623
3624 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3625 if (padding_slot_p && (nbytes == 4))
3626 break;
3627
3628 pool_size += 4;
3629 }
3630
3631 /* Do we need to create a new entry? */
3632 if (entry == pool->next_free_entry)
3633 {
3634 if (entry >= MAX_LITERAL_POOL_SIZE)
3635 {
3636 inst.error = _("literal pool overflow");
3637 return FAIL;
3638 }
3639
3640 if (nbytes == 8)
3641 {
3642 /* For 8-byte entries, we align to an 8-byte boundary,
3643 and split it into two 4-byte entries, because on 32-bit
3644 host, 8-byte constants are treated as big num, thus
3645 saved in "generic_bignum" which will be overwritten
3646 by later assignments.
3647
3648 We also need to make sure there is enough space for
3649 the split.
3650
3651 We also check to make sure the literal operand is a
3652 constant number. */
3653 if (!(inst.relocs[0].exp.X_op == O_constant
3654 || inst.relocs[0].exp.X_op == O_big))
3655 {
3656 inst.error = _("invalid type for literal pool");
3657 return FAIL;
3658 }
3659 else if (pool_size & 0x7)
3660 {
3661 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3662 {
3663 inst.error = _("literal pool overflow");
3664 return FAIL;
3665 }
3666
3667 pool->literals[entry] = inst.relocs[0].exp;
3668 pool->literals[entry].X_op = O_constant;
3669 pool->literals[entry].X_add_number = 0;
3670 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3671 pool->next_free_entry += 1;
3672 pool_size += 4;
3673 }
3674 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3675 {
3676 inst.error = _("literal pool overflow");
3677 return FAIL;
3678 }
3679
3680 pool->literals[entry] = inst.relocs[0].exp;
3681 pool->literals[entry].X_op = O_constant;
3682 pool->literals[entry].X_add_number = imm1;
3683 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3684 pool->literals[entry++].X_md = 4;
3685 pool->literals[entry] = inst.relocs[0].exp;
3686 pool->literals[entry].X_op = O_constant;
3687 pool->literals[entry].X_add_number = imm2;
3688 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3689 pool->literals[entry].X_md = 4;
3690 pool->alignment = 3;
3691 pool->next_free_entry += 1;
3692 }
3693 else
3694 {
3695 pool->literals[entry] = inst.relocs[0].exp;
3696 pool->literals[entry].X_md = 4;
3697 }
3698
3699 #ifdef OBJ_ELF
3700 /* PR ld/12974: Record the location of the first source line to reference
3701 this entry in the literal pool. If it turns out during linking that the
3702 symbol does not exist we will be able to give an accurate line number for
3703 the (first use of the) missing reference. */
3704 if (debug_type == DEBUG_DWARF2)
3705 dwarf2_where (pool->locs + entry);
3706 #endif
3707 pool->next_free_entry += 1;
3708 }
3709 else if (padding_slot_p)
3710 {
3711 pool->literals[entry] = inst.relocs[0].exp;
3712 pool->literals[entry].X_md = nbytes;
3713 }
3714
3715 inst.relocs[0].exp.X_op = O_symbol;
3716 inst.relocs[0].exp.X_add_number = pool_size;
3717 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3718
3719 return SUCCESS;
3720 }
3721
3722 bfd_boolean
3723 tc_start_label_without_colon (void)
3724 {
3725 bfd_boolean ret = TRUE;
3726
3727 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3728 {
3729 const char *label = input_line_pointer;
3730
3731 while (!is_end_of_line[(int) label[-1]])
3732 --label;
3733
3734 if (*label == '.')
3735 {
3736 as_bad (_("Invalid label '%s'"), label);
3737 ret = FALSE;
3738 }
3739
3740 asmfunc_debug (label);
3741
3742 asmfunc_state = WAITING_ENDASMFUNC;
3743 }
3744
3745 return ret;
3746 }
3747
3748 /* Can't use symbol_new here, so have to create a symbol and then at
3749 a later date assign it a value. That's what these functions do. */
3750
3751 static void
3752 symbol_locate (symbolS * symbolP,
3753 const char * name, /* It is copied, the caller can modify. */
3754 segT segment, /* Segment identifier (SEG_<something>). */
3755 valueT valu, /* Symbol value. */
3756 fragS * frag) /* Associated fragment. */
3757 {
3758 size_t name_length;
3759 char * preserved_copy_of_name;
3760
3761 name_length = strlen (name) + 1; /* +1 for \0. */
3762 obstack_grow (&notes, name, name_length);
3763 preserved_copy_of_name = (char *) obstack_finish (&notes);
3764
3765 #ifdef tc_canonicalize_symbol_name
3766 preserved_copy_of_name =
3767 tc_canonicalize_symbol_name (preserved_copy_of_name);
3768 #endif
3769
3770 S_SET_NAME (symbolP, preserved_copy_of_name);
3771
3772 S_SET_SEGMENT (symbolP, segment);
3773 S_SET_VALUE (symbolP, valu);
3774 symbol_clear_list_pointers (symbolP);
3775
3776 symbol_set_frag (symbolP, frag);
3777
3778 /* Link to end of symbol chain. */
3779 {
3780 extern int symbol_table_frozen;
3781
3782 if (symbol_table_frozen)
3783 abort ();
3784 }
3785
3786 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3787
3788 obj_symbol_new_hook (symbolP);
3789
3790 #ifdef tc_symbol_new_hook
3791 tc_symbol_new_hook (symbolP);
3792 #endif
3793
3794 #ifdef DEBUG_SYMS
3795 verify_symbol_chain (symbol_rootP, symbol_lastP);
3796 #endif /* DEBUG_SYMS */
3797 }
3798
3799 static void
3800 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3801 {
3802 unsigned int entry;
3803 literal_pool * pool;
3804 char sym_name[20];
3805
3806 pool = find_literal_pool ();
3807 if (pool == NULL
3808 || pool->symbol == NULL
3809 || pool->next_free_entry == 0)
3810 return;
3811
3812 /* Align pool as you have word accesses.
3813 Only make a frag if we have to. */
3814 if (!need_pass_2)
3815 frag_align (pool->alignment, 0, 0);
3816
3817 record_alignment (now_seg, 2);
3818
3819 #ifdef OBJ_ELF
3820 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3821 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3822 #endif
3823 sprintf (sym_name, "$$lit_\002%x", pool->id);
3824
3825 symbol_locate (pool->symbol, sym_name, now_seg,
3826 (valueT) frag_now_fix (), frag_now);
3827 symbol_table_insert (pool->symbol);
3828
3829 ARM_SET_THUMB (pool->symbol, thumb_mode);
3830
3831 #if defined OBJ_COFF || defined OBJ_ELF
3832 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3833 #endif
3834
3835 for (entry = 0; entry < pool->next_free_entry; entry ++)
3836 {
3837 #ifdef OBJ_ELF
3838 if (debug_type == DEBUG_DWARF2)
3839 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3840 #endif
3841 /* First output the expression in the instruction to the pool. */
3842 emit_expr (&(pool->literals[entry]),
3843 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3844 }
3845
3846 /* Mark the pool as empty. */
3847 pool->next_free_entry = 0;
3848 pool->symbol = NULL;
3849 }
3850
3851 #ifdef OBJ_ELF
3852 /* Forward declarations for functions below, in the MD interface
3853 section. */
3854 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3855 static valueT create_unwind_entry (int);
3856 static void start_unwind_section (const segT, int);
3857 static void add_unwind_opcode (valueT, int);
3858 static void flush_pending_unwind (void);
3859
3860 /* Directives: Data. */
3861
3862 static void
3863 s_arm_elf_cons (int nbytes)
3864 {
3865 expressionS exp;
3866
3867 #ifdef md_flush_pending_output
3868 md_flush_pending_output ();
3869 #endif
3870
3871 if (is_it_end_of_statement ())
3872 {
3873 demand_empty_rest_of_line ();
3874 return;
3875 }
3876
3877 #ifdef md_cons_align
3878 md_cons_align (nbytes);
3879 #endif
3880
3881 mapping_state (MAP_DATA);
3882 do
3883 {
3884 int reloc;
3885 char *base = input_line_pointer;
3886
3887 expression (& exp);
3888
3889 if (exp.X_op != O_symbol)
3890 emit_expr (&exp, (unsigned int) nbytes);
3891 else
3892 {
3893 char *before_reloc = input_line_pointer;
3894 reloc = parse_reloc (&input_line_pointer);
3895 if (reloc == -1)
3896 {
3897 as_bad (_("unrecognized relocation suffix"));
3898 ignore_rest_of_line ();
3899 return;
3900 }
3901 else if (reloc == BFD_RELOC_UNUSED)
3902 emit_expr (&exp, (unsigned int) nbytes);
3903 else
3904 {
3905 reloc_howto_type *howto = (reloc_howto_type *)
3906 bfd_reloc_type_lookup (stdoutput,
3907 (bfd_reloc_code_real_type) reloc);
3908 int size = bfd_get_reloc_size (howto);
3909
3910 if (reloc == BFD_RELOC_ARM_PLT32)
3911 {
3912 as_bad (_("(plt) is only valid on branch targets"));
3913 reloc = BFD_RELOC_UNUSED;
3914 size = 0;
3915 }
3916
3917 if (size > nbytes)
3918 as_bad (ngettext ("%s relocations do not fit in %d byte",
3919 "%s relocations do not fit in %d bytes",
3920 nbytes),
3921 howto->name, nbytes);
3922 else
3923 {
3924 /* We've parsed an expression stopping at O_symbol.
3925 But there may be more expression left now that we
3926 have parsed the relocation marker. Parse it again.
3927 XXX Surely there is a cleaner way to do this. */
3928 char *p = input_line_pointer;
3929 int offset;
3930 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3931
3932 memcpy (save_buf, base, input_line_pointer - base);
3933 memmove (base + (input_line_pointer - before_reloc),
3934 base, before_reloc - base);
3935
3936 input_line_pointer = base + (input_line_pointer-before_reloc);
3937 expression (&exp);
3938 memcpy (base, save_buf, p - base);
3939
3940 offset = nbytes - size;
3941 p = frag_more (nbytes);
3942 memset (p, 0, nbytes);
3943 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3944 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3945 free (save_buf);
3946 }
3947 }
3948 }
3949 }
3950 while (*input_line_pointer++ == ',');
3951
3952 /* Put terminator back into stream. */
3953 input_line_pointer --;
3954 demand_empty_rest_of_line ();
3955 }
3956
3957 /* Emit an expression containing a 32-bit thumb instruction.
3958 Implementation based on put_thumb32_insn. */
3959
3960 static void
3961 emit_thumb32_expr (expressionS * exp)
3962 {
3963 expressionS exp_high = *exp;
3964
3965 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3966 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3967 exp->X_add_number &= 0xffff;
3968 emit_expr (exp, (unsigned int) THUMB_SIZE);
3969 }
3970
3971 /* Guess the instruction size based on the opcode. */
3972
3973 static int
3974 thumb_insn_size (int opcode)
3975 {
3976 if ((unsigned int) opcode < 0xe800u)
3977 return 2;
3978 else if ((unsigned int) opcode >= 0xe8000000u)
3979 return 4;
3980 else
3981 return 0;
3982 }
3983
3984 static bfd_boolean
3985 emit_insn (expressionS *exp, int nbytes)
3986 {
3987 int size = 0;
3988
3989 if (exp->X_op == O_constant)
3990 {
3991 size = nbytes;
3992
3993 if (size == 0)
3994 size = thumb_insn_size (exp->X_add_number);
3995
3996 if (size != 0)
3997 {
3998 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3999 {
4000 as_bad (_(".inst.n operand too big. "\
4001 "Use .inst.w instead"));
4002 size = 0;
4003 }
4004 else
4005 {
4006 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
4007 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
4008 else
4009 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
4010
4011 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
4012 emit_thumb32_expr (exp);
4013 else
4014 emit_expr (exp, (unsigned int) size);
4015
4016 it_fsm_post_encode ();
4017 }
4018 }
4019 else
4020 as_bad (_("cannot determine Thumb instruction size. " \
4021 "Use .inst.n/.inst.w instead"));
4022 }
4023 else
4024 as_bad (_("constant expression required"));
4025
4026 return (size != 0);
4027 }
4028
4029 /* Like s_arm_elf_cons but do not use md_cons_align and
4030 set the mapping state to MAP_ARM/MAP_THUMB. */
4031
4032 static void
4033 s_arm_elf_inst (int nbytes)
4034 {
4035 if (is_it_end_of_statement ())
4036 {
4037 demand_empty_rest_of_line ();
4038 return;
4039 }
4040
4041 /* Calling mapping_state () here will not change ARM/THUMB,
4042 but will ensure not to be in DATA state. */
4043
4044 if (thumb_mode)
4045 mapping_state (MAP_THUMB);
4046 else
4047 {
4048 if (nbytes != 0)
4049 {
4050 as_bad (_("width suffixes are invalid in ARM mode"));
4051 ignore_rest_of_line ();
4052 return;
4053 }
4054
4055 nbytes = 4;
4056
4057 mapping_state (MAP_ARM);
4058 }
4059
4060 do
4061 {
4062 expressionS exp;
4063
4064 expression (& exp);
4065
4066 if (! emit_insn (& exp, nbytes))
4067 {
4068 ignore_rest_of_line ();
4069 return;
4070 }
4071 }
4072 while (*input_line_pointer++ == ',');
4073
4074 /* Put terminator back into stream. */
4075 input_line_pointer --;
4076 demand_empty_rest_of_line ();
4077 }
4078
4079 /* Parse a .rel31 directive. */
4080
4081 static void
4082 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
4083 {
4084 expressionS exp;
4085 char *p;
4086 valueT highbit;
4087
4088 highbit = 0;
4089 if (*input_line_pointer == '1')
4090 highbit = 0x80000000;
4091 else if (*input_line_pointer != '0')
4092 as_bad (_("expected 0 or 1"));
4093
4094 input_line_pointer++;
4095 if (*input_line_pointer != ',')
4096 as_bad (_("missing comma"));
4097 input_line_pointer++;
4098
4099 #ifdef md_flush_pending_output
4100 md_flush_pending_output ();
4101 #endif
4102
4103 #ifdef md_cons_align
4104 md_cons_align (4);
4105 #endif
4106
4107 mapping_state (MAP_DATA);
4108
4109 expression (&exp);
4110
4111 p = frag_more (4);
4112 md_number_to_chars (p, highbit, 4);
4113 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4114 BFD_RELOC_ARM_PREL31);
4115
4116 demand_empty_rest_of_line ();
4117 }
4118
4119 /* Directives: AEABI stack-unwind tables. */
4120
4121 /* Parse an unwind_fnstart directive. Simply records the current location. */
4122
4123 static void
4124 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4125 {
4126 demand_empty_rest_of_line ();
4127 if (unwind.proc_start)
4128 {
4129 as_bad (_("duplicate .fnstart directive"));
4130 return;
4131 }
4132
4133 /* Mark the start of the function. */
4134 unwind.proc_start = expr_build_dot ();
4135
4136 /* Reset the rest of the unwind info. */
4137 unwind.opcode_count = 0;
4138 unwind.table_entry = NULL;
4139 unwind.personality_routine = NULL;
4140 unwind.personality_index = -1;
4141 unwind.frame_size = 0;
4142 unwind.fp_offset = 0;
4143 unwind.fp_reg = REG_SP;
4144 unwind.fp_used = 0;
4145 unwind.sp_restored = 0;
4146 }
4147
4148
4149 /* Parse a handlerdata directive. Creates the exception handling table entry
4150 for the function. */
4151
4152 static void
4153 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4154 {
4155 demand_empty_rest_of_line ();
4156 if (!unwind.proc_start)
4157 as_bad (MISSING_FNSTART);
4158
4159 if (unwind.table_entry)
4160 as_bad (_("duplicate .handlerdata directive"));
4161
4162 create_unwind_entry (1);
4163 }
4164
4165 /* Parse an unwind_fnend directive. Generates the index table entry. */
4166
4167 static void
4168 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4169 {
4170 long where;
4171 char *ptr;
4172 valueT val;
4173 unsigned int marked_pr_dependency;
4174
4175 demand_empty_rest_of_line ();
4176
4177 if (!unwind.proc_start)
4178 {
4179 as_bad (_(".fnend directive without .fnstart"));
4180 return;
4181 }
4182
4183 /* Add eh table entry. */
4184 if (unwind.table_entry == NULL)
4185 val = create_unwind_entry (0);
4186 else
4187 val = 0;
4188
4189 /* Add index table entry. This is two words. */
4190 start_unwind_section (unwind.saved_seg, 1);
4191 frag_align (2, 0, 0);
4192 record_alignment (now_seg, 2);
4193
4194 ptr = frag_more (8);
4195 memset (ptr, 0, 8);
4196 where = frag_now_fix () - 8;
4197
4198 /* Self relative offset of the function start. */
4199 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4200 BFD_RELOC_ARM_PREL31);
4201
4202 /* Indicate dependency on EHABI-defined personality routines to the
4203 linker, if it hasn't been done already. */
4204 marked_pr_dependency
4205 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4206 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4207 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4208 {
4209 static const char *const name[] =
4210 {
4211 "__aeabi_unwind_cpp_pr0",
4212 "__aeabi_unwind_cpp_pr1",
4213 "__aeabi_unwind_cpp_pr2"
4214 };
4215 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4216 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4217 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4218 |= 1 << unwind.personality_index;
4219 }
4220
4221 if (val)
4222 /* Inline exception table entry. */
4223 md_number_to_chars (ptr + 4, val, 4);
4224 else
4225 /* Self relative offset of the table entry. */
4226 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4227 BFD_RELOC_ARM_PREL31);
4228
4229 /* Restore the original section. */
4230 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4231
4232 unwind.proc_start = NULL;
4233 }
4234
4235
4236 /* Parse an unwind_cantunwind directive. */
4237
4238 static void
4239 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4240 {
4241 demand_empty_rest_of_line ();
4242 if (!unwind.proc_start)
4243 as_bad (MISSING_FNSTART);
4244
4245 if (unwind.personality_routine || unwind.personality_index != -1)
4246 as_bad (_("personality routine specified for cantunwind frame"));
4247
4248 unwind.personality_index = -2;
4249 }
4250
4251
4252 /* Parse a personalityindex directive. */
4253
4254 static void
4255 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4256 {
4257 expressionS exp;
4258
4259 if (!unwind.proc_start)
4260 as_bad (MISSING_FNSTART);
4261
4262 if (unwind.personality_routine || unwind.personality_index != -1)
4263 as_bad (_("duplicate .personalityindex directive"));
4264
4265 expression (&exp);
4266
4267 if (exp.X_op != O_constant
4268 || exp.X_add_number < 0 || exp.X_add_number > 15)
4269 {
4270 as_bad (_("bad personality routine number"));
4271 ignore_rest_of_line ();
4272 return;
4273 }
4274
4275 unwind.personality_index = exp.X_add_number;
4276
4277 demand_empty_rest_of_line ();
4278 }
4279
4280
4281 /* Parse a personality directive. */
4282
4283 static void
4284 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4285 {
4286 char *name, *p, c;
4287
4288 if (!unwind.proc_start)
4289 as_bad (MISSING_FNSTART);
4290
4291 if (unwind.personality_routine || unwind.personality_index != -1)
4292 as_bad (_("duplicate .personality directive"));
4293
4294 c = get_symbol_name (& name);
4295 p = input_line_pointer;
4296 if (c == '"')
4297 ++ input_line_pointer;
4298 unwind.personality_routine = symbol_find_or_make (name);
4299 *p = c;
4300 demand_empty_rest_of_line ();
4301 }
4302
4303
4304 /* Parse a directive saving core registers. */
4305
4306 static void
4307 s_arm_unwind_save_core (void)
4308 {
4309 valueT op;
4310 long range;
4311 int n;
4312
4313 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4314 if (range == FAIL)
4315 {
4316 as_bad (_("expected register list"));
4317 ignore_rest_of_line ();
4318 return;
4319 }
4320
4321 demand_empty_rest_of_line ();
4322
4323 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4324 into .unwind_save {..., sp...}. We aren't bothered about the value of
4325 ip because it is clobbered by calls. */
4326 if (unwind.sp_restored && unwind.fp_reg == 12
4327 && (range & 0x3000) == 0x1000)
4328 {
4329 unwind.opcode_count--;
4330 unwind.sp_restored = 0;
4331 range = (range | 0x2000) & ~0x1000;
4332 unwind.pending_offset = 0;
4333 }
4334
4335 /* Pop r4-r15. */
4336 if (range & 0xfff0)
4337 {
4338 /* See if we can use the short opcodes. These pop a block of up to 8
4339 registers starting with r4, plus maybe r14. */
4340 for (n = 0; n < 8; n++)
4341 {
4342 /* Break at the first non-saved register. */
4343 if ((range & (1 << (n + 4))) == 0)
4344 break;
4345 }
4346 /* See if there are any other bits set. */
4347 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4348 {
4349 /* Use the long form. */
4350 op = 0x8000 | ((range >> 4) & 0xfff);
4351 add_unwind_opcode (op, 2);
4352 }
4353 else
4354 {
4355 /* Use the short form. */
4356 if (range & 0x4000)
4357 op = 0xa8; /* Pop r14. */
4358 else
4359 op = 0xa0; /* Do not pop r14. */
4360 op |= (n - 1);
4361 add_unwind_opcode (op, 1);
4362 }
4363 }
4364
4365 /* Pop r0-r3. */
4366 if (range & 0xf)
4367 {
4368 op = 0xb100 | (range & 0xf);
4369 add_unwind_opcode (op, 2);
4370 }
4371
4372 /* Record the number of bytes pushed. */
4373 for (n = 0; n < 16; n++)
4374 {
4375 if (range & (1 << n))
4376 unwind.frame_size += 4;
4377 }
4378 }
4379
4380
4381 /* Parse a directive saving FPA registers. */
4382
4383 static void
4384 s_arm_unwind_save_fpa (int reg)
4385 {
4386 expressionS exp;
4387 int num_regs;
4388 valueT op;
4389
4390 /* Get Number of registers to transfer. */
4391 if (skip_past_comma (&input_line_pointer) != FAIL)
4392 expression (&exp);
4393 else
4394 exp.X_op = O_illegal;
4395
4396 if (exp.X_op != O_constant)
4397 {
4398 as_bad (_("expected , <constant>"));
4399 ignore_rest_of_line ();
4400 return;
4401 }
4402
4403 num_regs = exp.X_add_number;
4404
4405 if (num_regs < 1 || num_regs > 4)
4406 {
4407 as_bad (_("number of registers must be in the range [1:4]"));
4408 ignore_rest_of_line ();
4409 return;
4410 }
4411
4412 demand_empty_rest_of_line ();
4413
4414 if (reg == 4)
4415 {
4416 /* Short form. */
4417 op = 0xb4 | (num_regs - 1);
4418 add_unwind_opcode (op, 1);
4419 }
4420 else
4421 {
4422 /* Long form. */
4423 op = 0xc800 | (reg << 4) | (num_regs - 1);
4424 add_unwind_opcode (op, 2);
4425 }
4426 unwind.frame_size += num_regs * 12;
4427 }
4428
4429
4430 /* Parse a directive saving VFP registers for ARMv6 and above. */
4431
4432 static void
4433 s_arm_unwind_save_vfp_armv6 (void)
4434 {
4435 int count;
4436 unsigned int start;
4437 valueT op;
4438 int num_vfpv3_regs = 0;
4439 int num_regs_below_16;
4440 bfd_boolean partial_match;
4441
4442 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4443 &partial_match);
4444 if (count == FAIL)
4445 {
4446 as_bad (_("expected register list"));
4447 ignore_rest_of_line ();
4448 return;
4449 }
4450
4451 demand_empty_rest_of_line ();
4452
4453 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4454 than FSTMX/FLDMX-style ones). */
4455
4456 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4457 if (start >= 16)
4458 num_vfpv3_regs = count;
4459 else if (start + count > 16)
4460 num_vfpv3_regs = start + count - 16;
4461
4462 if (num_vfpv3_regs > 0)
4463 {
4464 int start_offset = start > 16 ? start - 16 : 0;
4465 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4466 add_unwind_opcode (op, 2);
4467 }
4468
4469 /* Generate opcode for registers numbered in the range 0 .. 15. */
4470 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4471 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4472 if (num_regs_below_16 > 0)
4473 {
4474 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4475 add_unwind_opcode (op, 2);
4476 }
4477
4478 unwind.frame_size += count * 8;
4479 }
4480
4481
4482 /* Parse a directive saving VFP registers for pre-ARMv6. */
4483
4484 static void
4485 s_arm_unwind_save_vfp (void)
4486 {
4487 int count;
4488 unsigned int reg;
4489 valueT op;
4490 bfd_boolean partial_match;
4491
4492 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4493 &partial_match);
4494 if (count == FAIL)
4495 {
4496 as_bad (_("expected register list"));
4497 ignore_rest_of_line ();
4498 return;
4499 }
4500
4501 demand_empty_rest_of_line ();
4502
4503 if (reg == 8)
4504 {
4505 /* Short form. */
4506 op = 0xb8 | (count - 1);
4507 add_unwind_opcode (op, 1);
4508 }
4509 else
4510 {
4511 /* Long form. */
4512 op = 0xb300 | (reg << 4) | (count - 1);
4513 add_unwind_opcode (op, 2);
4514 }
4515 unwind.frame_size += count * 8 + 4;
4516 }
4517
4518
4519 /* Parse a directive saving iWMMXt data registers. */
4520
4521 static void
4522 s_arm_unwind_save_mmxwr (void)
4523 {
4524 int reg;
4525 int hi_reg;
4526 int i;
4527 unsigned mask = 0;
4528 valueT op;
4529
4530 if (*input_line_pointer == '{')
4531 input_line_pointer++;
4532
4533 do
4534 {
4535 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4536
4537 if (reg == FAIL)
4538 {
4539 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4540 goto error;
4541 }
4542
4543 if (mask >> reg)
4544 as_tsktsk (_("register list not in ascending order"));
4545 mask |= 1 << reg;
4546
4547 if (*input_line_pointer == '-')
4548 {
4549 input_line_pointer++;
4550 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4551 if (hi_reg == FAIL)
4552 {
4553 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4554 goto error;
4555 }
4556 else if (reg >= hi_reg)
4557 {
4558 as_bad (_("bad register range"));
4559 goto error;
4560 }
4561 for (; reg < hi_reg; reg++)
4562 mask |= 1 << reg;
4563 }
4564 }
4565 while (skip_past_comma (&input_line_pointer) != FAIL);
4566
4567 skip_past_char (&input_line_pointer, '}');
4568
4569 demand_empty_rest_of_line ();
4570
4571 /* Generate any deferred opcodes because we're going to be looking at
4572 the list. */
4573 flush_pending_unwind ();
4574
4575 for (i = 0; i < 16; i++)
4576 {
4577 if (mask & (1 << i))
4578 unwind.frame_size += 8;
4579 }
4580
4581 /* Attempt to combine with a previous opcode. We do this because gcc
4582 likes to output separate unwind directives for a single block of
4583 registers. */
4584 if (unwind.opcode_count > 0)
4585 {
4586 i = unwind.opcodes[unwind.opcode_count - 1];
4587 if ((i & 0xf8) == 0xc0)
4588 {
4589 i &= 7;
4590 /* Only merge if the blocks are contiguous. */
4591 if (i < 6)
4592 {
4593 if ((mask & 0xfe00) == (1 << 9))
4594 {
4595 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4596 unwind.opcode_count--;
4597 }
4598 }
4599 else if (i == 6 && unwind.opcode_count >= 2)
4600 {
4601 i = unwind.opcodes[unwind.opcode_count - 2];
4602 reg = i >> 4;
4603 i &= 0xf;
4604
4605 op = 0xffff << (reg - 1);
4606 if (reg > 0
4607 && ((mask & op) == (1u << (reg - 1))))
4608 {
4609 op = (1 << (reg + i + 1)) - 1;
4610 op &= ~((1 << reg) - 1);
4611 mask |= op;
4612 unwind.opcode_count -= 2;
4613 }
4614 }
4615 }
4616 }
4617
4618 hi_reg = 15;
4619 /* We want to generate opcodes in the order the registers have been
4620 saved, ie. descending order. */
4621 for (reg = 15; reg >= -1; reg--)
4622 {
4623 /* Save registers in blocks. */
4624 if (reg < 0
4625 || !(mask & (1 << reg)))
4626 {
4627 /* We found an unsaved reg. Generate opcodes to save the
4628 preceding block. */
4629 if (reg != hi_reg)
4630 {
4631 if (reg == 9)
4632 {
4633 /* Short form. */
4634 op = 0xc0 | (hi_reg - 10);
4635 add_unwind_opcode (op, 1);
4636 }
4637 else
4638 {
4639 /* Long form. */
4640 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4641 add_unwind_opcode (op, 2);
4642 }
4643 }
4644 hi_reg = reg - 1;
4645 }
4646 }
4647
4648 return;
4649 error:
4650 ignore_rest_of_line ();
4651 }
4652
4653 static void
4654 s_arm_unwind_save_mmxwcg (void)
4655 {
4656 int reg;
4657 int hi_reg;
4658 unsigned mask = 0;
4659 valueT op;
4660
4661 if (*input_line_pointer == '{')
4662 input_line_pointer++;
4663
4664 skip_whitespace (input_line_pointer);
4665
4666 do
4667 {
4668 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4669
4670 if (reg == FAIL)
4671 {
4672 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4673 goto error;
4674 }
4675
4676 reg -= 8;
4677 if (mask >> reg)
4678 as_tsktsk (_("register list not in ascending order"));
4679 mask |= 1 << reg;
4680
4681 if (*input_line_pointer == '-')
4682 {
4683 input_line_pointer++;
4684 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4685 if (hi_reg == FAIL)
4686 {
4687 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4688 goto error;
4689 }
4690 else if (reg >= hi_reg)
4691 {
4692 as_bad (_("bad register range"));
4693 goto error;
4694 }
4695 for (; reg < hi_reg; reg++)
4696 mask |= 1 << reg;
4697 }
4698 }
4699 while (skip_past_comma (&input_line_pointer) != FAIL);
4700
4701 skip_past_char (&input_line_pointer, '}');
4702
4703 demand_empty_rest_of_line ();
4704
4705 /* Generate any deferred opcodes because we're going to be looking at
4706 the list. */
4707 flush_pending_unwind ();
4708
4709 for (reg = 0; reg < 16; reg++)
4710 {
4711 if (mask & (1 << reg))
4712 unwind.frame_size += 4;
4713 }
4714 op = 0xc700 | mask;
4715 add_unwind_opcode (op, 2);
4716 return;
4717 error:
4718 ignore_rest_of_line ();
4719 }
4720
4721
4722 /* Parse an unwind_save directive.
4723 If the argument is non-zero, this is a .vsave directive. */
4724
4725 static void
4726 s_arm_unwind_save (int arch_v6)
4727 {
4728 char *peek;
4729 struct reg_entry *reg;
4730 bfd_boolean had_brace = FALSE;
4731
4732 if (!unwind.proc_start)
4733 as_bad (MISSING_FNSTART);
4734
4735 /* Figure out what sort of save we have. */
4736 peek = input_line_pointer;
4737
4738 if (*peek == '{')
4739 {
4740 had_brace = TRUE;
4741 peek++;
4742 }
4743
4744 reg = arm_reg_parse_multi (&peek);
4745
4746 if (!reg)
4747 {
4748 as_bad (_("register expected"));
4749 ignore_rest_of_line ();
4750 return;
4751 }
4752
4753 switch (reg->type)
4754 {
4755 case REG_TYPE_FN:
4756 if (had_brace)
4757 {
4758 as_bad (_("FPA .unwind_save does not take a register list"));
4759 ignore_rest_of_line ();
4760 return;
4761 }
4762 input_line_pointer = peek;
4763 s_arm_unwind_save_fpa (reg->number);
4764 return;
4765
4766 case REG_TYPE_RN:
4767 s_arm_unwind_save_core ();
4768 return;
4769
4770 case REG_TYPE_VFD:
4771 if (arch_v6)
4772 s_arm_unwind_save_vfp_armv6 ();
4773 else
4774 s_arm_unwind_save_vfp ();
4775 return;
4776
4777 case REG_TYPE_MMXWR:
4778 s_arm_unwind_save_mmxwr ();
4779 return;
4780
4781 case REG_TYPE_MMXWCG:
4782 s_arm_unwind_save_mmxwcg ();
4783 return;
4784
4785 default:
4786 as_bad (_(".unwind_save does not support this kind of register"));
4787 ignore_rest_of_line ();
4788 }
4789 }
4790
4791
4792 /* Parse an unwind_movsp directive. */
4793
4794 static void
4795 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4796 {
4797 int reg;
4798 valueT op;
4799 int offset;
4800
4801 if (!unwind.proc_start)
4802 as_bad (MISSING_FNSTART);
4803
4804 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4805 if (reg == FAIL)
4806 {
4807 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4808 ignore_rest_of_line ();
4809 return;
4810 }
4811
4812 /* Optional constant. */
4813 if (skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 if (immediate_for_directive (&offset) == FAIL)
4816 return;
4817 }
4818 else
4819 offset = 0;
4820
4821 demand_empty_rest_of_line ();
4822
4823 if (reg == REG_SP || reg == REG_PC)
4824 {
4825 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4826 return;
4827 }
4828
4829 if (unwind.fp_reg != REG_SP)
4830 as_bad (_("unexpected .unwind_movsp directive"));
4831
4832 /* Generate opcode to restore the value. */
4833 op = 0x90 | reg;
4834 add_unwind_opcode (op, 1);
4835
4836 /* Record the information for later. */
4837 unwind.fp_reg = reg;
4838 unwind.fp_offset = unwind.frame_size - offset;
4839 unwind.sp_restored = 1;
4840 }
4841
4842 /* Parse an unwind_pad directive. */
4843
4844 static void
4845 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4846 {
4847 int offset;
4848
4849 if (!unwind.proc_start)
4850 as_bad (MISSING_FNSTART);
4851
4852 if (immediate_for_directive (&offset) == FAIL)
4853 return;
4854
4855 if (offset & 3)
4856 {
4857 as_bad (_("stack increment must be multiple of 4"));
4858 ignore_rest_of_line ();
4859 return;
4860 }
4861
4862 /* Don't generate any opcodes, just record the details for later. */
4863 unwind.frame_size += offset;
4864 unwind.pending_offset += offset;
4865
4866 demand_empty_rest_of_line ();
4867 }
4868
4869 /* Parse an unwind_setfp directive. */
4870
4871 static void
4872 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4873 {
4874 int sp_reg;
4875 int fp_reg;
4876 int offset;
4877
4878 if (!unwind.proc_start)
4879 as_bad (MISSING_FNSTART);
4880
4881 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4882 if (skip_past_comma (&input_line_pointer) == FAIL)
4883 sp_reg = FAIL;
4884 else
4885 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4886
4887 if (fp_reg == FAIL || sp_reg == FAIL)
4888 {
4889 as_bad (_("expected <reg>, <reg>"));
4890 ignore_rest_of_line ();
4891 return;
4892 }
4893
4894 /* Optional constant. */
4895 if (skip_past_comma (&input_line_pointer) != FAIL)
4896 {
4897 if (immediate_for_directive (&offset) == FAIL)
4898 return;
4899 }
4900 else
4901 offset = 0;
4902
4903 demand_empty_rest_of_line ();
4904
4905 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4906 {
4907 as_bad (_("register must be either sp or set by a previous"
4908 "unwind_movsp directive"));
4909 return;
4910 }
4911
4912 /* Don't generate any opcodes, just record the information for later. */
4913 unwind.fp_reg = fp_reg;
4914 unwind.fp_used = 1;
4915 if (sp_reg == REG_SP)
4916 unwind.fp_offset = unwind.frame_size - offset;
4917 else
4918 unwind.fp_offset -= offset;
4919 }
4920
4921 /* Parse an unwind_raw directive. */
4922
4923 static void
4924 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4925 {
4926 expressionS exp;
4927 /* This is an arbitrary limit. */
4928 unsigned char op[16];
4929 int count;
4930
4931 if (!unwind.proc_start)
4932 as_bad (MISSING_FNSTART);
4933
4934 expression (&exp);
4935 if (exp.X_op == O_constant
4936 && skip_past_comma (&input_line_pointer) != FAIL)
4937 {
4938 unwind.frame_size += exp.X_add_number;
4939 expression (&exp);
4940 }
4941 else
4942 exp.X_op = O_illegal;
4943
4944 if (exp.X_op != O_constant)
4945 {
4946 as_bad (_("expected <offset>, <opcode>"));
4947 ignore_rest_of_line ();
4948 return;
4949 }
4950
4951 count = 0;
4952
4953 /* Parse the opcode. */
4954 for (;;)
4955 {
4956 if (count >= 16)
4957 {
4958 as_bad (_("unwind opcode too long"));
4959 ignore_rest_of_line ();
4960 }
4961 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4962 {
4963 as_bad (_("invalid unwind opcode"));
4964 ignore_rest_of_line ();
4965 return;
4966 }
4967 op[count++] = exp.X_add_number;
4968
4969 /* Parse the next byte. */
4970 if (skip_past_comma (&input_line_pointer) == FAIL)
4971 break;
4972
4973 expression (&exp);
4974 }
4975
4976 /* Add the opcode bytes in reverse order. */
4977 while (count--)
4978 add_unwind_opcode (op[count], 1);
4979
4980 demand_empty_rest_of_line ();
4981 }
4982
4983
4984 /* Parse a .eabi_attribute directive. */
4985
4986 static void
4987 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4988 {
4989 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4990
4991 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4992 attributes_set_explicitly[tag] = 1;
4993 }
4994
4995 /* Emit a tls fix for the symbol. */
4996
4997 static void
4998 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4999 {
5000 char *p;
5001 expressionS exp;
5002 #ifdef md_flush_pending_output
5003 md_flush_pending_output ();
5004 #endif
5005
5006 #ifdef md_cons_align
5007 md_cons_align (4);
5008 #endif
5009
5010 /* Since we're just labelling the code, there's no need to define a
5011 mapping symbol. */
5012 expression (&exp);
5013 p = obstack_next_free (&frchain_now->frch_obstack);
5014 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
5015 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
5016 : BFD_RELOC_ARM_TLS_DESCSEQ);
5017 }
5018 #endif /* OBJ_ELF */
5019
5020 static void s_arm_arch (int);
5021 static void s_arm_object_arch (int);
5022 static void s_arm_cpu (int);
5023 static void s_arm_fpu (int);
5024 static void s_arm_arch_extension (int);
5025
5026 #ifdef TE_PE
5027
5028 static void
5029 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
5030 {
5031 expressionS exp;
5032
5033 do
5034 {
5035 expression (&exp);
5036 if (exp.X_op == O_symbol)
5037 exp.X_op = O_secrel;
5038
5039 emit_expr (&exp, 4);
5040 }
5041 while (*input_line_pointer++ == ',');
5042
5043 input_line_pointer--;
5044 demand_empty_rest_of_line ();
5045 }
5046 #endif /* TE_PE */
5047
5048 int
5049 arm_is_largest_exponent_ok (int precision)
5050 {
5051 /* precision == 1 ensures that this will only return
5052 true for 16 bit floats. */
5053 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
5054 }
5055
5056 static void
5057 set_fp16_format (int dummy ATTRIBUTE_UNUSED)
5058 {
5059 char saved_char;
5060 char* name;
5061 enum fp_16bit_format new_format;
5062
5063 new_format = ARM_FP16_FORMAT_DEFAULT;
5064
5065 name = input_line_pointer;
5066 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
5067 input_line_pointer++;
5068
5069 saved_char = *input_line_pointer;
5070 *input_line_pointer = 0;
5071
5072 if (strcasecmp (name, "ieee") == 0)
5073 new_format = ARM_FP16_FORMAT_IEEE;
5074 else if (strcasecmp (name, "alternative") == 0)
5075 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
5076 else
5077 {
5078 as_bad (_("unrecognised float16 format \"%s\""), name);
5079 goto cleanup;
5080 }
5081
5082 /* Only set fp16_format if it is still the default (aka not already
5083 been set yet). */
5084 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
5085 fp16_format = new_format;
5086 else
5087 {
5088 if (new_format != fp16_format)
5089 as_warn (_("float16 format cannot be set more than once, ignoring."));
5090 }
5091
5092 cleanup:
5093 *input_line_pointer = saved_char;
5094 ignore_rest_of_line ();
5095 }
5096
5097 /* This table describes all the machine specific pseudo-ops the assembler
5098 has to support. The fields are:
5099 pseudo-op name without dot
5100 function to call to execute this pseudo-op
5101 Integer arg to pass to the function. */
5102
5103 const pseudo_typeS md_pseudo_table[] =
5104 {
5105 /* Never called because '.req' does not start a line. */
5106 { "req", s_req, 0 },
5107 /* Following two are likewise never called. */
5108 { "dn", s_dn, 0 },
5109 { "qn", s_qn, 0 },
5110 { "unreq", s_unreq, 0 },
5111 { "bss", s_bss, 0 },
5112 { "align", s_align_ptwo, 2 },
5113 { "arm", s_arm, 0 },
5114 { "thumb", s_thumb, 0 },
5115 { "code", s_code, 0 },
5116 { "force_thumb", s_force_thumb, 0 },
5117 { "thumb_func", s_thumb_func, 0 },
5118 { "thumb_set", s_thumb_set, 0 },
5119 { "even", s_even, 0 },
5120 { "ltorg", s_ltorg, 0 },
5121 { "pool", s_ltorg, 0 },
5122 { "syntax", s_syntax, 0 },
5123 { "cpu", s_arm_cpu, 0 },
5124 { "arch", s_arm_arch, 0 },
5125 { "object_arch", s_arm_object_arch, 0 },
5126 { "fpu", s_arm_fpu, 0 },
5127 { "arch_extension", s_arm_arch_extension, 0 },
5128 #ifdef OBJ_ELF
5129 { "word", s_arm_elf_cons, 4 },
5130 { "long", s_arm_elf_cons, 4 },
5131 { "inst.n", s_arm_elf_inst, 2 },
5132 { "inst.w", s_arm_elf_inst, 4 },
5133 { "inst", s_arm_elf_inst, 0 },
5134 { "rel31", s_arm_rel31, 0 },
5135 { "fnstart", s_arm_unwind_fnstart, 0 },
5136 { "fnend", s_arm_unwind_fnend, 0 },
5137 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5138 { "personality", s_arm_unwind_personality, 0 },
5139 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5140 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5141 { "save", s_arm_unwind_save, 0 },
5142 { "vsave", s_arm_unwind_save, 1 },
5143 { "movsp", s_arm_unwind_movsp, 0 },
5144 { "pad", s_arm_unwind_pad, 0 },
5145 { "setfp", s_arm_unwind_setfp, 0 },
5146 { "unwind_raw", s_arm_unwind_raw, 0 },
5147 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5148 { "tlsdescseq", s_arm_tls_descseq, 0 },
5149 #else
5150 { "word", cons, 4},
5151
5152 /* These are used for dwarf. */
5153 {"2byte", cons, 2},
5154 {"4byte", cons, 4},
5155 {"8byte", cons, 8},
5156 /* These are used for dwarf2. */
5157 { "file", dwarf2_directive_file, 0 },
5158 { "loc", dwarf2_directive_loc, 0 },
5159 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5160 #endif
5161 { "extend", float_cons, 'x' },
5162 { "ldouble", float_cons, 'x' },
5163 { "packed", float_cons, 'p' },
5164 { "bfloat16", float_cons, 'b' },
5165 #ifdef TE_PE
5166 {"secrel32", pe_directive_secrel, 0},
5167 #endif
5168
5169 /* These are for compatibility with CodeComposer Studio. */
5170 {"ref", s_ccs_ref, 0},
5171 {"def", s_ccs_def, 0},
5172 {"asmfunc", s_ccs_asmfunc, 0},
5173 {"endasmfunc", s_ccs_endasmfunc, 0},
5174
5175 {"float16", float_cons, 'h' },
5176 {"float16_format", set_fp16_format, 0 },
5177
5178 { 0, 0, 0 }
5179 };
5180
5181 /* Parser functions used exclusively in instruction operands. */
5182
5183 /* Generic immediate-value read function for use in insn parsing.
5184 STR points to the beginning of the immediate (the leading #);
5185 VAL receives the value; if the value is outside [MIN, MAX]
5186 issue an error. PREFIX_OPT is true if the immediate prefix is
5187 optional. */
5188
5189 static int
5190 parse_immediate (char **str, int *val, int min, int max,
5191 bfd_boolean prefix_opt)
5192 {
5193 expressionS exp;
5194
5195 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5196 if (exp.X_op != O_constant)
5197 {
5198 inst.error = _("constant expression required");
5199 return FAIL;
5200 }
5201
5202 if (exp.X_add_number < min || exp.X_add_number > max)
5203 {
5204 inst.error = _("immediate value out of range");
5205 return FAIL;
5206 }
5207
5208 *val = exp.X_add_number;
5209 return SUCCESS;
5210 }
5211
5212 /* Less-generic immediate-value read function with the possibility of loading a
5213 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5214 instructions. Puts the result directly in inst.operands[i]. */
5215
5216 static int
5217 parse_big_immediate (char **str, int i, expressionS *in_exp,
5218 bfd_boolean allow_symbol_p)
5219 {
5220 expressionS exp;
5221 expressionS *exp_p = in_exp ? in_exp : &exp;
5222 char *ptr = *str;
5223
5224 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5225
5226 if (exp_p->X_op == O_constant)
5227 {
5228 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5229 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5230 O_constant. We have to be careful not to break compilation for
5231 32-bit X_add_number, though. */
5232 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5233 {
5234 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5235 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5236 & 0xffffffff);
5237 inst.operands[i].regisimm = 1;
5238 }
5239 }
5240 else if (exp_p->X_op == O_big
5241 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5242 {
5243 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5244
5245 /* Bignums have their least significant bits in
5246 generic_bignum[0]. Make sure we put 32 bits in imm and
5247 32 bits in reg, in a (hopefully) portable way. */
5248 gas_assert (parts != 0);
5249
5250 /* Make sure that the number is not too big.
5251 PR 11972: Bignums can now be sign-extended to the
5252 size of a .octa so check that the out of range bits
5253 are all zero or all one. */
5254 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5255 {
5256 LITTLENUM_TYPE m = -1;
5257
5258 if (generic_bignum[parts * 2] != 0
5259 && generic_bignum[parts * 2] != m)
5260 return FAIL;
5261
5262 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5263 if (generic_bignum[j] != generic_bignum[j-1])
5264 return FAIL;
5265 }
5266
5267 inst.operands[i].imm = 0;
5268 for (j = 0; j < parts; j++, idx++)
5269 inst.operands[i].imm |= generic_bignum[idx]
5270 << (LITTLENUM_NUMBER_OF_BITS * j);
5271 inst.operands[i].reg = 0;
5272 for (j = 0; j < parts; j++, idx++)
5273 inst.operands[i].reg |= generic_bignum[idx]
5274 << (LITTLENUM_NUMBER_OF_BITS * j);
5275 inst.operands[i].regisimm = 1;
5276 }
5277 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5278 return FAIL;
5279
5280 *str = ptr;
5281
5282 return SUCCESS;
5283 }
5284
5285 /* Returns the pseudo-register number of an FPA immediate constant,
5286 or FAIL if there isn't a valid constant here. */
5287
5288 static int
5289 parse_fpa_immediate (char ** str)
5290 {
5291 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5292 char * save_in;
5293 expressionS exp;
5294 int i;
5295 int j;
5296
5297 /* First try and match exact strings, this is to guarantee
5298 that some formats will work even for cross assembly. */
5299
5300 for (i = 0; fp_const[i]; i++)
5301 {
5302 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5303 {
5304 char *start = *str;
5305
5306 *str += strlen (fp_const[i]);
5307 if (is_end_of_line[(unsigned char) **str])
5308 return i + 8;
5309 *str = start;
5310 }
5311 }
5312
5313 /* Just because we didn't get a match doesn't mean that the constant
5314 isn't valid, just that it is in a format that we don't
5315 automatically recognize. Try parsing it with the standard
5316 expression routines. */
5317
5318 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5319
5320 /* Look for a raw floating point number. */
5321 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5322 && is_end_of_line[(unsigned char) *save_in])
5323 {
5324 for (i = 0; i < NUM_FLOAT_VALS; i++)
5325 {
5326 for (j = 0; j < MAX_LITTLENUMS; j++)
5327 {
5328 if (words[j] != fp_values[i][j])
5329 break;
5330 }
5331
5332 if (j == MAX_LITTLENUMS)
5333 {
5334 *str = save_in;
5335 return i + 8;
5336 }
5337 }
5338 }
5339
5340 /* Try and parse a more complex expression, this will probably fail
5341 unless the code uses a floating point prefix (eg "0f"). */
5342 save_in = input_line_pointer;
5343 input_line_pointer = *str;
5344 if (expression (&exp) == absolute_section
5345 && exp.X_op == O_big
5346 && exp.X_add_number < 0)
5347 {
5348 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5349 Ditto for 15. */
5350 #define X_PRECISION 5
5351 #define E_PRECISION 15L
5352 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5353 {
5354 for (i = 0; i < NUM_FLOAT_VALS; i++)
5355 {
5356 for (j = 0; j < MAX_LITTLENUMS; j++)
5357 {
5358 if (words[j] != fp_values[i][j])
5359 break;
5360 }
5361
5362 if (j == MAX_LITTLENUMS)
5363 {
5364 *str = input_line_pointer;
5365 input_line_pointer = save_in;
5366 return i + 8;
5367 }
5368 }
5369 }
5370 }
5371
5372 *str = input_line_pointer;
5373 input_line_pointer = save_in;
5374 inst.error = _("invalid FPA immediate expression");
5375 return FAIL;
5376 }
5377
5378 /* Returns 1 if a number has "quarter-precision" float format
5379 0baBbbbbbc defgh000 00000000 00000000. */
5380
5381 static int
5382 is_quarter_float (unsigned imm)
5383 {
5384 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5385 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5386 }
5387
5388
5389 /* Detect the presence of a floating point or integer zero constant,
5390 i.e. #0.0 or #0. */
5391
5392 static bfd_boolean
5393 parse_ifimm_zero (char **in)
5394 {
5395 int error_code;
5396
5397 if (!is_immediate_prefix (**in))
5398 {
5399 /* In unified syntax, all prefixes are optional. */
5400 if (!unified_syntax)
5401 return FALSE;
5402 }
5403 else
5404 ++*in;
5405
5406 /* Accept #0x0 as a synonym for #0. */
5407 if (strncmp (*in, "0x", 2) == 0)
5408 {
5409 int val;
5410 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5411 return FALSE;
5412 return TRUE;
5413 }
5414
5415 error_code = atof_generic (in, ".", EXP_CHARS,
5416 &generic_floating_point_number);
5417
5418 if (!error_code
5419 && generic_floating_point_number.sign == '+'
5420 && (generic_floating_point_number.low
5421 > generic_floating_point_number.leader))
5422 return TRUE;
5423
5424 return FALSE;
5425 }
5426
5427 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5428 0baBbbbbbc defgh000 00000000 00000000.
5429 The zero and minus-zero cases need special handling, since they can't be
5430 encoded in the "quarter-precision" float format, but can nonetheless be
5431 loaded as integer constants. */
5432
5433 static unsigned
5434 parse_qfloat_immediate (char **ccp, int *immed)
5435 {
5436 char *str = *ccp;
5437 char *fpnum;
5438 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5439 int found_fpchar = 0;
5440
5441 skip_past_char (&str, '#');
5442
5443 /* We must not accidentally parse an integer as a floating-point number. Make
5444 sure that the value we parse is not an integer by checking for special
5445 characters '.' or 'e'.
5446 FIXME: This is a horrible hack, but doing better is tricky because type
5447 information isn't in a very usable state at parse time. */
5448 fpnum = str;
5449 skip_whitespace (fpnum);
5450
5451 if (strncmp (fpnum, "0x", 2) == 0)
5452 return FAIL;
5453 else
5454 {
5455 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5456 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5457 {
5458 found_fpchar = 1;
5459 break;
5460 }
5461
5462 if (!found_fpchar)
5463 return FAIL;
5464 }
5465
5466 if ((str = atof_ieee (str, 's', words)) != NULL)
5467 {
5468 unsigned fpword = 0;
5469 int i;
5470
5471 /* Our FP word must be 32 bits (single-precision FP). */
5472 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5473 {
5474 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5475 fpword |= words[i];
5476 }
5477
5478 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5479 *immed = fpword;
5480 else
5481 return FAIL;
5482
5483 *ccp = str;
5484
5485 return SUCCESS;
5486 }
5487
5488 return FAIL;
5489 }
5490
5491 /* Shift operands. */
5492 enum shift_kind
5493 {
5494 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5495 };
5496
5497 struct asm_shift_name
5498 {
5499 const char *name;
5500 enum shift_kind kind;
5501 };
5502
5503 /* Third argument to parse_shift. */
5504 enum parse_shift_mode
5505 {
5506 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5507 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5508 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5509 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5510 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5511 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5512 };
5513
5514 /* Parse a <shift> specifier on an ARM data processing instruction.
5515 This has three forms:
5516
5517 (LSL|LSR|ASL|ASR|ROR) Rs
5518 (LSL|LSR|ASL|ASR|ROR) #imm
5519 RRX
5520
5521 Note that ASL is assimilated to LSL in the instruction encoding, and
5522 RRX to ROR #0 (which cannot be written as such). */
5523
5524 static int
5525 parse_shift (char **str, int i, enum parse_shift_mode mode)
5526 {
5527 const struct asm_shift_name *shift_name;
5528 enum shift_kind shift;
5529 char *s = *str;
5530 char *p = s;
5531 int reg;
5532
5533 for (p = *str; ISALPHA (*p); p++)
5534 ;
5535
5536 if (p == *str)
5537 {
5538 inst.error = _("shift expression expected");
5539 return FAIL;
5540 }
5541
5542 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5543 p - *str);
5544
5545 if (shift_name == NULL)
5546 {
5547 inst.error = _("shift expression expected");
5548 return FAIL;
5549 }
5550
5551 shift = shift_name->kind;
5552
5553 switch (mode)
5554 {
5555 case NO_SHIFT_RESTRICT:
5556 case SHIFT_IMMEDIATE:
5557 if (shift == SHIFT_UXTW)
5558 {
5559 inst.error = _("'UXTW' not allowed here");
5560 return FAIL;
5561 }
5562 break;
5563
5564 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5565 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5566 {
5567 inst.error = _("'LSL' or 'ASR' required");
5568 return FAIL;
5569 }
5570 break;
5571
5572 case SHIFT_LSL_IMMEDIATE:
5573 if (shift != SHIFT_LSL)
5574 {
5575 inst.error = _("'LSL' required");
5576 return FAIL;
5577 }
5578 break;
5579
5580 case SHIFT_ASR_IMMEDIATE:
5581 if (shift != SHIFT_ASR)
5582 {
5583 inst.error = _("'ASR' required");
5584 return FAIL;
5585 }
5586 break;
5587 case SHIFT_UXTW_IMMEDIATE:
5588 if (shift != SHIFT_UXTW)
5589 {
5590 inst.error = _("'UXTW' required");
5591 return FAIL;
5592 }
5593 break;
5594
5595 default: abort ();
5596 }
5597
5598 if (shift != SHIFT_RRX)
5599 {
5600 /* Whitespace can appear here if the next thing is a bare digit. */
5601 skip_whitespace (p);
5602
5603 if (mode == NO_SHIFT_RESTRICT
5604 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5605 {
5606 inst.operands[i].imm = reg;
5607 inst.operands[i].immisreg = 1;
5608 }
5609 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5610 return FAIL;
5611 }
5612 inst.operands[i].shift_kind = shift;
5613 inst.operands[i].shifted = 1;
5614 *str = p;
5615 return SUCCESS;
5616 }
5617
5618 /* Parse a <shifter_operand> for an ARM data processing instruction:
5619
5620 #<immediate>
5621 #<immediate>, <rotate>
5622 <Rm>
5623 <Rm>, <shift>
5624
5625 where <shift> is defined by parse_shift above, and <rotate> is a
5626 multiple of 2 between 0 and 30. Validation of immediate operands
5627 is deferred to md_apply_fix. */
5628
5629 static int
5630 parse_shifter_operand (char **str, int i)
5631 {
5632 int value;
5633 expressionS exp;
5634
5635 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5636 {
5637 inst.operands[i].reg = value;
5638 inst.operands[i].isreg = 1;
5639
5640 /* parse_shift will override this if appropriate */
5641 inst.relocs[0].exp.X_op = O_constant;
5642 inst.relocs[0].exp.X_add_number = 0;
5643
5644 if (skip_past_comma (str) == FAIL)
5645 return SUCCESS;
5646
5647 /* Shift operation on register. */
5648 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5649 }
5650
5651 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5652 return FAIL;
5653
5654 if (skip_past_comma (str) == SUCCESS)
5655 {
5656 /* #x, y -- ie explicit rotation by Y. */
5657 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5658 return FAIL;
5659
5660 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5661 {
5662 inst.error = _("constant expression expected");
5663 return FAIL;
5664 }
5665
5666 value = exp.X_add_number;
5667 if (value < 0 || value > 30 || value % 2 != 0)
5668 {
5669 inst.error = _("invalid rotation");
5670 return FAIL;
5671 }
5672 if (inst.relocs[0].exp.X_add_number < 0
5673 || inst.relocs[0].exp.X_add_number > 255)
5674 {
5675 inst.error = _("invalid constant");
5676 return FAIL;
5677 }
5678
5679 /* Encode as specified. */
5680 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5681 return SUCCESS;
5682 }
5683
5684 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5685 inst.relocs[0].pc_rel = 0;
5686 return SUCCESS;
5687 }
5688
5689 /* Group relocation information. Each entry in the table contains the
5690 textual name of the relocation as may appear in assembler source
5691 and must end with a colon.
5692 Along with this textual name are the relocation codes to be used if
5693 the corresponding instruction is an ALU instruction (ADD or SUB only),
5694 an LDR, an LDRS, or an LDC. */
5695
5696 struct group_reloc_table_entry
5697 {
5698 const char *name;
5699 int alu_code;
5700 int ldr_code;
5701 int ldrs_code;
5702 int ldc_code;
5703 };
5704
5705 typedef enum
5706 {
5707 /* Varieties of non-ALU group relocation. */
5708
5709 GROUP_LDR,
5710 GROUP_LDRS,
5711 GROUP_LDC,
5712 GROUP_MVE
5713 } group_reloc_type;
5714
5715 static struct group_reloc_table_entry group_reloc_table[] =
5716 { /* Program counter relative: */
5717 { "pc_g0_nc",
5718 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5719 0, /* LDR */
5720 0, /* LDRS */
5721 0 }, /* LDC */
5722 { "pc_g0",
5723 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5724 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5725 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5726 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5727 { "pc_g1_nc",
5728 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5729 0, /* LDR */
5730 0, /* LDRS */
5731 0 }, /* LDC */
5732 { "pc_g1",
5733 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5734 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5735 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5736 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5737 { "pc_g2",
5738 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5739 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5740 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5741 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5742 /* Section base relative */
5743 { "sb_g0_nc",
5744 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5745 0, /* LDR */
5746 0, /* LDRS */
5747 0 }, /* LDC */
5748 { "sb_g0",
5749 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5750 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5751 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5752 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5753 { "sb_g1_nc",
5754 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5755 0, /* LDR */
5756 0, /* LDRS */
5757 0 }, /* LDC */
5758 { "sb_g1",
5759 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5760 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5761 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5762 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5763 { "sb_g2",
5764 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5765 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5766 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5767 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5768 /* Absolute thumb alu relocations. */
5769 { "lower0_7",
5770 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5771 0, /* LDR. */
5772 0, /* LDRS. */
5773 0 }, /* LDC. */
5774 { "lower8_15",
5775 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5776 0, /* LDR. */
5777 0, /* LDRS. */
5778 0 }, /* LDC. */
5779 { "upper0_7",
5780 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5781 0, /* LDR. */
5782 0, /* LDRS. */
5783 0 }, /* LDC. */
5784 { "upper8_15",
5785 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5786 0, /* LDR. */
5787 0, /* LDRS. */
5788 0 } }; /* LDC. */
5789
5790 /* Given the address of a pointer pointing to the textual name of a group
5791 relocation as may appear in assembler source, attempt to find its details
5792 in group_reloc_table. The pointer will be updated to the character after
5793 the trailing colon. On failure, FAIL will be returned; SUCCESS
5794 otherwise. On success, *entry will be updated to point at the relevant
5795 group_reloc_table entry. */
5796
5797 static int
5798 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5799 {
5800 unsigned int i;
5801 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5802 {
5803 int length = strlen (group_reloc_table[i].name);
5804
5805 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5806 && (*str)[length] == ':')
5807 {
5808 *out = &group_reloc_table[i];
5809 *str += (length + 1);
5810 return SUCCESS;
5811 }
5812 }
5813
5814 return FAIL;
5815 }
5816
5817 /* Parse a <shifter_operand> for an ARM data processing instruction
5818 (as for parse_shifter_operand) where group relocations are allowed:
5819
5820 #<immediate>
5821 #<immediate>, <rotate>
5822 #:<group_reloc>:<expression>
5823 <Rm>
5824 <Rm>, <shift>
5825
5826 where <group_reloc> is one of the strings defined in group_reloc_table.
5827 The hashes are optional.
5828
5829 Everything else is as for parse_shifter_operand. */
5830
5831 static parse_operand_result
5832 parse_shifter_operand_group_reloc (char **str, int i)
5833 {
5834 /* Determine if we have the sequence of characters #: or just :
5835 coming next. If we do, then we check for a group relocation.
5836 If we don't, punt the whole lot to parse_shifter_operand. */
5837
5838 if (((*str)[0] == '#' && (*str)[1] == ':')
5839 || (*str)[0] == ':')
5840 {
5841 struct group_reloc_table_entry *entry;
5842
5843 if ((*str)[0] == '#')
5844 (*str) += 2;
5845 else
5846 (*str)++;
5847
5848 /* Try to parse a group relocation. Anything else is an error. */
5849 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5850 {
5851 inst.error = _("unknown group relocation");
5852 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5853 }
5854
5855 /* We now have the group relocation table entry corresponding to
5856 the name in the assembler source. Next, we parse the expression. */
5857 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5858 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5859
5860 /* Record the relocation type (always the ALU variant here). */
5861 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5862 gas_assert (inst.relocs[0].type != 0);
5863
5864 return PARSE_OPERAND_SUCCESS;
5865 }
5866 else
5867 return parse_shifter_operand (str, i) == SUCCESS
5868 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5869
5870 /* Never reached. */
5871 }
5872
5873 /* Parse a Neon alignment expression. Information is written to
5874 inst.operands[i]. We assume the initial ':' has been skipped.
5875
5876 align .imm = align << 8, .immisalign=1, .preind=0 */
5877 static parse_operand_result
5878 parse_neon_alignment (char **str, int i)
5879 {
5880 char *p = *str;
5881 expressionS exp;
5882
5883 my_get_expression (&exp, &p, GE_NO_PREFIX);
5884
5885 if (exp.X_op != O_constant)
5886 {
5887 inst.error = _("alignment must be constant");
5888 return PARSE_OPERAND_FAIL;
5889 }
5890
5891 inst.operands[i].imm = exp.X_add_number << 8;
5892 inst.operands[i].immisalign = 1;
5893 /* Alignments are not pre-indexes. */
5894 inst.operands[i].preind = 0;
5895
5896 *str = p;
5897 return PARSE_OPERAND_SUCCESS;
5898 }
5899
5900 /* Parse all forms of an ARM address expression. Information is written
5901 to inst.operands[i] and/or inst.relocs[0].
5902
5903 Preindexed addressing (.preind=1):
5904
5905 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5906 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5907 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5908 .shift_kind=shift .relocs[0].exp=shift_imm
5909
5910 These three may have a trailing ! which causes .writeback to be set also.
5911
5912 Postindexed addressing (.postind=1, .writeback=1):
5913
5914 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5915 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5916 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5917 .shift_kind=shift .relocs[0].exp=shift_imm
5918
5919 Unindexed addressing (.preind=0, .postind=0):
5920
5921 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5922
5923 Other:
5924
5925 [Rn]{!} shorthand for [Rn,#0]{!}
5926 =immediate .isreg=0 .relocs[0].exp=immediate
5927 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5928
5929 It is the caller's responsibility to check for addressing modes not
5930 supported by the instruction, and to set inst.relocs[0].type. */
5931
5932 static parse_operand_result
5933 parse_address_main (char **str, int i, int group_relocations,
5934 group_reloc_type group_type)
5935 {
5936 char *p = *str;
5937 int reg;
5938
5939 if (skip_past_char (&p, '[') == FAIL)
5940 {
5941 if (skip_past_char (&p, '=') == FAIL)
5942 {
5943 /* Bare address - translate to PC-relative offset. */
5944 inst.relocs[0].pc_rel = 1;
5945 inst.operands[i].reg = REG_PC;
5946 inst.operands[i].isreg = 1;
5947 inst.operands[i].preind = 1;
5948
5949 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5950 return PARSE_OPERAND_FAIL;
5951 }
5952 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5953 /*allow_symbol_p=*/TRUE))
5954 return PARSE_OPERAND_FAIL;
5955
5956 *str = p;
5957 return PARSE_OPERAND_SUCCESS;
5958 }
5959
5960 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5961 skip_whitespace (p);
5962
5963 if (group_type == GROUP_MVE)
5964 {
5965 enum arm_reg_type rtype = REG_TYPE_MQ;
5966 struct neon_type_el et;
5967 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5968 {
5969 inst.operands[i].isquad = 1;
5970 }
5971 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5972 {
5973 inst.error = BAD_ADDR_MODE;
5974 return PARSE_OPERAND_FAIL;
5975 }
5976 }
5977 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5978 {
5979 if (group_type == GROUP_MVE)
5980 inst.error = BAD_ADDR_MODE;
5981 else
5982 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5983 return PARSE_OPERAND_FAIL;
5984 }
5985 inst.operands[i].reg = reg;
5986 inst.operands[i].isreg = 1;
5987
5988 if (skip_past_comma (&p) == SUCCESS)
5989 {
5990 inst.operands[i].preind = 1;
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002
6003 if (skip_past_comma (&p) == SUCCESS)
6004 {
6005 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
6006 {
6007 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
6008 inst.relocs[0].exp.X_add_number = 0;
6009 }
6010 else
6011 return PARSE_OPERAND_FAIL;
6012 }
6013 }
6014 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6015 {
6016 inst.operands[i].imm = reg;
6017 inst.operands[i].immisreg = 1;
6018
6019 if (skip_past_comma (&p) == SUCCESS)
6020 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6021 return PARSE_OPERAND_FAIL;
6022 }
6023 else if (skip_past_char (&p, ':') == SUCCESS)
6024 {
6025 /* FIXME: '@' should be used here, but it's filtered out by generic
6026 code before we get to see it here. This may be subject to
6027 change. */
6028 parse_operand_result result = parse_neon_alignment (&p, i);
6029
6030 if (result != PARSE_OPERAND_SUCCESS)
6031 return result;
6032 }
6033 else
6034 {
6035 if (inst.operands[i].negative)
6036 {
6037 inst.operands[i].negative = 0;
6038 p--;
6039 }
6040
6041 if (group_relocations
6042 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
6043 {
6044 struct group_reloc_table_entry *entry;
6045
6046 /* Skip over the #: or : sequence. */
6047 if (*p == '#')
6048 p += 2;
6049 else
6050 p++;
6051
6052 /* Try to parse a group relocation. Anything else is an
6053 error. */
6054 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
6055 {
6056 inst.error = _("unknown group relocation");
6057 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6058 }
6059
6060 /* We now have the group relocation table entry corresponding to
6061 the name in the assembler source. Next, we parse the
6062 expression. */
6063 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6064 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6065
6066 /* Record the relocation type. */
6067 switch (group_type)
6068 {
6069 case GROUP_LDR:
6070 inst.relocs[0].type
6071 = (bfd_reloc_code_real_type) entry->ldr_code;
6072 break;
6073
6074 case GROUP_LDRS:
6075 inst.relocs[0].type
6076 = (bfd_reloc_code_real_type) entry->ldrs_code;
6077 break;
6078
6079 case GROUP_LDC:
6080 inst.relocs[0].type
6081 = (bfd_reloc_code_real_type) entry->ldc_code;
6082 break;
6083
6084 default:
6085 gas_assert (0);
6086 }
6087
6088 if (inst.relocs[0].type == 0)
6089 {
6090 inst.error = _("this group relocation is not allowed on this instruction");
6091 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6092 }
6093 }
6094 else
6095 {
6096 char *q = p;
6097
6098 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6099 return PARSE_OPERAND_FAIL;
6100 /* If the offset is 0, find out if it's a +0 or -0. */
6101 if (inst.relocs[0].exp.X_op == O_constant
6102 && inst.relocs[0].exp.X_add_number == 0)
6103 {
6104 skip_whitespace (q);
6105 if (*q == '#')
6106 {
6107 q++;
6108 skip_whitespace (q);
6109 }
6110 if (*q == '-')
6111 inst.operands[i].negative = 1;
6112 }
6113 }
6114 }
6115 }
6116 else if (skip_past_char (&p, ':') == SUCCESS)
6117 {
6118 /* FIXME: '@' should be used here, but it's filtered out by generic code
6119 before we get to see it here. This may be subject to change. */
6120 parse_operand_result result = parse_neon_alignment (&p, i);
6121
6122 if (result != PARSE_OPERAND_SUCCESS)
6123 return result;
6124 }
6125
6126 if (skip_past_char (&p, ']') == FAIL)
6127 {
6128 inst.error = _("']' expected");
6129 return PARSE_OPERAND_FAIL;
6130 }
6131
6132 if (skip_past_char (&p, '!') == SUCCESS)
6133 inst.operands[i].writeback = 1;
6134
6135 else if (skip_past_comma (&p) == SUCCESS)
6136 {
6137 if (skip_past_char (&p, '{') == SUCCESS)
6138 {
6139 /* [Rn], {expr} - unindexed, with option */
6140 if (parse_immediate (&p, &inst.operands[i].imm,
6141 0, 255, TRUE) == FAIL)
6142 return PARSE_OPERAND_FAIL;
6143
6144 if (skip_past_char (&p, '}') == FAIL)
6145 {
6146 inst.error = _("'}' expected at end of 'option' field");
6147 return PARSE_OPERAND_FAIL;
6148 }
6149 if (inst.operands[i].preind)
6150 {
6151 inst.error = _("cannot combine index with option");
6152 return PARSE_OPERAND_FAIL;
6153 }
6154 *str = p;
6155 return PARSE_OPERAND_SUCCESS;
6156 }
6157 else
6158 {
6159 inst.operands[i].postind = 1;
6160 inst.operands[i].writeback = 1;
6161
6162 if (inst.operands[i].preind)
6163 {
6164 inst.error = _("cannot combine pre- and post-indexing");
6165 return PARSE_OPERAND_FAIL;
6166 }
6167
6168 if (*p == '+') p++;
6169 else if (*p == '-') p++, inst.operands[i].negative = 1;
6170
6171 enum arm_reg_type rtype = REG_TYPE_MQ;
6172 struct neon_type_el et;
6173 if (group_type == GROUP_MVE
6174 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6175 {
6176 inst.operands[i].immisreg = 2;
6177 inst.operands[i].imm = reg;
6178 }
6179 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6180 {
6181 /* We might be using the immediate for alignment already. If we
6182 are, OR the register number into the low-order bits. */
6183 if (inst.operands[i].immisalign)
6184 inst.operands[i].imm |= reg;
6185 else
6186 inst.operands[i].imm = reg;
6187 inst.operands[i].immisreg = 1;
6188
6189 if (skip_past_comma (&p) == SUCCESS)
6190 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6191 return PARSE_OPERAND_FAIL;
6192 }
6193 else
6194 {
6195 char *q = p;
6196
6197 if (inst.operands[i].negative)
6198 {
6199 inst.operands[i].negative = 0;
6200 p--;
6201 }
6202 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6203 return PARSE_OPERAND_FAIL;
6204 /* If the offset is 0, find out if it's a +0 or -0. */
6205 if (inst.relocs[0].exp.X_op == O_constant
6206 && inst.relocs[0].exp.X_add_number == 0)
6207 {
6208 skip_whitespace (q);
6209 if (*q == '#')
6210 {
6211 q++;
6212 skip_whitespace (q);
6213 }
6214 if (*q == '-')
6215 inst.operands[i].negative = 1;
6216 }
6217 }
6218 }
6219 }
6220
6221 /* If at this point neither .preind nor .postind is set, we have a
6222 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6223 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6224 {
6225 inst.operands[i].preind = 1;
6226 inst.relocs[0].exp.X_op = O_constant;
6227 inst.relocs[0].exp.X_add_number = 0;
6228 }
6229 *str = p;
6230 return PARSE_OPERAND_SUCCESS;
6231 }
6232
6233 static int
6234 parse_address (char **str, int i)
6235 {
6236 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6237 ? SUCCESS : FAIL;
6238 }
6239
6240 static parse_operand_result
6241 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6242 {
6243 return parse_address_main (str, i, 1, type);
6244 }
6245
6246 /* Parse an operand for a MOVW or MOVT instruction. */
6247 static int
6248 parse_half (char **str)
6249 {
6250 char * p;
6251
6252 p = *str;
6253 skip_past_char (&p, '#');
6254 if (strncasecmp (p, ":lower16:", 9) == 0)
6255 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6256 else if (strncasecmp (p, ":upper16:", 9) == 0)
6257 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6258
6259 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6260 {
6261 p += 9;
6262 skip_whitespace (p);
6263 }
6264
6265 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6266 return FAIL;
6267
6268 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6269 {
6270 if (inst.relocs[0].exp.X_op != O_constant)
6271 {
6272 inst.error = _("constant expression expected");
6273 return FAIL;
6274 }
6275 if (inst.relocs[0].exp.X_add_number < 0
6276 || inst.relocs[0].exp.X_add_number > 0xffff)
6277 {
6278 inst.error = _("immediate value out of range");
6279 return FAIL;
6280 }
6281 }
6282 *str = p;
6283 return SUCCESS;
6284 }
6285
6286 /* Miscellaneous. */
6287
6288 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6289 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6290 static int
6291 parse_psr (char **str, bfd_boolean lhs)
6292 {
6293 char *p;
6294 unsigned long psr_field;
6295 const struct asm_psr *psr;
6296 char *start;
6297 bfd_boolean is_apsr = FALSE;
6298 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6299
6300 /* PR gas/12698: If the user has specified -march=all then m_profile will
6301 be TRUE, but we want to ignore it in this case as we are building for any
6302 CPU type, including non-m variants. */
6303 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6304 m_profile = FALSE;
6305
6306 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6307 feature for ease of use and backwards compatibility. */
6308 p = *str;
6309 if (strncasecmp (p, "SPSR", 4) == 0)
6310 {
6311 if (m_profile)
6312 goto unsupported_psr;
6313
6314 psr_field = SPSR_BIT;
6315 }
6316 else if (strncasecmp (p, "CPSR", 4) == 0)
6317 {
6318 if (m_profile)
6319 goto unsupported_psr;
6320
6321 psr_field = 0;
6322 }
6323 else if (strncasecmp (p, "APSR", 4) == 0)
6324 {
6325 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6326 and ARMv7-R architecture CPUs. */
6327 is_apsr = TRUE;
6328 psr_field = 0;
6329 }
6330 else if (m_profile)
6331 {
6332 start = p;
6333 do
6334 p++;
6335 while (ISALNUM (*p) || *p == '_');
6336
6337 if (strncasecmp (start, "iapsr", 5) == 0
6338 || strncasecmp (start, "eapsr", 5) == 0
6339 || strncasecmp (start, "xpsr", 4) == 0
6340 || strncasecmp (start, "psr", 3) == 0)
6341 p = start + strcspn (start, "rR") + 1;
6342
6343 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6344 p - start);
6345
6346 if (!psr)
6347 return FAIL;
6348
6349 /* If APSR is being written, a bitfield may be specified. Note that
6350 APSR itself is handled above. */
6351 if (psr->field <= 3)
6352 {
6353 psr_field = psr->field;
6354 is_apsr = TRUE;
6355 goto check_suffix;
6356 }
6357
6358 *str = p;
6359 /* M-profile MSR instructions have the mask field set to "10", except
6360 *PSR variants which modify APSR, which may use a different mask (and
6361 have been handled already). Do that by setting the PSR_f field
6362 here. */
6363 return psr->field | (lhs ? PSR_f : 0);
6364 }
6365 else
6366 goto unsupported_psr;
6367
6368 p += 4;
6369 check_suffix:
6370 if (*p == '_')
6371 {
6372 /* A suffix follows. */
6373 p++;
6374 start = p;
6375
6376 do
6377 p++;
6378 while (ISALNUM (*p) || *p == '_');
6379
6380 if (is_apsr)
6381 {
6382 /* APSR uses a notation for bits, rather than fields. */
6383 unsigned int nzcvq_bits = 0;
6384 unsigned int g_bit = 0;
6385 char *bit;
6386
6387 for (bit = start; bit != p; bit++)
6388 {
6389 switch (TOLOWER (*bit))
6390 {
6391 case 'n':
6392 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6393 break;
6394
6395 case 'z':
6396 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6397 break;
6398
6399 case 'c':
6400 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6401 break;
6402
6403 case 'v':
6404 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6405 break;
6406
6407 case 'q':
6408 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6409 break;
6410
6411 case 'g':
6412 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6413 break;
6414
6415 default:
6416 inst.error = _("unexpected bit specified after APSR");
6417 return FAIL;
6418 }
6419 }
6420
6421 if (nzcvq_bits == 0x1f)
6422 psr_field |= PSR_f;
6423
6424 if (g_bit == 0x1)
6425 {
6426 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6427 {
6428 inst.error = _("selected processor does not "
6429 "support DSP extension");
6430 return FAIL;
6431 }
6432
6433 psr_field |= PSR_s;
6434 }
6435
6436 if ((nzcvq_bits & 0x20) != 0
6437 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6438 || (g_bit & 0x2) != 0)
6439 {
6440 inst.error = _("bad bitmask specified after APSR");
6441 return FAIL;
6442 }
6443 }
6444 else
6445 {
6446 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6447 p - start);
6448 if (!psr)
6449 goto error;
6450
6451 psr_field |= psr->field;
6452 }
6453 }
6454 else
6455 {
6456 if (ISALNUM (*p))
6457 goto error; /* Garbage after "[CS]PSR". */
6458
6459 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6460 is deprecated, but allow it anyway. */
6461 if (is_apsr && lhs)
6462 {
6463 psr_field |= PSR_f;
6464 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6465 "deprecated"));
6466 }
6467 else if (!m_profile)
6468 /* These bits are never right for M-profile devices: don't set them
6469 (only code paths which read/write APSR reach here). */
6470 psr_field |= (PSR_c | PSR_f);
6471 }
6472 *str = p;
6473 return psr_field;
6474
6475 unsupported_psr:
6476 inst.error = _("selected processor does not support requested special "
6477 "purpose register");
6478 return FAIL;
6479
6480 error:
6481 inst.error = _("flag for {c}psr instruction expected");
6482 return FAIL;
6483 }
6484
6485 static int
6486 parse_sys_vldr_vstr (char **str)
6487 {
6488 unsigned i;
6489 int val = FAIL;
6490 struct {
6491 const char *name;
6492 int regl;
6493 int regh;
6494 } sysregs[] = {
6495 {"FPSCR", 0x1, 0x0},
6496 {"FPSCR_nzcvqc", 0x2, 0x0},
6497 {"VPR", 0x4, 0x1},
6498 {"P0", 0x5, 0x1},
6499 {"FPCXTNS", 0x6, 0x1},
6500 {"FPCXTS", 0x7, 0x1}
6501 };
6502 char *op_end = strchr (*str, ',');
6503 size_t op_strlen = op_end - *str;
6504
6505 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6506 {
6507 if (!strncmp (*str, sysregs[i].name, op_strlen))
6508 {
6509 val = sysregs[i].regl | (sysregs[i].regh << 3);
6510 *str = op_end;
6511 break;
6512 }
6513 }
6514
6515 return val;
6516 }
6517
6518 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6519 value suitable for splatting into the AIF field of the instruction. */
6520
6521 static int
6522 parse_cps_flags (char **str)
6523 {
6524 int val = 0;
6525 int saw_a_flag = 0;
6526 char *s = *str;
6527
6528 for (;;)
6529 switch (*s++)
6530 {
6531 case '\0': case ',':
6532 goto done;
6533
6534 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6535 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6536 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6537
6538 default:
6539 inst.error = _("unrecognized CPS flag");
6540 return FAIL;
6541 }
6542
6543 done:
6544 if (saw_a_flag == 0)
6545 {
6546 inst.error = _("missing CPS flags");
6547 return FAIL;
6548 }
6549
6550 *str = s - 1;
6551 return val;
6552 }
6553
6554 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6555 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6556
6557 static int
6558 parse_endian_specifier (char **str)
6559 {
6560 int little_endian;
6561 char *s = *str;
6562
6563 if (strncasecmp (s, "BE", 2))
6564 little_endian = 0;
6565 else if (strncasecmp (s, "LE", 2))
6566 little_endian = 1;
6567 else
6568 {
6569 inst.error = _("valid endian specifiers are be or le");
6570 return FAIL;
6571 }
6572
6573 if (ISALNUM (s[2]) || s[2] == '_')
6574 {
6575 inst.error = _("valid endian specifiers are be or le");
6576 return FAIL;
6577 }
6578
6579 *str = s + 2;
6580 return little_endian;
6581 }
6582
6583 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6584 value suitable for poking into the rotate field of an sxt or sxta
6585 instruction, or FAIL on error. */
6586
6587 static int
6588 parse_ror (char **str)
6589 {
6590 int rot;
6591 char *s = *str;
6592
6593 if (strncasecmp (s, "ROR", 3) == 0)
6594 s += 3;
6595 else
6596 {
6597 inst.error = _("missing rotation field after comma");
6598 return FAIL;
6599 }
6600
6601 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6602 return FAIL;
6603
6604 switch (rot)
6605 {
6606 case 0: *str = s; return 0x0;
6607 case 8: *str = s; return 0x1;
6608 case 16: *str = s; return 0x2;
6609 case 24: *str = s; return 0x3;
6610
6611 default:
6612 inst.error = _("rotation can only be 0, 8, 16, or 24");
6613 return FAIL;
6614 }
6615 }
6616
6617 /* Parse a conditional code (from conds[] below). The value returned is in the
6618 range 0 .. 14, or FAIL. */
6619 static int
6620 parse_cond (char **str)
6621 {
6622 char *q;
6623 const struct asm_cond *c;
6624 int n;
6625 /* Condition codes are always 2 characters, so matching up to
6626 3 characters is sufficient. */
6627 char cond[3];
6628
6629 q = *str;
6630 n = 0;
6631 while (ISALPHA (*q) && n < 3)
6632 {
6633 cond[n] = TOLOWER (*q);
6634 q++;
6635 n++;
6636 }
6637
6638 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6639 if (!c)
6640 {
6641 inst.error = _("condition required");
6642 return FAIL;
6643 }
6644
6645 *str = q;
6646 return c->value;
6647 }
6648
6649 /* Parse an option for a barrier instruction. Returns the encoding for the
6650 option, or FAIL. */
6651 static int
6652 parse_barrier (char **str)
6653 {
6654 char *p, *q;
6655 const struct asm_barrier_opt *o;
6656
6657 p = q = *str;
6658 while (ISALPHA (*q))
6659 q++;
6660
6661 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6662 q - p);
6663 if (!o)
6664 return FAIL;
6665
6666 if (!mark_feature_used (&o->arch))
6667 return FAIL;
6668
6669 *str = q;
6670 return o->value;
6671 }
6672
6673 /* Parse the operands of a table branch instruction. Similar to a memory
6674 operand. */
6675 static int
6676 parse_tb (char **str)
6677 {
6678 char * p = *str;
6679 int reg;
6680
6681 if (skip_past_char (&p, '[') == FAIL)
6682 {
6683 inst.error = _("'[' expected");
6684 return FAIL;
6685 }
6686
6687 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6688 {
6689 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6690 return FAIL;
6691 }
6692 inst.operands[0].reg = reg;
6693
6694 if (skip_past_comma (&p) == FAIL)
6695 {
6696 inst.error = _("',' expected");
6697 return FAIL;
6698 }
6699
6700 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6701 {
6702 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6703 return FAIL;
6704 }
6705 inst.operands[0].imm = reg;
6706
6707 if (skip_past_comma (&p) == SUCCESS)
6708 {
6709 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6710 return FAIL;
6711 if (inst.relocs[0].exp.X_add_number != 1)
6712 {
6713 inst.error = _("invalid shift");
6714 return FAIL;
6715 }
6716 inst.operands[0].shifted = 1;
6717 }
6718
6719 if (skip_past_char (&p, ']') == FAIL)
6720 {
6721 inst.error = _("']' expected");
6722 return FAIL;
6723 }
6724 *str = p;
6725 return SUCCESS;
6726 }
6727
6728 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6729 information on the types the operands can take and how they are encoded.
6730 Up to four operands may be read; this function handles setting the
6731 ".present" field for each read operand itself.
6732 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6733 else returns FAIL. */
6734
6735 static int
6736 parse_neon_mov (char **str, int *which_operand)
6737 {
6738 int i = *which_operand, val;
6739 enum arm_reg_type rtype;
6740 char *ptr = *str;
6741 struct neon_type_el optype;
6742
6743 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6744 {
6745 /* Cases 17 or 19. */
6746 inst.operands[i].reg = val;
6747 inst.operands[i].isvec = 1;
6748 inst.operands[i].isscalar = 2;
6749 inst.operands[i].vectype = optype;
6750 inst.operands[i++].present = 1;
6751
6752 if (skip_past_comma (&ptr) == FAIL)
6753 goto wanted_comma;
6754
6755 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6756 {
6757 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isreg = 1;
6760 inst.operands[i].present = 1;
6761 }
6762 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6763 {
6764 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isvec = 1;
6767 inst.operands[i].isscalar = 2;
6768 inst.operands[i].vectype = optype;
6769 inst.operands[i++].present = 1;
6770
6771 if (skip_past_comma (&ptr) == FAIL)
6772 goto wanted_comma;
6773
6774 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6775 goto wanted_arm;
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i++].present = 1;
6780
6781 if (skip_past_comma (&ptr) == FAIL)
6782 goto wanted_comma;
6783
6784 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6785 goto wanted_arm;
6786
6787 inst.operands[i].reg = val;
6788 inst.operands[i].isreg = 1;
6789 inst.operands[i].present = 1;
6790 }
6791 else
6792 {
6793 first_error (_("expected ARM or MVE vector register"));
6794 return FAIL;
6795 }
6796 }
6797 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6798 {
6799 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6800 inst.operands[i].reg = val;
6801 inst.operands[i].isscalar = 1;
6802 inst.operands[i].vectype = optype;
6803 inst.operands[i++].present = 1;
6804
6805 if (skip_past_comma (&ptr) == FAIL)
6806 goto wanted_comma;
6807
6808 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6809 goto wanted_arm;
6810
6811 inst.operands[i].reg = val;
6812 inst.operands[i].isreg = 1;
6813 inst.operands[i].present = 1;
6814 }
6815 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6816 != FAIL)
6817 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6818 != FAIL))
6819 {
6820 /* Cases 0, 1, 2, 3, 5 (D only). */
6821 if (skip_past_comma (&ptr) == FAIL)
6822 goto wanted_comma;
6823
6824 inst.operands[i].reg = val;
6825 inst.operands[i].isreg = 1;
6826 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6827 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6828 inst.operands[i].isvec = 1;
6829 inst.operands[i].vectype = optype;
6830 inst.operands[i++].present = 1;
6831
6832 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6833 {
6834 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6835 Case 13: VMOV <Sd>, <Rm> */
6836 inst.operands[i].reg = val;
6837 inst.operands[i].isreg = 1;
6838 inst.operands[i].present = 1;
6839
6840 if (rtype == REG_TYPE_NQ)
6841 {
6842 first_error (_("can't use Neon quad register here"));
6843 return FAIL;
6844 }
6845 else if (rtype != REG_TYPE_VFS)
6846 {
6847 i++;
6848 if (skip_past_comma (&ptr) == FAIL)
6849 goto wanted_comma;
6850 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6851 goto wanted_arm;
6852 inst.operands[i].reg = val;
6853 inst.operands[i].isreg = 1;
6854 inst.operands[i].present = 1;
6855 }
6856 }
6857 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6858 &optype)) != FAIL)
6859 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6860 &optype)) != FAIL))
6861 {
6862 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6863 Case 1: VMOV<c><q> <Dd>, <Dm>
6864 Case 8: VMOV.F32 <Sd>, <Sm>
6865 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6866
6867 inst.operands[i].reg = val;
6868 inst.operands[i].isreg = 1;
6869 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6870 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6871 inst.operands[i].isvec = 1;
6872 inst.operands[i].vectype = optype;
6873 inst.operands[i].present = 1;
6874
6875 if (skip_past_comma (&ptr) == SUCCESS)
6876 {
6877 /* Case 15. */
6878 i++;
6879
6880 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6881 goto wanted_arm;
6882
6883 inst.operands[i].reg = val;
6884 inst.operands[i].isreg = 1;
6885 inst.operands[i++].present = 1;
6886
6887 if (skip_past_comma (&ptr) == FAIL)
6888 goto wanted_comma;
6889
6890 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6891 goto wanted_arm;
6892
6893 inst.operands[i].reg = val;
6894 inst.operands[i].isreg = 1;
6895 inst.operands[i].present = 1;
6896 }
6897 }
6898 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6899 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6900 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6901 Case 10: VMOV.F32 <Sd>, #<imm>
6902 Case 11: VMOV.F64 <Dd>, #<imm> */
6903 inst.operands[i].immisfloat = 1;
6904 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6905 == SUCCESS)
6906 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6907 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6908 ;
6909 else
6910 {
6911 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6912 return FAIL;
6913 }
6914 }
6915 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6916 {
6917 /* Cases 6, 7, 16, 18. */
6918 inst.operands[i].reg = val;
6919 inst.operands[i].isreg = 1;
6920 inst.operands[i++].present = 1;
6921
6922 if (skip_past_comma (&ptr) == FAIL)
6923 goto wanted_comma;
6924
6925 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6926 {
6927 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6928 inst.operands[i].reg = val;
6929 inst.operands[i].isscalar = 2;
6930 inst.operands[i].present = 1;
6931 inst.operands[i].vectype = optype;
6932 }
6933 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6934 {
6935 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6936 inst.operands[i].reg = val;
6937 inst.operands[i].isscalar = 1;
6938 inst.operands[i].present = 1;
6939 inst.operands[i].vectype = optype;
6940 }
6941 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6942 {
6943 inst.operands[i].reg = val;
6944 inst.operands[i].isreg = 1;
6945 inst.operands[i++].present = 1;
6946
6947 if (skip_past_comma (&ptr) == FAIL)
6948 goto wanted_comma;
6949
6950 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6951 != FAIL)
6952 {
6953 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6954
6955 inst.operands[i].reg = val;
6956 inst.operands[i].isreg = 1;
6957 inst.operands[i].isvec = 1;
6958 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6959 inst.operands[i].vectype = optype;
6960 inst.operands[i].present = 1;
6961
6962 if (rtype == REG_TYPE_VFS)
6963 {
6964 /* Case 14. */
6965 i++;
6966 if (skip_past_comma (&ptr) == FAIL)
6967 goto wanted_comma;
6968 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6969 &optype)) == FAIL)
6970 {
6971 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6972 return FAIL;
6973 }
6974 inst.operands[i].reg = val;
6975 inst.operands[i].isreg = 1;
6976 inst.operands[i].isvec = 1;
6977 inst.operands[i].issingle = 1;
6978 inst.operands[i].vectype = optype;
6979 inst.operands[i].present = 1;
6980 }
6981 }
6982 else
6983 {
6984 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6985 != FAIL)
6986 {
6987 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6988 inst.operands[i].reg = val;
6989 inst.operands[i].isvec = 1;
6990 inst.operands[i].isscalar = 2;
6991 inst.operands[i].vectype = optype;
6992 inst.operands[i++].present = 1;
6993
6994 if (skip_past_comma (&ptr) == FAIL)
6995 goto wanted_comma;
6996
6997 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6998 == FAIL)
6999 {
7000 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
7001 return FAIL;
7002 }
7003 inst.operands[i].reg = val;
7004 inst.operands[i].isvec = 1;
7005 inst.operands[i].isscalar = 2;
7006 inst.operands[i].vectype = optype;
7007 inst.operands[i].present = 1;
7008 }
7009 else
7010 {
7011 first_error (_("VFP single, double or MVE vector register"
7012 " expected"));
7013 return FAIL;
7014 }
7015 }
7016 }
7017 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
7018 != FAIL)
7019 {
7020 /* Case 13. */
7021 inst.operands[i].reg = val;
7022 inst.operands[i].isreg = 1;
7023 inst.operands[i].isvec = 1;
7024 inst.operands[i].issingle = 1;
7025 inst.operands[i].vectype = optype;
7026 inst.operands[i].present = 1;
7027 }
7028 }
7029 else
7030 {
7031 first_error (_("parse error"));
7032 return FAIL;
7033 }
7034
7035 /* Successfully parsed the operands. Update args. */
7036 *which_operand = i;
7037 *str = ptr;
7038 return SUCCESS;
7039
7040 wanted_comma:
7041 first_error (_("expected comma"));
7042 return FAIL;
7043
7044 wanted_arm:
7045 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
7046 return FAIL;
7047 }
7048
7049 /* Use this macro when the operand constraints are different
7050 for ARM and THUMB (e.g. ldrd). */
7051 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7052 ((arm_operand) | ((thumb_operand) << 16))
7053
7054 /* Matcher codes for parse_operands. */
7055 enum operand_parse_code
7056 {
7057 OP_stop, /* end of line */
7058
7059 OP_RR, /* ARM register */
7060 OP_RRnpc, /* ARM register, not r15 */
7061 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
7062 OP_RRnpcb, /* ARM register, not r15, in square brackets */
7063 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
7064 optional trailing ! */
7065 OP_RRw, /* ARM register, not r15, optional trailing ! */
7066 OP_RCP, /* Coprocessor number */
7067 OP_RCN, /* Coprocessor register */
7068 OP_RF, /* FPA register */
7069 OP_RVS, /* VFP single precision register */
7070 OP_RVD, /* VFP double precision register (0..15) */
7071 OP_RND, /* Neon double precision register (0..31) */
7072 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
7073 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
7074 */
7075 OP_RNSDMQR, /* Neon single or double precision, MVE vector or ARM register.
7076 */
7077 OP_RNQ, /* Neon quad precision register */
7078 OP_RNQMQ, /* Neon quad or MVE vector register. */
7079 OP_RVSD, /* VFP single or double precision register */
7080 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
7081 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
7082 OP_RNSD, /* Neon single or double precision register */
7083 OP_RNDQ, /* Neon double or quad precision register */
7084 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7085 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
7086 OP_RNSDQ, /* Neon single, double or quad precision register */
7087 OP_RNSC, /* Neon scalar D[X] */
7088 OP_RVC, /* VFP control register */
7089 OP_RMF, /* Maverick F register */
7090 OP_RMD, /* Maverick D register */
7091 OP_RMFX, /* Maverick FX register */
7092 OP_RMDX, /* Maverick DX register */
7093 OP_RMAX, /* Maverick AX register */
7094 OP_RMDS, /* Maverick DSPSC register */
7095 OP_RIWR, /* iWMMXt wR register */
7096 OP_RIWC, /* iWMMXt wC register */
7097 OP_RIWG, /* iWMMXt wCG register */
7098 OP_RXA, /* XScale accumulator register */
7099
7100 OP_RNSDMQ, /* Neon single, double or MVE vector register */
7101 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
7102 */
7103 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
7104 GPR (no SP/SP) */
7105 OP_RMQ, /* MVE vector register. */
7106 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
7107 OP_RMQRR, /* MVE vector or ARM register. */
7108
7109 /* New operands for Armv8.1-M Mainline. */
7110 OP_LR, /* ARM LR register */
7111 OP_RRe, /* ARM register, only even numbered. */
7112 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
7113 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7114 OP_RR_ZR, /* ARM register or ZR but no PC */
7115
7116 OP_REGLST, /* ARM register list */
7117 OP_CLRMLST, /* CLRM register list */
7118 OP_VRSLST, /* VFP single-precision register list */
7119 OP_VRDLST, /* VFP double-precision register list */
7120 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7121 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7122 OP_NSTRLST, /* Neon element/structure list */
7123 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7124 OP_MSTRLST2, /* MVE vector list with two elements. */
7125 OP_MSTRLST4, /* MVE vector list with four elements. */
7126
7127 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7128 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7129 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7130 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7131 zero. */
7132 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7133 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7134 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7135 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7136 */
7137 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7138 scalar, or ARM register. */
7139 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7140 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7141 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7142 register. */
7143 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7144 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7145 OP_VMOV, /* Neon VMOV operands. */
7146 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7147 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7148 OP_RNDQMQ_Ibig,
7149 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7150 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7151 ARM register. */
7152 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7153 OP_VLDR, /* VLDR operand. */
7154
7155 OP_I0, /* immediate zero */
7156 OP_I7, /* immediate value 0 .. 7 */
7157 OP_I15, /* 0 .. 15 */
7158 OP_I16, /* 1 .. 16 */
7159 OP_I16z, /* 0 .. 16 */
7160 OP_I31, /* 0 .. 31 */
7161 OP_I31w, /* 0 .. 31, optional trailing ! */
7162 OP_I32, /* 1 .. 32 */
7163 OP_I32z, /* 0 .. 32 */
7164 OP_I48_I64, /* 48 or 64 */
7165 OP_I63, /* 0 .. 63 */
7166 OP_I63s, /* -64 .. 63 */
7167 OP_I64, /* 1 .. 64 */
7168 OP_I64z, /* 0 .. 64 */
7169 OP_I127, /* 0 .. 127 */
7170 OP_I255, /* 0 .. 255 */
7171 OP_I511, /* 0 .. 511 */
7172 OP_I4095, /* 0 .. 4095 */
7173 OP_I8191, /* 0 .. 8191 */
7174 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7175 OP_I7b, /* 0 .. 7 */
7176 OP_I15b, /* 0 .. 15 */
7177 OP_I31b, /* 0 .. 31 */
7178
7179 OP_SH, /* shifter operand */
7180 OP_SHG, /* shifter operand with possible group relocation */
7181 OP_ADDR, /* Memory address expression (any mode) */
7182 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7183 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7184 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7185 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7186 OP_EXP, /* arbitrary expression */
7187 OP_EXPi, /* same, with optional immediate prefix */
7188 OP_EXPr, /* same, with optional relocation suffix */
7189 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7190 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7191 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7192 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7193
7194 OP_CPSF, /* CPS flags */
7195 OP_ENDI, /* Endianness specifier */
7196 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7197 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7198 OP_COND, /* conditional code */
7199 OP_TB, /* Table branch. */
7200
7201 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7202
7203 OP_RRnpc_I0, /* ARM register or literal 0 */
7204 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7205 OP_RR_EXi, /* ARM register or expression with imm prefix */
7206 OP_RF_IF, /* FPA register or immediate */
7207 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7208 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7209
7210 /* Optional operands. */
7211 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7212 OP_oI31b, /* 0 .. 31 */
7213 OP_oI32b, /* 1 .. 32 */
7214 OP_oI32z, /* 0 .. 32 */
7215 OP_oIffffb, /* 0 .. 65535 */
7216 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7217
7218 OP_oRR, /* ARM register */
7219 OP_oLR, /* ARM LR register */
7220 OP_oRRnpc, /* ARM register, not the PC */
7221 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7222 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7223 OP_oRND, /* Optional Neon double precision register */
7224 OP_oRNQ, /* Optional Neon quad precision register */
7225 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7226 OP_oRNDQ, /* Optional Neon double or quad precision register */
7227 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7228 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7229 register. */
7230 OP_oRNSDMQ, /* Optional single, double register or MVE vector
7231 register. */
7232 OP_oSHll, /* LSL immediate */
7233 OP_oSHar, /* ASR immediate */
7234 OP_oSHllar, /* LSL or ASR immediate */
7235 OP_oROR, /* ROR 0/8/16/24 */
7236 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7237
7238 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7239
7240 /* Some pre-defined mixed (ARM/THUMB) operands. */
7241 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7242 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7243 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7244
7245 OP_FIRST_OPTIONAL = OP_oI7b
7246 };
7247
7248 /* Generic instruction operand parser. This does no encoding and no
7249 semantic validation; it merely squirrels values away in the inst
7250 structure. Returns SUCCESS or FAIL depending on whether the
7251 specified grammar matched. */
7252 static int
7253 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7254 {
7255 unsigned const int *upat = pattern;
7256 char *backtrack_pos = 0;
7257 const char *backtrack_error = 0;
7258 int i, val = 0, backtrack_index = 0;
7259 enum arm_reg_type rtype;
7260 parse_operand_result result;
7261 unsigned int op_parse_code;
7262 bfd_boolean partial_match;
7263
7264 #define po_char_or_fail(chr) \
7265 do \
7266 { \
7267 if (skip_past_char (&str, chr) == FAIL) \
7268 goto bad_args; \
7269 } \
7270 while (0)
7271
7272 #define po_reg_or_fail(regtype) \
7273 do \
7274 { \
7275 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7276 & inst.operands[i].vectype); \
7277 if (val == FAIL) \
7278 { \
7279 first_error (_(reg_expected_msgs[regtype])); \
7280 goto failure; \
7281 } \
7282 inst.operands[i].reg = val; \
7283 inst.operands[i].isreg = 1; \
7284 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7285 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7286 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7287 || rtype == REG_TYPE_VFD \
7288 || rtype == REG_TYPE_NQ); \
7289 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7290 } \
7291 while (0)
7292
7293 #define po_reg_or_goto(regtype, label) \
7294 do \
7295 { \
7296 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7297 & inst.operands[i].vectype); \
7298 if (val == FAIL) \
7299 goto label; \
7300 \
7301 inst.operands[i].reg = val; \
7302 inst.operands[i].isreg = 1; \
7303 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7304 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7305 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7306 || rtype == REG_TYPE_VFD \
7307 || rtype == REG_TYPE_NQ); \
7308 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7309 } \
7310 while (0)
7311
7312 #define po_imm_or_fail(min, max, popt) \
7313 do \
7314 { \
7315 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7316 goto failure; \
7317 inst.operands[i].imm = val; \
7318 } \
7319 while (0)
7320
7321 #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7322 do \
7323 { \
7324 expressionS exp; \
7325 my_get_expression (&exp, &str, popt); \
7326 if (exp.X_op != O_constant) \
7327 { \
7328 inst.error = _("constant expression required"); \
7329 goto failure; \
7330 } \
7331 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7332 { \
7333 inst.error = _("immediate value 48 or 64 expected"); \
7334 goto failure; \
7335 } \
7336 inst.operands[i].imm = exp.X_add_number; \
7337 } \
7338 while (0)
7339
7340 #define po_scalar_or_goto(elsz, label, reg_type) \
7341 do \
7342 { \
7343 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7344 reg_type); \
7345 if (val == FAIL) \
7346 goto label; \
7347 inst.operands[i].reg = val; \
7348 inst.operands[i].isscalar = 1; \
7349 } \
7350 while (0)
7351
7352 #define po_misc_or_fail(expr) \
7353 do \
7354 { \
7355 if (expr) \
7356 goto failure; \
7357 } \
7358 while (0)
7359
7360 #define po_misc_or_fail_no_backtrack(expr) \
7361 do \
7362 { \
7363 result = expr; \
7364 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7365 backtrack_pos = 0; \
7366 if (result != PARSE_OPERAND_SUCCESS) \
7367 goto failure; \
7368 } \
7369 while (0)
7370
7371 #define po_barrier_or_imm(str) \
7372 do \
7373 { \
7374 val = parse_barrier (&str); \
7375 if (val == FAIL && ! ISALPHA (*str)) \
7376 goto immediate; \
7377 if (val == FAIL \
7378 /* ISB can only take SY as an option. */ \
7379 || ((inst.instruction & 0xf0) == 0x60 \
7380 && val != 0xf)) \
7381 { \
7382 inst.error = _("invalid barrier type"); \
7383 backtrack_pos = 0; \
7384 goto failure; \
7385 } \
7386 } \
7387 while (0)
7388
7389 skip_whitespace (str);
7390
7391 for (i = 0; upat[i] != OP_stop; i++)
7392 {
7393 op_parse_code = upat[i];
7394 if (op_parse_code >= 1<<16)
7395 op_parse_code = thumb ? (op_parse_code >> 16)
7396 : (op_parse_code & ((1<<16)-1));
7397
7398 if (op_parse_code >= OP_FIRST_OPTIONAL)
7399 {
7400 /* Remember where we are in case we need to backtrack. */
7401 backtrack_pos = str;
7402 backtrack_error = inst.error;
7403 backtrack_index = i;
7404 }
7405
7406 if (i > 0 && (i > 1 || inst.operands[0].present))
7407 po_char_or_fail (',');
7408
7409 switch (op_parse_code)
7410 {
7411 /* Registers */
7412 case OP_oRRnpc:
7413 case OP_oRRnpcsp:
7414 case OP_RRnpc:
7415 case OP_RRnpcsp:
7416 case OP_oRR:
7417 case OP_RRe:
7418 case OP_RRo:
7419 case OP_LR:
7420 case OP_oLR:
7421 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7422 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7423 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7424 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7425 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7426 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7427 case OP_oRND:
7428 case OP_RNSDMQR:
7429 po_reg_or_goto (REG_TYPE_VFS, try_rndmqr);
7430 break;
7431 try_rndmqr:
7432 case OP_RNDMQR:
7433 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7434 break;
7435 try_rndmq:
7436 case OP_RNDMQ:
7437 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7438 break;
7439 try_rnd:
7440 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7441 case OP_RVC:
7442 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7443 break;
7444 /* Also accept generic coprocessor regs for unknown registers. */
7445 coproc_reg:
7446 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7447 break;
7448 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7449 existing register with a value of 0, this seems like the
7450 best way to parse P0. */
7451 vpr_po:
7452 if (strncasecmp (str, "P0", 2) == 0)
7453 {
7454 str += 2;
7455 inst.operands[i].isreg = 1;
7456 inst.operands[i].reg = 13;
7457 }
7458 else
7459 goto failure;
7460 break;
7461 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7462 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7463 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7464 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7465 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7466 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7467 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7468 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7469 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7470 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7471 case OP_oRNQ:
7472 case OP_RNQMQ:
7473 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7474 break;
7475 try_nq:
7476 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7477 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7478 case OP_RNDQMQR:
7479 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7480 break;
7481 try_rndqmq:
7482 case OP_oRNDQMQ:
7483 case OP_RNDQMQ:
7484 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7485 break;
7486 try_rndq:
7487 case OP_oRNDQ:
7488 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7489 case OP_RVSDMQ:
7490 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7491 break;
7492 try_rvsd:
7493 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7494 case OP_RVSD_COND:
7495 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7496 break;
7497 case OP_oRNSDMQ:
7498 case OP_RNSDMQ:
7499 po_reg_or_goto (REG_TYPE_NSD, try_mq2);
7500 break;
7501 try_mq2:
7502 po_reg_or_fail (REG_TYPE_MQ);
7503 break;
7504 case OP_oRNSDQ:
7505 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7506 case OP_RNSDQMQR:
7507 po_reg_or_goto (REG_TYPE_RN, try_mq);
7508 break;
7509 try_mq:
7510 case OP_oRNSDQMQ:
7511 case OP_RNSDQMQ:
7512 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7513 break;
7514 try_nsdq2:
7515 po_reg_or_fail (REG_TYPE_NSDQ);
7516 inst.error = 0;
7517 break;
7518 case OP_RMQRR:
7519 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7520 break;
7521 try_rmq:
7522 case OP_RMQ:
7523 po_reg_or_fail (REG_TYPE_MQ);
7524 break;
7525 /* Neon scalar. Using an element size of 8 means that some invalid
7526 scalars are accepted here, so deal with those in later code. */
7527 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7528
7529 case OP_RNDQ_I0:
7530 {
7531 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7532 break;
7533 try_imm0:
7534 po_imm_or_fail (0, 0, TRUE);
7535 }
7536 break;
7537
7538 case OP_RVSD_I0:
7539 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7540 break;
7541
7542 case OP_RSVDMQ_FI0:
7543 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7544 break;
7545 try_rsvd_fi0:
7546 case OP_RSVD_FI0:
7547 {
7548 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7549 break;
7550 try_ifimm0:
7551 if (parse_ifimm_zero (&str))
7552 inst.operands[i].imm = 0;
7553 else
7554 {
7555 inst.error
7556 = _("only floating point zero is allowed as immediate value");
7557 goto failure;
7558 }
7559 }
7560 break;
7561
7562 case OP_RR_RNSC:
7563 {
7564 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7565 break;
7566 try_rr:
7567 po_reg_or_fail (REG_TYPE_RN);
7568 }
7569 break;
7570
7571 case OP_RNSDQ_RNSC_MQ_RR:
7572 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7573 break;
7574 try_rnsdq_rnsc_mq:
7575 case OP_RNSDQ_RNSC_MQ:
7576 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7577 break;
7578 try_rnsdq_rnsc:
7579 case OP_RNSDQ_RNSC:
7580 {
7581 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7582 inst.error = 0;
7583 break;
7584 try_nsdq:
7585 po_reg_or_fail (REG_TYPE_NSDQ);
7586 inst.error = 0;
7587 }
7588 break;
7589
7590 case OP_RNSD_RNSC:
7591 {
7592 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7593 break;
7594 try_s_scalar:
7595 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7596 break;
7597 try_nsd:
7598 po_reg_or_fail (REG_TYPE_NSD);
7599 }
7600 break;
7601
7602 case OP_RNDQMQ_RNSC_RR:
7603 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7604 break;
7605 try_rndq_rnsc_rr:
7606 case OP_RNDQ_RNSC_RR:
7607 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7608 break;
7609 case OP_RNDQMQ_RNSC:
7610 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7611 break;
7612 try_rndq_rnsc:
7613 case OP_RNDQ_RNSC:
7614 {
7615 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7616 break;
7617 try_ndq:
7618 po_reg_or_fail (REG_TYPE_NDQ);
7619 }
7620 break;
7621
7622 case OP_RND_RNSC:
7623 {
7624 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7625 break;
7626 try_vfd:
7627 po_reg_or_fail (REG_TYPE_VFD);
7628 }
7629 break;
7630
7631 case OP_VMOV:
7632 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7633 not careful then bad things might happen. */
7634 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7635 break;
7636
7637 case OP_RNDQMQ_Ibig:
7638 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7639 break;
7640 try_rndq_ibig:
7641 case OP_RNDQ_Ibig:
7642 {
7643 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7644 break;
7645 try_immbig:
7646 /* There's a possibility of getting a 64-bit immediate here, so
7647 we need special handling. */
7648 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7649 == FAIL)
7650 {
7651 inst.error = _("immediate value is out of range");
7652 goto failure;
7653 }
7654 }
7655 break;
7656
7657 case OP_RNDQMQ_I63b_RR:
7658 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7659 break;
7660 try_rndq_i63b_rr:
7661 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7662 break;
7663 try_rndq_i63b:
7664 case OP_RNDQ_I63b:
7665 {
7666 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7667 break;
7668 try_shimm:
7669 po_imm_or_fail (0, 63, TRUE);
7670 }
7671 break;
7672
7673 case OP_RRnpcb:
7674 po_char_or_fail ('[');
7675 po_reg_or_fail (REG_TYPE_RN);
7676 po_char_or_fail (']');
7677 break;
7678
7679 case OP_RRnpctw:
7680 case OP_RRw:
7681 case OP_oRRw:
7682 po_reg_or_fail (REG_TYPE_RN);
7683 if (skip_past_char (&str, '!') == SUCCESS)
7684 inst.operands[i].writeback = 1;
7685 break;
7686
7687 /* Immediates */
7688 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7689 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7690 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7691 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7692 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7693 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7694 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7695 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
7696 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7697 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7698 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7699 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7700 case OP_I127: po_imm_or_fail ( 0, 127, FALSE); break;
7701 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7702 case OP_I511: po_imm_or_fail ( 0, 511, FALSE); break;
7703 case OP_I4095: po_imm_or_fail ( 0, 4095, FALSE); break;
7704 case OP_I8191: po_imm_or_fail ( 0, 8191, FALSE); break;
7705 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7706 case OP_oI7b:
7707 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7708 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7709 case OP_oI31b:
7710 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7711 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7712 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7713 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7714
7715 /* Immediate variants */
7716 case OP_oI255c:
7717 po_char_or_fail ('{');
7718 po_imm_or_fail (0, 255, TRUE);
7719 po_char_or_fail ('}');
7720 break;
7721
7722 case OP_I31w:
7723 /* The expression parser chokes on a trailing !, so we have
7724 to find it first and zap it. */
7725 {
7726 char *s = str;
7727 while (*s && *s != ',')
7728 s++;
7729 if (s[-1] == '!')
7730 {
7731 s[-1] = '\0';
7732 inst.operands[i].writeback = 1;
7733 }
7734 po_imm_or_fail (0, 31, TRUE);
7735 if (str == s - 1)
7736 str = s;
7737 }
7738 break;
7739
7740 /* Expressions */
7741 case OP_EXPi: EXPi:
7742 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7743 GE_OPT_PREFIX));
7744 break;
7745
7746 case OP_EXP:
7747 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7748 GE_NO_PREFIX));
7749 break;
7750
7751 case OP_EXPr: EXPr:
7752 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7753 GE_NO_PREFIX));
7754 if (inst.relocs[0].exp.X_op == O_symbol)
7755 {
7756 val = parse_reloc (&str);
7757 if (val == -1)
7758 {
7759 inst.error = _("unrecognized relocation suffix");
7760 goto failure;
7761 }
7762 else if (val != BFD_RELOC_UNUSED)
7763 {
7764 inst.operands[i].imm = val;
7765 inst.operands[i].hasreloc = 1;
7766 }
7767 }
7768 break;
7769
7770 case OP_EXPs:
7771 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7772 GE_NO_PREFIX));
7773 if (inst.relocs[i].exp.X_op == O_symbol)
7774 {
7775 inst.operands[i].hasreloc = 1;
7776 }
7777 else if (inst.relocs[i].exp.X_op == O_constant)
7778 {
7779 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7780 inst.operands[i].hasreloc = 0;
7781 }
7782 break;
7783
7784 /* Operand for MOVW or MOVT. */
7785 case OP_HALF:
7786 po_misc_or_fail (parse_half (&str));
7787 break;
7788
7789 /* Register or expression. */
7790 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7791 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7792
7793 /* Register or immediate. */
7794 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7795 I0: po_imm_or_fail (0, 0, FALSE); break;
7796
7797 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7798 I32: po_imm_or_fail (1, 32, FALSE); break;
7799
7800 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7801 IF:
7802 if (!is_immediate_prefix (*str))
7803 goto bad_args;
7804 str++;
7805 val = parse_fpa_immediate (&str);
7806 if (val == FAIL)
7807 goto failure;
7808 /* FPA immediates are encoded as registers 8-15.
7809 parse_fpa_immediate has already applied the offset. */
7810 inst.operands[i].reg = val;
7811 inst.operands[i].isreg = 1;
7812 break;
7813
7814 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7815 I32z: po_imm_or_fail (0, 32, FALSE); break;
7816
7817 /* Two kinds of register. */
7818 case OP_RIWR_RIWC:
7819 {
7820 struct reg_entry *rege = arm_reg_parse_multi (&str);
7821 if (!rege
7822 || (rege->type != REG_TYPE_MMXWR
7823 && rege->type != REG_TYPE_MMXWC
7824 && rege->type != REG_TYPE_MMXWCG))
7825 {
7826 inst.error = _("iWMMXt data or control register expected");
7827 goto failure;
7828 }
7829 inst.operands[i].reg = rege->number;
7830 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7831 }
7832 break;
7833
7834 case OP_RIWC_RIWG:
7835 {
7836 struct reg_entry *rege = arm_reg_parse_multi (&str);
7837 if (!rege
7838 || (rege->type != REG_TYPE_MMXWC
7839 && rege->type != REG_TYPE_MMXWCG))
7840 {
7841 inst.error = _("iWMMXt control register expected");
7842 goto failure;
7843 }
7844 inst.operands[i].reg = rege->number;
7845 inst.operands[i].isreg = 1;
7846 }
7847 break;
7848
7849 /* Misc */
7850 case OP_CPSF: val = parse_cps_flags (&str); break;
7851 case OP_ENDI: val = parse_endian_specifier (&str); break;
7852 case OP_oROR: val = parse_ror (&str); break;
7853 try_cond:
7854 case OP_COND: val = parse_cond (&str); break;
7855 case OP_oBARRIER_I15:
7856 po_barrier_or_imm (str); break;
7857 immediate:
7858 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7859 goto failure;
7860 break;
7861
7862 case OP_wPSR:
7863 case OP_rPSR:
7864 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7865 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7866 {
7867 inst.error = _("Banked registers are not available with this "
7868 "architecture.");
7869 goto failure;
7870 }
7871 break;
7872 try_psr:
7873 val = parse_psr (&str, op_parse_code == OP_wPSR);
7874 break;
7875
7876 case OP_VLDR:
7877 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7878 break;
7879 try_sysreg:
7880 val = parse_sys_vldr_vstr (&str);
7881 break;
7882
7883 case OP_APSR_RR:
7884 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7885 break;
7886 try_apsr:
7887 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7888 instruction). */
7889 if (strncasecmp (str, "APSR_", 5) == 0)
7890 {
7891 unsigned found = 0;
7892 str += 5;
7893 while (found < 15)
7894 switch (*str++)
7895 {
7896 case 'c': found = (found & 1) ? 16 : found | 1; break;
7897 case 'n': found = (found & 2) ? 16 : found | 2; break;
7898 case 'z': found = (found & 4) ? 16 : found | 4; break;
7899 case 'v': found = (found & 8) ? 16 : found | 8; break;
7900 default: found = 16;
7901 }
7902 if (found != 15)
7903 goto failure;
7904 inst.operands[i].isvec = 1;
7905 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7906 inst.operands[i].reg = REG_PC;
7907 }
7908 else
7909 goto failure;
7910 break;
7911
7912 case OP_TB:
7913 po_misc_or_fail (parse_tb (&str));
7914 break;
7915
7916 /* Register lists. */
7917 case OP_REGLST:
7918 val = parse_reg_list (&str, REGLIST_RN);
7919 if (*str == '^')
7920 {
7921 inst.operands[i].writeback = 1;
7922 str++;
7923 }
7924 break;
7925
7926 case OP_CLRMLST:
7927 val = parse_reg_list (&str, REGLIST_CLRM);
7928 break;
7929
7930 case OP_VRSLST:
7931 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7932 &partial_match);
7933 break;
7934
7935 case OP_VRDLST:
7936 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7937 &partial_match);
7938 break;
7939
7940 case OP_VRSDLST:
7941 /* Allow Q registers too. */
7942 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7943 REGLIST_NEON_D, &partial_match);
7944 if (val == FAIL)
7945 {
7946 inst.error = NULL;
7947 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7948 REGLIST_VFP_S, &partial_match);
7949 inst.operands[i].issingle = 1;
7950 }
7951 break;
7952
7953 case OP_VRSDVLST:
7954 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7955 REGLIST_VFP_D_VPR, &partial_match);
7956 if (val == FAIL && !partial_match)
7957 {
7958 inst.error = NULL;
7959 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7960 REGLIST_VFP_S_VPR, &partial_match);
7961 inst.operands[i].issingle = 1;
7962 }
7963 break;
7964
7965 case OP_NRDLST:
7966 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7967 REGLIST_NEON_D, &partial_match);
7968 break;
7969
7970 case OP_MSTRLST4:
7971 case OP_MSTRLST2:
7972 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7973 1, &inst.operands[i].vectype);
7974 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7975 goto failure;
7976 break;
7977 case OP_NSTRLST:
7978 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7979 0, &inst.operands[i].vectype);
7980 break;
7981
7982 /* Addressing modes */
7983 case OP_ADDRMVE:
7984 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7985 break;
7986
7987 case OP_ADDR:
7988 po_misc_or_fail (parse_address (&str, i));
7989 break;
7990
7991 case OP_ADDRGLDR:
7992 po_misc_or_fail_no_backtrack (
7993 parse_address_group_reloc (&str, i, GROUP_LDR));
7994 break;
7995
7996 case OP_ADDRGLDRS:
7997 po_misc_or_fail_no_backtrack (
7998 parse_address_group_reloc (&str, i, GROUP_LDRS));
7999 break;
8000
8001 case OP_ADDRGLDC:
8002 po_misc_or_fail_no_backtrack (
8003 parse_address_group_reloc (&str, i, GROUP_LDC));
8004 break;
8005
8006 case OP_SH:
8007 po_misc_or_fail (parse_shifter_operand (&str, i));
8008 break;
8009
8010 case OP_SHG:
8011 po_misc_or_fail_no_backtrack (
8012 parse_shifter_operand_group_reloc (&str, i));
8013 break;
8014
8015 case OP_oSHll:
8016 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
8017 break;
8018
8019 case OP_oSHar:
8020 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
8021 break;
8022
8023 case OP_oSHllar:
8024 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
8025 break;
8026
8027 case OP_RMQRZ:
8028 case OP_oRMQRZ:
8029 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
8030 break;
8031
8032 case OP_RR_ZR:
8033 try_rr_zr:
8034 po_reg_or_goto (REG_TYPE_RN, ZR);
8035 break;
8036 ZR:
8037 po_reg_or_fail (REG_TYPE_ZR);
8038 break;
8039
8040 default:
8041 as_fatal (_("unhandled operand code %d"), op_parse_code);
8042 }
8043
8044 /* Various value-based sanity checks and shared operations. We
8045 do not signal immediate failures for the register constraints;
8046 this allows a syntax error to take precedence. */
8047 switch (op_parse_code)
8048 {
8049 case OP_oRRnpc:
8050 case OP_RRnpc:
8051 case OP_RRnpcb:
8052 case OP_RRw:
8053 case OP_oRRw:
8054 case OP_RRnpc_I0:
8055 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
8056 inst.error = BAD_PC;
8057 break;
8058
8059 case OP_oRRnpcsp:
8060 case OP_RRnpcsp:
8061 case OP_RRnpcsp_I32:
8062 if (inst.operands[i].isreg)
8063 {
8064 if (inst.operands[i].reg == REG_PC)
8065 inst.error = BAD_PC;
8066 else if (inst.operands[i].reg == REG_SP
8067 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8068 relaxed since ARMv8-A. */
8069 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8070 {
8071 gas_assert (thumb);
8072 inst.error = BAD_SP;
8073 }
8074 }
8075 break;
8076
8077 case OP_RRnpctw:
8078 if (inst.operands[i].isreg
8079 && inst.operands[i].reg == REG_PC
8080 && (inst.operands[i].writeback || thumb))
8081 inst.error = BAD_PC;
8082 break;
8083
8084 case OP_RVSD_COND:
8085 case OP_VLDR:
8086 if (inst.operands[i].isreg)
8087 break;
8088 /* fall through. */
8089
8090 case OP_CPSF:
8091 case OP_ENDI:
8092 case OP_oROR:
8093 case OP_wPSR:
8094 case OP_rPSR:
8095 case OP_COND:
8096 case OP_oBARRIER_I15:
8097 case OP_REGLST:
8098 case OP_CLRMLST:
8099 case OP_VRSLST:
8100 case OP_VRDLST:
8101 case OP_VRSDLST:
8102 case OP_VRSDVLST:
8103 case OP_NRDLST:
8104 case OP_NSTRLST:
8105 case OP_MSTRLST2:
8106 case OP_MSTRLST4:
8107 if (val == FAIL)
8108 goto failure;
8109 inst.operands[i].imm = val;
8110 break;
8111
8112 case OP_LR:
8113 case OP_oLR:
8114 if (inst.operands[i].reg != REG_LR)
8115 inst.error = _("operand must be LR register");
8116 break;
8117
8118 case OP_RMQRZ:
8119 case OP_oRMQRZ:
8120 case OP_RR_ZR:
8121 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
8122 inst.error = BAD_PC;
8123 break;
8124
8125 case OP_RRe:
8126 if (inst.operands[i].isreg
8127 && (inst.operands[i].reg & 0x00000001) != 0)
8128 inst.error = BAD_ODD;
8129 break;
8130
8131 case OP_RRo:
8132 if (inst.operands[i].isreg)
8133 {
8134 if ((inst.operands[i].reg & 0x00000001) != 1)
8135 inst.error = BAD_EVEN;
8136 else if (inst.operands[i].reg == REG_SP)
8137 as_tsktsk (MVE_BAD_SP);
8138 else if (inst.operands[i].reg == REG_PC)
8139 inst.error = BAD_PC;
8140 }
8141 break;
8142
8143 default:
8144 break;
8145 }
8146
8147 /* If we get here, this operand was successfully parsed. */
8148 inst.operands[i].present = 1;
8149 continue;
8150
8151 bad_args:
8152 inst.error = BAD_ARGS;
8153
8154 failure:
8155 if (!backtrack_pos)
8156 {
8157 /* The parse routine should already have set inst.error, but set a
8158 default here just in case. */
8159 if (!inst.error)
8160 inst.error = BAD_SYNTAX;
8161 return FAIL;
8162 }
8163
8164 /* Do not backtrack over a trailing optional argument that
8165 absorbed some text. We will only fail again, with the
8166 'garbage following instruction' error message, which is
8167 probably less helpful than the current one. */
8168 if (backtrack_index == i && backtrack_pos != str
8169 && upat[i+1] == OP_stop)
8170 {
8171 if (!inst.error)
8172 inst.error = BAD_SYNTAX;
8173 return FAIL;
8174 }
8175
8176 /* Try again, skipping the optional argument at backtrack_pos. */
8177 str = backtrack_pos;
8178 inst.error = backtrack_error;
8179 inst.operands[backtrack_index].present = 0;
8180 i = backtrack_index;
8181 backtrack_pos = 0;
8182 }
8183
8184 /* Check that we have parsed all the arguments. */
8185 if (*str != '\0' && !inst.error)
8186 inst.error = _("garbage following instruction");
8187
8188 return inst.error ? FAIL : SUCCESS;
8189 }
8190
8191 #undef po_char_or_fail
8192 #undef po_reg_or_fail
8193 #undef po_reg_or_goto
8194 #undef po_imm_or_fail
8195 #undef po_scalar_or_fail
8196 #undef po_barrier_or_imm
8197
8198 /* Shorthand macro for instruction encoding functions issuing errors. */
8199 #define constraint(expr, err) \
8200 do \
8201 { \
8202 if (expr) \
8203 { \
8204 inst.error = err; \
8205 return; \
8206 } \
8207 } \
8208 while (0)
8209
8210 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8211 instructions are unpredictable if these registers are used. This
8212 is the BadReg predicate in ARM's Thumb-2 documentation.
8213
8214 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8215 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8216 #define reject_bad_reg(reg) \
8217 do \
8218 if (reg == REG_PC) \
8219 { \
8220 inst.error = BAD_PC; \
8221 return; \
8222 } \
8223 else if (reg == REG_SP \
8224 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8225 { \
8226 inst.error = BAD_SP; \
8227 return; \
8228 } \
8229 while (0)
8230
8231 /* If REG is R13 (the stack pointer), warn that its use is
8232 deprecated. */
8233 #define warn_deprecated_sp(reg) \
8234 do \
8235 if (warn_on_deprecated && reg == REG_SP) \
8236 as_tsktsk (_("use of r13 is deprecated")); \
8237 while (0)
8238
8239 /* Functions for operand encoding. ARM, then Thumb. */
8240
8241 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8242
8243 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8244
8245 The only binary encoding difference is the Coprocessor number. Coprocessor
8246 9 is used for half-precision calculations or conversions. The format of the
8247 instruction is the same as the equivalent Coprocessor 10 instruction that
8248 exists for Single-Precision operation. */
8249
8250 static void
8251 do_scalar_fp16_v82_encode (void)
8252 {
8253 if (inst.cond < COND_ALWAYS)
8254 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8255 " the behaviour is UNPREDICTABLE"));
8256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8257 _(BAD_FP16));
8258
8259 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8260 mark_feature_used (&arm_ext_fp16);
8261 }
8262
8263 /* If VAL can be encoded in the immediate field of an ARM instruction,
8264 return the encoded form. Otherwise, return FAIL. */
8265
8266 static unsigned int
8267 encode_arm_immediate (unsigned int val)
8268 {
8269 unsigned int a, i;
8270
8271 if (val <= 0xff)
8272 return val;
8273
8274 for (i = 2; i < 32; i += 2)
8275 if ((a = rotate_left (val, i)) <= 0xff)
8276 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8277
8278 return FAIL;
8279 }
8280
8281 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8282 return the encoded form. Otherwise, return FAIL. */
8283 static unsigned int
8284 encode_thumb32_immediate (unsigned int val)
8285 {
8286 unsigned int a, i;
8287
8288 if (val <= 0xff)
8289 return val;
8290
8291 for (i = 1; i <= 24; i++)
8292 {
8293 a = val >> i;
8294 if ((val & ~(0xff << i)) == 0)
8295 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8296 }
8297
8298 a = val & 0xff;
8299 if (val == ((a << 16) | a))
8300 return 0x100 | a;
8301 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8302 return 0x300 | a;
8303
8304 a = val & 0xff00;
8305 if (val == ((a << 16) | a))
8306 return 0x200 | (a >> 8);
8307
8308 return FAIL;
8309 }
8310 /* Encode a VFP SP or DP register number into inst.instruction. */
8311
8312 static void
8313 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8314 {
8315 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8316 && reg > 15)
8317 {
8318 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8319 {
8320 if (thumb_mode)
8321 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8322 fpu_vfp_ext_d32);
8323 else
8324 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8325 fpu_vfp_ext_d32);
8326 }
8327 else
8328 {
8329 first_error (_("D register out of range for selected VFP version"));
8330 return;
8331 }
8332 }
8333
8334 switch (pos)
8335 {
8336 case VFP_REG_Sd:
8337 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8338 break;
8339
8340 case VFP_REG_Sn:
8341 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8342 break;
8343
8344 case VFP_REG_Sm:
8345 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8346 break;
8347
8348 case VFP_REG_Dd:
8349 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8350 break;
8351
8352 case VFP_REG_Dn:
8353 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8354 break;
8355
8356 case VFP_REG_Dm:
8357 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8358 break;
8359
8360 default:
8361 abort ();
8362 }
8363 }
8364
8365 /* Encode a <shift> in an ARM-format instruction. The immediate,
8366 if any, is handled by md_apply_fix. */
8367 static void
8368 encode_arm_shift (int i)
8369 {
8370 /* register-shifted register. */
8371 if (inst.operands[i].immisreg)
8372 {
8373 int op_index;
8374 for (op_index = 0; op_index <= i; ++op_index)
8375 {
8376 /* Check the operand only when it's presented. In pre-UAL syntax,
8377 if the destination register is the same as the first operand, two
8378 register form of the instruction can be used. */
8379 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8380 && inst.operands[op_index].reg == REG_PC)
8381 as_warn (UNPRED_REG ("r15"));
8382 }
8383
8384 if (inst.operands[i].imm == REG_PC)
8385 as_warn (UNPRED_REG ("r15"));
8386 }
8387
8388 if (inst.operands[i].shift_kind == SHIFT_RRX)
8389 inst.instruction |= SHIFT_ROR << 5;
8390 else
8391 {
8392 inst.instruction |= inst.operands[i].shift_kind << 5;
8393 if (inst.operands[i].immisreg)
8394 {
8395 inst.instruction |= SHIFT_BY_REG;
8396 inst.instruction |= inst.operands[i].imm << 8;
8397 }
8398 else
8399 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8400 }
8401 }
8402
8403 static void
8404 encode_arm_shifter_operand (int i)
8405 {
8406 if (inst.operands[i].isreg)
8407 {
8408 inst.instruction |= inst.operands[i].reg;
8409 encode_arm_shift (i);
8410 }
8411 else
8412 {
8413 inst.instruction |= INST_IMMEDIATE;
8414 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8415 inst.instruction |= inst.operands[i].imm;
8416 }
8417 }
8418
8419 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8420 static void
8421 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8422 {
8423 /* PR 14260:
8424 Generate an error if the operand is not a register. */
8425 constraint (!inst.operands[i].isreg,
8426 _("Instruction does not support =N addresses"));
8427
8428 inst.instruction |= inst.operands[i].reg << 16;
8429
8430 if (inst.operands[i].preind)
8431 {
8432 if (is_t)
8433 {
8434 inst.error = _("instruction does not accept preindexed addressing");
8435 return;
8436 }
8437 inst.instruction |= PRE_INDEX;
8438 if (inst.operands[i].writeback)
8439 inst.instruction |= WRITE_BACK;
8440
8441 }
8442 else if (inst.operands[i].postind)
8443 {
8444 gas_assert (inst.operands[i].writeback);
8445 if (is_t)
8446 inst.instruction |= WRITE_BACK;
8447 }
8448 else /* unindexed - only for coprocessor */
8449 {
8450 inst.error = _("instruction does not accept unindexed addressing");
8451 return;
8452 }
8453
8454 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8455 && (((inst.instruction & 0x000f0000) >> 16)
8456 == ((inst.instruction & 0x0000f000) >> 12)))
8457 as_warn ((inst.instruction & LOAD_BIT)
8458 ? _("destination register same as write-back base")
8459 : _("source register same as write-back base"));
8460 }
8461
8462 /* inst.operands[i] was set up by parse_address. Encode it into an
8463 ARM-format mode 2 load or store instruction. If is_t is true,
8464 reject forms that cannot be used with a T instruction (i.e. not
8465 post-indexed). */
8466 static void
8467 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8468 {
8469 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8470
8471 encode_arm_addr_mode_common (i, is_t);
8472
8473 if (inst.operands[i].immisreg)
8474 {
8475 constraint ((inst.operands[i].imm == REG_PC
8476 || (is_pc && inst.operands[i].writeback)),
8477 BAD_PC_ADDRESSING);
8478 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8479 inst.instruction |= inst.operands[i].imm;
8480 if (!inst.operands[i].negative)
8481 inst.instruction |= INDEX_UP;
8482 if (inst.operands[i].shifted)
8483 {
8484 if (inst.operands[i].shift_kind == SHIFT_RRX)
8485 inst.instruction |= SHIFT_ROR << 5;
8486 else
8487 {
8488 inst.instruction |= inst.operands[i].shift_kind << 5;
8489 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8490 }
8491 }
8492 }
8493 else /* immediate offset in inst.relocs[0] */
8494 {
8495 if (is_pc && !inst.relocs[0].pc_rel)
8496 {
8497 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8498
8499 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8500 cannot use PC in addressing.
8501 PC cannot be used in writeback addressing, either. */
8502 constraint ((is_t || inst.operands[i].writeback),
8503 BAD_PC_ADDRESSING);
8504
8505 /* Use of PC in str is deprecated for ARMv7. */
8506 if (warn_on_deprecated
8507 && !is_load
8508 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8509 as_tsktsk (_("use of PC in this instruction is deprecated"));
8510 }
8511
8512 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8513 {
8514 /* Prefer + for zero encoded value. */
8515 if (!inst.operands[i].negative)
8516 inst.instruction |= INDEX_UP;
8517 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8518 }
8519 }
8520 }
8521
8522 /* inst.operands[i] was set up by parse_address. Encode it into an
8523 ARM-format mode 3 load or store instruction. Reject forms that
8524 cannot be used with such instructions. If is_t is true, reject
8525 forms that cannot be used with a T instruction (i.e. not
8526 post-indexed). */
8527 static void
8528 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8529 {
8530 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8531 {
8532 inst.error = _("instruction does not accept scaled register index");
8533 return;
8534 }
8535
8536 encode_arm_addr_mode_common (i, is_t);
8537
8538 if (inst.operands[i].immisreg)
8539 {
8540 constraint ((inst.operands[i].imm == REG_PC
8541 || (is_t && inst.operands[i].reg == REG_PC)),
8542 BAD_PC_ADDRESSING);
8543 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8544 BAD_PC_WRITEBACK);
8545 inst.instruction |= inst.operands[i].imm;
8546 if (!inst.operands[i].negative)
8547 inst.instruction |= INDEX_UP;
8548 }
8549 else /* immediate offset in inst.relocs[0] */
8550 {
8551 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8552 && inst.operands[i].writeback),
8553 BAD_PC_WRITEBACK);
8554 inst.instruction |= HWOFFSET_IMM;
8555 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8556 {
8557 /* Prefer + for zero encoded value. */
8558 if (!inst.operands[i].negative)
8559 inst.instruction |= INDEX_UP;
8560
8561 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8562 }
8563 }
8564 }
8565
8566 /* Write immediate bits [7:0] to the following locations:
8567
8568 |28/24|23 19|18 16|15 4|3 0|
8569 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8570
8571 This function is used by VMOV/VMVN/VORR/VBIC. */
8572
8573 static void
8574 neon_write_immbits (unsigned immbits)
8575 {
8576 inst.instruction |= immbits & 0xf;
8577 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8578 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8579 }
8580
8581 /* Invert low-order SIZE bits of XHI:XLO. */
8582
8583 static void
8584 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8585 {
8586 unsigned immlo = xlo ? *xlo : 0;
8587 unsigned immhi = xhi ? *xhi : 0;
8588
8589 switch (size)
8590 {
8591 case 8:
8592 immlo = (~immlo) & 0xff;
8593 break;
8594
8595 case 16:
8596 immlo = (~immlo) & 0xffff;
8597 break;
8598
8599 case 64:
8600 immhi = (~immhi) & 0xffffffff;
8601 /* fall through. */
8602
8603 case 32:
8604 immlo = (~immlo) & 0xffffffff;
8605 break;
8606
8607 default:
8608 abort ();
8609 }
8610
8611 if (xlo)
8612 *xlo = immlo;
8613
8614 if (xhi)
8615 *xhi = immhi;
8616 }
8617
8618 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8619 A, B, C, D. */
8620
8621 static int
8622 neon_bits_same_in_bytes (unsigned imm)
8623 {
8624 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8625 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8626 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8627 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8628 }
8629
8630 /* For immediate of above form, return 0bABCD. */
8631
8632 static unsigned
8633 neon_squash_bits (unsigned imm)
8634 {
8635 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8636 | ((imm & 0x01000000) >> 21);
8637 }
8638
8639 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8640
8641 static unsigned
8642 neon_qfloat_bits (unsigned imm)
8643 {
8644 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8645 }
8646
8647 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8648 the instruction. *OP is passed as the initial value of the op field, and
8649 may be set to a different value depending on the constant (i.e.
8650 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8651 MVN). If the immediate looks like a repeated pattern then also
8652 try smaller element sizes. */
8653
8654 static int
8655 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8656 unsigned *immbits, int *op, int size,
8657 enum neon_el_type type)
8658 {
8659 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8660 float. */
8661 if (type == NT_float && !float_p)
8662 return FAIL;
8663
8664 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8665 {
8666 if (size != 32 || *op == 1)
8667 return FAIL;
8668 *immbits = neon_qfloat_bits (immlo);
8669 return 0xf;
8670 }
8671
8672 if (size == 64)
8673 {
8674 if (neon_bits_same_in_bytes (immhi)
8675 && neon_bits_same_in_bytes (immlo))
8676 {
8677 if (*op == 1)
8678 return FAIL;
8679 *immbits = (neon_squash_bits (immhi) << 4)
8680 | neon_squash_bits (immlo);
8681 *op = 1;
8682 return 0xe;
8683 }
8684
8685 if (immhi != immlo)
8686 return FAIL;
8687 }
8688
8689 if (size >= 32)
8690 {
8691 if (immlo == (immlo & 0x000000ff))
8692 {
8693 *immbits = immlo;
8694 return 0x0;
8695 }
8696 else if (immlo == (immlo & 0x0000ff00))
8697 {
8698 *immbits = immlo >> 8;
8699 return 0x2;
8700 }
8701 else if (immlo == (immlo & 0x00ff0000))
8702 {
8703 *immbits = immlo >> 16;
8704 return 0x4;
8705 }
8706 else if (immlo == (immlo & 0xff000000))
8707 {
8708 *immbits = immlo >> 24;
8709 return 0x6;
8710 }
8711 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8712 {
8713 *immbits = (immlo >> 8) & 0xff;
8714 return 0xc;
8715 }
8716 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8717 {
8718 *immbits = (immlo >> 16) & 0xff;
8719 return 0xd;
8720 }
8721
8722 if ((immlo & 0xffff) != (immlo >> 16))
8723 return FAIL;
8724 immlo &= 0xffff;
8725 }
8726
8727 if (size >= 16)
8728 {
8729 if (immlo == (immlo & 0x000000ff))
8730 {
8731 *immbits = immlo;
8732 return 0x8;
8733 }
8734 else if (immlo == (immlo & 0x0000ff00))
8735 {
8736 *immbits = immlo >> 8;
8737 return 0xa;
8738 }
8739
8740 if ((immlo & 0xff) != (immlo >> 8))
8741 return FAIL;
8742 immlo &= 0xff;
8743 }
8744
8745 if (immlo == (immlo & 0x000000ff))
8746 {
8747 /* Don't allow MVN with 8-bit immediate. */
8748 if (*op == 1)
8749 return FAIL;
8750 *immbits = immlo;
8751 return 0xe;
8752 }
8753
8754 return FAIL;
8755 }
8756
8757 #if defined BFD_HOST_64_BIT
8758 /* Returns TRUE if double precision value V may be cast
8759 to single precision without loss of accuracy. */
8760
8761 static bfd_boolean
8762 is_double_a_single (bfd_int64_t v)
8763 {
8764 int exp = (int)((v >> 52) & 0x7FF);
8765 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8766
8767 return (exp == 0 || exp == 0x7FF
8768 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8769 && (mantissa & 0x1FFFFFFFl) == 0;
8770 }
8771
8772 /* Returns a double precision value casted to single precision
8773 (ignoring the least significant bits in exponent and mantissa). */
8774
8775 static int
8776 double_to_single (bfd_int64_t v)
8777 {
8778 int sign = (int) ((v >> 63) & 1l);
8779 int exp = (int) ((v >> 52) & 0x7FF);
8780 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8781
8782 if (exp == 0x7FF)
8783 exp = 0xFF;
8784 else
8785 {
8786 exp = exp - 1023 + 127;
8787 if (exp >= 0xFF)
8788 {
8789 /* Infinity. */
8790 exp = 0x7F;
8791 mantissa = 0;
8792 }
8793 else if (exp < 0)
8794 {
8795 /* No denormalized numbers. */
8796 exp = 0;
8797 mantissa = 0;
8798 }
8799 }
8800 mantissa >>= 29;
8801 return (sign << 31) | (exp << 23) | mantissa;
8802 }
8803 #endif /* BFD_HOST_64_BIT */
8804
8805 enum lit_type
8806 {
8807 CONST_THUMB,
8808 CONST_ARM,
8809 CONST_VEC
8810 };
8811
8812 static void do_vfp_nsyn_opcode (const char *);
8813
8814 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8815 Determine whether it can be performed with a move instruction; if
8816 it can, convert inst.instruction to that move instruction and
8817 return TRUE; if it can't, convert inst.instruction to a literal-pool
8818 load and return FALSE. If this is not a valid thing to do in the
8819 current context, set inst.error and return TRUE.
8820
8821 inst.operands[i] describes the destination register. */
8822
8823 static bfd_boolean
8824 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8825 {
8826 unsigned long tbit;
8827 bfd_boolean thumb_p = (t == CONST_THUMB);
8828 bfd_boolean arm_p = (t == CONST_ARM);
8829
8830 if (thumb_p)
8831 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8832 else
8833 tbit = LOAD_BIT;
8834
8835 if ((inst.instruction & tbit) == 0)
8836 {
8837 inst.error = _("invalid pseudo operation");
8838 return TRUE;
8839 }
8840
8841 if (inst.relocs[0].exp.X_op != O_constant
8842 && inst.relocs[0].exp.X_op != O_symbol
8843 && inst.relocs[0].exp.X_op != O_big)
8844 {
8845 inst.error = _("constant expression expected");
8846 return TRUE;
8847 }
8848
8849 if (inst.relocs[0].exp.X_op == O_constant
8850 || inst.relocs[0].exp.X_op == O_big)
8851 {
8852 #if defined BFD_HOST_64_BIT
8853 bfd_int64_t v;
8854 #else
8855 offsetT v;
8856 #endif
8857 if (inst.relocs[0].exp.X_op == O_big)
8858 {
8859 LITTLENUM_TYPE w[X_PRECISION];
8860 LITTLENUM_TYPE * l;
8861
8862 if (inst.relocs[0].exp.X_add_number == -1)
8863 {
8864 gen_to_words (w, X_PRECISION, E_PRECISION);
8865 l = w;
8866 /* FIXME: Should we check words w[2..5] ? */
8867 }
8868 else
8869 l = generic_bignum;
8870
8871 #if defined BFD_HOST_64_BIT
8872 v =
8873 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8874 << LITTLENUM_NUMBER_OF_BITS)
8875 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8876 << LITTLENUM_NUMBER_OF_BITS)
8877 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8878 << LITTLENUM_NUMBER_OF_BITS)
8879 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8880 #else
8881 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8882 | (l[0] & LITTLENUM_MASK);
8883 #endif
8884 }
8885 else
8886 v = inst.relocs[0].exp.X_add_number;
8887
8888 if (!inst.operands[i].issingle)
8889 {
8890 if (thumb_p)
8891 {
8892 /* LDR should not use lead in a flag-setting instruction being
8893 chosen so we do not check whether movs can be used. */
8894
8895 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8896 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8897 && inst.operands[i].reg != 13
8898 && inst.operands[i].reg != 15)
8899 {
8900 /* Check if on thumb2 it can be done with a mov.w, mvn or
8901 movw instruction. */
8902 unsigned int newimm;
8903 bfd_boolean isNegated;
8904
8905 newimm = encode_thumb32_immediate (v);
8906 if (newimm != (unsigned int) FAIL)
8907 isNegated = FALSE;
8908 else
8909 {
8910 newimm = encode_thumb32_immediate (~v);
8911 if (newimm != (unsigned int) FAIL)
8912 isNegated = TRUE;
8913 }
8914
8915 /* The number can be loaded with a mov.w or mvn
8916 instruction. */
8917 if (newimm != (unsigned int) FAIL
8918 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8919 {
8920 inst.instruction = (0xf04f0000 /* MOV.W. */
8921 | (inst.operands[i].reg << 8));
8922 /* Change to MOVN. */
8923 inst.instruction |= (isNegated ? 0x200000 : 0);
8924 inst.instruction |= (newimm & 0x800) << 15;
8925 inst.instruction |= (newimm & 0x700) << 4;
8926 inst.instruction |= (newimm & 0x0ff);
8927 return TRUE;
8928 }
8929 /* The number can be loaded with a movw instruction. */
8930 else if ((v & ~0xFFFF) == 0
8931 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8932 {
8933 int imm = v & 0xFFFF;
8934
8935 inst.instruction = 0xf2400000; /* MOVW. */
8936 inst.instruction |= (inst.operands[i].reg << 8);
8937 inst.instruction |= (imm & 0xf000) << 4;
8938 inst.instruction |= (imm & 0x0800) << 15;
8939 inst.instruction |= (imm & 0x0700) << 4;
8940 inst.instruction |= (imm & 0x00ff);
8941 /* In case this replacement is being done on Armv8-M
8942 Baseline we need to make sure to disable the
8943 instruction size check, as otherwise GAS will reject
8944 the use of this T32 instruction. */
8945 inst.size_req = 0;
8946 return TRUE;
8947 }
8948 }
8949 }
8950 else if (arm_p)
8951 {
8952 int value = encode_arm_immediate (v);
8953
8954 if (value != FAIL)
8955 {
8956 /* This can be done with a mov instruction. */
8957 inst.instruction &= LITERAL_MASK;
8958 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8959 inst.instruction |= value & 0xfff;
8960 return TRUE;
8961 }
8962
8963 value = encode_arm_immediate (~ v);
8964 if (value != FAIL)
8965 {
8966 /* This can be done with a mvn instruction. */
8967 inst.instruction &= LITERAL_MASK;
8968 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8969 inst.instruction |= value & 0xfff;
8970 return TRUE;
8971 }
8972 }
8973 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8974 {
8975 int op = 0;
8976 unsigned immbits = 0;
8977 unsigned immlo = inst.operands[1].imm;
8978 unsigned immhi = inst.operands[1].regisimm
8979 ? inst.operands[1].reg
8980 : inst.relocs[0].exp.X_unsigned
8981 ? 0
8982 : ((bfd_int64_t)((int) immlo)) >> 32;
8983 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8984 &op, 64, NT_invtype);
8985
8986 if (cmode == FAIL)
8987 {
8988 neon_invert_size (&immlo, &immhi, 64);
8989 op = !op;
8990 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8991 &op, 64, NT_invtype);
8992 }
8993
8994 if (cmode != FAIL)
8995 {
8996 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8997 | (1 << 23)
8998 | (cmode << 8)
8999 | (op << 5)
9000 | (1 << 4);
9001
9002 /* Fill other bits in vmov encoding for both thumb and arm. */
9003 if (thumb_mode)
9004 inst.instruction |= (0x7U << 29) | (0xF << 24);
9005 else
9006 inst.instruction |= (0xFU << 28) | (0x1 << 25);
9007 neon_write_immbits (immbits);
9008 return TRUE;
9009 }
9010 }
9011 }
9012
9013 if (t == CONST_VEC)
9014 {
9015 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
9016 if (inst.operands[i].issingle
9017 && is_quarter_float (inst.operands[1].imm)
9018 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
9019 {
9020 inst.operands[1].imm =
9021 neon_qfloat_bits (v);
9022 do_vfp_nsyn_opcode ("fconsts");
9023 return TRUE;
9024 }
9025
9026 /* If our host does not support a 64-bit type then we cannot perform
9027 the following optimization. This mean that there will be a
9028 discrepancy between the output produced by an assembler built for
9029 a 32-bit-only host and the output produced from a 64-bit host, but
9030 this cannot be helped. */
9031 #if defined BFD_HOST_64_BIT
9032 else if (!inst.operands[1].issingle
9033 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
9034 {
9035 if (is_double_a_single (v)
9036 && is_quarter_float (double_to_single (v)))
9037 {
9038 inst.operands[1].imm =
9039 neon_qfloat_bits (double_to_single (v));
9040 do_vfp_nsyn_opcode ("fconstd");
9041 return TRUE;
9042 }
9043 }
9044 #endif
9045 }
9046 }
9047
9048 if (add_to_lit_pool ((!inst.operands[i].isvec
9049 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
9050 return TRUE;
9051
9052 inst.operands[1].reg = REG_PC;
9053 inst.operands[1].isreg = 1;
9054 inst.operands[1].preind = 1;
9055 inst.relocs[0].pc_rel = 1;
9056 inst.relocs[0].type = (thumb_p
9057 ? BFD_RELOC_ARM_THUMB_OFFSET
9058 : (mode_3
9059 ? BFD_RELOC_ARM_HWLITERAL
9060 : BFD_RELOC_ARM_LITERAL));
9061 return FALSE;
9062 }
9063
9064 /* inst.operands[i] was set up by parse_address. Encode it into an
9065 ARM-format instruction. Reject all forms which cannot be encoded
9066 into a coprocessor load/store instruction. If wb_ok is false,
9067 reject use of writeback; if unind_ok is false, reject use of
9068 unindexed addressing. If reloc_override is not 0, use it instead
9069 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9070 (in which case it is preserved). */
9071
9072 static int
9073 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
9074 {
9075 if (!inst.operands[i].isreg)
9076 {
9077 /* PR 18256 */
9078 if (! inst.operands[0].isvec)
9079 {
9080 inst.error = _("invalid co-processor operand");
9081 return FAIL;
9082 }
9083 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
9084 return SUCCESS;
9085 }
9086
9087 inst.instruction |= inst.operands[i].reg << 16;
9088
9089 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
9090
9091 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
9092 {
9093 gas_assert (!inst.operands[i].writeback);
9094 if (!unind_ok)
9095 {
9096 inst.error = _("instruction does not support unindexed addressing");
9097 return FAIL;
9098 }
9099 inst.instruction |= inst.operands[i].imm;
9100 inst.instruction |= INDEX_UP;
9101 return SUCCESS;
9102 }
9103
9104 if (inst.operands[i].preind)
9105 inst.instruction |= PRE_INDEX;
9106
9107 if (inst.operands[i].writeback)
9108 {
9109 if (inst.operands[i].reg == REG_PC)
9110 {
9111 inst.error = _("pc may not be used with write-back");
9112 return FAIL;
9113 }
9114 if (!wb_ok)
9115 {
9116 inst.error = _("instruction does not support writeback");
9117 return FAIL;
9118 }
9119 inst.instruction |= WRITE_BACK;
9120 }
9121
9122 if (reloc_override)
9123 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
9124 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
9125 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
9126 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
9127 {
9128 if (thumb_mode)
9129 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
9130 else
9131 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
9132 }
9133
9134 /* Prefer + for zero encoded value. */
9135 if (!inst.operands[i].negative)
9136 inst.instruction |= INDEX_UP;
9137
9138 return SUCCESS;
9139 }
9140
9141 /* Functions for instruction encoding, sorted by sub-architecture.
9142 First some generics; their names are taken from the conventional
9143 bit positions for register arguments in ARM format instructions. */
9144
9145 static void
9146 do_noargs (void)
9147 {
9148 }
9149
9150 static void
9151 do_rd (void)
9152 {
9153 inst.instruction |= inst.operands[0].reg << 12;
9154 }
9155
9156 static void
9157 do_rn (void)
9158 {
9159 inst.instruction |= inst.operands[0].reg << 16;
9160 }
9161
9162 static void
9163 do_rd_rm (void)
9164 {
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 inst.instruction |= inst.operands[1].reg;
9167 }
9168
9169 static void
9170 do_rm_rn (void)
9171 {
9172 inst.instruction |= inst.operands[0].reg;
9173 inst.instruction |= inst.operands[1].reg << 16;
9174 }
9175
9176 static void
9177 do_rd_rn (void)
9178 {
9179 inst.instruction |= inst.operands[0].reg << 12;
9180 inst.instruction |= inst.operands[1].reg << 16;
9181 }
9182
9183 static void
9184 do_rn_rd (void)
9185 {
9186 inst.instruction |= inst.operands[0].reg << 16;
9187 inst.instruction |= inst.operands[1].reg << 12;
9188 }
9189
9190 static void
9191 do_tt (void)
9192 {
9193 inst.instruction |= inst.operands[0].reg << 8;
9194 inst.instruction |= inst.operands[1].reg << 16;
9195 }
9196
9197 static bfd_boolean
9198 check_obsolete (const arm_feature_set *feature, const char *msg)
9199 {
9200 if (ARM_CPU_IS_ANY (cpu_variant))
9201 {
9202 as_tsktsk ("%s", msg);
9203 return TRUE;
9204 }
9205 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9206 {
9207 as_bad ("%s", msg);
9208 return TRUE;
9209 }
9210
9211 return FALSE;
9212 }
9213
9214 static void
9215 do_rd_rm_rn (void)
9216 {
9217 unsigned Rn = inst.operands[2].reg;
9218 /* Enforce restrictions on SWP instruction. */
9219 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9220 {
9221 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9222 _("Rn must not overlap other operands"));
9223
9224 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9225 */
9226 if (!check_obsolete (&arm_ext_v8,
9227 _("swp{b} use is obsoleted for ARMv8 and later"))
9228 && warn_on_deprecated
9229 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9230 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9231 }
9232
9233 inst.instruction |= inst.operands[0].reg << 12;
9234 inst.instruction |= inst.operands[1].reg;
9235 inst.instruction |= Rn << 16;
9236 }
9237
9238 static void
9239 do_rd_rn_rm (void)
9240 {
9241 inst.instruction |= inst.operands[0].reg << 12;
9242 inst.instruction |= inst.operands[1].reg << 16;
9243 inst.instruction |= inst.operands[2].reg;
9244 }
9245
9246 static void
9247 do_rm_rd_rn (void)
9248 {
9249 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9250 constraint (((inst.relocs[0].exp.X_op != O_constant
9251 && inst.relocs[0].exp.X_op != O_illegal)
9252 || inst.relocs[0].exp.X_add_number != 0),
9253 BAD_ADDR_MODE);
9254 inst.instruction |= inst.operands[0].reg;
9255 inst.instruction |= inst.operands[1].reg << 12;
9256 inst.instruction |= inst.operands[2].reg << 16;
9257 }
9258
9259 static void
9260 do_imm0 (void)
9261 {
9262 inst.instruction |= inst.operands[0].imm;
9263 }
9264
9265 static void
9266 do_rd_cpaddr (void)
9267 {
9268 inst.instruction |= inst.operands[0].reg << 12;
9269 encode_arm_cp_address (1, TRUE, TRUE, 0);
9270 }
9271
9272 /* ARM instructions, in alphabetical order by function name (except
9273 that wrapper functions appear immediately after the function they
9274 wrap). */
9275
9276 /* This is a pseudo-op of the form "adr rd, label" to be converted
9277 into a relative address of the form "add rd, pc, #label-.-8". */
9278
9279 static void
9280 do_adr (void)
9281 {
9282 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9283
9284 /* Frag hacking will turn this into a sub instruction if the offset turns
9285 out to be negative. */
9286 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9287 inst.relocs[0].pc_rel = 1;
9288 inst.relocs[0].exp.X_add_number -= 8;
9289
9290 if (support_interwork
9291 && inst.relocs[0].exp.X_op == O_symbol
9292 && inst.relocs[0].exp.X_add_symbol != NULL
9293 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9294 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9295 inst.relocs[0].exp.X_add_number |= 1;
9296 }
9297
9298 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9299 into a relative address of the form:
9300 add rd, pc, #low(label-.-8)"
9301 add rd, rd, #high(label-.-8)" */
9302
9303 static void
9304 do_adrl (void)
9305 {
9306 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9307
9308 /* Frag hacking will turn this into a sub instruction if the offset turns
9309 out to be negative. */
9310 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9311 inst.relocs[0].pc_rel = 1;
9312 inst.size = INSN_SIZE * 2;
9313 inst.relocs[0].exp.X_add_number -= 8;
9314
9315 if (support_interwork
9316 && inst.relocs[0].exp.X_op == O_symbol
9317 && inst.relocs[0].exp.X_add_symbol != NULL
9318 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9319 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9320 inst.relocs[0].exp.X_add_number |= 1;
9321 }
9322
9323 static void
9324 do_arit (void)
9325 {
9326 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9327 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9328 THUMB1_RELOC_ONLY);
9329 if (!inst.operands[1].present)
9330 inst.operands[1].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 12;
9332 inst.instruction |= inst.operands[1].reg << 16;
9333 encode_arm_shifter_operand (2);
9334 }
9335
9336 static void
9337 do_barrier (void)
9338 {
9339 if (inst.operands[0].present)
9340 inst.instruction |= inst.operands[0].imm;
9341 else
9342 inst.instruction |= 0xf;
9343 }
9344
9345 static void
9346 do_bfc (void)
9347 {
9348 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9349 constraint (msb > 32, _("bit-field extends past end of register"));
9350 /* The instruction encoding stores the LSB and MSB,
9351 not the LSB and width. */
9352 inst.instruction |= inst.operands[0].reg << 12;
9353 inst.instruction |= inst.operands[1].imm << 7;
9354 inst.instruction |= (msb - 1) << 16;
9355 }
9356
9357 static void
9358 do_bfi (void)
9359 {
9360 unsigned int msb;
9361
9362 /* #0 in second position is alternative syntax for bfc, which is
9363 the same instruction but with REG_PC in the Rm field. */
9364 if (!inst.operands[1].isreg)
9365 inst.operands[1].reg = REG_PC;
9366
9367 msb = inst.operands[2].imm + inst.operands[3].imm;
9368 constraint (msb > 32, _("bit-field extends past end of register"));
9369 /* The instruction encoding stores the LSB and MSB,
9370 not the LSB and width. */
9371 inst.instruction |= inst.operands[0].reg << 12;
9372 inst.instruction |= inst.operands[1].reg;
9373 inst.instruction |= inst.operands[2].imm << 7;
9374 inst.instruction |= (msb - 1) << 16;
9375 }
9376
9377 static void
9378 do_bfx (void)
9379 {
9380 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9381 _("bit-field extends past end of register"));
9382 inst.instruction |= inst.operands[0].reg << 12;
9383 inst.instruction |= inst.operands[1].reg;
9384 inst.instruction |= inst.operands[2].imm << 7;
9385 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9386 }
9387
9388 /* ARM V5 breakpoint instruction (argument parse)
9389 BKPT <16 bit unsigned immediate>
9390 Instruction is not conditional.
9391 The bit pattern given in insns[] has the COND_ALWAYS condition,
9392 and it is an error if the caller tried to override that. */
9393
9394 static void
9395 do_bkpt (void)
9396 {
9397 /* Top 12 of 16 bits to bits 19:8. */
9398 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9399
9400 /* Bottom 4 of 16 bits to bits 3:0. */
9401 inst.instruction |= inst.operands[0].imm & 0xf;
9402 }
9403
9404 static void
9405 encode_branch (int default_reloc)
9406 {
9407 if (inst.operands[0].hasreloc)
9408 {
9409 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9410 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9411 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9412 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9413 ? BFD_RELOC_ARM_PLT32
9414 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9415 }
9416 else
9417 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9418 inst.relocs[0].pc_rel = 1;
9419 }
9420
9421 static void
9422 do_branch (void)
9423 {
9424 #ifdef OBJ_ELF
9425 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9426 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9427 else
9428 #endif
9429 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9430 }
9431
9432 static void
9433 do_bl (void)
9434 {
9435 #ifdef OBJ_ELF
9436 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9437 {
9438 if (inst.cond == COND_ALWAYS)
9439 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9440 else
9441 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9442 }
9443 else
9444 #endif
9445 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9446 }
9447
9448 /* ARM V5 branch-link-exchange instruction (argument parse)
9449 BLX <target_addr> ie BLX(1)
9450 BLX{<condition>} <Rm> ie BLX(2)
9451 Unfortunately, there are two different opcodes for this mnemonic.
9452 So, the insns[].value is not used, and the code here zaps values
9453 into inst.instruction.
9454 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9455
9456 static void
9457 do_blx (void)
9458 {
9459 if (inst.operands[0].isreg)
9460 {
9461 /* Arg is a register; the opcode provided by insns[] is correct.
9462 It is not illegal to do "blx pc", just useless. */
9463 if (inst.operands[0].reg == REG_PC)
9464 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9465
9466 inst.instruction |= inst.operands[0].reg;
9467 }
9468 else
9469 {
9470 /* Arg is an address; this instruction cannot be executed
9471 conditionally, and the opcode must be adjusted.
9472 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9473 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9474 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9475 inst.instruction = 0xfa000000;
9476 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9477 }
9478 }
9479
9480 static void
9481 do_bx (void)
9482 {
9483 bfd_boolean want_reloc;
9484
9485 if (inst.operands[0].reg == REG_PC)
9486 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9487
9488 inst.instruction |= inst.operands[0].reg;
9489 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9490 it is for ARMv4t or earlier. */
9491 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9492 if (!ARM_FEATURE_ZERO (selected_object_arch)
9493 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9494 want_reloc = TRUE;
9495
9496 #ifdef OBJ_ELF
9497 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9498 #endif
9499 want_reloc = FALSE;
9500
9501 if (want_reloc)
9502 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9503 }
9504
9505
9506 /* ARM v5TEJ. Jump to Jazelle code. */
9507
9508 static void
9509 do_bxj (void)
9510 {
9511 if (inst.operands[0].reg == REG_PC)
9512 as_tsktsk (_("use of r15 in bxj is not really useful"));
9513
9514 inst.instruction |= inst.operands[0].reg;
9515 }
9516
9517 /* Co-processor data operation:
9518 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9519 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9520 static void
9521 do_cdp (void)
9522 {
9523 inst.instruction |= inst.operands[0].reg << 8;
9524 inst.instruction |= inst.operands[1].imm << 20;
9525 inst.instruction |= inst.operands[2].reg << 12;
9526 inst.instruction |= inst.operands[3].reg << 16;
9527 inst.instruction |= inst.operands[4].reg;
9528 inst.instruction |= inst.operands[5].imm << 5;
9529 }
9530
9531 static void
9532 do_cmp (void)
9533 {
9534 inst.instruction |= inst.operands[0].reg << 16;
9535 encode_arm_shifter_operand (1);
9536 }
9537
9538 /* Transfer between coprocessor and ARM registers.
9539 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9540 MRC2
9541 MCR{cond}
9542 MCR2
9543
9544 No special properties. */
9545
9546 struct deprecated_coproc_regs_s
9547 {
9548 unsigned cp;
9549 int opc1;
9550 unsigned crn;
9551 unsigned crm;
9552 int opc2;
9553 arm_feature_set deprecated;
9554 arm_feature_set obsoleted;
9555 const char *dep_msg;
9556 const char *obs_msg;
9557 };
9558
9559 #define DEPR_ACCESS_V8 \
9560 N_("This coprocessor register access is deprecated in ARMv8")
9561
9562 /* Table of all deprecated coprocessor registers. */
9563 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9564 {
9565 {15, 0, 7, 10, 5, /* CP15DMB. */
9566 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9567 DEPR_ACCESS_V8, NULL},
9568 {15, 0, 7, 10, 4, /* CP15DSB. */
9569 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9570 DEPR_ACCESS_V8, NULL},
9571 {15, 0, 7, 5, 4, /* CP15ISB. */
9572 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9573 DEPR_ACCESS_V8, NULL},
9574 {14, 6, 1, 0, 0, /* TEEHBR. */
9575 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9576 DEPR_ACCESS_V8, NULL},
9577 {14, 6, 0, 0, 0, /* TEECR. */
9578 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9579 DEPR_ACCESS_V8, NULL},
9580 };
9581
9582 #undef DEPR_ACCESS_V8
9583
9584 static const size_t deprecated_coproc_reg_count =
9585 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9586
9587 static void
9588 do_co_reg (void)
9589 {
9590 unsigned Rd;
9591 size_t i;
9592
9593 Rd = inst.operands[2].reg;
9594 if (thumb_mode)
9595 {
9596 if (inst.instruction == 0xee000010
9597 || inst.instruction == 0xfe000010)
9598 /* MCR, MCR2 */
9599 reject_bad_reg (Rd);
9600 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9601 /* MRC, MRC2 */
9602 constraint (Rd == REG_SP, BAD_SP);
9603 }
9604 else
9605 {
9606 /* MCR */
9607 if (inst.instruction == 0xe000010)
9608 constraint (Rd == REG_PC, BAD_PC);
9609 }
9610
9611 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9612 {
9613 const struct deprecated_coproc_regs_s *r =
9614 deprecated_coproc_regs + i;
9615
9616 if (inst.operands[0].reg == r->cp
9617 && inst.operands[1].imm == r->opc1
9618 && inst.operands[3].reg == r->crn
9619 && inst.operands[4].reg == r->crm
9620 && inst.operands[5].imm == r->opc2)
9621 {
9622 if (! ARM_CPU_IS_ANY (cpu_variant)
9623 && warn_on_deprecated
9624 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9625 as_tsktsk ("%s", r->dep_msg);
9626 }
9627 }
9628
9629 inst.instruction |= inst.operands[0].reg << 8;
9630 inst.instruction |= inst.operands[1].imm << 21;
9631 inst.instruction |= Rd << 12;
9632 inst.instruction |= inst.operands[3].reg << 16;
9633 inst.instruction |= inst.operands[4].reg;
9634 inst.instruction |= inst.operands[5].imm << 5;
9635 }
9636
9637 /* Transfer between coprocessor register and pair of ARM registers.
9638 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9639 MCRR2
9640 MRRC{cond}
9641 MRRC2
9642
9643 Two XScale instructions are special cases of these:
9644
9645 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9646 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9647
9648 Result unpredictable if Rd or Rn is R15. */
9649
9650 static void
9651 do_co_reg2c (void)
9652 {
9653 unsigned Rd, Rn;
9654
9655 Rd = inst.operands[2].reg;
9656 Rn = inst.operands[3].reg;
9657
9658 if (thumb_mode)
9659 {
9660 reject_bad_reg (Rd);
9661 reject_bad_reg (Rn);
9662 }
9663 else
9664 {
9665 constraint (Rd == REG_PC, BAD_PC);
9666 constraint (Rn == REG_PC, BAD_PC);
9667 }
9668
9669 /* Only check the MRRC{2} variants. */
9670 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9671 {
9672 /* If Rd == Rn, error that the operation is
9673 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9674 constraint (Rd == Rn, BAD_OVERLAP);
9675 }
9676
9677 inst.instruction |= inst.operands[0].reg << 8;
9678 inst.instruction |= inst.operands[1].imm << 4;
9679 inst.instruction |= Rd << 12;
9680 inst.instruction |= Rn << 16;
9681 inst.instruction |= inst.operands[4].reg;
9682 }
9683
9684 static void
9685 do_cpsi (void)
9686 {
9687 inst.instruction |= inst.operands[0].imm << 6;
9688 if (inst.operands[1].present)
9689 {
9690 inst.instruction |= CPSI_MMOD;
9691 inst.instruction |= inst.operands[1].imm;
9692 }
9693 }
9694
9695 static void
9696 do_dbg (void)
9697 {
9698 inst.instruction |= inst.operands[0].imm;
9699 }
9700
9701 static void
9702 do_div (void)
9703 {
9704 unsigned Rd, Rn, Rm;
9705
9706 Rd = inst.operands[0].reg;
9707 Rn = (inst.operands[1].present
9708 ? inst.operands[1].reg : Rd);
9709 Rm = inst.operands[2].reg;
9710
9711 constraint ((Rd == REG_PC), BAD_PC);
9712 constraint ((Rn == REG_PC), BAD_PC);
9713 constraint ((Rm == REG_PC), BAD_PC);
9714
9715 inst.instruction |= Rd << 16;
9716 inst.instruction |= Rn << 0;
9717 inst.instruction |= Rm << 8;
9718 }
9719
9720 static void
9721 do_it (void)
9722 {
9723 /* There is no IT instruction in ARM mode. We
9724 process it to do the validation as if in
9725 thumb mode, just in case the code gets
9726 assembled for thumb using the unified syntax. */
9727
9728 inst.size = 0;
9729 if (unified_syntax)
9730 {
9731 set_pred_insn_type (IT_INSN);
9732 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9733 now_pred.cc = inst.operands[0].imm;
9734 }
9735 }
9736
9737 /* If there is only one register in the register list,
9738 then return its register number. Otherwise return -1. */
9739 static int
9740 only_one_reg_in_list (int range)
9741 {
9742 int i = ffs (range) - 1;
9743 return (i > 15 || range != (1 << i)) ? -1 : i;
9744 }
9745
9746 static void
9747 encode_ldmstm(int from_push_pop_mnem)
9748 {
9749 int base_reg = inst.operands[0].reg;
9750 int range = inst.operands[1].imm;
9751 int one_reg;
9752
9753 inst.instruction |= base_reg << 16;
9754 inst.instruction |= range;
9755
9756 if (inst.operands[1].writeback)
9757 inst.instruction |= LDM_TYPE_2_OR_3;
9758
9759 if (inst.operands[0].writeback)
9760 {
9761 inst.instruction |= WRITE_BACK;
9762 /* Check for unpredictable uses of writeback. */
9763 if (inst.instruction & LOAD_BIT)
9764 {
9765 /* Not allowed in LDM type 2. */
9766 if ((inst.instruction & LDM_TYPE_2_OR_3)
9767 && ((range & (1 << REG_PC)) == 0))
9768 as_warn (_("writeback of base register is UNPREDICTABLE"));
9769 /* Only allowed if base reg not in list for other types. */
9770 else if (range & (1 << base_reg))
9771 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9772 }
9773 else /* STM. */
9774 {
9775 /* Not allowed for type 2. */
9776 if (inst.instruction & LDM_TYPE_2_OR_3)
9777 as_warn (_("writeback of base register is UNPREDICTABLE"));
9778 /* Only allowed if base reg not in list, or first in list. */
9779 else if ((range & (1 << base_reg))
9780 && (range & ((1 << base_reg) - 1)))
9781 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9782 }
9783 }
9784
9785 /* If PUSH/POP has only one register, then use the A2 encoding. */
9786 one_reg = only_one_reg_in_list (range);
9787 if (from_push_pop_mnem && one_reg >= 0)
9788 {
9789 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9790
9791 if (is_push && one_reg == 13 /* SP */)
9792 /* PR 22483: The A2 encoding cannot be used when
9793 pushing the stack pointer as this is UNPREDICTABLE. */
9794 return;
9795
9796 inst.instruction &= A_COND_MASK;
9797 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9798 inst.instruction |= one_reg << 12;
9799 }
9800 }
9801
9802 static void
9803 do_ldmstm (void)
9804 {
9805 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9806 }
9807
9808 /* ARMv5TE load-consecutive (argument parse)
9809 Mode is like LDRH.
9810
9811 LDRccD R, mode
9812 STRccD R, mode. */
9813
9814 static void
9815 do_ldrd (void)
9816 {
9817 constraint (inst.operands[0].reg % 2 != 0,
9818 _("first transfer register must be even"));
9819 constraint (inst.operands[1].present
9820 && inst.operands[1].reg != inst.operands[0].reg + 1,
9821 _("can only transfer two consecutive registers"));
9822 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9823 constraint (!inst.operands[2].isreg, _("'[' expected"));
9824
9825 if (!inst.operands[1].present)
9826 inst.operands[1].reg = inst.operands[0].reg + 1;
9827
9828 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9829 register and the first register written; we have to diagnose
9830 overlap between the base and the second register written here. */
9831
9832 if (inst.operands[2].reg == inst.operands[1].reg
9833 && (inst.operands[2].writeback || inst.operands[2].postind))
9834 as_warn (_("base register written back, and overlaps "
9835 "second transfer register"));
9836
9837 if (!(inst.instruction & V4_STR_BIT))
9838 {
9839 /* For an index-register load, the index register must not overlap the
9840 destination (even if not write-back). */
9841 if (inst.operands[2].immisreg
9842 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9843 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9844 as_warn (_("index register overlaps transfer register"));
9845 }
9846 inst.instruction |= inst.operands[0].reg << 12;
9847 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9848 }
9849
9850 static void
9851 do_ldrex (void)
9852 {
9853 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9854 || inst.operands[1].postind || inst.operands[1].writeback
9855 || inst.operands[1].immisreg || inst.operands[1].shifted
9856 || inst.operands[1].negative
9857 /* This can arise if the programmer has written
9858 strex rN, rM, foo
9859 or if they have mistakenly used a register name as the last
9860 operand, eg:
9861 strex rN, rM, rX
9862 It is very difficult to distinguish between these two cases
9863 because "rX" might actually be a label. ie the register
9864 name has been occluded by a symbol of the same name. So we
9865 just generate a general 'bad addressing mode' type error
9866 message and leave it up to the programmer to discover the
9867 true cause and fix their mistake. */
9868 || (inst.operands[1].reg == REG_PC),
9869 BAD_ADDR_MODE);
9870
9871 constraint (inst.relocs[0].exp.X_op != O_constant
9872 || inst.relocs[0].exp.X_add_number != 0,
9873 _("offset must be zero in ARM encoding"));
9874
9875 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9876
9877 inst.instruction |= inst.operands[0].reg << 12;
9878 inst.instruction |= inst.operands[1].reg << 16;
9879 inst.relocs[0].type = BFD_RELOC_UNUSED;
9880 }
9881
9882 static void
9883 do_ldrexd (void)
9884 {
9885 constraint (inst.operands[0].reg % 2 != 0,
9886 _("even register required"));
9887 constraint (inst.operands[1].present
9888 && inst.operands[1].reg != inst.operands[0].reg + 1,
9889 _("can only load two consecutive registers"));
9890 /* If op 1 were present and equal to PC, this function wouldn't
9891 have been called in the first place. */
9892 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9893
9894 inst.instruction |= inst.operands[0].reg << 12;
9895 inst.instruction |= inst.operands[2].reg << 16;
9896 }
9897
9898 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9899 which is not a multiple of four is UNPREDICTABLE. */
9900 static void
9901 check_ldr_r15_aligned (void)
9902 {
9903 constraint (!(inst.operands[1].immisreg)
9904 && (inst.operands[0].reg == REG_PC
9905 && inst.operands[1].reg == REG_PC
9906 && (inst.relocs[0].exp.X_add_number & 0x3)),
9907 _("ldr to register 15 must be 4-byte aligned"));
9908 }
9909
9910 static void
9911 do_ldst (void)
9912 {
9913 inst.instruction |= inst.operands[0].reg << 12;
9914 if (!inst.operands[1].isreg)
9915 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9916 return;
9917 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9918 check_ldr_r15_aligned ();
9919 }
9920
9921 static void
9922 do_ldstt (void)
9923 {
9924 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9925 reject [Rn,...]. */
9926 if (inst.operands[1].preind)
9927 {
9928 constraint (inst.relocs[0].exp.X_op != O_constant
9929 || inst.relocs[0].exp.X_add_number != 0,
9930 _("this instruction requires a post-indexed address"));
9931
9932 inst.operands[1].preind = 0;
9933 inst.operands[1].postind = 1;
9934 inst.operands[1].writeback = 1;
9935 }
9936 inst.instruction |= inst.operands[0].reg << 12;
9937 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9938 }
9939
9940 /* Halfword and signed-byte load/store operations. */
9941
9942 static void
9943 do_ldstv4 (void)
9944 {
9945 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9946 inst.instruction |= inst.operands[0].reg << 12;
9947 if (!inst.operands[1].isreg)
9948 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9949 return;
9950 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9951 }
9952
9953 static void
9954 do_ldsttv4 (void)
9955 {
9956 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9957 reject [Rn,...]. */
9958 if (inst.operands[1].preind)
9959 {
9960 constraint (inst.relocs[0].exp.X_op != O_constant
9961 || inst.relocs[0].exp.X_add_number != 0,
9962 _("this instruction requires a post-indexed address"));
9963
9964 inst.operands[1].preind = 0;
9965 inst.operands[1].postind = 1;
9966 inst.operands[1].writeback = 1;
9967 }
9968 inst.instruction |= inst.operands[0].reg << 12;
9969 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9970 }
9971
9972 /* Co-processor register load/store.
9973 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9974 static void
9975 do_lstc (void)
9976 {
9977 inst.instruction |= inst.operands[0].reg << 8;
9978 inst.instruction |= inst.operands[1].reg << 12;
9979 encode_arm_cp_address (2, TRUE, TRUE, 0);
9980 }
9981
9982 static void
9983 do_mlas (void)
9984 {
9985 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9986 if (inst.operands[0].reg == inst.operands[1].reg
9987 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9988 && !(inst.instruction & 0x00400000))
9989 as_tsktsk (_("Rd and Rm should be different in mla"));
9990
9991 inst.instruction |= inst.operands[0].reg << 16;
9992 inst.instruction |= inst.operands[1].reg;
9993 inst.instruction |= inst.operands[2].reg << 8;
9994 inst.instruction |= inst.operands[3].reg << 12;
9995 }
9996
9997 static void
9998 do_mov (void)
9999 {
10000 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10001 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10002 THUMB1_RELOC_ONLY);
10003 inst.instruction |= inst.operands[0].reg << 12;
10004 encode_arm_shifter_operand (1);
10005 }
10006
10007 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
10008 static void
10009 do_mov16 (void)
10010 {
10011 bfd_vma imm;
10012 bfd_boolean top;
10013
10014 top = (inst.instruction & 0x00400000) != 0;
10015 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
10016 _(":lower16: not allowed in this instruction"));
10017 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
10018 _(":upper16: not allowed in this instruction"));
10019 inst.instruction |= inst.operands[0].reg << 12;
10020 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
10021 {
10022 imm = inst.relocs[0].exp.X_add_number;
10023 /* The value is in two pieces: 0:11, 16:19. */
10024 inst.instruction |= (imm & 0x00000fff);
10025 inst.instruction |= (imm & 0x0000f000) << 4;
10026 }
10027 }
10028
10029 static int
10030 do_vfp_nsyn_mrs (void)
10031 {
10032 if (inst.operands[0].isvec)
10033 {
10034 if (inst.operands[1].reg != 1)
10035 first_error (_("operand 1 must be FPSCR"));
10036 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
10037 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
10038 do_vfp_nsyn_opcode ("fmstat");
10039 }
10040 else if (inst.operands[1].isvec)
10041 do_vfp_nsyn_opcode ("fmrx");
10042 else
10043 return FAIL;
10044
10045 return SUCCESS;
10046 }
10047
10048 static int
10049 do_vfp_nsyn_msr (void)
10050 {
10051 if (inst.operands[0].isvec)
10052 do_vfp_nsyn_opcode ("fmxr");
10053 else
10054 return FAIL;
10055
10056 return SUCCESS;
10057 }
10058
10059 static void
10060 do_vmrs (void)
10061 {
10062 unsigned Rt = inst.operands[0].reg;
10063
10064 if (thumb_mode && Rt == REG_SP)
10065 {
10066 inst.error = BAD_SP;
10067 return;
10068 }
10069
10070 switch (inst.operands[1].reg)
10071 {
10072 /* MVFR2 is only valid for Armv8-A. */
10073 case 5:
10074 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10075 _(BAD_FPU));
10076 break;
10077
10078 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10079 case 1: /* fpscr. */
10080 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10081 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10082 _(BAD_FPU));
10083 break;
10084
10085 case 14: /* fpcxt_ns. */
10086 case 15: /* fpcxt_s. */
10087 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10088 _("selected processor does not support instruction"));
10089 break;
10090
10091 case 2: /* fpscr_nzcvqc. */
10092 case 12: /* vpr. */
10093 case 13: /* p0. */
10094 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10095 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10096 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10097 _("selected processor does not support instruction"));
10098 if (inst.operands[0].reg != 2
10099 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10100 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10101 break;
10102
10103 default:
10104 break;
10105 }
10106
10107 /* APSR_ sets isvec. All other refs to PC are illegal. */
10108 if (!inst.operands[0].isvec && Rt == REG_PC)
10109 {
10110 inst.error = BAD_PC;
10111 return;
10112 }
10113
10114 /* If we get through parsing the register name, we just insert the number
10115 generated into the instruction without further validation. */
10116 inst.instruction |= (inst.operands[1].reg << 16);
10117 inst.instruction |= (Rt << 12);
10118 }
10119
10120 static void
10121 do_vmsr (void)
10122 {
10123 unsigned Rt = inst.operands[1].reg;
10124
10125 if (thumb_mode)
10126 reject_bad_reg (Rt);
10127 else if (Rt == REG_PC)
10128 {
10129 inst.error = BAD_PC;
10130 return;
10131 }
10132
10133 switch (inst.operands[0].reg)
10134 {
10135 /* MVFR2 is only valid for Armv8-A. */
10136 case 5:
10137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10138 _(BAD_FPU));
10139 break;
10140
10141 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10142 case 1: /* fpcr. */
10143 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10144 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10145 _(BAD_FPU));
10146 break;
10147
10148 case 14: /* fpcxt_ns. */
10149 case 15: /* fpcxt_s. */
10150 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10151 _("selected processor does not support instruction"));
10152 break;
10153
10154 case 2: /* fpscr_nzcvqc. */
10155 case 12: /* vpr. */
10156 case 13: /* p0. */
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10158 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10159 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10160 _("selected processor does not support instruction"));
10161 if (inst.operands[0].reg != 2
10162 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10163 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10164 break;
10165
10166 default:
10167 break;
10168 }
10169
10170 /* If we get through parsing the register name, we just insert the number
10171 generated into the instruction without further validation. */
10172 inst.instruction |= (inst.operands[0].reg << 16);
10173 inst.instruction |= (Rt << 12);
10174 }
10175
10176 static void
10177 do_mrs (void)
10178 {
10179 unsigned br;
10180
10181 if (do_vfp_nsyn_mrs () == SUCCESS)
10182 return;
10183
10184 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10185 inst.instruction |= inst.operands[0].reg << 12;
10186
10187 if (inst.operands[1].isreg)
10188 {
10189 br = inst.operands[1].reg;
10190 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10191 as_bad (_("bad register for mrs"));
10192 }
10193 else
10194 {
10195 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10196 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10197 != (PSR_c|PSR_f),
10198 _("'APSR', 'CPSR' or 'SPSR' expected"));
10199 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10200 }
10201
10202 inst.instruction |= br;
10203 }
10204
10205 /* Two possible forms:
10206 "{C|S}PSR_<field>, Rm",
10207 "{C|S}PSR_f, #expression". */
10208
10209 static void
10210 do_msr (void)
10211 {
10212 if (do_vfp_nsyn_msr () == SUCCESS)
10213 return;
10214
10215 inst.instruction |= inst.operands[0].imm;
10216 if (inst.operands[1].isreg)
10217 inst.instruction |= inst.operands[1].reg;
10218 else
10219 {
10220 inst.instruction |= INST_IMMEDIATE;
10221 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10222 inst.relocs[0].pc_rel = 0;
10223 }
10224 }
10225
10226 static void
10227 do_mul (void)
10228 {
10229 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10230
10231 if (!inst.operands[2].present)
10232 inst.operands[2].reg = inst.operands[0].reg;
10233 inst.instruction |= inst.operands[0].reg << 16;
10234 inst.instruction |= inst.operands[1].reg;
10235 inst.instruction |= inst.operands[2].reg << 8;
10236
10237 if (inst.operands[0].reg == inst.operands[1].reg
10238 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10239 as_tsktsk (_("Rd and Rm should be different in mul"));
10240 }
10241
10242 /* Long Multiply Parser
10243 UMULL RdLo, RdHi, Rm, Rs
10244 SMULL RdLo, RdHi, Rm, Rs
10245 UMLAL RdLo, RdHi, Rm, Rs
10246 SMLAL RdLo, RdHi, Rm, Rs. */
10247
10248 static void
10249 do_mull (void)
10250 {
10251 inst.instruction |= inst.operands[0].reg << 12;
10252 inst.instruction |= inst.operands[1].reg << 16;
10253 inst.instruction |= inst.operands[2].reg;
10254 inst.instruction |= inst.operands[3].reg << 8;
10255
10256 /* rdhi and rdlo must be different. */
10257 if (inst.operands[0].reg == inst.operands[1].reg)
10258 as_tsktsk (_("rdhi and rdlo must be different"));
10259
10260 /* rdhi, rdlo and rm must all be different before armv6. */
10261 if ((inst.operands[0].reg == inst.operands[2].reg
10262 || inst.operands[1].reg == inst.operands[2].reg)
10263 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10264 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10265 }
10266
10267 static void
10268 do_nop (void)
10269 {
10270 if (inst.operands[0].present
10271 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10272 {
10273 /* Architectural NOP hints are CPSR sets with no bits selected. */
10274 inst.instruction &= 0xf0000000;
10275 inst.instruction |= 0x0320f000;
10276 if (inst.operands[0].present)
10277 inst.instruction |= inst.operands[0].imm;
10278 }
10279 }
10280
10281 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10282 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10283 Condition defaults to COND_ALWAYS.
10284 Error if Rd, Rn or Rm are R15. */
10285
10286 static void
10287 do_pkhbt (void)
10288 {
10289 inst.instruction |= inst.operands[0].reg << 12;
10290 inst.instruction |= inst.operands[1].reg << 16;
10291 inst.instruction |= inst.operands[2].reg;
10292 if (inst.operands[3].present)
10293 encode_arm_shift (3);
10294 }
10295
10296 /* ARM V6 PKHTB (Argument Parse). */
10297
10298 static void
10299 do_pkhtb (void)
10300 {
10301 if (!inst.operands[3].present)
10302 {
10303 /* If the shift specifier is omitted, turn the instruction
10304 into pkhbt rd, rm, rn. */
10305 inst.instruction &= 0xfff00010;
10306 inst.instruction |= inst.operands[0].reg << 12;
10307 inst.instruction |= inst.operands[1].reg;
10308 inst.instruction |= inst.operands[2].reg << 16;
10309 }
10310 else
10311 {
10312 inst.instruction |= inst.operands[0].reg << 12;
10313 inst.instruction |= inst.operands[1].reg << 16;
10314 inst.instruction |= inst.operands[2].reg;
10315 encode_arm_shift (3);
10316 }
10317 }
10318
10319 /* ARMv5TE: Preload-Cache
10320 MP Extensions: Preload for write
10321
10322 PLD(W) <addr_mode>
10323
10324 Syntactically, like LDR with B=1, W=0, L=1. */
10325
10326 static void
10327 do_pld (void)
10328 {
10329 constraint (!inst.operands[0].isreg,
10330 _("'[' expected after PLD mnemonic"));
10331 constraint (inst.operands[0].postind,
10332 _("post-indexed expression used in preload instruction"));
10333 constraint (inst.operands[0].writeback,
10334 _("writeback used in preload instruction"));
10335 constraint (!inst.operands[0].preind,
10336 _("unindexed addressing used in preload instruction"));
10337 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10338 }
10339
10340 /* ARMv7: PLI <addr_mode> */
10341 static void
10342 do_pli (void)
10343 {
10344 constraint (!inst.operands[0].isreg,
10345 _("'[' expected after PLI mnemonic"));
10346 constraint (inst.operands[0].postind,
10347 _("post-indexed expression used in preload instruction"));
10348 constraint (inst.operands[0].writeback,
10349 _("writeback used in preload instruction"));
10350 constraint (!inst.operands[0].preind,
10351 _("unindexed addressing used in preload instruction"));
10352 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10353 inst.instruction &= ~PRE_INDEX;
10354 }
10355
10356 static void
10357 do_push_pop (void)
10358 {
10359 constraint (inst.operands[0].writeback,
10360 _("push/pop do not support {reglist}^"));
10361 inst.operands[1] = inst.operands[0];
10362 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10363 inst.operands[0].isreg = 1;
10364 inst.operands[0].writeback = 1;
10365 inst.operands[0].reg = REG_SP;
10366 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10367 }
10368
10369 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10370 word at the specified address and the following word
10371 respectively.
10372 Unconditionally executed.
10373 Error if Rn is R15. */
10374
10375 static void
10376 do_rfe (void)
10377 {
10378 inst.instruction |= inst.operands[0].reg << 16;
10379 if (inst.operands[0].writeback)
10380 inst.instruction |= WRITE_BACK;
10381 }
10382
10383 /* ARM V6 ssat (argument parse). */
10384
10385 static void
10386 do_ssat (void)
10387 {
10388 inst.instruction |= inst.operands[0].reg << 12;
10389 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10390 inst.instruction |= inst.operands[2].reg;
10391
10392 if (inst.operands[3].present)
10393 encode_arm_shift (3);
10394 }
10395
10396 /* ARM V6 usat (argument parse). */
10397
10398 static void
10399 do_usat (void)
10400 {
10401 inst.instruction |= inst.operands[0].reg << 12;
10402 inst.instruction |= inst.operands[1].imm << 16;
10403 inst.instruction |= inst.operands[2].reg;
10404
10405 if (inst.operands[3].present)
10406 encode_arm_shift (3);
10407 }
10408
10409 /* ARM V6 ssat16 (argument parse). */
10410
10411 static void
10412 do_ssat16 (void)
10413 {
10414 inst.instruction |= inst.operands[0].reg << 12;
10415 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10416 inst.instruction |= inst.operands[2].reg;
10417 }
10418
10419 static void
10420 do_usat16 (void)
10421 {
10422 inst.instruction |= inst.operands[0].reg << 12;
10423 inst.instruction |= inst.operands[1].imm << 16;
10424 inst.instruction |= inst.operands[2].reg;
10425 }
10426
10427 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10428 preserving the other bits.
10429
10430 setend <endian_specifier>, where <endian_specifier> is either
10431 BE or LE. */
10432
10433 static void
10434 do_setend (void)
10435 {
10436 if (warn_on_deprecated
10437 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10438 as_tsktsk (_("setend use is deprecated for ARMv8"));
10439
10440 if (inst.operands[0].imm)
10441 inst.instruction |= 0x200;
10442 }
10443
10444 static void
10445 do_shift (void)
10446 {
10447 unsigned int Rm = (inst.operands[1].present
10448 ? inst.operands[1].reg
10449 : inst.operands[0].reg);
10450
10451 inst.instruction |= inst.operands[0].reg << 12;
10452 inst.instruction |= Rm;
10453 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10454 {
10455 inst.instruction |= inst.operands[2].reg << 8;
10456 inst.instruction |= SHIFT_BY_REG;
10457 /* PR 12854: Error on extraneous shifts. */
10458 constraint (inst.operands[2].shifted,
10459 _("extraneous shift as part of operand to shift insn"));
10460 }
10461 else
10462 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10463 }
10464
10465 static void
10466 do_smc (void)
10467 {
10468 unsigned int value = inst.relocs[0].exp.X_add_number;
10469 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10470
10471 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10472 inst.relocs[0].pc_rel = 0;
10473 }
10474
10475 static void
10476 do_hvc (void)
10477 {
10478 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10479 inst.relocs[0].pc_rel = 0;
10480 }
10481
10482 static void
10483 do_swi (void)
10484 {
10485 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10486 inst.relocs[0].pc_rel = 0;
10487 }
10488
10489 static void
10490 do_setpan (void)
10491 {
10492 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10493 _("selected processor does not support SETPAN instruction"));
10494
10495 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10496 }
10497
10498 static void
10499 do_t_setpan (void)
10500 {
10501 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10502 _("selected processor does not support SETPAN instruction"));
10503
10504 inst.instruction |= (inst.operands[0].imm << 3);
10505 }
10506
10507 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10508 SMLAxy{cond} Rd,Rm,Rs,Rn
10509 SMLAWy{cond} Rd,Rm,Rs,Rn
10510 Error if any register is R15. */
10511
10512 static void
10513 do_smla (void)
10514 {
10515 inst.instruction |= inst.operands[0].reg << 16;
10516 inst.instruction |= inst.operands[1].reg;
10517 inst.instruction |= inst.operands[2].reg << 8;
10518 inst.instruction |= inst.operands[3].reg << 12;
10519 }
10520
10521 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10522 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10523 Error if any register is R15.
10524 Warning if Rdlo == Rdhi. */
10525
10526 static void
10527 do_smlal (void)
10528 {
10529 inst.instruction |= inst.operands[0].reg << 12;
10530 inst.instruction |= inst.operands[1].reg << 16;
10531 inst.instruction |= inst.operands[2].reg;
10532 inst.instruction |= inst.operands[3].reg << 8;
10533
10534 if (inst.operands[0].reg == inst.operands[1].reg)
10535 as_tsktsk (_("rdhi and rdlo must be different"));
10536 }
10537
10538 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10539 SMULxy{cond} Rd,Rm,Rs
10540 Error if any register is R15. */
10541
10542 static void
10543 do_smul (void)
10544 {
10545 inst.instruction |= inst.operands[0].reg << 16;
10546 inst.instruction |= inst.operands[1].reg;
10547 inst.instruction |= inst.operands[2].reg << 8;
10548 }
10549
10550 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10551 the same for both ARM and Thumb-2. */
10552
10553 static void
10554 do_srs (void)
10555 {
10556 int reg;
10557
10558 if (inst.operands[0].present)
10559 {
10560 reg = inst.operands[0].reg;
10561 constraint (reg != REG_SP, _("SRS base register must be r13"));
10562 }
10563 else
10564 reg = REG_SP;
10565
10566 inst.instruction |= reg << 16;
10567 inst.instruction |= inst.operands[1].imm;
10568 if (inst.operands[0].writeback || inst.operands[1].writeback)
10569 inst.instruction |= WRITE_BACK;
10570 }
10571
10572 /* ARM V6 strex (argument parse). */
10573
10574 static void
10575 do_strex (void)
10576 {
10577 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10578 || inst.operands[2].postind || inst.operands[2].writeback
10579 || inst.operands[2].immisreg || inst.operands[2].shifted
10580 || inst.operands[2].negative
10581 /* See comment in do_ldrex(). */
10582 || (inst.operands[2].reg == REG_PC),
10583 BAD_ADDR_MODE);
10584
10585 constraint (inst.operands[0].reg == inst.operands[1].reg
10586 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10587
10588 constraint (inst.relocs[0].exp.X_op != O_constant
10589 || inst.relocs[0].exp.X_add_number != 0,
10590 _("offset must be zero in ARM encoding"));
10591
10592 inst.instruction |= inst.operands[0].reg << 12;
10593 inst.instruction |= inst.operands[1].reg;
10594 inst.instruction |= inst.operands[2].reg << 16;
10595 inst.relocs[0].type = BFD_RELOC_UNUSED;
10596 }
10597
10598 static void
10599 do_t_strexbh (void)
10600 {
10601 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10602 || inst.operands[2].postind || inst.operands[2].writeback
10603 || inst.operands[2].immisreg || inst.operands[2].shifted
10604 || inst.operands[2].negative,
10605 BAD_ADDR_MODE);
10606
10607 constraint (inst.operands[0].reg == inst.operands[1].reg
10608 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10609
10610 do_rm_rd_rn ();
10611 }
10612
10613 static void
10614 do_strexd (void)
10615 {
10616 constraint (inst.operands[1].reg % 2 != 0,
10617 _("even register required"));
10618 constraint (inst.operands[2].present
10619 && inst.operands[2].reg != inst.operands[1].reg + 1,
10620 _("can only store two consecutive registers"));
10621 /* If op 2 were present and equal to PC, this function wouldn't
10622 have been called in the first place. */
10623 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10624
10625 constraint (inst.operands[0].reg == inst.operands[1].reg
10626 || inst.operands[0].reg == inst.operands[1].reg + 1
10627 || inst.operands[0].reg == inst.operands[3].reg,
10628 BAD_OVERLAP);
10629
10630 inst.instruction |= inst.operands[0].reg << 12;
10631 inst.instruction |= inst.operands[1].reg;
10632 inst.instruction |= inst.operands[3].reg << 16;
10633 }
10634
10635 /* ARM V8 STRL. */
10636 static void
10637 do_stlex (void)
10638 {
10639 constraint (inst.operands[0].reg == inst.operands[1].reg
10640 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10641
10642 do_rd_rm_rn ();
10643 }
10644
10645 static void
10646 do_t_stlex (void)
10647 {
10648 constraint (inst.operands[0].reg == inst.operands[1].reg
10649 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10650
10651 do_rm_rd_rn ();
10652 }
10653
10654 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10655 extends it to 32-bits, and adds the result to a value in another
10656 register. You can specify a rotation by 0, 8, 16, or 24 bits
10657 before extracting the 16-bit value.
10658 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10659 Condition defaults to COND_ALWAYS.
10660 Error if any register uses R15. */
10661
10662 static void
10663 do_sxtah (void)
10664 {
10665 inst.instruction |= inst.operands[0].reg << 12;
10666 inst.instruction |= inst.operands[1].reg << 16;
10667 inst.instruction |= inst.operands[2].reg;
10668 inst.instruction |= inst.operands[3].imm << 10;
10669 }
10670
10671 /* ARM V6 SXTH.
10672
10673 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10674 Condition defaults to COND_ALWAYS.
10675 Error if any register uses R15. */
10676
10677 static void
10678 do_sxth (void)
10679 {
10680 inst.instruction |= inst.operands[0].reg << 12;
10681 inst.instruction |= inst.operands[1].reg;
10682 inst.instruction |= inst.operands[2].imm << 10;
10683 }
10684 \f
10685 /* VFP instructions. In a logical order: SP variant first, monad
10686 before dyad, arithmetic then move then load/store. */
10687
10688 static void
10689 do_vfp_sp_monadic (void)
10690 {
10691 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10692 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10693 _(BAD_FPU));
10694
10695 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10696 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10697 }
10698
10699 static void
10700 do_vfp_sp_dyadic (void)
10701 {
10702 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10703 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10704 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10705 }
10706
10707 static void
10708 do_vfp_sp_compare_z (void)
10709 {
10710 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10711 }
10712
10713 static void
10714 do_vfp_dp_sp_cvt (void)
10715 {
10716 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10717 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10718 }
10719
10720 static void
10721 do_vfp_sp_dp_cvt (void)
10722 {
10723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10724 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10725 }
10726
10727 static void
10728 do_vfp_reg_from_sp (void)
10729 {
10730 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10731 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10732 _(BAD_FPU));
10733
10734 inst.instruction |= inst.operands[0].reg << 12;
10735 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10736 }
10737
10738 static void
10739 do_vfp_reg2_from_sp2 (void)
10740 {
10741 constraint (inst.operands[2].imm != 2,
10742 _("only two consecutive VFP SP registers allowed here"));
10743 inst.instruction |= inst.operands[0].reg << 12;
10744 inst.instruction |= inst.operands[1].reg << 16;
10745 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10746 }
10747
10748 static void
10749 do_vfp_sp_from_reg (void)
10750 {
10751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10752 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10753 _(BAD_FPU));
10754
10755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10756 inst.instruction |= inst.operands[1].reg << 12;
10757 }
10758
10759 static void
10760 do_vfp_sp2_from_reg2 (void)
10761 {
10762 constraint (inst.operands[0].imm != 2,
10763 _("only two consecutive VFP SP registers allowed here"));
10764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10765 inst.instruction |= inst.operands[1].reg << 12;
10766 inst.instruction |= inst.operands[2].reg << 16;
10767 }
10768
10769 static void
10770 do_vfp_sp_ldst (void)
10771 {
10772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10773 encode_arm_cp_address (1, FALSE, TRUE, 0);
10774 }
10775
10776 static void
10777 do_vfp_dp_ldst (void)
10778 {
10779 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10780 encode_arm_cp_address (1, FALSE, TRUE, 0);
10781 }
10782
10783
10784 static void
10785 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10786 {
10787 if (inst.operands[0].writeback)
10788 inst.instruction |= WRITE_BACK;
10789 else
10790 constraint (ldstm_type != VFP_LDSTMIA,
10791 _("this addressing mode requires base-register writeback"));
10792 inst.instruction |= inst.operands[0].reg << 16;
10793 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10794 inst.instruction |= inst.operands[1].imm;
10795 }
10796
10797 static void
10798 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10799 {
10800 int count;
10801
10802 if (inst.operands[0].writeback)
10803 inst.instruction |= WRITE_BACK;
10804 else
10805 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10806 _("this addressing mode requires base-register writeback"));
10807
10808 inst.instruction |= inst.operands[0].reg << 16;
10809 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10810
10811 count = inst.operands[1].imm << 1;
10812 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10813 count += 1;
10814
10815 inst.instruction |= count;
10816 }
10817
10818 static void
10819 do_vfp_sp_ldstmia (void)
10820 {
10821 vfp_sp_ldstm (VFP_LDSTMIA);
10822 }
10823
10824 static void
10825 do_vfp_sp_ldstmdb (void)
10826 {
10827 vfp_sp_ldstm (VFP_LDSTMDB);
10828 }
10829
10830 static void
10831 do_vfp_dp_ldstmia (void)
10832 {
10833 vfp_dp_ldstm (VFP_LDSTMIA);
10834 }
10835
10836 static void
10837 do_vfp_dp_ldstmdb (void)
10838 {
10839 vfp_dp_ldstm (VFP_LDSTMDB);
10840 }
10841
10842 static void
10843 do_vfp_xp_ldstmia (void)
10844 {
10845 vfp_dp_ldstm (VFP_LDSTMIAX);
10846 }
10847
10848 static void
10849 do_vfp_xp_ldstmdb (void)
10850 {
10851 vfp_dp_ldstm (VFP_LDSTMDBX);
10852 }
10853
10854 static void
10855 do_vfp_dp_rd_rm (void)
10856 {
10857 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10858 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10859 _(BAD_FPU));
10860
10861 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10862 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10863 }
10864
10865 static void
10866 do_vfp_dp_rn_rd (void)
10867 {
10868 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10869 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10870 }
10871
10872 static void
10873 do_vfp_dp_rd_rn (void)
10874 {
10875 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10877 }
10878
10879 static void
10880 do_vfp_dp_rd_rn_rm (void)
10881 {
10882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10883 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10884 _(BAD_FPU));
10885
10886 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10887 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10888 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10889 }
10890
10891 static void
10892 do_vfp_dp_rd (void)
10893 {
10894 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10895 }
10896
10897 static void
10898 do_vfp_dp_rm_rd_rn (void)
10899 {
10900 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10901 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10902 _(BAD_FPU));
10903
10904 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10905 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10906 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10907 }
10908
10909 /* VFPv3 instructions. */
10910 static void
10911 do_vfp_sp_const (void)
10912 {
10913 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10914 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10915 inst.instruction |= (inst.operands[1].imm & 0x0f);
10916 }
10917
10918 static void
10919 do_vfp_dp_const (void)
10920 {
10921 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10922 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10923 inst.instruction |= (inst.operands[1].imm & 0x0f);
10924 }
10925
10926 static void
10927 vfp_conv (int srcsize)
10928 {
10929 int immbits = srcsize - inst.operands[1].imm;
10930
10931 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10932 {
10933 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10934 i.e. immbits must be in range 0 - 16. */
10935 inst.error = _("immediate value out of range, expected range [0, 16]");
10936 return;
10937 }
10938 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10939 {
10940 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10941 i.e. immbits must be in range 0 - 31. */
10942 inst.error = _("immediate value out of range, expected range [1, 32]");
10943 return;
10944 }
10945
10946 inst.instruction |= (immbits & 1) << 5;
10947 inst.instruction |= (immbits >> 1);
10948 }
10949
10950 static void
10951 do_vfp_sp_conv_16 (void)
10952 {
10953 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10954 vfp_conv (16);
10955 }
10956
10957 static void
10958 do_vfp_dp_conv_16 (void)
10959 {
10960 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10961 vfp_conv (16);
10962 }
10963
10964 static void
10965 do_vfp_sp_conv_32 (void)
10966 {
10967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10968 vfp_conv (32);
10969 }
10970
10971 static void
10972 do_vfp_dp_conv_32 (void)
10973 {
10974 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10975 vfp_conv (32);
10976 }
10977 \f
10978 /* FPA instructions. Also in a logical order. */
10979
10980 static void
10981 do_fpa_cmp (void)
10982 {
10983 inst.instruction |= inst.operands[0].reg << 16;
10984 inst.instruction |= inst.operands[1].reg;
10985 }
10986
10987 static void
10988 do_fpa_ldmstm (void)
10989 {
10990 inst.instruction |= inst.operands[0].reg << 12;
10991 switch (inst.operands[1].imm)
10992 {
10993 case 1: inst.instruction |= CP_T_X; break;
10994 case 2: inst.instruction |= CP_T_Y; break;
10995 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10996 case 4: break;
10997 default: abort ();
10998 }
10999
11000 if (inst.instruction & (PRE_INDEX | INDEX_UP))
11001 {
11002 /* The instruction specified "ea" or "fd", so we can only accept
11003 [Rn]{!}. The instruction does not really support stacking or
11004 unstacking, so we have to emulate these by setting appropriate
11005 bits and offsets. */
11006 constraint (inst.relocs[0].exp.X_op != O_constant
11007 || inst.relocs[0].exp.X_add_number != 0,
11008 _("this instruction does not support indexing"));
11009
11010 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
11011 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
11012
11013 if (!(inst.instruction & INDEX_UP))
11014 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
11015
11016 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
11017 {
11018 inst.operands[2].preind = 0;
11019 inst.operands[2].postind = 1;
11020 }
11021 }
11022
11023 encode_arm_cp_address (2, TRUE, TRUE, 0);
11024 }
11025 \f
11026 /* iWMMXt instructions: strictly in alphabetical order. */
11027
11028 static void
11029 do_iwmmxt_tandorc (void)
11030 {
11031 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
11032 }
11033
11034 static void
11035 do_iwmmxt_textrc (void)
11036 {
11037 inst.instruction |= inst.operands[0].reg << 12;
11038 inst.instruction |= inst.operands[1].imm;
11039 }
11040
11041 static void
11042 do_iwmmxt_textrm (void)
11043 {
11044 inst.instruction |= inst.operands[0].reg << 12;
11045 inst.instruction |= inst.operands[1].reg << 16;
11046 inst.instruction |= inst.operands[2].imm;
11047 }
11048
11049 static void
11050 do_iwmmxt_tinsr (void)
11051 {
11052 inst.instruction |= inst.operands[0].reg << 16;
11053 inst.instruction |= inst.operands[1].reg << 12;
11054 inst.instruction |= inst.operands[2].imm;
11055 }
11056
11057 static void
11058 do_iwmmxt_tmia (void)
11059 {
11060 inst.instruction |= inst.operands[0].reg << 5;
11061 inst.instruction |= inst.operands[1].reg;
11062 inst.instruction |= inst.operands[2].reg << 12;
11063 }
11064
11065 static void
11066 do_iwmmxt_waligni (void)
11067 {
11068 inst.instruction |= inst.operands[0].reg << 12;
11069 inst.instruction |= inst.operands[1].reg << 16;
11070 inst.instruction |= inst.operands[2].reg;
11071 inst.instruction |= inst.operands[3].imm << 20;
11072 }
11073
11074 static void
11075 do_iwmmxt_wmerge (void)
11076 {
11077 inst.instruction |= inst.operands[0].reg << 12;
11078 inst.instruction |= inst.operands[1].reg << 16;
11079 inst.instruction |= inst.operands[2].reg;
11080 inst.instruction |= inst.operands[3].imm << 21;
11081 }
11082
11083 static void
11084 do_iwmmxt_wmov (void)
11085 {
11086 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11087 inst.instruction |= inst.operands[0].reg << 12;
11088 inst.instruction |= inst.operands[1].reg << 16;
11089 inst.instruction |= inst.operands[1].reg;
11090 }
11091
11092 static void
11093 do_iwmmxt_wldstbh (void)
11094 {
11095 int reloc;
11096 inst.instruction |= inst.operands[0].reg << 12;
11097 if (thumb_mode)
11098 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
11099 else
11100 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
11101 encode_arm_cp_address (1, TRUE, FALSE, reloc);
11102 }
11103
11104 static void
11105 do_iwmmxt_wldstw (void)
11106 {
11107 /* RIWR_RIWC clears .isreg for a control register. */
11108 if (!inst.operands[0].isreg)
11109 {
11110 constraint (inst.cond != COND_ALWAYS, BAD_COND);
11111 inst.instruction |= 0xf0000000;
11112 }
11113
11114 inst.instruction |= inst.operands[0].reg << 12;
11115 encode_arm_cp_address (1, TRUE, TRUE, 0);
11116 }
11117
11118 static void
11119 do_iwmmxt_wldstd (void)
11120 {
11121 inst.instruction |= inst.operands[0].reg << 12;
11122 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
11123 && inst.operands[1].immisreg)
11124 {
11125 inst.instruction &= ~0x1a000ff;
11126 inst.instruction |= (0xfU << 28);
11127 if (inst.operands[1].preind)
11128 inst.instruction |= PRE_INDEX;
11129 if (!inst.operands[1].negative)
11130 inst.instruction |= INDEX_UP;
11131 if (inst.operands[1].writeback)
11132 inst.instruction |= WRITE_BACK;
11133 inst.instruction |= inst.operands[1].reg << 16;
11134 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11135 inst.instruction |= inst.operands[1].imm;
11136 }
11137 else
11138 encode_arm_cp_address (1, TRUE, FALSE, 0);
11139 }
11140
11141 static void
11142 do_iwmmxt_wshufh (void)
11143 {
11144 inst.instruction |= inst.operands[0].reg << 12;
11145 inst.instruction |= inst.operands[1].reg << 16;
11146 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11147 inst.instruction |= (inst.operands[2].imm & 0x0f);
11148 }
11149
11150 static void
11151 do_iwmmxt_wzero (void)
11152 {
11153 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11154 inst.instruction |= inst.operands[0].reg;
11155 inst.instruction |= inst.operands[0].reg << 12;
11156 inst.instruction |= inst.operands[0].reg << 16;
11157 }
11158
11159 static void
11160 do_iwmmxt_wrwrwr_or_imm5 (void)
11161 {
11162 if (inst.operands[2].isreg)
11163 do_rd_rn_rm ();
11164 else {
11165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11166 _("immediate operand requires iWMMXt2"));
11167 do_rd_rn ();
11168 if (inst.operands[2].imm == 0)
11169 {
11170 switch ((inst.instruction >> 20) & 0xf)
11171 {
11172 case 4:
11173 case 5:
11174 case 6:
11175 case 7:
11176 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11177 inst.operands[2].imm = 16;
11178 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11179 break;
11180 case 8:
11181 case 9:
11182 case 10:
11183 case 11:
11184 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11185 inst.operands[2].imm = 32;
11186 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11187 break;
11188 case 12:
11189 case 13:
11190 case 14:
11191 case 15:
11192 {
11193 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11194 unsigned long wrn;
11195 wrn = (inst.instruction >> 16) & 0xf;
11196 inst.instruction &= 0xff0fff0f;
11197 inst.instruction |= wrn;
11198 /* Bail out here; the instruction is now assembled. */
11199 return;
11200 }
11201 }
11202 }
11203 /* Map 32 -> 0, etc. */
11204 inst.operands[2].imm &= 0x1f;
11205 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11206 }
11207 }
11208 \f
11209 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11210 operations first, then control, shift, and load/store. */
11211
11212 /* Insns like "foo X,Y,Z". */
11213
11214 static void
11215 do_mav_triple (void)
11216 {
11217 inst.instruction |= inst.operands[0].reg << 16;
11218 inst.instruction |= inst.operands[1].reg;
11219 inst.instruction |= inst.operands[2].reg << 12;
11220 }
11221
11222 /* Insns like "foo W,X,Y,Z".
11223 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11224
11225 static void
11226 do_mav_quad (void)
11227 {
11228 inst.instruction |= inst.operands[0].reg << 5;
11229 inst.instruction |= inst.operands[1].reg << 12;
11230 inst.instruction |= inst.operands[2].reg << 16;
11231 inst.instruction |= inst.operands[3].reg;
11232 }
11233
11234 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11235 static void
11236 do_mav_dspsc (void)
11237 {
11238 inst.instruction |= inst.operands[1].reg << 12;
11239 }
11240
11241 /* Maverick shift immediate instructions.
11242 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11243 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11244
11245 static void
11246 do_mav_shift (void)
11247 {
11248 int imm = inst.operands[2].imm;
11249
11250 inst.instruction |= inst.operands[0].reg << 12;
11251 inst.instruction |= inst.operands[1].reg << 16;
11252
11253 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11254 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11255 Bit 4 should be 0. */
11256 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11257
11258 inst.instruction |= imm;
11259 }
11260 \f
11261 /* XScale instructions. Also sorted arithmetic before move. */
11262
11263 /* Xscale multiply-accumulate (argument parse)
11264 MIAcc acc0,Rm,Rs
11265 MIAPHcc acc0,Rm,Rs
11266 MIAxycc acc0,Rm,Rs. */
11267
11268 static void
11269 do_xsc_mia (void)
11270 {
11271 inst.instruction |= inst.operands[1].reg;
11272 inst.instruction |= inst.operands[2].reg << 12;
11273 }
11274
11275 /* Xscale move-accumulator-register (argument parse)
11276
11277 MARcc acc0,RdLo,RdHi. */
11278
11279 static void
11280 do_xsc_mar (void)
11281 {
11282 inst.instruction |= inst.operands[1].reg << 12;
11283 inst.instruction |= inst.operands[2].reg << 16;
11284 }
11285
11286 /* Xscale move-register-accumulator (argument parse)
11287
11288 MRAcc RdLo,RdHi,acc0. */
11289
11290 static void
11291 do_xsc_mra (void)
11292 {
11293 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11294 inst.instruction |= inst.operands[0].reg << 12;
11295 inst.instruction |= inst.operands[1].reg << 16;
11296 }
11297 \f
11298 /* Encoding functions relevant only to Thumb. */
11299
11300 /* inst.operands[i] is a shifted-register operand; encode
11301 it into inst.instruction in the format used by Thumb32. */
11302
11303 static void
11304 encode_thumb32_shifted_operand (int i)
11305 {
11306 unsigned int value = inst.relocs[0].exp.X_add_number;
11307 unsigned int shift = inst.operands[i].shift_kind;
11308
11309 constraint (inst.operands[i].immisreg,
11310 _("shift by register not allowed in thumb mode"));
11311 inst.instruction |= inst.operands[i].reg;
11312 if (shift == SHIFT_RRX)
11313 inst.instruction |= SHIFT_ROR << 4;
11314 else
11315 {
11316 constraint (inst.relocs[0].exp.X_op != O_constant,
11317 _("expression too complex"));
11318
11319 constraint (value > 32
11320 || (value == 32 && (shift == SHIFT_LSL
11321 || shift == SHIFT_ROR)),
11322 _("shift expression is too large"));
11323
11324 if (value == 0)
11325 shift = SHIFT_LSL;
11326 else if (value == 32)
11327 value = 0;
11328
11329 inst.instruction |= shift << 4;
11330 inst.instruction |= (value & 0x1c) << 10;
11331 inst.instruction |= (value & 0x03) << 6;
11332 }
11333 }
11334
11335
11336 /* inst.operands[i] was set up by parse_address. Encode it into a
11337 Thumb32 format load or store instruction. Reject forms that cannot
11338 be used with such instructions. If is_t is true, reject forms that
11339 cannot be used with a T instruction; if is_d is true, reject forms
11340 that cannot be used with a D instruction. If it is a store insn,
11341 reject PC in Rn. */
11342
11343 static void
11344 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11345 {
11346 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11347
11348 constraint (!inst.operands[i].isreg,
11349 _("Instruction does not support =N addresses"));
11350
11351 inst.instruction |= inst.operands[i].reg << 16;
11352 if (inst.operands[i].immisreg)
11353 {
11354 constraint (is_pc, BAD_PC_ADDRESSING);
11355 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11356 constraint (inst.operands[i].negative,
11357 _("Thumb does not support negative register indexing"));
11358 constraint (inst.operands[i].postind,
11359 _("Thumb does not support register post-indexing"));
11360 constraint (inst.operands[i].writeback,
11361 _("Thumb does not support register indexing with writeback"));
11362 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11363 _("Thumb supports only LSL in shifted register indexing"));
11364
11365 inst.instruction |= inst.operands[i].imm;
11366 if (inst.operands[i].shifted)
11367 {
11368 constraint (inst.relocs[0].exp.X_op != O_constant,
11369 _("expression too complex"));
11370 constraint (inst.relocs[0].exp.X_add_number < 0
11371 || inst.relocs[0].exp.X_add_number > 3,
11372 _("shift out of range"));
11373 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11374 }
11375 inst.relocs[0].type = BFD_RELOC_UNUSED;
11376 }
11377 else if (inst.operands[i].preind)
11378 {
11379 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11380 constraint (is_t && inst.operands[i].writeback,
11381 _("cannot use writeback with this instruction"));
11382 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11383 BAD_PC_ADDRESSING);
11384
11385 if (is_d)
11386 {
11387 inst.instruction |= 0x01000000;
11388 if (inst.operands[i].writeback)
11389 inst.instruction |= 0x00200000;
11390 }
11391 else
11392 {
11393 inst.instruction |= 0x00000c00;
11394 if (inst.operands[i].writeback)
11395 inst.instruction |= 0x00000100;
11396 }
11397 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11398 }
11399 else if (inst.operands[i].postind)
11400 {
11401 gas_assert (inst.operands[i].writeback);
11402 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11403 constraint (is_t, _("cannot use post-indexing with this instruction"));
11404
11405 if (is_d)
11406 inst.instruction |= 0x00200000;
11407 else
11408 inst.instruction |= 0x00000900;
11409 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11410 }
11411 else /* unindexed - only for coprocessor */
11412 inst.error = _("instruction does not accept unindexed addressing");
11413 }
11414
11415 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11416 encodings (the latter only in post-V6T2 cores). The index is the
11417 value used in the insns table below. When there is more than one
11418 possible 16-bit encoding for the instruction, this table always
11419 holds variant (1).
11420 Also contains several pseudo-instructions used during relaxation. */
11421 #define T16_32_TAB \
11422 X(_adc, 4140, eb400000), \
11423 X(_adcs, 4140, eb500000), \
11424 X(_add, 1c00, eb000000), \
11425 X(_adds, 1c00, eb100000), \
11426 X(_addi, 0000, f1000000), \
11427 X(_addis, 0000, f1100000), \
11428 X(_add_pc,000f, f20f0000), \
11429 X(_add_sp,000d, f10d0000), \
11430 X(_adr, 000f, f20f0000), \
11431 X(_and, 4000, ea000000), \
11432 X(_ands, 4000, ea100000), \
11433 X(_asr, 1000, fa40f000), \
11434 X(_asrs, 1000, fa50f000), \
11435 X(_b, e000, f000b000), \
11436 X(_bcond, d000, f0008000), \
11437 X(_bf, 0000, f040e001), \
11438 X(_bfcsel,0000, f000e001), \
11439 X(_bfx, 0000, f060e001), \
11440 X(_bfl, 0000, f000c001), \
11441 X(_bflx, 0000, f070e001), \
11442 X(_bic, 4380, ea200000), \
11443 X(_bics, 4380, ea300000), \
11444 X(_cinc, 0000, ea509000), \
11445 X(_cinv, 0000, ea50a000), \
11446 X(_cmn, 42c0, eb100f00), \
11447 X(_cmp, 2800, ebb00f00), \
11448 X(_cneg, 0000, ea50b000), \
11449 X(_cpsie, b660, f3af8400), \
11450 X(_cpsid, b670, f3af8600), \
11451 X(_cpy, 4600, ea4f0000), \
11452 X(_csel, 0000, ea508000), \
11453 X(_cset, 0000, ea5f900f), \
11454 X(_csetm, 0000, ea5fa00f), \
11455 X(_csinc, 0000, ea509000), \
11456 X(_csinv, 0000, ea50a000), \
11457 X(_csneg, 0000, ea50b000), \
11458 X(_dec_sp,80dd, f1ad0d00), \
11459 X(_dls, 0000, f040e001), \
11460 X(_dlstp, 0000, f000e001), \
11461 X(_eor, 4040, ea800000), \
11462 X(_eors, 4040, ea900000), \
11463 X(_inc_sp,00dd, f10d0d00), \
11464 X(_lctp, 0000, f00fe001), \
11465 X(_ldmia, c800, e8900000), \
11466 X(_ldr, 6800, f8500000), \
11467 X(_ldrb, 7800, f8100000), \
11468 X(_ldrh, 8800, f8300000), \
11469 X(_ldrsb, 5600, f9100000), \
11470 X(_ldrsh, 5e00, f9300000), \
11471 X(_ldr_pc,4800, f85f0000), \
11472 X(_ldr_pc2,4800, f85f0000), \
11473 X(_ldr_sp,9800, f85d0000), \
11474 X(_le, 0000, f00fc001), \
11475 X(_letp, 0000, f01fc001), \
11476 X(_lsl, 0000, fa00f000), \
11477 X(_lsls, 0000, fa10f000), \
11478 X(_lsr, 0800, fa20f000), \
11479 X(_lsrs, 0800, fa30f000), \
11480 X(_mov, 2000, ea4f0000), \
11481 X(_movs, 2000, ea5f0000), \
11482 X(_mul, 4340, fb00f000), \
11483 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11484 X(_mvn, 43c0, ea6f0000), \
11485 X(_mvns, 43c0, ea7f0000), \
11486 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11487 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11488 X(_orr, 4300, ea400000), \
11489 X(_orrs, 4300, ea500000), \
11490 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11491 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11492 X(_rev, ba00, fa90f080), \
11493 X(_rev16, ba40, fa90f090), \
11494 X(_revsh, bac0, fa90f0b0), \
11495 X(_ror, 41c0, fa60f000), \
11496 X(_rors, 41c0, fa70f000), \
11497 X(_sbc, 4180, eb600000), \
11498 X(_sbcs, 4180, eb700000), \
11499 X(_stmia, c000, e8800000), \
11500 X(_str, 6000, f8400000), \
11501 X(_strb, 7000, f8000000), \
11502 X(_strh, 8000, f8200000), \
11503 X(_str_sp,9000, f84d0000), \
11504 X(_sub, 1e00, eba00000), \
11505 X(_subs, 1e00, ebb00000), \
11506 X(_subi, 8000, f1a00000), \
11507 X(_subis, 8000, f1b00000), \
11508 X(_sxtb, b240, fa4ff080), \
11509 X(_sxth, b200, fa0ff080), \
11510 X(_tst, 4200, ea100f00), \
11511 X(_uxtb, b2c0, fa5ff080), \
11512 X(_uxth, b280, fa1ff080), \
11513 X(_nop, bf00, f3af8000), \
11514 X(_yield, bf10, f3af8001), \
11515 X(_wfe, bf20, f3af8002), \
11516 X(_wfi, bf30, f3af8003), \
11517 X(_wls, 0000, f040c001), \
11518 X(_wlstp, 0000, f000c001), \
11519 X(_sev, bf40, f3af8004), \
11520 X(_sevl, bf50, f3af8005), \
11521 X(_udf, de00, f7f0a000)
11522
11523 /* To catch errors in encoding functions, the codes are all offset by
11524 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11525 as 16-bit instructions. */
11526 #define X(a,b,c) T_MNEM##a
11527 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11528 #undef X
11529
11530 #define X(a,b,c) 0x##b
11531 static const unsigned short thumb_op16[] = { T16_32_TAB };
11532 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11533 #undef X
11534
11535 #define X(a,b,c) 0x##c
11536 static const unsigned int thumb_op32[] = { T16_32_TAB };
11537 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11538 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11539 #undef X
11540 #undef T16_32_TAB
11541
11542 /* Thumb instruction encoders, in alphabetical order. */
11543
11544 /* ADDW or SUBW. */
11545
11546 static void
11547 do_t_add_sub_w (void)
11548 {
11549 int Rd, Rn;
11550
11551 Rd = inst.operands[0].reg;
11552 Rn = inst.operands[1].reg;
11553
11554 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11555 is the SP-{plus,minus}-immediate form of the instruction. */
11556 if (Rn == REG_SP)
11557 constraint (Rd == REG_PC, BAD_PC);
11558 else
11559 reject_bad_reg (Rd);
11560
11561 inst.instruction |= (Rn << 16) | (Rd << 8);
11562 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11563 }
11564
11565 /* Parse an add or subtract instruction. We get here with inst.instruction
11566 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11567
11568 static void
11569 do_t_add_sub (void)
11570 {
11571 int Rd, Rs, Rn;
11572
11573 Rd = inst.operands[0].reg;
11574 Rs = (inst.operands[1].present
11575 ? inst.operands[1].reg /* Rd, Rs, foo */
11576 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11577
11578 if (Rd == REG_PC)
11579 set_pred_insn_type_last ();
11580
11581 if (unified_syntax)
11582 {
11583 bfd_boolean flags;
11584 bfd_boolean narrow;
11585 int opcode;
11586
11587 flags = (inst.instruction == T_MNEM_adds
11588 || inst.instruction == T_MNEM_subs);
11589 if (flags)
11590 narrow = !in_pred_block ();
11591 else
11592 narrow = in_pred_block ();
11593 if (!inst.operands[2].isreg)
11594 {
11595 int add;
11596
11597 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11598 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11599
11600 add = (inst.instruction == T_MNEM_add
11601 || inst.instruction == T_MNEM_adds);
11602 opcode = 0;
11603 if (inst.size_req != 4)
11604 {
11605 /* Attempt to use a narrow opcode, with relaxation if
11606 appropriate. */
11607 if (Rd == REG_SP && Rs == REG_SP && !flags)
11608 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11609 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11610 opcode = T_MNEM_add_sp;
11611 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11612 opcode = T_MNEM_add_pc;
11613 else if (Rd <= 7 && Rs <= 7 && narrow)
11614 {
11615 if (flags)
11616 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11617 else
11618 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11619 }
11620 if (opcode)
11621 {
11622 inst.instruction = THUMB_OP16(opcode);
11623 inst.instruction |= (Rd << 4) | Rs;
11624 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11625 || (inst.relocs[0].type
11626 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11627 {
11628 if (inst.size_req == 2)
11629 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11630 else
11631 inst.relax = opcode;
11632 }
11633 }
11634 else
11635 constraint (inst.size_req == 2, BAD_HIREG);
11636 }
11637 if (inst.size_req == 4
11638 || (inst.size_req != 2 && !opcode))
11639 {
11640 constraint ((inst.relocs[0].type
11641 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11642 && (inst.relocs[0].type
11643 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11644 THUMB1_RELOC_ONLY);
11645 if (Rd == REG_PC)
11646 {
11647 constraint (add, BAD_PC);
11648 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11649 _("only SUBS PC, LR, #const allowed"));
11650 constraint (inst.relocs[0].exp.X_op != O_constant,
11651 _("expression too complex"));
11652 constraint (inst.relocs[0].exp.X_add_number < 0
11653 || inst.relocs[0].exp.X_add_number > 0xff,
11654 _("immediate value out of range"));
11655 inst.instruction = T2_SUBS_PC_LR
11656 | inst.relocs[0].exp.X_add_number;
11657 inst.relocs[0].type = BFD_RELOC_UNUSED;
11658 return;
11659 }
11660 else if (Rs == REG_PC)
11661 {
11662 /* Always use addw/subw. */
11663 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11664 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11665 }
11666 else
11667 {
11668 inst.instruction = THUMB_OP32 (inst.instruction);
11669 inst.instruction = (inst.instruction & 0xe1ffffff)
11670 | 0x10000000;
11671 if (flags)
11672 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11673 else
11674 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11675 }
11676 inst.instruction |= Rd << 8;
11677 inst.instruction |= Rs << 16;
11678 }
11679 }
11680 else
11681 {
11682 unsigned int value = inst.relocs[0].exp.X_add_number;
11683 unsigned int shift = inst.operands[2].shift_kind;
11684
11685 Rn = inst.operands[2].reg;
11686 /* See if we can do this with a 16-bit instruction. */
11687 if (!inst.operands[2].shifted && inst.size_req != 4)
11688 {
11689 if (Rd > 7 || Rs > 7 || Rn > 7)
11690 narrow = FALSE;
11691
11692 if (narrow)
11693 {
11694 inst.instruction = ((inst.instruction == T_MNEM_adds
11695 || inst.instruction == T_MNEM_add)
11696 ? T_OPCODE_ADD_R3
11697 : T_OPCODE_SUB_R3);
11698 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11699 return;
11700 }
11701
11702 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11703 {
11704 /* Thumb-1 cores (except v6-M) require at least one high
11705 register in a narrow non flag setting add. */
11706 if (Rd > 7 || Rn > 7
11707 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11708 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11709 {
11710 if (Rd == Rn)
11711 {
11712 Rn = Rs;
11713 Rs = Rd;
11714 }
11715 inst.instruction = T_OPCODE_ADD_HI;
11716 inst.instruction |= (Rd & 8) << 4;
11717 inst.instruction |= (Rd & 7);
11718 inst.instruction |= Rn << 3;
11719 return;
11720 }
11721 }
11722 }
11723
11724 constraint (Rd == REG_PC, BAD_PC);
11725 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11726 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11727 constraint (Rs == REG_PC, BAD_PC);
11728 reject_bad_reg (Rn);
11729
11730 /* If we get here, it can't be done in 16 bits. */
11731 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11732 _("shift must be constant"));
11733 inst.instruction = THUMB_OP32 (inst.instruction);
11734 inst.instruction |= Rd << 8;
11735 inst.instruction |= Rs << 16;
11736 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11737 _("shift value over 3 not allowed in thumb mode"));
11738 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11739 _("only LSL shift allowed in thumb mode"));
11740 encode_thumb32_shifted_operand (2);
11741 }
11742 }
11743 else
11744 {
11745 constraint (inst.instruction == T_MNEM_adds
11746 || inst.instruction == T_MNEM_subs,
11747 BAD_THUMB32);
11748
11749 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11750 {
11751 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11752 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11753 BAD_HIREG);
11754
11755 inst.instruction = (inst.instruction == T_MNEM_add
11756 ? 0x0000 : 0x8000);
11757 inst.instruction |= (Rd << 4) | Rs;
11758 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11759 return;
11760 }
11761
11762 Rn = inst.operands[2].reg;
11763 constraint (inst.operands[2].shifted, _("unshifted register required"));
11764
11765 /* We now have Rd, Rs, and Rn set to registers. */
11766 if (Rd > 7 || Rs > 7 || Rn > 7)
11767 {
11768 /* Can't do this for SUB. */
11769 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11770 inst.instruction = T_OPCODE_ADD_HI;
11771 inst.instruction |= (Rd & 8) << 4;
11772 inst.instruction |= (Rd & 7);
11773 if (Rs == Rd)
11774 inst.instruction |= Rn << 3;
11775 else if (Rn == Rd)
11776 inst.instruction |= Rs << 3;
11777 else
11778 constraint (1, _("dest must overlap one source register"));
11779 }
11780 else
11781 {
11782 inst.instruction = (inst.instruction == T_MNEM_add
11783 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11784 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11785 }
11786 }
11787 }
11788
11789 static void
11790 do_t_adr (void)
11791 {
11792 unsigned Rd;
11793
11794 Rd = inst.operands[0].reg;
11795 reject_bad_reg (Rd);
11796
11797 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11798 {
11799 /* Defer to section relaxation. */
11800 inst.relax = inst.instruction;
11801 inst.instruction = THUMB_OP16 (inst.instruction);
11802 inst.instruction |= Rd << 4;
11803 }
11804 else if (unified_syntax && inst.size_req != 2)
11805 {
11806 /* Generate a 32-bit opcode. */
11807 inst.instruction = THUMB_OP32 (inst.instruction);
11808 inst.instruction |= Rd << 8;
11809 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11810 inst.relocs[0].pc_rel = 1;
11811 }
11812 else
11813 {
11814 /* Generate a 16-bit opcode. */
11815 inst.instruction = THUMB_OP16 (inst.instruction);
11816 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11817 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11818 inst.relocs[0].pc_rel = 1;
11819 inst.instruction |= Rd << 4;
11820 }
11821
11822 if (inst.relocs[0].exp.X_op == O_symbol
11823 && inst.relocs[0].exp.X_add_symbol != NULL
11824 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11825 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11826 inst.relocs[0].exp.X_add_number += 1;
11827 }
11828
11829 /* Arithmetic instructions for which there is just one 16-bit
11830 instruction encoding, and it allows only two low registers.
11831 For maximal compatibility with ARM syntax, we allow three register
11832 operands even when Thumb-32 instructions are not available, as long
11833 as the first two are identical. For instance, both "sbc r0,r1" and
11834 "sbc r0,r0,r1" are allowed. */
11835 static void
11836 do_t_arit3 (void)
11837 {
11838 int Rd, Rs, Rn;
11839
11840 Rd = inst.operands[0].reg;
11841 Rs = (inst.operands[1].present
11842 ? inst.operands[1].reg /* Rd, Rs, foo */
11843 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11844 Rn = inst.operands[2].reg;
11845
11846 reject_bad_reg (Rd);
11847 reject_bad_reg (Rs);
11848 if (inst.operands[2].isreg)
11849 reject_bad_reg (Rn);
11850
11851 if (unified_syntax)
11852 {
11853 if (!inst.operands[2].isreg)
11854 {
11855 /* For an immediate, we always generate a 32-bit opcode;
11856 section relaxation will shrink it later if possible. */
11857 inst.instruction = THUMB_OP32 (inst.instruction);
11858 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11859 inst.instruction |= Rd << 8;
11860 inst.instruction |= Rs << 16;
11861 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11862 }
11863 else
11864 {
11865 bfd_boolean narrow;
11866
11867 /* See if we can do this with a 16-bit instruction. */
11868 if (THUMB_SETS_FLAGS (inst.instruction))
11869 narrow = !in_pred_block ();
11870 else
11871 narrow = in_pred_block ();
11872
11873 if (Rd > 7 || Rn > 7 || Rs > 7)
11874 narrow = FALSE;
11875 if (inst.operands[2].shifted)
11876 narrow = FALSE;
11877 if (inst.size_req == 4)
11878 narrow = FALSE;
11879
11880 if (narrow
11881 && Rd == Rs)
11882 {
11883 inst.instruction = THUMB_OP16 (inst.instruction);
11884 inst.instruction |= Rd;
11885 inst.instruction |= Rn << 3;
11886 return;
11887 }
11888
11889 /* If we get here, it can't be done in 16 bits. */
11890 constraint (inst.operands[2].shifted
11891 && inst.operands[2].immisreg,
11892 _("shift must be constant"));
11893 inst.instruction = THUMB_OP32 (inst.instruction);
11894 inst.instruction |= Rd << 8;
11895 inst.instruction |= Rs << 16;
11896 encode_thumb32_shifted_operand (2);
11897 }
11898 }
11899 else
11900 {
11901 /* On its face this is a lie - the instruction does set the
11902 flags. However, the only supported mnemonic in this mode
11903 says it doesn't. */
11904 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11905
11906 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11907 _("unshifted register required"));
11908 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11909 constraint (Rd != Rs,
11910 _("dest and source1 must be the same register"));
11911
11912 inst.instruction = THUMB_OP16 (inst.instruction);
11913 inst.instruction |= Rd;
11914 inst.instruction |= Rn << 3;
11915 }
11916 }
11917
11918 /* Similarly, but for instructions where the arithmetic operation is
11919 commutative, so we can allow either of them to be different from
11920 the destination operand in a 16-bit instruction. For instance, all
11921 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11922 accepted. */
11923 static void
11924 do_t_arit3c (void)
11925 {
11926 int Rd, Rs, Rn;
11927
11928 Rd = inst.operands[0].reg;
11929 Rs = (inst.operands[1].present
11930 ? inst.operands[1].reg /* Rd, Rs, foo */
11931 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11932 Rn = inst.operands[2].reg;
11933
11934 reject_bad_reg (Rd);
11935 reject_bad_reg (Rs);
11936 if (inst.operands[2].isreg)
11937 reject_bad_reg (Rn);
11938
11939 if (unified_syntax)
11940 {
11941 if (!inst.operands[2].isreg)
11942 {
11943 /* For an immediate, we always generate a 32-bit opcode;
11944 section relaxation will shrink it later if possible. */
11945 inst.instruction = THUMB_OP32 (inst.instruction);
11946 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11947 inst.instruction |= Rd << 8;
11948 inst.instruction |= Rs << 16;
11949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11950 }
11951 else
11952 {
11953 bfd_boolean narrow;
11954
11955 /* See if we can do this with a 16-bit instruction. */
11956 if (THUMB_SETS_FLAGS (inst.instruction))
11957 narrow = !in_pred_block ();
11958 else
11959 narrow = in_pred_block ();
11960
11961 if (Rd > 7 || Rn > 7 || Rs > 7)
11962 narrow = FALSE;
11963 if (inst.operands[2].shifted)
11964 narrow = FALSE;
11965 if (inst.size_req == 4)
11966 narrow = FALSE;
11967
11968 if (narrow)
11969 {
11970 if (Rd == Rs)
11971 {
11972 inst.instruction = THUMB_OP16 (inst.instruction);
11973 inst.instruction |= Rd;
11974 inst.instruction |= Rn << 3;
11975 return;
11976 }
11977 if (Rd == Rn)
11978 {
11979 inst.instruction = THUMB_OP16 (inst.instruction);
11980 inst.instruction |= Rd;
11981 inst.instruction |= Rs << 3;
11982 return;
11983 }
11984 }
11985
11986 /* If we get here, it can't be done in 16 bits. */
11987 constraint (inst.operands[2].shifted
11988 && inst.operands[2].immisreg,
11989 _("shift must be constant"));
11990 inst.instruction = THUMB_OP32 (inst.instruction);
11991 inst.instruction |= Rd << 8;
11992 inst.instruction |= Rs << 16;
11993 encode_thumb32_shifted_operand (2);
11994 }
11995 }
11996 else
11997 {
11998 /* On its face this is a lie - the instruction does set the
11999 flags. However, the only supported mnemonic in this mode
12000 says it doesn't. */
12001 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12002
12003 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
12004 _("unshifted register required"));
12005 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
12006
12007 inst.instruction = THUMB_OP16 (inst.instruction);
12008 inst.instruction |= Rd;
12009
12010 if (Rd == Rs)
12011 inst.instruction |= Rn << 3;
12012 else if (Rd == Rn)
12013 inst.instruction |= Rs << 3;
12014 else
12015 constraint (1, _("dest must overlap one source register"));
12016 }
12017 }
12018
12019 static void
12020 do_t_bfc (void)
12021 {
12022 unsigned Rd;
12023 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
12024 constraint (msb > 32, _("bit-field extends past end of register"));
12025 /* The instruction encoding stores the LSB and MSB,
12026 not the LSB and width. */
12027 Rd = inst.operands[0].reg;
12028 reject_bad_reg (Rd);
12029 inst.instruction |= Rd << 8;
12030 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
12031 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
12032 inst.instruction |= msb - 1;
12033 }
12034
12035 static void
12036 do_t_bfi (void)
12037 {
12038 int Rd, Rn;
12039 unsigned int msb;
12040
12041 Rd = inst.operands[0].reg;
12042 reject_bad_reg (Rd);
12043
12044 /* #0 in second position is alternative syntax for bfc, which is
12045 the same instruction but with REG_PC in the Rm field. */
12046 if (!inst.operands[1].isreg)
12047 Rn = REG_PC;
12048 else
12049 {
12050 Rn = inst.operands[1].reg;
12051 reject_bad_reg (Rn);
12052 }
12053
12054 msb = inst.operands[2].imm + inst.operands[3].imm;
12055 constraint (msb > 32, _("bit-field extends past end of register"));
12056 /* The instruction encoding stores the LSB and MSB,
12057 not the LSB and width. */
12058 inst.instruction |= Rd << 8;
12059 inst.instruction |= Rn << 16;
12060 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12061 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12062 inst.instruction |= msb - 1;
12063 }
12064
12065 static void
12066 do_t_bfx (void)
12067 {
12068 unsigned Rd, Rn;
12069
12070 Rd = inst.operands[0].reg;
12071 Rn = inst.operands[1].reg;
12072
12073 reject_bad_reg (Rd);
12074 reject_bad_reg (Rn);
12075
12076 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
12077 _("bit-field extends past end of register"));
12078 inst.instruction |= Rd << 8;
12079 inst.instruction |= Rn << 16;
12080 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12081 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12082 inst.instruction |= inst.operands[3].imm - 1;
12083 }
12084
12085 /* ARM V5 Thumb BLX (argument parse)
12086 BLX <target_addr> which is BLX(1)
12087 BLX <Rm> which is BLX(2)
12088 Unfortunately, there are two different opcodes for this mnemonic.
12089 So, the insns[].value is not used, and the code here zaps values
12090 into inst.instruction.
12091
12092 ??? How to take advantage of the additional two bits of displacement
12093 available in Thumb32 mode? Need new relocation? */
12094
12095 static void
12096 do_t_blx (void)
12097 {
12098 set_pred_insn_type_last ();
12099
12100 if (inst.operands[0].isreg)
12101 {
12102 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
12103 /* We have a register, so this is BLX(2). */
12104 inst.instruction |= inst.operands[0].reg << 3;
12105 }
12106 else
12107 {
12108 /* No register. This must be BLX(1). */
12109 inst.instruction = 0xf000e800;
12110 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
12111 }
12112 }
12113
12114 static void
12115 do_t_branch (void)
12116 {
12117 int opcode;
12118 int cond;
12119 bfd_reloc_code_real_type reloc;
12120
12121 cond = inst.cond;
12122 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
12123
12124 if (in_pred_block ())
12125 {
12126 /* Conditional branches inside IT blocks are encoded as unconditional
12127 branches. */
12128 cond = COND_ALWAYS;
12129 }
12130 else
12131 cond = inst.cond;
12132
12133 if (cond != COND_ALWAYS)
12134 opcode = T_MNEM_bcond;
12135 else
12136 opcode = inst.instruction;
12137
12138 if (unified_syntax
12139 && (inst.size_req == 4
12140 || (inst.size_req != 2
12141 && (inst.operands[0].hasreloc
12142 || inst.relocs[0].exp.X_op == O_constant))))
12143 {
12144 inst.instruction = THUMB_OP32(opcode);
12145 if (cond == COND_ALWAYS)
12146 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
12147 else
12148 {
12149 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12150 _("selected architecture does not support "
12151 "wide conditional branch instruction"));
12152
12153 gas_assert (cond != 0xF);
12154 inst.instruction |= cond << 22;
12155 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12156 }
12157 }
12158 else
12159 {
12160 inst.instruction = THUMB_OP16(opcode);
12161 if (cond == COND_ALWAYS)
12162 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12163 else
12164 {
12165 inst.instruction |= cond << 8;
12166 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12167 }
12168 /* Allow section relaxation. */
12169 if (unified_syntax && inst.size_req != 2)
12170 inst.relax = opcode;
12171 }
12172 inst.relocs[0].type = reloc;
12173 inst.relocs[0].pc_rel = 1;
12174 }
12175
12176 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12177 between the two is the maximum immediate allowed - which is passed in
12178 RANGE. */
12179 static void
12180 do_t_bkpt_hlt1 (int range)
12181 {
12182 constraint (inst.cond != COND_ALWAYS,
12183 _("instruction is always unconditional"));
12184 if (inst.operands[0].present)
12185 {
12186 constraint (inst.operands[0].imm > range,
12187 _("immediate value out of range"));
12188 inst.instruction |= inst.operands[0].imm;
12189 }
12190
12191 set_pred_insn_type (NEUTRAL_IT_INSN);
12192 }
12193
12194 static void
12195 do_t_hlt (void)
12196 {
12197 do_t_bkpt_hlt1 (63);
12198 }
12199
12200 static void
12201 do_t_bkpt (void)
12202 {
12203 do_t_bkpt_hlt1 (255);
12204 }
12205
12206 static void
12207 do_t_branch23 (void)
12208 {
12209 set_pred_insn_type_last ();
12210 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12211
12212 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12213 this file. We used to simply ignore the PLT reloc type here --
12214 the branch encoding is now needed to deal with TLSCALL relocs.
12215 So if we see a PLT reloc now, put it back to how it used to be to
12216 keep the preexisting behaviour. */
12217 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12218 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12219
12220 #if defined(OBJ_COFF)
12221 /* If the destination of the branch is a defined symbol which does not have
12222 the THUMB_FUNC attribute, then we must be calling a function which has
12223 the (interfacearm) attribute. We look for the Thumb entry point to that
12224 function and change the branch to refer to that function instead. */
12225 if ( inst.relocs[0].exp.X_op == O_symbol
12226 && inst.relocs[0].exp.X_add_symbol != NULL
12227 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12228 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12229 inst.relocs[0].exp.X_add_symbol
12230 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12231 #endif
12232 }
12233
12234 static void
12235 do_t_bx (void)
12236 {
12237 set_pred_insn_type_last ();
12238 inst.instruction |= inst.operands[0].reg << 3;
12239 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12240 should cause the alignment to be checked once it is known. This is
12241 because BX PC only works if the instruction is word aligned. */
12242 }
12243
12244 static void
12245 do_t_bxj (void)
12246 {
12247 int Rm;
12248
12249 set_pred_insn_type_last ();
12250 Rm = inst.operands[0].reg;
12251 reject_bad_reg (Rm);
12252 inst.instruction |= Rm << 16;
12253 }
12254
12255 static void
12256 do_t_clz (void)
12257 {
12258 unsigned Rd;
12259 unsigned Rm;
12260
12261 Rd = inst.operands[0].reg;
12262 Rm = inst.operands[1].reg;
12263
12264 reject_bad_reg (Rd);
12265 reject_bad_reg (Rm);
12266
12267 inst.instruction |= Rd << 8;
12268 inst.instruction |= Rm << 16;
12269 inst.instruction |= Rm;
12270 }
12271
12272 /* For the Armv8.1-M conditional instructions. */
12273 static void
12274 do_t_cond (void)
12275 {
12276 unsigned Rd, Rn, Rm;
12277 signed int cond;
12278
12279 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12280
12281 Rd = inst.operands[0].reg;
12282 switch (inst.instruction)
12283 {
12284 case T_MNEM_csinc:
12285 case T_MNEM_csinv:
12286 case T_MNEM_csneg:
12287 case T_MNEM_csel:
12288 Rn = inst.operands[1].reg;
12289 Rm = inst.operands[2].reg;
12290 cond = inst.operands[3].imm;
12291 constraint (Rn == REG_SP, BAD_SP);
12292 constraint (Rm == REG_SP, BAD_SP);
12293 break;
12294
12295 case T_MNEM_cinc:
12296 case T_MNEM_cinv:
12297 case T_MNEM_cneg:
12298 Rn = inst.operands[1].reg;
12299 cond = inst.operands[2].imm;
12300 /* Invert the last bit to invert the cond. */
12301 cond = TOGGLE_BIT (cond, 0);
12302 constraint (Rn == REG_SP, BAD_SP);
12303 Rm = Rn;
12304 break;
12305
12306 case T_MNEM_csetm:
12307 case T_MNEM_cset:
12308 cond = inst.operands[1].imm;
12309 /* Invert the last bit to invert the cond. */
12310 cond = TOGGLE_BIT (cond, 0);
12311 Rn = REG_PC;
12312 Rm = REG_PC;
12313 break;
12314
12315 default: abort ();
12316 }
12317
12318 set_pred_insn_type (OUTSIDE_PRED_INSN);
12319 inst.instruction = THUMB_OP32 (inst.instruction);
12320 inst.instruction |= Rd << 8;
12321 inst.instruction |= Rn << 16;
12322 inst.instruction |= Rm;
12323 inst.instruction |= cond << 4;
12324 }
12325
12326 static void
12327 do_t_csdb (void)
12328 {
12329 set_pred_insn_type (OUTSIDE_PRED_INSN);
12330 }
12331
12332 static void
12333 do_t_cps (void)
12334 {
12335 set_pred_insn_type (OUTSIDE_PRED_INSN);
12336 inst.instruction |= inst.operands[0].imm;
12337 }
12338
12339 static void
12340 do_t_cpsi (void)
12341 {
12342 set_pred_insn_type (OUTSIDE_PRED_INSN);
12343 if (unified_syntax
12344 && (inst.operands[1].present || inst.size_req == 4)
12345 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12346 {
12347 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12348 inst.instruction = 0xf3af8000;
12349 inst.instruction |= imod << 9;
12350 inst.instruction |= inst.operands[0].imm << 5;
12351 if (inst.operands[1].present)
12352 inst.instruction |= 0x100 | inst.operands[1].imm;
12353 }
12354 else
12355 {
12356 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12357 && (inst.operands[0].imm & 4),
12358 _("selected processor does not support 'A' form "
12359 "of this instruction"));
12360 constraint (inst.operands[1].present || inst.size_req == 4,
12361 _("Thumb does not support the 2-argument "
12362 "form of this instruction"));
12363 inst.instruction |= inst.operands[0].imm;
12364 }
12365 }
12366
12367 /* THUMB CPY instruction (argument parse). */
12368
12369 static void
12370 do_t_cpy (void)
12371 {
12372 if (inst.size_req == 4)
12373 {
12374 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12375 inst.instruction |= inst.operands[0].reg << 8;
12376 inst.instruction |= inst.operands[1].reg;
12377 }
12378 else
12379 {
12380 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12381 inst.instruction |= (inst.operands[0].reg & 0x7);
12382 inst.instruction |= inst.operands[1].reg << 3;
12383 }
12384 }
12385
12386 static void
12387 do_t_cbz (void)
12388 {
12389 set_pred_insn_type (OUTSIDE_PRED_INSN);
12390 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12391 inst.instruction |= inst.operands[0].reg;
12392 inst.relocs[0].pc_rel = 1;
12393 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12394 }
12395
12396 static void
12397 do_t_dbg (void)
12398 {
12399 inst.instruction |= inst.operands[0].imm;
12400 }
12401
12402 static void
12403 do_t_div (void)
12404 {
12405 unsigned Rd, Rn, Rm;
12406
12407 Rd = inst.operands[0].reg;
12408 Rn = (inst.operands[1].present
12409 ? inst.operands[1].reg : Rd);
12410 Rm = inst.operands[2].reg;
12411
12412 reject_bad_reg (Rd);
12413 reject_bad_reg (Rn);
12414 reject_bad_reg (Rm);
12415
12416 inst.instruction |= Rd << 8;
12417 inst.instruction |= Rn << 16;
12418 inst.instruction |= Rm;
12419 }
12420
12421 static void
12422 do_t_hint (void)
12423 {
12424 if (unified_syntax && inst.size_req == 4)
12425 inst.instruction = THUMB_OP32 (inst.instruction);
12426 else
12427 inst.instruction = THUMB_OP16 (inst.instruction);
12428 }
12429
12430 static void
12431 do_t_it (void)
12432 {
12433 unsigned int cond = inst.operands[0].imm;
12434
12435 set_pred_insn_type (IT_INSN);
12436 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12437 now_pred.cc = cond;
12438 now_pred.warn_deprecated = FALSE;
12439 now_pred.type = SCALAR_PRED;
12440
12441 /* If the condition is a negative condition, invert the mask. */
12442 if ((cond & 0x1) == 0x0)
12443 {
12444 unsigned int mask = inst.instruction & 0x000f;
12445
12446 if ((mask & 0x7) == 0)
12447 {
12448 /* No conversion needed. */
12449 now_pred.block_length = 1;
12450 }
12451 else if ((mask & 0x3) == 0)
12452 {
12453 mask ^= 0x8;
12454 now_pred.block_length = 2;
12455 }
12456 else if ((mask & 0x1) == 0)
12457 {
12458 mask ^= 0xC;
12459 now_pred.block_length = 3;
12460 }
12461 else
12462 {
12463 mask ^= 0xE;
12464 now_pred.block_length = 4;
12465 }
12466
12467 inst.instruction &= 0xfff0;
12468 inst.instruction |= mask;
12469 }
12470
12471 inst.instruction |= cond << 4;
12472 }
12473
12474 /* Helper function used for both push/pop and ldm/stm. */
12475 static void
12476 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12477 bfd_boolean writeback)
12478 {
12479 bfd_boolean load, store;
12480
12481 gas_assert (base != -1 || !do_io);
12482 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12483 store = do_io && !load;
12484
12485 if (mask & (1 << 13))
12486 inst.error = _("SP not allowed in register list");
12487
12488 if (do_io && (mask & (1 << base)) != 0
12489 && writeback)
12490 inst.error = _("having the base register in the register list when "
12491 "using write back is UNPREDICTABLE");
12492
12493 if (load)
12494 {
12495 if (mask & (1 << 15))
12496 {
12497 if (mask & (1 << 14))
12498 inst.error = _("LR and PC should not both be in register list");
12499 else
12500 set_pred_insn_type_last ();
12501 }
12502 }
12503 else if (store)
12504 {
12505 if (mask & (1 << 15))
12506 inst.error = _("PC not allowed in register list");
12507 }
12508
12509 if (do_io && ((mask & (mask - 1)) == 0))
12510 {
12511 /* Single register transfers implemented as str/ldr. */
12512 if (writeback)
12513 {
12514 if (inst.instruction & (1 << 23))
12515 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12516 else
12517 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12518 }
12519 else
12520 {
12521 if (inst.instruction & (1 << 23))
12522 inst.instruction = 0x00800000; /* ia -> [base] */
12523 else
12524 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12525 }
12526
12527 inst.instruction |= 0xf8400000;
12528 if (load)
12529 inst.instruction |= 0x00100000;
12530
12531 mask = ffs (mask) - 1;
12532 mask <<= 12;
12533 }
12534 else if (writeback)
12535 inst.instruction |= WRITE_BACK;
12536
12537 inst.instruction |= mask;
12538 if (do_io)
12539 inst.instruction |= base << 16;
12540 }
12541
12542 static void
12543 do_t_ldmstm (void)
12544 {
12545 /* This really doesn't seem worth it. */
12546 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12547 _("expression too complex"));
12548 constraint (inst.operands[1].writeback,
12549 _("Thumb load/store multiple does not support {reglist}^"));
12550
12551 if (unified_syntax)
12552 {
12553 bfd_boolean narrow;
12554 unsigned mask;
12555
12556 narrow = FALSE;
12557 /* See if we can use a 16-bit instruction. */
12558 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12559 && inst.size_req != 4
12560 && !(inst.operands[1].imm & ~0xff))
12561 {
12562 mask = 1 << inst.operands[0].reg;
12563
12564 if (inst.operands[0].reg <= 7)
12565 {
12566 if (inst.instruction == T_MNEM_stmia
12567 ? inst.operands[0].writeback
12568 : (inst.operands[0].writeback
12569 == !(inst.operands[1].imm & mask)))
12570 {
12571 if (inst.instruction == T_MNEM_stmia
12572 && (inst.operands[1].imm & mask)
12573 && (inst.operands[1].imm & (mask - 1)))
12574 as_warn (_("value stored for r%d is UNKNOWN"),
12575 inst.operands[0].reg);
12576
12577 inst.instruction = THUMB_OP16 (inst.instruction);
12578 inst.instruction |= inst.operands[0].reg << 8;
12579 inst.instruction |= inst.operands[1].imm;
12580 narrow = TRUE;
12581 }
12582 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12583 {
12584 /* This means 1 register in reg list one of 3 situations:
12585 1. Instruction is stmia, but without writeback.
12586 2. lmdia without writeback, but with Rn not in
12587 reglist.
12588 3. ldmia with writeback, but with Rn in reglist.
12589 Case 3 is UNPREDICTABLE behaviour, so we handle
12590 case 1 and 2 which can be converted into a 16-bit
12591 str or ldr. The SP cases are handled below. */
12592 unsigned long opcode;
12593 /* First, record an error for Case 3. */
12594 if (inst.operands[1].imm & mask
12595 && inst.operands[0].writeback)
12596 inst.error =
12597 _("having the base register in the register list when "
12598 "using write back is UNPREDICTABLE");
12599
12600 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12601 : T_MNEM_ldr);
12602 inst.instruction = THUMB_OP16 (opcode);
12603 inst.instruction |= inst.operands[0].reg << 3;
12604 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12605 narrow = TRUE;
12606 }
12607 }
12608 else if (inst.operands[0] .reg == REG_SP)
12609 {
12610 if (inst.operands[0].writeback)
12611 {
12612 inst.instruction =
12613 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12614 ? T_MNEM_push : T_MNEM_pop);
12615 inst.instruction |= inst.operands[1].imm;
12616 narrow = TRUE;
12617 }
12618 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12619 {
12620 inst.instruction =
12621 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12622 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12623 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12624 narrow = TRUE;
12625 }
12626 }
12627 }
12628
12629 if (!narrow)
12630 {
12631 if (inst.instruction < 0xffff)
12632 inst.instruction = THUMB_OP32 (inst.instruction);
12633
12634 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12635 inst.operands[1].imm,
12636 inst.operands[0].writeback);
12637 }
12638 }
12639 else
12640 {
12641 constraint (inst.operands[0].reg > 7
12642 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12643 constraint (inst.instruction != T_MNEM_ldmia
12644 && inst.instruction != T_MNEM_stmia,
12645 _("Thumb-2 instruction only valid in unified syntax"));
12646 if (inst.instruction == T_MNEM_stmia)
12647 {
12648 if (!inst.operands[0].writeback)
12649 as_warn (_("this instruction will write back the base register"));
12650 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12651 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12652 as_warn (_("value stored for r%d is UNKNOWN"),
12653 inst.operands[0].reg);
12654 }
12655 else
12656 {
12657 if (!inst.operands[0].writeback
12658 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12659 as_warn (_("this instruction will write back the base register"));
12660 else if (inst.operands[0].writeback
12661 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12662 as_warn (_("this instruction will not write back the base register"));
12663 }
12664
12665 inst.instruction = THUMB_OP16 (inst.instruction);
12666 inst.instruction |= inst.operands[0].reg << 8;
12667 inst.instruction |= inst.operands[1].imm;
12668 }
12669 }
12670
12671 static void
12672 do_t_ldrex (void)
12673 {
12674 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12675 || inst.operands[1].postind || inst.operands[1].writeback
12676 || inst.operands[1].immisreg || inst.operands[1].shifted
12677 || inst.operands[1].negative,
12678 BAD_ADDR_MODE);
12679
12680 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12681
12682 inst.instruction |= inst.operands[0].reg << 12;
12683 inst.instruction |= inst.operands[1].reg << 16;
12684 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12685 }
12686
12687 static void
12688 do_t_ldrexd (void)
12689 {
12690 if (!inst.operands[1].present)
12691 {
12692 constraint (inst.operands[0].reg == REG_LR,
12693 _("r14 not allowed as first register "
12694 "when second register is omitted"));
12695 inst.operands[1].reg = inst.operands[0].reg + 1;
12696 }
12697 constraint (inst.operands[0].reg == inst.operands[1].reg,
12698 BAD_OVERLAP);
12699
12700 inst.instruction |= inst.operands[0].reg << 12;
12701 inst.instruction |= inst.operands[1].reg << 8;
12702 inst.instruction |= inst.operands[2].reg << 16;
12703 }
12704
12705 static void
12706 do_t_ldst (void)
12707 {
12708 unsigned long opcode;
12709 int Rn;
12710
12711 if (inst.operands[0].isreg
12712 && !inst.operands[0].preind
12713 && inst.operands[0].reg == REG_PC)
12714 set_pred_insn_type_last ();
12715
12716 opcode = inst.instruction;
12717 if (unified_syntax)
12718 {
12719 if (!inst.operands[1].isreg)
12720 {
12721 if (opcode <= 0xffff)
12722 inst.instruction = THUMB_OP32 (opcode);
12723 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12724 return;
12725 }
12726 if (inst.operands[1].isreg
12727 && !inst.operands[1].writeback
12728 && !inst.operands[1].shifted && !inst.operands[1].postind
12729 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12730 && opcode <= 0xffff
12731 && inst.size_req != 4)
12732 {
12733 /* Insn may have a 16-bit form. */
12734 Rn = inst.operands[1].reg;
12735 if (inst.operands[1].immisreg)
12736 {
12737 inst.instruction = THUMB_OP16 (opcode);
12738 /* [Rn, Rik] */
12739 if (Rn <= 7 && inst.operands[1].imm <= 7)
12740 goto op16;
12741 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12742 reject_bad_reg (inst.operands[1].imm);
12743 }
12744 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12745 && opcode != T_MNEM_ldrsb)
12746 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12747 || (Rn == REG_SP && opcode == T_MNEM_str))
12748 {
12749 /* [Rn, #const] */
12750 if (Rn > 7)
12751 {
12752 if (Rn == REG_PC)
12753 {
12754 if (inst.relocs[0].pc_rel)
12755 opcode = T_MNEM_ldr_pc2;
12756 else
12757 opcode = T_MNEM_ldr_pc;
12758 }
12759 else
12760 {
12761 if (opcode == T_MNEM_ldr)
12762 opcode = T_MNEM_ldr_sp;
12763 else
12764 opcode = T_MNEM_str_sp;
12765 }
12766 inst.instruction = inst.operands[0].reg << 8;
12767 }
12768 else
12769 {
12770 inst.instruction = inst.operands[0].reg;
12771 inst.instruction |= inst.operands[1].reg << 3;
12772 }
12773 inst.instruction |= THUMB_OP16 (opcode);
12774 if (inst.size_req == 2)
12775 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12776 else
12777 inst.relax = opcode;
12778 return;
12779 }
12780 }
12781 /* Definitely a 32-bit variant. */
12782
12783 /* Warning for Erratum 752419. */
12784 if (opcode == T_MNEM_ldr
12785 && inst.operands[0].reg == REG_SP
12786 && inst.operands[1].writeback == 1
12787 && !inst.operands[1].immisreg)
12788 {
12789 if (no_cpu_selected ()
12790 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12791 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12792 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12793 as_warn (_("This instruction may be unpredictable "
12794 "if executed on M-profile cores "
12795 "with interrupts enabled."));
12796 }
12797
12798 /* Do some validations regarding addressing modes. */
12799 if (inst.operands[1].immisreg)
12800 reject_bad_reg (inst.operands[1].imm);
12801
12802 constraint (inst.operands[1].writeback == 1
12803 && inst.operands[0].reg == inst.operands[1].reg,
12804 BAD_OVERLAP);
12805
12806 inst.instruction = THUMB_OP32 (opcode);
12807 inst.instruction |= inst.operands[0].reg << 12;
12808 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12809 check_ldr_r15_aligned ();
12810 return;
12811 }
12812
12813 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12814
12815 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12816 {
12817 /* Only [Rn,Rm] is acceptable. */
12818 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12819 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12820 || inst.operands[1].postind || inst.operands[1].shifted
12821 || inst.operands[1].negative,
12822 _("Thumb does not support this addressing mode"));
12823 inst.instruction = THUMB_OP16 (inst.instruction);
12824 goto op16;
12825 }
12826
12827 inst.instruction = THUMB_OP16 (inst.instruction);
12828 if (!inst.operands[1].isreg)
12829 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12830 return;
12831
12832 constraint (!inst.operands[1].preind
12833 || inst.operands[1].shifted
12834 || inst.operands[1].writeback,
12835 _("Thumb does not support this addressing mode"));
12836 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12837 {
12838 constraint (inst.instruction & 0x0600,
12839 _("byte or halfword not valid for base register"));
12840 constraint (inst.operands[1].reg == REG_PC
12841 && !(inst.instruction & THUMB_LOAD_BIT),
12842 _("r15 based store not allowed"));
12843 constraint (inst.operands[1].immisreg,
12844 _("invalid base register for register offset"));
12845
12846 if (inst.operands[1].reg == REG_PC)
12847 inst.instruction = T_OPCODE_LDR_PC;
12848 else if (inst.instruction & THUMB_LOAD_BIT)
12849 inst.instruction = T_OPCODE_LDR_SP;
12850 else
12851 inst.instruction = T_OPCODE_STR_SP;
12852
12853 inst.instruction |= inst.operands[0].reg << 8;
12854 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12855 return;
12856 }
12857
12858 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12859 if (!inst.operands[1].immisreg)
12860 {
12861 /* Immediate offset. */
12862 inst.instruction |= inst.operands[0].reg;
12863 inst.instruction |= inst.operands[1].reg << 3;
12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12865 return;
12866 }
12867
12868 /* Register offset. */
12869 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12870 constraint (inst.operands[1].negative,
12871 _("Thumb does not support this addressing mode"));
12872
12873 op16:
12874 switch (inst.instruction)
12875 {
12876 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12877 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12878 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12879 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12880 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12881 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12882 case 0x5600 /* ldrsb */:
12883 case 0x5e00 /* ldrsh */: break;
12884 default: abort ();
12885 }
12886
12887 inst.instruction |= inst.operands[0].reg;
12888 inst.instruction |= inst.operands[1].reg << 3;
12889 inst.instruction |= inst.operands[1].imm << 6;
12890 }
12891
12892 static void
12893 do_t_ldstd (void)
12894 {
12895 if (!inst.operands[1].present)
12896 {
12897 inst.operands[1].reg = inst.operands[0].reg + 1;
12898 constraint (inst.operands[0].reg == REG_LR,
12899 _("r14 not allowed here"));
12900 constraint (inst.operands[0].reg == REG_R12,
12901 _("r12 not allowed here"));
12902 }
12903
12904 if (inst.operands[2].writeback
12905 && (inst.operands[0].reg == inst.operands[2].reg
12906 || inst.operands[1].reg == inst.operands[2].reg))
12907 as_warn (_("base register written back, and overlaps "
12908 "one of transfer registers"));
12909
12910 inst.instruction |= inst.operands[0].reg << 12;
12911 inst.instruction |= inst.operands[1].reg << 8;
12912 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12913 }
12914
12915 static void
12916 do_t_ldstt (void)
12917 {
12918 inst.instruction |= inst.operands[0].reg << 12;
12919 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12920 }
12921
12922 static void
12923 do_t_mla (void)
12924 {
12925 unsigned Rd, Rn, Rm, Ra;
12926
12927 Rd = inst.operands[0].reg;
12928 Rn = inst.operands[1].reg;
12929 Rm = inst.operands[2].reg;
12930 Ra = inst.operands[3].reg;
12931
12932 reject_bad_reg (Rd);
12933 reject_bad_reg (Rn);
12934 reject_bad_reg (Rm);
12935 reject_bad_reg (Ra);
12936
12937 inst.instruction |= Rd << 8;
12938 inst.instruction |= Rn << 16;
12939 inst.instruction |= Rm;
12940 inst.instruction |= Ra << 12;
12941 }
12942
12943 static void
12944 do_t_mlal (void)
12945 {
12946 unsigned RdLo, RdHi, Rn, Rm;
12947
12948 RdLo = inst.operands[0].reg;
12949 RdHi = inst.operands[1].reg;
12950 Rn = inst.operands[2].reg;
12951 Rm = inst.operands[3].reg;
12952
12953 reject_bad_reg (RdLo);
12954 reject_bad_reg (RdHi);
12955 reject_bad_reg (Rn);
12956 reject_bad_reg (Rm);
12957
12958 inst.instruction |= RdLo << 12;
12959 inst.instruction |= RdHi << 8;
12960 inst.instruction |= Rn << 16;
12961 inst.instruction |= Rm;
12962 }
12963
12964 static void
12965 do_t_mov_cmp (void)
12966 {
12967 unsigned Rn, Rm;
12968
12969 Rn = inst.operands[0].reg;
12970 Rm = inst.operands[1].reg;
12971
12972 if (Rn == REG_PC)
12973 set_pred_insn_type_last ();
12974
12975 if (unified_syntax)
12976 {
12977 int r0off = (inst.instruction == T_MNEM_mov
12978 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12979 unsigned long opcode;
12980 bfd_boolean narrow;
12981 bfd_boolean low_regs;
12982
12983 low_regs = (Rn <= 7 && Rm <= 7);
12984 opcode = inst.instruction;
12985 if (in_pred_block ())
12986 narrow = opcode != T_MNEM_movs;
12987 else
12988 narrow = opcode != T_MNEM_movs || low_regs;
12989 if (inst.size_req == 4
12990 || inst.operands[1].shifted)
12991 narrow = FALSE;
12992
12993 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12994 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12995 && !inst.operands[1].shifted
12996 && Rn == REG_PC
12997 && Rm == REG_LR)
12998 {
12999 inst.instruction = T2_SUBS_PC_LR;
13000 return;
13001 }
13002
13003 if (opcode == T_MNEM_cmp)
13004 {
13005 constraint (Rn == REG_PC, BAD_PC);
13006 if (narrow)
13007 {
13008 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
13009 but valid. */
13010 warn_deprecated_sp (Rm);
13011 /* R15 was documented as a valid choice for Rm in ARMv6,
13012 but as UNPREDICTABLE in ARMv7. ARM's proprietary
13013 tools reject R15, so we do too. */
13014 constraint (Rm == REG_PC, BAD_PC);
13015 }
13016 else
13017 reject_bad_reg (Rm);
13018 }
13019 else if (opcode == T_MNEM_mov
13020 || opcode == T_MNEM_movs)
13021 {
13022 if (inst.operands[1].isreg)
13023 {
13024 if (opcode == T_MNEM_movs)
13025 {
13026 reject_bad_reg (Rn);
13027 reject_bad_reg (Rm);
13028 }
13029 else if (narrow)
13030 {
13031 /* This is mov.n. */
13032 if ((Rn == REG_SP || Rn == REG_PC)
13033 && (Rm == REG_SP || Rm == REG_PC))
13034 {
13035 as_tsktsk (_("Use of r%u as a source register is "
13036 "deprecated when r%u is the destination "
13037 "register."), Rm, Rn);
13038 }
13039 }
13040 else
13041 {
13042 /* This is mov.w. */
13043 constraint (Rn == REG_PC, BAD_PC);
13044 constraint (Rm == REG_PC, BAD_PC);
13045 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13046 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
13047 }
13048 }
13049 else
13050 reject_bad_reg (Rn);
13051 }
13052
13053 if (!inst.operands[1].isreg)
13054 {
13055 /* Immediate operand. */
13056 if (!in_pred_block () && opcode == T_MNEM_mov)
13057 narrow = 0;
13058 if (low_regs && narrow)
13059 {
13060 inst.instruction = THUMB_OP16 (opcode);
13061 inst.instruction |= Rn << 8;
13062 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13063 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
13064 {
13065 if (inst.size_req == 2)
13066 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13067 else
13068 inst.relax = opcode;
13069 }
13070 }
13071 else
13072 {
13073 constraint ((inst.relocs[0].type
13074 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
13075 && (inst.relocs[0].type
13076 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
13077 THUMB1_RELOC_ONLY);
13078
13079 inst.instruction = THUMB_OP32 (inst.instruction);
13080 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13081 inst.instruction |= Rn << r0off;
13082 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13083 }
13084 }
13085 else if (inst.operands[1].shifted && inst.operands[1].immisreg
13086 && (inst.instruction == T_MNEM_mov
13087 || inst.instruction == T_MNEM_movs))
13088 {
13089 /* Register shifts are encoded as separate shift instructions. */
13090 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
13091
13092 if (in_pred_block ())
13093 narrow = !flags;
13094 else
13095 narrow = flags;
13096
13097 if (inst.size_req == 4)
13098 narrow = FALSE;
13099
13100 if (!low_regs || inst.operands[1].imm > 7)
13101 narrow = FALSE;
13102
13103 if (Rn != Rm)
13104 narrow = FALSE;
13105
13106 switch (inst.operands[1].shift_kind)
13107 {
13108 case SHIFT_LSL:
13109 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
13110 break;
13111 case SHIFT_ASR:
13112 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
13113 break;
13114 case SHIFT_LSR:
13115 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
13116 break;
13117 case SHIFT_ROR:
13118 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
13119 break;
13120 default:
13121 abort ();
13122 }
13123
13124 inst.instruction = opcode;
13125 if (narrow)
13126 {
13127 inst.instruction |= Rn;
13128 inst.instruction |= inst.operands[1].imm << 3;
13129 }
13130 else
13131 {
13132 if (flags)
13133 inst.instruction |= CONDS_BIT;
13134
13135 inst.instruction |= Rn << 8;
13136 inst.instruction |= Rm << 16;
13137 inst.instruction |= inst.operands[1].imm;
13138 }
13139 }
13140 else if (!narrow)
13141 {
13142 /* Some mov with immediate shift have narrow variants.
13143 Register shifts are handled above. */
13144 if (low_regs && inst.operands[1].shifted
13145 && (inst.instruction == T_MNEM_mov
13146 || inst.instruction == T_MNEM_movs))
13147 {
13148 if (in_pred_block ())
13149 narrow = (inst.instruction == T_MNEM_mov);
13150 else
13151 narrow = (inst.instruction == T_MNEM_movs);
13152 }
13153
13154 if (narrow)
13155 {
13156 switch (inst.operands[1].shift_kind)
13157 {
13158 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13159 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13160 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13161 default: narrow = FALSE; break;
13162 }
13163 }
13164
13165 if (narrow)
13166 {
13167 inst.instruction |= Rn;
13168 inst.instruction |= Rm << 3;
13169 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13170 }
13171 else
13172 {
13173 inst.instruction = THUMB_OP32 (inst.instruction);
13174 inst.instruction |= Rn << r0off;
13175 encode_thumb32_shifted_operand (1);
13176 }
13177 }
13178 else
13179 switch (inst.instruction)
13180 {
13181 case T_MNEM_mov:
13182 /* In v4t or v5t a move of two lowregs produces unpredictable
13183 results. Don't allow this. */
13184 if (low_regs)
13185 {
13186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13187 "MOV Rd, Rs with two low registers is not "
13188 "permitted on this architecture");
13189 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13190 arm_ext_v6);
13191 }
13192
13193 inst.instruction = T_OPCODE_MOV_HR;
13194 inst.instruction |= (Rn & 0x8) << 4;
13195 inst.instruction |= (Rn & 0x7);
13196 inst.instruction |= Rm << 3;
13197 break;
13198
13199 case T_MNEM_movs:
13200 /* We know we have low registers at this point.
13201 Generate LSLS Rd, Rs, #0. */
13202 inst.instruction = T_OPCODE_LSL_I;
13203 inst.instruction |= Rn;
13204 inst.instruction |= Rm << 3;
13205 break;
13206
13207 case T_MNEM_cmp:
13208 if (low_regs)
13209 {
13210 inst.instruction = T_OPCODE_CMP_LR;
13211 inst.instruction |= Rn;
13212 inst.instruction |= Rm << 3;
13213 }
13214 else
13215 {
13216 inst.instruction = T_OPCODE_CMP_HR;
13217 inst.instruction |= (Rn & 0x8) << 4;
13218 inst.instruction |= (Rn & 0x7);
13219 inst.instruction |= Rm << 3;
13220 }
13221 break;
13222 }
13223 return;
13224 }
13225
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227
13228 /* PR 10443: Do not silently ignore shifted operands. */
13229 constraint (inst.operands[1].shifted,
13230 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13231
13232 if (inst.operands[1].isreg)
13233 {
13234 if (Rn < 8 && Rm < 8)
13235 {
13236 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13237 since a MOV instruction produces unpredictable results. */
13238 if (inst.instruction == T_OPCODE_MOV_I8)
13239 inst.instruction = T_OPCODE_ADD_I3;
13240 else
13241 inst.instruction = T_OPCODE_CMP_LR;
13242
13243 inst.instruction |= Rn;
13244 inst.instruction |= Rm << 3;
13245 }
13246 else
13247 {
13248 if (inst.instruction == T_OPCODE_MOV_I8)
13249 inst.instruction = T_OPCODE_MOV_HR;
13250 else
13251 inst.instruction = T_OPCODE_CMP_HR;
13252 do_t_cpy ();
13253 }
13254 }
13255 else
13256 {
13257 constraint (Rn > 7,
13258 _("only lo regs allowed with immediate"));
13259 inst.instruction |= Rn << 8;
13260 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13261 }
13262 }
13263
13264 static void
13265 do_t_mov16 (void)
13266 {
13267 unsigned Rd;
13268 bfd_vma imm;
13269 bfd_boolean top;
13270
13271 top = (inst.instruction & 0x00800000) != 0;
13272 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13273 {
13274 constraint (top, _(":lower16: not allowed in this instruction"));
13275 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13276 }
13277 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13278 {
13279 constraint (!top, _(":upper16: not allowed in this instruction"));
13280 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13281 }
13282
13283 Rd = inst.operands[0].reg;
13284 reject_bad_reg (Rd);
13285
13286 inst.instruction |= Rd << 8;
13287 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13288 {
13289 imm = inst.relocs[0].exp.X_add_number;
13290 inst.instruction |= (imm & 0xf000) << 4;
13291 inst.instruction |= (imm & 0x0800) << 15;
13292 inst.instruction |= (imm & 0x0700) << 4;
13293 inst.instruction |= (imm & 0x00ff);
13294 }
13295 }
13296
13297 static void
13298 do_t_mvn_tst (void)
13299 {
13300 unsigned Rn, Rm;
13301
13302 Rn = inst.operands[0].reg;
13303 Rm = inst.operands[1].reg;
13304
13305 if (inst.instruction == T_MNEM_cmp
13306 || inst.instruction == T_MNEM_cmn)
13307 constraint (Rn == REG_PC, BAD_PC);
13308 else
13309 reject_bad_reg (Rn);
13310 reject_bad_reg (Rm);
13311
13312 if (unified_syntax)
13313 {
13314 int r0off = (inst.instruction == T_MNEM_mvn
13315 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13316 bfd_boolean narrow;
13317
13318 if (inst.size_req == 4
13319 || inst.instruction > 0xffff
13320 || inst.operands[1].shifted
13321 || Rn > 7 || Rm > 7)
13322 narrow = FALSE;
13323 else if (inst.instruction == T_MNEM_cmn
13324 || inst.instruction == T_MNEM_tst)
13325 narrow = TRUE;
13326 else if (THUMB_SETS_FLAGS (inst.instruction))
13327 narrow = !in_pred_block ();
13328 else
13329 narrow = in_pred_block ();
13330
13331 if (!inst.operands[1].isreg)
13332 {
13333 /* For an immediate, we always generate a 32-bit opcode;
13334 section relaxation will shrink it later if possible. */
13335 if (inst.instruction < 0xffff)
13336 inst.instruction = THUMB_OP32 (inst.instruction);
13337 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13338 inst.instruction |= Rn << r0off;
13339 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13340 }
13341 else
13342 {
13343 /* See if we can do this with a 16-bit instruction. */
13344 if (narrow)
13345 {
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= Rn;
13348 inst.instruction |= Rm << 3;
13349 }
13350 else
13351 {
13352 constraint (inst.operands[1].shifted
13353 && inst.operands[1].immisreg,
13354 _("shift must be constant"));
13355 if (inst.instruction < 0xffff)
13356 inst.instruction = THUMB_OP32 (inst.instruction);
13357 inst.instruction |= Rn << r0off;
13358 encode_thumb32_shifted_operand (1);
13359 }
13360 }
13361 }
13362 else
13363 {
13364 constraint (inst.instruction > 0xffff
13365 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13366 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13367 _("unshifted register required"));
13368 constraint (Rn > 7 || Rm > 7,
13369 BAD_HIREG);
13370
13371 inst.instruction = THUMB_OP16 (inst.instruction);
13372 inst.instruction |= Rn;
13373 inst.instruction |= Rm << 3;
13374 }
13375 }
13376
13377 static void
13378 do_t_mrs (void)
13379 {
13380 unsigned Rd;
13381
13382 if (do_vfp_nsyn_mrs () == SUCCESS)
13383 return;
13384
13385 Rd = inst.operands[0].reg;
13386 reject_bad_reg (Rd);
13387 inst.instruction |= Rd << 8;
13388
13389 if (inst.operands[1].isreg)
13390 {
13391 unsigned br = inst.operands[1].reg;
13392 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13393 as_bad (_("bad register for mrs"));
13394
13395 inst.instruction |= br & (0xf << 16);
13396 inst.instruction |= (br & 0x300) >> 4;
13397 inst.instruction |= (br & SPSR_BIT) >> 2;
13398 }
13399 else
13400 {
13401 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13402
13403 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13404 {
13405 /* PR gas/12698: The constraint is only applied for m_profile.
13406 If the user has specified -march=all, we want to ignore it as
13407 we are building for any CPU type, including non-m variants. */
13408 bfd_boolean m_profile =
13409 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13410 constraint ((flags != 0) && m_profile, _("selected processor does "
13411 "not support requested special purpose register"));
13412 }
13413 else
13414 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13415 devices). */
13416 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13417 _("'APSR', 'CPSR' or 'SPSR' expected"));
13418
13419 inst.instruction |= (flags & SPSR_BIT) >> 2;
13420 inst.instruction |= inst.operands[1].imm & 0xff;
13421 inst.instruction |= 0xf0000;
13422 }
13423 }
13424
13425 static void
13426 do_t_msr (void)
13427 {
13428 int flags;
13429 unsigned Rn;
13430
13431 if (do_vfp_nsyn_msr () == SUCCESS)
13432 return;
13433
13434 constraint (!inst.operands[1].isreg,
13435 _("Thumb encoding does not support an immediate here"));
13436
13437 if (inst.operands[0].isreg)
13438 flags = (int)(inst.operands[0].reg);
13439 else
13440 flags = inst.operands[0].imm;
13441
13442 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13443 {
13444 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13445
13446 /* PR gas/12698: The constraint is only applied for m_profile.
13447 If the user has specified -march=all, we want to ignore it as
13448 we are building for any CPU type, including non-m variants. */
13449 bfd_boolean m_profile =
13450 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13451 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13452 && (bits & ~(PSR_s | PSR_f)) != 0)
13453 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13454 && bits != PSR_f)) && m_profile,
13455 _("selected processor does not support requested special "
13456 "purpose register"));
13457 }
13458 else
13459 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13460 "requested special purpose register"));
13461
13462 Rn = inst.operands[1].reg;
13463 reject_bad_reg (Rn);
13464
13465 inst.instruction |= (flags & SPSR_BIT) >> 2;
13466 inst.instruction |= (flags & 0xf0000) >> 8;
13467 inst.instruction |= (flags & 0x300) >> 4;
13468 inst.instruction |= (flags & 0xff);
13469 inst.instruction |= Rn << 16;
13470 }
13471
13472 static void
13473 do_t_mul (void)
13474 {
13475 bfd_boolean narrow;
13476 unsigned Rd, Rn, Rm;
13477
13478 if (!inst.operands[2].present)
13479 inst.operands[2].reg = inst.operands[0].reg;
13480
13481 Rd = inst.operands[0].reg;
13482 Rn = inst.operands[1].reg;
13483 Rm = inst.operands[2].reg;
13484
13485 if (unified_syntax)
13486 {
13487 if (inst.size_req == 4
13488 || (Rd != Rn
13489 && Rd != Rm)
13490 || Rn > 7
13491 || Rm > 7)
13492 narrow = FALSE;
13493 else if (inst.instruction == T_MNEM_muls)
13494 narrow = !in_pred_block ();
13495 else
13496 narrow = in_pred_block ();
13497 }
13498 else
13499 {
13500 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13501 constraint (Rn > 7 || Rm > 7,
13502 BAD_HIREG);
13503 narrow = TRUE;
13504 }
13505
13506 if (narrow)
13507 {
13508 /* 16-bit MULS/Conditional MUL. */
13509 inst.instruction = THUMB_OP16 (inst.instruction);
13510 inst.instruction |= Rd;
13511
13512 if (Rd == Rn)
13513 inst.instruction |= Rm << 3;
13514 else if (Rd == Rm)
13515 inst.instruction |= Rn << 3;
13516 else
13517 constraint (1, _("dest must overlap one source register"));
13518 }
13519 else
13520 {
13521 constraint (inst.instruction != T_MNEM_mul,
13522 _("Thumb-2 MUL must not set flags"));
13523 /* 32-bit MUL. */
13524 inst.instruction = THUMB_OP32 (inst.instruction);
13525 inst.instruction |= Rd << 8;
13526 inst.instruction |= Rn << 16;
13527 inst.instruction |= Rm << 0;
13528
13529 reject_bad_reg (Rd);
13530 reject_bad_reg (Rn);
13531 reject_bad_reg (Rm);
13532 }
13533 }
13534
13535 static void
13536 do_t_mull (void)
13537 {
13538 unsigned RdLo, RdHi, Rn, Rm;
13539
13540 RdLo = inst.operands[0].reg;
13541 RdHi = inst.operands[1].reg;
13542 Rn = inst.operands[2].reg;
13543 Rm = inst.operands[3].reg;
13544
13545 reject_bad_reg (RdLo);
13546 reject_bad_reg (RdHi);
13547 reject_bad_reg (Rn);
13548 reject_bad_reg (Rm);
13549
13550 inst.instruction |= RdLo << 12;
13551 inst.instruction |= RdHi << 8;
13552 inst.instruction |= Rn << 16;
13553 inst.instruction |= Rm;
13554
13555 if (RdLo == RdHi)
13556 as_tsktsk (_("rdhi and rdlo must be different"));
13557 }
13558
13559 static void
13560 do_t_nop (void)
13561 {
13562 set_pred_insn_type (NEUTRAL_IT_INSN);
13563
13564 if (unified_syntax)
13565 {
13566 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13567 {
13568 inst.instruction = THUMB_OP32 (inst.instruction);
13569 inst.instruction |= inst.operands[0].imm;
13570 }
13571 else
13572 {
13573 /* PR9722: Check for Thumb2 availability before
13574 generating a thumb2 nop instruction. */
13575 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13576 {
13577 inst.instruction = THUMB_OP16 (inst.instruction);
13578 inst.instruction |= inst.operands[0].imm << 4;
13579 }
13580 else
13581 inst.instruction = 0x46c0;
13582 }
13583 }
13584 else
13585 {
13586 constraint (inst.operands[0].present,
13587 _("Thumb does not support NOP with hints"));
13588 inst.instruction = 0x46c0;
13589 }
13590 }
13591
13592 static void
13593 do_t_neg (void)
13594 {
13595 if (unified_syntax)
13596 {
13597 bfd_boolean narrow;
13598
13599 if (THUMB_SETS_FLAGS (inst.instruction))
13600 narrow = !in_pred_block ();
13601 else
13602 narrow = in_pred_block ();
13603 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13604 narrow = FALSE;
13605 if (inst.size_req == 4)
13606 narrow = FALSE;
13607
13608 if (!narrow)
13609 {
13610 inst.instruction = THUMB_OP32 (inst.instruction);
13611 inst.instruction |= inst.operands[0].reg << 8;
13612 inst.instruction |= inst.operands[1].reg << 16;
13613 }
13614 else
13615 {
13616 inst.instruction = THUMB_OP16 (inst.instruction);
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
13619 }
13620 }
13621 else
13622 {
13623 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13624 BAD_HIREG);
13625 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13626
13627 inst.instruction = THUMB_OP16 (inst.instruction);
13628 inst.instruction |= inst.operands[0].reg;
13629 inst.instruction |= inst.operands[1].reg << 3;
13630 }
13631 }
13632
13633 static void
13634 do_t_orn (void)
13635 {
13636 unsigned Rd, Rn;
13637
13638 Rd = inst.operands[0].reg;
13639 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13640
13641 reject_bad_reg (Rd);
13642 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13643 reject_bad_reg (Rn);
13644
13645 inst.instruction |= Rd << 8;
13646 inst.instruction |= Rn << 16;
13647
13648 if (!inst.operands[2].isreg)
13649 {
13650 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13651 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13652 }
13653 else
13654 {
13655 unsigned Rm;
13656
13657 Rm = inst.operands[2].reg;
13658 reject_bad_reg (Rm);
13659
13660 constraint (inst.operands[2].shifted
13661 && inst.operands[2].immisreg,
13662 _("shift must be constant"));
13663 encode_thumb32_shifted_operand (2);
13664 }
13665 }
13666
13667 static void
13668 do_t_pkhbt (void)
13669 {
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
13683 if (inst.operands[3].present)
13684 {
13685 unsigned int val = inst.relocs[0].exp.X_add_number;
13686 constraint (inst.relocs[0].exp.X_op != O_constant,
13687 _("expression too complex"));
13688 inst.instruction |= (val & 0x1c) << 10;
13689 inst.instruction |= (val & 0x03) << 6;
13690 }
13691 }
13692
13693 static void
13694 do_t_pkhtb (void)
13695 {
13696 if (!inst.operands[3].present)
13697 {
13698 unsigned Rtmp;
13699
13700 inst.instruction &= ~0x00000020;
13701
13702 /* PR 10168. Swap the Rm and Rn registers. */
13703 Rtmp = inst.operands[1].reg;
13704 inst.operands[1].reg = inst.operands[2].reg;
13705 inst.operands[2].reg = Rtmp;
13706 }
13707 do_t_pkhbt ();
13708 }
13709
13710 static void
13711 do_t_pld (void)
13712 {
13713 if (inst.operands[0].immisreg)
13714 reject_bad_reg (inst.operands[0].imm);
13715
13716 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13717 }
13718
13719 static void
13720 do_t_push_pop (void)
13721 {
13722 unsigned mask;
13723
13724 constraint (inst.operands[0].writeback,
13725 _("push/pop do not support {reglist}^"));
13726 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13727 _("expression too complex"));
13728
13729 mask = inst.operands[0].imm;
13730 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13731 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13732 else if (inst.size_req != 4
13733 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13734 ? REG_LR : REG_PC)))
13735 {
13736 inst.instruction = THUMB_OP16 (inst.instruction);
13737 inst.instruction |= THUMB_PP_PC_LR;
13738 inst.instruction |= mask & 0xff;
13739 }
13740 else if (unified_syntax)
13741 {
13742 inst.instruction = THUMB_OP32 (inst.instruction);
13743 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13744 }
13745 else
13746 {
13747 inst.error = _("invalid register list to push/pop instruction");
13748 return;
13749 }
13750 }
13751
13752 static void
13753 do_t_clrm (void)
13754 {
13755 if (unified_syntax)
13756 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13757 else
13758 {
13759 inst.error = _("invalid register list to push/pop instruction");
13760 return;
13761 }
13762 }
13763
13764 static void
13765 do_t_vscclrm (void)
13766 {
13767 if (inst.operands[0].issingle)
13768 {
13769 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13770 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13771 inst.instruction |= inst.operands[0].imm;
13772 }
13773 else
13774 {
13775 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13776 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13777 inst.instruction |= 1 << 8;
13778 inst.instruction |= inst.operands[0].imm << 1;
13779 }
13780 }
13781
13782 static void
13783 do_t_rbit (void)
13784 {
13785 unsigned Rd, Rm;
13786
13787 Rd = inst.operands[0].reg;
13788 Rm = inst.operands[1].reg;
13789
13790 reject_bad_reg (Rd);
13791 reject_bad_reg (Rm);
13792
13793 inst.instruction |= Rd << 8;
13794 inst.instruction |= Rm << 16;
13795 inst.instruction |= Rm;
13796 }
13797
13798 static void
13799 do_t_rev (void)
13800 {
13801 unsigned Rd, Rm;
13802
13803 Rd = inst.operands[0].reg;
13804 Rm = inst.operands[1].reg;
13805
13806 reject_bad_reg (Rd);
13807 reject_bad_reg (Rm);
13808
13809 if (Rd <= 7 && Rm <= 7
13810 && inst.size_req != 4)
13811 {
13812 inst.instruction = THUMB_OP16 (inst.instruction);
13813 inst.instruction |= Rd;
13814 inst.instruction |= Rm << 3;
13815 }
13816 else if (unified_syntax)
13817 {
13818 inst.instruction = THUMB_OP32 (inst.instruction);
13819 inst.instruction |= Rd << 8;
13820 inst.instruction |= Rm << 16;
13821 inst.instruction |= Rm;
13822 }
13823 else
13824 inst.error = BAD_HIREG;
13825 }
13826
13827 static void
13828 do_t_rrx (void)
13829 {
13830 unsigned Rd, Rm;
13831
13832 Rd = inst.operands[0].reg;
13833 Rm = inst.operands[1].reg;
13834
13835 reject_bad_reg (Rd);
13836 reject_bad_reg (Rm);
13837
13838 inst.instruction |= Rd << 8;
13839 inst.instruction |= Rm;
13840 }
13841
13842 static void
13843 do_t_rsb (void)
13844 {
13845 unsigned Rd, Rs;
13846
13847 Rd = inst.operands[0].reg;
13848 Rs = (inst.operands[1].present
13849 ? inst.operands[1].reg /* Rd, Rs, foo */
13850 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13851
13852 reject_bad_reg (Rd);
13853 reject_bad_reg (Rs);
13854 if (inst.operands[2].isreg)
13855 reject_bad_reg (inst.operands[2].reg);
13856
13857 inst.instruction |= Rd << 8;
13858 inst.instruction |= Rs << 16;
13859 if (!inst.operands[2].isreg)
13860 {
13861 bfd_boolean narrow;
13862
13863 if ((inst.instruction & 0x00100000) != 0)
13864 narrow = !in_pred_block ();
13865 else
13866 narrow = in_pred_block ();
13867
13868 if (Rd > 7 || Rs > 7)
13869 narrow = FALSE;
13870
13871 if (inst.size_req == 4 || !unified_syntax)
13872 narrow = FALSE;
13873
13874 if (inst.relocs[0].exp.X_op != O_constant
13875 || inst.relocs[0].exp.X_add_number != 0)
13876 narrow = FALSE;
13877
13878 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13879 relaxation, but it doesn't seem worth the hassle. */
13880 if (narrow)
13881 {
13882 inst.relocs[0].type = BFD_RELOC_UNUSED;
13883 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13884 inst.instruction |= Rs << 3;
13885 inst.instruction |= Rd;
13886 }
13887 else
13888 {
13889 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13890 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13891 }
13892 }
13893 else
13894 encode_thumb32_shifted_operand (2);
13895 }
13896
13897 static void
13898 do_t_setend (void)
13899 {
13900 if (warn_on_deprecated
13901 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13902 as_tsktsk (_("setend use is deprecated for ARMv8"));
13903
13904 set_pred_insn_type (OUTSIDE_PRED_INSN);
13905 if (inst.operands[0].imm)
13906 inst.instruction |= 0x8;
13907 }
13908
13909 static void
13910 do_t_shift (void)
13911 {
13912 if (!inst.operands[1].present)
13913 inst.operands[1].reg = inst.operands[0].reg;
13914
13915 if (unified_syntax)
13916 {
13917 bfd_boolean narrow;
13918 int shift_kind;
13919
13920 switch (inst.instruction)
13921 {
13922 case T_MNEM_asr:
13923 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13924 case T_MNEM_lsl:
13925 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13926 case T_MNEM_lsr:
13927 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13928 case T_MNEM_ror:
13929 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13930 default: abort ();
13931 }
13932
13933 if (THUMB_SETS_FLAGS (inst.instruction))
13934 narrow = !in_pred_block ();
13935 else
13936 narrow = in_pred_block ();
13937 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13938 narrow = FALSE;
13939 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13940 narrow = FALSE;
13941 if (inst.operands[2].isreg
13942 && (inst.operands[1].reg != inst.operands[0].reg
13943 || inst.operands[2].reg > 7))
13944 narrow = FALSE;
13945 if (inst.size_req == 4)
13946 narrow = FALSE;
13947
13948 reject_bad_reg (inst.operands[0].reg);
13949 reject_bad_reg (inst.operands[1].reg);
13950
13951 if (!narrow)
13952 {
13953 if (inst.operands[2].isreg)
13954 {
13955 reject_bad_reg (inst.operands[2].reg);
13956 inst.instruction = THUMB_OP32 (inst.instruction);
13957 inst.instruction |= inst.operands[0].reg << 8;
13958 inst.instruction |= inst.operands[1].reg << 16;
13959 inst.instruction |= inst.operands[2].reg;
13960
13961 /* PR 12854: Error on extraneous shifts. */
13962 constraint (inst.operands[2].shifted,
13963 _("extraneous shift as part of operand to shift insn"));
13964 }
13965 else
13966 {
13967 inst.operands[1].shifted = 1;
13968 inst.operands[1].shift_kind = shift_kind;
13969 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13970 ? T_MNEM_movs : T_MNEM_mov);
13971 inst.instruction |= inst.operands[0].reg << 8;
13972 encode_thumb32_shifted_operand (1);
13973 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13974 inst.relocs[0].type = BFD_RELOC_UNUSED;
13975 }
13976 }
13977 else
13978 {
13979 if (inst.operands[2].isreg)
13980 {
13981 switch (shift_kind)
13982 {
13983 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13984 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13985 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13986 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13987 default: abort ();
13988 }
13989
13990 inst.instruction |= inst.operands[0].reg;
13991 inst.instruction |= inst.operands[2].reg << 3;
13992
13993 /* PR 12854: Error on extraneous shifts. */
13994 constraint (inst.operands[2].shifted,
13995 _("extraneous shift as part of operand to shift insn"));
13996 }
13997 else
13998 {
13999 switch (shift_kind)
14000 {
14001 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
14002 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
14003 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
14004 default: abort ();
14005 }
14006 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14007 inst.instruction |= inst.operands[0].reg;
14008 inst.instruction |= inst.operands[1].reg << 3;
14009 }
14010 }
14011 }
14012 else
14013 {
14014 constraint (inst.operands[0].reg > 7
14015 || inst.operands[1].reg > 7, BAD_HIREG);
14016 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
14017
14018 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
14019 {
14020 constraint (inst.operands[2].reg > 7, BAD_HIREG);
14021 constraint (inst.operands[0].reg != inst.operands[1].reg,
14022 _("source1 and dest must be same register"));
14023
14024 switch (inst.instruction)
14025 {
14026 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
14027 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
14028 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
14029 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
14030 default: abort ();
14031 }
14032
14033 inst.instruction |= inst.operands[0].reg;
14034 inst.instruction |= inst.operands[2].reg << 3;
14035
14036 /* PR 12854: Error on extraneous shifts. */
14037 constraint (inst.operands[2].shifted,
14038 _("extraneous shift as part of operand to shift insn"));
14039 }
14040 else
14041 {
14042 switch (inst.instruction)
14043 {
14044 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
14045 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
14046 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
14047 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
14048 default: abort ();
14049 }
14050 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14051 inst.instruction |= inst.operands[0].reg;
14052 inst.instruction |= inst.operands[1].reg << 3;
14053 }
14054 }
14055 }
14056
14057 static void
14058 do_t_simd (void)
14059 {
14060 unsigned Rd, Rn, Rm;
14061
14062 Rd = inst.operands[0].reg;
14063 Rn = inst.operands[1].reg;
14064 Rm = inst.operands[2].reg;
14065
14066 reject_bad_reg (Rd);
14067 reject_bad_reg (Rn);
14068 reject_bad_reg (Rm);
14069
14070 inst.instruction |= Rd << 8;
14071 inst.instruction |= Rn << 16;
14072 inst.instruction |= Rm;
14073 }
14074
14075 static void
14076 do_t_simd2 (void)
14077 {
14078 unsigned Rd, Rn, Rm;
14079
14080 Rd = inst.operands[0].reg;
14081 Rm = inst.operands[1].reg;
14082 Rn = inst.operands[2].reg;
14083
14084 reject_bad_reg (Rd);
14085 reject_bad_reg (Rn);
14086 reject_bad_reg (Rm);
14087
14088 inst.instruction |= Rd << 8;
14089 inst.instruction |= Rn << 16;
14090 inst.instruction |= Rm;
14091 }
14092
14093 static void
14094 do_t_smc (void)
14095 {
14096 unsigned int value = inst.relocs[0].exp.X_add_number;
14097 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
14098 _("SMC is not permitted on this architecture"));
14099 constraint (inst.relocs[0].exp.X_op != O_constant,
14100 _("expression too complex"));
14101 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
14102
14103 inst.relocs[0].type = BFD_RELOC_UNUSED;
14104 inst.instruction |= (value & 0x000f) << 16;
14105
14106 /* PR gas/15623: SMC instructions must be last in an IT block. */
14107 set_pred_insn_type_last ();
14108 }
14109
14110 static void
14111 do_t_hvc (void)
14112 {
14113 unsigned int value = inst.relocs[0].exp.X_add_number;
14114
14115 inst.relocs[0].type = BFD_RELOC_UNUSED;
14116 inst.instruction |= (value & 0x0fff);
14117 inst.instruction |= (value & 0xf000) << 4;
14118 }
14119
14120 static void
14121 do_t_ssat_usat (int bias)
14122 {
14123 unsigned Rd, Rn;
14124
14125 Rd = inst.operands[0].reg;
14126 Rn = inst.operands[2].reg;
14127
14128 reject_bad_reg (Rd);
14129 reject_bad_reg (Rn);
14130
14131 inst.instruction |= Rd << 8;
14132 inst.instruction |= inst.operands[1].imm - bias;
14133 inst.instruction |= Rn << 16;
14134
14135 if (inst.operands[3].present)
14136 {
14137 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
14138
14139 inst.relocs[0].type = BFD_RELOC_UNUSED;
14140
14141 constraint (inst.relocs[0].exp.X_op != O_constant,
14142 _("expression too complex"));
14143
14144 if (shift_amount != 0)
14145 {
14146 constraint (shift_amount > 31,
14147 _("shift expression is too large"));
14148
14149 if (inst.operands[3].shift_kind == SHIFT_ASR)
14150 inst.instruction |= 0x00200000; /* sh bit. */
14151
14152 inst.instruction |= (shift_amount & 0x1c) << 10;
14153 inst.instruction |= (shift_amount & 0x03) << 6;
14154 }
14155 }
14156 }
14157
14158 static void
14159 do_t_ssat (void)
14160 {
14161 do_t_ssat_usat (1);
14162 }
14163
14164 static void
14165 do_t_ssat16 (void)
14166 {
14167 unsigned Rd, Rn;
14168
14169 Rd = inst.operands[0].reg;
14170 Rn = inst.operands[2].reg;
14171
14172 reject_bad_reg (Rd);
14173 reject_bad_reg (Rn);
14174
14175 inst.instruction |= Rd << 8;
14176 inst.instruction |= inst.operands[1].imm - 1;
14177 inst.instruction |= Rn << 16;
14178 }
14179
14180 static void
14181 do_t_strex (void)
14182 {
14183 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14184 || inst.operands[2].postind || inst.operands[2].writeback
14185 || inst.operands[2].immisreg || inst.operands[2].shifted
14186 || inst.operands[2].negative,
14187 BAD_ADDR_MODE);
14188
14189 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14190
14191 inst.instruction |= inst.operands[0].reg << 8;
14192 inst.instruction |= inst.operands[1].reg << 12;
14193 inst.instruction |= inst.operands[2].reg << 16;
14194 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14195 }
14196
14197 static void
14198 do_t_strexd (void)
14199 {
14200 if (!inst.operands[2].present)
14201 inst.operands[2].reg = inst.operands[1].reg + 1;
14202
14203 constraint (inst.operands[0].reg == inst.operands[1].reg
14204 || inst.operands[0].reg == inst.operands[2].reg
14205 || inst.operands[0].reg == inst.operands[3].reg,
14206 BAD_OVERLAP);
14207
14208 inst.instruction |= inst.operands[0].reg;
14209 inst.instruction |= inst.operands[1].reg << 12;
14210 inst.instruction |= inst.operands[2].reg << 8;
14211 inst.instruction |= inst.operands[3].reg << 16;
14212 }
14213
14214 static void
14215 do_t_sxtah (void)
14216 {
14217 unsigned Rd, Rn, Rm;
14218
14219 Rd = inst.operands[0].reg;
14220 Rn = inst.operands[1].reg;
14221 Rm = inst.operands[2].reg;
14222
14223 reject_bad_reg (Rd);
14224 reject_bad_reg (Rn);
14225 reject_bad_reg (Rm);
14226
14227 inst.instruction |= Rd << 8;
14228 inst.instruction |= Rn << 16;
14229 inst.instruction |= Rm;
14230 inst.instruction |= inst.operands[3].imm << 4;
14231 }
14232
14233 static void
14234 do_t_sxth (void)
14235 {
14236 unsigned Rd, Rm;
14237
14238 Rd = inst.operands[0].reg;
14239 Rm = inst.operands[1].reg;
14240
14241 reject_bad_reg (Rd);
14242 reject_bad_reg (Rm);
14243
14244 if (inst.instruction <= 0xffff
14245 && inst.size_req != 4
14246 && Rd <= 7 && Rm <= 7
14247 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14248 {
14249 inst.instruction = THUMB_OP16 (inst.instruction);
14250 inst.instruction |= Rd;
14251 inst.instruction |= Rm << 3;
14252 }
14253 else if (unified_syntax)
14254 {
14255 if (inst.instruction <= 0xffff)
14256 inst.instruction = THUMB_OP32 (inst.instruction);
14257 inst.instruction |= Rd << 8;
14258 inst.instruction |= Rm;
14259 inst.instruction |= inst.operands[2].imm << 4;
14260 }
14261 else
14262 {
14263 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14264 _("Thumb encoding does not support rotation"));
14265 constraint (1, BAD_HIREG);
14266 }
14267 }
14268
14269 static void
14270 do_t_swi (void)
14271 {
14272 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14273 }
14274
14275 static void
14276 do_t_tb (void)
14277 {
14278 unsigned Rn, Rm;
14279 int half;
14280
14281 half = (inst.instruction & 0x10) != 0;
14282 set_pred_insn_type_last ();
14283 constraint (inst.operands[0].immisreg,
14284 _("instruction requires register index"));
14285
14286 Rn = inst.operands[0].reg;
14287 Rm = inst.operands[0].imm;
14288
14289 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14290 constraint (Rn == REG_SP, BAD_SP);
14291 reject_bad_reg (Rm);
14292
14293 constraint (!half && inst.operands[0].shifted,
14294 _("instruction does not allow shifted index"));
14295 inst.instruction |= (Rn << 16) | Rm;
14296 }
14297
14298 static void
14299 do_t_udf (void)
14300 {
14301 if (!inst.operands[0].present)
14302 inst.operands[0].imm = 0;
14303
14304 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14305 {
14306 constraint (inst.size_req == 2,
14307 _("immediate value out of range"));
14308 inst.instruction = THUMB_OP32 (inst.instruction);
14309 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14310 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14311 }
14312 else
14313 {
14314 inst.instruction = THUMB_OP16 (inst.instruction);
14315 inst.instruction |= inst.operands[0].imm;
14316 }
14317
14318 set_pred_insn_type (NEUTRAL_IT_INSN);
14319 }
14320
14321
14322 static void
14323 do_t_usat (void)
14324 {
14325 do_t_ssat_usat (0);
14326 }
14327
14328 static void
14329 do_t_usat16 (void)
14330 {
14331 unsigned Rd, Rn;
14332
14333 Rd = inst.operands[0].reg;
14334 Rn = inst.operands[2].reg;
14335
14336 reject_bad_reg (Rd);
14337 reject_bad_reg (Rn);
14338
14339 inst.instruction |= Rd << 8;
14340 inst.instruction |= inst.operands[1].imm;
14341 inst.instruction |= Rn << 16;
14342 }
14343
14344 /* Checking the range of the branch offset (VAL) with NBITS bits
14345 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14346 static int
14347 v8_1_branch_value_check (int val, int nbits, int is_signed)
14348 {
14349 gas_assert (nbits > 0 && nbits <= 32);
14350 if (is_signed)
14351 {
14352 int cmp = (1 << (nbits - 1));
14353 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14354 return FAIL;
14355 }
14356 else
14357 {
14358 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14359 return FAIL;
14360 }
14361 return SUCCESS;
14362 }
14363
14364 /* For branches in Armv8.1-M Mainline. */
14365 static void
14366 do_t_branch_future (void)
14367 {
14368 unsigned long insn = inst.instruction;
14369
14370 inst.instruction = THUMB_OP32 (inst.instruction);
14371 if (inst.operands[0].hasreloc == 0)
14372 {
14373 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14374 as_bad (BAD_BRANCH_OFF);
14375
14376 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14377 }
14378 else
14379 {
14380 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14381 inst.relocs[0].pc_rel = 1;
14382 }
14383
14384 switch (insn)
14385 {
14386 case T_MNEM_bf:
14387 if (inst.operands[1].hasreloc == 0)
14388 {
14389 int val = inst.operands[1].imm;
14390 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14391 as_bad (BAD_BRANCH_OFF);
14392
14393 int immA = (val & 0x0001f000) >> 12;
14394 int immB = (val & 0x00000ffc) >> 2;
14395 int immC = (val & 0x00000002) >> 1;
14396 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14397 }
14398 else
14399 {
14400 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14401 inst.relocs[1].pc_rel = 1;
14402 }
14403 break;
14404
14405 case T_MNEM_bfl:
14406 if (inst.operands[1].hasreloc == 0)
14407 {
14408 int val = inst.operands[1].imm;
14409 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14410 as_bad (BAD_BRANCH_OFF);
14411
14412 int immA = (val & 0x0007f000) >> 12;
14413 int immB = (val & 0x00000ffc) >> 2;
14414 int immC = (val & 0x00000002) >> 1;
14415 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14416 }
14417 else
14418 {
14419 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14420 inst.relocs[1].pc_rel = 1;
14421 }
14422 break;
14423
14424 case T_MNEM_bfcsel:
14425 /* Operand 1. */
14426 if (inst.operands[1].hasreloc == 0)
14427 {
14428 int val = inst.operands[1].imm;
14429 int immA = (val & 0x00001000) >> 12;
14430 int immB = (val & 0x00000ffc) >> 2;
14431 int immC = (val & 0x00000002) >> 1;
14432 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14433 }
14434 else
14435 {
14436 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14437 inst.relocs[1].pc_rel = 1;
14438 }
14439
14440 /* Operand 2. */
14441 if (inst.operands[2].hasreloc == 0)
14442 {
14443 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14444 int val2 = inst.operands[2].imm;
14445 int val0 = inst.operands[0].imm & 0x1f;
14446 int diff = val2 - val0;
14447 if (diff == 4)
14448 inst.instruction |= 1 << 17; /* T bit. */
14449 else if (diff != 2)
14450 as_bad (_("out of range label-relative fixup value"));
14451 }
14452 else
14453 {
14454 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14455 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14456 inst.relocs[2].pc_rel = 1;
14457 }
14458
14459 /* Operand 3. */
14460 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14461 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14462 break;
14463
14464 case T_MNEM_bfx:
14465 case T_MNEM_bflx:
14466 inst.instruction |= inst.operands[1].reg << 16;
14467 break;
14468
14469 default: abort ();
14470 }
14471 }
14472
14473 /* Helper function for do_t_loloop to handle relocations. */
14474 static void
14475 v8_1_loop_reloc (int is_le)
14476 {
14477 if (inst.relocs[0].exp.X_op == O_constant)
14478 {
14479 int value = inst.relocs[0].exp.X_add_number;
14480 value = (is_le) ? -value : value;
14481
14482 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14483 as_bad (BAD_BRANCH_OFF);
14484
14485 int imml, immh;
14486
14487 immh = (value & 0x00000ffc) >> 2;
14488 imml = (value & 0x00000002) >> 1;
14489
14490 inst.instruction |= (imml << 11) | (immh << 1);
14491 }
14492 else
14493 {
14494 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14495 inst.relocs[0].pc_rel = 1;
14496 }
14497 }
14498
14499 /* For shifts with four operands in MVE. */
14500 static void
14501 do_mve_scalar_shift1 (void)
14502 {
14503 unsigned int value = inst.operands[2].imm;
14504
14505 inst.instruction |= inst.operands[0].reg << 16;
14506 inst.instruction |= inst.operands[1].reg << 8;
14507
14508 /* Setting the bit for saturation. */
14509 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14510
14511 /* Assuming Rm is already checked not to be 11x1. */
14512 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14513 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14514 inst.instruction |= inst.operands[3].reg << 12;
14515 }
14516
14517 /* For shifts in MVE. */
14518 static void
14519 do_mve_scalar_shift (void)
14520 {
14521 if (!inst.operands[2].present)
14522 {
14523 inst.operands[2] = inst.operands[1];
14524 inst.operands[1].reg = 0xf;
14525 }
14526
14527 inst.instruction |= inst.operands[0].reg << 16;
14528 inst.instruction |= inst.operands[1].reg << 8;
14529
14530 if (inst.operands[2].isreg)
14531 {
14532 /* Assuming Rm is already checked not to be 11x1. */
14533 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14534 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14535 inst.instruction |= inst.operands[2].reg << 12;
14536 }
14537 else
14538 {
14539 /* Assuming imm is already checked as [1,32]. */
14540 unsigned int value = inst.operands[2].imm;
14541 inst.instruction |= (value & 0x1c) << 10;
14542 inst.instruction |= (value & 0x03) << 6;
14543 /* Change last 4 bits from 0xd to 0xf. */
14544 inst.instruction |= 0x2;
14545 }
14546 }
14547
14548 /* MVE instruction encoder helpers. */
14549 #define M_MNEM_vabav 0xee800f01
14550 #define M_MNEM_vmladav 0xeef00e00
14551 #define M_MNEM_vmladava 0xeef00e20
14552 #define M_MNEM_vmladavx 0xeef01e00
14553 #define M_MNEM_vmladavax 0xeef01e20
14554 #define M_MNEM_vmlsdav 0xeef00e01
14555 #define M_MNEM_vmlsdava 0xeef00e21
14556 #define M_MNEM_vmlsdavx 0xeef01e01
14557 #define M_MNEM_vmlsdavax 0xeef01e21
14558 #define M_MNEM_vmullt 0xee011e00
14559 #define M_MNEM_vmullb 0xee010e00
14560 #define M_MNEM_vctp 0xf000e801
14561 #define M_MNEM_vst20 0xfc801e00
14562 #define M_MNEM_vst21 0xfc801e20
14563 #define M_MNEM_vst40 0xfc801e01
14564 #define M_MNEM_vst41 0xfc801e21
14565 #define M_MNEM_vst42 0xfc801e41
14566 #define M_MNEM_vst43 0xfc801e61
14567 #define M_MNEM_vld20 0xfc901e00
14568 #define M_MNEM_vld21 0xfc901e20
14569 #define M_MNEM_vld40 0xfc901e01
14570 #define M_MNEM_vld41 0xfc901e21
14571 #define M_MNEM_vld42 0xfc901e41
14572 #define M_MNEM_vld43 0xfc901e61
14573 #define M_MNEM_vstrb 0xec000e00
14574 #define M_MNEM_vstrh 0xec000e10
14575 #define M_MNEM_vstrw 0xec000e40
14576 #define M_MNEM_vstrd 0xec000e50
14577 #define M_MNEM_vldrb 0xec100e00
14578 #define M_MNEM_vldrh 0xec100e10
14579 #define M_MNEM_vldrw 0xec100e40
14580 #define M_MNEM_vldrd 0xec100e50
14581 #define M_MNEM_vmovlt 0xeea01f40
14582 #define M_MNEM_vmovlb 0xeea00f40
14583 #define M_MNEM_vmovnt 0xfe311e81
14584 #define M_MNEM_vmovnb 0xfe310e81
14585 #define M_MNEM_vadc 0xee300f00
14586 #define M_MNEM_vadci 0xee301f00
14587 #define M_MNEM_vbrsr 0xfe011e60
14588 #define M_MNEM_vaddlv 0xee890f00
14589 #define M_MNEM_vaddlva 0xee890f20
14590 #define M_MNEM_vaddv 0xeef10f00
14591 #define M_MNEM_vaddva 0xeef10f20
14592 #define M_MNEM_vddup 0xee011f6e
14593 #define M_MNEM_vdwdup 0xee011f60
14594 #define M_MNEM_vidup 0xee010f6e
14595 #define M_MNEM_viwdup 0xee010f60
14596 #define M_MNEM_vmaxv 0xeee20f00
14597 #define M_MNEM_vmaxav 0xeee00f00
14598 #define M_MNEM_vminv 0xeee20f80
14599 #define M_MNEM_vminav 0xeee00f80
14600 #define M_MNEM_vmlaldav 0xee800e00
14601 #define M_MNEM_vmlaldava 0xee800e20
14602 #define M_MNEM_vmlaldavx 0xee801e00
14603 #define M_MNEM_vmlaldavax 0xee801e20
14604 #define M_MNEM_vmlsldav 0xee800e01
14605 #define M_MNEM_vmlsldava 0xee800e21
14606 #define M_MNEM_vmlsldavx 0xee801e01
14607 #define M_MNEM_vmlsldavax 0xee801e21
14608 #define M_MNEM_vrmlaldavhx 0xee801f00
14609 #define M_MNEM_vrmlaldavhax 0xee801f20
14610 #define M_MNEM_vrmlsldavh 0xfe800e01
14611 #define M_MNEM_vrmlsldavha 0xfe800e21
14612 #define M_MNEM_vrmlsldavhx 0xfe801e01
14613 #define M_MNEM_vrmlsldavhax 0xfe801e21
14614 #define M_MNEM_vqmovnt 0xee331e01
14615 #define M_MNEM_vqmovnb 0xee330e01
14616 #define M_MNEM_vqmovunt 0xee311e81
14617 #define M_MNEM_vqmovunb 0xee310e81
14618 #define M_MNEM_vshrnt 0xee801fc1
14619 #define M_MNEM_vshrnb 0xee800fc1
14620 #define M_MNEM_vrshrnt 0xfe801fc1
14621 #define M_MNEM_vqshrnt 0xee801f40
14622 #define M_MNEM_vqshrnb 0xee800f40
14623 #define M_MNEM_vqshrunt 0xee801fc0
14624 #define M_MNEM_vqshrunb 0xee800fc0
14625 #define M_MNEM_vrshrnb 0xfe800fc1
14626 #define M_MNEM_vqrshrnt 0xee801f41
14627 #define M_MNEM_vqrshrnb 0xee800f41
14628 #define M_MNEM_vqrshrunt 0xfe801fc0
14629 #define M_MNEM_vqrshrunb 0xfe800fc0
14630
14631 /* Bfloat16 instruction encoder helpers. */
14632 #define B_MNEM_vfmat 0xfc300850
14633 #define B_MNEM_vfmab 0xfc300810
14634
14635 /* Neon instruction encoder helpers. */
14636
14637 /* Encodings for the different types for various Neon opcodes. */
14638
14639 /* An "invalid" code for the following tables. */
14640 #define N_INV -1u
14641
14642 struct neon_tab_entry
14643 {
14644 unsigned integer;
14645 unsigned float_or_poly;
14646 unsigned scalar_or_imm;
14647 };
14648
14649 /* Map overloaded Neon opcodes to their respective encodings. */
14650 #define NEON_ENC_TAB \
14651 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14652 X(vabdl, 0x0800700, N_INV, N_INV), \
14653 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14654 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14655 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14656 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14657 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14658 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14659 X(vaddl, 0x0800000, N_INV, N_INV), \
14660 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14661 X(vsubl, 0x0800200, N_INV, N_INV), \
14662 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14663 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14664 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14665 /* Register variants of the following two instructions are encoded as
14666 vcge / vcgt with the operands reversed. */ \
14667 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14668 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14669 X(vfma, N_INV, 0x0000c10, N_INV), \
14670 X(vfms, N_INV, 0x0200c10, N_INV), \
14671 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14672 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14673 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14674 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14675 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14676 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14677 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14678 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14679 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14680 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14681 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14682 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14683 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14684 X(vshl, 0x0000400, N_INV, 0x0800510), \
14685 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14686 X(vand, 0x0000110, N_INV, 0x0800030), \
14687 X(vbic, 0x0100110, N_INV, 0x0800030), \
14688 X(veor, 0x1000110, N_INV, N_INV), \
14689 X(vorn, 0x0300110, N_INV, 0x0800010), \
14690 X(vorr, 0x0200110, N_INV, 0x0800010), \
14691 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14692 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14693 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14694 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14695 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14696 X(vst1, 0x0000000, 0x0800000, N_INV), \
14697 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14698 X(vst2, 0x0000100, 0x0800100, N_INV), \
14699 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14700 X(vst3, 0x0000200, 0x0800200, N_INV), \
14701 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14702 X(vst4, 0x0000300, 0x0800300, N_INV), \
14703 X(vmovn, 0x1b20200, N_INV, N_INV), \
14704 X(vtrn, 0x1b20080, N_INV, N_INV), \
14705 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14706 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14707 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14708 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14709 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14710 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14711 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14712 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14713 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14714 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14715 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14716 X(vseleq, 0xe000a00, N_INV, N_INV), \
14717 X(vselvs, 0xe100a00, N_INV, N_INV), \
14718 X(vselge, 0xe200a00, N_INV, N_INV), \
14719 X(vselgt, 0xe300a00, N_INV, N_INV), \
14720 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14721 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14722 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14723 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14724 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14725 X(aes, 0x3b00300, N_INV, N_INV), \
14726 X(sha3op, 0x2000c00, N_INV, N_INV), \
14727 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14728 X(sha2op, 0x3ba0380, N_INV, N_INV)
14729
14730 enum neon_opc
14731 {
14732 #define X(OPC,I,F,S) N_MNEM_##OPC
14733 NEON_ENC_TAB
14734 #undef X
14735 };
14736
14737 static const struct neon_tab_entry neon_enc_tab[] =
14738 {
14739 #define X(OPC,I,F,S) { (I), (F), (S) }
14740 NEON_ENC_TAB
14741 #undef X
14742 };
14743
14744 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14745 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14746 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14747 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14748 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14749 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14750 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14751 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14752 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14753 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14754 #define NEON_ENC_SINGLE_(X) \
14755 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14756 #define NEON_ENC_DOUBLE_(X) \
14757 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14758 #define NEON_ENC_FPV8_(X) \
14759 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14760
14761 #define NEON_ENCODE(type, inst) \
14762 do \
14763 { \
14764 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14765 inst.is_neon = 1; \
14766 } \
14767 while (0)
14768
14769 #define check_neon_suffixes \
14770 do \
14771 { \
14772 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14773 { \
14774 as_bad (_("invalid neon suffix for non neon instruction")); \
14775 return; \
14776 } \
14777 } \
14778 while (0)
14779
14780 /* Define shapes for instruction operands. The following mnemonic characters
14781 are used in this table:
14782
14783 F - VFP S<n> register
14784 D - Neon D<n> register
14785 Q - Neon Q<n> register
14786 I - Immediate
14787 S - Scalar
14788 R - ARM register
14789 L - D<n> register list
14790
14791 This table is used to generate various data:
14792 - enumerations of the form NS_DDR to be used as arguments to
14793 neon_select_shape.
14794 - a table classifying shapes into single, double, quad, mixed.
14795 - a table used to drive neon_select_shape. */
14796
14797 #define NEON_SHAPE_DEF \
14798 X(4, (R, R, Q, Q), QUAD), \
14799 X(4, (Q, R, R, I), QUAD), \
14800 X(4, (R, R, S, S), QUAD), \
14801 X(4, (S, S, R, R), QUAD), \
14802 X(3, (Q, R, I), QUAD), \
14803 X(3, (I, Q, Q), QUAD), \
14804 X(3, (I, Q, R), QUAD), \
14805 X(3, (R, Q, Q), QUAD), \
14806 X(3, (D, D, D), DOUBLE), \
14807 X(3, (Q, Q, Q), QUAD), \
14808 X(3, (D, D, I), DOUBLE), \
14809 X(3, (Q, Q, I), QUAD), \
14810 X(3, (D, D, S), DOUBLE), \
14811 X(3, (Q, Q, S), QUAD), \
14812 X(3, (Q, Q, R), QUAD), \
14813 X(3, (R, R, Q), QUAD), \
14814 X(2, (R, Q), QUAD), \
14815 X(2, (D, D), DOUBLE), \
14816 X(2, (Q, Q), QUAD), \
14817 X(2, (D, S), DOUBLE), \
14818 X(2, (Q, S), QUAD), \
14819 X(2, (D, R), DOUBLE), \
14820 X(2, (Q, R), QUAD), \
14821 X(2, (D, I), DOUBLE), \
14822 X(2, (Q, I), QUAD), \
14823 X(3, (P, F, I), SINGLE), \
14824 X(3, (P, D, I), DOUBLE), \
14825 X(3, (P, Q, I), QUAD), \
14826 X(4, (P, F, F, I), SINGLE), \
14827 X(4, (P, D, D, I), DOUBLE), \
14828 X(4, (P, Q, Q, I), QUAD), \
14829 X(5, (P, F, F, F, I), SINGLE), \
14830 X(5, (P, D, D, D, I), DOUBLE), \
14831 X(5, (P, Q, Q, Q, I), QUAD), \
14832 X(3, (D, L, D), DOUBLE), \
14833 X(2, (D, Q), MIXED), \
14834 X(2, (Q, D), MIXED), \
14835 X(3, (D, Q, I), MIXED), \
14836 X(3, (Q, D, I), MIXED), \
14837 X(3, (Q, D, D), MIXED), \
14838 X(3, (D, Q, Q), MIXED), \
14839 X(3, (Q, Q, D), MIXED), \
14840 X(3, (Q, D, S), MIXED), \
14841 X(3, (D, Q, S), MIXED), \
14842 X(4, (D, D, D, I), DOUBLE), \
14843 X(4, (Q, Q, Q, I), QUAD), \
14844 X(4, (D, D, S, I), DOUBLE), \
14845 X(4, (Q, Q, S, I), QUAD), \
14846 X(2, (F, F), SINGLE), \
14847 X(3, (F, F, F), SINGLE), \
14848 X(2, (F, I), SINGLE), \
14849 X(2, (F, D), MIXED), \
14850 X(2, (D, F), MIXED), \
14851 X(3, (F, F, I), MIXED), \
14852 X(4, (R, R, F, F), SINGLE), \
14853 X(4, (F, F, R, R), SINGLE), \
14854 X(3, (D, R, R), DOUBLE), \
14855 X(3, (R, R, D), DOUBLE), \
14856 X(2, (S, R), SINGLE), \
14857 X(2, (R, S), SINGLE), \
14858 X(2, (F, R), SINGLE), \
14859 X(2, (R, F), SINGLE), \
14860 /* Used for MVE tail predicated loop instructions. */\
14861 X(2, (R, R), QUAD), \
14862 /* Half float shape supported so far. */\
14863 X (2, (H, D), MIXED), \
14864 X (2, (D, H), MIXED), \
14865 X (2, (H, F), MIXED), \
14866 X (2, (F, H), MIXED), \
14867 X (2, (H, H), HALF), \
14868 X (2, (H, R), HALF), \
14869 X (2, (R, H), HALF), \
14870 X (2, (H, I), HALF), \
14871 X (3, (H, H, H), HALF), \
14872 X (3, (H, F, I), MIXED), \
14873 X (3, (F, H, I), MIXED), \
14874 X (3, (D, H, H), MIXED), \
14875 X (3, (D, H, S), MIXED)
14876
14877 #define S2(A,B) NS_##A##B
14878 #define S3(A,B,C) NS_##A##B##C
14879 #define S4(A,B,C,D) NS_##A##B##C##D
14880 #define S5(A,B,C,D,E) NS_##A##B##C##D##E
14881
14882 #define X(N, L, C) S##N L
14883
14884 enum neon_shape
14885 {
14886 NEON_SHAPE_DEF,
14887 NS_NULL
14888 };
14889
14890 #undef X
14891 #undef S2
14892 #undef S3
14893 #undef S4
14894 #undef S5
14895
14896 enum neon_shape_class
14897 {
14898 SC_HALF,
14899 SC_SINGLE,
14900 SC_DOUBLE,
14901 SC_QUAD,
14902 SC_MIXED
14903 };
14904
14905 #define X(N, L, C) SC_##C
14906
14907 static enum neon_shape_class neon_shape_class[] =
14908 {
14909 NEON_SHAPE_DEF
14910 };
14911
14912 #undef X
14913
14914 enum neon_shape_el
14915 {
14916 SE_H,
14917 SE_F,
14918 SE_D,
14919 SE_Q,
14920 SE_I,
14921 SE_S,
14922 SE_R,
14923 SE_L,
14924 SE_P
14925 };
14926
14927 /* Register widths of above. */
14928 static unsigned neon_shape_el_size[] =
14929 {
14930 16,
14931 32,
14932 64,
14933 128,
14934 0,
14935 32,
14936 32,
14937 0,
14938 0
14939 };
14940
14941 struct neon_shape_info
14942 {
14943 unsigned els;
14944 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14945 };
14946
14947 #define S2(A,B) { SE_##A, SE_##B }
14948 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14949 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14950 #define S5(A,B,C,D,E) { SE_##A, SE_##B, SE_##C, SE_##D, SE_##E }
14951
14952 #define X(N, L, C) { N, S##N L }
14953
14954 static struct neon_shape_info neon_shape_tab[] =
14955 {
14956 NEON_SHAPE_DEF
14957 };
14958
14959 #undef X
14960 #undef S2
14961 #undef S3
14962 #undef S4
14963 #undef S5
14964
14965 /* Bit masks used in type checking given instructions.
14966 'N_EQK' means the type must be the same as (or based on in some way) the key
14967 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14968 set, various other bits can be set as well in order to modify the meaning of
14969 the type constraint. */
14970
14971 enum neon_type_mask
14972 {
14973 N_S8 = 0x0000001,
14974 N_S16 = 0x0000002,
14975 N_S32 = 0x0000004,
14976 N_S64 = 0x0000008,
14977 N_U8 = 0x0000010,
14978 N_U16 = 0x0000020,
14979 N_U32 = 0x0000040,
14980 N_U64 = 0x0000080,
14981 N_I8 = 0x0000100,
14982 N_I16 = 0x0000200,
14983 N_I32 = 0x0000400,
14984 N_I64 = 0x0000800,
14985 N_8 = 0x0001000,
14986 N_16 = 0x0002000,
14987 N_32 = 0x0004000,
14988 N_64 = 0x0008000,
14989 N_P8 = 0x0010000,
14990 N_P16 = 0x0020000,
14991 N_F16 = 0x0040000,
14992 N_F32 = 0x0080000,
14993 N_F64 = 0x0100000,
14994 N_P64 = 0x0200000,
14995 N_BF16 = 0x0400000,
14996 N_KEY = 0x1000000, /* Key element (main type specifier). */
14997 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14998 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14999 N_UNT = 0x8000000, /* Must be explicitly untyped. */
15000 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
15001 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
15002 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
15003 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
15004 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
15005 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
15006 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
15007 N_UTYP = 0,
15008 N_MAX_NONSPECIAL = N_P64
15009 };
15010
15011 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
15012
15013 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
15014 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15015 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
15016 #define N_S_32 (N_S8 | N_S16 | N_S32)
15017 #define N_F_16_32 (N_F16 | N_F32)
15018 #define N_SUF_32 (N_SU_32 | N_F_16_32)
15019 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
15020 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
15021 #define N_F_ALL (N_F16 | N_F32 | N_F64)
15022 #define N_I_MVE (N_I8 | N_I16 | N_I32)
15023 #define N_F_MVE (N_F16 | N_F32)
15024 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
15025
15026 /* Pass this as the first type argument to neon_check_type to ignore types
15027 altogether. */
15028 #define N_IGNORE_TYPE (N_KEY | N_EQK)
15029
15030 /* Select a "shape" for the current instruction (describing register types or
15031 sizes) from a list of alternatives. Return NS_NULL if the current instruction
15032 doesn't fit. For non-polymorphic shapes, checking is usually done as a
15033 function of operand parsing, so this function doesn't need to be called.
15034 Shapes should be listed in order of decreasing length. */
15035
15036 static enum neon_shape
15037 neon_select_shape (enum neon_shape shape, ...)
15038 {
15039 va_list ap;
15040 enum neon_shape first_shape = shape;
15041
15042 /* Fix missing optional operands. FIXME: we don't know at this point how
15043 many arguments we should have, so this makes the assumption that we have
15044 > 1. This is true of all current Neon opcodes, I think, but may not be
15045 true in the future. */
15046 if (!inst.operands[1].present)
15047 inst.operands[1] = inst.operands[0];
15048
15049 va_start (ap, shape);
15050
15051 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
15052 {
15053 unsigned j;
15054 int matches = 1;
15055
15056 for (j = 0; j < neon_shape_tab[shape].els; j++)
15057 {
15058 if (!inst.operands[j].present)
15059 {
15060 matches = 0;
15061 break;
15062 }
15063
15064 switch (neon_shape_tab[shape].el[j])
15065 {
15066 /* If a .f16, .16, .u16, .s16 type specifier is given over
15067 a VFP single precision register operand, it's essentially
15068 means only half of the register is used.
15069
15070 If the type specifier is given after the mnemonics, the
15071 information is stored in inst.vectype. If the type specifier
15072 is given after register operand, the information is stored
15073 in inst.operands[].vectype.
15074
15075 When there is only one type specifier, and all the register
15076 operands are the same type of hardware register, the type
15077 specifier applies to all register operands.
15078
15079 If no type specifier is given, the shape is inferred from
15080 operand information.
15081
15082 for example:
15083 vadd.f16 s0, s1, s2: NS_HHH
15084 vabs.f16 s0, s1: NS_HH
15085 vmov.f16 s0, r1: NS_HR
15086 vmov.f16 r0, s1: NS_RH
15087 vcvt.f16 r0, s1: NS_RH
15088 vcvt.f16.s32 s2, s2, #29: NS_HFI
15089 vcvt.f16.s32 s2, s2: NS_HF
15090 */
15091 case SE_H:
15092 if (!(inst.operands[j].isreg
15093 && inst.operands[j].isvec
15094 && inst.operands[j].issingle
15095 && !inst.operands[j].isquad
15096 && ((inst.vectype.elems == 1
15097 && inst.vectype.el[0].size == 16)
15098 || (inst.vectype.elems > 1
15099 && inst.vectype.el[j].size == 16)
15100 || (inst.vectype.elems == 0
15101 && inst.operands[j].vectype.type != NT_invtype
15102 && inst.operands[j].vectype.size == 16))))
15103 matches = 0;
15104 break;
15105
15106 case SE_F:
15107 if (!(inst.operands[j].isreg
15108 && inst.operands[j].isvec
15109 && inst.operands[j].issingle
15110 && !inst.operands[j].isquad
15111 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
15112 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
15113 || (inst.vectype.elems == 0
15114 && (inst.operands[j].vectype.size == 32
15115 || inst.operands[j].vectype.type == NT_invtype)))))
15116 matches = 0;
15117 break;
15118
15119 case SE_D:
15120 if (!(inst.operands[j].isreg
15121 && inst.operands[j].isvec
15122 && !inst.operands[j].isquad
15123 && !inst.operands[j].issingle))
15124 matches = 0;
15125 break;
15126
15127 case SE_R:
15128 if (!(inst.operands[j].isreg
15129 && !inst.operands[j].isvec))
15130 matches = 0;
15131 break;
15132
15133 case SE_Q:
15134 if (!(inst.operands[j].isreg
15135 && inst.operands[j].isvec
15136 && inst.operands[j].isquad
15137 && !inst.operands[j].issingle))
15138 matches = 0;
15139 break;
15140
15141 case SE_I:
15142 if (!(!inst.operands[j].isreg
15143 && !inst.operands[j].isscalar))
15144 matches = 0;
15145 break;
15146
15147 case SE_S:
15148 if (!(!inst.operands[j].isreg
15149 && inst.operands[j].isscalar))
15150 matches = 0;
15151 break;
15152
15153 case SE_P:
15154 case SE_L:
15155 break;
15156 }
15157 if (!matches)
15158 break;
15159 }
15160 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15161 /* We've matched all the entries in the shape table, and we don't
15162 have any left over operands which have not been matched. */
15163 break;
15164 }
15165
15166 va_end (ap);
15167
15168 if (shape == NS_NULL && first_shape != NS_NULL)
15169 first_error (_("invalid instruction shape"));
15170
15171 return shape;
15172 }
15173
15174 /* True if SHAPE is predominantly a quadword operation (most of the time, this
15175 means the Q bit should be set). */
15176
15177 static int
15178 neon_quad (enum neon_shape shape)
15179 {
15180 return neon_shape_class[shape] == SC_QUAD;
15181 }
15182
15183 static void
15184 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
15185 unsigned *g_size)
15186 {
15187 /* Allow modification to be made to types which are constrained to be
15188 based on the key element, based on bits set alongside N_EQK. */
15189 if ((typebits & N_EQK) != 0)
15190 {
15191 if ((typebits & N_HLF) != 0)
15192 *g_size /= 2;
15193 else if ((typebits & N_DBL) != 0)
15194 *g_size *= 2;
15195 if ((typebits & N_SGN) != 0)
15196 *g_type = NT_signed;
15197 else if ((typebits & N_UNS) != 0)
15198 *g_type = NT_unsigned;
15199 else if ((typebits & N_INT) != 0)
15200 *g_type = NT_integer;
15201 else if ((typebits & N_FLT) != 0)
15202 *g_type = NT_float;
15203 else if ((typebits & N_SIZ) != 0)
15204 *g_type = NT_untyped;
15205 }
15206 }
15207
15208 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15209 operand type, i.e. the single type specified in a Neon instruction when it
15210 is the only one given. */
15211
15212 static struct neon_type_el
15213 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15214 {
15215 struct neon_type_el dest = *key;
15216
15217 gas_assert ((thisarg & N_EQK) != 0);
15218
15219 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15220
15221 return dest;
15222 }
15223
15224 /* Convert Neon type and size into compact bitmask representation. */
15225
15226 static enum neon_type_mask
15227 type_chk_of_el_type (enum neon_el_type type, unsigned size)
15228 {
15229 switch (type)
15230 {
15231 case NT_untyped:
15232 switch (size)
15233 {
15234 case 8: return N_8;
15235 case 16: return N_16;
15236 case 32: return N_32;
15237 case 64: return N_64;
15238 default: ;
15239 }
15240 break;
15241
15242 case NT_integer:
15243 switch (size)
15244 {
15245 case 8: return N_I8;
15246 case 16: return N_I16;
15247 case 32: return N_I32;
15248 case 64: return N_I64;
15249 default: ;
15250 }
15251 break;
15252
15253 case NT_float:
15254 switch (size)
15255 {
15256 case 16: return N_F16;
15257 case 32: return N_F32;
15258 case 64: return N_F64;
15259 default: ;
15260 }
15261 break;
15262
15263 case NT_poly:
15264 switch (size)
15265 {
15266 case 8: return N_P8;
15267 case 16: return N_P16;
15268 case 64: return N_P64;
15269 default: ;
15270 }
15271 break;
15272
15273 case NT_signed:
15274 switch (size)
15275 {
15276 case 8: return N_S8;
15277 case 16: return N_S16;
15278 case 32: return N_S32;
15279 case 64: return N_S64;
15280 default: ;
15281 }
15282 break;
15283
15284 case NT_unsigned:
15285 switch (size)
15286 {
15287 case 8: return N_U8;
15288 case 16: return N_U16;
15289 case 32: return N_U32;
15290 case 64: return N_U64;
15291 default: ;
15292 }
15293 break;
15294
15295 case NT_bfloat:
15296 if (size == 16) return N_BF16;
15297 break;
15298
15299 default: ;
15300 }
15301
15302 return N_UTYP;
15303 }
15304
15305 /* Convert compact Neon bitmask type representation to a type and size. Only
15306 handles the case where a single bit is set in the mask. */
15307
15308 static int
15309 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15310 enum neon_type_mask mask)
15311 {
15312 if ((mask & N_EQK) != 0)
15313 return FAIL;
15314
15315 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15316 *size = 8;
15317 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16))
15318 != 0)
15319 *size = 16;
15320 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15321 *size = 32;
15322 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15323 *size = 64;
15324 else
15325 return FAIL;
15326
15327 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15328 *type = NT_signed;
15329 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15330 *type = NT_unsigned;
15331 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15332 *type = NT_integer;
15333 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15334 *type = NT_untyped;
15335 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15336 *type = NT_poly;
15337 else if ((mask & (N_F_ALL)) != 0)
15338 *type = NT_float;
15339 else if ((mask & (N_BF16)) != 0)
15340 *type = NT_bfloat;
15341 else
15342 return FAIL;
15343
15344 return SUCCESS;
15345 }
15346
15347 /* Modify a bitmask of allowed types. This is only needed for type
15348 relaxation. */
15349
15350 static unsigned
15351 modify_types_allowed (unsigned allowed, unsigned mods)
15352 {
15353 unsigned size;
15354 enum neon_el_type type;
15355 unsigned destmask;
15356 int i;
15357
15358 destmask = 0;
15359
15360 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15361 {
15362 if (el_type_of_type_chk (&type, &size,
15363 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15364 {
15365 neon_modify_type_size (mods, &type, &size);
15366 destmask |= type_chk_of_el_type (type, size);
15367 }
15368 }
15369
15370 return destmask;
15371 }
15372
15373 /* Check type and return type classification.
15374 The manual states (paraphrase): If one datatype is given, it indicates the
15375 type given in:
15376 - the second operand, if there is one
15377 - the operand, if there is no second operand
15378 - the result, if there are no operands.
15379 This isn't quite good enough though, so we use a concept of a "key" datatype
15380 which is set on a per-instruction basis, which is the one which matters when
15381 only one data type is written.
15382 Note: this function has side-effects (e.g. filling in missing operands). All
15383 Neon instructions should call it before performing bit encoding. */
15384
15385 static struct neon_type_el
15386 neon_check_type (unsigned els, enum neon_shape ns, ...)
15387 {
15388 va_list ap;
15389 unsigned i, pass, key_el = 0;
15390 unsigned types[NEON_MAX_TYPE_ELS];
15391 enum neon_el_type k_type = NT_invtype;
15392 unsigned k_size = -1u;
15393 struct neon_type_el badtype = {NT_invtype, -1};
15394 unsigned key_allowed = 0;
15395
15396 /* Optional registers in Neon instructions are always (not) in operand 1.
15397 Fill in the missing operand here, if it was omitted. */
15398 if (els > 1 && !inst.operands[1].present)
15399 inst.operands[1] = inst.operands[0];
15400
15401 /* Suck up all the varargs. */
15402 va_start (ap, ns);
15403 for (i = 0; i < els; i++)
15404 {
15405 unsigned thisarg = va_arg (ap, unsigned);
15406 if (thisarg == N_IGNORE_TYPE)
15407 {
15408 va_end (ap);
15409 return badtype;
15410 }
15411 types[i] = thisarg;
15412 if ((thisarg & N_KEY) != 0)
15413 key_el = i;
15414 }
15415 va_end (ap);
15416
15417 if (inst.vectype.elems > 0)
15418 for (i = 0; i < els; i++)
15419 if (inst.operands[i].vectype.type != NT_invtype)
15420 {
15421 first_error (_("types specified in both the mnemonic and operands"));
15422 return badtype;
15423 }
15424
15425 /* Duplicate inst.vectype elements here as necessary.
15426 FIXME: No idea if this is exactly the same as the ARM assembler,
15427 particularly when an insn takes one register and one non-register
15428 operand. */
15429 if (inst.vectype.elems == 1 && els > 1)
15430 {
15431 unsigned j;
15432 inst.vectype.elems = els;
15433 inst.vectype.el[key_el] = inst.vectype.el[0];
15434 for (j = 0; j < els; j++)
15435 if (j != key_el)
15436 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15437 types[j]);
15438 }
15439 else if (inst.vectype.elems == 0 && els > 0)
15440 {
15441 unsigned j;
15442 /* No types were given after the mnemonic, so look for types specified
15443 after each operand. We allow some flexibility here; as long as the
15444 "key" operand has a type, we can infer the others. */
15445 for (j = 0; j < els; j++)
15446 if (inst.operands[j].vectype.type != NT_invtype)
15447 inst.vectype.el[j] = inst.operands[j].vectype;
15448
15449 if (inst.operands[key_el].vectype.type != NT_invtype)
15450 {
15451 for (j = 0; j < els; j++)
15452 if (inst.operands[j].vectype.type == NT_invtype)
15453 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15454 types[j]);
15455 }
15456 else
15457 {
15458 first_error (_("operand types can't be inferred"));
15459 return badtype;
15460 }
15461 }
15462 else if (inst.vectype.elems != els)
15463 {
15464 first_error (_("type specifier has the wrong number of parts"));
15465 return badtype;
15466 }
15467
15468 for (pass = 0; pass < 2; pass++)
15469 {
15470 for (i = 0; i < els; i++)
15471 {
15472 unsigned thisarg = types[i];
15473 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15474 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15475 enum neon_el_type g_type = inst.vectype.el[i].type;
15476 unsigned g_size = inst.vectype.el[i].size;
15477
15478 /* Decay more-specific signed & unsigned types to sign-insensitive
15479 integer types if sign-specific variants are unavailable. */
15480 if ((g_type == NT_signed || g_type == NT_unsigned)
15481 && (types_allowed & N_SU_ALL) == 0)
15482 g_type = NT_integer;
15483
15484 /* If only untyped args are allowed, decay any more specific types to
15485 them. Some instructions only care about signs for some element
15486 sizes, so handle that properly. */
15487 if (((types_allowed & N_UNT) == 0)
15488 && ((g_size == 8 && (types_allowed & N_8) != 0)
15489 || (g_size == 16 && (types_allowed & N_16) != 0)
15490 || (g_size == 32 && (types_allowed & N_32) != 0)
15491 || (g_size == 64 && (types_allowed & N_64) != 0)))
15492 g_type = NT_untyped;
15493
15494 if (pass == 0)
15495 {
15496 if ((thisarg & N_KEY) != 0)
15497 {
15498 k_type = g_type;
15499 k_size = g_size;
15500 key_allowed = thisarg & ~N_KEY;
15501
15502 /* Check architecture constraint on FP16 extension. */
15503 if (k_size == 16
15504 && k_type == NT_float
15505 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15506 {
15507 inst.error = _(BAD_FP16);
15508 return badtype;
15509 }
15510 }
15511 }
15512 else
15513 {
15514 if ((thisarg & N_VFP) != 0)
15515 {
15516 enum neon_shape_el regshape;
15517 unsigned regwidth, match;
15518
15519 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15520 if (ns == NS_NULL)
15521 {
15522 first_error (_("invalid instruction shape"));
15523 return badtype;
15524 }
15525 regshape = neon_shape_tab[ns].el[i];
15526 regwidth = neon_shape_el_size[regshape];
15527
15528 /* In VFP mode, operands must match register widths. If we
15529 have a key operand, use its width, else use the width of
15530 the current operand. */
15531 if (k_size != -1u)
15532 match = k_size;
15533 else
15534 match = g_size;
15535
15536 /* FP16 will use a single precision register. */
15537 if (regwidth == 32 && match == 16)
15538 {
15539 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15540 match = regwidth;
15541 else
15542 {
15543 inst.error = _(BAD_FP16);
15544 return badtype;
15545 }
15546 }
15547
15548 if (regwidth != match)
15549 {
15550 first_error (_("operand size must match register width"));
15551 return badtype;
15552 }
15553 }
15554
15555 if ((thisarg & N_EQK) == 0)
15556 {
15557 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15558
15559 if ((given_type & types_allowed) == 0)
15560 {
15561 first_error (BAD_SIMD_TYPE);
15562 return badtype;
15563 }
15564 }
15565 else
15566 {
15567 enum neon_el_type mod_k_type = k_type;
15568 unsigned mod_k_size = k_size;
15569 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15570 if (g_type != mod_k_type || g_size != mod_k_size)
15571 {
15572 first_error (_("inconsistent types in Neon instruction"));
15573 return badtype;
15574 }
15575 }
15576 }
15577 }
15578 }
15579
15580 return inst.vectype.el[key_el];
15581 }
15582
15583 /* Neon-style VFP instruction forwarding. */
15584
15585 /* Thumb VFP instructions have 0xE in the condition field. */
15586
15587 static void
15588 do_vfp_cond_or_thumb (void)
15589 {
15590 inst.is_neon = 1;
15591
15592 if (thumb_mode)
15593 inst.instruction |= 0xe0000000;
15594 else
15595 inst.instruction |= inst.cond << 28;
15596 }
15597
15598 /* Look up and encode a simple mnemonic, for use as a helper function for the
15599 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15600 etc. It is assumed that operand parsing has already been done, and that the
15601 operands are in the form expected by the given opcode (this isn't necessarily
15602 the same as the form in which they were parsed, hence some massaging must
15603 take place before this function is called).
15604 Checks current arch version against that in the looked-up opcode. */
15605
15606 static void
15607 do_vfp_nsyn_opcode (const char *opname)
15608 {
15609 const struct asm_opcode *opcode;
15610
15611 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15612
15613 if (!opcode)
15614 abort ();
15615
15616 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15617 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15618 _(BAD_FPU));
15619
15620 inst.is_neon = 1;
15621
15622 if (thumb_mode)
15623 {
15624 inst.instruction = opcode->tvalue;
15625 opcode->tencode ();
15626 }
15627 else
15628 {
15629 inst.instruction = (inst.cond << 28) | opcode->avalue;
15630 opcode->aencode ();
15631 }
15632 }
15633
15634 static void
15635 do_vfp_nsyn_add_sub (enum neon_shape rs)
15636 {
15637 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15638
15639 if (rs == NS_FFF || rs == NS_HHH)
15640 {
15641 if (is_add)
15642 do_vfp_nsyn_opcode ("fadds");
15643 else
15644 do_vfp_nsyn_opcode ("fsubs");
15645
15646 /* ARMv8.2 fp16 instruction. */
15647 if (rs == NS_HHH)
15648 do_scalar_fp16_v82_encode ();
15649 }
15650 else
15651 {
15652 if (is_add)
15653 do_vfp_nsyn_opcode ("faddd");
15654 else
15655 do_vfp_nsyn_opcode ("fsubd");
15656 }
15657 }
15658
15659 /* Check operand types to see if this is a VFP instruction, and if so call
15660 PFN (). */
15661
15662 static int
15663 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15664 {
15665 enum neon_shape rs;
15666 struct neon_type_el et;
15667
15668 switch (args)
15669 {
15670 case 2:
15671 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15672 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15673 break;
15674
15675 case 3:
15676 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15677 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15678 N_F_ALL | N_KEY | N_VFP);
15679 break;
15680
15681 default:
15682 abort ();
15683 }
15684
15685 if (et.type != NT_invtype)
15686 {
15687 pfn (rs);
15688 return SUCCESS;
15689 }
15690
15691 inst.error = NULL;
15692 return FAIL;
15693 }
15694
15695 static void
15696 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15697 {
15698 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15699
15700 if (rs == NS_FFF || rs == NS_HHH)
15701 {
15702 if (is_mla)
15703 do_vfp_nsyn_opcode ("fmacs");
15704 else
15705 do_vfp_nsyn_opcode ("fnmacs");
15706
15707 /* ARMv8.2 fp16 instruction. */
15708 if (rs == NS_HHH)
15709 do_scalar_fp16_v82_encode ();
15710 }
15711 else
15712 {
15713 if (is_mla)
15714 do_vfp_nsyn_opcode ("fmacd");
15715 else
15716 do_vfp_nsyn_opcode ("fnmacd");
15717 }
15718 }
15719
15720 static void
15721 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15722 {
15723 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15724
15725 if (rs == NS_FFF || rs == NS_HHH)
15726 {
15727 if (is_fma)
15728 do_vfp_nsyn_opcode ("ffmas");
15729 else
15730 do_vfp_nsyn_opcode ("ffnmas");
15731
15732 /* ARMv8.2 fp16 instruction. */
15733 if (rs == NS_HHH)
15734 do_scalar_fp16_v82_encode ();
15735 }
15736 else
15737 {
15738 if (is_fma)
15739 do_vfp_nsyn_opcode ("ffmad");
15740 else
15741 do_vfp_nsyn_opcode ("ffnmad");
15742 }
15743 }
15744
15745 static void
15746 do_vfp_nsyn_mul (enum neon_shape rs)
15747 {
15748 if (rs == NS_FFF || rs == NS_HHH)
15749 {
15750 do_vfp_nsyn_opcode ("fmuls");
15751
15752 /* ARMv8.2 fp16 instruction. */
15753 if (rs == NS_HHH)
15754 do_scalar_fp16_v82_encode ();
15755 }
15756 else
15757 do_vfp_nsyn_opcode ("fmuld");
15758 }
15759
15760 static void
15761 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15762 {
15763 int is_neg = (inst.instruction & 0x80) != 0;
15764 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15765
15766 if (rs == NS_FF || rs == NS_HH)
15767 {
15768 if (is_neg)
15769 do_vfp_nsyn_opcode ("fnegs");
15770 else
15771 do_vfp_nsyn_opcode ("fabss");
15772
15773 /* ARMv8.2 fp16 instruction. */
15774 if (rs == NS_HH)
15775 do_scalar_fp16_v82_encode ();
15776 }
15777 else
15778 {
15779 if (is_neg)
15780 do_vfp_nsyn_opcode ("fnegd");
15781 else
15782 do_vfp_nsyn_opcode ("fabsd");
15783 }
15784 }
15785
15786 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15787 insns belong to Neon, and are handled elsewhere. */
15788
15789 static void
15790 do_vfp_nsyn_ldm_stm (int is_dbmode)
15791 {
15792 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15793 if (is_ldm)
15794 {
15795 if (is_dbmode)
15796 do_vfp_nsyn_opcode ("fldmdbs");
15797 else
15798 do_vfp_nsyn_opcode ("fldmias");
15799 }
15800 else
15801 {
15802 if (is_dbmode)
15803 do_vfp_nsyn_opcode ("fstmdbs");
15804 else
15805 do_vfp_nsyn_opcode ("fstmias");
15806 }
15807 }
15808
15809 static void
15810 do_vfp_nsyn_sqrt (void)
15811 {
15812 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15813 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15814
15815 if (rs == NS_FF || rs == NS_HH)
15816 {
15817 do_vfp_nsyn_opcode ("fsqrts");
15818
15819 /* ARMv8.2 fp16 instruction. */
15820 if (rs == NS_HH)
15821 do_scalar_fp16_v82_encode ();
15822 }
15823 else
15824 do_vfp_nsyn_opcode ("fsqrtd");
15825 }
15826
15827 static void
15828 do_vfp_nsyn_div (void)
15829 {
15830 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15831 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15832 N_F_ALL | N_KEY | N_VFP);
15833
15834 if (rs == NS_FFF || rs == NS_HHH)
15835 {
15836 do_vfp_nsyn_opcode ("fdivs");
15837
15838 /* ARMv8.2 fp16 instruction. */
15839 if (rs == NS_HHH)
15840 do_scalar_fp16_v82_encode ();
15841 }
15842 else
15843 do_vfp_nsyn_opcode ("fdivd");
15844 }
15845
15846 static void
15847 do_vfp_nsyn_nmul (void)
15848 {
15849 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15850 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15851 N_F_ALL | N_KEY | N_VFP);
15852
15853 if (rs == NS_FFF || rs == NS_HHH)
15854 {
15855 NEON_ENCODE (SINGLE, inst);
15856 do_vfp_sp_dyadic ();
15857
15858 /* ARMv8.2 fp16 instruction. */
15859 if (rs == NS_HHH)
15860 do_scalar_fp16_v82_encode ();
15861 }
15862 else
15863 {
15864 NEON_ENCODE (DOUBLE, inst);
15865 do_vfp_dp_rd_rn_rm ();
15866 }
15867 do_vfp_cond_or_thumb ();
15868
15869 }
15870
15871 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15872 (0, 1, 2, 3). */
15873
15874 static unsigned
15875 neon_logbits (unsigned x)
15876 {
15877 return ffs (x) - 4;
15878 }
15879
15880 #define LOW4(R) ((R) & 0xf)
15881 #define HI1(R) (((R) >> 4) & 1)
15882 #define LOW1(R) ((R) & 0x1)
15883 #define HI4(R) (((R) >> 1) & 0xf)
15884
15885 static unsigned
15886 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15887 {
15888 switch (et.type)
15889 {
15890 default:
15891 first_error (BAD_EL_TYPE);
15892 return 0;
15893 case NT_float:
15894 switch (inst.operands[0].imm)
15895 {
15896 default:
15897 first_error (_("invalid condition"));
15898 return 0;
15899 case 0x0:
15900 /* eq. */
15901 return 0;
15902 case 0x1:
15903 /* ne. */
15904 return 1;
15905 case 0xa:
15906 /* ge/ */
15907 return 4;
15908 case 0xb:
15909 /* lt. */
15910 return 5;
15911 case 0xc:
15912 /* gt. */
15913 return 6;
15914 case 0xd:
15915 /* le. */
15916 return 7;
15917 }
15918 case NT_integer:
15919 /* only accept eq and ne. */
15920 if (inst.operands[0].imm > 1)
15921 {
15922 first_error (_("invalid condition"));
15923 return 0;
15924 }
15925 return inst.operands[0].imm;
15926 case NT_unsigned:
15927 if (inst.operands[0].imm == 0x2)
15928 return 2;
15929 else if (inst.operands[0].imm == 0x8)
15930 return 3;
15931 else
15932 {
15933 first_error (_("invalid condition"));
15934 return 0;
15935 }
15936 case NT_signed:
15937 switch (inst.operands[0].imm)
15938 {
15939 default:
15940 first_error (_("invalid condition"));
15941 return 0;
15942 case 0xa:
15943 /* ge. */
15944 return 4;
15945 case 0xb:
15946 /* lt. */
15947 return 5;
15948 case 0xc:
15949 /* gt. */
15950 return 6;
15951 case 0xd:
15952 /* le. */
15953 return 7;
15954 }
15955 }
15956 /* Should be unreachable. */
15957 abort ();
15958 }
15959
15960 /* For VCTP (create vector tail predicate) in MVE. */
15961 static void
15962 do_mve_vctp (void)
15963 {
15964 int dt = 0;
15965 unsigned size = 0x0;
15966
15967 if (inst.cond > COND_ALWAYS)
15968 inst.pred_insn_type = INSIDE_VPT_INSN;
15969 else
15970 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15971
15972 /* This is a typical MVE instruction which has no type but have size 8, 16,
15973 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15974 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15975 if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped))
15976 dt = inst.vectype.el[0].size;
15977
15978 /* Setting this does not indicate an actual NEON instruction, but only
15979 indicates that the mnemonic accepts neon-style type suffixes. */
15980 inst.is_neon = 1;
15981
15982 switch (dt)
15983 {
15984 case 8:
15985 break;
15986 case 16:
15987 size = 0x1; break;
15988 case 32:
15989 size = 0x2; break;
15990 case 64:
15991 size = 0x3; break;
15992 default:
15993 first_error (_("Type is not allowed for this instruction"));
15994 }
15995 inst.instruction |= size << 20;
15996 inst.instruction |= inst.operands[0].reg << 16;
15997 }
15998
15999 static void
16000 do_mve_vpt (void)
16001 {
16002 /* We are dealing with a vector predicated block. */
16003 if (inst.operands[0].present)
16004 {
16005 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16006 struct neon_type_el et
16007 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16008 N_EQK);
16009
16010 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16011
16012 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16013
16014 if (et.type == NT_invtype)
16015 return;
16016
16017 if (et.type == NT_float)
16018 {
16019 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16020 BAD_FPU);
16021 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
16022 inst.instruction |= (et.size == 16) << 28;
16023 inst.instruction |= 0x3 << 20;
16024 }
16025 else
16026 {
16027 constraint (et.size != 8 && et.size != 16 && et.size != 32,
16028 BAD_EL_TYPE);
16029 inst.instruction |= 1 << 28;
16030 inst.instruction |= neon_logbits (et.size) << 20;
16031 }
16032
16033 if (inst.operands[2].isquad)
16034 {
16035 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16036 inst.instruction |= LOW4 (inst.operands[2].reg);
16037 inst.instruction |= (fcond & 0x2) >> 1;
16038 }
16039 else
16040 {
16041 if (inst.operands[2].reg == REG_SP)
16042 as_tsktsk (MVE_BAD_SP);
16043 inst.instruction |= 1 << 6;
16044 inst.instruction |= (fcond & 0x2) << 4;
16045 inst.instruction |= inst.operands[2].reg;
16046 }
16047 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16048 inst.instruction |= (fcond & 0x4) << 10;
16049 inst.instruction |= (fcond & 0x1) << 7;
16050
16051 }
16052 set_pred_insn_type (VPT_INSN);
16053 now_pred.cc = 0;
16054 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
16055 | ((inst.instruction & 0xe000) >> 13);
16056 now_pred.warn_deprecated = FALSE;
16057 now_pred.type = VECTOR_PRED;
16058 inst.is_neon = 1;
16059 }
16060
16061 static void
16062 do_mve_vcmp (void)
16063 {
16064 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
16065 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
16066 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
16067 if (!inst.operands[2].present)
16068 first_error (_("MVE vector or ARM register expected"));
16069 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16070
16071 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16072 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
16073 && inst.operands[1].isquad)
16074 {
16075 inst.instruction = N_MNEM_vcmp;
16076 inst.cond = 0x10;
16077 }
16078
16079 if (inst.cond > COND_ALWAYS)
16080 inst.pred_insn_type = INSIDE_VPT_INSN;
16081 else
16082 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16083
16084 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16085 struct neon_type_el et
16086 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16087 N_EQK);
16088
16089 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
16090 && !inst.operands[2].iszr, BAD_PC);
16091
16092 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16093
16094 inst.instruction = 0xee010f00;
16095 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16096 inst.instruction |= (fcond & 0x4) << 10;
16097 inst.instruction |= (fcond & 0x1) << 7;
16098 if (et.type == NT_float)
16099 {
16100 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16101 BAD_FPU);
16102 inst.instruction |= (et.size == 16) << 28;
16103 inst.instruction |= 0x3 << 20;
16104 }
16105 else
16106 {
16107 inst.instruction |= 1 << 28;
16108 inst.instruction |= neon_logbits (et.size) << 20;
16109 }
16110 if (inst.operands[2].isquad)
16111 {
16112 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16113 inst.instruction |= (fcond & 0x2) >> 1;
16114 inst.instruction |= LOW4 (inst.operands[2].reg);
16115 }
16116 else
16117 {
16118 if (inst.operands[2].reg == REG_SP)
16119 as_tsktsk (MVE_BAD_SP);
16120 inst.instruction |= 1 << 6;
16121 inst.instruction |= (fcond & 0x2) << 4;
16122 inst.instruction |= inst.operands[2].reg;
16123 }
16124
16125 inst.is_neon = 1;
16126 return;
16127 }
16128
16129 static void
16130 do_mve_vmaxa_vmina (void)
16131 {
16132 if (inst.cond > COND_ALWAYS)
16133 inst.pred_insn_type = INSIDE_VPT_INSN;
16134 else
16135 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16136
16137 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16138 struct neon_type_el et
16139 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
16140
16141 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16142 inst.instruction |= neon_logbits (et.size) << 18;
16143 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16144 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16145 inst.instruction |= LOW4 (inst.operands[1].reg);
16146 inst.is_neon = 1;
16147 }
16148
16149 static void
16150 do_mve_vfmas (void)
16151 {
16152 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16153 struct neon_type_el et
16154 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
16155
16156 if (inst.cond > COND_ALWAYS)
16157 inst.pred_insn_type = INSIDE_VPT_INSN;
16158 else
16159 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16160
16161 if (inst.operands[2].reg == REG_SP)
16162 as_tsktsk (MVE_BAD_SP);
16163 else if (inst.operands[2].reg == REG_PC)
16164 as_tsktsk (MVE_BAD_PC);
16165
16166 inst.instruction |= (et.size == 16) << 28;
16167 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16168 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16169 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16170 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16171 inst.instruction |= inst.operands[2].reg;
16172 inst.is_neon = 1;
16173 }
16174
16175 static void
16176 do_mve_viddup (void)
16177 {
16178 if (inst.cond > COND_ALWAYS)
16179 inst.pred_insn_type = INSIDE_VPT_INSN;
16180 else
16181 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16182
16183 unsigned imm = inst.relocs[0].exp.X_add_number;
16184 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
16185 _("immediate must be either 1, 2, 4 or 8"));
16186
16187 enum neon_shape rs;
16188 struct neon_type_el et;
16189 unsigned Rm;
16190 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
16191 {
16192 rs = neon_select_shape (NS_QRI, NS_NULL);
16193 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
16194 Rm = 7;
16195 }
16196 else
16197 {
16198 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
16199 if (inst.operands[2].reg == REG_SP)
16200 as_tsktsk (MVE_BAD_SP);
16201 else if (inst.operands[2].reg == REG_PC)
16202 first_error (BAD_PC);
16203
16204 rs = neon_select_shape (NS_QRRI, NS_NULL);
16205 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16206 Rm = inst.operands[2].reg >> 1;
16207 }
16208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16209 inst.instruction |= neon_logbits (et.size) << 20;
16210 inst.instruction |= inst.operands[1].reg << 16;
16211 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16212 inst.instruction |= (imm > 2) << 7;
16213 inst.instruction |= Rm << 1;
16214 inst.instruction |= (imm == 2 || imm == 8);
16215 inst.is_neon = 1;
16216 }
16217
16218 static void
16219 do_mve_vmlas (void)
16220 {
16221 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16222 struct neon_type_el et
16223 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16224
16225 if (inst.operands[2].reg == REG_PC)
16226 as_tsktsk (MVE_BAD_PC);
16227 else if (inst.operands[2].reg == REG_SP)
16228 as_tsktsk (MVE_BAD_SP);
16229
16230 if (inst.cond > COND_ALWAYS)
16231 inst.pred_insn_type = INSIDE_VPT_INSN;
16232 else
16233 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16234
16235 inst.instruction |= (et.type == NT_unsigned) << 28;
16236 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16237 inst.instruction |= neon_logbits (et.size) << 20;
16238 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16239 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16240 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16241 inst.instruction |= inst.operands[2].reg;
16242 inst.is_neon = 1;
16243 }
16244
16245 static void
16246 do_mve_vshll (void)
16247 {
16248 struct neon_type_el et
16249 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16250
16251 if (inst.cond > COND_ALWAYS)
16252 inst.pred_insn_type = INSIDE_VPT_INSN;
16253 else
16254 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16255
16256 int imm = inst.operands[2].imm;
16257 constraint (imm < 1 || (unsigned)imm > et.size,
16258 _("immediate value out of range"));
16259
16260 if ((unsigned)imm == et.size)
16261 {
16262 inst.instruction |= neon_logbits (et.size) << 18;
16263 inst.instruction |= 0x110001;
16264 }
16265 else
16266 {
16267 inst.instruction |= (et.size + imm) << 16;
16268 inst.instruction |= 0x800140;
16269 }
16270
16271 inst.instruction |= (et.type == NT_unsigned) << 28;
16272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16274 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16275 inst.instruction |= LOW4 (inst.operands[1].reg);
16276 inst.is_neon = 1;
16277 }
16278
16279 static void
16280 do_mve_vshlc (void)
16281 {
16282 if (inst.cond > COND_ALWAYS)
16283 inst.pred_insn_type = INSIDE_VPT_INSN;
16284 else
16285 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16286
16287 if (inst.operands[1].reg == REG_PC)
16288 as_tsktsk (MVE_BAD_PC);
16289 else if (inst.operands[1].reg == REG_SP)
16290 as_tsktsk (MVE_BAD_SP);
16291
16292 int imm = inst.operands[2].imm;
16293 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16294
16295 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16296 inst.instruction |= (imm & 0x1f) << 16;
16297 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16298 inst.instruction |= inst.operands[1].reg;
16299 inst.is_neon = 1;
16300 }
16301
16302 static void
16303 do_mve_vshrn (void)
16304 {
16305 unsigned types;
16306 switch (inst.instruction)
16307 {
16308 case M_MNEM_vshrnt:
16309 case M_MNEM_vshrnb:
16310 case M_MNEM_vrshrnt:
16311 case M_MNEM_vrshrnb:
16312 types = N_I16 | N_I32;
16313 break;
16314 case M_MNEM_vqshrnt:
16315 case M_MNEM_vqshrnb:
16316 case M_MNEM_vqrshrnt:
16317 case M_MNEM_vqrshrnb:
16318 types = N_U16 | N_U32 | N_S16 | N_S32;
16319 break;
16320 case M_MNEM_vqshrunt:
16321 case M_MNEM_vqshrunb:
16322 case M_MNEM_vqrshrunt:
16323 case M_MNEM_vqrshrunb:
16324 types = N_S16 | N_S32;
16325 break;
16326 default:
16327 abort ();
16328 }
16329
16330 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16331
16332 if (inst.cond > COND_ALWAYS)
16333 inst.pred_insn_type = INSIDE_VPT_INSN;
16334 else
16335 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16336
16337 unsigned Qd = inst.operands[0].reg;
16338 unsigned Qm = inst.operands[1].reg;
16339 unsigned imm = inst.operands[2].imm;
16340 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16341 et.size == 16
16342 ? _("immediate operand expected in the range [1,8]")
16343 : _("immediate operand expected in the range [1,16]"));
16344
16345 inst.instruction |= (et.type == NT_unsigned) << 28;
16346 inst.instruction |= HI1 (Qd) << 22;
16347 inst.instruction |= (et.size - imm) << 16;
16348 inst.instruction |= LOW4 (Qd) << 12;
16349 inst.instruction |= HI1 (Qm) << 5;
16350 inst.instruction |= LOW4 (Qm);
16351 inst.is_neon = 1;
16352 }
16353
16354 static void
16355 do_mve_vqmovn (void)
16356 {
16357 struct neon_type_el et;
16358 if (inst.instruction == M_MNEM_vqmovnt
16359 || inst.instruction == M_MNEM_vqmovnb)
16360 et = neon_check_type (2, NS_QQ, N_EQK,
16361 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16362 else
16363 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16364
16365 if (inst.cond > COND_ALWAYS)
16366 inst.pred_insn_type = INSIDE_VPT_INSN;
16367 else
16368 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16369
16370 inst.instruction |= (et.type == NT_unsigned) << 28;
16371 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16372 inst.instruction |= (et.size == 32) << 18;
16373 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16374 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16375 inst.instruction |= LOW4 (inst.operands[1].reg);
16376 inst.is_neon = 1;
16377 }
16378
16379 static void
16380 do_mve_vpsel (void)
16381 {
16382 neon_select_shape (NS_QQQ, NS_NULL);
16383
16384 if (inst.cond > COND_ALWAYS)
16385 inst.pred_insn_type = INSIDE_VPT_INSN;
16386 else
16387 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16388
16389 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16390 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16391 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16392 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16393 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16394 inst.instruction |= LOW4 (inst.operands[2].reg);
16395 inst.is_neon = 1;
16396 }
16397
16398 static void
16399 do_mve_vpnot (void)
16400 {
16401 if (inst.cond > COND_ALWAYS)
16402 inst.pred_insn_type = INSIDE_VPT_INSN;
16403 else
16404 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16405 }
16406
16407 static void
16408 do_mve_vmaxnma_vminnma (void)
16409 {
16410 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16411 struct neon_type_el et
16412 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16413
16414 if (inst.cond > COND_ALWAYS)
16415 inst.pred_insn_type = INSIDE_VPT_INSN;
16416 else
16417 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16418
16419 inst.instruction |= (et.size == 16) << 28;
16420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16421 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16422 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16423 inst.instruction |= LOW4 (inst.operands[1].reg);
16424 inst.is_neon = 1;
16425 }
16426
16427 static void
16428 do_mve_vcmul (void)
16429 {
16430 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16431 struct neon_type_el et
16432 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16433
16434 if (inst.cond > COND_ALWAYS)
16435 inst.pred_insn_type = INSIDE_VPT_INSN;
16436 else
16437 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16438
16439 unsigned rot = inst.relocs[0].exp.X_add_number;
16440 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16441 _("immediate out of range"));
16442
16443 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16444 || inst.operands[0].reg == inst.operands[2].reg))
16445 as_tsktsk (BAD_MVE_SRCDEST);
16446
16447 inst.instruction |= (et.size == 32) << 28;
16448 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16449 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16451 inst.instruction |= (rot > 90) << 12;
16452 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16453 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16454 inst.instruction |= LOW4 (inst.operands[2].reg);
16455 inst.instruction |= (rot == 90 || rot == 270);
16456 inst.is_neon = 1;
16457 }
16458
16459 /* To handle the Low Overhead Loop instructions
16460 in Armv8.1-M Mainline and MVE. */
16461 static void
16462 do_t_loloop (void)
16463 {
16464 unsigned long insn = inst.instruction;
16465
16466 inst.instruction = THUMB_OP32 (inst.instruction);
16467
16468 if (insn == T_MNEM_lctp)
16469 return;
16470
16471 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16472
16473 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16474 {
16475 struct neon_type_el et
16476 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16477 inst.instruction |= neon_logbits (et.size) << 20;
16478 inst.is_neon = 1;
16479 }
16480
16481 switch (insn)
16482 {
16483 case T_MNEM_letp:
16484 constraint (!inst.operands[0].present,
16485 _("expected LR"));
16486 /* fall through. */
16487 case T_MNEM_le:
16488 /* le <label>. */
16489 if (!inst.operands[0].present)
16490 inst.instruction |= 1 << 21;
16491
16492 v8_1_loop_reloc (TRUE);
16493 break;
16494
16495 case T_MNEM_wls:
16496 case T_MNEM_wlstp:
16497 v8_1_loop_reloc (FALSE);
16498 /* fall through. */
16499 case T_MNEM_dlstp:
16500 case T_MNEM_dls:
16501 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16502
16503 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16504 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16505 else if (inst.operands[1].reg == REG_PC)
16506 as_tsktsk (MVE_BAD_PC);
16507 if (inst.operands[1].reg == REG_SP)
16508 as_tsktsk (MVE_BAD_SP);
16509
16510 inst.instruction |= (inst.operands[1].reg << 16);
16511 break;
16512
16513 default:
16514 abort ();
16515 }
16516 }
16517
16518
16519 static void
16520 do_vfp_nsyn_cmp (void)
16521 {
16522 enum neon_shape rs;
16523 if (!inst.operands[0].isreg)
16524 {
16525 do_mve_vcmp ();
16526 return;
16527 }
16528 else
16529 {
16530 constraint (inst.operands[2].present, BAD_SYNTAX);
16531 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16532 BAD_FPU);
16533 }
16534
16535 if (inst.operands[1].isreg)
16536 {
16537 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16538 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16539
16540 if (rs == NS_FF || rs == NS_HH)
16541 {
16542 NEON_ENCODE (SINGLE, inst);
16543 do_vfp_sp_monadic ();
16544 }
16545 else
16546 {
16547 NEON_ENCODE (DOUBLE, inst);
16548 do_vfp_dp_rd_rm ();
16549 }
16550 }
16551 else
16552 {
16553 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16554 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16555
16556 switch (inst.instruction & 0x0fffffff)
16557 {
16558 case N_MNEM_vcmp:
16559 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16560 break;
16561 case N_MNEM_vcmpe:
16562 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16563 break;
16564 default:
16565 abort ();
16566 }
16567
16568 if (rs == NS_FI || rs == NS_HI)
16569 {
16570 NEON_ENCODE (SINGLE, inst);
16571 do_vfp_sp_compare_z ();
16572 }
16573 else
16574 {
16575 NEON_ENCODE (DOUBLE, inst);
16576 do_vfp_dp_rd ();
16577 }
16578 }
16579 do_vfp_cond_or_thumb ();
16580
16581 /* ARMv8.2 fp16 instruction. */
16582 if (rs == NS_HI || rs == NS_HH)
16583 do_scalar_fp16_v82_encode ();
16584 }
16585
16586 static void
16587 nsyn_insert_sp (void)
16588 {
16589 inst.operands[1] = inst.operands[0];
16590 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16591 inst.operands[0].reg = REG_SP;
16592 inst.operands[0].isreg = 1;
16593 inst.operands[0].writeback = 1;
16594 inst.operands[0].present = 1;
16595 }
16596
16597 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16598 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16599
16600 static void
16601 neon_dp_fixup (struct arm_it* insn)
16602 {
16603 unsigned int i = insn->instruction;
16604 insn->is_neon = 1;
16605
16606 if (thumb_mode)
16607 {
16608 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16609 if (i & (1 << 24))
16610 i |= 1 << 28;
16611
16612 i &= ~(1 << 24);
16613
16614 i |= 0xef000000;
16615 }
16616 else
16617 i |= 0xf2000000;
16618
16619 insn->instruction = i;
16620 }
16621
16622 static void
16623 mve_encode_qqr (int size, int U, int fp)
16624 {
16625 if (inst.operands[2].reg == REG_SP)
16626 as_tsktsk (MVE_BAD_SP);
16627 else if (inst.operands[2].reg == REG_PC)
16628 as_tsktsk (MVE_BAD_PC);
16629
16630 if (fp)
16631 {
16632 /* vadd. */
16633 if (((unsigned)inst.instruction) == 0xd00)
16634 inst.instruction = 0xee300f40;
16635 /* vsub. */
16636 else if (((unsigned)inst.instruction) == 0x200d00)
16637 inst.instruction = 0xee301f40;
16638 /* vmul. */
16639 else if (((unsigned)inst.instruction) == 0x1000d10)
16640 inst.instruction = 0xee310e60;
16641
16642 /* Setting size which is 1 for F16 and 0 for F32. */
16643 inst.instruction |= (size == 16) << 28;
16644 }
16645 else
16646 {
16647 /* vadd. */
16648 if (((unsigned)inst.instruction) == 0x800)
16649 inst.instruction = 0xee010f40;
16650 /* vsub. */
16651 else if (((unsigned)inst.instruction) == 0x1000800)
16652 inst.instruction = 0xee011f40;
16653 /* vhadd. */
16654 else if (((unsigned)inst.instruction) == 0)
16655 inst.instruction = 0xee000f40;
16656 /* vhsub. */
16657 else if (((unsigned)inst.instruction) == 0x200)
16658 inst.instruction = 0xee001f40;
16659 /* vmla. */
16660 else if (((unsigned)inst.instruction) == 0x900)
16661 inst.instruction = 0xee010e40;
16662 /* vmul. */
16663 else if (((unsigned)inst.instruction) == 0x910)
16664 inst.instruction = 0xee011e60;
16665 /* vqadd. */
16666 else if (((unsigned)inst.instruction) == 0x10)
16667 inst.instruction = 0xee000f60;
16668 /* vqsub. */
16669 else if (((unsigned)inst.instruction) == 0x210)
16670 inst.instruction = 0xee001f60;
16671 /* vqrdmlah. */
16672 else if (((unsigned)inst.instruction) == 0x3000b10)
16673 inst.instruction = 0xee000e40;
16674 /* vqdmulh. */
16675 else if (((unsigned)inst.instruction) == 0x0000b00)
16676 inst.instruction = 0xee010e60;
16677 /* vqrdmulh. */
16678 else if (((unsigned)inst.instruction) == 0x1000b00)
16679 inst.instruction = 0xfe010e60;
16680
16681 /* Set U-bit. */
16682 inst.instruction |= U << 28;
16683
16684 /* Setting bits for size. */
16685 inst.instruction |= neon_logbits (size) << 20;
16686 }
16687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16689 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16691 inst.instruction |= inst.operands[2].reg;
16692 inst.is_neon = 1;
16693 }
16694
16695 static void
16696 mve_encode_rqq (unsigned bit28, unsigned size)
16697 {
16698 inst.instruction |= bit28 << 28;
16699 inst.instruction |= neon_logbits (size) << 20;
16700 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16701 inst.instruction |= inst.operands[0].reg << 12;
16702 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16703 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16704 inst.instruction |= LOW4 (inst.operands[2].reg);
16705 inst.is_neon = 1;
16706 }
16707
16708 static void
16709 mve_encode_qqq (int ubit, int size)
16710 {
16711
16712 inst.instruction |= (ubit != 0) << 28;
16713 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16714 inst.instruction |= neon_logbits (size) << 20;
16715 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16716 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16717 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16718 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16719 inst.instruction |= LOW4 (inst.operands[2].reg);
16720
16721 inst.is_neon = 1;
16722 }
16723
16724 static void
16725 mve_encode_rq (unsigned bit28, unsigned size)
16726 {
16727 inst.instruction |= bit28 << 28;
16728 inst.instruction |= neon_logbits (size) << 18;
16729 inst.instruction |= inst.operands[0].reg << 12;
16730 inst.instruction |= LOW4 (inst.operands[1].reg);
16731 inst.is_neon = 1;
16732 }
16733
16734 static void
16735 mve_encode_rrqq (unsigned U, unsigned size)
16736 {
16737 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16738
16739 inst.instruction |= U << 28;
16740 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16741 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16742 inst.instruction |= (size == 32) << 16;
16743 inst.instruction |= inst.operands[0].reg << 12;
16744 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16745 inst.instruction |= inst.operands[3].reg;
16746 inst.is_neon = 1;
16747 }
16748
16749 /* Helper function for neon_three_same handling the operands. */
16750 static void
16751 neon_three_args (int isquad)
16752 {
16753 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16754 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16755 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16756 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16757 inst.instruction |= LOW4 (inst.operands[2].reg);
16758 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16759 inst.instruction |= (isquad != 0) << 6;
16760 inst.is_neon = 1;
16761 }
16762
16763 /* Encode insns with bit pattern:
16764
16765 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16766 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16767
16768 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16769 different meaning for some instruction. */
16770
16771 static void
16772 neon_three_same (int isquad, int ubit, int size)
16773 {
16774 neon_three_args (isquad);
16775 inst.instruction |= (ubit != 0) << 24;
16776 if (size != -1)
16777 inst.instruction |= neon_logbits (size) << 20;
16778
16779 neon_dp_fixup (&inst);
16780 }
16781
16782 /* Encode instructions of the form:
16783
16784 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16785 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16786
16787 Don't write size if SIZE == -1. */
16788
16789 static void
16790 neon_two_same (int qbit, int ubit, int size)
16791 {
16792 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16793 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16794 inst.instruction |= LOW4 (inst.operands[1].reg);
16795 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16796 inst.instruction |= (qbit != 0) << 6;
16797 inst.instruction |= (ubit != 0) << 24;
16798
16799 if (size != -1)
16800 inst.instruction |= neon_logbits (size) << 18;
16801
16802 neon_dp_fixup (&inst);
16803 }
16804
16805 enum vfp_or_neon_is_neon_bits
16806 {
16807 NEON_CHECK_CC = 1,
16808 NEON_CHECK_ARCH = 2,
16809 NEON_CHECK_ARCH8 = 4
16810 };
16811
16812 /* Call this function if an instruction which may have belonged to the VFP or
16813 Neon instruction sets, but turned out to be a Neon instruction (due to the
16814 operand types involved, etc.). We have to check and/or fix-up a couple of
16815 things:
16816
16817 - Make sure the user hasn't attempted to make a Neon instruction
16818 conditional.
16819 - Alter the value in the condition code field if necessary.
16820 - Make sure that the arch supports Neon instructions.
16821
16822 Which of these operations take place depends on bits from enum
16823 vfp_or_neon_is_neon_bits.
16824
16825 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16826 current instruction's condition is COND_ALWAYS, the condition field is
16827 changed to inst.uncond_value. This is necessary because instructions shared
16828 between VFP and Neon may be conditional for the VFP variants only, and the
16829 unconditional Neon version must have, e.g., 0xF in the condition field. */
16830
16831 static int
16832 vfp_or_neon_is_neon (unsigned check)
16833 {
16834 /* Conditions are always legal in Thumb mode (IT blocks). */
16835 if (!thumb_mode && (check & NEON_CHECK_CC))
16836 {
16837 if (inst.cond != COND_ALWAYS)
16838 {
16839 first_error (_(BAD_COND));
16840 return FAIL;
16841 }
16842 if (inst.uncond_value != -1)
16843 inst.instruction |= inst.uncond_value << 28;
16844 }
16845
16846
16847 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16848 || ((check & NEON_CHECK_ARCH8)
16849 && !mark_feature_used (&fpu_neon_ext_armv8)))
16850 {
16851 first_error (_(BAD_FPU));
16852 return FAIL;
16853 }
16854
16855 return SUCCESS;
16856 }
16857
16858
16859 /* Return TRUE if the SIMD instruction is available for the current
16860 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16861 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16862 vfp_or_neon_is_neon for the NEON specific checks. */
16863
16864 static bfd_boolean
16865 check_simd_pred_availability (int fp, unsigned check)
16866 {
16867 if (inst.cond > COND_ALWAYS)
16868 {
16869 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16870 {
16871 inst.error = BAD_FPU;
16872 return FALSE;
16873 }
16874 inst.pred_insn_type = INSIDE_VPT_INSN;
16875 }
16876 else if (inst.cond < COND_ALWAYS)
16877 {
16878 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16879 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16880 else if (vfp_or_neon_is_neon (check) == FAIL)
16881 return FALSE;
16882 }
16883 else
16884 {
16885 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16886 && vfp_or_neon_is_neon (check) == FAIL)
16887 return FALSE;
16888
16889 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16890 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16891 }
16892 return TRUE;
16893 }
16894
16895 /* Neon instruction encoders, in approximate order of appearance. */
16896
16897 static void
16898 do_neon_dyadic_i_su (void)
16899 {
16900 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16901 return;
16902
16903 enum neon_shape rs;
16904 struct neon_type_el et;
16905 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16906 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16907 else
16908 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16909
16910 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16911
16912
16913 if (rs != NS_QQR)
16914 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16915 else
16916 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16917 }
16918
16919 static void
16920 do_neon_dyadic_i64_su (void)
16921 {
16922 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16923 return;
16924 enum neon_shape rs;
16925 struct neon_type_el et;
16926 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16927 {
16928 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16929 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16930 }
16931 else
16932 {
16933 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16934 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16935 }
16936 if (rs == NS_QQR)
16937 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16938 else
16939 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16940 }
16941
16942 static void
16943 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16944 unsigned immbits)
16945 {
16946 unsigned size = et.size >> 3;
16947 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16948 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16949 inst.instruction |= LOW4 (inst.operands[1].reg);
16950 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16951 inst.instruction |= (isquad != 0) << 6;
16952 inst.instruction |= immbits << 16;
16953 inst.instruction |= (size >> 3) << 7;
16954 inst.instruction |= (size & 0x7) << 19;
16955 if (write_ubit)
16956 inst.instruction |= (uval != 0) << 24;
16957
16958 neon_dp_fixup (&inst);
16959 }
16960
16961 static void
16962 do_neon_shl (void)
16963 {
16964 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16965 return;
16966
16967 if (!inst.operands[2].isreg)
16968 {
16969 enum neon_shape rs;
16970 struct neon_type_el et;
16971 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16972 {
16973 rs = neon_select_shape (NS_QQI, NS_NULL);
16974 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16975 }
16976 else
16977 {
16978 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16979 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16980 }
16981 int imm = inst.operands[2].imm;
16982
16983 constraint (imm < 0 || (unsigned)imm >= et.size,
16984 _("immediate out of range for shift"));
16985 NEON_ENCODE (IMMED, inst);
16986 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16987 }
16988 else
16989 {
16990 enum neon_shape rs;
16991 struct neon_type_el et;
16992 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16993 {
16994 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16995 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16996 }
16997 else
16998 {
16999 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17000 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17001 }
17002
17003
17004 if (rs == NS_QQR)
17005 {
17006 constraint (inst.operands[0].reg != inst.operands[1].reg,
17007 _("invalid instruction shape"));
17008 if (inst.operands[2].reg == REG_SP)
17009 as_tsktsk (MVE_BAD_SP);
17010 else if (inst.operands[2].reg == REG_PC)
17011 as_tsktsk (MVE_BAD_PC);
17012
17013 inst.instruction = 0xee311e60;
17014 inst.instruction |= (et.type == NT_unsigned) << 28;
17015 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17016 inst.instruction |= neon_logbits (et.size) << 18;
17017 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17018 inst.instruction |= inst.operands[2].reg;
17019 inst.is_neon = 1;
17020 }
17021 else
17022 {
17023 unsigned int tmp;
17024
17025 /* VSHL/VQSHL 3-register variants have syntax such as:
17026 vshl.xx Dd, Dm, Dn
17027 whereas other 3-register operations encoded by neon_three_same have
17028 syntax like:
17029 vadd.xx Dd, Dn, Dm
17030 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
17031 operands[2].reg here. */
17032 tmp = inst.operands[2].reg;
17033 inst.operands[2].reg = inst.operands[1].reg;
17034 inst.operands[1].reg = tmp;
17035 NEON_ENCODE (INTEGER, inst);
17036 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17037 }
17038 }
17039 }
17040
17041 static void
17042 do_neon_qshl (void)
17043 {
17044 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17045 return;
17046
17047 if (!inst.operands[2].isreg)
17048 {
17049 enum neon_shape rs;
17050 struct neon_type_el et;
17051 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17052 {
17053 rs = neon_select_shape (NS_QQI, NS_NULL);
17054 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
17055 }
17056 else
17057 {
17058 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17059 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
17060 }
17061 int imm = inst.operands[2].imm;
17062
17063 constraint (imm < 0 || (unsigned)imm >= et.size,
17064 _("immediate out of range for shift"));
17065 NEON_ENCODE (IMMED, inst);
17066 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
17067 }
17068 else
17069 {
17070 enum neon_shape rs;
17071 struct neon_type_el et;
17072
17073 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17074 {
17075 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17076 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
17077 }
17078 else
17079 {
17080 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17081 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17082 }
17083
17084 if (rs == NS_QQR)
17085 {
17086 constraint (inst.operands[0].reg != inst.operands[1].reg,
17087 _("invalid instruction shape"));
17088 if (inst.operands[2].reg == REG_SP)
17089 as_tsktsk (MVE_BAD_SP);
17090 else if (inst.operands[2].reg == REG_PC)
17091 as_tsktsk (MVE_BAD_PC);
17092
17093 inst.instruction = 0xee311ee0;
17094 inst.instruction |= (et.type == NT_unsigned) << 28;
17095 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17096 inst.instruction |= neon_logbits (et.size) << 18;
17097 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17098 inst.instruction |= inst.operands[2].reg;
17099 inst.is_neon = 1;
17100 }
17101 else
17102 {
17103 unsigned int tmp;
17104
17105 /* See note in do_neon_shl. */
17106 tmp = inst.operands[2].reg;
17107 inst.operands[2].reg = inst.operands[1].reg;
17108 inst.operands[1].reg = tmp;
17109 NEON_ENCODE (INTEGER, inst);
17110 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17111 }
17112 }
17113 }
17114
17115 static void
17116 do_neon_rshl (void)
17117 {
17118 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17119 return;
17120
17121 enum neon_shape rs;
17122 struct neon_type_el et;
17123 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17124 {
17125 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17126 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17127 }
17128 else
17129 {
17130 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17131 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
17132 }
17133
17134 unsigned int tmp;
17135
17136 if (rs == NS_QQR)
17137 {
17138 if (inst.operands[2].reg == REG_PC)
17139 as_tsktsk (MVE_BAD_PC);
17140 else if (inst.operands[2].reg == REG_SP)
17141 as_tsktsk (MVE_BAD_SP);
17142
17143 constraint (inst.operands[0].reg != inst.operands[1].reg,
17144 _("invalid instruction shape"));
17145
17146 if (inst.instruction == 0x0000510)
17147 /* We are dealing with vqrshl. */
17148 inst.instruction = 0xee331ee0;
17149 else
17150 /* We are dealing with vrshl. */
17151 inst.instruction = 0xee331e60;
17152
17153 inst.instruction |= (et.type == NT_unsigned) << 28;
17154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17155 inst.instruction |= neon_logbits (et.size) << 18;
17156 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17157 inst.instruction |= inst.operands[2].reg;
17158 inst.is_neon = 1;
17159 }
17160 else
17161 {
17162 tmp = inst.operands[2].reg;
17163 inst.operands[2].reg = inst.operands[1].reg;
17164 inst.operands[1].reg = tmp;
17165 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17166 }
17167 }
17168
17169 static int
17170 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
17171 {
17172 /* Handle .I8 pseudo-instructions. */
17173 if (size == 8)
17174 {
17175 /* Unfortunately, this will make everything apart from zero out-of-range.
17176 FIXME is this the intended semantics? There doesn't seem much point in
17177 accepting .I8 if so. */
17178 immediate |= immediate << 8;
17179 size = 16;
17180 }
17181
17182 if (size >= 32)
17183 {
17184 if (immediate == (immediate & 0x000000ff))
17185 {
17186 *immbits = immediate;
17187 return 0x1;
17188 }
17189 else if (immediate == (immediate & 0x0000ff00))
17190 {
17191 *immbits = immediate >> 8;
17192 return 0x3;
17193 }
17194 else if (immediate == (immediate & 0x00ff0000))
17195 {
17196 *immbits = immediate >> 16;
17197 return 0x5;
17198 }
17199 else if (immediate == (immediate & 0xff000000))
17200 {
17201 *immbits = immediate >> 24;
17202 return 0x7;
17203 }
17204 if ((immediate & 0xffff) != (immediate >> 16))
17205 goto bad_immediate;
17206 immediate &= 0xffff;
17207 }
17208
17209 if (immediate == (immediate & 0x000000ff))
17210 {
17211 *immbits = immediate;
17212 return 0x9;
17213 }
17214 else if (immediate == (immediate & 0x0000ff00))
17215 {
17216 *immbits = immediate >> 8;
17217 return 0xb;
17218 }
17219
17220 bad_immediate:
17221 first_error (_("immediate value out of range"));
17222 return FAIL;
17223 }
17224
17225 static void
17226 do_neon_logic (void)
17227 {
17228 if (inst.operands[2].present && inst.operands[2].isreg)
17229 {
17230 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17231 if (rs == NS_QQQ
17232 && !check_simd_pred_availability (FALSE,
17233 NEON_CHECK_ARCH | NEON_CHECK_CC))
17234 return;
17235 else if (rs != NS_QQQ
17236 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17237 first_error (BAD_FPU);
17238
17239 neon_check_type (3, rs, N_IGNORE_TYPE);
17240 /* U bit and size field were set as part of the bitmask. */
17241 NEON_ENCODE (INTEGER, inst);
17242 neon_three_same (neon_quad (rs), 0, -1);
17243 }
17244 else
17245 {
17246 const int three_ops_form = (inst.operands[2].present
17247 && !inst.operands[2].isreg);
17248 const int immoperand = (three_ops_form ? 2 : 1);
17249 enum neon_shape rs = (three_ops_form
17250 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17251 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17252 /* Because neon_select_shape makes the second operand a copy of the first
17253 if the second operand is not present. */
17254 if (rs == NS_QQI
17255 && !check_simd_pred_availability (FALSE,
17256 NEON_CHECK_ARCH | NEON_CHECK_CC))
17257 return;
17258 else if (rs != NS_QQI
17259 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17260 first_error (BAD_FPU);
17261
17262 struct neon_type_el et;
17263 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17264 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17265 else
17266 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17267 | N_KEY, N_EQK);
17268
17269 if (et.type == NT_invtype)
17270 return;
17271 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17272 unsigned immbits;
17273 int cmode;
17274
17275
17276 if (three_ops_form)
17277 constraint (inst.operands[0].reg != inst.operands[1].reg,
17278 _("first and second operands shall be the same register"));
17279
17280 NEON_ENCODE (IMMED, inst);
17281
17282 immbits = inst.operands[immoperand].imm;
17283 if (et.size == 64)
17284 {
17285 /* .i64 is a pseudo-op, so the immediate must be a repeating
17286 pattern. */
17287 if (immbits != (inst.operands[immoperand].regisimm ?
17288 inst.operands[immoperand].reg : 0))
17289 {
17290 /* Set immbits to an invalid constant. */
17291 immbits = 0xdeadbeef;
17292 }
17293 }
17294
17295 switch (opcode)
17296 {
17297 case N_MNEM_vbic:
17298 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17299 break;
17300
17301 case N_MNEM_vorr:
17302 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17303 break;
17304
17305 case N_MNEM_vand:
17306 /* Pseudo-instruction for VBIC. */
17307 neon_invert_size (&immbits, 0, et.size);
17308 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17309 break;
17310
17311 case N_MNEM_vorn:
17312 /* Pseudo-instruction for VORR. */
17313 neon_invert_size (&immbits, 0, et.size);
17314 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17315 break;
17316
17317 default:
17318 abort ();
17319 }
17320
17321 if (cmode == FAIL)
17322 return;
17323
17324 inst.instruction |= neon_quad (rs) << 6;
17325 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17326 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17327 inst.instruction |= cmode << 8;
17328 neon_write_immbits (immbits);
17329
17330 neon_dp_fixup (&inst);
17331 }
17332 }
17333
17334 static void
17335 do_neon_bitfield (void)
17336 {
17337 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17338 neon_check_type (3, rs, N_IGNORE_TYPE);
17339 neon_three_same (neon_quad (rs), 0, -1);
17340 }
17341
17342 static void
17343 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17344 unsigned destbits)
17345 {
17346 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17347 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17348 types | N_KEY);
17349 if (et.type == NT_float)
17350 {
17351 NEON_ENCODE (FLOAT, inst);
17352 if (rs == NS_QQR)
17353 mve_encode_qqr (et.size, 0, 1);
17354 else
17355 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17356 }
17357 else
17358 {
17359 NEON_ENCODE (INTEGER, inst);
17360 if (rs == NS_QQR)
17361 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17362 else
17363 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17364 }
17365 }
17366
17367
17368 static void
17369 do_neon_dyadic_if_su_d (void)
17370 {
17371 /* This version only allow D registers, but that constraint is enforced during
17372 operand parsing so we don't need to do anything extra here. */
17373 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17374 }
17375
17376 static void
17377 do_neon_dyadic_if_i_d (void)
17378 {
17379 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17380 affected if we specify unsigned args. */
17381 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17382 }
17383
17384 static void
17385 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17386 {
17387 constraint (size < 32, BAD_ADDR_MODE);
17388 constraint (size != elsize, BAD_EL_TYPE);
17389 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17390 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17391 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17392 _("destination register and offset register may not be the"
17393 " same"));
17394
17395 int imm = inst.relocs[0].exp.X_add_number;
17396 int add = 1;
17397 if (imm < 0)
17398 {
17399 add = 0;
17400 imm = -imm;
17401 }
17402 constraint ((imm % (size / 8) != 0)
17403 || imm > (0x7f << neon_logbits (size)),
17404 (size == 32) ? _("immediate must be a multiple of 4 in the"
17405 " range of +/-[0,508]")
17406 : _("immediate must be a multiple of 8 in the"
17407 " range of +/-[0,1016]"));
17408 inst.instruction |= 0x11 << 24;
17409 inst.instruction |= add << 23;
17410 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17411 inst.instruction |= inst.operands[1].writeback << 21;
17412 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17413 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17414 inst.instruction |= 1 << 12;
17415 inst.instruction |= (size == 64) << 8;
17416 inst.instruction &= 0xffffff00;
17417 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17418 inst.instruction |= imm >> neon_logbits (size);
17419 }
17420
17421 static void
17422 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17423 {
17424 unsigned os = inst.operands[1].imm >> 5;
17425 unsigned type = inst.vectype.el[0].type;
17426 constraint (os != 0 && size == 8,
17427 _("can not shift offsets when accessing less than half-word"));
17428 constraint (os && os != neon_logbits (size),
17429 _("shift immediate must be 1, 2 or 3 for half-word, word"
17430 " or double-word accesses respectively"));
17431 if (inst.operands[1].reg == REG_PC)
17432 as_tsktsk (MVE_BAD_PC);
17433
17434 switch (size)
17435 {
17436 case 8:
17437 constraint (elsize >= 64, BAD_EL_TYPE);
17438 break;
17439 case 16:
17440 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17441 break;
17442 case 32:
17443 case 64:
17444 constraint (elsize != size, BAD_EL_TYPE);
17445 break;
17446 default:
17447 break;
17448 }
17449 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17450 BAD_ADDR_MODE);
17451 if (load)
17452 {
17453 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17454 _("destination register and offset register may not be"
17455 " the same"));
17456 constraint (size == elsize && type == NT_signed, BAD_EL_TYPE);
17457 constraint (size != elsize && type != NT_unsigned && type != NT_signed,
17458 BAD_EL_TYPE);
17459 inst.instruction |= ((size == elsize) || (type == NT_unsigned)) << 28;
17460 }
17461 else
17462 {
17463 constraint (type != NT_untyped, BAD_EL_TYPE);
17464 }
17465
17466 inst.instruction |= 1 << 23;
17467 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17468 inst.instruction |= inst.operands[1].reg << 16;
17469 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17470 inst.instruction |= neon_logbits (elsize) << 7;
17471 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17472 inst.instruction |= LOW4 (inst.operands[1].imm);
17473 inst.instruction |= !!os;
17474 }
17475
17476 static void
17477 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17478 {
17479 enum neon_el_type type = inst.vectype.el[0].type;
17480
17481 constraint (size >= 64, BAD_ADDR_MODE);
17482 switch (size)
17483 {
17484 case 16:
17485 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17486 break;
17487 case 32:
17488 constraint (elsize != size, BAD_EL_TYPE);
17489 break;
17490 default:
17491 break;
17492 }
17493 if (load)
17494 {
17495 constraint (elsize != size && type != NT_unsigned
17496 && type != NT_signed, BAD_EL_TYPE);
17497 }
17498 else
17499 {
17500 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17501 }
17502
17503 int imm = inst.relocs[0].exp.X_add_number;
17504 int add = 1;
17505 if (imm < 0)
17506 {
17507 add = 0;
17508 imm = -imm;
17509 }
17510
17511 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17512 {
17513 switch (size)
17514 {
17515 case 8:
17516 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17517 break;
17518 case 16:
17519 constraint (1, _("immediate must be a multiple of 2 in the"
17520 " range of +/-[0,254]"));
17521 break;
17522 case 32:
17523 constraint (1, _("immediate must be a multiple of 4 in the"
17524 " range of +/-[0,508]"));
17525 break;
17526 }
17527 }
17528
17529 if (size != elsize)
17530 {
17531 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17532 constraint (inst.operands[0].reg > 14,
17533 _("MVE vector register in the range [Q0..Q7] expected"));
17534 inst.instruction |= (load && type == NT_unsigned) << 28;
17535 inst.instruction |= (size == 16) << 19;
17536 inst.instruction |= neon_logbits (elsize) << 7;
17537 }
17538 else
17539 {
17540 if (inst.operands[1].reg == REG_PC)
17541 as_tsktsk (MVE_BAD_PC);
17542 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17543 as_tsktsk (MVE_BAD_SP);
17544 inst.instruction |= 1 << 12;
17545 inst.instruction |= neon_logbits (size) << 7;
17546 }
17547 inst.instruction |= inst.operands[1].preind << 24;
17548 inst.instruction |= add << 23;
17549 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17550 inst.instruction |= inst.operands[1].writeback << 21;
17551 inst.instruction |= inst.operands[1].reg << 16;
17552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17553 inst.instruction &= 0xffffff80;
17554 inst.instruction |= imm >> neon_logbits (size);
17555
17556 }
17557
17558 static void
17559 do_mve_vstr_vldr (void)
17560 {
17561 unsigned size;
17562 int load = 0;
17563
17564 if (inst.cond > COND_ALWAYS)
17565 inst.pred_insn_type = INSIDE_VPT_INSN;
17566 else
17567 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17568
17569 switch (inst.instruction)
17570 {
17571 default:
17572 gas_assert (0);
17573 break;
17574 case M_MNEM_vldrb:
17575 load = 1;
17576 /* fall through. */
17577 case M_MNEM_vstrb:
17578 size = 8;
17579 break;
17580 case M_MNEM_vldrh:
17581 load = 1;
17582 /* fall through. */
17583 case M_MNEM_vstrh:
17584 size = 16;
17585 break;
17586 case M_MNEM_vldrw:
17587 load = 1;
17588 /* fall through. */
17589 case M_MNEM_vstrw:
17590 size = 32;
17591 break;
17592 case M_MNEM_vldrd:
17593 load = 1;
17594 /* fall through. */
17595 case M_MNEM_vstrd:
17596 size = 64;
17597 break;
17598 }
17599 unsigned elsize = inst.vectype.el[0].size;
17600
17601 if (inst.operands[1].isquad)
17602 {
17603 /* We are dealing with [Q, imm]{!} cases. */
17604 do_mve_vstr_vldr_QI (size, elsize, load);
17605 }
17606 else
17607 {
17608 if (inst.operands[1].immisreg == 2)
17609 {
17610 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17611 do_mve_vstr_vldr_RQ (size, elsize, load);
17612 }
17613 else if (!inst.operands[1].immisreg)
17614 {
17615 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17616 do_mve_vstr_vldr_RI (size, elsize, load);
17617 }
17618 else
17619 constraint (1, BAD_ADDR_MODE);
17620 }
17621
17622 inst.is_neon = 1;
17623 }
17624
17625 static void
17626 do_mve_vst_vld (void)
17627 {
17628 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17629 return;
17630
17631 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17632 || inst.relocs[0].exp.X_add_number != 0
17633 || inst.operands[1].immisreg != 0,
17634 BAD_ADDR_MODE);
17635 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17636 if (inst.operands[1].reg == REG_PC)
17637 as_tsktsk (MVE_BAD_PC);
17638 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17639 as_tsktsk (MVE_BAD_SP);
17640
17641
17642 /* These instructions are one of the "exceptions" mentioned in
17643 handle_pred_state. They are MVE instructions that are not VPT compatible
17644 and do not accept a VPT code, thus appending such a code is a syntax
17645 error. */
17646 if (inst.cond > COND_ALWAYS)
17647 first_error (BAD_SYNTAX);
17648 /* If we append a scalar condition code we can set this to
17649 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17650 else if (inst.cond < COND_ALWAYS)
17651 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17652 else
17653 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17654
17655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17656 inst.instruction |= inst.operands[1].writeback << 21;
17657 inst.instruction |= inst.operands[1].reg << 16;
17658 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17659 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17660 inst.is_neon = 1;
17661 }
17662
17663 static void
17664 do_mve_vaddlv (void)
17665 {
17666 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17667 struct neon_type_el et
17668 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17669
17670 if (et.type == NT_invtype)
17671 first_error (BAD_EL_TYPE);
17672
17673 if (inst.cond > COND_ALWAYS)
17674 inst.pred_insn_type = INSIDE_VPT_INSN;
17675 else
17676 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17677
17678 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17679
17680 inst.instruction |= (et.type == NT_unsigned) << 28;
17681 inst.instruction |= inst.operands[1].reg << 19;
17682 inst.instruction |= inst.operands[0].reg << 12;
17683 inst.instruction |= inst.operands[2].reg;
17684 inst.is_neon = 1;
17685 }
17686
17687 static void
17688 do_neon_dyadic_if_su (void)
17689 {
17690 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17691 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17692 N_SUF_32 | N_KEY);
17693
17694 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17695 || inst.instruction == ((unsigned) N_MNEM_vmin))
17696 && et.type == NT_float
17697 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17698
17699 if (!check_simd_pred_availability (et.type == NT_float,
17700 NEON_CHECK_ARCH | NEON_CHECK_CC))
17701 return;
17702
17703 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17704 }
17705
17706 static void
17707 do_neon_addsub_if_i (void)
17708 {
17709 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17710 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17711 return;
17712
17713 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17714 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17715 N_EQK, N_IF_32 | N_I64 | N_KEY);
17716
17717 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17718 /* If we are parsing Q registers and the element types match MVE, which NEON
17719 also supports, then we must check whether this is an instruction that can
17720 be used by both MVE/NEON. This distinction can be made based on whether
17721 they are predicated or not. */
17722 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17723 {
17724 if (!check_simd_pred_availability (et.type == NT_float,
17725 NEON_CHECK_ARCH | NEON_CHECK_CC))
17726 return;
17727 }
17728 else
17729 {
17730 /* If they are either in a D register or are using an unsupported. */
17731 if (rs != NS_QQR
17732 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17733 return;
17734 }
17735
17736 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17737 affected if we specify unsigned args. */
17738 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17739 }
17740
17741 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17742 result to be:
17743 V<op> A,B (A is operand 0, B is operand 2)
17744 to mean:
17745 V<op> A,B,A
17746 not:
17747 V<op> A,B,B
17748 so handle that case specially. */
17749
17750 static void
17751 neon_exchange_operands (void)
17752 {
17753 if (inst.operands[1].present)
17754 {
17755 void *scratch = xmalloc (sizeof (inst.operands[0]));
17756
17757 /* Swap operands[1] and operands[2]. */
17758 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17759 inst.operands[1] = inst.operands[2];
17760 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17761 free (scratch);
17762 }
17763 else
17764 {
17765 inst.operands[1] = inst.operands[2];
17766 inst.operands[2] = inst.operands[0];
17767 }
17768 }
17769
17770 static void
17771 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17772 {
17773 if (inst.operands[2].isreg)
17774 {
17775 if (invert)
17776 neon_exchange_operands ();
17777 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17778 }
17779 else
17780 {
17781 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17782 struct neon_type_el et = neon_check_type (2, rs,
17783 N_EQK | N_SIZ, immtypes | N_KEY);
17784
17785 NEON_ENCODE (IMMED, inst);
17786 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17787 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17788 inst.instruction |= LOW4 (inst.operands[1].reg);
17789 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17790 inst.instruction |= neon_quad (rs) << 6;
17791 inst.instruction |= (et.type == NT_float) << 10;
17792 inst.instruction |= neon_logbits (et.size) << 18;
17793
17794 neon_dp_fixup (&inst);
17795 }
17796 }
17797
17798 static void
17799 do_neon_cmp (void)
17800 {
17801 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17802 }
17803
17804 static void
17805 do_neon_cmp_inv (void)
17806 {
17807 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17808 }
17809
17810 static void
17811 do_neon_ceq (void)
17812 {
17813 neon_compare (N_IF_32, N_IF_32, FALSE);
17814 }
17815
17816 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17817 scalars, which are encoded in 5 bits, M : Rm.
17818 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17819 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17820 index in M.
17821
17822 Dot Product instructions are similar to multiply instructions except elsize
17823 should always be 32.
17824
17825 This function translates SCALAR, which is GAS's internal encoding of indexed
17826 scalar register, to raw encoding. There is also register and index range
17827 check based on ELSIZE. */
17828
17829 static unsigned
17830 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17831 {
17832 unsigned regno = NEON_SCALAR_REG (scalar);
17833 unsigned elno = NEON_SCALAR_INDEX (scalar);
17834
17835 switch (elsize)
17836 {
17837 case 16:
17838 if (regno > 7 || elno > 3)
17839 goto bad_scalar;
17840 return regno | (elno << 3);
17841
17842 case 32:
17843 if (regno > 15 || elno > 1)
17844 goto bad_scalar;
17845 return regno | (elno << 4);
17846
17847 default:
17848 bad_scalar:
17849 first_error (_("scalar out of range for multiply instruction"));
17850 }
17851
17852 return 0;
17853 }
17854
17855 /* Encode multiply / multiply-accumulate scalar instructions. */
17856
17857 static void
17858 neon_mul_mac (struct neon_type_el et, int ubit)
17859 {
17860 unsigned scalar;
17861
17862 /* Give a more helpful error message if we have an invalid type. */
17863 if (et.type == NT_invtype)
17864 return;
17865
17866 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17867 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17868 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17869 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17870 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17871 inst.instruction |= LOW4 (scalar);
17872 inst.instruction |= HI1 (scalar) << 5;
17873 inst.instruction |= (et.type == NT_float) << 8;
17874 inst.instruction |= neon_logbits (et.size) << 20;
17875 inst.instruction |= (ubit != 0) << 24;
17876
17877 neon_dp_fixup (&inst);
17878 }
17879
17880 static void
17881 do_neon_mac_maybe_scalar (void)
17882 {
17883 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17884 return;
17885
17886 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17887 return;
17888
17889 if (inst.operands[2].isscalar)
17890 {
17891 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17892 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17893 struct neon_type_el et = neon_check_type (3, rs,
17894 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17895 NEON_ENCODE (SCALAR, inst);
17896 neon_mul_mac (et, neon_quad (rs));
17897 }
17898 else if (!inst.operands[2].isvec)
17899 {
17900 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17901
17902 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17903 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17904
17905 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17906 }
17907 else
17908 {
17909 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17910 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17911 affected if we specify unsigned args. */
17912 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17913 }
17914 }
17915
17916 static void
17917 do_bfloat_vfma (void)
17918 {
17919 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
17920 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
17921 enum neon_shape rs;
17922 int t_bit = 0;
17923
17924 if (inst.instruction != B_MNEM_vfmab)
17925 {
17926 t_bit = 1;
17927 inst.instruction = B_MNEM_vfmat;
17928 }
17929
17930 if (inst.operands[2].isscalar)
17931 {
17932 rs = neon_select_shape (NS_QQS, NS_NULL);
17933 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17934
17935 inst.instruction |= (1 << 25);
17936 int index = inst.operands[2].reg & 0xf;
17937 constraint (!(index < 4), _("index must be in the range 0 to 3"));
17938 inst.operands[2].reg >>= 4;
17939 constraint (!(inst.operands[2].reg < 8),
17940 _("indexed register must be less than 8"));
17941 neon_three_args (t_bit);
17942 inst.instruction |= ((index & 1) << 3);
17943 inst.instruction |= ((index & 2) << 4);
17944 }
17945 else
17946 {
17947 rs = neon_select_shape (NS_QQQ, NS_NULL);
17948 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17949 neon_three_args (t_bit);
17950 }
17951
17952 }
17953
17954 static void
17955 do_neon_fmac (void)
17956 {
17957 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17958 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17959 return;
17960
17961 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17962 return;
17963
17964 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17965 {
17966 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17967 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17968 N_EQK);
17969
17970 if (rs == NS_QQR)
17971 {
17972
17973 if (inst.operands[2].reg == REG_SP)
17974 as_tsktsk (MVE_BAD_SP);
17975 else if (inst.operands[2].reg == REG_PC)
17976 as_tsktsk (MVE_BAD_PC);
17977
17978 inst.instruction = 0xee310e40;
17979 inst.instruction |= (et.size == 16) << 28;
17980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17981 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17982 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17983 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17984 inst.instruction |= inst.operands[2].reg;
17985 inst.is_neon = 1;
17986 return;
17987 }
17988 }
17989 else
17990 {
17991 constraint (!inst.operands[2].isvec, BAD_FPU);
17992 }
17993
17994 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17995 }
17996
17997 static void
17998 do_mve_vfma (void)
17999 {
18000 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_bf16) &&
18001 inst.cond == COND_ALWAYS)
18002 {
18003 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18004 inst.instruction = N_MNEM_vfma;
18005 inst.pred_insn_type = INSIDE_VPT_INSN;
18006 inst.cond = 0xf;
18007 return do_neon_fmac();
18008 }
18009 else
18010 {
18011 do_bfloat_vfma();
18012 }
18013 }
18014
18015 static void
18016 do_neon_tst (void)
18017 {
18018 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18019 struct neon_type_el et = neon_check_type (3, rs,
18020 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18021 neon_three_same (neon_quad (rs), 0, et.size);
18022 }
18023
18024 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
18025 same types as the MAC equivalents. The polynomial type for this instruction
18026 is encoded the same as the integer type. */
18027
18028 static void
18029 do_neon_mul (void)
18030 {
18031 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
18032 return;
18033
18034 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
18035 return;
18036
18037 if (inst.operands[2].isscalar)
18038 {
18039 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18040 do_neon_mac_maybe_scalar ();
18041 }
18042 else
18043 {
18044 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18045 {
18046 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18047 struct neon_type_el et
18048 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
18049 if (et.type == NT_float)
18050 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
18051 BAD_FPU);
18052
18053 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
18054 }
18055 else
18056 {
18057 constraint (!inst.operands[2].isvec, BAD_FPU);
18058 neon_dyadic_misc (NT_poly,
18059 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
18060 }
18061 }
18062 }
18063
18064 static void
18065 do_neon_qdmulh (void)
18066 {
18067 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18068 return;
18069
18070 if (inst.operands[2].isscalar)
18071 {
18072 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18073 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18074 struct neon_type_el et = neon_check_type (3, rs,
18075 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18076 NEON_ENCODE (SCALAR, inst);
18077 neon_mul_mac (et, neon_quad (rs));
18078 }
18079 else
18080 {
18081 enum neon_shape rs;
18082 struct neon_type_el et;
18083 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18084 {
18085 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18086 et = neon_check_type (3, rs,
18087 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18088 }
18089 else
18090 {
18091 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18092 et = neon_check_type (3, rs,
18093 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18094 }
18095
18096 NEON_ENCODE (INTEGER, inst);
18097 if (rs == NS_QQR)
18098 mve_encode_qqr (et.size, 0, 0);
18099 else
18100 /* The U bit (rounding) comes from bit mask. */
18101 neon_three_same (neon_quad (rs), 0, et.size);
18102 }
18103 }
18104
18105 static void
18106 do_mve_vaddv (void)
18107 {
18108 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18109 struct neon_type_el et
18110 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18111
18112 if (et.type == NT_invtype)
18113 first_error (BAD_EL_TYPE);
18114
18115 if (inst.cond > COND_ALWAYS)
18116 inst.pred_insn_type = INSIDE_VPT_INSN;
18117 else
18118 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18119
18120 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
18121
18122 mve_encode_rq (et.type == NT_unsigned, et.size);
18123 }
18124
18125 static void
18126 do_mve_vhcadd (void)
18127 {
18128 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
18129 struct neon_type_el et
18130 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18131
18132 if (inst.cond > COND_ALWAYS)
18133 inst.pred_insn_type = INSIDE_VPT_INSN;
18134 else
18135 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18136
18137 unsigned rot = inst.relocs[0].exp.X_add_number;
18138 constraint (rot != 90 && rot != 270, _("immediate out of range"));
18139
18140 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
18141 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18142 "operand makes instruction UNPREDICTABLE"));
18143
18144 mve_encode_qqq (0, et.size);
18145 inst.instruction |= (rot == 270) << 12;
18146 inst.is_neon = 1;
18147 }
18148
18149 static void
18150 do_mve_vqdmull (void)
18151 {
18152 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
18153 struct neon_type_el et
18154 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18155
18156 if (et.size == 32
18157 && (inst.operands[0].reg == inst.operands[1].reg
18158 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
18159 as_tsktsk (BAD_MVE_SRCDEST);
18160
18161 if (inst.cond > COND_ALWAYS)
18162 inst.pred_insn_type = INSIDE_VPT_INSN;
18163 else
18164 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18165
18166 if (rs == NS_QQQ)
18167 {
18168 mve_encode_qqq (et.size == 32, 64);
18169 inst.instruction |= 1;
18170 }
18171 else
18172 {
18173 mve_encode_qqr (64, et.size == 32, 0);
18174 inst.instruction |= 0x3 << 5;
18175 }
18176 }
18177
18178 static void
18179 do_mve_vadc (void)
18180 {
18181 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18182 struct neon_type_el et
18183 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
18184
18185 if (et.type == NT_invtype)
18186 first_error (BAD_EL_TYPE);
18187
18188 if (inst.cond > COND_ALWAYS)
18189 inst.pred_insn_type = INSIDE_VPT_INSN;
18190 else
18191 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18192
18193 mve_encode_qqq (0, 64);
18194 }
18195
18196 static void
18197 do_mve_vbrsr (void)
18198 {
18199 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18200 struct neon_type_el et
18201 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18202
18203 if (inst.cond > COND_ALWAYS)
18204 inst.pred_insn_type = INSIDE_VPT_INSN;
18205 else
18206 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18207
18208 mve_encode_qqr (et.size, 0, 0);
18209 }
18210
18211 static void
18212 do_mve_vsbc (void)
18213 {
18214 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
18215
18216 if (inst.cond > COND_ALWAYS)
18217 inst.pred_insn_type = INSIDE_VPT_INSN;
18218 else
18219 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18220
18221 mve_encode_qqq (1, 64);
18222 }
18223
18224 static void
18225 do_mve_vmulh (void)
18226 {
18227 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18228 struct neon_type_el et
18229 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18230
18231 if (inst.cond > COND_ALWAYS)
18232 inst.pred_insn_type = INSIDE_VPT_INSN;
18233 else
18234 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18235
18236 mve_encode_qqq (et.type == NT_unsigned, et.size);
18237 }
18238
18239 static void
18240 do_mve_vqdmlah (void)
18241 {
18242 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18243 struct neon_type_el et
18244 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18245
18246 if (inst.cond > COND_ALWAYS)
18247 inst.pred_insn_type = INSIDE_VPT_INSN;
18248 else
18249 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18250
18251 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18252 }
18253
18254 static void
18255 do_mve_vqdmladh (void)
18256 {
18257 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18258 struct neon_type_el et
18259 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18260
18261 if (inst.cond > COND_ALWAYS)
18262 inst.pred_insn_type = INSIDE_VPT_INSN;
18263 else
18264 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18265
18266 mve_encode_qqq (0, et.size);
18267 }
18268
18269
18270 static void
18271 do_mve_vmull (void)
18272 {
18273
18274 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18275 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18276 if (inst.cond == COND_ALWAYS
18277 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18278 {
18279
18280 if (rs == NS_QQQ)
18281 {
18282 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18283 goto neon_vmul;
18284 }
18285 else
18286 goto neon_vmul;
18287 }
18288
18289 constraint (rs != NS_QQQ, BAD_FPU);
18290 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18291 N_SU_32 | N_P8 | N_P16 | N_KEY);
18292
18293 /* We are dealing with MVE's vmullt. */
18294 if (et.size == 32
18295 && (inst.operands[0].reg == inst.operands[1].reg
18296 || inst.operands[0].reg == inst.operands[2].reg))
18297 as_tsktsk (BAD_MVE_SRCDEST);
18298
18299 if (inst.cond > COND_ALWAYS)
18300 inst.pred_insn_type = INSIDE_VPT_INSN;
18301 else
18302 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18303
18304 if (et.type == NT_poly)
18305 mve_encode_qqq (neon_logbits (et.size), 64);
18306 else
18307 mve_encode_qqq (et.type == NT_unsigned, et.size);
18308
18309 return;
18310
18311 neon_vmul:
18312 inst.instruction = N_MNEM_vmul;
18313 inst.cond = 0xb;
18314 if (thumb_mode)
18315 inst.pred_insn_type = INSIDE_IT_INSN;
18316 do_neon_mul ();
18317 }
18318
18319 static void
18320 do_mve_vabav (void)
18321 {
18322 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18323
18324 if (rs == NS_NULL)
18325 return;
18326
18327 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18328 return;
18329
18330 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18331 | N_S16 | N_S32 | N_U8 | N_U16
18332 | N_U32);
18333
18334 if (inst.cond > COND_ALWAYS)
18335 inst.pred_insn_type = INSIDE_VPT_INSN;
18336 else
18337 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18338
18339 mve_encode_rqq (et.type == NT_unsigned, et.size);
18340 }
18341
18342 static void
18343 do_mve_vmladav (void)
18344 {
18345 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18346 struct neon_type_el et = neon_check_type (3, rs,
18347 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18348
18349 if (et.type == NT_unsigned
18350 && (inst.instruction == M_MNEM_vmladavx
18351 || inst.instruction == M_MNEM_vmladavax
18352 || inst.instruction == M_MNEM_vmlsdav
18353 || inst.instruction == M_MNEM_vmlsdava
18354 || inst.instruction == M_MNEM_vmlsdavx
18355 || inst.instruction == M_MNEM_vmlsdavax))
18356 first_error (BAD_SIMD_TYPE);
18357
18358 constraint (inst.operands[2].reg > 14,
18359 _("MVE vector register in the range [Q0..Q7] expected"));
18360
18361 if (inst.cond > COND_ALWAYS)
18362 inst.pred_insn_type = INSIDE_VPT_INSN;
18363 else
18364 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18365
18366 if (inst.instruction == M_MNEM_vmlsdav
18367 || inst.instruction == M_MNEM_vmlsdava
18368 || inst.instruction == M_MNEM_vmlsdavx
18369 || inst.instruction == M_MNEM_vmlsdavax)
18370 inst.instruction |= (et.size == 8) << 28;
18371 else
18372 inst.instruction |= (et.size == 8) << 8;
18373
18374 mve_encode_rqq (et.type == NT_unsigned, 64);
18375 inst.instruction |= (et.size == 32) << 16;
18376 }
18377
18378 static void
18379 do_mve_vmlaldav (void)
18380 {
18381 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18382 struct neon_type_el et
18383 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18384 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18385
18386 if (et.type == NT_unsigned
18387 && (inst.instruction == M_MNEM_vmlsldav
18388 || inst.instruction == M_MNEM_vmlsldava
18389 || inst.instruction == M_MNEM_vmlsldavx
18390 || inst.instruction == M_MNEM_vmlsldavax))
18391 first_error (BAD_SIMD_TYPE);
18392
18393 if (inst.cond > COND_ALWAYS)
18394 inst.pred_insn_type = INSIDE_VPT_INSN;
18395 else
18396 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18397
18398 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18399 }
18400
18401 static void
18402 do_mve_vrmlaldavh (void)
18403 {
18404 struct neon_type_el et;
18405 if (inst.instruction == M_MNEM_vrmlsldavh
18406 || inst.instruction == M_MNEM_vrmlsldavha
18407 || inst.instruction == M_MNEM_vrmlsldavhx
18408 || inst.instruction == M_MNEM_vrmlsldavhax)
18409 {
18410 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18411 if (inst.operands[1].reg == REG_SP)
18412 as_tsktsk (MVE_BAD_SP);
18413 }
18414 else
18415 {
18416 if (inst.instruction == M_MNEM_vrmlaldavhx
18417 || inst.instruction == M_MNEM_vrmlaldavhax)
18418 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18419 else
18420 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18421 N_U32 | N_S32 | N_KEY);
18422 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18423 with vmax/min instructions, making the use of SP in assembly really
18424 nonsensical, so instead of issuing a warning like we do for other uses
18425 of SP for the odd register operand we error out. */
18426 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18427 }
18428
18429 /* Make sure we still check the second operand is an odd one and that PC is
18430 disallowed. This because we are parsing for any GPR operand, to be able
18431 to distinguish between giving a warning or an error for SP as described
18432 above. */
18433 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18434 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18435
18436 if (inst.cond > COND_ALWAYS)
18437 inst.pred_insn_type = INSIDE_VPT_INSN;
18438 else
18439 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18440
18441 mve_encode_rrqq (et.type == NT_unsigned, 0);
18442 }
18443
18444
18445 static void
18446 do_mve_vmaxnmv (void)
18447 {
18448 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18449 struct neon_type_el et
18450 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18451
18452 if (inst.cond > COND_ALWAYS)
18453 inst.pred_insn_type = INSIDE_VPT_INSN;
18454 else
18455 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18456
18457 if (inst.operands[0].reg == REG_SP)
18458 as_tsktsk (MVE_BAD_SP);
18459 else if (inst.operands[0].reg == REG_PC)
18460 as_tsktsk (MVE_BAD_PC);
18461
18462 mve_encode_rq (et.size == 16, 64);
18463 }
18464
18465 static void
18466 do_mve_vmaxv (void)
18467 {
18468 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18469 struct neon_type_el et;
18470
18471 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18472 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18473 else
18474 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18475
18476 if (inst.cond > COND_ALWAYS)
18477 inst.pred_insn_type = INSIDE_VPT_INSN;
18478 else
18479 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18480
18481 if (inst.operands[0].reg == REG_SP)
18482 as_tsktsk (MVE_BAD_SP);
18483 else if (inst.operands[0].reg == REG_PC)
18484 as_tsktsk (MVE_BAD_PC);
18485
18486 mve_encode_rq (et.type == NT_unsigned, et.size);
18487 }
18488
18489
18490 static void
18491 do_neon_qrdmlah (void)
18492 {
18493 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18494 return;
18495 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18496 {
18497 /* Check we're on the correct architecture. */
18498 if (!mark_feature_used (&fpu_neon_ext_armv8))
18499 inst.error
18500 = _("instruction form not available on this architecture.");
18501 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18502 {
18503 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18504 record_feature_use (&fpu_neon_ext_v8_1);
18505 }
18506 if (inst.operands[2].isscalar)
18507 {
18508 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18509 struct neon_type_el et = neon_check_type (3, rs,
18510 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18511 NEON_ENCODE (SCALAR, inst);
18512 neon_mul_mac (et, neon_quad (rs));
18513 }
18514 else
18515 {
18516 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18517 struct neon_type_el et = neon_check_type (3, rs,
18518 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18519 NEON_ENCODE (INTEGER, inst);
18520 /* The U bit (rounding) comes from bit mask. */
18521 neon_three_same (neon_quad (rs), 0, et.size);
18522 }
18523 }
18524 else
18525 {
18526 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18527 struct neon_type_el et
18528 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18529
18530 NEON_ENCODE (INTEGER, inst);
18531 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18532 }
18533 }
18534
18535 static void
18536 do_neon_fcmp_absolute (void)
18537 {
18538 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18539 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18540 N_F_16_32 | N_KEY);
18541 /* Size field comes from bit mask. */
18542 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18543 }
18544
18545 static void
18546 do_neon_fcmp_absolute_inv (void)
18547 {
18548 neon_exchange_operands ();
18549 do_neon_fcmp_absolute ();
18550 }
18551
18552 static void
18553 do_neon_step (void)
18554 {
18555 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18556 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18557 N_F_16_32 | N_KEY);
18558 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18559 }
18560
18561 static void
18562 do_neon_abs_neg (void)
18563 {
18564 enum neon_shape rs;
18565 struct neon_type_el et;
18566
18567 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18568 return;
18569
18570 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18571 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18572
18573 if (!check_simd_pred_availability (et.type == NT_float,
18574 NEON_CHECK_ARCH | NEON_CHECK_CC))
18575 return;
18576
18577 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18578 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18579 inst.instruction |= LOW4 (inst.operands[1].reg);
18580 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18581 inst.instruction |= neon_quad (rs) << 6;
18582 inst.instruction |= (et.type == NT_float) << 10;
18583 inst.instruction |= neon_logbits (et.size) << 18;
18584
18585 neon_dp_fixup (&inst);
18586 }
18587
18588 static void
18589 do_neon_sli (void)
18590 {
18591 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18592 return;
18593
18594 enum neon_shape rs;
18595 struct neon_type_el et;
18596 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18597 {
18598 rs = neon_select_shape (NS_QQI, NS_NULL);
18599 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18600 }
18601 else
18602 {
18603 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18604 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18605 }
18606
18607
18608 int imm = inst.operands[2].imm;
18609 constraint (imm < 0 || (unsigned)imm >= et.size,
18610 _("immediate out of range for insert"));
18611 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18612 }
18613
18614 static void
18615 do_neon_sri (void)
18616 {
18617 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18618 return;
18619
18620 enum neon_shape rs;
18621 struct neon_type_el et;
18622 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18623 {
18624 rs = neon_select_shape (NS_QQI, NS_NULL);
18625 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18626 }
18627 else
18628 {
18629 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18630 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18631 }
18632
18633 int imm = inst.operands[2].imm;
18634 constraint (imm < 1 || (unsigned)imm > et.size,
18635 _("immediate out of range for insert"));
18636 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18637 }
18638
18639 static void
18640 do_neon_qshlu_imm (void)
18641 {
18642 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18643 return;
18644
18645 enum neon_shape rs;
18646 struct neon_type_el et;
18647 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18648 {
18649 rs = neon_select_shape (NS_QQI, NS_NULL);
18650 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18651 }
18652 else
18653 {
18654 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18655 et = neon_check_type (2, rs, N_EQK | N_UNS,
18656 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18657 }
18658
18659 int imm = inst.operands[2].imm;
18660 constraint (imm < 0 || (unsigned)imm >= et.size,
18661 _("immediate out of range for shift"));
18662 /* Only encodes the 'U present' variant of the instruction.
18663 In this case, signed types have OP (bit 8) set to 0.
18664 Unsigned types have OP set to 1. */
18665 inst.instruction |= (et.type == NT_unsigned) << 8;
18666 /* The rest of the bits are the same as other immediate shifts. */
18667 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18668 }
18669
18670 static void
18671 do_neon_qmovn (void)
18672 {
18673 struct neon_type_el et = neon_check_type (2, NS_DQ,
18674 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18675 /* Saturating move where operands can be signed or unsigned, and the
18676 destination has the same signedness. */
18677 NEON_ENCODE (INTEGER, inst);
18678 if (et.type == NT_unsigned)
18679 inst.instruction |= 0xc0;
18680 else
18681 inst.instruction |= 0x80;
18682 neon_two_same (0, 1, et.size / 2);
18683 }
18684
18685 static void
18686 do_neon_qmovun (void)
18687 {
18688 struct neon_type_el et = neon_check_type (2, NS_DQ,
18689 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18690 /* Saturating move with unsigned results. Operands must be signed. */
18691 NEON_ENCODE (INTEGER, inst);
18692 neon_two_same (0, 1, et.size / 2);
18693 }
18694
18695 static void
18696 do_neon_rshift_sat_narrow (void)
18697 {
18698 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18699 or unsigned. If operands are unsigned, results must also be unsigned. */
18700 struct neon_type_el et = neon_check_type (2, NS_DQI,
18701 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18702 int imm = inst.operands[2].imm;
18703 /* This gets the bounds check, size encoding and immediate bits calculation
18704 right. */
18705 et.size /= 2;
18706
18707 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18708 VQMOVN.I<size> <Dd>, <Qm>. */
18709 if (imm == 0)
18710 {
18711 inst.operands[2].present = 0;
18712 inst.instruction = N_MNEM_vqmovn;
18713 do_neon_qmovn ();
18714 return;
18715 }
18716
18717 constraint (imm < 1 || (unsigned)imm > et.size,
18718 _("immediate out of range"));
18719 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18720 }
18721
18722 static void
18723 do_neon_rshift_sat_narrow_u (void)
18724 {
18725 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18726 or unsigned. If operands are unsigned, results must also be unsigned. */
18727 struct neon_type_el et = neon_check_type (2, NS_DQI,
18728 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18729 int imm = inst.operands[2].imm;
18730 /* This gets the bounds check, size encoding and immediate bits calculation
18731 right. */
18732 et.size /= 2;
18733
18734 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18735 VQMOVUN.I<size> <Dd>, <Qm>. */
18736 if (imm == 0)
18737 {
18738 inst.operands[2].present = 0;
18739 inst.instruction = N_MNEM_vqmovun;
18740 do_neon_qmovun ();
18741 return;
18742 }
18743
18744 constraint (imm < 1 || (unsigned)imm > et.size,
18745 _("immediate out of range"));
18746 /* FIXME: The manual is kind of unclear about what value U should have in
18747 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18748 must be 1. */
18749 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18750 }
18751
18752 static void
18753 do_neon_movn (void)
18754 {
18755 struct neon_type_el et = neon_check_type (2, NS_DQ,
18756 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18757 NEON_ENCODE (INTEGER, inst);
18758 neon_two_same (0, 1, et.size / 2);
18759 }
18760
18761 static void
18762 do_neon_rshift_narrow (void)
18763 {
18764 struct neon_type_el et = neon_check_type (2, NS_DQI,
18765 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18766 int imm = inst.operands[2].imm;
18767 /* This gets the bounds check, size encoding and immediate bits calculation
18768 right. */
18769 et.size /= 2;
18770
18771 /* If immediate is zero then we are a pseudo-instruction for
18772 VMOVN.I<size> <Dd>, <Qm> */
18773 if (imm == 0)
18774 {
18775 inst.operands[2].present = 0;
18776 inst.instruction = N_MNEM_vmovn;
18777 do_neon_movn ();
18778 return;
18779 }
18780
18781 constraint (imm < 1 || (unsigned)imm > et.size,
18782 _("immediate out of range for narrowing operation"));
18783 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18784 }
18785
18786 static void
18787 do_neon_shll (void)
18788 {
18789 /* FIXME: Type checking when lengthening. */
18790 struct neon_type_el et = neon_check_type (2, NS_QDI,
18791 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18792 unsigned imm = inst.operands[2].imm;
18793
18794 if (imm == et.size)
18795 {
18796 /* Maximum shift variant. */
18797 NEON_ENCODE (INTEGER, inst);
18798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18800 inst.instruction |= LOW4 (inst.operands[1].reg);
18801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18802 inst.instruction |= neon_logbits (et.size) << 18;
18803
18804 neon_dp_fixup (&inst);
18805 }
18806 else
18807 {
18808 /* A more-specific type check for non-max versions. */
18809 et = neon_check_type (2, NS_QDI,
18810 N_EQK | N_DBL, N_SU_32 | N_KEY);
18811 NEON_ENCODE (IMMED, inst);
18812 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18813 }
18814 }
18815
18816 /* Check the various types for the VCVT instruction, and return which version
18817 the current instruction is. */
18818
18819 #define CVT_FLAVOUR_VAR \
18820 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18821 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18822 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18823 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18824 /* Half-precision conversions. */ \
18825 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18826 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18827 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18828 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18829 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18830 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18831 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18832 Compared with single/double precision variants, only the co-processor \
18833 field is different, so the encoding flow is reused here. */ \
18834 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18835 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18836 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18837 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18838 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
18839 /* VFP instructions. */ \
18840 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18841 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18842 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18843 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18844 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18845 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18846 /* VFP instructions with bitshift. */ \
18847 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18848 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18849 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18850 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18851 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18852 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18853 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18854 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18855
18856 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18857 neon_cvt_flavour_##C,
18858
18859 /* The different types of conversions we can do. */
18860 enum neon_cvt_flavour
18861 {
18862 CVT_FLAVOUR_VAR
18863 neon_cvt_flavour_invalid,
18864 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18865 };
18866
18867 #undef CVT_VAR
18868
18869 static enum neon_cvt_flavour
18870 get_neon_cvt_flavour (enum neon_shape rs)
18871 {
18872 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18873 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18874 if (et.type != NT_invtype) \
18875 { \
18876 inst.error = NULL; \
18877 return (neon_cvt_flavour_##C); \
18878 }
18879
18880 struct neon_type_el et;
18881 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18882 || rs == NS_FF) ? N_VFP : 0;
18883 /* The instruction versions which take an immediate take one register
18884 argument, which is extended to the width of the full register. Thus the
18885 "source" and "destination" registers must have the same width. Hack that
18886 here by making the size equal to the key (wider, in this case) operand. */
18887 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18888
18889 CVT_FLAVOUR_VAR;
18890
18891 return neon_cvt_flavour_invalid;
18892 #undef CVT_VAR
18893 }
18894
18895 enum neon_cvt_mode
18896 {
18897 neon_cvt_mode_a,
18898 neon_cvt_mode_n,
18899 neon_cvt_mode_p,
18900 neon_cvt_mode_m,
18901 neon_cvt_mode_z,
18902 neon_cvt_mode_x,
18903 neon_cvt_mode_r
18904 };
18905
18906 /* Neon-syntax VFP conversions. */
18907
18908 static void
18909 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18910 {
18911 const char *opname = 0;
18912
18913 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18914 || rs == NS_FHI || rs == NS_HFI)
18915 {
18916 /* Conversions with immediate bitshift. */
18917 const char *enc[] =
18918 {
18919 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18920 CVT_FLAVOUR_VAR
18921 NULL
18922 #undef CVT_VAR
18923 };
18924
18925 if (flavour < (int) ARRAY_SIZE (enc))
18926 {
18927 opname = enc[flavour];
18928 constraint (inst.operands[0].reg != inst.operands[1].reg,
18929 _("operands 0 and 1 must be the same register"));
18930 inst.operands[1] = inst.operands[2];
18931 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18932 }
18933 }
18934 else
18935 {
18936 /* Conversions without bitshift. */
18937 const char *enc[] =
18938 {
18939 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18940 CVT_FLAVOUR_VAR
18941 NULL
18942 #undef CVT_VAR
18943 };
18944
18945 if (flavour < (int) ARRAY_SIZE (enc))
18946 opname = enc[flavour];
18947 }
18948
18949 if (opname)
18950 do_vfp_nsyn_opcode (opname);
18951
18952 /* ARMv8.2 fp16 VCVT instruction. */
18953 if (flavour == neon_cvt_flavour_s32_f16
18954 || flavour == neon_cvt_flavour_u32_f16
18955 || flavour == neon_cvt_flavour_f16_u32
18956 || flavour == neon_cvt_flavour_f16_s32)
18957 do_scalar_fp16_v82_encode ();
18958 }
18959
18960 static void
18961 do_vfp_nsyn_cvtz (void)
18962 {
18963 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18964 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18965 const char *enc[] =
18966 {
18967 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18968 CVT_FLAVOUR_VAR
18969 NULL
18970 #undef CVT_VAR
18971 };
18972
18973 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18974 do_vfp_nsyn_opcode (enc[flavour]);
18975 }
18976
18977 static void
18978 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18979 enum neon_cvt_mode mode)
18980 {
18981 int sz, op;
18982 int rm;
18983
18984 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18985 D register operands. */
18986 if (flavour == neon_cvt_flavour_s32_f64
18987 || flavour == neon_cvt_flavour_u32_f64)
18988 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18989 _(BAD_FPU));
18990
18991 if (flavour == neon_cvt_flavour_s32_f16
18992 || flavour == neon_cvt_flavour_u32_f16)
18993 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18994 _(BAD_FP16));
18995
18996 set_pred_insn_type (OUTSIDE_PRED_INSN);
18997
18998 switch (flavour)
18999 {
19000 case neon_cvt_flavour_s32_f64:
19001 sz = 1;
19002 op = 1;
19003 break;
19004 case neon_cvt_flavour_s32_f32:
19005 sz = 0;
19006 op = 1;
19007 break;
19008 case neon_cvt_flavour_s32_f16:
19009 sz = 0;
19010 op = 1;
19011 break;
19012 case neon_cvt_flavour_u32_f64:
19013 sz = 1;
19014 op = 0;
19015 break;
19016 case neon_cvt_flavour_u32_f32:
19017 sz = 0;
19018 op = 0;
19019 break;
19020 case neon_cvt_flavour_u32_f16:
19021 sz = 0;
19022 op = 0;
19023 break;
19024 default:
19025 first_error (_("invalid instruction shape"));
19026 return;
19027 }
19028
19029 switch (mode)
19030 {
19031 case neon_cvt_mode_a: rm = 0; break;
19032 case neon_cvt_mode_n: rm = 1; break;
19033 case neon_cvt_mode_p: rm = 2; break;
19034 case neon_cvt_mode_m: rm = 3; break;
19035 default: first_error (_("invalid rounding mode")); return;
19036 }
19037
19038 NEON_ENCODE (FPV8, inst);
19039 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
19040 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
19041 inst.instruction |= sz << 8;
19042
19043 /* ARMv8.2 fp16 VCVT instruction. */
19044 if (flavour == neon_cvt_flavour_s32_f16
19045 ||flavour == neon_cvt_flavour_u32_f16)
19046 do_scalar_fp16_v82_encode ();
19047 inst.instruction |= op << 7;
19048 inst.instruction |= rm << 16;
19049 inst.instruction |= 0xf0000000;
19050 inst.is_neon = TRUE;
19051 }
19052
19053 static void
19054 do_neon_cvt_1 (enum neon_cvt_mode mode)
19055 {
19056 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
19057 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
19058 NS_FH, NS_HF, NS_FHI, NS_HFI,
19059 NS_NULL);
19060 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19061
19062 if (flavour == neon_cvt_flavour_invalid)
19063 return;
19064
19065 /* PR11109: Handle round-to-zero for VCVT conversions. */
19066 if (mode == neon_cvt_mode_z
19067 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
19068 && (flavour == neon_cvt_flavour_s16_f16
19069 || flavour == neon_cvt_flavour_u16_f16
19070 || flavour == neon_cvt_flavour_s32_f32
19071 || flavour == neon_cvt_flavour_u32_f32
19072 || flavour == neon_cvt_flavour_s32_f64
19073 || flavour == neon_cvt_flavour_u32_f64)
19074 && (rs == NS_FD || rs == NS_FF))
19075 {
19076 do_vfp_nsyn_cvtz ();
19077 return;
19078 }
19079
19080 /* ARMv8.2 fp16 VCVT conversions. */
19081 if (mode == neon_cvt_mode_z
19082 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
19083 && (flavour == neon_cvt_flavour_s32_f16
19084 || flavour == neon_cvt_flavour_u32_f16)
19085 && (rs == NS_FH))
19086 {
19087 do_vfp_nsyn_cvtz ();
19088 do_scalar_fp16_v82_encode ();
19089 return;
19090 }
19091
19092 /* VFP rather than Neon conversions. */
19093 if (flavour >= neon_cvt_flavour_first_fp)
19094 {
19095 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19096 do_vfp_nsyn_cvt (rs, flavour);
19097 else
19098 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19099
19100 return;
19101 }
19102
19103 switch (rs)
19104 {
19105 case NS_QQI:
19106 if (mode == neon_cvt_mode_z
19107 && (flavour == neon_cvt_flavour_f16_s16
19108 || flavour == neon_cvt_flavour_f16_u16
19109 || flavour == neon_cvt_flavour_s16_f16
19110 || flavour == neon_cvt_flavour_u16_f16
19111 || flavour == neon_cvt_flavour_f32_u32
19112 || flavour == neon_cvt_flavour_f32_s32
19113 || flavour == neon_cvt_flavour_s32_f32
19114 || flavour == neon_cvt_flavour_u32_f32))
19115 {
19116 if (!check_simd_pred_availability (TRUE,
19117 NEON_CHECK_CC | NEON_CHECK_ARCH))
19118 return;
19119 }
19120 else if (mode == neon_cvt_mode_n)
19121 {
19122 /* We are dealing with vcvt with the 'ne' condition. */
19123 inst.cond = 0x1;
19124 inst.instruction = N_MNEM_vcvt;
19125 do_neon_cvt_1 (neon_cvt_mode_z);
19126 return;
19127 }
19128 /* fall through. */
19129 case NS_DDI:
19130 {
19131 unsigned immbits;
19132 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19133 0x0000100, 0x1000100, 0x0, 0x1000000};
19134
19135 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19136 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19137 return;
19138
19139 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19140 {
19141 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
19142 _("immediate value out of range"));
19143 switch (flavour)
19144 {
19145 case neon_cvt_flavour_f16_s16:
19146 case neon_cvt_flavour_f16_u16:
19147 case neon_cvt_flavour_s16_f16:
19148 case neon_cvt_flavour_u16_f16:
19149 constraint (inst.operands[2].imm > 16,
19150 _("immediate value out of range"));
19151 break;
19152 case neon_cvt_flavour_f32_u32:
19153 case neon_cvt_flavour_f32_s32:
19154 case neon_cvt_flavour_s32_f32:
19155 case neon_cvt_flavour_u32_f32:
19156 constraint (inst.operands[2].imm > 32,
19157 _("immediate value out of range"));
19158 break;
19159 default:
19160 inst.error = BAD_FPU;
19161 return;
19162 }
19163 }
19164
19165 /* Fixed-point conversion with #0 immediate is encoded as an
19166 integer conversion. */
19167 if (inst.operands[2].present && inst.operands[2].imm == 0)
19168 goto int_encode;
19169 NEON_ENCODE (IMMED, inst);
19170 if (flavour != neon_cvt_flavour_invalid)
19171 inst.instruction |= enctab[flavour];
19172 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19173 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19174 inst.instruction |= LOW4 (inst.operands[1].reg);
19175 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19176 inst.instruction |= neon_quad (rs) << 6;
19177 inst.instruction |= 1 << 21;
19178 if (flavour < neon_cvt_flavour_s16_f16)
19179 {
19180 inst.instruction |= 1 << 21;
19181 immbits = 32 - inst.operands[2].imm;
19182 inst.instruction |= immbits << 16;
19183 }
19184 else
19185 {
19186 inst.instruction |= 3 << 20;
19187 immbits = 16 - inst.operands[2].imm;
19188 inst.instruction |= immbits << 16;
19189 inst.instruction &= ~(1 << 9);
19190 }
19191
19192 neon_dp_fixup (&inst);
19193 }
19194 break;
19195
19196 case NS_QQ:
19197 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19198 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
19199 && (flavour == neon_cvt_flavour_s16_f16
19200 || flavour == neon_cvt_flavour_u16_f16
19201 || flavour == neon_cvt_flavour_s32_f32
19202 || flavour == neon_cvt_flavour_u32_f32))
19203 {
19204 if (!check_simd_pred_availability (TRUE,
19205 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19206 return;
19207 }
19208 else if (mode == neon_cvt_mode_z
19209 && (flavour == neon_cvt_flavour_f16_s16
19210 || flavour == neon_cvt_flavour_f16_u16
19211 || flavour == neon_cvt_flavour_s16_f16
19212 || flavour == neon_cvt_flavour_u16_f16
19213 || flavour == neon_cvt_flavour_f32_u32
19214 || flavour == neon_cvt_flavour_f32_s32
19215 || flavour == neon_cvt_flavour_s32_f32
19216 || flavour == neon_cvt_flavour_u32_f32))
19217 {
19218 if (!check_simd_pred_availability (TRUE,
19219 NEON_CHECK_CC | NEON_CHECK_ARCH))
19220 return;
19221 }
19222 /* fall through. */
19223 case NS_DD:
19224 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
19225 {
19226
19227 NEON_ENCODE (FLOAT, inst);
19228 if (!check_simd_pred_availability (TRUE,
19229 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19230 return;
19231
19232 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19233 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19234 inst.instruction |= LOW4 (inst.operands[1].reg);
19235 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19236 inst.instruction |= neon_quad (rs) << 6;
19237 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19238 || flavour == neon_cvt_flavour_u32_f32) << 7;
19239 inst.instruction |= mode << 8;
19240 if (flavour == neon_cvt_flavour_u16_f16
19241 || flavour == neon_cvt_flavour_s16_f16)
19242 /* Mask off the original size bits and reencode them. */
19243 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19244
19245 if (thumb_mode)
19246 inst.instruction |= 0xfc000000;
19247 else
19248 inst.instruction |= 0xf0000000;
19249 }
19250 else
19251 {
19252 int_encode:
19253 {
19254 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19255 0x100, 0x180, 0x0, 0x080};
19256
19257 NEON_ENCODE (INTEGER, inst);
19258
19259 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19260 {
19261 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19262 return;
19263 }
19264
19265 if (flavour != neon_cvt_flavour_invalid)
19266 inst.instruction |= enctab[flavour];
19267
19268 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19269 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19270 inst.instruction |= LOW4 (inst.operands[1].reg);
19271 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19272 inst.instruction |= neon_quad (rs) << 6;
19273 if (flavour >= neon_cvt_flavour_s16_f16
19274 && flavour <= neon_cvt_flavour_f16_u16)
19275 /* Half precision. */
19276 inst.instruction |= 1 << 18;
19277 else
19278 inst.instruction |= 2 << 18;
19279
19280 neon_dp_fixup (&inst);
19281 }
19282 }
19283 break;
19284
19285 /* Half-precision conversions for Advanced SIMD -- neon. */
19286 case NS_QD:
19287 case NS_DQ:
19288 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19289 return;
19290
19291 if ((rs == NS_DQ)
19292 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19293 {
19294 as_bad (_("operand size must match register width"));
19295 break;
19296 }
19297
19298 if ((rs == NS_QD)
19299 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19300 {
19301 as_bad (_("operand size must match register width"));
19302 break;
19303 }
19304
19305 if (rs == NS_DQ)
19306 {
19307 if (flavour == neon_cvt_flavour_bf16_f32)
19308 {
19309 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL)
19310 return;
19311 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19312 /* VCVT.bf16.f32. */
19313 inst.instruction = 0x11b60640;
19314 }
19315 else
19316 /* VCVT.f16.f32. */
19317 inst.instruction = 0x3b60600;
19318 }
19319 else
19320 /* VCVT.f32.f16. */
19321 inst.instruction = 0x3b60700;
19322
19323 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19324 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19325 inst.instruction |= LOW4 (inst.operands[1].reg);
19326 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19327 neon_dp_fixup (&inst);
19328 break;
19329
19330 default:
19331 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19332 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19333 do_vfp_nsyn_cvt (rs, flavour);
19334 else
19335 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19336 }
19337 }
19338
19339 static void
19340 do_neon_cvtr (void)
19341 {
19342 do_neon_cvt_1 (neon_cvt_mode_x);
19343 }
19344
19345 static void
19346 do_neon_cvt (void)
19347 {
19348 do_neon_cvt_1 (neon_cvt_mode_z);
19349 }
19350
19351 static void
19352 do_neon_cvta (void)
19353 {
19354 do_neon_cvt_1 (neon_cvt_mode_a);
19355 }
19356
19357 static void
19358 do_neon_cvtn (void)
19359 {
19360 do_neon_cvt_1 (neon_cvt_mode_n);
19361 }
19362
19363 static void
19364 do_neon_cvtp (void)
19365 {
19366 do_neon_cvt_1 (neon_cvt_mode_p);
19367 }
19368
19369 static void
19370 do_neon_cvtm (void)
19371 {
19372 do_neon_cvt_1 (neon_cvt_mode_m);
19373 }
19374
19375 static void
19376 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19377 {
19378 if (is_double)
19379 mark_feature_used (&fpu_vfp_ext_armv8);
19380
19381 encode_arm_vfp_reg (inst.operands[0].reg,
19382 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19383 encode_arm_vfp_reg (inst.operands[1].reg,
19384 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19385 inst.instruction |= to ? 0x10000 : 0;
19386 inst.instruction |= t ? 0x80 : 0;
19387 inst.instruction |= is_double ? 0x100 : 0;
19388 do_vfp_cond_or_thumb ();
19389 }
19390
19391 static void
19392 do_neon_cvttb_1 (bfd_boolean t)
19393 {
19394 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19395 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19396
19397 if (rs == NS_NULL)
19398 return;
19399 else if (rs == NS_QQ || rs == NS_QQI)
19400 {
19401 int single_to_half = 0;
19402 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19403 return;
19404
19405 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19406
19407 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19408 && (flavour == neon_cvt_flavour_u16_f16
19409 || flavour == neon_cvt_flavour_s16_f16
19410 || flavour == neon_cvt_flavour_f16_s16
19411 || flavour == neon_cvt_flavour_f16_u16
19412 || flavour == neon_cvt_flavour_u32_f32
19413 || flavour == neon_cvt_flavour_s32_f32
19414 || flavour == neon_cvt_flavour_f32_s32
19415 || flavour == neon_cvt_flavour_f32_u32))
19416 {
19417 inst.cond = 0xf;
19418 inst.instruction = N_MNEM_vcvt;
19419 set_pred_insn_type (INSIDE_VPT_INSN);
19420 do_neon_cvt_1 (neon_cvt_mode_z);
19421 return;
19422 }
19423 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19424 single_to_half = 1;
19425 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19426 {
19427 first_error (BAD_FPU);
19428 return;
19429 }
19430
19431 inst.instruction = 0xee3f0e01;
19432 inst.instruction |= single_to_half << 28;
19433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19434 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19435 inst.instruction |= t << 12;
19436 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19437 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19438 inst.is_neon = 1;
19439 }
19440 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19441 {
19442 inst.error = NULL;
19443 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19444 }
19445 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19446 {
19447 inst.error = NULL;
19448 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19449 }
19450 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19451 {
19452 /* The VCVTB and VCVTT instructions with D-register operands
19453 don't work for SP only targets. */
19454 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19455 _(BAD_FPU));
19456
19457 inst.error = NULL;
19458 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19459 }
19460 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19461 {
19462 /* The VCVTB and VCVTT instructions with D-register operands
19463 don't work for SP only targets. */
19464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19465 _(BAD_FPU));
19466
19467 inst.error = NULL;
19468 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19469 }
19470 else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype)
19471 {
19472 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19473 inst.error = NULL;
19474 inst.instruction |= (1 << 8);
19475 inst.instruction &= ~(1 << 9);
19476 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19477 }
19478 else
19479 return;
19480 }
19481
19482 static void
19483 do_neon_cvtb (void)
19484 {
19485 do_neon_cvttb_1 (FALSE);
19486 }
19487
19488
19489 static void
19490 do_neon_cvtt (void)
19491 {
19492 do_neon_cvttb_1 (TRUE);
19493 }
19494
19495 static void
19496 neon_move_immediate (void)
19497 {
19498 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19499 struct neon_type_el et = neon_check_type (2, rs,
19500 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19501 unsigned immlo, immhi = 0, immbits;
19502 int op, cmode, float_p;
19503
19504 constraint (et.type == NT_invtype,
19505 _("operand size must be specified for immediate VMOV"));
19506
19507 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19508 op = (inst.instruction & (1 << 5)) != 0;
19509
19510 immlo = inst.operands[1].imm;
19511 if (inst.operands[1].regisimm)
19512 immhi = inst.operands[1].reg;
19513
19514 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19515 _("immediate has bits set outside the operand size"));
19516
19517 float_p = inst.operands[1].immisfloat;
19518
19519 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19520 et.size, et.type)) == FAIL)
19521 {
19522 /* Invert relevant bits only. */
19523 neon_invert_size (&immlo, &immhi, et.size);
19524 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19525 with one or the other; those cases are caught by
19526 neon_cmode_for_move_imm. */
19527 op = !op;
19528 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19529 &op, et.size, et.type)) == FAIL)
19530 {
19531 first_error (_("immediate out of range"));
19532 return;
19533 }
19534 }
19535
19536 inst.instruction &= ~(1 << 5);
19537 inst.instruction |= op << 5;
19538
19539 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19540 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19541 inst.instruction |= neon_quad (rs) << 6;
19542 inst.instruction |= cmode << 8;
19543
19544 neon_write_immbits (immbits);
19545 }
19546
19547 static void
19548 do_neon_mvn (void)
19549 {
19550 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19551 return;
19552
19553 if (inst.operands[1].isreg)
19554 {
19555 enum neon_shape rs;
19556 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19557 rs = neon_select_shape (NS_QQ, NS_NULL);
19558 else
19559 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19560
19561 NEON_ENCODE (INTEGER, inst);
19562 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19563 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19564 inst.instruction |= LOW4 (inst.operands[1].reg);
19565 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19566 inst.instruction |= neon_quad (rs) << 6;
19567 }
19568 else
19569 {
19570 NEON_ENCODE (IMMED, inst);
19571 neon_move_immediate ();
19572 }
19573
19574 neon_dp_fixup (&inst);
19575
19576 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19577 {
19578 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19579 }
19580 }
19581
19582 /* Encode instructions of form:
19583
19584 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19585 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19586
19587 static void
19588 neon_mixed_length (struct neon_type_el et, unsigned size)
19589 {
19590 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19591 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19592 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19593 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19594 inst.instruction |= LOW4 (inst.operands[2].reg);
19595 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19596 inst.instruction |= (et.type == NT_unsigned) << 24;
19597 inst.instruction |= neon_logbits (size) << 20;
19598
19599 neon_dp_fixup (&inst);
19600 }
19601
19602 static void
19603 do_neon_dyadic_long (void)
19604 {
19605 enum neon_shape rs = neon_select_shape (NS_QDD, NS_HHH, NS_FFF, NS_DDD, NS_NULL);
19606 if (rs == NS_QDD)
19607 {
19608 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19609 return;
19610
19611 NEON_ENCODE (INTEGER, inst);
19612 /* FIXME: Type checking for lengthening op. */
19613 struct neon_type_el et = neon_check_type (3, NS_QDD,
19614 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19615 neon_mixed_length (et, et.size);
19616 }
19617 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19618 && (inst.cond == 0xf || inst.cond == 0x10))
19619 {
19620 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19621 in an IT block with le/lt conditions. */
19622
19623 if (inst.cond == 0xf)
19624 inst.cond = 0xb;
19625 else if (inst.cond == 0x10)
19626 inst.cond = 0xd;
19627
19628 inst.pred_insn_type = INSIDE_IT_INSN;
19629
19630 if (inst.instruction == N_MNEM_vaddl)
19631 {
19632 inst.instruction = N_MNEM_vadd;
19633 do_neon_addsub_if_i ();
19634 }
19635 else if (inst.instruction == N_MNEM_vsubl)
19636 {
19637 inst.instruction = N_MNEM_vsub;
19638 do_neon_addsub_if_i ();
19639 }
19640 else if (inst.instruction == N_MNEM_vabdl)
19641 {
19642 inst.instruction = N_MNEM_vabd;
19643 do_neon_dyadic_if_su ();
19644 }
19645 }
19646 else
19647 first_error (BAD_FPU);
19648 }
19649
19650 static void
19651 do_neon_abal (void)
19652 {
19653 struct neon_type_el et = neon_check_type (3, NS_QDD,
19654 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19655 neon_mixed_length (et, et.size);
19656 }
19657
19658 static void
19659 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19660 {
19661 if (inst.operands[2].isscalar)
19662 {
19663 struct neon_type_el et = neon_check_type (3, NS_QDS,
19664 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19665 NEON_ENCODE (SCALAR, inst);
19666 neon_mul_mac (et, et.type == NT_unsigned);
19667 }
19668 else
19669 {
19670 struct neon_type_el et = neon_check_type (3, NS_QDD,
19671 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19672 NEON_ENCODE (INTEGER, inst);
19673 neon_mixed_length (et, et.size);
19674 }
19675 }
19676
19677 static void
19678 do_neon_mac_maybe_scalar_long (void)
19679 {
19680 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19681 }
19682
19683 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19684 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19685
19686 static unsigned
19687 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19688 {
19689 unsigned regno = NEON_SCALAR_REG (scalar);
19690 unsigned elno = NEON_SCALAR_INDEX (scalar);
19691
19692 if (quad_p)
19693 {
19694 if (regno > 7 || elno > 3)
19695 goto bad_scalar;
19696
19697 return ((regno & 0x7)
19698 | ((elno & 0x1) << 3)
19699 | (((elno >> 1) & 0x1) << 5));
19700 }
19701 else
19702 {
19703 if (regno > 15 || elno > 1)
19704 goto bad_scalar;
19705
19706 return (((regno & 0x1) << 5)
19707 | ((regno >> 1) & 0x7)
19708 | ((elno & 0x1) << 3));
19709 }
19710
19711 bad_scalar:
19712 first_error (_("scalar out of range for multiply instruction"));
19713 return 0;
19714 }
19715
19716 static void
19717 do_neon_fmac_maybe_scalar_long (int subtype)
19718 {
19719 enum neon_shape rs;
19720 int high8;
19721 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19722 field (bits[21:20]) has different meaning. For scalar index variant, it's
19723 used to differentiate add and subtract, otherwise it's with fixed value
19724 0x2. */
19725 int size = -1;
19726
19727 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19728 be a scalar index register. */
19729 if (inst.operands[2].isscalar)
19730 {
19731 high8 = 0xfe000000;
19732 if (subtype)
19733 size = 16;
19734 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19735 }
19736 else
19737 {
19738 high8 = 0xfc000000;
19739 size = 32;
19740 if (subtype)
19741 inst.instruction |= (0x1 << 23);
19742 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19743 }
19744
19745
19746 if (inst.cond != COND_ALWAYS)
19747 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19748 "behaviour is UNPREDICTABLE"));
19749
19750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19751 _(BAD_FP16));
19752
19753 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19754 _(BAD_FPU));
19755
19756 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19757 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19758 so we simply pass -1 as size. */
19759 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19760 neon_three_same (quad_p, 0, size);
19761
19762 /* Undo neon_dp_fixup. Redo the high eight bits. */
19763 inst.instruction &= 0x00ffffff;
19764 inst.instruction |= high8;
19765
19766 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19767 whether the instruction is in Q form and whether Vm is a scalar indexed
19768 operand. */
19769 if (inst.operands[2].isscalar)
19770 {
19771 unsigned rm
19772 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19773 inst.instruction &= 0xffffffd0;
19774 inst.instruction |= rm;
19775
19776 if (!quad_p)
19777 {
19778 /* Redo Rn as well. */
19779 inst.instruction &= 0xfff0ff7f;
19780 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19781 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19782 }
19783 }
19784 else if (!quad_p)
19785 {
19786 /* Redo Rn and Rm. */
19787 inst.instruction &= 0xfff0ff50;
19788 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19789 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19790 inst.instruction |= HI4 (inst.operands[2].reg);
19791 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19792 }
19793 }
19794
19795 static void
19796 do_neon_vfmal (void)
19797 {
19798 return do_neon_fmac_maybe_scalar_long (0);
19799 }
19800
19801 static void
19802 do_neon_vfmsl (void)
19803 {
19804 return do_neon_fmac_maybe_scalar_long (1);
19805 }
19806
19807 static void
19808 do_neon_dyadic_wide (void)
19809 {
19810 struct neon_type_el et = neon_check_type (3, NS_QQD,
19811 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19812 neon_mixed_length (et, et.size);
19813 }
19814
19815 static void
19816 do_neon_dyadic_narrow (void)
19817 {
19818 struct neon_type_el et = neon_check_type (3, NS_QDD,
19819 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19820 /* Operand sign is unimportant, and the U bit is part of the opcode,
19821 so force the operand type to integer. */
19822 et.type = NT_integer;
19823 neon_mixed_length (et, et.size / 2);
19824 }
19825
19826 static void
19827 do_neon_mul_sat_scalar_long (void)
19828 {
19829 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19830 }
19831
19832 static void
19833 do_neon_vmull (void)
19834 {
19835 if (inst.operands[2].isscalar)
19836 do_neon_mac_maybe_scalar_long ();
19837 else
19838 {
19839 struct neon_type_el et = neon_check_type (3, NS_QDD,
19840 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19841
19842 if (et.type == NT_poly)
19843 NEON_ENCODE (POLY, inst);
19844 else
19845 NEON_ENCODE (INTEGER, inst);
19846
19847 /* For polynomial encoding the U bit must be zero, and the size must
19848 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19849 obviously, as 0b10). */
19850 if (et.size == 64)
19851 {
19852 /* Check we're on the correct architecture. */
19853 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19854 inst.error =
19855 _("Instruction form not available on this architecture.");
19856
19857 et.size = 32;
19858 }
19859
19860 neon_mixed_length (et, et.size);
19861 }
19862 }
19863
19864 static void
19865 do_neon_ext (void)
19866 {
19867 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19868 struct neon_type_el et = neon_check_type (3, rs,
19869 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19870 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19871
19872 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19873 _("shift out of range"));
19874 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19875 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19876 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19877 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19878 inst.instruction |= LOW4 (inst.operands[2].reg);
19879 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19880 inst.instruction |= neon_quad (rs) << 6;
19881 inst.instruction |= imm << 8;
19882
19883 neon_dp_fixup (&inst);
19884 }
19885
19886 static void
19887 do_neon_rev (void)
19888 {
19889 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19890 return;
19891
19892 enum neon_shape rs;
19893 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19894 rs = neon_select_shape (NS_QQ, NS_NULL);
19895 else
19896 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19897
19898 struct neon_type_el et = neon_check_type (2, rs,
19899 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19900
19901 unsigned op = (inst.instruction >> 7) & 3;
19902 /* N (width of reversed regions) is encoded as part of the bitmask. We
19903 extract it here to check the elements to be reversed are smaller.
19904 Otherwise we'd get a reserved instruction. */
19905 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19906
19907 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19908 && inst.operands[0].reg == inst.operands[1].reg)
19909 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19910 " operands makes instruction UNPREDICTABLE"));
19911
19912 gas_assert (elsize != 0);
19913 constraint (et.size >= elsize,
19914 _("elements must be smaller than reversal region"));
19915 neon_two_same (neon_quad (rs), 1, et.size);
19916 }
19917
19918 static void
19919 do_neon_dup (void)
19920 {
19921 if (inst.operands[1].isscalar)
19922 {
19923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19924 BAD_FPU);
19925 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19926 struct neon_type_el et = neon_check_type (2, rs,
19927 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19928 unsigned sizebits = et.size >> 3;
19929 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19930 int logsize = neon_logbits (et.size);
19931 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19932
19933 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19934 return;
19935
19936 NEON_ENCODE (SCALAR, inst);
19937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19939 inst.instruction |= LOW4 (dm);
19940 inst.instruction |= HI1 (dm) << 5;
19941 inst.instruction |= neon_quad (rs) << 6;
19942 inst.instruction |= x << 17;
19943 inst.instruction |= sizebits << 16;
19944
19945 neon_dp_fixup (&inst);
19946 }
19947 else
19948 {
19949 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19950 struct neon_type_el et = neon_check_type (2, rs,
19951 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19952 if (rs == NS_QR)
19953 {
19954 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19955 return;
19956 }
19957 else
19958 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19959 BAD_FPU);
19960
19961 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19962 {
19963 if (inst.operands[1].reg == REG_SP)
19964 as_tsktsk (MVE_BAD_SP);
19965 else if (inst.operands[1].reg == REG_PC)
19966 as_tsktsk (MVE_BAD_PC);
19967 }
19968
19969 /* Duplicate ARM register to lanes of vector. */
19970 NEON_ENCODE (ARMREG, inst);
19971 switch (et.size)
19972 {
19973 case 8: inst.instruction |= 0x400000; break;
19974 case 16: inst.instruction |= 0x000020; break;
19975 case 32: inst.instruction |= 0x000000; break;
19976 default: break;
19977 }
19978 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19979 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19980 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19981 inst.instruction |= neon_quad (rs) << 21;
19982 /* The encoding for this instruction is identical for the ARM and Thumb
19983 variants, except for the condition field. */
19984 do_vfp_cond_or_thumb ();
19985 }
19986 }
19987
19988 static void
19989 do_mve_mov (int toQ)
19990 {
19991 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19992 return;
19993 if (inst.cond > COND_ALWAYS)
19994 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19995
19996 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19997 if (toQ)
19998 {
19999 Q0 = 0;
20000 Q1 = 1;
20001 Rt = 2;
20002 Rt2 = 3;
20003 }
20004
20005 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
20006 _("Index one must be [2,3] and index two must be two less than"
20007 " index one."));
20008 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
20009 _("General purpose registers may not be the same"));
20010 constraint (inst.operands[Rt].reg == REG_SP
20011 || inst.operands[Rt2].reg == REG_SP,
20012 BAD_SP);
20013 constraint (inst.operands[Rt].reg == REG_PC
20014 || inst.operands[Rt2].reg == REG_PC,
20015 BAD_PC);
20016
20017 inst.instruction = 0xec000f00;
20018 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
20019 inst.instruction |= !!toQ << 20;
20020 inst.instruction |= inst.operands[Rt2].reg << 16;
20021 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
20022 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
20023 inst.instruction |= inst.operands[Rt].reg;
20024 }
20025
20026 static void
20027 do_mve_movn (void)
20028 {
20029 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20030 return;
20031
20032 if (inst.cond > COND_ALWAYS)
20033 inst.pred_insn_type = INSIDE_VPT_INSN;
20034 else
20035 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
20036
20037 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
20038 | N_KEY);
20039
20040 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20041 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
20042 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20043 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20044 inst.instruction |= LOW4 (inst.operands[1].reg);
20045 inst.is_neon = 1;
20046
20047 }
20048
20049 /* VMOV has particularly many variations. It can be one of:
20050 0. VMOV<c><q> <Qd>, <Qm>
20051 1. VMOV<c><q> <Dd>, <Dm>
20052 (Register operations, which are VORR with Rm = Rn.)
20053 2. VMOV<c><q>.<dt> <Qd>, #<imm>
20054 3. VMOV<c><q>.<dt> <Dd>, #<imm>
20055 (Immediate loads.)
20056 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
20057 (ARM register to scalar.)
20058 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20059 (Two ARM registers to vector.)
20060 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20061 (Scalar to ARM register.)
20062 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20063 (Vector to two ARM registers.)
20064 8. VMOV.F32 <Sd>, <Sm>
20065 9. VMOV.F64 <Dd>, <Dm>
20066 (VFP register moves.)
20067 10. VMOV.F32 <Sd>, #imm
20068 11. VMOV.F64 <Dd>, #imm
20069 (VFP float immediate load.)
20070 12. VMOV <Rd>, <Sm>
20071 (VFP single to ARM reg.)
20072 13. VMOV <Sd>, <Rm>
20073 (ARM reg to VFP single.)
20074 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20075 (Two ARM regs to two VFP singles.)
20076 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20077 (Two VFP singles to two ARM regs.)
20078 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20079 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20080 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20081 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
20082
20083 These cases can be disambiguated using neon_select_shape, except cases 1/9
20084 and 3/11 which depend on the operand type too.
20085
20086 All the encoded bits are hardcoded by this function.
20087
20088 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20089 Cases 5, 7 may be used with VFPv2 and above.
20090
20091 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
20092 can specify a type where it doesn't make sense to, and is ignored). */
20093
20094 static void
20095 do_neon_mov (void)
20096 {
20097 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
20098 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
20099 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
20100 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
20101 NS_NULL);
20102 struct neon_type_el et;
20103 const char *ldconst = 0;
20104
20105 switch (rs)
20106 {
20107 case NS_DD: /* case 1/9. */
20108 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20109 /* It is not an error here if no type is given. */
20110 inst.error = NULL;
20111
20112 /* In MVE we interpret the following instructions as same, so ignoring
20113 the following type (float) and size (64) checks.
20114 a: VMOV<c><q> <Dd>, <Dm>
20115 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20116 if ((et.type == NT_float && et.size == 64)
20117 || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
20118 {
20119 do_vfp_nsyn_opcode ("fcpyd");
20120 break;
20121 }
20122 /* fall through. */
20123
20124 case NS_QQ: /* case 0/1. */
20125 {
20126 if (!check_simd_pred_availability (FALSE,
20127 NEON_CHECK_CC | NEON_CHECK_ARCH))
20128 return;
20129 /* The architecture manual I have doesn't explicitly state which
20130 value the U bit should have for register->register moves, but
20131 the equivalent VORR instruction has U = 0, so do that. */
20132 inst.instruction = 0x0200110;
20133 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20134 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20135 inst.instruction |= LOW4 (inst.operands[1].reg);
20136 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20137 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20138 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20139 inst.instruction |= neon_quad (rs) << 6;
20140
20141 neon_dp_fixup (&inst);
20142 }
20143 break;
20144
20145 case NS_DI: /* case 3/11. */
20146 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20147 inst.error = NULL;
20148 if (et.type == NT_float && et.size == 64)
20149 {
20150 /* case 11 (fconstd). */
20151 ldconst = "fconstd";
20152 goto encode_fconstd;
20153 }
20154 /* fall through. */
20155
20156 case NS_QI: /* case 2/3. */
20157 if (!check_simd_pred_availability (FALSE,
20158 NEON_CHECK_CC | NEON_CHECK_ARCH))
20159 return;
20160 inst.instruction = 0x0800010;
20161 neon_move_immediate ();
20162 neon_dp_fixup (&inst);
20163 break;
20164
20165 case NS_SR: /* case 4. */
20166 {
20167 unsigned bcdebits = 0;
20168 int logsize;
20169 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
20170 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
20171
20172 /* .<size> is optional here, defaulting to .32. */
20173 if (inst.vectype.elems == 0
20174 && inst.operands[0].vectype.type == NT_invtype
20175 && inst.operands[1].vectype.type == NT_invtype)
20176 {
20177 inst.vectype.el[0].type = NT_untyped;
20178 inst.vectype.el[0].size = 32;
20179 inst.vectype.elems = 1;
20180 }
20181
20182 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
20183 logsize = neon_logbits (et.size);
20184
20185 if (et.size != 32)
20186 {
20187 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20188 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
20189 return;
20190 }
20191 else
20192 {
20193 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20194 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20195 _(BAD_FPU));
20196 }
20197
20198 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20199 {
20200 if (inst.operands[1].reg == REG_SP)
20201 as_tsktsk (MVE_BAD_SP);
20202 else if (inst.operands[1].reg == REG_PC)
20203 as_tsktsk (MVE_BAD_PC);
20204 }
20205 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
20206
20207 constraint (et.type == NT_invtype, _("bad type for scalar"));
20208 constraint (x >= size / et.size, _("scalar index out of range"));
20209
20210
20211 switch (et.size)
20212 {
20213 case 8: bcdebits = 0x8; break;
20214 case 16: bcdebits = 0x1; break;
20215 case 32: bcdebits = 0x0; break;
20216 default: ;
20217 }
20218
20219 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20220
20221 inst.instruction = 0xe000b10;
20222 do_vfp_cond_or_thumb ();
20223 inst.instruction |= LOW4 (dn) << 16;
20224 inst.instruction |= HI1 (dn) << 7;
20225 inst.instruction |= inst.operands[1].reg << 12;
20226 inst.instruction |= (bcdebits & 3) << 5;
20227 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
20228 inst.instruction |= (x >> (3-logsize)) << 16;
20229 }
20230 break;
20231
20232 case NS_DRR: /* case 5 (fmdrr). */
20233 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20234 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20235 _(BAD_FPU));
20236
20237 inst.instruction = 0xc400b10;
20238 do_vfp_cond_or_thumb ();
20239 inst.instruction |= LOW4 (inst.operands[0].reg);
20240 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
20241 inst.instruction |= inst.operands[1].reg << 12;
20242 inst.instruction |= inst.operands[2].reg << 16;
20243 break;
20244
20245 case NS_RS: /* case 6. */
20246 {
20247 unsigned logsize;
20248 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
20249 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
20250 unsigned abcdebits = 0;
20251
20252 /* .<dt> is optional here, defaulting to .32. */
20253 if (inst.vectype.elems == 0
20254 && inst.operands[0].vectype.type == NT_invtype
20255 && inst.operands[1].vectype.type == NT_invtype)
20256 {
20257 inst.vectype.el[0].type = NT_untyped;
20258 inst.vectype.el[0].size = 32;
20259 inst.vectype.elems = 1;
20260 }
20261
20262 et = neon_check_type (2, NS_NULL,
20263 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
20264 logsize = neon_logbits (et.size);
20265
20266 if (et.size != 32)
20267 {
20268 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20269 && vfp_or_neon_is_neon (NEON_CHECK_CC
20270 | NEON_CHECK_ARCH) == FAIL)
20271 return;
20272 }
20273 else
20274 {
20275 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20276 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20277 _(BAD_FPU));
20278 }
20279
20280 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20281 {
20282 if (inst.operands[0].reg == REG_SP)
20283 as_tsktsk (MVE_BAD_SP);
20284 else if (inst.operands[0].reg == REG_PC)
20285 as_tsktsk (MVE_BAD_PC);
20286 }
20287
20288 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20289
20290 constraint (et.type == NT_invtype, _("bad type for scalar"));
20291 constraint (x >= size / et.size, _("scalar index out of range"));
20292
20293 switch (et.size)
20294 {
20295 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20296 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20297 case 32: abcdebits = 0x00; break;
20298 default: ;
20299 }
20300
20301 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20302 inst.instruction = 0xe100b10;
20303 do_vfp_cond_or_thumb ();
20304 inst.instruction |= LOW4 (dn) << 16;
20305 inst.instruction |= HI1 (dn) << 7;
20306 inst.instruction |= inst.operands[0].reg << 12;
20307 inst.instruction |= (abcdebits & 3) << 5;
20308 inst.instruction |= (abcdebits >> 2) << 21;
20309 inst.instruction |= (x >> (3-logsize)) << 16;
20310 }
20311 break;
20312
20313 case NS_RRD: /* case 7 (fmrrd). */
20314 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20315 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20316 _(BAD_FPU));
20317
20318 inst.instruction = 0xc500b10;
20319 do_vfp_cond_or_thumb ();
20320 inst.instruction |= inst.operands[0].reg << 12;
20321 inst.instruction |= inst.operands[1].reg << 16;
20322 inst.instruction |= LOW4 (inst.operands[2].reg);
20323 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20324 break;
20325
20326 case NS_FF: /* case 8 (fcpys). */
20327 do_vfp_nsyn_opcode ("fcpys");
20328 break;
20329
20330 case NS_HI:
20331 case NS_FI: /* case 10 (fconsts). */
20332 ldconst = "fconsts";
20333 encode_fconstd:
20334 if (!inst.operands[1].immisfloat)
20335 {
20336 unsigned new_imm;
20337 /* Immediate has to fit in 8 bits so float is enough. */
20338 float imm = (float) inst.operands[1].imm;
20339 memcpy (&new_imm, &imm, sizeof (float));
20340 /* But the assembly may have been written to provide an integer
20341 bit pattern that equates to a float, so check that the
20342 conversion has worked. */
20343 if (is_quarter_float (new_imm))
20344 {
20345 if (is_quarter_float (inst.operands[1].imm))
20346 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20347
20348 inst.operands[1].imm = new_imm;
20349 inst.operands[1].immisfloat = 1;
20350 }
20351 }
20352
20353 if (is_quarter_float (inst.operands[1].imm))
20354 {
20355 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20356 do_vfp_nsyn_opcode (ldconst);
20357
20358 /* ARMv8.2 fp16 vmov.f16 instruction. */
20359 if (rs == NS_HI)
20360 do_scalar_fp16_v82_encode ();
20361 }
20362 else
20363 first_error (_("immediate out of range"));
20364 break;
20365
20366 case NS_RH:
20367 case NS_RF: /* case 12 (fmrs). */
20368 do_vfp_nsyn_opcode ("fmrs");
20369 /* ARMv8.2 fp16 vmov.f16 instruction. */
20370 if (rs == NS_RH)
20371 do_scalar_fp16_v82_encode ();
20372 break;
20373
20374 case NS_HR:
20375 case NS_FR: /* case 13 (fmsr). */
20376 do_vfp_nsyn_opcode ("fmsr");
20377 /* ARMv8.2 fp16 vmov.f16 instruction. */
20378 if (rs == NS_HR)
20379 do_scalar_fp16_v82_encode ();
20380 break;
20381
20382 case NS_RRSS:
20383 do_mve_mov (0);
20384 break;
20385 case NS_SSRR:
20386 do_mve_mov (1);
20387 break;
20388
20389 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20390 (one of which is a list), but we have parsed four. Do some fiddling to
20391 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20392 expect. */
20393 case NS_RRFF: /* case 14 (fmrrs). */
20394 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20395 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20396 _(BAD_FPU));
20397 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20398 _("VFP registers must be adjacent"));
20399 inst.operands[2].imm = 2;
20400 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20401 do_vfp_nsyn_opcode ("fmrrs");
20402 break;
20403
20404 case NS_FFRR: /* case 15 (fmsrr). */
20405 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20406 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20407 _(BAD_FPU));
20408 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20409 _("VFP registers must be adjacent"));
20410 inst.operands[1] = inst.operands[2];
20411 inst.operands[2] = inst.operands[3];
20412 inst.operands[0].imm = 2;
20413 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20414 do_vfp_nsyn_opcode ("fmsrr");
20415 break;
20416
20417 case NS_NULL:
20418 /* neon_select_shape has determined that the instruction
20419 shape is wrong and has already set the error message. */
20420 break;
20421
20422 default:
20423 abort ();
20424 }
20425 }
20426
20427 static void
20428 do_mve_movl (void)
20429 {
20430 if (!(inst.operands[0].present && inst.operands[0].isquad
20431 && inst.operands[1].present && inst.operands[1].isquad
20432 && !inst.operands[2].present))
20433 {
20434 inst.instruction = 0;
20435 inst.cond = 0xb;
20436 if (thumb_mode)
20437 set_pred_insn_type (INSIDE_IT_INSN);
20438 do_neon_mov ();
20439 return;
20440 }
20441
20442 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20443 return;
20444
20445 if (inst.cond != COND_ALWAYS)
20446 inst.pred_insn_type = INSIDE_VPT_INSN;
20447
20448 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20449 | N_S16 | N_U16 | N_KEY);
20450
20451 inst.instruction |= (et.type == NT_unsigned) << 28;
20452 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20453 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20454 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20455 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20456 inst.instruction |= LOW4 (inst.operands[1].reg);
20457 inst.is_neon = 1;
20458 }
20459
20460 static void
20461 do_neon_rshift_round_imm (void)
20462 {
20463 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20464 return;
20465
20466 enum neon_shape rs;
20467 struct neon_type_el et;
20468
20469 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20470 {
20471 rs = neon_select_shape (NS_QQI, NS_NULL);
20472 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20473 }
20474 else
20475 {
20476 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20477 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20478 }
20479 int imm = inst.operands[2].imm;
20480
20481 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20482 if (imm == 0)
20483 {
20484 inst.operands[2].present = 0;
20485 do_neon_mov ();
20486 return;
20487 }
20488
20489 constraint (imm < 1 || (unsigned)imm > et.size,
20490 _("immediate out of range for shift"));
20491 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20492 et.size - imm);
20493 }
20494
20495 static void
20496 do_neon_movhf (void)
20497 {
20498 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20499 constraint (rs != NS_HH, _("invalid suffix"));
20500
20501 if (inst.cond != COND_ALWAYS)
20502 {
20503 if (thumb_mode)
20504 {
20505 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20506 " the behaviour is UNPREDICTABLE"));
20507 }
20508 else
20509 {
20510 inst.error = BAD_COND;
20511 return;
20512 }
20513 }
20514
20515 do_vfp_sp_monadic ();
20516
20517 inst.is_neon = 1;
20518 inst.instruction |= 0xf0000000;
20519 }
20520
20521 static void
20522 do_neon_movl (void)
20523 {
20524 struct neon_type_el et = neon_check_type (2, NS_QD,
20525 N_EQK | N_DBL, N_SU_32 | N_KEY);
20526 unsigned sizebits = et.size >> 3;
20527 inst.instruction |= sizebits << 19;
20528 neon_two_same (0, et.type == NT_unsigned, -1);
20529 }
20530
20531 static void
20532 do_neon_trn (void)
20533 {
20534 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20535 struct neon_type_el et = neon_check_type (2, rs,
20536 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20537 NEON_ENCODE (INTEGER, inst);
20538 neon_two_same (neon_quad (rs), 1, et.size);
20539 }
20540
20541 static void
20542 do_neon_zip_uzp (void)
20543 {
20544 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20545 struct neon_type_el et = neon_check_type (2, rs,
20546 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20547 if (rs == NS_DD && et.size == 32)
20548 {
20549 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20550 inst.instruction = N_MNEM_vtrn;
20551 do_neon_trn ();
20552 return;
20553 }
20554 neon_two_same (neon_quad (rs), 1, et.size);
20555 }
20556
20557 static void
20558 do_neon_sat_abs_neg (void)
20559 {
20560 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20561 return;
20562
20563 enum neon_shape rs;
20564 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20565 rs = neon_select_shape (NS_QQ, NS_NULL);
20566 else
20567 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20568 struct neon_type_el et = neon_check_type (2, rs,
20569 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20570 neon_two_same (neon_quad (rs), 1, et.size);
20571 }
20572
20573 static void
20574 do_neon_pair_long (void)
20575 {
20576 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20577 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20578 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20579 inst.instruction |= (et.type == NT_unsigned) << 7;
20580 neon_two_same (neon_quad (rs), 1, et.size);
20581 }
20582
20583 static void
20584 do_neon_recip_est (void)
20585 {
20586 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20587 struct neon_type_el et = neon_check_type (2, rs,
20588 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20589 inst.instruction |= (et.type == NT_float) << 8;
20590 neon_two_same (neon_quad (rs), 1, et.size);
20591 }
20592
20593 static void
20594 do_neon_cls (void)
20595 {
20596 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20597 return;
20598
20599 enum neon_shape rs;
20600 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20601 rs = neon_select_shape (NS_QQ, NS_NULL);
20602 else
20603 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20604
20605 struct neon_type_el et = neon_check_type (2, rs,
20606 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20607 neon_two_same (neon_quad (rs), 1, et.size);
20608 }
20609
20610 static void
20611 do_neon_clz (void)
20612 {
20613 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20614 return;
20615
20616 enum neon_shape rs;
20617 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20618 rs = neon_select_shape (NS_QQ, NS_NULL);
20619 else
20620 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20621
20622 struct neon_type_el et = neon_check_type (2, rs,
20623 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20624 neon_two_same (neon_quad (rs), 1, et.size);
20625 }
20626
20627 static void
20628 do_neon_cnt (void)
20629 {
20630 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20631 struct neon_type_el et = neon_check_type (2, rs,
20632 N_EQK | N_INT, N_8 | N_KEY);
20633 neon_two_same (neon_quad (rs), 1, et.size);
20634 }
20635
20636 static void
20637 do_neon_swp (void)
20638 {
20639 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20640 neon_two_same (neon_quad (rs), 1, -1);
20641 }
20642
20643 static void
20644 do_neon_tbl_tbx (void)
20645 {
20646 unsigned listlenbits;
20647 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20648
20649 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20650 {
20651 first_error (_("bad list length for table lookup"));
20652 return;
20653 }
20654
20655 listlenbits = inst.operands[1].imm - 1;
20656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20658 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20659 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20660 inst.instruction |= LOW4 (inst.operands[2].reg);
20661 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20662 inst.instruction |= listlenbits << 8;
20663
20664 neon_dp_fixup (&inst);
20665 }
20666
20667 static void
20668 do_neon_ldm_stm (void)
20669 {
20670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
20671 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20672 _(BAD_FPU));
20673 /* P, U and L bits are part of bitmask. */
20674 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20675 unsigned offsetbits = inst.operands[1].imm * 2;
20676
20677 if (inst.operands[1].issingle)
20678 {
20679 do_vfp_nsyn_ldm_stm (is_dbmode);
20680 return;
20681 }
20682
20683 constraint (is_dbmode && !inst.operands[0].writeback,
20684 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20685
20686 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20687 _("register list must contain at least 1 and at most 16 "
20688 "registers"));
20689
20690 inst.instruction |= inst.operands[0].reg << 16;
20691 inst.instruction |= inst.operands[0].writeback << 21;
20692 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20693 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20694
20695 inst.instruction |= offsetbits;
20696
20697 do_vfp_cond_or_thumb ();
20698 }
20699
20700 static void
20701 do_vfp_nsyn_pop (void)
20702 {
20703 nsyn_insert_sp ();
20704 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20705 return do_vfp_nsyn_opcode ("vldm");
20706 }
20707
20708 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20709 _(BAD_FPU));
20710
20711 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20712 _("register list must contain at least 1 and at most 16 "
20713 "registers"));
20714
20715 if (inst.operands[1].issingle)
20716 do_vfp_nsyn_opcode ("fldmias");
20717 else
20718 do_vfp_nsyn_opcode ("fldmiad");
20719 }
20720
20721 static void
20722 do_vfp_nsyn_push (void)
20723 {
20724 nsyn_insert_sp ();
20725 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20726 return do_vfp_nsyn_opcode ("vstmdb");
20727 }
20728
20729 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20730 _(BAD_FPU));
20731
20732 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20733 _("register list must contain at least 1 and at most 16 "
20734 "registers"));
20735
20736 if (inst.operands[1].issingle)
20737 do_vfp_nsyn_opcode ("fstmdbs");
20738 else
20739 do_vfp_nsyn_opcode ("fstmdbd");
20740 }
20741
20742
20743 static void
20744 do_neon_ldr_str (void)
20745 {
20746 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20747
20748 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20749 And is UNPREDICTABLE in thumb mode. */
20750 if (!is_ldr
20751 && inst.operands[1].reg == REG_PC
20752 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20753 {
20754 if (thumb_mode)
20755 inst.error = _("Use of PC here is UNPREDICTABLE");
20756 else if (warn_on_deprecated)
20757 as_tsktsk (_("Use of PC here is deprecated"));
20758 }
20759
20760 if (inst.operands[0].issingle)
20761 {
20762 if (is_ldr)
20763 do_vfp_nsyn_opcode ("flds");
20764 else
20765 do_vfp_nsyn_opcode ("fsts");
20766
20767 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20768 if (inst.vectype.el[0].size == 16)
20769 do_scalar_fp16_v82_encode ();
20770 }
20771 else
20772 {
20773 if (is_ldr)
20774 do_vfp_nsyn_opcode ("fldd");
20775 else
20776 do_vfp_nsyn_opcode ("fstd");
20777 }
20778 }
20779
20780 static void
20781 do_t_vldr_vstr_sysreg (void)
20782 {
20783 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20784 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20785
20786 /* Use of PC is UNPREDICTABLE. */
20787 if (inst.operands[1].reg == REG_PC)
20788 inst.error = _("Use of PC here is UNPREDICTABLE");
20789
20790 if (inst.operands[1].immisreg)
20791 inst.error = _("instruction does not accept register index");
20792
20793 if (!inst.operands[1].isreg)
20794 inst.error = _("instruction does not accept PC-relative addressing");
20795
20796 if (abs (inst.operands[1].imm) >= (1 << 7))
20797 inst.error = _("immediate value out of range");
20798
20799 inst.instruction = 0xec000f80;
20800 if (is_vldr)
20801 inst.instruction |= 1 << sysreg_vldr_bitno;
20802 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20803 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20804 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20805 }
20806
20807 static void
20808 do_vldr_vstr (void)
20809 {
20810 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20811
20812 /* VLDR/VSTR (System Register). */
20813 if (sysreg_op)
20814 {
20815 if (!mark_feature_used (&arm_ext_v8_1m_main))
20816 as_bad (_("Instruction not permitted on this architecture"));
20817
20818 do_t_vldr_vstr_sysreg ();
20819 }
20820 /* VLDR/VSTR. */
20821 else
20822 {
20823 if (!mark_feature_used (&fpu_vfp_ext_v1xd)
20824 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20825 as_bad (_("Instruction not permitted on this architecture"));
20826 do_neon_ldr_str ();
20827 }
20828 }
20829
20830 /* "interleave" version also handles non-interleaving register VLD1/VST1
20831 instructions. */
20832
20833 static void
20834 do_neon_ld_st_interleave (void)
20835 {
20836 struct neon_type_el et = neon_check_type (1, NS_NULL,
20837 N_8 | N_16 | N_32 | N_64);
20838 unsigned alignbits = 0;
20839 unsigned idx;
20840 /* The bits in this table go:
20841 0: register stride of one (0) or two (1)
20842 1,2: register list length, minus one (1, 2, 3, 4).
20843 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20844 We use -1 for invalid entries. */
20845 const int typetable[] =
20846 {
20847 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20848 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20849 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20850 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20851 };
20852 int typebits;
20853
20854 if (et.type == NT_invtype)
20855 return;
20856
20857 if (inst.operands[1].immisalign)
20858 switch (inst.operands[1].imm >> 8)
20859 {
20860 case 64: alignbits = 1; break;
20861 case 128:
20862 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20863 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20864 goto bad_alignment;
20865 alignbits = 2;
20866 break;
20867 case 256:
20868 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20869 goto bad_alignment;
20870 alignbits = 3;
20871 break;
20872 default:
20873 bad_alignment:
20874 first_error (_("bad alignment"));
20875 return;
20876 }
20877
20878 inst.instruction |= alignbits << 4;
20879 inst.instruction |= neon_logbits (et.size) << 6;
20880
20881 /* Bits [4:6] of the immediate in a list specifier encode register stride
20882 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20883 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20884 up the right value for "type" in a table based on this value and the given
20885 list style, then stick it back. */
20886 idx = ((inst.operands[0].imm >> 4) & 7)
20887 | (((inst.instruction >> 8) & 3) << 3);
20888
20889 typebits = typetable[idx];
20890
20891 constraint (typebits == -1, _("bad list type for instruction"));
20892 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20893 BAD_EL_TYPE);
20894
20895 inst.instruction &= ~0xf00;
20896 inst.instruction |= typebits << 8;
20897 }
20898
20899 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20900 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20901 otherwise. The variable arguments are a list of pairs of legal (size, align)
20902 values, terminated with -1. */
20903
20904 static int
20905 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20906 {
20907 va_list ap;
20908 int result = FAIL, thissize, thisalign;
20909
20910 if (!inst.operands[1].immisalign)
20911 {
20912 *do_alignment = 0;
20913 return SUCCESS;
20914 }
20915
20916 va_start (ap, do_alignment);
20917
20918 do
20919 {
20920 thissize = va_arg (ap, int);
20921 if (thissize == -1)
20922 break;
20923 thisalign = va_arg (ap, int);
20924
20925 if (size == thissize && align == thisalign)
20926 result = SUCCESS;
20927 }
20928 while (result != SUCCESS);
20929
20930 va_end (ap);
20931
20932 if (result == SUCCESS)
20933 *do_alignment = 1;
20934 else
20935 first_error (_("unsupported alignment for instruction"));
20936
20937 return result;
20938 }
20939
20940 static void
20941 do_neon_ld_st_lane (void)
20942 {
20943 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20944 int align_good, do_alignment = 0;
20945 int logsize = neon_logbits (et.size);
20946 int align = inst.operands[1].imm >> 8;
20947 int n = (inst.instruction >> 8) & 3;
20948 int max_el = 64 / et.size;
20949
20950 if (et.type == NT_invtype)
20951 return;
20952
20953 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20954 _("bad list length"));
20955 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20956 _("scalar index out of range"));
20957 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20958 && et.size == 8,
20959 _("stride of 2 unavailable when element size is 8"));
20960
20961 switch (n)
20962 {
20963 case 0: /* VLD1 / VST1. */
20964 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20965 32, 32, -1);
20966 if (align_good == FAIL)
20967 return;
20968 if (do_alignment)
20969 {
20970 unsigned alignbits = 0;
20971 switch (et.size)
20972 {
20973 case 16: alignbits = 0x1; break;
20974 case 32: alignbits = 0x3; break;
20975 default: ;
20976 }
20977 inst.instruction |= alignbits << 4;
20978 }
20979 break;
20980
20981 case 1: /* VLD2 / VST2. */
20982 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20983 16, 32, 32, 64, -1);
20984 if (align_good == FAIL)
20985 return;
20986 if (do_alignment)
20987 inst.instruction |= 1 << 4;
20988 break;
20989
20990 case 2: /* VLD3 / VST3. */
20991 constraint (inst.operands[1].immisalign,
20992 _("can't use alignment with this instruction"));
20993 break;
20994
20995 case 3: /* VLD4 / VST4. */
20996 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20997 16, 64, 32, 64, 32, 128, -1);
20998 if (align_good == FAIL)
20999 return;
21000 if (do_alignment)
21001 {
21002 unsigned alignbits = 0;
21003 switch (et.size)
21004 {
21005 case 8: alignbits = 0x1; break;
21006 case 16: alignbits = 0x1; break;
21007 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
21008 default: ;
21009 }
21010 inst.instruction |= alignbits << 4;
21011 }
21012 break;
21013
21014 default: ;
21015 }
21016
21017 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
21018 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21019 inst.instruction |= 1 << (4 + logsize);
21020
21021 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
21022 inst.instruction |= logsize << 10;
21023 }
21024
21025 /* Encode single n-element structure to all lanes VLD<n> instructions. */
21026
21027 static void
21028 do_neon_ld_dup (void)
21029 {
21030 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
21031 int align_good, do_alignment = 0;
21032
21033 if (et.type == NT_invtype)
21034 return;
21035
21036 switch ((inst.instruction >> 8) & 3)
21037 {
21038 case 0: /* VLD1. */
21039 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
21040 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
21041 &do_alignment, 16, 16, 32, 32, -1);
21042 if (align_good == FAIL)
21043 return;
21044 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
21045 {
21046 case 1: break;
21047 case 2: inst.instruction |= 1 << 5; break;
21048 default: first_error (_("bad list length")); return;
21049 }
21050 inst.instruction |= neon_logbits (et.size) << 6;
21051 break;
21052
21053 case 1: /* VLD2. */
21054 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
21055 &do_alignment, 8, 16, 16, 32, 32, 64,
21056 -1);
21057 if (align_good == FAIL)
21058 return;
21059 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
21060 _("bad list length"));
21061 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21062 inst.instruction |= 1 << 5;
21063 inst.instruction |= neon_logbits (et.size) << 6;
21064 break;
21065
21066 case 2: /* VLD3. */
21067 constraint (inst.operands[1].immisalign,
21068 _("can't use alignment with this instruction"));
21069 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
21070 _("bad list length"));
21071 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21072 inst.instruction |= 1 << 5;
21073 inst.instruction |= neon_logbits (et.size) << 6;
21074 break;
21075
21076 case 3: /* VLD4. */
21077 {
21078 int align = inst.operands[1].imm >> 8;
21079 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
21080 16, 64, 32, 64, 32, 128, -1);
21081 if (align_good == FAIL)
21082 return;
21083 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
21084 _("bad list length"));
21085 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21086 inst.instruction |= 1 << 5;
21087 if (et.size == 32 && align == 128)
21088 inst.instruction |= 0x3 << 6;
21089 else
21090 inst.instruction |= neon_logbits (et.size) << 6;
21091 }
21092 break;
21093
21094 default: ;
21095 }
21096
21097 inst.instruction |= do_alignment << 4;
21098 }
21099
21100 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21101 apart from bits [11:4]. */
21102
21103 static void
21104 do_neon_ldx_stx (void)
21105 {
21106 if (inst.operands[1].isreg)
21107 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
21108
21109 switch (NEON_LANE (inst.operands[0].imm))
21110 {
21111 case NEON_INTERLEAVE_LANES:
21112 NEON_ENCODE (INTERLV, inst);
21113 do_neon_ld_st_interleave ();
21114 break;
21115
21116 case NEON_ALL_LANES:
21117 NEON_ENCODE (DUP, inst);
21118 if (inst.instruction == N_INV)
21119 {
21120 first_error ("only loads support such operands");
21121 break;
21122 }
21123 do_neon_ld_dup ();
21124 break;
21125
21126 default:
21127 NEON_ENCODE (LANE, inst);
21128 do_neon_ld_st_lane ();
21129 }
21130
21131 /* L bit comes from bit mask. */
21132 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21133 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21134 inst.instruction |= inst.operands[1].reg << 16;
21135
21136 if (inst.operands[1].postind)
21137 {
21138 int postreg = inst.operands[1].imm & 0xf;
21139 constraint (!inst.operands[1].immisreg,
21140 _("post-index must be a register"));
21141 constraint (postreg == 0xd || postreg == 0xf,
21142 _("bad register for post-index"));
21143 inst.instruction |= postreg;
21144 }
21145 else
21146 {
21147 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
21148 constraint (inst.relocs[0].exp.X_op != O_constant
21149 || inst.relocs[0].exp.X_add_number != 0,
21150 BAD_ADDR_MODE);
21151
21152 if (inst.operands[1].writeback)
21153 {
21154 inst.instruction |= 0xd;
21155 }
21156 else
21157 inst.instruction |= 0xf;
21158 }
21159
21160 if (thumb_mode)
21161 inst.instruction |= 0xf9000000;
21162 else
21163 inst.instruction |= 0xf4000000;
21164 }
21165
21166 /* FP v8. */
21167 static void
21168 do_vfp_nsyn_fpv8 (enum neon_shape rs)
21169 {
21170 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21171 D register operands. */
21172 if (neon_shape_class[rs] == SC_DOUBLE)
21173 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21174 _(BAD_FPU));
21175
21176 NEON_ENCODE (FPV8, inst);
21177
21178 if (rs == NS_FFF || rs == NS_HHH)
21179 {
21180 do_vfp_sp_dyadic ();
21181
21182 /* ARMv8.2 fp16 instruction. */
21183 if (rs == NS_HHH)
21184 do_scalar_fp16_v82_encode ();
21185 }
21186 else
21187 do_vfp_dp_rd_rn_rm ();
21188
21189 if (rs == NS_DDD)
21190 inst.instruction |= 0x100;
21191
21192 inst.instruction |= 0xf0000000;
21193 }
21194
21195 static void
21196 do_vsel (void)
21197 {
21198 set_pred_insn_type (OUTSIDE_PRED_INSN);
21199
21200 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
21201 first_error (_("invalid instruction shape"));
21202 }
21203
21204 static void
21205 do_vmaxnm (void)
21206 {
21207 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21208 set_pred_insn_type (OUTSIDE_PRED_INSN);
21209
21210 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
21211 return;
21212
21213 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
21214 return;
21215
21216 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
21217 }
21218
21219 static void
21220 do_vrint_1 (enum neon_cvt_mode mode)
21221 {
21222 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
21223 struct neon_type_el et;
21224
21225 if (rs == NS_NULL)
21226 return;
21227
21228 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21229 D register operands. */
21230 if (neon_shape_class[rs] == SC_DOUBLE)
21231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21232 _(BAD_FPU));
21233
21234 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
21235 | N_VFP);
21236 if (et.type != NT_invtype)
21237 {
21238 /* VFP encodings. */
21239 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
21240 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
21241 set_pred_insn_type (OUTSIDE_PRED_INSN);
21242
21243 NEON_ENCODE (FPV8, inst);
21244 if (rs == NS_FF || rs == NS_HH)
21245 do_vfp_sp_monadic ();
21246 else
21247 do_vfp_dp_rd_rm ();
21248
21249 switch (mode)
21250 {
21251 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
21252 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
21253 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
21254 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
21255 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
21256 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
21257 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
21258 default: abort ();
21259 }
21260
21261 inst.instruction |= (rs == NS_DD) << 8;
21262 do_vfp_cond_or_thumb ();
21263
21264 /* ARMv8.2 fp16 vrint instruction. */
21265 if (rs == NS_HH)
21266 do_scalar_fp16_v82_encode ();
21267 }
21268 else
21269 {
21270 /* Neon encodings (or something broken...). */
21271 inst.error = NULL;
21272 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
21273
21274 if (et.type == NT_invtype)
21275 return;
21276
21277 if (!check_simd_pred_availability (TRUE,
21278 NEON_CHECK_CC | NEON_CHECK_ARCH8))
21279 return;
21280
21281 NEON_ENCODE (FLOAT, inst);
21282
21283 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21284 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21285 inst.instruction |= LOW4 (inst.operands[1].reg);
21286 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21287 inst.instruction |= neon_quad (rs) << 6;
21288 /* Mask off the original size bits and reencode them. */
21289 inst.instruction = ((inst.instruction & 0xfff3ffff)
21290 | neon_logbits (et.size) << 18);
21291
21292 switch (mode)
21293 {
21294 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
21295 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
21296 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
21297 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
21298 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
21299 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
21300 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
21301 default: abort ();
21302 }
21303
21304 if (thumb_mode)
21305 inst.instruction |= 0xfc000000;
21306 else
21307 inst.instruction |= 0xf0000000;
21308 }
21309 }
21310
21311 static void
21312 do_vrintx (void)
21313 {
21314 do_vrint_1 (neon_cvt_mode_x);
21315 }
21316
21317 static void
21318 do_vrintz (void)
21319 {
21320 do_vrint_1 (neon_cvt_mode_z);
21321 }
21322
21323 static void
21324 do_vrintr (void)
21325 {
21326 do_vrint_1 (neon_cvt_mode_r);
21327 }
21328
21329 static void
21330 do_vrinta (void)
21331 {
21332 do_vrint_1 (neon_cvt_mode_a);
21333 }
21334
21335 static void
21336 do_vrintn (void)
21337 {
21338 do_vrint_1 (neon_cvt_mode_n);
21339 }
21340
21341 static void
21342 do_vrintp (void)
21343 {
21344 do_vrint_1 (neon_cvt_mode_p);
21345 }
21346
21347 static void
21348 do_vrintm (void)
21349 {
21350 do_vrint_1 (neon_cvt_mode_m);
21351 }
21352
21353 static unsigned
21354 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21355 {
21356 unsigned regno = NEON_SCALAR_REG (opnd);
21357 unsigned elno = NEON_SCALAR_INDEX (opnd);
21358
21359 if (elsize == 16 && elno < 2 && regno < 16)
21360 return regno | (elno << 4);
21361 else if (elsize == 32 && elno == 0)
21362 return regno;
21363
21364 first_error (_("scalar out of range"));
21365 return 0;
21366 }
21367
21368 static void
21369 do_vcmla (void)
21370 {
21371 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21372 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21373 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21374 constraint (inst.relocs[0].exp.X_op != O_constant,
21375 _("expression too complex"));
21376 unsigned rot = inst.relocs[0].exp.X_add_number;
21377 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21378 _("immediate out of range"));
21379 rot /= 90;
21380
21381 if (!check_simd_pred_availability (TRUE,
21382 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21383 return;
21384
21385 if (inst.operands[2].isscalar)
21386 {
21387 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21388 first_error (_("invalid instruction shape"));
21389 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21390 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21391 N_KEY | N_F16 | N_F32).size;
21392 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21393 inst.is_neon = 1;
21394 inst.instruction = 0xfe000800;
21395 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21396 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21397 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21398 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21399 inst.instruction |= LOW4 (m);
21400 inst.instruction |= HI1 (m) << 5;
21401 inst.instruction |= neon_quad (rs) << 6;
21402 inst.instruction |= rot << 20;
21403 inst.instruction |= (size == 32) << 23;
21404 }
21405 else
21406 {
21407 enum neon_shape rs;
21408 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21409 rs = neon_select_shape (NS_QQQI, NS_NULL);
21410 else
21411 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21412
21413 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21414 N_KEY | N_F16 | N_F32).size;
21415 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21416 && (inst.operands[0].reg == inst.operands[1].reg
21417 || inst.operands[0].reg == inst.operands[2].reg))
21418 as_tsktsk (BAD_MVE_SRCDEST);
21419
21420 neon_three_same (neon_quad (rs), 0, -1);
21421 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21422 inst.instruction |= 0xfc200800;
21423 inst.instruction |= rot << 23;
21424 inst.instruction |= (size == 32) << 20;
21425 }
21426 }
21427
21428 static void
21429 do_vcadd (void)
21430 {
21431 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21432 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21433 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21434 constraint (inst.relocs[0].exp.X_op != O_constant,
21435 _("expression too complex"));
21436
21437 unsigned rot = inst.relocs[0].exp.X_add_number;
21438 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21439 enum neon_shape rs;
21440 struct neon_type_el et;
21441 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21442 {
21443 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21444 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21445 }
21446 else
21447 {
21448 rs = neon_select_shape (NS_QQQI, NS_NULL);
21449 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21450 | N_I16 | N_I32);
21451 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21452 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21453 "operand makes instruction UNPREDICTABLE"));
21454 }
21455
21456 if (et.type == NT_invtype)
21457 return;
21458
21459 if (!check_simd_pred_availability (et.type == NT_float,
21460 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21461 return;
21462
21463 if (et.type == NT_float)
21464 {
21465 neon_three_same (neon_quad (rs), 0, -1);
21466 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21467 inst.instruction |= 0xfc800800;
21468 inst.instruction |= (rot == 270) << 24;
21469 inst.instruction |= (et.size == 32) << 20;
21470 }
21471 else
21472 {
21473 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21474 inst.instruction = 0xfe000f00;
21475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21476 inst.instruction |= neon_logbits (et.size) << 20;
21477 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21478 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21479 inst.instruction |= (rot == 270) << 12;
21480 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21481 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21482 inst.instruction |= LOW4 (inst.operands[2].reg);
21483 inst.is_neon = 1;
21484 }
21485 }
21486
21487 /* Dot Product instructions encoding support. */
21488
21489 static void
21490 do_neon_dotproduct (int unsigned_p)
21491 {
21492 enum neon_shape rs;
21493 unsigned scalar_oprd2 = 0;
21494 int high8;
21495
21496 if (inst.cond != COND_ALWAYS)
21497 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21498 "is UNPREDICTABLE"));
21499
21500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21501 _(BAD_FPU));
21502
21503 /* Dot Product instructions are in three-same D/Q register format or the third
21504 operand can be a scalar index register. */
21505 if (inst.operands[2].isscalar)
21506 {
21507 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21508 high8 = 0xfe000000;
21509 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21510 }
21511 else
21512 {
21513 high8 = 0xfc000000;
21514 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21515 }
21516
21517 if (unsigned_p)
21518 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21519 else
21520 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21521
21522 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21523 Product instruction, so we pass 0 as the "ubit" parameter. And the
21524 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21525 neon_three_same (neon_quad (rs), 0, 32);
21526
21527 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21528 different NEON three-same encoding. */
21529 inst.instruction &= 0x00ffffff;
21530 inst.instruction |= high8;
21531 /* Encode 'U' bit which indicates signedness. */
21532 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21533 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21534 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21535 the instruction encoding. */
21536 if (inst.operands[2].isscalar)
21537 {
21538 inst.instruction &= 0xffffffd0;
21539 inst.instruction |= LOW4 (scalar_oprd2);
21540 inst.instruction |= HI1 (scalar_oprd2) << 5;
21541 }
21542 }
21543
21544 /* Dot Product instructions for signed integer. */
21545
21546 static void
21547 do_neon_dotproduct_s (void)
21548 {
21549 return do_neon_dotproduct (0);
21550 }
21551
21552 /* Dot Product instructions for unsigned integer. */
21553
21554 static void
21555 do_neon_dotproduct_u (void)
21556 {
21557 return do_neon_dotproduct (1);
21558 }
21559
21560 static void
21561 do_vusdot (void)
21562 {
21563 enum neon_shape rs;
21564 set_pred_insn_type (OUTSIDE_PRED_INSN);
21565 if (inst.operands[2].isscalar)
21566 {
21567 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21568 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21569
21570 inst.instruction |= (1 << 25);
21571 int index = inst.operands[2].reg & 0xf;
21572 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21573 inst.operands[2].reg >>= 4;
21574 constraint (!(inst.operands[2].reg < 16),
21575 _("indexed register must be less than 16"));
21576 neon_three_args (rs == NS_QQS);
21577 inst.instruction |= (index << 5);
21578 }
21579 else
21580 {
21581 inst.instruction |= (1 << 21);
21582 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21583 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21584 neon_three_args (rs == NS_QQQ);
21585 }
21586 }
21587
21588 static void
21589 do_vsudot (void)
21590 {
21591 enum neon_shape rs;
21592 set_pred_insn_type (OUTSIDE_PRED_INSN);
21593 if (inst.operands[2].isscalar)
21594 {
21595 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21596 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21597
21598 inst.instruction |= (1 << 25);
21599 int index = inst.operands[2].reg & 0xf;
21600 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21601 inst.operands[2].reg >>= 4;
21602 constraint (!(inst.operands[2].reg < 16),
21603 _("indexed register must be less than 16"));
21604 neon_three_args (rs == NS_QQS);
21605 inst.instruction |= (index << 5);
21606 }
21607 }
21608
21609 static void
21610 do_vsmmla (void)
21611 {
21612 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21613 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21614
21615 set_pred_insn_type (OUTSIDE_PRED_INSN);
21616
21617 neon_three_args (1);
21618
21619 }
21620
21621 static void
21622 do_vummla (void)
21623 {
21624 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21625 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21626
21627 set_pred_insn_type (OUTSIDE_PRED_INSN);
21628
21629 neon_three_args (1);
21630
21631 }
21632
21633 static void
21634 check_cde_operand (size_t index, int is_dual)
21635 {
21636 unsigned Rx = inst.operands[index].reg;
21637 bfd_boolean isvec = inst.operands[index].isvec;
21638 if (is_dual == 0 && thumb_mode)
21639 constraint (
21640 !((Rx <= 14 && Rx != 13) || (Rx == REG_PC && isvec)),
21641 _("Register must be r0-r14 except r13, or APSR_nzcv."));
21642 else
21643 constraint ( !((Rx <= 10 && Rx % 2 == 0 )),
21644 _("Register must be an even register between r0-r10."));
21645 }
21646
21647 static bfd_boolean
21648 cde_coproc_enabled (unsigned coproc)
21649 {
21650 switch (coproc)
21651 {
21652 case 0: return mark_feature_used (&arm_ext_cde0);
21653 case 1: return mark_feature_used (&arm_ext_cde1);
21654 case 2: return mark_feature_used (&arm_ext_cde2);
21655 case 3: return mark_feature_used (&arm_ext_cde3);
21656 case 4: return mark_feature_used (&arm_ext_cde4);
21657 case 5: return mark_feature_used (&arm_ext_cde5);
21658 case 6: return mark_feature_used (&arm_ext_cde6);
21659 case 7: return mark_feature_used (&arm_ext_cde7);
21660 default: return FALSE;
21661 }
21662 }
21663
21664 #define cde_coproc_pos 8
21665 static void
21666 cde_handle_coproc (void)
21667 {
21668 unsigned coproc = inst.operands[0].reg;
21669 constraint (coproc > 7, _("CDE Coprocessor must be in range 0-7"));
21670 constraint (!(cde_coproc_enabled (coproc)), BAD_CDE_COPROC);
21671 inst.instruction |= coproc << cde_coproc_pos;
21672 }
21673 #undef cde_coproc_pos
21674
21675 static void
21676 cxn_handle_predication (bfd_boolean is_accum)
21677 {
21678 if (is_accum && conditional_insn ())
21679 set_pred_insn_type (INSIDE_IT_INSN);
21680 else if (conditional_insn ())
21681 /* conditional_insn essentially checks for a suffix, not whether the
21682 instruction is inside an IT block or not.
21683 The non-accumulator versions should not have suffixes. */
21684 inst.error = BAD_SYNTAX;
21685 else
21686 set_pred_insn_type (OUTSIDE_PRED_INSN);
21687 }
21688
21689 static void
21690 do_custom_instruction_1 (int is_dual, bfd_boolean is_accum)
21691 {
21692
21693 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21694
21695 unsigned imm, Rd;
21696
21697 Rd = inst.operands[1].reg;
21698 check_cde_operand (1, is_dual);
21699
21700 if (is_dual == 1)
21701 {
21702 constraint (inst.operands[2].reg != Rd + 1,
21703 _("cx1d requires consecutive destination registers."));
21704 imm = inst.operands[3].imm;
21705 }
21706 else if (is_dual == 0)
21707 imm = inst.operands[2].imm;
21708 else
21709 abort ();
21710
21711 inst.instruction |= Rd << 12;
21712 inst.instruction |= (imm & 0x1F80) << 9;
21713 inst.instruction |= (imm & 0x0040) << 1;
21714 inst.instruction |= (imm & 0x003f);
21715
21716 cde_handle_coproc ();
21717 cxn_handle_predication (is_accum);
21718 }
21719
21720 static void
21721 do_custom_instruction_2 (int is_dual, bfd_boolean is_accum)
21722 {
21723
21724 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21725
21726 unsigned imm, Rd, Rn;
21727
21728 Rd = inst.operands[1].reg;
21729
21730 if (is_dual == 1)
21731 {
21732 constraint (inst.operands[2].reg != Rd + 1,
21733 _("cx2d requires consecutive destination registers."));
21734 imm = inst.operands[4].imm;
21735 Rn = inst.operands[3].reg;
21736 }
21737 else if (is_dual == 0)
21738 {
21739 imm = inst.operands[3].imm;
21740 Rn = inst.operands[2].reg;
21741 }
21742 else
21743 abort ();
21744
21745 check_cde_operand (2 + is_dual, /* is_dual = */0);
21746 check_cde_operand (1, is_dual);
21747
21748 inst.instruction |= Rd << 12;
21749 inst.instruction |= Rn << 16;
21750
21751 inst.instruction |= (imm & 0x0380) << 13;
21752 inst.instruction |= (imm & 0x0040) << 1;
21753 inst.instruction |= (imm & 0x003f);
21754
21755 cde_handle_coproc ();
21756 cxn_handle_predication (is_accum);
21757 }
21758
21759 static void
21760 do_custom_instruction_3 (int is_dual, bfd_boolean is_accum)
21761 {
21762
21763 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
21764
21765 unsigned imm, Rd, Rn, Rm;
21766
21767 Rd = inst.operands[1].reg;
21768
21769 if (is_dual == 1)
21770 {
21771 constraint (inst.operands[2].reg != Rd + 1,
21772 _("cx3d requires consecutive destination registers."));
21773 imm = inst.operands[5].imm;
21774 Rn = inst.operands[3].reg;
21775 Rm = inst.operands[4].reg;
21776 }
21777 else if (is_dual == 0)
21778 {
21779 imm = inst.operands[4].imm;
21780 Rn = inst.operands[2].reg;
21781 Rm = inst.operands[3].reg;
21782 }
21783 else
21784 abort ();
21785
21786 check_cde_operand (1, is_dual);
21787 check_cde_operand (2 + is_dual, /* is_dual = */0);
21788 check_cde_operand (3 + is_dual, /* is_dual = */0);
21789
21790 inst.instruction |= Rd;
21791 inst.instruction |= Rn << 16;
21792 inst.instruction |= Rm << 12;
21793
21794 inst.instruction |= (imm & 0x0038) << 17;
21795 inst.instruction |= (imm & 0x0004) << 5;
21796 inst.instruction |= (imm & 0x0003) << 4;
21797
21798 cde_handle_coproc ();
21799 cxn_handle_predication (is_accum);
21800 }
21801
21802 static void
21803 do_cx1 (void)
21804 {
21805 return do_custom_instruction_1 (0, 0);
21806 }
21807
21808 static void
21809 do_cx1a (void)
21810 {
21811 return do_custom_instruction_1 (0, 1);
21812 }
21813
21814 static void
21815 do_cx1d (void)
21816 {
21817 return do_custom_instruction_1 (1, 0);
21818 }
21819
21820 static void
21821 do_cx1da (void)
21822 {
21823 return do_custom_instruction_1 (1, 1);
21824 }
21825
21826 static void
21827 do_cx2 (void)
21828 {
21829 return do_custom_instruction_2 (0, 0);
21830 }
21831
21832 static void
21833 do_cx2a (void)
21834 {
21835 return do_custom_instruction_2 (0, 1);
21836 }
21837
21838 static void
21839 do_cx2d (void)
21840 {
21841 return do_custom_instruction_2 (1, 0);
21842 }
21843
21844 static void
21845 do_cx2da (void)
21846 {
21847 return do_custom_instruction_2 (1, 1);
21848 }
21849
21850 static void
21851 do_cx3 (void)
21852 {
21853 return do_custom_instruction_3 (0, 0);
21854 }
21855
21856 static void
21857 do_cx3a (void)
21858 {
21859 return do_custom_instruction_3 (0, 1);
21860 }
21861
21862 static void
21863 do_cx3d (void)
21864 {
21865 return do_custom_instruction_3 (1, 0);
21866 }
21867
21868 static void
21869 do_cx3da (void)
21870 {
21871 return do_custom_instruction_3 (1, 1);
21872 }
21873
21874 static void
21875 vcx_assign_vec_d (unsigned regnum)
21876 {
21877 inst.instruction |= HI4 (regnum) << 12;
21878 inst.instruction |= LOW1 (regnum) << 22;
21879 }
21880
21881 static void
21882 vcx_assign_vec_m (unsigned regnum)
21883 {
21884 inst.instruction |= HI4 (regnum);
21885 inst.instruction |= LOW1 (regnum) << 5;
21886 }
21887
21888 static void
21889 vcx_assign_vec_n (unsigned regnum)
21890 {
21891 inst.instruction |= HI4 (regnum) << 16;
21892 inst.instruction |= LOW1 (regnum) << 7;
21893 }
21894
21895 enum vcx_reg_type {
21896 q_reg,
21897 d_reg,
21898 s_reg
21899 };
21900
21901 static enum vcx_reg_type
21902 vcx_get_reg_type (enum neon_shape ns)
21903 {
21904 gas_assert (ns == NS_PQI
21905 || ns == NS_PDI
21906 || ns == NS_PFI
21907 || ns == NS_PQQI
21908 || ns == NS_PDDI
21909 || ns == NS_PFFI
21910 || ns == NS_PQQQI
21911 || ns == NS_PDDDI
21912 || ns == NS_PFFFI);
21913 if (ns == NS_PQI || ns == NS_PQQI || ns == NS_PQQQI)
21914 return q_reg;
21915 if (ns == NS_PDI || ns == NS_PDDI || ns == NS_PDDDI)
21916 return d_reg;
21917 return s_reg;
21918 }
21919
21920 #define vcx_size_pos 24
21921 #define vcx_vec_pos 6
21922 static unsigned
21923 vcx_handle_shape (enum vcx_reg_type reg_type)
21924 {
21925 unsigned mult = 2;
21926 if (reg_type == q_reg)
21927 inst.instruction |= 1 << vcx_vec_pos;
21928 else if (reg_type == d_reg)
21929 inst.instruction |= 1 << vcx_size_pos;
21930 else
21931 mult = 1;
21932 /* NOTE:
21933 The documentation says that the Q registers are encoded as 2*N in the D:Vd
21934 bits (or equivalent for N and M registers).
21935 Similarly the D registers are encoded as N in D:Vd bits.
21936 While the S registers are encoded as N in the Vd:D bits.
21937
21938 Taking into account the maximum values of these registers we can see a
21939 nicer pattern for calculation:
21940 Q -> 7, D -> 15, S -> 31
21941
21942 If we say that everything is encoded in the Vd:D bits, then we can say
21943 that Q is encoded as 4*N, and D is encoded as 2*N.
21944 This way the bits will end up the same, and calculation is simpler.
21945 (calculation is now:
21946 1. Multiply by a number determined by the register letter.
21947 2. Encode resulting number in Vd:D bits.)
21948
21949 This is made a little more complicated by automatic handling of 'Q'
21950 registers elsewhere, which means the register number is already 2*N where
21951 N is the number the user wrote after the register letter.
21952 */
21953 return mult;
21954 }
21955 #undef vcx_vec_pos
21956 #undef vcx_size_pos
21957
21958 static void
21959 vcx_ensure_register_in_range (unsigned R, enum vcx_reg_type reg_type)
21960 {
21961 if (reg_type == q_reg)
21962 {
21963 gas_assert (R % 2 == 0);
21964 constraint (R >= 16, _("'q' register must be in range 0-7"));
21965 }
21966 else if (reg_type == d_reg)
21967 constraint (R >= 16, _("'d' register must be in range 0-15"));
21968 else
21969 constraint (R >= 32, _("'s' register must be in range 0-31"));
21970 }
21971
21972 static void (*vcx_assign_vec[3]) (unsigned) = {
21973 vcx_assign_vec_d,
21974 vcx_assign_vec_m,
21975 vcx_assign_vec_n
21976 };
21977
21978 static void
21979 vcx_handle_register_arguments (unsigned num_registers,
21980 enum vcx_reg_type reg_type)
21981 {
21982 unsigned R, i;
21983 unsigned reg_mult = vcx_handle_shape (reg_type);
21984 for (i = 0; i < num_registers; i++)
21985 {
21986 R = inst.operands[i+1].reg;
21987 vcx_ensure_register_in_range (R, reg_type);
21988 if (num_registers == 3 && i > 0)
21989 {
21990 if (i == 2)
21991 vcx_assign_vec[1] (R * reg_mult);
21992 else
21993 vcx_assign_vec[2] (R * reg_mult);
21994 continue;
21995 }
21996 vcx_assign_vec[i](R * reg_mult);
21997 }
21998 }
21999
22000 static void
22001 vcx_handle_insn_block (enum vcx_reg_type reg_type)
22002 {
22003 if (reg_type == q_reg)
22004 if (inst.cond > COND_ALWAYS)
22005 inst.pred_insn_type = INSIDE_VPT_INSN;
22006 else
22007 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
22008 else if (inst.cond == COND_ALWAYS)
22009 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22010 else
22011 inst.error = BAD_NOT_IT;
22012 }
22013
22014 static void
22015 vcx_handle_common_checks (unsigned num_args, enum neon_shape rs)
22016 {
22017 constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE));
22018 cde_handle_coproc ();
22019 enum vcx_reg_type reg_type = vcx_get_reg_type (rs);
22020 vcx_handle_register_arguments (num_args, reg_type);
22021 vcx_handle_insn_block (reg_type);
22022 if (reg_type == q_reg)
22023 constraint (!mark_feature_used (&mve_ext),
22024 _("vcx instructions with Q registers require MVE"));
22025 else
22026 constraint (!(ARM_FSET_CPU_SUBSET (armv8m_fp, cpu_variant)
22027 && mark_feature_used (&armv8m_fp))
22028 && !mark_feature_used (&mve_ext),
22029 _("vcx instructions with S or D registers require either MVE"
22030 " or Armv8-M floating point etension."));
22031 }
22032
22033 static void
22034 do_vcx1 (void)
22035 {
22036 enum neon_shape rs = neon_select_shape (NS_PQI, NS_PDI, NS_PFI, NS_NULL);
22037 vcx_handle_common_checks (1, rs);
22038
22039 unsigned imm = inst.operands[2].imm;
22040 inst.instruction |= (imm & 0x03f);
22041 inst.instruction |= (imm & 0x040) << 1;
22042 inst.instruction |= (imm & 0x780) << 9;
22043 if (rs != NS_PQI)
22044 constraint (imm >= 2048,
22045 _("vcx1 with S or D registers takes immediate within 0-2047"));
22046 inst.instruction |= (imm & 0x800) << 13;
22047 }
22048
22049 static void
22050 do_vcx2 (void)
22051 {
22052 enum neon_shape rs = neon_select_shape (NS_PQQI, NS_PDDI, NS_PFFI, NS_NULL);
22053 vcx_handle_common_checks (2, rs);
22054
22055 unsigned imm = inst.operands[3].imm;
22056 inst.instruction |= (imm & 0x01) << 4;
22057 inst.instruction |= (imm & 0x02) << 6;
22058 inst.instruction |= (imm & 0x3c) << 14;
22059 if (rs != NS_PQQI)
22060 constraint (imm >= 64,
22061 _("vcx2 with S or D registers takes immediate within 0-63"));
22062 inst.instruction |= (imm & 0x40) << 18;
22063 }
22064
22065 static void
22066 do_vcx3 (void)
22067 {
22068 enum neon_shape rs = neon_select_shape (NS_PQQQI, NS_PDDDI, NS_PFFFI, NS_NULL);
22069 vcx_handle_common_checks (3, rs);
22070
22071 unsigned imm = inst.operands[4].imm;
22072 inst.instruction |= (imm & 0x1) << 4;
22073 inst.instruction |= (imm & 0x6) << 19;
22074 if (rs != NS_PQQQI)
22075 constraint (imm >= 8,
22076 _("vcx2 with S or D registers takes immediate within 0-7"));
22077 inst.instruction |= (imm & 0x8) << 21;
22078 }
22079
22080 /* Crypto v1 instructions. */
22081 static void
22082 do_crypto_2op_1 (unsigned elttype, int op)
22083 {
22084 set_pred_insn_type (OUTSIDE_PRED_INSN);
22085
22086 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
22087 == NT_invtype)
22088 return;
22089
22090 inst.error = NULL;
22091
22092 NEON_ENCODE (INTEGER, inst);
22093 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
22094 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
22095 inst.instruction |= LOW4 (inst.operands[1].reg);
22096 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
22097 if (op != -1)
22098 inst.instruction |= op << 6;
22099
22100 if (thumb_mode)
22101 inst.instruction |= 0xfc000000;
22102 else
22103 inst.instruction |= 0xf0000000;
22104 }
22105
22106 static void
22107 do_crypto_3op_1 (int u, int op)
22108 {
22109 set_pred_insn_type (OUTSIDE_PRED_INSN);
22110
22111 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
22112 N_32 | N_UNT | N_KEY).type == NT_invtype)
22113 return;
22114
22115 inst.error = NULL;
22116
22117 NEON_ENCODE (INTEGER, inst);
22118 neon_three_same (1, u, 8 << op);
22119 }
22120
22121 static void
22122 do_aese (void)
22123 {
22124 do_crypto_2op_1 (N_8, 0);
22125 }
22126
22127 static void
22128 do_aesd (void)
22129 {
22130 do_crypto_2op_1 (N_8, 1);
22131 }
22132
22133 static void
22134 do_aesmc (void)
22135 {
22136 do_crypto_2op_1 (N_8, 2);
22137 }
22138
22139 static void
22140 do_aesimc (void)
22141 {
22142 do_crypto_2op_1 (N_8, 3);
22143 }
22144
22145 static void
22146 do_sha1c (void)
22147 {
22148 do_crypto_3op_1 (0, 0);
22149 }
22150
22151 static void
22152 do_sha1p (void)
22153 {
22154 do_crypto_3op_1 (0, 1);
22155 }
22156
22157 static void
22158 do_sha1m (void)
22159 {
22160 do_crypto_3op_1 (0, 2);
22161 }
22162
22163 static void
22164 do_sha1su0 (void)
22165 {
22166 do_crypto_3op_1 (0, 3);
22167 }
22168
22169 static void
22170 do_sha256h (void)
22171 {
22172 do_crypto_3op_1 (1, 0);
22173 }
22174
22175 static void
22176 do_sha256h2 (void)
22177 {
22178 do_crypto_3op_1 (1, 1);
22179 }
22180
22181 static void
22182 do_sha256su1 (void)
22183 {
22184 do_crypto_3op_1 (1, 2);
22185 }
22186
22187 static void
22188 do_sha1h (void)
22189 {
22190 do_crypto_2op_1 (N_32, -1);
22191 }
22192
22193 static void
22194 do_sha1su1 (void)
22195 {
22196 do_crypto_2op_1 (N_32, 0);
22197 }
22198
22199 static void
22200 do_sha256su0 (void)
22201 {
22202 do_crypto_2op_1 (N_32, 1);
22203 }
22204
22205 static void
22206 do_crc32_1 (unsigned int poly, unsigned int sz)
22207 {
22208 unsigned int Rd = inst.operands[0].reg;
22209 unsigned int Rn = inst.operands[1].reg;
22210 unsigned int Rm = inst.operands[2].reg;
22211
22212 set_pred_insn_type (OUTSIDE_PRED_INSN);
22213 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
22214 inst.instruction |= LOW4 (Rn) << 16;
22215 inst.instruction |= LOW4 (Rm);
22216 inst.instruction |= sz << (thumb_mode ? 4 : 21);
22217 inst.instruction |= poly << (thumb_mode ? 20 : 9);
22218
22219 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
22220 as_warn (UNPRED_REG ("r15"));
22221 }
22222
22223 static void
22224 do_crc32b (void)
22225 {
22226 do_crc32_1 (0, 0);
22227 }
22228
22229 static void
22230 do_crc32h (void)
22231 {
22232 do_crc32_1 (0, 1);
22233 }
22234
22235 static void
22236 do_crc32w (void)
22237 {
22238 do_crc32_1 (0, 2);
22239 }
22240
22241 static void
22242 do_crc32cb (void)
22243 {
22244 do_crc32_1 (1, 0);
22245 }
22246
22247 static void
22248 do_crc32ch (void)
22249 {
22250 do_crc32_1 (1, 1);
22251 }
22252
22253 static void
22254 do_crc32cw (void)
22255 {
22256 do_crc32_1 (1, 2);
22257 }
22258
22259 static void
22260 do_vjcvt (void)
22261 {
22262 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
22263 _(BAD_FPU));
22264 neon_check_type (2, NS_FD, N_S32, N_F64);
22265 do_vfp_sp_dp_cvt ();
22266 do_vfp_cond_or_thumb ();
22267 }
22268
22269 static void
22270 do_vdot (void)
22271 {
22272 enum neon_shape rs;
22273 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
22274 set_pred_insn_type (OUTSIDE_PRED_INSN);
22275 if (inst.operands[2].isscalar)
22276 {
22277 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
22278 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22279
22280 inst.instruction |= (1 << 25);
22281 int index = inst.operands[2].reg & 0xf;
22282 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
22283 inst.operands[2].reg >>= 4;
22284 constraint (!(inst.operands[2].reg < 16),
22285 _("indexed register must be less than 16"));
22286 neon_three_args (rs == NS_QQS);
22287 inst.instruction |= (index << 5);
22288 }
22289 else
22290 {
22291 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
22292 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22293 neon_three_args (rs == NS_QQQ);
22294 }
22295 }
22296
22297 static void
22298 do_vmmla (void)
22299 {
22300 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
22301 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
22302
22303 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
22304 set_pred_insn_type (OUTSIDE_PRED_INSN);
22305
22306 neon_three_args (1);
22307 }
22308
22309 \f
22310 /* Overall per-instruction processing. */
22311
22312 /* We need to be able to fix up arbitrary expressions in some statements.
22313 This is so that we can handle symbols that are an arbitrary distance from
22314 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
22315 which returns part of an address in a form which will be valid for
22316 a data instruction. We do this by pushing the expression into a symbol
22317 in the expr_section, and creating a fix for that. */
22318
22319 static void
22320 fix_new_arm (fragS * frag,
22321 int where,
22322 short int size,
22323 expressionS * exp,
22324 int pc_rel,
22325 int reloc)
22326 {
22327 fixS * new_fix;
22328
22329 switch (exp->X_op)
22330 {
22331 case O_constant:
22332 if (pc_rel)
22333 {
22334 /* Create an absolute valued symbol, so we have something to
22335 refer to in the object file. Unfortunately for us, gas's
22336 generic expression parsing will already have folded out
22337 any use of .set foo/.type foo %function that may have
22338 been used to set type information of the target location,
22339 that's being specified symbolically. We have to presume
22340 the user knows what they are doing. */
22341 char name[16 + 8];
22342 symbolS *symbol;
22343
22344 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
22345
22346 symbol = symbol_find_or_make (name);
22347 S_SET_SEGMENT (symbol, absolute_section);
22348 symbol_set_frag (symbol, &zero_address_frag);
22349 S_SET_VALUE (symbol, exp->X_add_number);
22350 exp->X_op = O_symbol;
22351 exp->X_add_symbol = symbol;
22352 exp->X_add_number = 0;
22353 }
22354 /* FALLTHROUGH */
22355 case O_symbol:
22356 case O_add:
22357 case O_subtract:
22358 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
22359 (enum bfd_reloc_code_real) reloc);
22360 break;
22361
22362 default:
22363 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
22364 pc_rel, (enum bfd_reloc_code_real) reloc);
22365 break;
22366 }
22367
22368 /* Mark whether the fix is to a THUMB instruction, or an ARM
22369 instruction. */
22370 new_fix->tc_fix_data = thumb_mode;
22371 }
22372
22373 /* Create a frg for an instruction requiring relaxation. */
22374 static void
22375 output_relax_insn (void)
22376 {
22377 char * to;
22378 symbolS *sym;
22379 int offset;
22380
22381 /* The size of the instruction is unknown, so tie the debug info to the
22382 start of the instruction. */
22383 dwarf2_emit_insn (0);
22384
22385 switch (inst.relocs[0].exp.X_op)
22386 {
22387 case O_symbol:
22388 sym = inst.relocs[0].exp.X_add_symbol;
22389 offset = inst.relocs[0].exp.X_add_number;
22390 break;
22391 case O_constant:
22392 sym = NULL;
22393 offset = inst.relocs[0].exp.X_add_number;
22394 break;
22395 default:
22396 sym = make_expr_symbol (&inst.relocs[0].exp);
22397 offset = 0;
22398 break;
22399 }
22400 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
22401 inst.relax, sym, offset, NULL/*offset, opcode*/);
22402 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
22403 }
22404
22405 /* Write a 32-bit thumb instruction to buf. */
22406 static void
22407 put_thumb32_insn (char * buf, unsigned long insn)
22408 {
22409 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
22410 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
22411 }
22412
22413 static void
22414 output_inst (const char * str)
22415 {
22416 char * to = NULL;
22417
22418 if (inst.error)
22419 {
22420 as_bad ("%s -- `%s'", inst.error, str);
22421 return;
22422 }
22423 if (inst.relax)
22424 {
22425 output_relax_insn ();
22426 return;
22427 }
22428 if (inst.size == 0)
22429 return;
22430
22431 to = frag_more (inst.size);
22432 /* PR 9814: Record the thumb mode into the current frag so that we know
22433 what type of NOP padding to use, if necessary. We override any previous
22434 setting so that if the mode has changed then the NOPS that we use will
22435 match the encoding of the last instruction in the frag. */
22436 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22437
22438 if (thumb_mode && (inst.size > THUMB_SIZE))
22439 {
22440 gas_assert (inst.size == (2 * THUMB_SIZE));
22441 put_thumb32_insn (to, inst.instruction);
22442 }
22443 else if (inst.size > INSN_SIZE)
22444 {
22445 gas_assert (inst.size == (2 * INSN_SIZE));
22446 md_number_to_chars (to, inst.instruction, INSN_SIZE);
22447 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
22448 }
22449 else
22450 md_number_to_chars (to, inst.instruction, inst.size);
22451
22452 int r;
22453 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22454 {
22455 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
22456 fix_new_arm (frag_now, to - frag_now->fr_literal,
22457 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
22458 inst.relocs[r].type);
22459 }
22460
22461 dwarf2_emit_insn (inst.size);
22462 }
22463
22464 static char *
22465 output_it_inst (int cond, int mask, char * to)
22466 {
22467 unsigned long instruction = 0xbf00;
22468
22469 mask &= 0xf;
22470 instruction |= mask;
22471 instruction |= cond << 4;
22472
22473 if (to == NULL)
22474 {
22475 to = frag_more (2);
22476 #ifdef OBJ_ELF
22477 dwarf2_emit_insn (2);
22478 #endif
22479 }
22480
22481 md_number_to_chars (to, instruction, 2);
22482
22483 return to;
22484 }
22485
22486 /* Tag values used in struct asm_opcode's tag field. */
22487 enum opcode_tag
22488 {
22489 OT_unconditional, /* Instruction cannot be conditionalized.
22490 The ARM condition field is still 0xE. */
22491 OT_unconditionalF, /* Instruction cannot be conditionalized
22492 and carries 0xF in its ARM condition field. */
22493 OT_csuffix, /* Instruction takes a conditional suffix. */
22494 OT_csuffixF, /* Some forms of the instruction take a scalar
22495 conditional suffix, others place 0xF where the
22496 condition field would be, others take a vector
22497 conditional suffix. */
22498 OT_cinfix3, /* Instruction takes a conditional infix,
22499 beginning at character index 3. (In
22500 unified mode, it becomes a suffix.) */
22501 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
22502 tsts, cmps, cmns, and teqs. */
22503 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
22504 character index 3, even in unified mode. Used for
22505 legacy instructions where suffix and infix forms
22506 may be ambiguous. */
22507 OT_csuf_or_in3, /* Instruction takes either a conditional
22508 suffix or an infix at character index 3. */
22509 OT_odd_infix_unc, /* This is the unconditional variant of an
22510 instruction that takes a conditional infix
22511 at an unusual position. In unified mode,
22512 this variant will accept a suffix. */
22513 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
22514 are the conditional variants of instructions that
22515 take conditional infixes in unusual positions.
22516 The infix appears at character index
22517 (tag - OT_odd_infix_0). These are not accepted
22518 in unified mode. */
22519 };
22520
22521 /* Subroutine of md_assemble, responsible for looking up the primary
22522 opcode from the mnemonic the user wrote. STR points to the
22523 beginning of the mnemonic.
22524
22525 This is not simply a hash table lookup, because of conditional
22526 variants. Most instructions have conditional variants, which are
22527 expressed with a _conditional affix_ to the mnemonic. If we were
22528 to encode each conditional variant as a literal string in the opcode
22529 table, it would have approximately 20,000 entries.
22530
22531 Most mnemonics take this affix as a suffix, and in unified syntax,
22532 'most' is upgraded to 'all'. However, in the divided syntax, some
22533 instructions take the affix as an infix, notably the s-variants of
22534 the arithmetic instructions. Of those instructions, all but six
22535 have the infix appear after the third character of the mnemonic.
22536
22537 Accordingly, the algorithm for looking up primary opcodes given
22538 an identifier is:
22539
22540 1. Look up the identifier in the opcode table.
22541 If we find a match, go to step U.
22542
22543 2. Look up the last two characters of the identifier in the
22544 conditions table. If we find a match, look up the first N-2
22545 characters of the identifier in the opcode table. If we
22546 find a match, go to step CE.
22547
22548 3. Look up the fourth and fifth characters of the identifier in
22549 the conditions table. If we find a match, extract those
22550 characters from the identifier, and look up the remaining
22551 characters in the opcode table. If we find a match, go
22552 to step CM.
22553
22554 4. Fail.
22555
22556 U. Examine the tag field of the opcode structure, in case this is
22557 one of the six instructions with its conditional infix in an
22558 unusual place. If it is, the tag tells us where to find the
22559 infix; look it up in the conditions table and set inst.cond
22560 accordingly. Otherwise, this is an unconditional instruction.
22561 Again set inst.cond accordingly. Return the opcode structure.
22562
22563 CE. Examine the tag field to make sure this is an instruction that
22564 should receive a conditional suffix. If it is not, fail.
22565 Otherwise, set inst.cond from the suffix we already looked up,
22566 and return the opcode structure.
22567
22568 CM. Examine the tag field to make sure this is an instruction that
22569 should receive a conditional infix after the third character.
22570 If it is not, fail. Otherwise, undo the edits to the current
22571 line of input and proceed as for case CE. */
22572
22573 static const struct asm_opcode *
22574 opcode_lookup (char **str)
22575 {
22576 char *end, *base;
22577 char *affix;
22578 const struct asm_opcode *opcode;
22579 const struct asm_cond *cond;
22580 char save[2];
22581
22582 /* Scan up to the end of the mnemonic, which must end in white space,
22583 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
22584 for (base = end = *str; *end != '\0'; end++)
22585 if (*end == ' ' || *end == '.')
22586 break;
22587
22588 if (end == base)
22589 return NULL;
22590
22591 /* Handle a possible width suffix and/or Neon type suffix. */
22592 if (end[0] == '.')
22593 {
22594 int offset = 2;
22595
22596 /* The .w and .n suffixes are only valid if the unified syntax is in
22597 use. */
22598 if (unified_syntax && end[1] == 'w')
22599 inst.size_req = 4;
22600 else if (unified_syntax && end[1] == 'n')
22601 inst.size_req = 2;
22602 else
22603 offset = 0;
22604
22605 inst.vectype.elems = 0;
22606
22607 *str = end + offset;
22608
22609 if (end[offset] == '.')
22610 {
22611 /* See if we have a Neon type suffix (possible in either unified or
22612 non-unified ARM syntax mode). */
22613 if (parse_neon_type (&inst.vectype, str) == FAIL)
22614 return NULL;
22615 }
22616 else if (end[offset] != '\0' && end[offset] != ' ')
22617 return NULL;
22618 }
22619 else
22620 *str = end;
22621
22622 /* Look for unaffixed or special-case affixed mnemonic. */
22623 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22624 end - base);
22625 if (opcode)
22626 {
22627 /* step U */
22628 if (opcode->tag < OT_odd_infix_0)
22629 {
22630 inst.cond = COND_ALWAYS;
22631 return opcode;
22632 }
22633
22634 if (warn_on_deprecated && unified_syntax)
22635 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22636 affix = base + (opcode->tag - OT_odd_infix_0);
22637 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22638 gas_assert (cond);
22639
22640 inst.cond = cond->value;
22641 return opcode;
22642 }
22643 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
22644 {
22645 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22646 */
22647 if (end - base < 2)
22648 return NULL;
22649 affix = end - 1;
22650 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
22651 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22652 affix - base);
22653 /* If this opcode can not be vector predicated then don't accept it with a
22654 vector predication code. */
22655 if (opcode && !opcode->mayBeVecPred)
22656 opcode = NULL;
22657 }
22658 if (!opcode || !cond)
22659 {
22660 /* Cannot have a conditional suffix on a mnemonic of less than two
22661 characters. */
22662 if (end - base < 3)
22663 return NULL;
22664
22665 /* Look for suffixed mnemonic. */
22666 affix = end - 2;
22667 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22668 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22669 affix - base);
22670 }
22671
22672 if (opcode && cond)
22673 {
22674 /* step CE */
22675 switch (opcode->tag)
22676 {
22677 case OT_cinfix3_legacy:
22678 /* Ignore conditional suffixes matched on infix only mnemonics. */
22679 break;
22680
22681 case OT_cinfix3:
22682 case OT_cinfix3_deprecated:
22683 case OT_odd_infix_unc:
22684 if (!unified_syntax)
22685 return NULL;
22686 /* Fall through. */
22687
22688 case OT_csuffix:
22689 case OT_csuffixF:
22690 case OT_csuf_or_in3:
22691 inst.cond = cond->value;
22692 return opcode;
22693
22694 case OT_unconditional:
22695 case OT_unconditionalF:
22696 if (thumb_mode)
22697 inst.cond = cond->value;
22698 else
22699 {
22700 /* Delayed diagnostic. */
22701 inst.error = BAD_COND;
22702 inst.cond = COND_ALWAYS;
22703 }
22704 return opcode;
22705
22706 default:
22707 return NULL;
22708 }
22709 }
22710
22711 /* Cannot have a usual-position infix on a mnemonic of less than
22712 six characters (five would be a suffix). */
22713 if (end - base < 6)
22714 return NULL;
22715
22716 /* Look for infixed mnemonic in the usual position. */
22717 affix = base + 3;
22718 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22719 if (!cond)
22720 return NULL;
22721
22722 memcpy (save, affix, 2);
22723 memmove (affix, affix + 2, (end - affix) - 2);
22724 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22725 (end - base) - 2);
22726 memmove (affix + 2, affix, (end - affix) - 2);
22727 memcpy (affix, save, 2);
22728
22729 if (opcode
22730 && (opcode->tag == OT_cinfix3
22731 || opcode->tag == OT_cinfix3_deprecated
22732 || opcode->tag == OT_csuf_or_in3
22733 || opcode->tag == OT_cinfix3_legacy))
22734 {
22735 /* Step CM. */
22736 if (warn_on_deprecated && unified_syntax
22737 && (opcode->tag == OT_cinfix3
22738 || opcode->tag == OT_cinfix3_deprecated))
22739 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22740
22741 inst.cond = cond->value;
22742 return opcode;
22743 }
22744
22745 return NULL;
22746 }
22747
22748 /* This function generates an initial IT instruction, leaving its block
22749 virtually open for the new instructions. Eventually,
22750 the mask will be updated by now_pred_add_mask () each time
22751 a new instruction needs to be included in the IT block.
22752 Finally, the block is closed with close_automatic_it_block ().
22753 The block closure can be requested either from md_assemble (),
22754 a tencode (), or due to a label hook. */
22755
22756 static void
22757 new_automatic_it_block (int cond)
22758 {
22759 now_pred.state = AUTOMATIC_PRED_BLOCK;
22760 now_pred.mask = 0x18;
22761 now_pred.cc = cond;
22762 now_pred.block_length = 1;
22763 mapping_state (MAP_THUMB);
22764 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
22765 now_pred.warn_deprecated = FALSE;
22766 now_pred.insn_cond = TRUE;
22767 }
22768
22769 /* Close an automatic IT block.
22770 See comments in new_automatic_it_block (). */
22771
22772 static void
22773 close_automatic_it_block (void)
22774 {
22775 now_pred.mask = 0x10;
22776 now_pred.block_length = 0;
22777 }
22778
22779 /* Update the mask of the current automatically-generated IT
22780 instruction. See comments in new_automatic_it_block (). */
22781
22782 static void
22783 now_pred_add_mask (int cond)
22784 {
22785 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22786 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
22787 | ((bitvalue) << (nbit)))
22788 const int resulting_bit = (cond & 1);
22789
22790 now_pred.mask &= 0xf;
22791 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22792 resulting_bit,
22793 (5 - now_pred.block_length));
22794 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22795 1,
22796 ((5 - now_pred.block_length) - 1));
22797 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
22798
22799 #undef CLEAR_BIT
22800 #undef SET_BIT_VALUE
22801 }
22802
22803 /* The IT blocks handling machinery is accessed through the these functions:
22804 it_fsm_pre_encode () from md_assemble ()
22805 set_pred_insn_type () optional, from the tencode functions
22806 set_pred_insn_type_last () ditto
22807 in_pred_block () ditto
22808 it_fsm_post_encode () from md_assemble ()
22809 force_automatic_it_block_close () from label handling functions
22810
22811 Rationale:
22812 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
22813 initializing the IT insn type with a generic initial value depending
22814 on the inst.condition.
22815 2) During the tencode function, two things may happen:
22816 a) The tencode function overrides the IT insn type by
22817 calling either set_pred_insn_type (type) or
22818 set_pred_insn_type_last ().
22819 b) The tencode function queries the IT block state by
22820 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
22821
22822 Both set_pred_insn_type and in_pred_block run the internal FSM state
22823 handling function (handle_pred_state), because: a) setting the IT insn
22824 type may incur in an invalid state (exiting the function),
22825 and b) querying the state requires the FSM to be updated.
22826 Specifically we want to avoid creating an IT block for conditional
22827 branches, so it_fsm_pre_encode is actually a guess and we can't
22828 determine whether an IT block is required until the tencode () routine
22829 has decided what type of instruction this actually it.
22830 Because of this, if set_pred_insn_type and in_pred_block have to be
22831 used, set_pred_insn_type has to be called first.
22832
22833 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22834 that determines the insn IT type depending on the inst.cond code.
22835 When a tencode () routine encodes an instruction that can be
22836 either outside an IT block, or, in the case of being inside, has to be
22837 the last one, set_pred_insn_type_last () will determine the proper
22838 IT instruction type based on the inst.cond code. Otherwise,
22839 set_pred_insn_type can be called for overriding that logic or
22840 for covering other cases.
22841
22842 Calling handle_pred_state () may not transition the IT block state to
22843 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
22844 still queried. Instead, if the FSM determines that the state should
22845 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
22846 after the tencode () function: that's what it_fsm_post_encode () does.
22847
22848 Since in_pred_block () calls the state handling function to get an
22849 updated state, an error may occur (due to invalid insns combination).
22850 In that case, inst.error is set.
22851 Therefore, inst.error has to be checked after the execution of
22852 the tencode () routine.
22853
22854 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
22855 any pending state change (if any) that didn't take place in
22856 handle_pred_state () as explained above. */
22857
22858 static void
22859 it_fsm_pre_encode (void)
22860 {
22861 if (inst.cond != COND_ALWAYS)
22862 inst.pred_insn_type = INSIDE_IT_INSN;
22863 else
22864 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22865
22866 now_pred.state_handled = 0;
22867 }
22868
22869 /* IT state FSM handling function. */
22870 /* MVE instructions and non-MVE instructions are handled differently because of
22871 the introduction of VPT blocks.
22872 Specifications say that any non-MVE instruction inside a VPT block is
22873 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22874 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22875 few exceptions we have MVE_UNPREDICABLE_INSN.
22876 The error messages provided depending on the different combinations possible
22877 are described in the cases below:
22878 For 'most' MVE instructions:
22879 1) In an IT block, with an IT code: syntax error
22880 2) In an IT block, with a VPT code: error: must be in a VPT block
22881 3) In an IT block, with no code: warning: UNPREDICTABLE
22882 4) In a VPT block, with an IT code: syntax error
22883 5) In a VPT block, with a VPT code: OK!
22884 6) In a VPT block, with no code: error: missing code
22885 7) Outside a pred block, with an IT code: error: syntax error
22886 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22887 9) Outside a pred block, with no code: OK!
22888 For non-MVE instructions:
22889 10) In an IT block, with an IT code: OK!
22890 11) In an IT block, with a VPT code: syntax error
22891 12) In an IT block, with no code: error: missing code
22892 13) In a VPT block, with an IT code: error: should be in an IT block
22893 14) In a VPT block, with a VPT code: syntax error
22894 15) In a VPT block, with no code: UNPREDICTABLE
22895 16) Outside a pred block, with an IT code: error: should be in an IT block
22896 17) Outside a pred block, with a VPT code: syntax error
22897 18) Outside a pred block, with no code: OK!
22898 */
22899
22900
22901 static int
22902 handle_pred_state (void)
22903 {
22904 now_pred.state_handled = 1;
22905 now_pred.insn_cond = FALSE;
22906
22907 switch (now_pred.state)
22908 {
22909 case OUTSIDE_PRED_BLOCK:
22910 switch (inst.pred_insn_type)
22911 {
22912 case MVE_UNPREDICABLE_INSN:
22913 case MVE_OUTSIDE_PRED_INSN:
22914 if (inst.cond < COND_ALWAYS)
22915 {
22916 /* Case 7: Outside a pred block, with an IT code: error: syntax
22917 error. */
22918 inst.error = BAD_SYNTAX;
22919 return FAIL;
22920 }
22921 /* Case 9: Outside a pred block, with no code: OK! */
22922 break;
22923 case OUTSIDE_PRED_INSN:
22924 if (inst.cond > COND_ALWAYS)
22925 {
22926 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22927 */
22928 inst.error = BAD_SYNTAX;
22929 return FAIL;
22930 }
22931 /* Case 18: Outside a pred block, with no code: OK! */
22932 break;
22933
22934 case INSIDE_VPT_INSN:
22935 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22936 a VPT block. */
22937 inst.error = BAD_OUT_VPT;
22938 return FAIL;
22939
22940 case INSIDE_IT_INSN:
22941 case INSIDE_IT_LAST_INSN:
22942 if (inst.cond < COND_ALWAYS)
22943 {
22944 /* Case 16: Outside a pred block, with an IT code: error: should
22945 be in an IT block. */
22946 if (thumb_mode == 0)
22947 {
22948 if (unified_syntax
22949 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22950 as_tsktsk (_("Warning: conditional outside an IT block"\
22951 " for Thumb."));
22952 }
22953 else
22954 {
22955 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22956 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22957 {
22958 /* Automatically generate the IT instruction. */
22959 new_automatic_it_block (inst.cond);
22960 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22961 close_automatic_it_block ();
22962 }
22963 else
22964 {
22965 inst.error = BAD_OUT_IT;
22966 return FAIL;
22967 }
22968 }
22969 break;
22970 }
22971 else if (inst.cond > COND_ALWAYS)
22972 {
22973 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22974 */
22975 inst.error = BAD_SYNTAX;
22976 return FAIL;
22977 }
22978 else
22979 gas_assert (0);
22980 case IF_INSIDE_IT_LAST_INSN:
22981 case NEUTRAL_IT_INSN:
22982 break;
22983
22984 case VPT_INSN:
22985 if (inst.cond != COND_ALWAYS)
22986 first_error (BAD_SYNTAX);
22987 now_pred.state = MANUAL_PRED_BLOCK;
22988 now_pred.block_length = 0;
22989 now_pred.type = VECTOR_PRED;
22990 now_pred.cc = 0;
22991 break;
22992 case IT_INSN:
22993 now_pred.state = MANUAL_PRED_BLOCK;
22994 now_pred.block_length = 0;
22995 now_pred.type = SCALAR_PRED;
22996 break;
22997 }
22998 break;
22999
23000 case AUTOMATIC_PRED_BLOCK:
23001 /* Three things may happen now:
23002 a) We should increment current it block size;
23003 b) We should close current it block (closing insn or 4 insns);
23004 c) We should close current it block and start a new one (due
23005 to incompatible conditions or
23006 4 insns-length block reached). */
23007
23008 switch (inst.pred_insn_type)
23009 {
23010 case INSIDE_VPT_INSN:
23011 case VPT_INSN:
23012 case MVE_UNPREDICABLE_INSN:
23013 case MVE_OUTSIDE_PRED_INSN:
23014 gas_assert (0);
23015 case OUTSIDE_PRED_INSN:
23016 /* The closure of the block shall happen immediately,
23017 so any in_pred_block () call reports the block as closed. */
23018 force_automatic_it_block_close ();
23019 break;
23020
23021 case INSIDE_IT_INSN:
23022 case INSIDE_IT_LAST_INSN:
23023 case IF_INSIDE_IT_LAST_INSN:
23024 now_pred.block_length++;
23025
23026 if (now_pred.block_length > 4
23027 || !now_pred_compatible (inst.cond))
23028 {
23029 force_automatic_it_block_close ();
23030 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
23031 new_automatic_it_block (inst.cond);
23032 }
23033 else
23034 {
23035 now_pred.insn_cond = TRUE;
23036 now_pred_add_mask (inst.cond);
23037 }
23038
23039 if (now_pred.state == AUTOMATIC_PRED_BLOCK
23040 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
23041 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
23042 close_automatic_it_block ();
23043 break;
23044
23045 /* Fallthrough. */
23046 case NEUTRAL_IT_INSN:
23047 now_pred.block_length++;
23048 now_pred.insn_cond = TRUE;
23049
23050 if (now_pred.block_length > 4)
23051 force_automatic_it_block_close ();
23052 else
23053 now_pred_add_mask (now_pred.cc & 1);
23054 break;
23055
23056 case IT_INSN:
23057 close_automatic_it_block ();
23058 now_pred.state = MANUAL_PRED_BLOCK;
23059 break;
23060 }
23061 break;
23062
23063 case MANUAL_PRED_BLOCK:
23064 {
23065 int cond, is_last;
23066 if (now_pred.type == SCALAR_PRED)
23067 {
23068 /* Check conditional suffixes. */
23069 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
23070 now_pred.mask <<= 1;
23071 now_pred.mask &= 0x1f;
23072 is_last = (now_pred.mask == 0x10);
23073 }
23074 else
23075 {
23076 now_pred.cc ^= (now_pred.mask >> 4);
23077 cond = now_pred.cc + 0xf;
23078 now_pred.mask <<= 1;
23079 now_pred.mask &= 0x1f;
23080 is_last = now_pred.mask == 0x10;
23081 }
23082 now_pred.insn_cond = TRUE;
23083
23084 switch (inst.pred_insn_type)
23085 {
23086 case OUTSIDE_PRED_INSN:
23087 if (now_pred.type == SCALAR_PRED)
23088 {
23089 if (inst.cond == COND_ALWAYS)
23090 {
23091 /* Case 12: In an IT block, with no code: error: missing
23092 code. */
23093 inst.error = BAD_NOT_IT;
23094 return FAIL;
23095 }
23096 else if (inst.cond > COND_ALWAYS)
23097 {
23098 /* Case 11: In an IT block, with a VPT code: syntax error.
23099 */
23100 inst.error = BAD_SYNTAX;
23101 return FAIL;
23102 }
23103 else if (thumb_mode)
23104 {
23105 /* This is for some special cases where a non-MVE
23106 instruction is not allowed in an IT block, such as cbz,
23107 but are put into one with a condition code.
23108 You could argue this should be a syntax error, but we
23109 gave the 'not allowed in IT block' diagnostic in the
23110 past so we will keep doing so. */
23111 inst.error = BAD_NOT_IT;
23112 return FAIL;
23113 }
23114 break;
23115 }
23116 else
23117 {
23118 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
23119 as_tsktsk (MVE_NOT_VPT);
23120 return SUCCESS;
23121 }
23122 case MVE_OUTSIDE_PRED_INSN:
23123 if (now_pred.type == SCALAR_PRED)
23124 {
23125 if (inst.cond == COND_ALWAYS)
23126 {
23127 /* Case 3: In an IT block, with no code: warning:
23128 UNPREDICTABLE. */
23129 as_tsktsk (MVE_NOT_IT);
23130 return SUCCESS;
23131 }
23132 else if (inst.cond < COND_ALWAYS)
23133 {
23134 /* Case 1: In an IT block, with an IT code: syntax error.
23135 */
23136 inst.error = BAD_SYNTAX;
23137 return FAIL;
23138 }
23139 else
23140 gas_assert (0);
23141 }
23142 else
23143 {
23144 if (inst.cond < COND_ALWAYS)
23145 {
23146 /* Case 4: In a VPT block, with an IT code: syntax error.
23147 */
23148 inst.error = BAD_SYNTAX;
23149 return FAIL;
23150 }
23151 else if (inst.cond == COND_ALWAYS)
23152 {
23153 /* Case 6: In a VPT block, with no code: error: missing
23154 code. */
23155 inst.error = BAD_NOT_VPT;
23156 return FAIL;
23157 }
23158 else
23159 {
23160 gas_assert (0);
23161 }
23162 }
23163 case MVE_UNPREDICABLE_INSN:
23164 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
23165 return SUCCESS;
23166 case INSIDE_IT_INSN:
23167 if (inst.cond > COND_ALWAYS)
23168 {
23169 /* Case 11: In an IT block, with a VPT code: syntax error. */
23170 /* Case 14: In a VPT block, with a VPT code: syntax error. */
23171 inst.error = BAD_SYNTAX;
23172 return FAIL;
23173 }
23174 else if (now_pred.type == SCALAR_PRED)
23175 {
23176 /* Case 10: In an IT block, with an IT code: OK! */
23177 if (cond != inst.cond)
23178 {
23179 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
23180 BAD_VPT_COND;
23181 return FAIL;
23182 }
23183 }
23184 else
23185 {
23186 /* Case 13: In a VPT block, with an IT code: error: should be
23187 in an IT block. */
23188 inst.error = BAD_OUT_IT;
23189 return FAIL;
23190 }
23191 break;
23192
23193 case INSIDE_VPT_INSN:
23194 if (now_pred.type == SCALAR_PRED)
23195 {
23196 /* Case 2: In an IT block, with a VPT code: error: must be in a
23197 VPT block. */
23198 inst.error = BAD_OUT_VPT;
23199 return FAIL;
23200 }
23201 /* Case 5: In a VPT block, with a VPT code: OK! */
23202 else if (cond != inst.cond)
23203 {
23204 inst.error = BAD_VPT_COND;
23205 return FAIL;
23206 }
23207 break;
23208 case INSIDE_IT_LAST_INSN:
23209 case IF_INSIDE_IT_LAST_INSN:
23210 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
23211 {
23212 /* Case 4: In a VPT block, with an IT code: syntax error. */
23213 /* Case 11: In an IT block, with a VPT code: syntax error. */
23214 inst.error = BAD_SYNTAX;
23215 return FAIL;
23216 }
23217 else if (cond != inst.cond)
23218 {
23219 inst.error = BAD_IT_COND;
23220 return FAIL;
23221 }
23222 if (!is_last)
23223 {
23224 inst.error = BAD_BRANCH;
23225 return FAIL;
23226 }
23227 break;
23228
23229 case NEUTRAL_IT_INSN:
23230 /* The BKPT instruction is unconditional even in a IT or VPT
23231 block. */
23232 break;
23233
23234 case IT_INSN:
23235 if (now_pred.type == SCALAR_PRED)
23236 {
23237 inst.error = BAD_IT_IT;
23238 return FAIL;
23239 }
23240 /* fall through. */
23241 case VPT_INSN:
23242 if (inst.cond == COND_ALWAYS)
23243 {
23244 /* Executing a VPT/VPST instruction inside an IT block or a
23245 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
23246 */
23247 if (now_pred.type == SCALAR_PRED)
23248 as_tsktsk (MVE_NOT_IT);
23249 else
23250 as_tsktsk (MVE_NOT_VPT);
23251 return SUCCESS;
23252 }
23253 else
23254 {
23255 /* VPT/VPST do not accept condition codes. */
23256 inst.error = BAD_SYNTAX;
23257 return FAIL;
23258 }
23259 }
23260 }
23261 break;
23262 }
23263
23264 return SUCCESS;
23265 }
23266
23267 struct depr_insn_mask
23268 {
23269 unsigned long pattern;
23270 unsigned long mask;
23271 const char* description;
23272 };
23273
23274 /* List of 16-bit instruction patterns deprecated in an IT block in
23275 ARMv8. */
23276 static const struct depr_insn_mask depr_it_insns[] = {
23277 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
23278 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
23279 { 0xa000, 0xb800, N_("ADR") },
23280 { 0x4800, 0xf800, N_("Literal loads") },
23281 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
23282 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
23283 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
23284 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
23285 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
23286 { 0, 0, NULL }
23287 };
23288
23289 static void
23290 it_fsm_post_encode (void)
23291 {
23292 int is_last;
23293
23294 if (!now_pred.state_handled)
23295 handle_pred_state ();
23296
23297 if (now_pred.insn_cond
23298 && warn_on_restrict_it
23299 && !now_pred.warn_deprecated
23300 && warn_on_deprecated
23301 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
23302 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
23303 {
23304 if (inst.instruction >= 0x10000)
23305 {
23306 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
23307 "performance deprecated in ARMv8-A and ARMv8-R"));
23308 now_pred.warn_deprecated = TRUE;
23309 }
23310 else
23311 {
23312 const struct depr_insn_mask *p = depr_it_insns;
23313
23314 while (p->mask != 0)
23315 {
23316 if ((inst.instruction & p->mask) == p->pattern)
23317 {
23318 as_tsktsk (_("IT blocks containing 16-bit Thumb "
23319 "instructions of the following class are "
23320 "performance deprecated in ARMv8-A and "
23321 "ARMv8-R: %s"), p->description);
23322 now_pred.warn_deprecated = TRUE;
23323 break;
23324 }
23325
23326 ++p;
23327 }
23328 }
23329
23330 if (now_pred.block_length > 1)
23331 {
23332 as_tsktsk (_("IT blocks containing more than one conditional "
23333 "instruction are performance deprecated in ARMv8-A and "
23334 "ARMv8-R"));
23335 now_pred.warn_deprecated = TRUE;
23336 }
23337 }
23338
23339 is_last = (now_pred.mask == 0x10);
23340 if (is_last)
23341 {
23342 now_pred.state = OUTSIDE_PRED_BLOCK;
23343 now_pred.mask = 0;
23344 }
23345 }
23346
23347 static void
23348 force_automatic_it_block_close (void)
23349 {
23350 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
23351 {
23352 close_automatic_it_block ();
23353 now_pred.state = OUTSIDE_PRED_BLOCK;
23354 now_pred.mask = 0;
23355 }
23356 }
23357
23358 static int
23359 in_pred_block (void)
23360 {
23361 if (!now_pred.state_handled)
23362 handle_pred_state ();
23363
23364 return now_pred.state != OUTSIDE_PRED_BLOCK;
23365 }
23366
23367 /* Whether OPCODE only has T32 encoding. Since this function is only used by
23368 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
23369 here, hence the "known" in the function name. */
23370
23371 static bfd_boolean
23372 known_t32_only_insn (const struct asm_opcode *opcode)
23373 {
23374 /* Original Thumb-1 wide instruction. */
23375 if (opcode->tencode == do_t_blx
23376 || opcode->tencode == do_t_branch23
23377 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
23378 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
23379 return TRUE;
23380
23381 /* Wide-only instruction added to ARMv8-M Baseline. */
23382 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
23383 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
23384 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
23385 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
23386 return TRUE;
23387
23388 return FALSE;
23389 }
23390
23391 /* Whether wide instruction variant can be used if available for a valid OPCODE
23392 in ARCH. */
23393
23394 static bfd_boolean
23395 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
23396 {
23397 if (known_t32_only_insn (opcode))
23398 return TRUE;
23399
23400 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
23401 of variant T3 of B.W is checked in do_t_branch. */
23402 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
23403 && opcode->tencode == do_t_branch)
23404 return TRUE;
23405
23406 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
23407 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
23408 && opcode->tencode == do_t_mov_cmp
23409 /* Make sure CMP instruction is not affected. */
23410 && opcode->aencode == do_mov)
23411 return TRUE;
23412
23413 /* Wide instruction variants of all instructions with narrow *and* wide
23414 variants become available with ARMv6t2. Other opcodes are either
23415 narrow-only or wide-only and are thus available if OPCODE is valid. */
23416 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
23417 return TRUE;
23418
23419 /* OPCODE with narrow only instruction variant or wide variant not
23420 available. */
23421 return FALSE;
23422 }
23423
23424 void
23425 md_assemble (char *str)
23426 {
23427 char *p = str;
23428 const struct asm_opcode * opcode;
23429
23430 /* Align the previous label if needed. */
23431 if (last_label_seen != NULL)
23432 {
23433 symbol_set_frag (last_label_seen, frag_now);
23434 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
23435 S_SET_SEGMENT (last_label_seen, now_seg);
23436 }
23437
23438 memset (&inst, '\0', sizeof (inst));
23439 int r;
23440 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
23441 inst.relocs[r].type = BFD_RELOC_UNUSED;
23442
23443 opcode = opcode_lookup (&p);
23444 if (!opcode)
23445 {
23446 /* It wasn't an instruction, but it might be a register alias of
23447 the form alias .req reg, or a Neon .dn/.qn directive. */
23448 if (! create_register_alias (str, p)
23449 && ! create_neon_reg_alias (str, p))
23450 as_bad (_("bad instruction `%s'"), str);
23451
23452 return;
23453 }
23454
23455 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
23456 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
23457
23458 /* The value which unconditional instructions should have in place of the
23459 condition field. */
23460 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
23461
23462 if (thumb_mode)
23463 {
23464 arm_feature_set variant;
23465
23466 variant = cpu_variant;
23467 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
23468 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
23469 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
23470 /* Check that this instruction is supported for this CPU. */
23471 if (!opcode->tvariant
23472 || (thumb_mode == 1
23473 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
23474 {
23475 if (opcode->tencode == do_t_swi)
23476 as_bad (_("SVC is not permitted on this architecture"));
23477 else
23478 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
23479 return;
23480 }
23481 if (inst.cond != COND_ALWAYS && !unified_syntax
23482 && opcode->tencode != do_t_branch)
23483 {
23484 as_bad (_("Thumb does not support conditional execution"));
23485 return;
23486 }
23487
23488 /* Two things are addressed here:
23489 1) Implicit require narrow instructions on Thumb-1.
23490 This avoids relaxation accidentally introducing Thumb-2
23491 instructions.
23492 2) Reject wide instructions in non Thumb-2 cores.
23493
23494 Only instructions with narrow and wide variants need to be handled
23495 but selecting all non wide-only instructions is easier. */
23496 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
23497 && !t32_insn_ok (variant, opcode))
23498 {
23499 if (inst.size_req == 0)
23500 inst.size_req = 2;
23501 else if (inst.size_req == 4)
23502 {
23503 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
23504 as_bad (_("selected processor does not support 32bit wide "
23505 "variant of instruction `%s'"), str);
23506 else
23507 as_bad (_("selected processor does not support `%s' in "
23508 "Thumb-2 mode"), str);
23509 return;
23510 }
23511 }
23512
23513 inst.instruction = opcode->tvalue;
23514
23515 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
23516 {
23517 /* Prepare the pred_insn_type for those encodings that don't set
23518 it. */
23519 it_fsm_pre_encode ();
23520
23521 opcode->tencode ();
23522
23523 it_fsm_post_encode ();
23524 }
23525
23526 if (!(inst.error || inst.relax))
23527 {
23528 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
23529 inst.size = (inst.instruction > 0xffff ? 4 : 2);
23530 if (inst.size_req && inst.size_req != inst.size)
23531 {
23532 as_bad (_("cannot honor width suffix -- `%s'"), str);
23533 return;
23534 }
23535 }
23536
23537 /* Something has gone badly wrong if we try to relax a fixed size
23538 instruction. */
23539 gas_assert (inst.size_req == 0 || !inst.relax);
23540
23541 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23542 *opcode->tvariant);
23543 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
23544 set those bits when Thumb-2 32-bit instructions are seen. The impact
23545 of relaxable instructions will be considered later after we finish all
23546 relaxation. */
23547 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
23548 variant = arm_arch_none;
23549 else
23550 variant = cpu_variant;
23551 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
23552 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23553 arm_ext_v6t2);
23554
23555 check_neon_suffixes;
23556
23557 if (!inst.error)
23558 {
23559 mapping_state (MAP_THUMB);
23560 }
23561 }
23562 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23563 {
23564 bfd_boolean is_bx;
23565
23566 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23567 is_bx = (opcode->aencode == do_bx);
23568
23569 /* Check that this instruction is supported for this CPU. */
23570 if (!(is_bx && fix_v4bx)
23571 && !(opcode->avariant &&
23572 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
23573 {
23574 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
23575 return;
23576 }
23577 if (inst.size_req)
23578 {
23579 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
23580 return;
23581 }
23582
23583 inst.instruction = opcode->avalue;
23584 if (opcode->tag == OT_unconditionalF)
23585 inst.instruction |= 0xFU << 28;
23586 else
23587 inst.instruction |= inst.cond << 28;
23588 inst.size = INSN_SIZE;
23589 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
23590 {
23591 it_fsm_pre_encode ();
23592 opcode->aencode ();
23593 it_fsm_post_encode ();
23594 }
23595 /* Arm mode bx is marked as both v4T and v5 because it's still required
23596 on a hypothetical non-thumb v5 core. */
23597 if (is_bx)
23598 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
23599 else
23600 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
23601 *opcode->avariant);
23602
23603 check_neon_suffixes;
23604
23605 if (!inst.error)
23606 {
23607 mapping_state (MAP_ARM);
23608 }
23609 }
23610 else
23611 {
23612 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23613 "-- `%s'"), str);
23614 return;
23615 }
23616 output_inst (str);
23617 }
23618
23619 static void
23620 check_pred_blocks_finished (void)
23621 {
23622 #ifdef OBJ_ELF
23623 asection *sect;
23624
23625 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
23626 if (seg_info (sect)->tc_segment_info_data.current_pred.state
23627 == MANUAL_PRED_BLOCK)
23628 {
23629 if (now_pred.type == SCALAR_PRED)
23630 as_warn (_("section '%s' finished with an open IT block."),
23631 sect->name);
23632 else
23633 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23634 sect->name);
23635 }
23636 #else
23637 if (now_pred.state == MANUAL_PRED_BLOCK)
23638 {
23639 if (now_pred.type == SCALAR_PRED)
23640 as_warn (_("file finished with an open IT block."));
23641 else
23642 as_warn (_("file finished with an open VPT/VPST block."));
23643 }
23644 #endif
23645 }
23646
23647 /* Various frobbings of labels and their addresses. */
23648
23649 void
23650 arm_start_line_hook (void)
23651 {
23652 last_label_seen = NULL;
23653 }
23654
23655 void
23656 arm_frob_label (symbolS * sym)
23657 {
23658 last_label_seen = sym;
23659
23660 ARM_SET_THUMB (sym, thumb_mode);
23661
23662 #if defined OBJ_COFF || defined OBJ_ELF
23663 ARM_SET_INTERWORK (sym, support_interwork);
23664 #endif
23665
23666 force_automatic_it_block_close ();
23667
23668 /* Note - do not allow local symbols (.Lxxx) to be labelled
23669 as Thumb functions. This is because these labels, whilst
23670 they exist inside Thumb code, are not the entry points for
23671 possible ARM->Thumb calls. Also, these labels can be used
23672 as part of a computed goto or switch statement. eg gcc
23673 can generate code that looks like this:
23674
23675 ldr r2, [pc, .Laaa]
23676 lsl r3, r3, #2
23677 ldr r2, [r3, r2]
23678 mov pc, r2
23679
23680 .Lbbb: .word .Lxxx
23681 .Lccc: .word .Lyyy
23682 ..etc...
23683 .Laaa: .word Lbbb
23684
23685 The first instruction loads the address of the jump table.
23686 The second instruction converts a table index into a byte offset.
23687 The third instruction gets the jump address out of the table.
23688 The fourth instruction performs the jump.
23689
23690 If the address stored at .Laaa is that of a symbol which has the
23691 Thumb_Func bit set, then the linker will arrange for this address
23692 to have the bottom bit set, which in turn would mean that the
23693 address computation performed by the third instruction would end
23694 up with the bottom bit set. Since the ARM is capable of unaligned
23695 word loads, the instruction would then load the incorrect address
23696 out of the jump table, and chaos would ensue. */
23697 if (label_is_thumb_function_name
23698 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
23699 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
23700 {
23701 /* When the address of a Thumb function is taken the bottom
23702 bit of that address should be set. This will allow
23703 interworking between Arm and Thumb functions to work
23704 correctly. */
23705
23706 THUMB_SET_FUNC (sym, 1);
23707
23708 label_is_thumb_function_name = FALSE;
23709 }
23710
23711 dwarf2_emit_label (sym);
23712 }
23713
23714 bfd_boolean
23715 arm_data_in_code (void)
23716 {
23717 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
23718 {
23719 *input_line_pointer = '/';
23720 input_line_pointer += 5;
23721 *input_line_pointer = 0;
23722 return TRUE;
23723 }
23724
23725 return FALSE;
23726 }
23727
23728 char *
23729 arm_canonicalize_symbol_name (char * name)
23730 {
23731 int len;
23732
23733 if (thumb_mode && (len = strlen (name)) > 5
23734 && streq (name + len - 5, "/data"))
23735 *(name + len - 5) = 0;
23736
23737 return name;
23738 }
23739 \f
23740 /* Table of all register names defined by default. The user can
23741 define additional names with .req. Note that all register names
23742 should appear in both upper and lowercase variants. Some registers
23743 also have mixed-case names. */
23744
23745 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
23746 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
23747 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
23748 #define REGSET(p,t) \
23749 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23750 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23751 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23752 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
23753 #define REGSETH(p,t) \
23754 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23755 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23756 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23757 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23758 #define REGSET2(p,t) \
23759 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23760 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23761 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23762 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
23763 #define SPLRBANK(base,bank,t) \
23764 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23765 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23766 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23767 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23768 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23769 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
23770
23771 static const struct reg_entry reg_names[] =
23772 {
23773 /* ARM integer registers. */
23774 REGSET(r, RN), REGSET(R, RN),
23775
23776 /* ATPCS synonyms. */
23777 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
23778 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
23779 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
23780
23781 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
23782 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
23783 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
23784
23785 /* Well-known aliases. */
23786 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
23787 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
23788
23789 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
23790 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
23791
23792 /* Defining the new Zero register from ARMv8.1-M. */
23793 REGDEF(zr,15,ZR),
23794 REGDEF(ZR,15,ZR),
23795
23796 /* Coprocessor numbers. */
23797 REGSET(p, CP), REGSET(P, CP),
23798
23799 /* Coprocessor register numbers. The "cr" variants are for backward
23800 compatibility. */
23801 REGSET(c, CN), REGSET(C, CN),
23802 REGSET(cr, CN), REGSET(CR, CN),
23803
23804 /* ARM banked registers. */
23805 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
23806 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
23807 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
23808 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
23809 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
23810 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
23811 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
23812
23813 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
23814 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
23815 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
23816 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
23817 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
23818 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
23819 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
23820 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
23821
23822 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
23823 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
23824 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
23825 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
23826 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
23827 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
23828 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
23829 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
23830 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
23831
23832 /* FPA registers. */
23833 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
23834 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
23835
23836 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
23837 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
23838
23839 /* VFP SP registers. */
23840 REGSET(s,VFS), REGSET(S,VFS),
23841 REGSETH(s,VFS), REGSETH(S,VFS),
23842
23843 /* VFP DP Registers. */
23844 REGSET(d,VFD), REGSET(D,VFD),
23845 /* Extra Neon DP registers. */
23846 REGSETH(d,VFD), REGSETH(D,VFD),
23847
23848 /* Neon QP registers. */
23849 REGSET2(q,NQ), REGSET2(Q,NQ),
23850
23851 /* VFP control registers. */
23852 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
23853 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
23854 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
23855 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
23856 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
23857 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
23858 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
23859 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
23860 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
23861 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
23862 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
23863
23864 /* Maverick DSP coprocessor registers. */
23865 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23866 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23867
23868 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23869 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23870 REGDEF(dspsc,0,DSPSC),
23871
23872 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23873 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23874 REGDEF(DSPSC,0,DSPSC),
23875
23876 /* iWMMXt data registers - p0, c0-15. */
23877 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23878
23879 /* iWMMXt control registers - p1, c0-3. */
23880 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23881 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23882 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23883 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23884
23885 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23886 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23887 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23888 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23889 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23890
23891 /* XScale accumulator registers. */
23892 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23893 };
23894 #undef REGDEF
23895 #undef REGNUM
23896 #undef REGSET
23897
23898 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23899 within psr_required_here. */
23900 static const struct asm_psr psrs[] =
23901 {
23902 /* Backward compatibility notation. Note that "all" is no longer
23903 truly all possible PSR bits. */
23904 {"all", PSR_c | PSR_f},
23905 {"flg", PSR_f},
23906 {"ctl", PSR_c},
23907
23908 /* Individual flags. */
23909 {"f", PSR_f},
23910 {"c", PSR_c},
23911 {"x", PSR_x},
23912 {"s", PSR_s},
23913
23914 /* Combinations of flags. */
23915 {"fs", PSR_f | PSR_s},
23916 {"fx", PSR_f | PSR_x},
23917 {"fc", PSR_f | PSR_c},
23918 {"sf", PSR_s | PSR_f},
23919 {"sx", PSR_s | PSR_x},
23920 {"sc", PSR_s | PSR_c},
23921 {"xf", PSR_x | PSR_f},
23922 {"xs", PSR_x | PSR_s},
23923 {"xc", PSR_x | PSR_c},
23924 {"cf", PSR_c | PSR_f},
23925 {"cs", PSR_c | PSR_s},
23926 {"cx", PSR_c | PSR_x},
23927 {"fsx", PSR_f | PSR_s | PSR_x},
23928 {"fsc", PSR_f | PSR_s | PSR_c},
23929 {"fxs", PSR_f | PSR_x | PSR_s},
23930 {"fxc", PSR_f | PSR_x | PSR_c},
23931 {"fcs", PSR_f | PSR_c | PSR_s},
23932 {"fcx", PSR_f | PSR_c | PSR_x},
23933 {"sfx", PSR_s | PSR_f | PSR_x},
23934 {"sfc", PSR_s | PSR_f | PSR_c},
23935 {"sxf", PSR_s | PSR_x | PSR_f},
23936 {"sxc", PSR_s | PSR_x | PSR_c},
23937 {"scf", PSR_s | PSR_c | PSR_f},
23938 {"scx", PSR_s | PSR_c | PSR_x},
23939 {"xfs", PSR_x | PSR_f | PSR_s},
23940 {"xfc", PSR_x | PSR_f | PSR_c},
23941 {"xsf", PSR_x | PSR_s | PSR_f},
23942 {"xsc", PSR_x | PSR_s | PSR_c},
23943 {"xcf", PSR_x | PSR_c | PSR_f},
23944 {"xcs", PSR_x | PSR_c | PSR_s},
23945 {"cfs", PSR_c | PSR_f | PSR_s},
23946 {"cfx", PSR_c | PSR_f | PSR_x},
23947 {"csf", PSR_c | PSR_s | PSR_f},
23948 {"csx", PSR_c | PSR_s | PSR_x},
23949 {"cxf", PSR_c | PSR_x | PSR_f},
23950 {"cxs", PSR_c | PSR_x | PSR_s},
23951 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23952 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23953 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23954 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23955 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23956 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23957 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23958 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23959 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23960 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23961 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23962 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23963 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23964 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23965 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23966 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23967 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23968 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23969 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23970 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23971 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23972 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23973 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23974 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23975 };
23976
23977 /* Table of V7M psr names. */
23978 static const struct asm_psr v7m_psrs[] =
23979 {
23980 {"apsr", 0x0 }, {"APSR", 0x0 },
23981 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23982 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23983 {"psr", 0x3 }, {"PSR", 0x3 },
23984 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23985 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23986 {"epsr", 0x6 }, {"EPSR", 0x6 },
23987 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23988 {"msp", 0x8 }, {"MSP", 0x8 },
23989 {"psp", 0x9 }, {"PSP", 0x9 },
23990 {"msplim", 0xa }, {"MSPLIM", 0xa },
23991 {"psplim", 0xb }, {"PSPLIM", 0xb },
23992 {"primask", 0x10}, {"PRIMASK", 0x10},
23993 {"basepri", 0x11}, {"BASEPRI", 0x11},
23994 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23995 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23996 {"control", 0x14}, {"CONTROL", 0x14},
23997 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23998 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23999 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
24000 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
24001 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
24002 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
24003 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
24004 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
24005 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
24006 };
24007
24008 /* Table of all shift-in-operand names. */
24009 static const struct asm_shift_name shift_names [] =
24010 {
24011 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
24012 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
24013 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
24014 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
24015 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
24016 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
24017 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
24018 };
24019
24020 /* Table of all explicit relocation names. */
24021 #ifdef OBJ_ELF
24022 static struct reloc_entry reloc_names[] =
24023 {
24024 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
24025 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
24026 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
24027 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
24028 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
24029 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
24030 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
24031 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
24032 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
24033 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
24034 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
24035 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
24036 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
24037 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
24038 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
24039 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
24040 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
24041 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
24042 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
24043 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
24044 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
24045 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
24046 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
24047 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
24048 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
24049 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
24050 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
24051 };
24052 #endif
24053
24054 /* Table of all conditional affixes. */
24055 static const struct asm_cond conds[] =
24056 {
24057 {"eq", 0x0},
24058 {"ne", 0x1},
24059 {"cs", 0x2}, {"hs", 0x2},
24060 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
24061 {"mi", 0x4},
24062 {"pl", 0x5},
24063 {"vs", 0x6},
24064 {"vc", 0x7},
24065 {"hi", 0x8},
24066 {"ls", 0x9},
24067 {"ge", 0xa},
24068 {"lt", 0xb},
24069 {"gt", 0xc},
24070 {"le", 0xd},
24071 {"al", 0xe}
24072 };
24073 static const struct asm_cond vconds[] =
24074 {
24075 {"t", 0xf},
24076 {"e", 0x10}
24077 };
24078
24079 #define UL_BARRIER(L,U,CODE,FEAT) \
24080 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
24081 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
24082
24083 static struct asm_barrier_opt barrier_opt_names[] =
24084 {
24085 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
24086 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
24087 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
24088 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
24089 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
24090 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
24091 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
24092 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
24093 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
24094 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
24095 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
24096 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
24097 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
24098 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
24099 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
24100 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
24101 };
24102
24103 #undef UL_BARRIER
24104
24105 /* Table of ARM-format instructions. */
24106
24107 /* Macros for gluing together operand strings. N.B. In all cases
24108 other than OPS0, the trailing OP_stop comes from default
24109 zero-initialization of the unspecified elements of the array. */
24110 #define OPS0() { OP_stop, }
24111 #define OPS1(a) { OP_##a, }
24112 #define OPS2(a,b) { OP_##a,OP_##b, }
24113 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
24114 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
24115 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
24116 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
24117
24118 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
24119 This is useful when mixing operands for ARM and THUMB, i.e. using the
24120 MIX_ARM_THUMB_OPERANDS macro.
24121 In order to use these macros, prefix the number of operands with _
24122 e.g. _3. */
24123 #define OPS_1(a) { a, }
24124 #define OPS_2(a,b) { a,b, }
24125 #define OPS_3(a,b,c) { a,b,c, }
24126 #define OPS_4(a,b,c,d) { a,b,c,d, }
24127 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
24128 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
24129
24130 /* These macros abstract out the exact format of the mnemonic table and
24131 save some repeated characters. */
24132
24133 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
24134 #define TxCE(mnem, op, top, nops, ops, ae, te) \
24135 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
24136 THUMB_VARIANT, do_##ae, do_##te, 0 }
24137
24138 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
24139 a T_MNEM_xyz enumerator. */
24140 #define TCE(mnem, aop, top, nops, ops, ae, te) \
24141 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
24142 #define tCE(mnem, aop, top, nops, ops, ae, te) \
24143 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24144
24145 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
24146 infix after the third character. */
24147 #define TxC3(mnem, op, top, nops, ops, ae, te) \
24148 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
24149 THUMB_VARIANT, do_##ae, do_##te, 0 }
24150 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
24151 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
24152 THUMB_VARIANT, do_##ae, do_##te, 0 }
24153 #define TC3(mnem, aop, top, nops, ops, ae, te) \
24154 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
24155 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
24156 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
24157 #define tC3(mnem, aop, top, nops, ops, ae, te) \
24158 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24159 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
24160 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
24161
24162 /* Mnemonic that cannot be conditionalized. The ARM condition-code
24163 field is still 0xE. Many of the Thumb variants can be executed
24164 conditionally, so this is checked separately. */
24165 #define TUE(mnem, op, top, nops, ops, ae, te) \
24166 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24167 THUMB_VARIANT, do_##ae, do_##te, 0 }
24168
24169 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
24170 Used by mnemonics that have very minimal differences in the encoding for
24171 ARM and Thumb variants and can be handled in a common function. */
24172 #define TUEc(mnem, op, top, nops, ops, en) \
24173 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
24174 THUMB_VARIANT, do_##en, do_##en, 0 }
24175
24176 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
24177 condition code field. */
24178 #define TUF(mnem, op, top, nops, ops, ae, te) \
24179 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
24180 THUMB_VARIANT, do_##ae, do_##te, 0 }
24181
24182 /* ARM-only variants of all the above. */
24183 #define CE(mnem, op, nops, ops, ae) \
24184 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24185
24186 #define C3(mnem, op, nops, ops, ae) \
24187 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24188
24189 /* Thumb-only variants of TCE and TUE. */
24190 #define ToC(mnem, top, nops, ops, te) \
24191 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24192 do_##te, 0 }
24193
24194 #define ToU(mnem, top, nops, ops, te) \
24195 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
24196 NULL, do_##te, 0 }
24197
24198 /* T_MNEM_xyz enumerator variants of ToC. */
24199 #define toC(mnem, top, nops, ops, te) \
24200 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
24201 do_##te, 0 }
24202
24203 /* T_MNEM_xyz enumerator variants of ToU. */
24204 #define toU(mnem, top, nops, ops, te) \
24205 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
24206 NULL, do_##te, 0 }
24207
24208 /* Legacy mnemonics that always have conditional infix after the third
24209 character. */
24210 #define CL(mnem, op, nops, ops, ae) \
24211 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24212 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24213
24214 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
24215 #define cCE(mnem, op, nops, ops, ae) \
24216 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24217
24218 /* mov instructions that are shared between coprocessor and MVE. */
24219 #define mcCE(mnem, op, nops, ops, ae) \
24220 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
24221
24222 /* Legacy coprocessor instructions where conditional infix and conditional
24223 suffix are ambiguous. For consistency this includes all FPA instructions,
24224 not just the potentially ambiguous ones. */
24225 #define cCL(mnem, op, nops, ops, ae) \
24226 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
24227 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24228
24229 /* Coprocessor, takes either a suffix or a position-3 infix
24230 (for an FPA corner case). */
24231 #define C3E(mnem, op, nops, ops, ae) \
24232 { mnem, OPS##nops ops, OT_csuf_or_in3, \
24233 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
24234
24235 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
24236 { m1 #m2 m3, OPS##nops ops, \
24237 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
24238 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24239
24240 #define CM(m1, m2, op, nops, ops, ae) \
24241 xCM_ (m1, , m2, op, nops, ops, ae), \
24242 xCM_ (m1, eq, m2, op, nops, ops, ae), \
24243 xCM_ (m1, ne, m2, op, nops, ops, ae), \
24244 xCM_ (m1, cs, m2, op, nops, ops, ae), \
24245 xCM_ (m1, hs, m2, op, nops, ops, ae), \
24246 xCM_ (m1, cc, m2, op, nops, ops, ae), \
24247 xCM_ (m1, ul, m2, op, nops, ops, ae), \
24248 xCM_ (m1, lo, m2, op, nops, ops, ae), \
24249 xCM_ (m1, mi, m2, op, nops, ops, ae), \
24250 xCM_ (m1, pl, m2, op, nops, ops, ae), \
24251 xCM_ (m1, vs, m2, op, nops, ops, ae), \
24252 xCM_ (m1, vc, m2, op, nops, ops, ae), \
24253 xCM_ (m1, hi, m2, op, nops, ops, ae), \
24254 xCM_ (m1, ls, m2, op, nops, ops, ae), \
24255 xCM_ (m1, ge, m2, op, nops, ops, ae), \
24256 xCM_ (m1, lt, m2, op, nops, ops, ae), \
24257 xCM_ (m1, gt, m2, op, nops, ops, ae), \
24258 xCM_ (m1, le, m2, op, nops, ops, ae), \
24259 xCM_ (m1, al, m2, op, nops, ops, ae)
24260
24261 #define UE(mnem, op, nops, ops, ae) \
24262 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24263
24264 #define UF(mnem, op, nops, ops, ae) \
24265 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
24266
24267 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
24268 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
24269 use the same encoding function for each. */
24270 #define NUF(mnem, op, nops, ops, enc) \
24271 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24272 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24273
24274 /* Neon data processing, version which indirects through neon_enc_tab for
24275 the various overloaded versions of opcodes. */
24276 #define nUF(mnem, op, nops, ops, enc) \
24277 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24278 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
24279
24280 /* Neon insn with conditional suffix for the ARM version, non-overloaded
24281 version. */
24282 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24283 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
24284 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24285
24286 #define NCE(mnem, op, nops, ops, enc) \
24287 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24288
24289 #define NCEF(mnem, op, nops, ops, enc) \
24290 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24291
24292 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
24293 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
24294 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
24295 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
24296
24297 #define nCE(mnem, op, nops, ops, enc) \
24298 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
24299
24300 #define nCEF(mnem, op, nops, ops, enc) \
24301 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
24302
24303 /* */
24304 #define mCEF(mnem, op, nops, ops, enc) \
24305 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
24306 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24307
24308
24309 /* nCEF but for MVE predicated instructions. */
24310 #define mnCEF(mnem, op, nops, ops, enc) \
24311 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24312
24313 /* nCE but for MVE predicated instructions. */
24314 #define mnCE(mnem, op, nops, ops, enc) \
24315 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24316
24317 /* NUF but for potentially MVE predicated instructions. */
24318 #define MNUF(mnem, op, nops, ops, enc) \
24319 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
24320 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24321
24322 /* nUF but for potentially MVE predicated instructions. */
24323 #define mnUF(mnem, op, nops, ops, enc) \
24324 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
24325 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
24326
24327 /* ToC but for potentially MVE predicated instructions. */
24328 #define mToC(mnem, top, nops, ops, te) \
24329 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
24330 do_##te, 1 }
24331
24332 /* NCE but for MVE predicated instructions. */
24333 #define MNCE(mnem, op, nops, ops, enc) \
24334 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
24335
24336 /* NCEF but for MVE predicated instructions. */
24337 #define MNCEF(mnem, op, nops, ops, enc) \
24338 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
24339 #define do_0 0
24340
24341 static const struct asm_opcode insns[] =
24342 {
24343 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
24344 #define THUMB_VARIANT & arm_ext_v4t
24345 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
24346 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
24347 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
24348 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
24349 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
24350 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
24351 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
24352 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
24353 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
24354 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
24355 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
24356 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
24357 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
24358 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
24359 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
24360 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
24361
24362 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
24363 for setting PSR flag bits. They are obsolete in V6 and do not
24364 have Thumb equivalents. */
24365 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
24366 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
24367 CL("tstp", 110f000, 2, (RR, SH), cmp),
24368 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
24369 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
24370 CL("cmpp", 150f000, 2, (RR, SH), cmp),
24371 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
24372 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
24373 CL("cmnp", 170f000, 2, (RR, SH), cmp),
24374
24375 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
24376 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
24377 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
24378 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
24379
24380 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
24381 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
24382 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
24383 OP_RRnpc),
24384 OP_ADDRGLDR),ldst, t_ldst),
24385 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
24386
24387 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24388 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24389 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24390 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24391 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24392 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24393
24394 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
24395 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
24396
24397 /* Pseudo ops. */
24398 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
24399 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
24400 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
24401 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
24402
24403 /* Thumb-compatibility pseudo ops. */
24404 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
24405 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
24406 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
24407 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
24408 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
24409 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
24410 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
24411 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
24412 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
24413 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
24414 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
24415 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
24416
24417 /* These may simplify to neg. */
24418 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
24419 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
24420
24421 #undef THUMB_VARIANT
24422 #define THUMB_VARIANT & arm_ext_os
24423
24424 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
24425 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
24426
24427 #undef THUMB_VARIANT
24428 #define THUMB_VARIANT & arm_ext_v6
24429
24430 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
24431
24432 /* V1 instructions with no Thumb analogue prior to V6T2. */
24433 #undef THUMB_VARIANT
24434 #define THUMB_VARIANT & arm_ext_v6t2
24435
24436 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
24437 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
24438 CL("teqp", 130f000, 2, (RR, SH), cmp),
24439
24440 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24441 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24442 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
24443 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
24444
24445 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24446 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24447
24448 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24449 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
24450
24451 /* V1 instructions with no Thumb analogue at all. */
24452 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
24453 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
24454
24455 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
24456 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
24457 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
24458 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
24459 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
24460 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
24461 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
24462 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
24463
24464 #undef ARM_VARIANT
24465 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
24466 #undef THUMB_VARIANT
24467 #define THUMB_VARIANT & arm_ext_v4t
24468
24469 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
24470 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
24471
24472 #undef THUMB_VARIANT
24473 #define THUMB_VARIANT & arm_ext_v6t2
24474
24475 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24476 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
24477
24478 /* Generic coprocessor instructions. */
24479 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24480 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24481 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24482 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24483 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24484 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24485 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
24486
24487 #undef ARM_VARIANT
24488 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
24489
24490 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
24491 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
24492
24493 #undef ARM_VARIANT
24494 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
24495 #undef THUMB_VARIANT
24496 #define THUMB_VARIANT & arm_ext_msr
24497
24498 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
24499 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
24500
24501 #undef ARM_VARIANT
24502 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
24503 #undef THUMB_VARIANT
24504 #define THUMB_VARIANT & arm_ext_v6t2
24505
24506 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24507 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24508 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24509 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24510 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24511 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24512 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24513 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24514
24515 #undef ARM_VARIANT
24516 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
24517 #undef THUMB_VARIANT
24518 #define THUMB_VARIANT & arm_ext_v4t
24519
24520 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24521 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24522 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24523 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24524 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24525 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24526
24527 #undef ARM_VARIANT
24528 #define ARM_VARIANT & arm_ext_v4t_5
24529
24530 /* ARM Architecture 4T. */
24531 /* Note: bx (and blx) are required on V5, even if the processor does
24532 not support Thumb. */
24533 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
24534
24535 #undef ARM_VARIANT
24536 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24537 #undef THUMB_VARIANT
24538 #define THUMB_VARIANT & arm_ext_v5t
24539
24540 /* Note: blx has 2 variants; the .value coded here is for
24541 BLX(2). Only this variant has conditional execution. */
24542 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
24543 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
24544
24545 #undef THUMB_VARIANT
24546 #define THUMB_VARIANT & arm_ext_v6t2
24547
24548 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
24549 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24550 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24551 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24552 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24553 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24554 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24555 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24556
24557 #undef ARM_VARIANT
24558 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24559 #undef THUMB_VARIANT
24560 #define THUMB_VARIANT & arm_ext_v5exp
24561
24562 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24563 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24564 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24565 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24566
24567 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24568 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24569
24570 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24571 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24572 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24573 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24574
24575 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24576 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24577 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24578 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24579
24580 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24581 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24582
24583 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24584 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24585 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24586 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24587
24588 #undef ARM_VARIANT
24589 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24590 #undef THUMB_VARIANT
24591 #define THUMB_VARIANT & arm_ext_v6t2
24592
24593 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
24594 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
24595 ldrd, t_ldstd),
24596 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
24597 ADDRGLDRS), ldrd, t_ldstd),
24598
24599 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24600 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24601
24602 #undef ARM_VARIANT
24603 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24604
24605 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
24606
24607 #undef ARM_VARIANT
24608 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24609 #undef THUMB_VARIANT
24610 #define THUMB_VARIANT & arm_ext_v6
24611
24612 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
24613 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
24614 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24615 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24616 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24617 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24618 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24619 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24620 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24621 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
24622
24623 #undef THUMB_VARIANT
24624 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24625
24626 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
24627 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24628 strex, t_strex),
24629 #undef THUMB_VARIANT
24630 #define THUMB_VARIANT & arm_ext_v6t2
24631
24632 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24633 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24634
24635 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
24636 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
24637
24638 /* ARM V6 not included in V7M. */
24639 #undef THUMB_VARIANT
24640 #define THUMB_VARIANT & arm_ext_v6_notm
24641 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24642 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24643 UF(rfeib, 9900a00, 1, (RRw), rfe),
24644 UF(rfeda, 8100a00, 1, (RRw), rfe),
24645 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24646 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24647 UF(rfefa, 8100a00, 1, (RRw), rfe),
24648 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24649 UF(rfeed, 9900a00, 1, (RRw), rfe),
24650 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24651 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24652 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24653 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
24654 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
24655 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
24656 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
24657 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24658 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24659 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
24660
24661 /* ARM V6 not included in V7M (eg. integer SIMD). */
24662 #undef THUMB_VARIANT
24663 #define THUMB_VARIANT & arm_ext_v6_dsp
24664 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
24665 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
24666 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24667 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24668 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24669 /* Old name for QASX. */
24670 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24671 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24672 /* Old name for QSAX. */
24673 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24674 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24675 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24676 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24677 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24678 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24679 /* Old name for SASX. */
24680 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24681 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24682 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24683 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24684 /* Old name for SHASX. */
24685 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24686 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24687 /* Old name for SHSAX. */
24688 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24689 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24690 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24691 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24692 /* Old name for SSAX. */
24693 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24694 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24695 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24696 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24697 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24698 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24699 /* Old name for UASX. */
24700 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24701 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24702 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24703 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24704 /* Old name for UHASX. */
24705 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24706 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24707 /* Old name for UHSAX. */
24708 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24709 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24710 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24711 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24712 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24713 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24714 /* Old name for UQASX. */
24715 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24716 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24717 /* Old name for UQSAX. */
24718 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24719 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24720 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24721 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24722 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24723 /* Old name for USAX. */
24724 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24725 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24726 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24727 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24728 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24729 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24730 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24731 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24732 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24733 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24734 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24735 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24736 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24737 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24738 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24739 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24740 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24741 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24742 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24743 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24744 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24745 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24746 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24747 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24748 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24749 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24750 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24751 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24752 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24753 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
24754 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
24755 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24756 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24757 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
24758
24759 #undef ARM_VARIANT
24760 #define ARM_VARIANT & arm_ext_v6k_v6t2
24761 #undef THUMB_VARIANT
24762 #define THUMB_VARIANT & arm_ext_v6k_v6t2
24763
24764 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
24765 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
24766 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
24767 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
24768
24769 #undef THUMB_VARIANT
24770 #define THUMB_VARIANT & arm_ext_v6_notm
24771 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
24772 ldrexd, t_ldrexd),
24773 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
24774 RRnpcb), strexd, t_strexd),
24775
24776 #undef THUMB_VARIANT
24777 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24778 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
24779 rd_rn, rd_rn),
24780 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
24781 rd_rn, rd_rn),
24782 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24783 strex, t_strexbh),
24784 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24785 strex, t_strexbh),
24786 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
24787
24788 #undef ARM_VARIANT
24789 #define ARM_VARIANT & arm_ext_sec
24790 #undef THUMB_VARIANT
24791 #define THUMB_VARIANT & arm_ext_sec
24792
24793 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
24794
24795 #undef ARM_VARIANT
24796 #define ARM_VARIANT & arm_ext_virt
24797 #undef THUMB_VARIANT
24798 #define THUMB_VARIANT & arm_ext_virt
24799
24800 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
24801 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
24802
24803 #undef ARM_VARIANT
24804 #define ARM_VARIANT & arm_ext_pan
24805 #undef THUMB_VARIANT
24806 #define THUMB_VARIANT & arm_ext_pan
24807
24808 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
24809
24810 #undef ARM_VARIANT
24811 #define ARM_VARIANT & arm_ext_v6t2
24812 #undef THUMB_VARIANT
24813 #define THUMB_VARIANT & arm_ext_v6t2
24814
24815 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
24816 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
24817 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24818 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24819
24820 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24821 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
24822
24823 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24824 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24825 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24826 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24827
24828 #undef ARM_VARIANT
24829 #define ARM_VARIANT & arm_ext_v3
24830 #undef THUMB_VARIANT
24831 #define THUMB_VARIANT & arm_ext_v6t2
24832
24833 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
24834 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
24835 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
24836
24837 #undef ARM_VARIANT
24838 #define ARM_VARIANT & arm_ext_v6t2
24839 #undef THUMB_VARIANT
24840 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24841 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
24842 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
24843
24844 /* Thumb-only instructions. */
24845 #undef ARM_VARIANT
24846 #define ARM_VARIANT NULL
24847 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
24848 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
24849
24850 /* ARM does not really have an IT instruction, so always allow it.
24851 The opcode is copied from Thumb in order to allow warnings in
24852 -mimplicit-it=[never | arm] modes. */
24853 #undef ARM_VARIANT
24854 #define ARM_VARIANT & arm_ext_v1
24855 #undef THUMB_VARIANT
24856 #define THUMB_VARIANT & arm_ext_v6t2
24857
24858 TUE("it", bf08, bf08, 1, (COND), it, t_it),
24859 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
24860 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
24861 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
24862 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
24863 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24864 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24865 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24866 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24867 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24868 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24869 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24870 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24871 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24872 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
24873 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24874 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24875 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
24876
24877 /* Thumb2 only instructions. */
24878 #undef ARM_VARIANT
24879 #define ARM_VARIANT NULL
24880
24881 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24882 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24883 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24884 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24885 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24886 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
24887
24888 /* Hardware division instructions. */
24889 #undef ARM_VARIANT
24890 #define ARM_VARIANT & arm_ext_adiv
24891 #undef THUMB_VARIANT
24892 #define THUMB_VARIANT & arm_ext_div
24893
24894 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24895 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
24896
24897 /* ARM V6M/V7 instructions. */
24898 #undef ARM_VARIANT
24899 #define ARM_VARIANT & arm_ext_barrier
24900 #undef THUMB_VARIANT
24901 #define THUMB_VARIANT & arm_ext_barrier
24902
24903 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24904 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24905 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24906
24907 /* ARM V7 instructions. */
24908 #undef ARM_VARIANT
24909 #define ARM_VARIANT & arm_ext_v7
24910 #undef THUMB_VARIANT
24911 #define THUMB_VARIANT & arm_ext_v7
24912
24913 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24914 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24915
24916 #undef ARM_VARIANT
24917 #define ARM_VARIANT & arm_ext_mp
24918 #undef THUMB_VARIANT
24919 #define THUMB_VARIANT & arm_ext_mp
24920
24921 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24922
24923 /* AArchv8 instructions. */
24924 #undef ARM_VARIANT
24925 #define ARM_VARIANT & arm_ext_v8
24926
24927 /* Instructions shared between armv8-a and armv8-m. */
24928 #undef THUMB_VARIANT
24929 #define THUMB_VARIANT & arm_ext_atomics
24930
24931 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24932 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24933 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24934 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24935 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24936 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24937 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24938 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24939 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24940 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24941 stlex, t_stlex),
24942 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24943 stlex, t_stlex),
24944 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24945 stlex, t_stlex),
24946 #undef THUMB_VARIANT
24947 #define THUMB_VARIANT & arm_ext_v8
24948
24949 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24950 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24951 ldrexd, t_ldrexd),
24952 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24953 strexd, t_strexd),
24954
24955 /* Defined in V8 but is in undefined encoding space for earlier
24956 architectures. However earlier architectures are required to treat
24957 this instuction as a semihosting trap as well. Hence while not explicitly
24958 defined as such, it is in fact correct to define the instruction for all
24959 architectures. */
24960 #undef THUMB_VARIANT
24961 #define THUMB_VARIANT & arm_ext_v1
24962 #undef ARM_VARIANT
24963 #define ARM_VARIANT & arm_ext_v1
24964 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24965
24966 /* ARMv8 T32 only. */
24967 #undef ARM_VARIANT
24968 #define ARM_VARIANT NULL
24969 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24970 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24971 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24972
24973 /* FP for ARMv8. */
24974 #undef ARM_VARIANT
24975 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24976 #undef THUMB_VARIANT
24977 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24978
24979 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24980 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24981 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24982 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24983 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24984 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24985 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24986 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24987 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24988 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24989 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24990
24991 /* Crypto v1 extensions. */
24992 #undef ARM_VARIANT
24993 #define ARM_VARIANT & fpu_crypto_ext_armv8
24994 #undef THUMB_VARIANT
24995 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24996
24997 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24998 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24999 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
25000 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
25001 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
25002 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
25003 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
25004 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
25005 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
25006 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
25007 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
25008 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
25009 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
25010 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
25011
25012 #undef ARM_VARIANT
25013 #define ARM_VARIANT & arm_ext_crc
25014 #undef THUMB_VARIANT
25015 #define THUMB_VARIANT & arm_ext_crc
25016 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
25017 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
25018 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
25019 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
25020 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
25021 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
25022
25023 /* ARMv8.2 RAS extension. */
25024 #undef ARM_VARIANT
25025 #define ARM_VARIANT & arm_ext_ras
25026 #undef THUMB_VARIANT
25027 #define THUMB_VARIANT & arm_ext_ras
25028 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
25029
25030 #undef ARM_VARIANT
25031 #define ARM_VARIANT & arm_ext_v8_3
25032 #undef THUMB_VARIANT
25033 #define THUMB_VARIANT & arm_ext_v8_3
25034 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
25035
25036 #undef ARM_VARIANT
25037 #define ARM_VARIANT & fpu_neon_ext_dotprod
25038 #undef THUMB_VARIANT
25039 #define THUMB_VARIANT & fpu_neon_ext_dotprod
25040 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
25041 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
25042
25043 #undef ARM_VARIANT
25044 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
25045 #undef THUMB_VARIANT
25046 #define THUMB_VARIANT NULL
25047
25048 cCE("wfs", e200110, 1, (RR), rd),
25049 cCE("rfs", e300110, 1, (RR), rd),
25050 cCE("wfc", e400110, 1, (RR), rd),
25051 cCE("rfc", e500110, 1, (RR), rd),
25052
25053 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
25054 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
25055 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
25056 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
25057
25058 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
25059 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
25060 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
25061 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
25062
25063 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
25064 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
25065 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
25066 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
25067 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
25068 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
25069 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
25070 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
25071 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
25072 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
25073 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
25074 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
25075
25076 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
25077 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
25078 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
25079 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
25080 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
25081 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
25082 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
25083 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
25084 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
25085 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
25086 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
25087 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
25088
25089 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
25090 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
25091 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
25092 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
25093 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
25094 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
25095 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
25096 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
25097 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
25098 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
25099 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
25100 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
25101
25102 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
25103 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
25104 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
25105 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
25106 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
25107 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
25108 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
25109 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
25110 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
25111 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
25112 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
25113 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
25114
25115 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
25116 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
25117 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
25118 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
25119 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
25120 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
25121 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
25122 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
25123 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
25124 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
25125 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
25126 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
25127
25128 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
25129 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
25130 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
25131 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
25132 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
25133 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
25134 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
25135 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
25136 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
25137 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
25138 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
25139 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
25140
25141 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
25142 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
25143 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
25144 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
25145 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
25146 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
25147 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
25148 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
25149 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
25150 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
25151 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
25152 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
25153
25154 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
25155 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
25156 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
25157 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
25158 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
25159 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
25160 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
25161 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
25162 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
25163 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
25164 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
25165 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
25166
25167 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
25168 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
25169 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
25170 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
25171 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
25172 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
25173 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
25174 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
25175 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
25176 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
25177 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
25178 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
25179
25180 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
25181 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
25182 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
25183 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
25184 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
25185 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
25186 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
25187 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
25188 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
25189 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
25190 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
25191 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
25192
25193 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
25194 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
25195 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
25196 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
25197 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
25198 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
25199 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
25200 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
25201 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
25202 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
25203 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
25204 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
25205
25206 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
25207 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
25208 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
25209 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
25210 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
25211 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
25212 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
25213 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
25214 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
25215 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
25216 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
25217 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
25218
25219 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
25220 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
25221 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
25222 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
25223 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
25224 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
25225 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
25226 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
25227 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
25228 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
25229 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
25230 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
25231
25232 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
25233 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
25234 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
25235 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
25236 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
25237 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
25238 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
25239 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
25240 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
25241 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
25242 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
25243 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
25244
25245 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
25246 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
25247 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
25248 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
25249 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
25250 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
25251 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
25252 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
25253 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
25254 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
25255 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
25256 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
25257
25258 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
25259 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
25260 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
25261 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
25262 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
25263 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
25264 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
25265 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
25266 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
25267 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
25268 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
25269 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
25270
25271 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
25272 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
25273 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
25274 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
25275 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
25276 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25277 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25278 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25279 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
25280 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
25281 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
25282 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
25283
25284 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
25285 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
25286 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
25287 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
25288 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
25289 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25290 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25291 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25292 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
25293 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
25294 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
25295 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
25296
25297 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
25298 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
25299 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
25300 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
25301 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
25302 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25303 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25304 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25305 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
25306 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
25307 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
25308 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
25309
25310 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
25311 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
25312 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
25313 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
25314 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
25315 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25316 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25317 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25318 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
25319 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
25320 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
25321 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
25322
25323 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
25324 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
25325 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
25326 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
25327 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
25328 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25329 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25330 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25331 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
25332 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
25333 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
25334 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
25335
25336 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
25337 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
25338 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
25339 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
25340 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
25341 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25342 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25343 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25344 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
25345 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
25346 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
25347 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
25348
25349 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
25350 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
25351 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
25352 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
25353 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
25354 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25355 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25356 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25357 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
25358 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
25359 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
25360 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
25361
25362 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
25363 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
25364 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
25365 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
25366 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
25367 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25368 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25369 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25370 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
25371 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
25372 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
25373 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
25374
25375 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
25376 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
25377 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
25378 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
25379 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
25380 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25381 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25382 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25383 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
25384 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
25385 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
25386 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
25387
25388 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
25389 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
25390 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
25391 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
25392 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
25393 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25394 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25395 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25396 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
25397 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
25398 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
25399 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
25400
25401 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25402 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25403 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25404 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25405 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25406 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25407 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25408 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25409 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25410 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25411 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25412 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25413
25414 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25415 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25416 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25417 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25418 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25419 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25420 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25421 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25422 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25423 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25424 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25425 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25426
25427 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
25428 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
25429 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
25430 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
25431 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
25432 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
25433 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
25434 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
25435 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
25436 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
25437 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
25438 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
25439
25440 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
25441 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
25442 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
25443 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
25444
25445 cCL("flts", e000110, 2, (RF, RR), rn_rd),
25446 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
25447 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
25448 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
25449 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
25450 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
25451 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
25452 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
25453 cCL("flte", e080110, 2, (RF, RR), rn_rd),
25454 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
25455 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
25456 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
25457
25458 /* The implementation of the FIX instruction is broken on some
25459 assemblers, in that it accepts a precision specifier as well as a
25460 rounding specifier, despite the fact that this is meaningless.
25461 To be more compatible, we accept it as well, though of course it
25462 does not set any bits. */
25463 cCE("fix", e100110, 2, (RR, RF), rd_rm),
25464 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
25465 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
25466 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
25467 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
25468 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
25469 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
25470 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
25471 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
25472 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
25473 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
25474 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
25475 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
25476
25477 /* Instructions that were new with the real FPA, call them V2. */
25478 #undef ARM_VARIANT
25479 #define ARM_VARIANT & fpu_fpa_ext_v2
25480
25481 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25482 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25483 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25484 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25485 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25486 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
25487
25488 #undef ARM_VARIANT
25489 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
25490 #undef THUMB_VARIANT
25491 #define THUMB_VARIANT & arm_ext_v6t2
25492 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
25493 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
25494 mcCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25495 mcCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25496 mcCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
25497 mcCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
25498
25499 /* Memory operations. */
25500 mcCE(fldmias, c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25501 mcCE(fldmdbs, d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25502 mcCE(fstmias, c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25503 mcCE(fstmdbs, d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25504 #undef THUMB_VARIANT
25505
25506 /* Moves and type conversions. */
25507 cCE("fmstat", ef1fa10, 0, (), noargs),
25508 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
25509 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
25510 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
25511 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25512 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
25513 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25514 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
25515 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
25516
25517 /* Memory operations. */
25518 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25519 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25520 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25521 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25522 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25523 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25524 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25525 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25526 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25527 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25528 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25529 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25530
25531 /* Monadic operations. */
25532 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
25533 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
25534 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
25535
25536 /* Dyadic operations. */
25537 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25538 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25539 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25540 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25541 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25542 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25543 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25544 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25545 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25546
25547 /* Comparisons. */
25548 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
25549 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
25550 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
25551 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
25552
25553 /* Double precision load/store are still present on single precision
25554 implementations. */
25555 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25556 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25557 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25558 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25559 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25560 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25561 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25562 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25563
25564 #undef ARM_VARIANT
25565 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25566
25567 /* Moves and type conversions. */
25568 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25569 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25570 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
25571 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
25572 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
25573 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
25574 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25575 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
25576 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25577 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25578 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25579 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25580
25581 /* Monadic operations. */
25582 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25583 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25584 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25585
25586 /* Dyadic operations. */
25587 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25588 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25589 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25590 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25591 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25592 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25593 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25594 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25595 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25596
25597 /* Comparisons. */
25598 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25599 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
25600 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25601 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
25602
25603 /* Instructions which may belong to either the Neon or VFP instruction sets.
25604 Individual encoder functions perform additional architecture checks. */
25605 #undef ARM_VARIANT
25606 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25607 #undef THUMB_VARIANT
25608 #define THUMB_VARIANT & arm_ext_v6t2
25609
25610 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25611 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25612 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25613 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25614 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25615 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25616
25617 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
25618 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
25619
25620 #undef THUMB_VARIANT
25621 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
25622
25623 /* These mnemonics are unique to VFP. */
25624 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
25625 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
25626 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25627 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25628 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25629 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
25630
25631 /* Mnemonics shared by Neon and VFP. */
25632 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
25633
25634 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
25635 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
25636 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
25637 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
25638
25639
25640 /* NOTE: All VMOV encoding is special-cased! */
25641 NCE(vmovq, 0, 1, (VMOV), neon_mov),
25642
25643 #undef THUMB_VARIANT
25644 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25645 by different feature bits. Since we are setting the Thumb guard, we can
25646 require Thumb-1 which makes it a nop guard and set the right feature bit in
25647 do_vldr_vstr (). */
25648 #define THUMB_VARIANT & arm_ext_v4t
25649 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25650 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25651
25652 #undef ARM_VARIANT
25653 #define ARM_VARIANT & arm_ext_fp16
25654 #undef THUMB_VARIANT
25655 #define THUMB_VARIANT & arm_ext_fp16
25656 /* New instructions added from v8.2, allowing the extraction and insertion of
25657 the upper 16 bits of a 32-bit vector register. */
25658 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
25659 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
25660
25661 /* New backported fma/fms instructions optional in v8.2. */
25662 NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
25663 NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
25664
25665 #undef THUMB_VARIANT
25666 #define THUMB_VARIANT & fpu_neon_ext_v1
25667 #undef ARM_VARIANT
25668 #define ARM_VARIANT & fpu_neon_ext_v1
25669
25670 /* Data processing with three registers of the same length. */
25671 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25672 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
25673 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
25674 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25675 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25676 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25677 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
25678 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25679 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25680 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25681 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25682 /* If not immediate, fall back to neon_dyadic_i64_su.
25683 shl should accept I8 I16 I32 I64,
25684 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25685 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
25686 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
25687 /* Logic ops, types optional & ignored. */
25688 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25689 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25690 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25691 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25692 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
25693 /* Bitfield ops, untyped. */
25694 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25695 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25696 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25697 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25698 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25699 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25700 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
25701 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25702 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25703 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25704 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25705 back to neon_dyadic_if_su. */
25706 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25707 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25708 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25709 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25710 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25711 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25712 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25713 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25714 /* Comparison. Type I8 I16 I32 F32. */
25715 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
25716 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
25717 /* As above, D registers only. */
25718 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25719 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25720 /* Int and float variants, signedness unimportant. */
25721 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25722 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25723 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
25724 /* Add/sub take types I8 I16 I32 I64 F32. */
25725 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25726 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25727 /* vtst takes sizes 8, 16, 32. */
25728 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
25729 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
25730 /* VMUL takes I8 I16 I32 F32 P8. */
25731 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
25732 /* VQD{R}MULH takes S16 S32. */
25733 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25734 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25735 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25736 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25737 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25738 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25739 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25740 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25741 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25742 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25743 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25744 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25745 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25746 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25747 /* ARM v8.1 extension. */
25748 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25749 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
25750 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25751
25752 /* Two address, int/float. Types S8 S16 S32 F32. */
25753 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
25754 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
25755
25756 /* Data processing with two registers and a shift amount. */
25757 /* Right shifts, and variants with rounding.
25758 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
25759 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25760 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25761 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25762 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25763 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25764 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25765 /* Shift and insert. Sizes accepted 8 16 32 64. */
25766 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
25767 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
25768 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
25769 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
25770 /* Right shift immediate, saturating & narrowing, with rounding variants.
25771 Types accepted S16 S32 S64 U16 U32 U64. */
25772 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25773 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25774 /* As above, unsigned. Types accepted S16 S32 S64. */
25775 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25776 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25777 /* Right shift narrowing. Types accepted I16 I32 I64. */
25778 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25779 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25780 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
25781 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
25782 /* CVT with optional immediate for fixed-point variant. */
25783 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
25784
25785 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
25786
25787 /* Data processing, three registers of different lengths. */
25788 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25789 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
25790 /* If not scalar, fall back to neon_dyadic_long.
25791 Vector types as above, scalar types S16 S32 U16 U32. */
25792 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25793 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25794 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25795 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25796 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25797 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25798 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25799 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25800 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25801 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25802 /* Saturating doubling multiplies. Types S16 S32. */
25803 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25804 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25805 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25806 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25807 S16 S32 U16 U32. */
25808 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
25809
25810 /* Extract. Size 8. */
25811 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
25812 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
25813
25814 /* Two registers, miscellaneous. */
25815 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
25816 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
25817 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
25818 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
25819 /* Vector replicate. Sizes 8 16 32. */
25820 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
25821 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25822 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
25823 /* VMOVN. Types I16 I32 I64. */
25824 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
25825 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
25826 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
25827 /* VQMOVUN. Types S16 S32 S64. */
25828 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
25829 /* VZIP / VUZP. Sizes 8 16 32. */
25830 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
25831 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
25832 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
25833 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
25834 /* VQABS / VQNEG. Types S8 S16 S32. */
25835 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
25836 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
25837 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25838 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
25839 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
25840 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
25841 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
25842 /* Reciprocal estimates. Types U32 F16 F32. */
25843 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
25844 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
25845 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
25846 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
25847 /* VCLS. Types S8 S16 S32. */
25848 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
25849 /* VCLZ. Types I8 I16 I32. */
25850 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
25851 /* VCNT. Size 8. */
25852 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
25853 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
25854 /* Two address, untyped. */
25855 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
25856 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
25857 /* VTRN. Sizes 8 16 32. */
25858 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
25859 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
25860
25861 /* Table lookup. Size 8. */
25862 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25863 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25864
25865 #undef THUMB_VARIANT
25866 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25867 #undef ARM_VARIANT
25868 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25869
25870 /* Neon element/structure load/store. */
25871 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25872 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25873 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25874 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25875 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25876 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25877 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25878 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25879
25880 #undef THUMB_VARIANT
25881 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
25882 #undef ARM_VARIANT
25883 #define ARM_VARIANT & fpu_vfp_ext_v3xd
25884 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25885 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25886 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25887 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25888 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25889 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25890 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25891 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25892 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25893
25894 #undef THUMB_VARIANT
25895 #define THUMB_VARIANT & fpu_vfp_ext_v3
25896 #undef ARM_VARIANT
25897 #define ARM_VARIANT & fpu_vfp_ext_v3
25898
25899 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
25900 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25901 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25902 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25903 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25904 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25905 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25906 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25907 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25908
25909 #undef ARM_VARIANT
25910 #define ARM_VARIANT & fpu_vfp_ext_fma
25911 #undef THUMB_VARIANT
25912 #define THUMB_VARIANT & fpu_vfp_ext_fma
25913 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
25914 VFP FMA variant; NEON and VFP FMA always includes the NEON
25915 FMA instructions. */
25916 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25917 TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma),
25918 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25919
25920 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25921 the v form should always be used. */
25922 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25923 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25924 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25925 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25926 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25927 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25928
25929 #undef THUMB_VARIANT
25930 #undef ARM_VARIANT
25931 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25932
25933 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25934 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25935 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25936 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25937 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25938 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25939 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25940 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25941
25942 #undef ARM_VARIANT
25943 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25944
25945 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25946 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25947 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25948 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25949 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25950 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25951 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25952 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25953 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25954 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25955 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25956 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25957 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25958 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25959 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25960 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25961 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25962 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25963 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25964 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25965 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25966 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25967 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25968 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25969 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25970 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25971 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25972 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25973 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25974 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25975 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25976 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25977 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25978 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25979 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25980 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25981 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25982 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25983 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25984 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25985 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25986 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25987 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25988 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25989 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25990 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25991 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25992 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25993 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25994 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25995 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25996 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25997 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25998 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25999 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26000 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26001 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26002 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26003 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26004 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26005 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26006 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26007 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26008 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26009 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26010 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26011 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26012 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26013 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
26014 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
26015 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26016 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26017 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26018 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26019 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26020 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26021 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26022 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26023 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26024 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26025 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26026 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26027 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26028 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26029 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26030 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26031 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26032 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26033 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
26034 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26035 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26036 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26037 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26038 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26039 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26040 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26041 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26042 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26043 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26044 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26045 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26046 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26047 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26048 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26049 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26050 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26051 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26052 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26053 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26054 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26055 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
26056 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26057 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26058 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26059 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26060 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26061 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26062 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26063 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26064 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26065 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26066 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26067 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26068 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26069 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26070 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26071 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26072 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
26073 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
26074 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26075 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
26076 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
26077 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
26078 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26079 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26080 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26081 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26082 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26083 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26084 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26085 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26086 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26087 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
26088 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
26089 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
26090 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
26091 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
26092 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
26093 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26094 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26095 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26096 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
26097 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
26098 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
26099 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
26100 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
26101 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
26102 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26103 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26104 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26105 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26106 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
26107
26108 #undef ARM_VARIANT
26109 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
26110
26111 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
26112 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
26113 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
26114 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
26115 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
26116 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
26117 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26118 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26119 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26120 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26121 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26122 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26123 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26124 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26125 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26126 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26127 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26128 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26129 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26130 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26131 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
26132 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26133 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26134 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26135 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26136 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26137 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26138 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26139 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26140 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26141 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26142 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26143 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26144 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26145 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26146 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26147 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26148 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26149 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26150 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26151 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26152 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26153 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26154 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26155 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26156 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26157 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26158 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26159 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26160 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26161 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26162 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26163 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26164 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26165 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26166 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26167 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
26168
26169 #undef ARM_VARIANT
26170 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
26171
26172 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
26173 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
26174 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
26175 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
26176 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
26177 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
26178 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
26179 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
26180 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
26181 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
26182 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
26183 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
26184 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
26185 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
26186 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
26187 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
26188 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
26189 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
26190 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
26191 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
26192 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
26193 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
26194 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
26195 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
26196 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
26197 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
26198 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
26199 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
26200 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
26201 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
26202 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
26203 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
26204 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
26205 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
26206 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
26207 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
26208 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
26209 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
26210 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
26211 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
26212 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
26213 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
26214 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
26215 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
26216 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
26217 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
26218 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
26219 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
26220 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
26221 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
26222 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
26223 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
26224 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
26225 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
26226 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
26227 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
26228 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
26229 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
26230 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
26231 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
26232 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
26233 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
26234 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
26235 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
26236 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26237 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26238 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26239 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26240 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26241 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
26242 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26243 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
26244 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
26245 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
26246 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
26247 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
26248
26249 /* ARMv8.5-A instructions. */
26250 #undef ARM_VARIANT
26251 #define ARM_VARIANT & arm_ext_sb
26252 #undef THUMB_VARIANT
26253 #define THUMB_VARIANT & arm_ext_sb
26254 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
26255
26256 #undef ARM_VARIANT
26257 #define ARM_VARIANT & arm_ext_predres
26258 #undef THUMB_VARIANT
26259 #define THUMB_VARIANT & arm_ext_predres
26260 CE("cfprctx", e070f93, 1, (RRnpc), rd),
26261 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
26262 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
26263
26264 /* ARMv8-M instructions. */
26265 #undef ARM_VARIANT
26266 #define ARM_VARIANT NULL
26267 #undef THUMB_VARIANT
26268 #define THUMB_VARIANT & arm_ext_v8m
26269 ToU("sg", e97fe97f, 0, (), noargs),
26270 ToC("blxns", 4784, 1, (RRnpc), t_blx),
26271 ToC("bxns", 4704, 1, (RRnpc), t_bx),
26272 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
26273 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
26274 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
26275 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
26276
26277 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
26278 instructions behave as nop if no VFP is present. */
26279 #undef THUMB_VARIANT
26280 #define THUMB_VARIANT & arm_ext_v8m_main
26281 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
26282 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
26283
26284 /* Armv8.1-M Mainline instructions. */
26285 #undef THUMB_VARIANT
26286 #define THUMB_VARIANT & arm_ext_v8_1m_main
26287 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26288 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26289 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
26290 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26291 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
26292 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
26293 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26294 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26295 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
26296
26297 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
26298 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
26299 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
26300 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
26301 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
26302
26303 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
26304 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
26305 toU("le", _le, 2, (oLR, EXP), t_loloop),
26306
26307 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
26308 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
26309
26310 #undef THUMB_VARIANT
26311 #define THUMB_VARIANT & mve_ext
26312 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
26313 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
26314 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
26315 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
26316 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
26317 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
26318 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
26319 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
26320 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
26321 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
26322 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
26323 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
26324 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
26325 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
26326 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
26327
26328 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26329 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26330 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26331 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26332 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26333 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26334 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26335 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26336 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26337 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26338 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26339 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26340 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26341 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26342 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
26343
26344 ToC("vpst", fe710f4d, 0, (), mve_vpt),
26345 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
26346 ToC("vpste", fe718f4d, 0, (), mve_vpt),
26347 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
26348 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
26349 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
26350 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
26351 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
26352 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
26353 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
26354 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
26355 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
26356 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
26357 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
26358 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
26359
26360 /* MVE and MVE FP only. */
26361 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
26362 mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp),
26363 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
26364 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
26365 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
26366 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
26367 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
26368 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
26369 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26370 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26371 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
26372 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
26373 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26374 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26375 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
26376 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
26377 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
26378 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
26379
26380 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26381 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26382 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26383 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26384 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26385 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26386 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26387 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
26388 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26389 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26390 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26391 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
26392 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26393 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26394 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26395 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26396 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26397 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26398 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26399 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
26400
26401 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
26402 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
26403 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26404 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
26405 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
26406 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
26407 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
26408 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
26409 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
26410 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
26411 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
26412 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
26413 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
26414 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
26415 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
26416 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
26417 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
26418
26419 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26420 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26421 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26422 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26423 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26424 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26425 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26426 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26427 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26428 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
26429 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26430 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26431 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26432 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26433 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26434 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26435 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26436 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26437 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26438 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
26439
26440 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
26441 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
26442 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
26443 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
26444 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
26445
26446 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26447 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26448 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26449 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26450 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26451 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26452 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26453 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
26454 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26455 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26456 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
26457 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
26458 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
26459 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
26460 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
26461 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
26462 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
26463
26464 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26465 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26466 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26467 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26468 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26469 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26470 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26471 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26472 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26473 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26474 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
26475 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
26476
26477 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
26478 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
26479 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
26480
26481 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
26482 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
26483 toU("letp", _letp, 2, (LR, EXP), t_loloop),
26484 toU("lctp", _lctp, 0, (), t_loloop),
26485
26486 #undef THUMB_VARIANT
26487 #define THUMB_VARIANT & mve_fp_ext
26488 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
26489 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
26490 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
26491 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
26492 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
26493 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
26494 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
26495 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
26496
26497 #undef ARM_VARIANT
26498 #define ARM_VARIANT & fpu_vfp_ext_v1
26499 #undef THUMB_VARIANT
26500 #define THUMB_VARIANT & arm_ext_v6t2
26501 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
26502 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
26503
26504 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
26505
26506 #undef ARM_VARIANT
26507 #define ARM_VARIANT & fpu_vfp_ext_v1xd
26508
26509 MNCE(vmov, 0, 1, (VMOV), neon_mov),
26510 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
26511 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
26512 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
26513
26514 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
26515 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26516 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26517
26518 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26519 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26520
26521 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
26522 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
26523
26524 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26525 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26526
26527 #undef ARM_VARIANT
26528 #define ARM_VARIANT & fpu_vfp_ext_v2
26529
26530 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
26531 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
26532 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
26533 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
26534
26535 #undef ARM_VARIANT
26536 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
26537 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
26538 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
26539 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
26540 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
26541 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26542 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26543
26544 #undef ARM_VARIANT
26545 #define ARM_VARIANT & fpu_neon_ext_v1
26546 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26547 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
26548 mnUF(vaddl, _vaddl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long),
26549 mnUF(vsubl, _vsubl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long),
26550 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26551 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26552 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26553 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26554 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
26555 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
26556 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
26557 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
26558 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26559 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
26560 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26561 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26562 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26563 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26564 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26565 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
26566 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26567 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26568 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
26569 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26570 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26571 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26572 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26573 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26574 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26575 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
26576 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
26577 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
26578 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
26579 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
26580 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
26581 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
26582 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
26583
26584 #undef ARM_VARIANT
26585 #define ARM_VARIANT & arm_ext_v8_3
26586 #undef THUMB_VARIANT
26587 #define THUMB_VARIANT & arm_ext_v6t2_v8m
26588 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
26589 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
26590
26591 #undef ARM_VARIANT
26592 #define ARM_VARIANT &arm_ext_bf16
26593 #undef THUMB_VARIANT
26594 #define THUMB_VARIANT &arm_ext_bf16
26595 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot),
26596 TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla),
26597 TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma),
26598
26599 #undef ARM_VARIANT
26600 #define ARM_VARIANT &arm_ext_i8mm
26601 #undef THUMB_VARIANT
26602 #define THUMB_VARIANT &arm_ext_i8mm
26603 TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26604 TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla),
26605 TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26606 TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot),
26607 TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot),
26608
26609 #undef ARM_VARIANT
26610 #undef THUMB_VARIANT
26611 #define THUMB_VARIANT &arm_ext_cde
26612 ToC ("cx1", ee000000, 3, (RCP, APSR_RR, I8191), cx1),
26613 ToC ("cx1a", fe000000, 3, (RCP, APSR_RR, I8191), cx1a),
26614 ToC ("cx1d", ee000040, 4, (RCP, RR, APSR_RR, I8191), cx1d),
26615 ToC ("cx1da", fe000040, 4, (RCP, RR, APSR_RR, I8191), cx1da),
26616
26617 ToC ("cx2", ee400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2),
26618 ToC ("cx2a", fe400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2a),
26619 ToC ("cx2d", ee400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2d),
26620 ToC ("cx2da", fe400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2da),
26621
26622 ToC ("cx3", ee800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3),
26623 ToC ("cx3a", fe800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3a),
26624 ToC ("cx3d", ee800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3d),
26625 ToC ("cx3da", fe800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3da),
26626
26627 mToC ("vcx1", ec200000, 3, (RCP, RNSDMQ, I4095), vcx1),
26628 mToC ("vcx1a", fc200000, 3, (RCP, RNSDMQ, I4095), vcx1),
26629
26630 mToC ("vcx2", ec300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2),
26631 mToC ("vcx2a", fc300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2),
26632
26633 mToC ("vcx3", ec800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3),
26634 mToC ("vcx3a", fc800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3),
26635 };
26636
26637 #undef ARM_VARIANT
26638 #undef THUMB_VARIANT
26639 #undef TCE
26640 #undef TUE
26641 #undef TUF
26642 #undef TCC
26643 #undef cCE
26644 #undef cCL
26645 #undef C3E
26646 #undef C3
26647 #undef CE
26648 #undef CM
26649 #undef CL
26650 #undef UE
26651 #undef UF
26652 #undef UT
26653 #undef NUF
26654 #undef nUF
26655 #undef NCE
26656 #undef nCE
26657 #undef OPS0
26658 #undef OPS1
26659 #undef OPS2
26660 #undef OPS3
26661 #undef OPS4
26662 #undef OPS5
26663 #undef OPS6
26664 #undef do_0
26665 #undef ToC
26666 #undef toC
26667 #undef ToU
26668 #undef toU
26669 \f
26670 /* MD interface: bits in the object file. */
26671
26672 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26673 for use in the a.out file, and stores them in the array pointed to by buf.
26674 This knows about the endian-ness of the target machine and does
26675 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26676 2 (short) and 4 (long) Floating numbers are put out as a series of
26677 LITTLENUMS (shorts, here at least). */
26678
26679 void
26680 md_number_to_chars (char * buf, valueT val, int n)
26681 {
26682 if (target_big_endian)
26683 number_to_chars_bigendian (buf, val, n);
26684 else
26685 number_to_chars_littleendian (buf, val, n);
26686 }
26687
26688 static valueT
26689 md_chars_to_number (char * buf, int n)
26690 {
26691 valueT result = 0;
26692 unsigned char * where = (unsigned char *) buf;
26693
26694 if (target_big_endian)
26695 {
26696 while (n--)
26697 {
26698 result <<= 8;
26699 result |= (*where++ & 255);
26700 }
26701 }
26702 else
26703 {
26704 while (n--)
26705 {
26706 result <<= 8;
26707 result |= (where[n] & 255);
26708 }
26709 }
26710
26711 return result;
26712 }
26713
26714 /* MD interface: Sections. */
26715
26716 /* Calculate the maximum variable size (i.e., excluding fr_fix)
26717 that an rs_machine_dependent frag may reach. */
26718
26719 unsigned int
26720 arm_frag_max_var (fragS *fragp)
26721 {
26722 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26723 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26724
26725 Note that we generate relaxable instructions even for cases that don't
26726 really need it, like an immediate that's a trivial constant. So we're
26727 overestimating the instruction size for some of those cases. Rather
26728 than putting more intelligence here, it would probably be better to
26729 avoid generating a relaxation frag in the first place when it can be
26730 determined up front that a short instruction will suffice. */
26731
26732 gas_assert (fragp->fr_type == rs_machine_dependent);
26733 return INSN_SIZE;
26734 }
26735
26736 /* Estimate the size of a frag before relaxing. Assume everything fits in
26737 2 bytes. */
26738
26739 int
26740 md_estimate_size_before_relax (fragS * fragp,
26741 segT segtype ATTRIBUTE_UNUSED)
26742 {
26743 fragp->fr_var = 2;
26744 return 2;
26745 }
26746
26747 /* Convert a machine dependent frag. */
26748
26749 void
26750 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
26751 {
26752 unsigned long insn;
26753 unsigned long old_op;
26754 char *buf;
26755 expressionS exp;
26756 fixS *fixp;
26757 int reloc_type;
26758 int pc_rel;
26759 int opcode;
26760
26761 buf = fragp->fr_literal + fragp->fr_fix;
26762
26763 old_op = bfd_get_16(abfd, buf);
26764 if (fragp->fr_symbol)
26765 {
26766 exp.X_op = O_symbol;
26767 exp.X_add_symbol = fragp->fr_symbol;
26768 }
26769 else
26770 {
26771 exp.X_op = O_constant;
26772 }
26773 exp.X_add_number = fragp->fr_offset;
26774 opcode = fragp->fr_subtype;
26775 switch (opcode)
26776 {
26777 case T_MNEM_ldr_pc:
26778 case T_MNEM_ldr_pc2:
26779 case T_MNEM_ldr_sp:
26780 case T_MNEM_str_sp:
26781 case T_MNEM_ldr:
26782 case T_MNEM_ldrb:
26783 case T_MNEM_ldrh:
26784 case T_MNEM_str:
26785 case T_MNEM_strb:
26786 case T_MNEM_strh:
26787 if (fragp->fr_var == 4)
26788 {
26789 insn = THUMB_OP32 (opcode);
26790 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
26791 {
26792 insn |= (old_op & 0x700) << 4;
26793 }
26794 else
26795 {
26796 insn |= (old_op & 7) << 12;
26797 insn |= (old_op & 0x38) << 13;
26798 }
26799 insn |= 0x00000c00;
26800 put_thumb32_insn (buf, insn);
26801 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
26802 }
26803 else
26804 {
26805 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
26806 }
26807 pc_rel = (opcode == T_MNEM_ldr_pc2);
26808 break;
26809 case T_MNEM_adr:
26810 if (fragp->fr_var == 4)
26811 {
26812 insn = THUMB_OP32 (opcode);
26813 insn |= (old_op & 0xf0) << 4;
26814 put_thumb32_insn (buf, insn);
26815 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
26816 }
26817 else
26818 {
26819 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26820 exp.X_add_number -= 4;
26821 }
26822 pc_rel = 1;
26823 break;
26824 case T_MNEM_mov:
26825 case T_MNEM_movs:
26826 case T_MNEM_cmp:
26827 case T_MNEM_cmn:
26828 if (fragp->fr_var == 4)
26829 {
26830 int r0off = (opcode == T_MNEM_mov
26831 || opcode == T_MNEM_movs) ? 0 : 8;
26832 insn = THUMB_OP32 (opcode);
26833 insn = (insn & 0xe1ffffff) | 0x10000000;
26834 insn |= (old_op & 0x700) << r0off;
26835 put_thumb32_insn (buf, insn);
26836 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26837 }
26838 else
26839 {
26840 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
26841 }
26842 pc_rel = 0;
26843 break;
26844 case T_MNEM_b:
26845 if (fragp->fr_var == 4)
26846 {
26847 insn = THUMB_OP32(opcode);
26848 put_thumb32_insn (buf, insn);
26849 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
26850 }
26851 else
26852 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
26853 pc_rel = 1;
26854 break;
26855 case T_MNEM_bcond:
26856 if (fragp->fr_var == 4)
26857 {
26858 insn = THUMB_OP32(opcode);
26859 insn |= (old_op & 0xf00) << 14;
26860 put_thumb32_insn (buf, insn);
26861 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
26862 }
26863 else
26864 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
26865 pc_rel = 1;
26866 break;
26867 case T_MNEM_add_sp:
26868 case T_MNEM_add_pc:
26869 case T_MNEM_inc_sp:
26870 case T_MNEM_dec_sp:
26871 if (fragp->fr_var == 4)
26872 {
26873 /* ??? Choose between add and addw. */
26874 insn = THUMB_OP32 (opcode);
26875 insn |= (old_op & 0xf0) << 4;
26876 put_thumb32_insn (buf, insn);
26877 if (opcode == T_MNEM_add_pc)
26878 reloc_type = BFD_RELOC_ARM_T32_IMM12;
26879 else
26880 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26881 }
26882 else
26883 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26884 pc_rel = 0;
26885 break;
26886
26887 case T_MNEM_addi:
26888 case T_MNEM_addis:
26889 case T_MNEM_subi:
26890 case T_MNEM_subis:
26891 if (fragp->fr_var == 4)
26892 {
26893 insn = THUMB_OP32 (opcode);
26894 insn |= (old_op & 0xf0) << 4;
26895 insn |= (old_op & 0xf) << 16;
26896 put_thumb32_insn (buf, insn);
26897 if (insn & (1 << 20))
26898 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26899 else
26900 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26901 }
26902 else
26903 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26904 pc_rel = 0;
26905 break;
26906 default:
26907 abort ();
26908 }
26909 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
26910 (enum bfd_reloc_code_real) reloc_type);
26911 fixp->fx_file = fragp->fr_file;
26912 fixp->fx_line = fragp->fr_line;
26913 fragp->fr_fix += fragp->fr_var;
26914
26915 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26916 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
26917 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26918 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
26919 }
26920
26921 /* Return the size of a relaxable immediate operand instruction.
26922 SHIFT and SIZE specify the form of the allowable immediate. */
26923 static int
26924 relax_immediate (fragS *fragp, int size, int shift)
26925 {
26926 offsetT offset;
26927 offsetT mask;
26928 offsetT low;
26929
26930 /* ??? Should be able to do better than this. */
26931 if (fragp->fr_symbol)
26932 return 4;
26933
26934 low = (1 << shift) - 1;
26935 mask = (1 << (shift + size)) - (1 << shift);
26936 offset = fragp->fr_offset;
26937 /* Force misaligned offsets to 32-bit variant. */
26938 if (offset & low)
26939 return 4;
26940 if (offset & ~mask)
26941 return 4;
26942 return 2;
26943 }
26944
26945 /* Get the address of a symbol during relaxation. */
26946 static addressT
26947 relaxed_symbol_addr (fragS *fragp, long stretch)
26948 {
26949 fragS *sym_frag;
26950 addressT addr;
26951 symbolS *sym;
26952
26953 sym = fragp->fr_symbol;
26954 sym_frag = symbol_get_frag (sym);
26955 know (S_GET_SEGMENT (sym) != absolute_section
26956 || sym_frag == &zero_address_frag);
26957 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26958
26959 /* If frag has yet to be reached on this pass, assume it will
26960 move by STRETCH just as we did. If this is not so, it will
26961 be because some frag between grows, and that will force
26962 another pass. */
26963
26964 if (stretch != 0
26965 && sym_frag->relax_marker != fragp->relax_marker)
26966 {
26967 fragS *f;
26968
26969 /* Adjust stretch for any alignment frag. Note that if have
26970 been expanding the earlier code, the symbol may be
26971 defined in what appears to be an earlier frag. FIXME:
26972 This doesn't handle the fr_subtype field, which specifies
26973 a maximum number of bytes to skip when doing an
26974 alignment. */
26975 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26976 {
26977 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26978 {
26979 if (stretch < 0)
26980 stretch = - ((- stretch)
26981 & ~ ((1 << (int) f->fr_offset) - 1));
26982 else
26983 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26984 if (stretch == 0)
26985 break;
26986 }
26987 }
26988 if (f != NULL)
26989 addr += stretch;
26990 }
26991
26992 return addr;
26993 }
26994
26995 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
26996 load. */
26997 static int
26998 relax_adr (fragS *fragp, asection *sec, long stretch)
26999 {
27000 addressT addr;
27001 offsetT val;
27002
27003 /* Assume worst case for symbols not known to be in the same section. */
27004 if (fragp->fr_symbol == NULL
27005 || !S_IS_DEFINED (fragp->fr_symbol)
27006 || sec != S_GET_SEGMENT (fragp->fr_symbol)
27007 || S_IS_WEAK (fragp->fr_symbol))
27008 return 4;
27009
27010 val = relaxed_symbol_addr (fragp, stretch);
27011 addr = fragp->fr_address + fragp->fr_fix;
27012 addr = (addr + 4) & ~3;
27013 /* Force misaligned targets to 32-bit variant. */
27014 if (val & 3)
27015 return 4;
27016 val -= addr;
27017 if (val < 0 || val > 1020)
27018 return 4;
27019 return 2;
27020 }
27021
27022 /* Return the size of a relaxable add/sub immediate instruction. */
27023 static int
27024 relax_addsub (fragS *fragp, asection *sec)
27025 {
27026 char *buf;
27027 int op;
27028
27029 buf = fragp->fr_literal + fragp->fr_fix;
27030 op = bfd_get_16(sec->owner, buf);
27031 if ((op & 0xf) == ((op >> 4) & 0xf))
27032 return relax_immediate (fragp, 8, 0);
27033 else
27034 return relax_immediate (fragp, 3, 0);
27035 }
27036
27037 /* Return TRUE iff the definition of symbol S could be pre-empted
27038 (overridden) at link or load time. */
27039 static bfd_boolean
27040 symbol_preemptible (symbolS *s)
27041 {
27042 /* Weak symbols can always be pre-empted. */
27043 if (S_IS_WEAK (s))
27044 return TRUE;
27045
27046 /* Non-global symbols cannot be pre-empted. */
27047 if (! S_IS_EXTERNAL (s))
27048 return FALSE;
27049
27050 #ifdef OBJ_ELF
27051 /* In ELF, a global symbol can be marked protected, or private. In that
27052 case it can't be pre-empted (other definitions in the same link unit
27053 would violate the ODR). */
27054 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
27055 return FALSE;
27056 #endif
27057
27058 /* Other global symbols might be pre-empted. */
27059 return TRUE;
27060 }
27061
27062 /* Return the size of a relaxable branch instruction. BITS is the
27063 size of the offset field in the narrow instruction. */
27064
27065 static int
27066 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
27067 {
27068 addressT addr;
27069 offsetT val;
27070 offsetT limit;
27071
27072 /* Assume worst case for symbols not known to be in the same section. */
27073 if (!S_IS_DEFINED (fragp->fr_symbol)
27074 || sec != S_GET_SEGMENT (fragp->fr_symbol)
27075 || S_IS_WEAK (fragp->fr_symbol))
27076 return 4;
27077
27078 #ifdef OBJ_ELF
27079 /* A branch to a function in ARM state will require interworking. */
27080 if (S_IS_DEFINED (fragp->fr_symbol)
27081 && ARM_IS_FUNC (fragp->fr_symbol))
27082 return 4;
27083 #endif
27084
27085 if (symbol_preemptible (fragp->fr_symbol))
27086 return 4;
27087
27088 val = relaxed_symbol_addr (fragp, stretch);
27089 addr = fragp->fr_address + fragp->fr_fix + 4;
27090 val -= addr;
27091
27092 /* Offset is a signed value *2 */
27093 limit = 1 << bits;
27094 if (val >= limit || val < -limit)
27095 return 4;
27096 return 2;
27097 }
27098
27099
27100 /* Relax a machine dependent frag. This returns the amount by which
27101 the current size of the frag should change. */
27102
27103 int
27104 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
27105 {
27106 int oldsize;
27107 int newsize;
27108
27109 oldsize = fragp->fr_var;
27110 switch (fragp->fr_subtype)
27111 {
27112 case T_MNEM_ldr_pc2:
27113 newsize = relax_adr (fragp, sec, stretch);
27114 break;
27115 case T_MNEM_ldr_pc:
27116 case T_MNEM_ldr_sp:
27117 case T_MNEM_str_sp:
27118 newsize = relax_immediate (fragp, 8, 2);
27119 break;
27120 case T_MNEM_ldr:
27121 case T_MNEM_str:
27122 newsize = relax_immediate (fragp, 5, 2);
27123 break;
27124 case T_MNEM_ldrh:
27125 case T_MNEM_strh:
27126 newsize = relax_immediate (fragp, 5, 1);
27127 break;
27128 case T_MNEM_ldrb:
27129 case T_MNEM_strb:
27130 newsize = relax_immediate (fragp, 5, 0);
27131 break;
27132 case T_MNEM_adr:
27133 newsize = relax_adr (fragp, sec, stretch);
27134 break;
27135 case T_MNEM_mov:
27136 case T_MNEM_movs:
27137 case T_MNEM_cmp:
27138 case T_MNEM_cmn:
27139 newsize = relax_immediate (fragp, 8, 0);
27140 break;
27141 case T_MNEM_b:
27142 newsize = relax_branch (fragp, sec, 11, stretch);
27143 break;
27144 case T_MNEM_bcond:
27145 newsize = relax_branch (fragp, sec, 8, stretch);
27146 break;
27147 case T_MNEM_add_sp:
27148 case T_MNEM_add_pc:
27149 newsize = relax_immediate (fragp, 8, 2);
27150 break;
27151 case T_MNEM_inc_sp:
27152 case T_MNEM_dec_sp:
27153 newsize = relax_immediate (fragp, 7, 2);
27154 break;
27155 case T_MNEM_addi:
27156 case T_MNEM_addis:
27157 case T_MNEM_subi:
27158 case T_MNEM_subis:
27159 newsize = relax_addsub (fragp, sec);
27160 break;
27161 default:
27162 abort ();
27163 }
27164
27165 fragp->fr_var = newsize;
27166 /* Freeze wide instructions that are at or before the same location as
27167 in the previous pass. This avoids infinite loops.
27168 Don't freeze them unconditionally because targets may be artificially
27169 misaligned by the expansion of preceding frags. */
27170 if (stretch <= 0 && newsize > 2)
27171 {
27172 md_convert_frag (sec->owner, sec, fragp);
27173 frag_wane (fragp);
27174 }
27175
27176 return newsize - oldsize;
27177 }
27178
27179 /* Round up a section size to the appropriate boundary. */
27180
27181 valueT
27182 md_section_align (segT segment ATTRIBUTE_UNUSED,
27183 valueT size)
27184 {
27185 return size;
27186 }
27187
27188 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
27189 of an rs_align_code fragment. */
27190
27191 void
27192 arm_handle_align (fragS * fragP)
27193 {
27194 static unsigned char const arm_noop[2][2][4] =
27195 {
27196 { /* ARMv1 */
27197 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
27198 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
27199 },
27200 { /* ARMv6k */
27201 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
27202 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
27203 },
27204 };
27205 static unsigned char const thumb_noop[2][2][2] =
27206 {
27207 { /* Thumb-1 */
27208 {0xc0, 0x46}, /* LE */
27209 {0x46, 0xc0}, /* BE */
27210 },
27211 { /* Thumb-2 */
27212 {0x00, 0xbf}, /* LE */
27213 {0xbf, 0x00} /* BE */
27214 }
27215 };
27216 static unsigned char const wide_thumb_noop[2][4] =
27217 { /* Wide Thumb-2 */
27218 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
27219 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
27220 };
27221
27222 unsigned bytes, fix, noop_size;
27223 char * p;
27224 const unsigned char * noop;
27225 const unsigned char *narrow_noop = NULL;
27226 #ifdef OBJ_ELF
27227 enum mstate state;
27228 #endif
27229
27230 if (fragP->fr_type != rs_align_code)
27231 return;
27232
27233 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
27234 p = fragP->fr_literal + fragP->fr_fix;
27235 fix = 0;
27236
27237 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
27238 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
27239
27240 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
27241
27242 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
27243 {
27244 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
27245 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
27246 {
27247 narrow_noop = thumb_noop[1][target_big_endian];
27248 noop = wide_thumb_noop[target_big_endian];
27249 }
27250 else
27251 noop = thumb_noop[0][target_big_endian];
27252 noop_size = 2;
27253 #ifdef OBJ_ELF
27254 state = MAP_THUMB;
27255 #endif
27256 }
27257 else
27258 {
27259 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
27260 ? selected_cpu : arm_arch_none,
27261 arm_ext_v6k) != 0]
27262 [target_big_endian];
27263 noop_size = 4;
27264 #ifdef OBJ_ELF
27265 state = MAP_ARM;
27266 #endif
27267 }
27268
27269 fragP->fr_var = noop_size;
27270
27271 if (bytes & (noop_size - 1))
27272 {
27273 fix = bytes & (noop_size - 1);
27274 #ifdef OBJ_ELF
27275 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
27276 #endif
27277 memset (p, 0, fix);
27278 p += fix;
27279 bytes -= fix;
27280 }
27281
27282 if (narrow_noop)
27283 {
27284 if (bytes & noop_size)
27285 {
27286 /* Insert a narrow noop. */
27287 memcpy (p, narrow_noop, noop_size);
27288 p += noop_size;
27289 bytes -= noop_size;
27290 fix += noop_size;
27291 }
27292
27293 /* Use wide noops for the remainder */
27294 noop_size = 4;
27295 }
27296
27297 while (bytes >= noop_size)
27298 {
27299 memcpy (p, noop, noop_size);
27300 p += noop_size;
27301 bytes -= noop_size;
27302 fix += noop_size;
27303 }
27304
27305 fragP->fr_fix += fix;
27306 }
27307
27308 /* Called from md_do_align. Used to create an alignment
27309 frag in a code section. */
27310
27311 void
27312 arm_frag_align_code (int n, int max)
27313 {
27314 char * p;
27315
27316 /* We assume that there will never be a requirement
27317 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
27318 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
27319 {
27320 char err_msg[128];
27321
27322 sprintf (err_msg,
27323 _("alignments greater than %d bytes not supported in .text sections."),
27324 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
27325 as_fatal ("%s", err_msg);
27326 }
27327
27328 p = frag_var (rs_align_code,
27329 MAX_MEM_FOR_RS_ALIGN_CODE,
27330 1,
27331 (relax_substateT) max,
27332 (symbolS *) NULL,
27333 (offsetT) n,
27334 (char *) NULL);
27335 *p = 0;
27336 }
27337
27338 /* Perform target specific initialisation of a frag.
27339 Note - despite the name this initialisation is not done when the frag
27340 is created, but only when its type is assigned. A frag can be created
27341 and used a long time before its type is set, so beware of assuming that
27342 this initialisation is performed first. */
27343
27344 #ifndef OBJ_ELF
27345 void
27346 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
27347 {
27348 /* Record whether this frag is in an ARM or a THUMB area. */
27349 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
27350 }
27351
27352 #else /* OBJ_ELF is defined. */
27353 void
27354 arm_init_frag (fragS * fragP, int max_chars)
27355 {
27356 bfd_boolean frag_thumb_mode;
27357
27358 /* If the current ARM vs THUMB mode has not already
27359 been recorded into this frag then do so now. */
27360 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
27361 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
27362
27363 /* PR 21809: Do not set a mapping state for debug sections
27364 - it just confuses other tools. */
27365 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
27366 return;
27367
27368 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
27369
27370 /* Record a mapping symbol for alignment frags. We will delete this
27371 later if the alignment ends up empty. */
27372 switch (fragP->fr_type)
27373 {
27374 case rs_align:
27375 case rs_align_test:
27376 case rs_fill:
27377 mapping_state_2 (MAP_DATA, max_chars);
27378 break;
27379 case rs_align_code:
27380 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
27381 break;
27382 default:
27383 break;
27384 }
27385 }
27386
27387 /* When we change sections we need to issue a new mapping symbol. */
27388
27389 void
27390 arm_elf_change_section (void)
27391 {
27392 /* Link an unlinked unwind index table section to the .text section. */
27393 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
27394 && elf_linked_to_section (now_seg) == NULL)
27395 elf_linked_to_section (now_seg) = text_section;
27396 }
27397
27398 int
27399 arm_elf_section_type (const char * str, size_t len)
27400 {
27401 if (len == 5 && strncmp (str, "exidx", 5) == 0)
27402 return SHT_ARM_EXIDX;
27403
27404 return -1;
27405 }
27406 \f
27407 /* Code to deal with unwinding tables. */
27408
27409 static void add_unwind_adjustsp (offsetT);
27410
27411 /* Generate any deferred unwind frame offset. */
27412
27413 static void
27414 flush_pending_unwind (void)
27415 {
27416 offsetT offset;
27417
27418 offset = unwind.pending_offset;
27419 unwind.pending_offset = 0;
27420 if (offset != 0)
27421 add_unwind_adjustsp (offset);
27422 }
27423
27424 /* Add an opcode to this list for this function. Two-byte opcodes should
27425 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
27426 order. */
27427
27428 static void
27429 add_unwind_opcode (valueT op, int length)
27430 {
27431 /* Add any deferred stack adjustment. */
27432 if (unwind.pending_offset)
27433 flush_pending_unwind ();
27434
27435 unwind.sp_restored = 0;
27436
27437 if (unwind.opcode_count + length > unwind.opcode_alloc)
27438 {
27439 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
27440 if (unwind.opcodes)
27441 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
27442 unwind.opcode_alloc);
27443 else
27444 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
27445 }
27446 while (length > 0)
27447 {
27448 length--;
27449 unwind.opcodes[unwind.opcode_count] = op & 0xff;
27450 op >>= 8;
27451 unwind.opcode_count++;
27452 }
27453 }
27454
27455 /* Add unwind opcodes to adjust the stack pointer. */
27456
27457 static void
27458 add_unwind_adjustsp (offsetT offset)
27459 {
27460 valueT op;
27461
27462 if (offset > 0x200)
27463 {
27464 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
27465 char bytes[5];
27466 int n;
27467 valueT o;
27468
27469 /* Long form: 0xb2, uleb128. */
27470 /* This might not fit in a word so add the individual bytes,
27471 remembering the list is built in reverse order. */
27472 o = (valueT) ((offset - 0x204) >> 2);
27473 if (o == 0)
27474 add_unwind_opcode (0, 1);
27475
27476 /* Calculate the uleb128 encoding of the offset. */
27477 n = 0;
27478 while (o)
27479 {
27480 bytes[n] = o & 0x7f;
27481 o >>= 7;
27482 if (o)
27483 bytes[n] |= 0x80;
27484 n++;
27485 }
27486 /* Add the insn. */
27487 for (; n; n--)
27488 add_unwind_opcode (bytes[n - 1], 1);
27489 add_unwind_opcode (0xb2, 1);
27490 }
27491 else if (offset > 0x100)
27492 {
27493 /* Two short opcodes. */
27494 add_unwind_opcode (0x3f, 1);
27495 op = (offset - 0x104) >> 2;
27496 add_unwind_opcode (op, 1);
27497 }
27498 else if (offset > 0)
27499 {
27500 /* Short opcode. */
27501 op = (offset - 4) >> 2;
27502 add_unwind_opcode (op, 1);
27503 }
27504 else if (offset < 0)
27505 {
27506 offset = -offset;
27507 while (offset > 0x100)
27508 {
27509 add_unwind_opcode (0x7f, 1);
27510 offset -= 0x100;
27511 }
27512 op = ((offset - 4) >> 2) | 0x40;
27513 add_unwind_opcode (op, 1);
27514 }
27515 }
27516
27517 /* Finish the list of unwind opcodes for this function. */
27518
27519 static void
27520 finish_unwind_opcodes (void)
27521 {
27522 valueT op;
27523
27524 if (unwind.fp_used)
27525 {
27526 /* Adjust sp as necessary. */
27527 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
27528 flush_pending_unwind ();
27529
27530 /* After restoring sp from the frame pointer. */
27531 op = 0x90 | unwind.fp_reg;
27532 add_unwind_opcode (op, 1);
27533 }
27534 else
27535 flush_pending_unwind ();
27536 }
27537
27538
27539 /* Start an exception table entry. If idx is nonzero this is an index table
27540 entry. */
27541
27542 static void
27543 start_unwind_section (const segT text_seg, int idx)
27544 {
27545 const char * text_name;
27546 const char * prefix;
27547 const char * prefix_once;
27548 struct elf_section_match match;
27549 char * sec_name;
27550 int type;
27551 int flags;
27552 int linkonce;
27553
27554 if (idx)
27555 {
27556 prefix = ELF_STRING_ARM_unwind;
27557 prefix_once = ELF_STRING_ARM_unwind_once;
27558 type = SHT_ARM_EXIDX;
27559 }
27560 else
27561 {
27562 prefix = ELF_STRING_ARM_unwind_info;
27563 prefix_once = ELF_STRING_ARM_unwind_info_once;
27564 type = SHT_PROGBITS;
27565 }
27566
27567 text_name = segment_name (text_seg);
27568 if (streq (text_name, ".text"))
27569 text_name = "";
27570
27571 if (strncmp (text_name, ".gnu.linkonce.t.",
27572 strlen (".gnu.linkonce.t.")) == 0)
27573 {
27574 prefix = prefix_once;
27575 text_name += strlen (".gnu.linkonce.t.");
27576 }
27577
27578 sec_name = concat (prefix, text_name, (char *) NULL);
27579
27580 flags = SHF_ALLOC;
27581 linkonce = 0;
27582 memset (&match, 0, sizeof (match));
27583
27584 /* Handle COMDAT group. */
27585 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
27586 {
27587 match.group_name = elf_group_name (text_seg);
27588 if (match.group_name == NULL)
27589 {
27590 as_bad (_("Group section `%s' has no group signature"),
27591 segment_name (text_seg));
27592 ignore_rest_of_line ();
27593 return;
27594 }
27595 flags |= SHF_GROUP;
27596 linkonce = 1;
27597 }
27598
27599 obj_elf_change_section (sec_name, type, flags, 0, &match,
27600 linkonce, 0);
27601
27602 /* Set the section link for index tables. */
27603 if (idx)
27604 elf_linked_to_section (now_seg) = text_seg;
27605 }
27606
27607
27608 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27609 personality routine data. Returns zero, or the index table value for
27610 an inline entry. */
27611
27612 static valueT
27613 create_unwind_entry (int have_data)
27614 {
27615 int size;
27616 addressT where;
27617 char *ptr;
27618 /* The current word of data. */
27619 valueT data;
27620 /* The number of bytes left in this word. */
27621 int n;
27622
27623 finish_unwind_opcodes ();
27624
27625 /* Remember the current text section. */
27626 unwind.saved_seg = now_seg;
27627 unwind.saved_subseg = now_subseg;
27628
27629 start_unwind_section (now_seg, 0);
27630
27631 if (unwind.personality_routine == NULL)
27632 {
27633 if (unwind.personality_index == -2)
27634 {
27635 if (have_data)
27636 as_bad (_("handlerdata in cantunwind frame"));
27637 return 1; /* EXIDX_CANTUNWIND. */
27638 }
27639
27640 /* Use a default personality routine if none is specified. */
27641 if (unwind.personality_index == -1)
27642 {
27643 if (unwind.opcode_count > 3)
27644 unwind.personality_index = 1;
27645 else
27646 unwind.personality_index = 0;
27647 }
27648
27649 /* Space for the personality routine entry. */
27650 if (unwind.personality_index == 0)
27651 {
27652 if (unwind.opcode_count > 3)
27653 as_bad (_("too many unwind opcodes for personality routine 0"));
27654
27655 if (!have_data)
27656 {
27657 /* All the data is inline in the index table. */
27658 data = 0x80;
27659 n = 3;
27660 while (unwind.opcode_count > 0)
27661 {
27662 unwind.opcode_count--;
27663 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27664 n--;
27665 }
27666
27667 /* Pad with "finish" opcodes. */
27668 while (n--)
27669 data = (data << 8) | 0xb0;
27670
27671 return data;
27672 }
27673 size = 0;
27674 }
27675 else
27676 /* We get two opcodes "free" in the first word. */
27677 size = unwind.opcode_count - 2;
27678 }
27679 else
27680 {
27681 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27682 if (unwind.personality_index != -1)
27683 {
27684 as_bad (_("attempt to recreate an unwind entry"));
27685 return 1;
27686 }
27687
27688 /* An extra byte is required for the opcode count. */
27689 size = unwind.opcode_count + 1;
27690 }
27691
27692 size = (size + 3) >> 2;
27693 if (size > 0xff)
27694 as_bad (_("too many unwind opcodes"));
27695
27696 frag_align (2, 0, 0);
27697 record_alignment (now_seg, 2);
27698 unwind.table_entry = expr_build_dot ();
27699
27700 /* Allocate the table entry. */
27701 ptr = frag_more ((size << 2) + 4);
27702 /* PR 13449: Zero the table entries in case some of them are not used. */
27703 memset (ptr, 0, (size << 2) + 4);
27704 where = frag_now_fix () - ((size << 2) + 4);
27705
27706 switch (unwind.personality_index)
27707 {
27708 case -1:
27709 /* ??? Should this be a PLT generating relocation? */
27710 /* Custom personality routine. */
27711 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
27712 BFD_RELOC_ARM_PREL31);
27713
27714 where += 4;
27715 ptr += 4;
27716
27717 /* Set the first byte to the number of additional words. */
27718 data = size > 0 ? size - 1 : 0;
27719 n = 3;
27720 break;
27721
27722 /* ABI defined personality routines. */
27723 case 0:
27724 /* Three opcodes bytes are packed into the first word. */
27725 data = 0x80;
27726 n = 3;
27727 break;
27728
27729 case 1:
27730 case 2:
27731 /* The size and first two opcode bytes go in the first word. */
27732 data = ((0x80 + unwind.personality_index) << 8) | size;
27733 n = 2;
27734 break;
27735
27736 default:
27737 /* Should never happen. */
27738 abort ();
27739 }
27740
27741 /* Pack the opcodes into words (MSB first), reversing the list at the same
27742 time. */
27743 while (unwind.opcode_count > 0)
27744 {
27745 if (n == 0)
27746 {
27747 md_number_to_chars (ptr, data, 4);
27748 ptr += 4;
27749 n = 4;
27750 data = 0;
27751 }
27752 unwind.opcode_count--;
27753 n--;
27754 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27755 }
27756
27757 /* Finish off the last word. */
27758 if (n < 4)
27759 {
27760 /* Pad with "finish" opcodes. */
27761 while (n--)
27762 data = (data << 8) | 0xb0;
27763
27764 md_number_to_chars (ptr, data, 4);
27765 }
27766
27767 if (!have_data)
27768 {
27769 /* Add an empty descriptor if there is no user-specified data. */
27770 ptr = frag_more (4);
27771 md_number_to_chars (ptr, 0, 4);
27772 }
27773
27774 return 0;
27775 }
27776
27777
27778 /* Initialize the DWARF-2 unwind information for this procedure. */
27779
27780 void
27781 tc_arm_frame_initial_instructions (void)
27782 {
27783 cfi_add_CFA_def_cfa (REG_SP, 0);
27784 }
27785 #endif /* OBJ_ELF */
27786
27787 /* Convert REGNAME to a DWARF-2 register number. */
27788
27789 int
27790 tc_arm_regname_to_dw2regnum (char *regname)
27791 {
27792 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
27793 if (reg != FAIL)
27794 return reg;
27795
27796 /* PR 16694: Allow VFP registers as well. */
27797 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
27798 if (reg != FAIL)
27799 return 64 + reg;
27800
27801 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
27802 if (reg != FAIL)
27803 return reg + 256;
27804
27805 return FAIL;
27806 }
27807
27808 #ifdef TE_PE
27809 void
27810 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
27811 {
27812 expressionS exp;
27813
27814 exp.X_op = O_secrel;
27815 exp.X_add_symbol = symbol;
27816 exp.X_add_number = 0;
27817 emit_expr (&exp, size);
27818 }
27819 #endif
27820
27821 /* MD interface: Symbol and relocation handling. */
27822
27823 /* Return the address within the segment that a PC-relative fixup is
27824 relative to. For ARM, PC-relative fixups applied to instructions
27825 are generally relative to the location of the fixup plus 8 bytes.
27826 Thumb branches are offset by 4, and Thumb loads relative to PC
27827 require special handling. */
27828
27829 long
27830 md_pcrel_from_section (fixS * fixP, segT seg)
27831 {
27832 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
27833
27834 /* If this is pc-relative and we are going to emit a relocation
27835 then we just want to put out any pipeline compensation that the linker
27836 will need. Otherwise we want to use the calculated base.
27837 For WinCE we skip the bias for externals as well, since this
27838 is how the MS ARM-CE assembler behaves and we want to be compatible. */
27839 if (fixP->fx_pcrel
27840 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
27841 || (arm_force_relocation (fixP)
27842 #ifdef TE_WINCE
27843 && !S_IS_EXTERNAL (fixP->fx_addsy)
27844 #endif
27845 )))
27846 base = 0;
27847
27848
27849 switch (fixP->fx_r_type)
27850 {
27851 /* PC relative addressing on the Thumb is slightly odd as the
27852 bottom two bits of the PC are forced to zero for the
27853 calculation. This happens *after* application of the
27854 pipeline offset. However, Thumb adrl already adjusts for
27855 this, so we need not do it again. */
27856 case BFD_RELOC_ARM_THUMB_ADD:
27857 return base & ~3;
27858
27859 case BFD_RELOC_ARM_THUMB_OFFSET:
27860 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27861 case BFD_RELOC_ARM_T32_ADD_PC12:
27862 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27863 return (base + 4) & ~3;
27864
27865 /* Thumb branches are simply offset by +4. */
27866 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27867 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27868 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27869 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27870 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27871 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27872 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27873 case BFD_RELOC_ARM_THUMB_BF17:
27874 case BFD_RELOC_ARM_THUMB_BF19:
27875 case BFD_RELOC_ARM_THUMB_BF13:
27876 case BFD_RELOC_ARM_THUMB_LOOP12:
27877 return base + 4;
27878
27879 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27880 if (fixP->fx_addsy
27881 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27882 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27883 && ARM_IS_FUNC (fixP->fx_addsy)
27884 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27885 base = fixP->fx_where + fixP->fx_frag->fr_address;
27886 return base + 4;
27887
27888 /* BLX is like branches above, but forces the low two bits of PC to
27889 zero. */
27890 case BFD_RELOC_THUMB_PCREL_BLX:
27891 if (fixP->fx_addsy
27892 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27893 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27894 && THUMB_IS_FUNC (fixP->fx_addsy)
27895 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27896 base = fixP->fx_where + fixP->fx_frag->fr_address;
27897 return (base + 4) & ~3;
27898
27899 /* ARM mode branches are offset by +8. However, the Windows CE
27900 loader expects the relocation not to take this into account. */
27901 case BFD_RELOC_ARM_PCREL_BLX:
27902 if (fixP->fx_addsy
27903 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27904 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27905 && ARM_IS_FUNC (fixP->fx_addsy)
27906 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27907 base = fixP->fx_where + fixP->fx_frag->fr_address;
27908 return base + 8;
27909
27910 case BFD_RELOC_ARM_PCREL_CALL:
27911 if (fixP->fx_addsy
27912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27914 && THUMB_IS_FUNC (fixP->fx_addsy)
27915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27916 base = fixP->fx_where + fixP->fx_frag->fr_address;
27917 return base + 8;
27918
27919 case BFD_RELOC_ARM_PCREL_BRANCH:
27920 case BFD_RELOC_ARM_PCREL_JUMP:
27921 case BFD_RELOC_ARM_PLT32:
27922 #ifdef TE_WINCE
27923 /* When handling fixups immediately, because we have already
27924 discovered the value of a symbol, or the address of the frag involved
27925 we must account for the offset by +8, as the OS loader will never see the reloc.
27926 see fixup_segment() in write.c
27927 The S_IS_EXTERNAL test handles the case of global symbols.
27928 Those need the calculated base, not just the pipe compensation the linker will need. */
27929 if (fixP->fx_pcrel
27930 && fixP->fx_addsy != NULL
27931 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27932 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27933 return base + 8;
27934 return base;
27935 #else
27936 return base + 8;
27937 #endif
27938
27939
27940 /* ARM mode loads relative to PC are also offset by +8. Unlike
27941 branches, the Windows CE loader *does* expect the relocation
27942 to take this into account. */
27943 case BFD_RELOC_ARM_OFFSET_IMM:
27944 case BFD_RELOC_ARM_OFFSET_IMM8:
27945 case BFD_RELOC_ARM_HWLITERAL:
27946 case BFD_RELOC_ARM_LITERAL:
27947 case BFD_RELOC_ARM_CP_OFF_IMM:
27948 return base + 8;
27949
27950
27951 /* Other PC-relative relocations are un-offset. */
27952 default:
27953 return base;
27954 }
27955 }
27956
27957 static bfd_boolean flag_warn_syms = TRUE;
27958
27959 bfd_boolean
27960 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27961 {
27962 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27963 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27964 does mean that the resulting code might be very confusing to the reader.
27965 Also this warning can be triggered if the user omits an operand before
27966 an immediate address, eg:
27967
27968 LDR =foo
27969
27970 GAS treats this as an assignment of the value of the symbol foo to a
27971 symbol LDR, and so (without this code) it will not issue any kind of
27972 warning or error message.
27973
27974 Note - ARM instructions are case-insensitive but the strings in the hash
27975 table are all stored in lower case, so we must first ensure that name is
27976 lower case too. */
27977 if (flag_warn_syms && arm_ops_hsh)
27978 {
27979 char * nbuf = strdup (name);
27980 char * p;
27981
27982 for (p = nbuf; *p; p++)
27983 *p = TOLOWER (*p);
27984 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27985 {
27986 static struct hash_control * already_warned = NULL;
27987
27988 if (already_warned == NULL)
27989 already_warned = hash_new ();
27990 /* Only warn about the symbol once. To keep the code
27991 simple we let hash_insert do the lookup for us. */
27992 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27993 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
27994 }
27995 else
27996 free (nbuf);
27997 }
27998
27999 return FALSE;
28000 }
28001
28002 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
28003 Otherwise we have no need to default values of symbols. */
28004
28005 symbolS *
28006 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
28007 {
28008 #ifdef OBJ_ELF
28009 if (name[0] == '_' && name[1] == 'G'
28010 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
28011 {
28012 if (!GOT_symbol)
28013 {
28014 if (symbol_find (name))
28015 as_bad (_("GOT already in the symbol table"));
28016
28017 GOT_symbol = symbol_new (name, undefined_section,
28018 (valueT) 0, & zero_address_frag);
28019 }
28020
28021 return GOT_symbol;
28022 }
28023 #endif
28024
28025 return NULL;
28026 }
28027
28028 /* Subroutine of md_apply_fix. Check to see if an immediate can be
28029 computed as two separate immediate values, added together. We
28030 already know that this value cannot be computed by just one ARM
28031 instruction. */
28032
28033 static unsigned int
28034 validate_immediate_twopart (unsigned int val,
28035 unsigned int * highpart)
28036 {
28037 unsigned int a;
28038 unsigned int i;
28039
28040 for (i = 0; i < 32; i += 2)
28041 if (((a = rotate_left (val, i)) & 0xff) != 0)
28042 {
28043 if (a & 0xff00)
28044 {
28045 if (a & ~ 0xffff)
28046 continue;
28047 * highpart = (a >> 8) | ((i + 24) << 7);
28048 }
28049 else if (a & 0xff0000)
28050 {
28051 if (a & 0xff000000)
28052 continue;
28053 * highpart = (a >> 16) | ((i + 16) << 7);
28054 }
28055 else
28056 {
28057 gas_assert (a & 0xff000000);
28058 * highpart = (a >> 24) | ((i + 8) << 7);
28059 }
28060
28061 return (a & 0xff) | (i << 7);
28062 }
28063
28064 return FAIL;
28065 }
28066
28067 static int
28068 validate_offset_imm (unsigned int val, int hwse)
28069 {
28070 if ((hwse && val > 255) || val > 4095)
28071 return FAIL;
28072 return val;
28073 }
28074
28075 /* Subroutine of md_apply_fix. Do those data_ops which can take a
28076 negative immediate constant by altering the instruction. A bit of
28077 a hack really.
28078 MOV <-> MVN
28079 AND <-> BIC
28080 ADC <-> SBC
28081 by inverting the second operand, and
28082 ADD <-> SUB
28083 CMP <-> CMN
28084 by negating the second operand. */
28085
28086 static int
28087 negate_data_op (unsigned long * instruction,
28088 unsigned long value)
28089 {
28090 int op, new_inst;
28091 unsigned long negated, inverted;
28092
28093 negated = encode_arm_immediate (-value);
28094 inverted = encode_arm_immediate (~value);
28095
28096 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
28097 switch (op)
28098 {
28099 /* First negates. */
28100 case OPCODE_SUB: /* ADD <-> SUB */
28101 new_inst = OPCODE_ADD;
28102 value = negated;
28103 break;
28104
28105 case OPCODE_ADD:
28106 new_inst = OPCODE_SUB;
28107 value = negated;
28108 break;
28109
28110 case OPCODE_CMP: /* CMP <-> CMN */
28111 new_inst = OPCODE_CMN;
28112 value = negated;
28113 break;
28114
28115 case OPCODE_CMN:
28116 new_inst = OPCODE_CMP;
28117 value = negated;
28118 break;
28119
28120 /* Now Inverted ops. */
28121 case OPCODE_MOV: /* MOV <-> MVN */
28122 new_inst = OPCODE_MVN;
28123 value = inverted;
28124 break;
28125
28126 case OPCODE_MVN:
28127 new_inst = OPCODE_MOV;
28128 value = inverted;
28129 break;
28130
28131 case OPCODE_AND: /* AND <-> BIC */
28132 new_inst = OPCODE_BIC;
28133 value = inverted;
28134 break;
28135
28136 case OPCODE_BIC:
28137 new_inst = OPCODE_AND;
28138 value = inverted;
28139 break;
28140
28141 case OPCODE_ADC: /* ADC <-> SBC */
28142 new_inst = OPCODE_SBC;
28143 value = inverted;
28144 break;
28145
28146 case OPCODE_SBC:
28147 new_inst = OPCODE_ADC;
28148 value = inverted;
28149 break;
28150
28151 /* We cannot do anything. */
28152 default:
28153 return FAIL;
28154 }
28155
28156 if (value == (unsigned) FAIL)
28157 return FAIL;
28158
28159 *instruction &= OPCODE_MASK;
28160 *instruction |= new_inst << DATA_OP_SHIFT;
28161 return value;
28162 }
28163
28164 /* Like negate_data_op, but for Thumb-2. */
28165
28166 static unsigned int
28167 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
28168 {
28169 int op, new_inst;
28170 int rd;
28171 unsigned int negated, inverted;
28172
28173 negated = encode_thumb32_immediate (-value);
28174 inverted = encode_thumb32_immediate (~value);
28175
28176 rd = (*instruction >> 8) & 0xf;
28177 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
28178 switch (op)
28179 {
28180 /* ADD <-> SUB. Includes CMP <-> CMN. */
28181 case T2_OPCODE_SUB:
28182 new_inst = T2_OPCODE_ADD;
28183 value = negated;
28184 break;
28185
28186 case T2_OPCODE_ADD:
28187 new_inst = T2_OPCODE_SUB;
28188 value = negated;
28189 break;
28190
28191 /* ORR <-> ORN. Includes MOV <-> MVN. */
28192 case T2_OPCODE_ORR:
28193 new_inst = T2_OPCODE_ORN;
28194 value = inverted;
28195 break;
28196
28197 case T2_OPCODE_ORN:
28198 new_inst = T2_OPCODE_ORR;
28199 value = inverted;
28200 break;
28201
28202 /* AND <-> BIC. TST has no inverted equivalent. */
28203 case T2_OPCODE_AND:
28204 new_inst = T2_OPCODE_BIC;
28205 if (rd == 15)
28206 value = FAIL;
28207 else
28208 value = inverted;
28209 break;
28210
28211 case T2_OPCODE_BIC:
28212 new_inst = T2_OPCODE_AND;
28213 value = inverted;
28214 break;
28215
28216 /* ADC <-> SBC */
28217 case T2_OPCODE_ADC:
28218 new_inst = T2_OPCODE_SBC;
28219 value = inverted;
28220 break;
28221
28222 case T2_OPCODE_SBC:
28223 new_inst = T2_OPCODE_ADC;
28224 value = inverted;
28225 break;
28226
28227 /* We cannot do anything. */
28228 default:
28229 return FAIL;
28230 }
28231
28232 if (value == (unsigned int)FAIL)
28233 return FAIL;
28234
28235 *instruction &= T2_OPCODE_MASK;
28236 *instruction |= new_inst << T2_DATA_OP_SHIFT;
28237 return value;
28238 }
28239
28240 /* Read a 32-bit thumb instruction from buf. */
28241
28242 static unsigned long
28243 get_thumb32_insn (char * buf)
28244 {
28245 unsigned long insn;
28246 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
28247 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28248
28249 return insn;
28250 }
28251
28252 /* We usually want to set the low bit on the address of thumb function
28253 symbols. In particular .word foo - . should have the low bit set.
28254 Generic code tries to fold the difference of two symbols to
28255 a constant. Prevent this and force a relocation when the first symbols
28256 is a thumb function. */
28257
28258 bfd_boolean
28259 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
28260 {
28261 if (op == O_subtract
28262 && l->X_op == O_symbol
28263 && r->X_op == O_symbol
28264 && THUMB_IS_FUNC (l->X_add_symbol))
28265 {
28266 l->X_op = O_subtract;
28267 l->X_op_symbol = r->X_add_symbol;
28268 l->X_add_number -= r->X_add_number;
28269 return TRUE;
28270 }
28271
28272 /* Process as normal. */
28273 return FALSE;
28274 }
28275
28276 /* Encode Thumb2 unconditional branches and calls. The encoding
28277 for the 2 are identical for the immediate values. */
28278
28279 static void
28280 encode_thumb2_b_bl_offset (char * buf, offsetT value)
28281 {
28282 #define T2I1I2MASK ((1 << 13) | (1 << 11))
28283 offsetT newval;
28284 offsetT newval2;
28285 addressT S, I1, I2, lo, hi;
28286
28287 S = (value >> 24) & 0x01;
28288 I1 = (value >> 23) & 0x01;
28289 I2 = (value >> 22) & 0x01;
28290 hi = (value >> 12) & 0x3ff;
28291 lo = (value >> 1) & 0x7ff;
28292 newval = md_chars_to_number (buf, THUMB_SIZE);
28293 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28294 newval |= (S << 10) | hi;
28295 newval2 &= ~T2I1I2MASK;
28296 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
28297 md_number_to_chars (buf, newval, THUMB_SIZE);
28298 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28299 }
28300
28301 void
28302 md_apply_fix (fixS * fixP,
28303 valueT * valP,
28304 segT seg)
28305 {
28306 offsetT value = * valP;
28307 offsetT newval;
28308 unsigned int newimm;
28309 unsigned long temp;
28310 int sign;
28311 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
28312
28313 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
28314
28315 /* Note whether this will delete the relocation. */
28316
28317 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
28318 fixP->fx_done = 1;
28319
28320 /* On a 64-bit host, silently truncate 'value' to 32 bits for
28321 consistency with the behaviour on 32-bit hosts. Remember value
28322 for emit_reloc. */
28323 value &= 0xffffffff;
28324 value ^= 0x80000000;
28325 value -= 0x80000000;
28326
28327 *valP = value;
28328 fixP->fx_addnumber = value;
28329
28330 /* Same treatment for fixP->fx_offset. */
28331 fixP->fx_offset &= 0xffffffff;
28332 fixP->fx_offset ^= 0x80000000;
28333 fixP->fx_offset -= 0x80000000;
28334
28335 switch (fixP->fx_r_type)
28336 {
28337 case BFD_RELOC_NONE:
28338 /* This will need to go in the object file. */
28339 fixP->fx_done = 0;
28340 break;
28341
28342 case BFD_RELOC_ARM_IMMEDIATE:
28343 /* We claim that this fixup has been processed here,
28344 even if in fact we generate an error because we do
28345 not have a reloc for it, so tc_gen_reloc will reject it. */
28346 fixP->fx_done = 1;
28347
28348 if (fixP->fx_addsy)
28349 {
28350 const char *msg = 0;
28351
28352 if (! S_IS_DEFINED (fixP->fx_addsy))
28353 msg = _("undefined symbol %s used as an immediate value");
28354 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
28355 msg = _("symbol %s is in a different section");
28356 else if (S_IS_WEAK (fixP->fx_addsy))
28357 msg = _("symbol %s is weak and may be overridden later");
28358
28359 if (msg)
28360 {
28361 as_bad_where (fixP->fx_file, fixP->fx_line,
28362 msg, S_GET_NAME (fixP->fx_addsy));
28363 break;
28364 }
28365 }
28366
28367 temp = md_chars_to_number (buf, INSN_SIZE);
28368
28369 /* If the offset is negative, we should use encoding A2 for ADR. */
28370 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
28371 newimm = negate_data_op (&temp, value);
28372 else
28373 {
28374 newimm = encode_arm_immediate (value);
28375
28376 /* If the instruction will fail, see if we can fix things up by
28377 changing the opcode. */
28378 if (newimm == (unsigned int) FAIL)
28379 newimm = negate_data_op (&temp, value);
28380 /* MOV accepts both ARM modified immediate (A1 encoding) and
28381 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
28382 When disassembling, MOV is preferred when there is no encoding
28383 overlap. */
28384 if (newimm == (unsigned int) FAIL
28385 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
28386 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
28387 && !((temp >> SBIT_SHIFT) & 0x1)
28388 && value >= 0 && value <= 0xffff)
28389 {
28390 /* Clear bits[23:20] to change encoding from A1 to A2. */
28391 temp &= 0xff0fffff;
28392 /* Encoding high 4bits imm. Code below will encode the remaining
28393 low 12bits. */
28394 temp |= (value & 0x0000f000) << 4;
28395 newimm = value & 0x00000fff;
28396 }
28397 }
28398
28399 if (newimm == (unsigned int) FAIL)
28400 {
28401 as_bad_where (fixP->fx_file, fixP->fx_line,
28402 _("invalid constant (%lx) after fixup"),
28403 (unsigned long) value);
28404 break;
28405 }
28406
28407 newimm |= (temp & 0xfffff000);
28408 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
28409 break;
28410
28411 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28412 {
28413 unsigned int highpart = 0;
28414 unsigned int newinsn = 0xe1a00000; /* nop. */
28415
28416 if (fixP->fx_addsy)
28417 {
28418 const char *msg = 0;
28419
28420 if (! S_IS_DEFINED (fixP->fx_addsy))
28421 msg = _("undefined symbol %s used as an immediate value");
28422 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
28423 msg = _("symbol %s is in a different section");
28424 else if (S_IS_WEAK (fixP->fx_addsy))
28425 msg = _("symbol %s is weak and may be overridden later");
28426
28427 if (msg)
28428 {
28429 as_bad_where (fixP->fx_file, fixP->fx_line,
28430 msg, S_GET_NAME (fixP->fx_addsy));
28431 break;
28432 }
28433 }
28434
28435 newimm = encode_arm_immediate (value);
28436 temp = md_chars_to_number (buf, INSN_SIZE);
28437
28438 /* If the instruction will fail, see if we can fix things up by
28439 changing the opcode. */
28440 if (newimm == (unsigned int) FAIL
28441 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
28442 {
28443 /* No ? OK - try using two ADD instructions to generate
28444 the value. */
28445 newimm = validate_immediate_twopart (value, & highpart);
28446
28447 /* Yes - then make sure that the second instruction is
28448 also an add. */
28449 if (newimm != (unsigned int) FAIL)
28450 newinsn = temp;
28451 /* Still No ? Try using a negated value. */
28452 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
28453 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
28454 /* Otherwise - give up. */
28455 else
28456 {
28457 as_bad_where (fixP->fx_file, fixP->fx_line,
28458 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
28459 (long) value);
28460 break;
28461 }
28462
28463 /* Replace the first operand in the 2nd instruction (which
28464 is the PC) with the destination register. We have
28465 already added in the PC in the first instruction and we
28466 do not want to do it again. */
28467 newinsn &= ~ 0xf0000;
28468 newinsn |= ((newinsn & 0x0f000) << 4);
28469 }
28470
28471 newimm |= (temp & 0xfffff000);
28472 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
28473
28474 highpart |= (newinsn & 0xfffff000);
28475 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
28476 }
28477 break;
28478
28479 case BFD_RELOC_ARM_OFFSET_IMM:
28480 if (!fixP->fx_done && seg->use_rela_p)
28481 value = 0;
28482 /* Fall through. */
28483
28484 case BFD_RELOC_ARM_LITERAL:
28485 sign = value > 0;
28486
28487 if (value < 0)
28488 value = - value;
28489
28490 if (validate_offset_imm (value, 0) == FAIL)
28491 {
28492 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
28493 as_bad_where (fixP->fx_file, fixP->fx_line,
28494 _("invalid literal constant: pool needs to be closer"));
28495 else
28496 as_bad_where (fixP->fx_file, fixP->fx_line,
28497 _("bad immediate value for offset (%ld)"),
28498 (long) value);
28499 break;
28500 }
28501
28502 newval = md_chars_to_number (buf, INSN_SIZE);
28503 if (value == 0)
28504 newval &= 0xfffff000;
28505 else
28506 {
28507 newval &= 0xff7ff000;
28508 newval |= value | (sign ? INDEX_UP : 0);
28509 }
28510 md_number_to_chars (buf, newval, INSN_SIZE);
28511 break;
28512
28513 case BFD_RELOC_ARM_OFFSET_IMM8:
28514 case BFD_RELOC_ARM_HWLITERAL:
28515 sign = value > 0;
28516
28517 if (value < 0)
28518 value = - value;
28519
28520 if (validate_offset_imm (value, 1) == FAIL)
28521 {
28522 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
28523 as_bad_where (fixP->fx_file, fixP->fx_line,
28524 _("invalid literal constant: pool needs to be closer"));
28525 else
28526 as_bad_where (fixP->fx_file, fixP->fx_line,
28527 _("bad immediate value for 8-bit offset (%ld)"),
28528 (long) value);
28529 break;
28530 }
28531
28532 newval = md_chars_to_number (buf, INSN_SIZE);
28533 if (value == 0)
28534 newval &= 0xfffff0f0;
28535 else
28536 {
28537 newval &= 0xff7ff0f0;
28538 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
28539 }
28540 md_number_to_chars (buf, newval, INSN_SIZE);
28541 break;
28542
28543 case BFD_RELOC_ARM_T32_OFFSET_U8:
28544 if (value < 0 || value > 1020 || value % 4 != 0)
28545 as_bad_where (fixP->fx_file, fixP->fx_line,
28546 _("bad immediate value for offset (%ld)"), (long) value);
28547 value /= 4;
28548
28549 newval = md_chars_to_number (buf+2, THUMB_SIZE);
28550 newval |= value;
28551 md_number_to_chars (buf+2, newval, THUMB_SIZE);
28552 break;
28553
28554 case BFD_RELOC_ARM_T32_OFFSET_IMM:
28555 /* This is a complicated relocation used for all varieties of Thumb32
28556 load/store instruction with immediate offset:
28557
28558 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
28559 *4, optional writeback(W)
28560 (doubleword load/store)
28561
28562 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28563 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28564 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28565 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28566 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28567
28568 Uppercase letters indicate bits that are already encoded at
28569 this point. Lowercase letters are our problem. For the
28570 second block of instructions, the secondary opcode nybble
28571 (bits 8..11) is present, and bit 23 is zero, even if this is
28572 a PC-relative operation. */
28573 newval = md_chars_to_number (buf, THUMB_SIZE);
28574 newval <<= 16;
28575 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
28576
28577 if ((newval & 0xf0000000) == 0xe0000000)
28578 {
28579 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28580 if (value >= 0)
28581 newval |= (1 << 23);
28582 else
28583 value = -value;
28584 if (value % 4 != 0)
28585 {
28586 as_bad_where (fixP->fx_file, fixP->fx_line,
28587 _("offset not a multiple of 4"));
28588 break;
28589 }
28590 value /= 4;
28591 if (value > 0xff)
28592 {
28593 as_bad_where (fixP->fx_file, fixP->fx_line,
28594 _("offset out of range"));
28595 break;
28596 }
28597 newval &= ~0xff;
28598 }
28599 else if ((newval & 0x000f0000) == 0x000f0000)
28600 {
28601 /* PC-relative, 12-bit offset. */
28602 if (value >= 0)
28603 newval |= (1 << 23);
28604 else
28605 value = -value;
28606 if (value > 0xfff)
28607 {
28608 as_bad_where (fixP->fx_file, fixP->fx_line,
28609 _("offset out of range"));
28610 break;
28611 }
28612 newval &= ~0xfff;
28613 }
28614 else if ((newval & 0x00000100) == 0x00000100)
28615 {
28616 /* Writeback: 8-bit, +/- offset. */
28617 if (value >= 0)
28618 newval |= (1 << 9);
28619 else
28620 value = -value;
28621 if (value > 0xff)
28622 {
28623 as_bad_where (fixP->fx_file, fixP->fx_line,
28624 _("offset out of range"));
28625 break;
28626 }
28627 newval &= ~0xff;
28628 }
28629 else if ((newval & 0x00000f00) == 0x00000e00)
28630 {
28631 /* T-instruction: positive 8-bit offset. */
28632 if (value < 0 || value > 0xff)
28633 {
28634 as_bad_where (fixP->fx_file, fixP->fx_line,
28635 _("offset out of range"));
28636 break;
28637 }
28638 newval &= ~0xff;
28639 newval |= value;
28640 }
28641 else
28642 {
28643 /* Positive 12-bit or negative 8-bit offset. */
28644 int limit;
28645 if (value >= 0)
28646 {
28647 newval |= (1 << 23);
28648 limit = 0xfff;
28649 }
28650 else
28651 {
28652 value = -value;
28653 limit = 0xff;
28654 }
28655 if (value > limit)
28656 {
28657 as_bad_where (fixP->fx_file, fixP->fx_line,
28658 _("offset out of range"));
28659 break;
28660 }
28661 newval &= ~limit;
28662 }
28663
28664 newval |= value;
28665 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
28666 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
28667 break;
28668
28669 case BFD_RELOC_ARM_SHIFT_IMM:
28670 newval = md_chars_to_number (buf, INSN_SIZE);
28671 if (((unsigned long) value) > 32
28672 || (value == 32
28673 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
28674 {
28675 as_bad_where (fixP->fx_file, fixP->fx_line,
28676 _("shift expression is too large"));
28677 break;
28678 }
28679
28680 if (value == 0)
28681 /* Shifts of zero must be done as lsl. */
28682 newval &= ~0x60;
28683 else if (value == 32)
28684 value = 0;
28685 newval &= 0xfffff07f;
28686 newval |= (value & 0x1f) << 7;
28687 md_number_to_chars (buf, newval, INSN_SIZE);
28688 break;
28689
28690 case BFD_RELOC_ARM_T32_IMMEDIATE:
28691 case BFD_RELOC_ARM_T32_ADD_IMM:
28692 case BFD_RELOC_ARM_T32_IMM12:
28693 case BFD_RELOC_ARM_T32_ADD_PC12:
28694 /* We claim that this fixup has been processed here,
28695 even if in fact we generate an error because we do
28696 not have a reloc for it, so tc_gen_reloc will reject it. */
28697 fixP->fx_done = 1;
28698
28699 if (fixP->fx_addsy
28700 && ! S_IS_DEFINED (fixP->fx_addsy))
28701 {
28702 as_bad_where (fixP->fx_file, fixP->fx_line,
28703 _("undefined symbol %s used as an immediate value"),
28704 S_GET_NAME (fixP->fx_addsy));
28705 break;
28706 }
28707
28708 newval = md_chars_to_number (buf, THUMB_SIZE);
28709 newval <<= 16;
28710 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
28711
28712 newimm = FAIL;
28713 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28714 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28715 Thumb2 modified immediate encoding (T2). */
28716 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
28717 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28718 {
28719 newimm = encode_thumb32_immediate (value);
28720 if (newimm == (unsigned int) FAIL)
28721 newimm = thumb32_negate_data_op (&newval, value);
28722 }
28723 if (newimm == (unsigned int) FAIL)
28724 {
28725 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
28726 {
28727 /* Turn add/sum into addw/subw. */
28728 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28729 newval = (newval & 0xfeffffff) | 0x02000000;
28730 /* No flat 12-bit imm encoding for addsw/subsw. */
28731 if ((newval & 0x00100000) == 0)
28732 {
28733 /* 12 bit immediate for addw/subw. */
28734 if (value < 0)
28735 {
28736 value = -value;
28737 newval ^= 0x00a00000;
28738 }
28739 if (value > 0xfff)
28740 newimm = (unsigned int) FAIL;
28741 else
28742 newimm = value;
28743 }
28744 }
28745 else
28746 {
28747 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28748 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28749 disassembling, MOV is preferred when there is no encoding
28750 overlap. */
28751 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
28752 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28753 but with the Rn field [19:16] set to 1111. */
28754 && (((newval >> 16) & 0xf) == 0xf)
28755 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
28756 && !((newval >> T2_SBIT_SHIFT) & 0x1)
28757 && value >= 0 && value <= 0xffff)
28758 {
28759 /* Toggle bit[25] to change encoding from T2 to T3. */
28760 newval ^= 1 << 25;
28761 /* Clear bits[19:16]. */
28762 newval &= 0xfff0ffff;
28763 /* Encoding high 4bits imm. Code below will encode the
28764 remaining low 12bits. */
28765 newval |= (value & 0x0000f000) << 4;
28766 newimm = value & 0x00000fff;
28767 }
28768 }
28769 }
28770
28771 if (newimm == (unsigned int)FAIL)
28772 {
28773 as_bad_where (fixP->fx_file, fixP->fx_line,
28774 _("invalid constant (%lx) after fixup"),
28775 (unsigned long) value);
28776 break;
28777 }
28778
28779 newval |= (newimm & 0x800) << 15;
28780 newval |= (newimm & 0x700) << 4;
28781 newval |= (newimm & 0x0ff);
28782
28783 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
28784 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
28785 break;
28786
28787 case BFD_RELOC_ARM_SMC:
28788 if (((unsigned long) value) > 0xf)
28789 as_bad_where (fixP->fx_file, fixP->fx_line,
28790 _("invalid smc expression"));
28791
28792 newval = md_chars_to_number (buf, INSN_SIZE);
28793 newval |= (value & 0xf);
28794 md_number_to_chars (buf, newval, INSN_SIZE);
28795 break;
28796
28797 case BFD_RELOC_ARM_HVC:
28798 if (((unsigned long) value) > 0xffff)
28799 as_bad_where (fixP->fx_file, fixP->fx_line,
28800 _("invalid hvc expression"));
28801 newval = md_chars_to_number (buf, INSN_SIZE);
28802 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
28803 md_number_to_chars (buf, newval, INSN_SIZE);
28804 break;
28805
28806 case BFD_RELOC_ARM_SWI:
28807 if (fixP->tc_fix_data != 0)
28808 {
28809 if (((unsigned long) value) > 0xff)
28810 as_bad_where (fixP->fx_file, fixP->fx_line,
28811 _("invalid swi expression"));
28812 newval = md_chars_to_number (buf, THUMB_SIZE);
28813 newval |= value;
28814 md_number_to_chars (buf, newval, THUMB_SIZE);
28815 }
28816 else
28817 {
28818 if (((unsigned long) value) > 0x00ffffff)
28819 as_bad_where (fixP->fx_file, fixP->fx_line,
28820 _("invalid swi expression"));
28821 newval = md_chars_to_number (buf, INSN_SIZE);
28822 newval |= value;
28823 md_number_to_chars (buf, newval, INSN_SIZE);
28824 }
28825 break;
28826
28827 case BFD_RELOC_ARM_MULTI:
28828 if (((unsigned long) value) > 0xffff)
28829 as_bad_where (fixP->fx_file, fixP->fx_line,
28830 _("invalid expression in load/store multiple"));
28831 newval = value | md_chars_to_number (buf, INSN_SIZE);
28832 md_number_to_chars (buf, newval, INSN_SIZE);
28833 break;
28834
28835 #ifdef OBJ_ELF
28836 case BFD_RELOC_ARM_PCREL_CALL:
28837
28838 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28839 && fixP->fx_addsy
28840 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28841 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28842 && THUMB_IS_FUNC (fixP->fx_addsy))
28843 /* Flip the bl to blx. This is a simple flip
28844 bit here because we generate PCREL_CALL for
28845 unconditional bls. */
28846 {
28847 newval = md_chars_to_number (buf, INSN_SIZE);
28848 newval = newval | 0x10000000;
28849 md_number_to_chars (buf, newval, INSN_SIZE);
28850 temp = 1;
28851 fixP->fx_done = 1;
28852 }
28853 else
28854 temp = 3;
28855 goto arm_branch_common;
28856
28857 case BFD_RELOC_ARM_PCREL_JUMP:
28858 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28859 && fixP->fx_addsy
28860 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28861 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28862 && THUMB_IS_FUNC (fixP->fx_addsy))
28863 {
28864 /* This would map to a bl<cond>, b<cond>,
28865 b<always> to a Thumb function. We
28866 need to force a relocation for this particular
28867 case. */
28868 newval = md_chars_to_number (buf, INSN_SIZE);
28869 fixP->fx_done = 0;
28870 }
28871 /* Fall through. */
28872
28873 case BFD_RELOC_ARM_PLT32:
28874 #endif
28875 case BFD_RELOC_ARM_PCREL_BRANCH:
28876 temp = 3;
28877 goto arm_branch_common;
28878
28879 case BFD_RELOC_ARM_PCREL_BLX:
28880
28881 temp = 1;
28882 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28883 && fixP->fx_addsy
28884 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28885 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28886 && ARM_IS_FUNC (fixP->fx_addsy))
28887 {
28888 /* Flip the blx to a bl and warn. */
28889 const char *name = S_GET_NAME (fixP->fx_addsy);
28890 newval = 0xeb000000;
28891 as_warn_where (fixP->fx_file, fixP->fx_line,
28892 _("blx to '%s' an ARM ISA state function changed to bl"),
28893 name);
28894 md_number_to_chars (buf, newval, INSN_SIZE);
28895 temp = 3;
28896 fixP->fx_done = 1;
28897 }
28898
28899 #ifdef OBJ_ELF
28900 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28901 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
28902 #endif
28903
28904 arm_branch_common:
28905 /* We are going to store value (shifted right by two) in the
28906 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28907 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
28908 also be clear. */
28909 if (value & temp)
28910 as_bad_where (fixP->fx_file, fixP->fx_line,
28911 _("misaligned branch destination"));
28912 if ((value & (offsetT)0xfe000000) != (offsetT)0
28913 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
28914 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28915
28916 if (fixP->fx_done || !seg->use_rela_p)
28917 {
28918 newval = md_chars_to_number (buf, INSN_SIZE);
28919 newval |= (value >> 2) & 0x00ffffff;
28920 /* Set the H bit on BLX instructions. */
28921 if (temp == 1)
28922 {
28923 if (value & 2)
28924 newval |= 0x01000000;
28925 else
28926 newval &= ~0x01000000;
28927 }
28928 md_number_to_chars (buf, newval, INSN_SIZE);
28929 }
28930 break;
28931
28932 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28933 /* CBZ can only branch forward. */
28934
28935 /* Attempts to use CBZ to branch to the next instruction
28936 (which, strictly speaking, are prohibited) will be turned into
28937 no-ops.
28938
28939 FIXME: It may be better to remove the instruction completely and
28940 perform relaxation. */
28941 if (value == -2)
28942 {
28943 newval = md_chars_to_number (buf, THUMB_SIZE);
28944 newval = 0xbf00; /* NOP encoding T1 */
28945 md_number_to_chars (buf, newval, THUMB_SIZE);
28946 }
28947 else
28948 {
28949 if (value & ~0x7e)
28950 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28951
28952 if (fixP->fx_done || !seg->use_rela_p)
28953 {
28954 newval = md_chars_to_number (buf, THUMB_SIZE);
28955 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28956 md_number_to_chars (buf, newval, THUMB_SIZE);
28957 }
28958 }
28959 break;
28960
28961 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28962 if (out_of_range_p (value, 8))
28963 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28964
28965 if (fixP->fx_done || !seg->use_rela_p)
28966 {
28967 newval = md_chars_to_number (buf, THUMB_SIZE);
28968 newval |= (value & 0x1ff) >> 1;
28969 md_number_to_chars (buf, newval, THUMB_SIZE);
28970 }
28971 break;
28972
28973 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28974 if (out_of_range_p (value, 11))
28975 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28976
28977 if (fixP->fx_done || !seg->use_rela_p)
28978 {
28979 newval = md_chars_to_number (buf, THUMB_SIZE);
28980 newval |= (value & 0xfff) >> 1;
28981 md_number_to_chars (buf, newval, THUMB_SIZE);
28982 }
28983 break;
28984
28985 /* This relocation is misnamed, it should be BRANCH21. */
28986 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28987 if (fixP->fx_addsy
28988 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28989 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28990 && ARM_IS_FUNC (fixP->fx_addsy)
28991 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28992 {
28993 /* Force a relocation for a branch 20 bits wide. */
28994 fixP->fx_done = 0;
28995 }
28996 if (out_of_range_p (value, 20))
28997 as_bad_where (fixP->fx_file, fixP->fx_line,
28998 _("conditional branch out of range"));
28999
29000 if (fixP->fx_done || !seg->use_rela_p)
29001 {
29002 offsetT newval2;
29003 addressT S, J1, J2, lo, hi;
29004
29005 S = (value & 0x00100000) >> 20;
29006 J2 = (value & 0x00080000) >> 19;
29007 J1 = (value & 0x00040000) >> 18;
29008 hi = (value & 0x0003f000) >> 12;
29009 lo = (value & 0x00000ffe) >> 1;
29010
29011 newval = md_chars_to_number (buf, THUMB_SIZE);
29012 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29013 newval |= (S << 10) | hi;
29014 newval2 |= (J1 << 13) | (J2 << 11) | lo;
29015 md_number_to_chars (buf, newval, THUMB_SIZE);
29016 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29017 }
29018 break;
29019
29020 case BFD_RELOC_THUMB_PCREL_BLX:
29021 /* If there is a blx from a thumb state function to
29022 another thumb function flip this to a bl and warn
29023 about it. */
29024
29025 if (fixP->fx_addsy
29026 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29027 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29028 && THUMB_IS_FUNC (fixP->fx_addsy))
29029 {
29030 const char *name = S_GET_NAME (fixP->fx_addsy);
29031 as_warn_where (fixP->fx_file, fixP->fx_line,
29032 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
29033 name);
29034 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29035 newval = newval | 0x1000;
29036 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
29037 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
29038 fixP->fx_done = 1;
29039 }
29040
29041
29042 goto thumb_bl_common;
29043
29044 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29045 /* A bl from Thumb state ISA to an internal ARM state function
29046 is converted to a blx. */
29047 if (fixP->fx_addsy
29048 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29049 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29050 && ARM_IS_FUNC (fixP->fx_addsy)
29051 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
29052 {
29053 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29054 newval = newval & ~0x1000;
29055 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
29056 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
29057 fixP->fx_done = 1;
29058 }
29059
29060 thumb_bl_common:
29061
29062 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
29063 /* For a BLX instruction, make sure that the relocation is rounded up
29064 to a word boundary. This follows the semantics of the instruction
29065 which specifies that bit 1 of the target address will come from bit
29066 1 of the base address. */
29067 value = (value + 3) & ~ 3;
29068
29069 #ifdef OBJ_ELF
29070 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
29071 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
29072 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
29073 #endif
29074
29075 if (out_of_range_p (value, 22))
29076 {
29077 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
29078 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
29079 else if (out_of_range_p (value, 24))
29080 as_bad_where (fixP->fx_file, fixP->fx_line,
29081 _("Thumb2 branch out of range"));
29082 }
29083
29084 if (fixP->fx_done || !seg->use_rela_p)
29085 encode_thumb2_b_bl_offset (buf, value);
29086
29087 break;
29088
29089 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29090 if (out_of_range_p (value, 24))
29091 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
29092
29093 if (fixP->fx_done || !seg->use_rela_p)
29094 encode_thumb2_b_bl_offset (buf, value);
29095
29096 break;
29097
29098 case BFD_RELOC_8:
29099 if (fixP->fx_done || !seg->use_rela_p)
29100 *buf = value;
29101 break;
29102
29103 case BFD_RELOC_16:
29104 if (fixP->fx_done || !seg->use_rela_p)
29105 md_number_to_chars (buf, value, 2);
29106 break;
29107
29108 #ifdef OBJ_ELF
29109 case BFD_RELOC_ARM_TLS_CALL:
29110 case BFD_RELOC_ARM_THM_TLS_CALL:
29111 case BFD_RELOC_ARM_TLS_DESCSEQ:
29112 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29113 case BFD_RELOC_ARM_TLS_GOTDESC:
29114 case BFD_RELOC_ARM_TLS_GD32:
29115 case BFD_RELOC_ARM_TLS_LE32:
29116 case BFD_RELOC_ARM_TLS_IE32:
29117 case BFD_RELOC_ARM_TLS_LDM32:
29118 case BFD_RELOC_ARM_TLS_LDO32:
29119 S_SET_THREAD_LOCAL (fixP->fx_addsy);
29120 break;
29121
29122 /* Same handling as above, but with the arm_fdpic guard. */
29123 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29124 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29125 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29126 if (arm_fdpic)
29127 {
29128 S_SET_THREAD_LOCAL (fixP->fx_addsy);
29129 }
29130 else
29131 {
29132 as_bad_where (fixP->fx_file, fixP->fx_line,
29133 _("Relocation supported only in FDPIC mode"));
29134 }
29135 break;
29136
29137 case BFD_RELOC_ARM_GOT32:
29138 case BFD_RELOC_ARM_GOTOFF:
29139 break;
29140
29141 case BFD_RELOC_ARM_GOT_PREL:
29142 if (fixP->fx_done || !seg->use_rela_p)
29143 md_number_to_chars (buf, value, 4);
29144 break;
29145
29146 case BFD_RELOC_ARM_TARGET2:
29147 /* TARGET2 is not partial-inplace, so we need to write the
29148 addend here for REL targets, because it won't be written out
29149 during reloc processing later. */
29150 if (fixP->fx_done || !seg->use_rela_p)
29151 md_number_to_chars (buf, fixP->fx_offset, 4);
29152 break;
29153
29154 /* Relocations for FDPIC. */
29155 case BFD_RELOC_ARM_GOTFUNCDESC:
29156 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29157 case BFD_RELOC_ARM_FUNCDESC:
29158 if (arm_fdpic)
29159 {
29160 if (fixP->fx_done || !seg->use_rela_p)
29161 md_number_to_chars (buf, 0, 4);
29162 }
29163 else
29164 {
29165 as_bad_where (fixP->fx_file, fixP->fx_line,
29166 _("Relocation supported only in FDPIC mode"));
29167 }
29168 break;
29169 #endif
29170
29171 case BFD_RELOC_RVA:
29172 case BFD_RELOC_32:
29173 case BFD_RELOC_ARM_TARGET1:
29174 case BFD_RELOC_ARM_ROSEGREL32:
29175 case BFD_RELOC_ARM_SBREL32:
29176 case BFD_RELOC_32_PCREL:
29177 #ifdef TE_PE
29178 case BFD_RELOC_32_SECREL:
29179 #endif
29180 if (fixP->fx_done || !seg->use_rela_p)
29181 #ifdef TE_WINCE
29182 /* For WinCE we only do this for pcrel fixups. */
29183 if (fixP->fx_done || fixP->fx_pcrel)
29184 #endif
29185 md_number_to_chars (buf, value, 4);
29186 break;
29187
29188 #ifdef OBJ_ELF
29189 case BFD_RELOC_ARM_PREL31:
29190 if (fixP->fx_done || !seg->use_rela_p)
29191 {
29192 newval = md_chars_to_number (buf, 4) & 0x80000000;
29193 if ((value ^ (value >> 1)) & 0x40000000)
29194 {
29195 as_bad_where (fixP->fx_file, fixP->fx_line,
29196 _("rel31 relocation overflow"));
29197 }
29198 newval |= value & 0x7fffffff;
29199 md_number_to_chars (buf, newval, 4);
29200 }
29201 break;
29202 #endif
29203
29204 case BFD_RELOC_ARM_CP_OFF_IMM:
29205 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
29206 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
29207 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
29208 newval = md_chars_to_number (buf, INSN_SIZE);
29209 else
29210 newval = get_thumb32_insn (buf);
29211 if ((newval & 0x0f200f00) == 0x0d000900)
29212 {
29213 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
29214 has permitted values that are multiples of 2, in the range 0
29215 to 510. */
29216 if (value < -510 || value > 510 || (value & 1))
29217 as_bad_where (fixP->fx_file, fixP->fx_line,
29218 _("co-processor offset out of range"));
29219 }
29220 else if ((newval & 0xfe001f80) == 0xec000f80)
29221 {
29222 if (value < -511 || value > 512 || (value & 3))
29223 as_bad_where (fixP->fx_file, fixP->fx_line,
29224 _("co-processor offset out of range"));
29225 }
29226 else if (value < -1023 || value > 1023 || (value & 3))
29227 as_bad_where (fixP->fx_file, fixP->fx_line,
29228 _("co-processor offset out of range"));
29229 cp_off_common:
29230 sign = value > 0;
29231 if (value < 0)
29232 value = -value;
29233 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29234 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
29235 newval = md_chars_to_number (buf, INSN_SIZE);
29236 else
29237 newval = get_thumb32_insn (buf);
29238 if (value == 0)
29239 {
29240 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
29241 newval &= 0xffffff80;
29242 else
29243 newval &= 0xffffff00;
29244 }
29245 else
29246 {
29247 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
29248 newval &= 0xff7fff80;
29249 else
29250 newval &= 0xff7fff00;
29251 if ((newval & 0x0f200f00) == 0x0d000900)
29252 {
29253 /* This is a fp16 vstr/vldr.
29254
29255 It requires the immediate offset in the instruction is shifted
29256 left by 1 to be a half-word offset.
29257
29258 Here, left shift by 1 first, and later right shift by 2
29259 should get the right offset. */
29260 value <<= 1;
29261 }
29262 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
29263 }
29264 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29265 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
29266 md_number_to_chars (buf, newval, INSN_SIZE);
29267 else
29268 put_thumb32_insn (buf, newval);
29269 break;
29270
29271 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
29272 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
29273 if (value < -255 || value > 255)
29274 as_bad_where (fixP->fx_file, fixP->fx_line,
29275 _("co-processor offset out of range"));
29276 value *= 4;
29277 goto cp_off_common;
29278
29279 case BFD_RELOC_ARM_THUMB_OFFSET:
29280 newval = md_chars_to_number (buf, THUMB_SIZE);
29281 /* Exactly what ranges, and where the offset is inserted depends
29282 on the type of instruction, we can establish this from the
29283 top 4 bits. */
29284 switch (newval >> 12)
29285 {
29286 case 4: /* PC load. */
29287 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
29288 forced to zero for these loads; md_pcrel_from has already
29289 compensated for this. */
29290 if (value & 3)
29291 as_bad_where (fixP->fx_file, fixP->fx_line,
29292 _("invalid offset, target not word aligned (0x%08lX)"),
29293 (((unsigned long) fixP->fx_frag->fr_address
29294 + (unsigned long) fixP->fx_where) & ~3)
29295 + (unsigned long) value);
29296 else if (get_recorded_alignment (seg) < 2)
29297 as_warn_where (fixP->fx_file, fixP->fx_line,
29298 _("section does not have enough alignment to ensure safe PC-relative loads"));
29299
29300 if (value & ~0x3fc)
29301 as_bad_where (fixP->fx_file, fixP->fx_line,
29302 _("invalid offset, value too big (0x%08lX)"),
29303 (long) value);
29304
29305 newval |= value >> 2;
29306 break;
29307
29308 case 9: /* SP load/store. */
29309 if (value & ~0x3fc)
29310 as_bad_where (fixP->fx_file, fixP->fx_line,
29311 _("invalid offset, value too big (0x%08lX)"),
29312 (long) value);
29313 newval |= value >> 2;
29314 break;
29315
29316 case 6: /* Word load/store. */
29317 if (value & ~0x7c)
29318 as_bad_where (fixP->fx_file, fixP->fx_line,
29319 _("invalid offset, value too big (0x%08lX)"),
29320 (long) value);
29321 newval |= value << 4; /* 6 - 2. */
29322 break;
29323
29324 case 7: /* Byte load/store. */
29325 if (value & ~0x1f)
29326 as_bad_where (fixP->fx_file, fixP->fx_line,
29327 _("invalid offset, value too big (0x%08lX)"),
29328 (long) value);
29329 newval |= value << 6;
29330 break;
29331
29332 case 8: /* Halfword load/store. */
29333 if (value & ~0x3e)
29334 as_bad_where (fixP->fx_file, fixP->fx_line,
29335 _("invalid offset, value too big (0x%08lX)"),
29336 (long) value);
29337 newval |= value << 5; /* 6 - 1. */
29338 break;
29339
29340 default:
29341 as_bad_where (fixP->fx_file, fixP->fx_line,
29342 "Unable to process relocation for thumb opcode: %lx",
29343 (unsigned long) newval);
29344 break;
29345 }
29346 md_number_to_chars (buf, newval, THUMB_SIZE);
29347 break;
29348
29349 case BFD_RELOC_ARM_THUMB_ADD:
29350 /* This is a complicated relocation, since we use it for all of
29351 the following immediate relocations:
29352
29353 3bit ADD/SUB
29354 8bit ADD/SUB
29355 9bit ADD/SUB SP word-aligned
29356 10bit ADD PC/SP word-aligned
29357
29358 The type of instruction being processed is encoded in the
29359 instruction field:
29360
29361 0x8000 SUB
29362 0x00F0 Rd
29363 0x000F Rs
29364 */
29365 newval = md_chars_to_number (buf, THUMB_SIZE);
29366 {
29367 int rd = (newval >> 4) & 0xf;
29368 int rs = newval & 0xf;
29369 int subtract = !!(newval & 0x8000);
29370
29371 /* Check for HI regs, only very restricted cases allowed:
29372 Adjusting SP, and using PC or SP to get an address. */
29373 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
29374 || (rs > 7 && rs != REG_SP && rs != REG_PC))
29375 as_bad_where (fixP->fx_file, fixP->fx_line,
29376 _("invalid Hi register with immediate"));
29377
29378 /* If value is negative, choose the opposite instruction. */
29379 if (value < 0)
29380 {
29381 value = -value;
29382 subtract = !subtract;
29383 if (value < 0)
29384 as_bad_where (fixP->fx_file, fixP->fx_line,
29385 _("immediate value out of range"));
29386 }
29387
29388 if (rd == REG_SP)
29389 {
29390 if (value & ~0x1fc)
29391 as_bad_where (fixP->fx_file, fixP->fx_line,
29392 _("invalid immediate for stack address calculation"));
29393 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
29394 newval |= value >> 2;
29395 }
29396 else if (rs == REG_PC || rs == REG_SP)
29397 {
29398 /* PR gas/18541. If the addition is for a defined symbol
29399 within range of an ADR instruction then accept it. */
29400 if (subtract
29401 && value == 4
29402 && fixP->fx_addsy != NULL)
29403 {
29404 subtract = 0;
29405
29406 if (! S_IS_DEFINED (fixP->fx_addsy)
29407 || S_GET_SEGMENT (fixP->fx_addsy) != seg
29408 || S_IS_WEAK (fixP->fx_addsy))
29409 {
29410 as_bad_where (fixP->fx_file, fixP->fx_line,
29411 _("address calculation needs a strongly defined nearby symbol"));
29412 }
29413 else
29414 {
29415 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
29416
29417 /* Round up to the next 4-byte boundary. */
29418 if (v & 3)
29419 v = (v + 3) & ~ 3;
29420 else
29421 v += 4;
29422 v = S_GET_VALUE (fixP->fx_addsy) - v;
29423
29424 if (v & ~0x3fc)
29425 {
29426 as_bad_where (fixP->fx_file, fixP->fx_line,
29427 _("symbol too far away"));
29428 }
29429 else
29430 {
29431 fixP->fx_done = 1;
29432 value = v;
29433 }
29434 }
29435 }
29436
29437 if (subtract || value & ~0x3fc)
29438 as_bad_where (fixP->fx_file, fixP->fx_line,
29439 _("invalid immediate for address calculation (value = 0x%08lX)"),
29440 (unsigned long) (subtract ? - value : value));
29441 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
29442 newval |= rd << 8;
29443 newval |= value >> 2;
29444 }
29445 else if (rs == rd)
29446 {
29447 if (value & ~0xff)
29448 as_bad_where (fixP->fx_file, fixP->fx_line,
29449 _("immediate value out of range"));
29450 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
29451 newval |= (rd << 8) | value;
29452 }
29453 else
29454 {
29455 if (value & ~0x7)
29456 as_bad_where (fixP->fx_file, fixP->fx_line,
29457 _("immediate value out of range"));
29458 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
29459 newval |= rd | (rs << 3) | (value << 6);
29460 }
29461 }
29462 md_number_to_chars (buf, newval, THUMB_SIZE);
29463 break;
29464
29465 case BFD_RELOC_ARM_THUMB_IMM:
29466 newval = md_chars_to_number (buf, THUMB_SIZE);
29467 if (value < 0 || value > 255)
29468 as_bad_where (fixP->fx_file, fixP->fx_line,
29469 _("invalid immediate: %ld is out of range"),
29470 (long) value);
29471 newval |= value;
29472 md_number_to_chars (buf, newval, THUMB_SIZE);
29473 break;
29474
29475 case BFD_RELOC_ARM_THUMB_SHIFT:
29476 /* 5bit shift value (0..32). LSL cannot take 32. */
29477 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
29478 temp = newval & 0xf800;
29479 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
29480 as_bad_where (fixP->fx_file, fixP->fx_line,
29481 _("invalid shift value: %ld"), (long) value);
29482 /* Shifts of zero must be encoded as LSL. */
29483 if (value == 0)
29484 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
29485 /* Shifts of 32 are encoded as zero. */
29486 else if (value == 32)
29487 value = 0;
29488 newval |= value << 6;
29489 md_number_to_chars (buf, newval, THUMB_SIZE);
29490 break;
29491
29492 case BFD_RELOC_VTABLE_INHERIT:
29493 case BFD_RELOC_VTABLE_ENTRY:
29494 fixP->fx_done = 0;
29495 return;
29496
29497 case BFD_RELOC_ARM_MOVW:
29498 case BFD_RELOC_ARM_MOVT:
29499 case BFD_RELOC_ARM_THUMB_MOVW:
29500 case BFD_RELOC_ARM_THUMB_MOVT:
29501 if (fixP->fx_done || !seg->use_rela_p)
29502 {
29503 /* REL format relocations are limited to a 16-bit addend. */
29504 if (!fixP->fx_done)
29505 {
29506 if (value < -0x8000 || value > 0x7fff)
29507 as_bad_where (fixP->fx_file, fixP->fx_line,
29508 _("offset out of range"));
29509 }
29510 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29511 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
29512 {
29513 value >>= 16;
29514 }
29515
29516 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29517 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
29518 {
29519 newval = get_thumb32_insn (buf);
29520 newval &= 0xfbf08f00;
29521 newval |= (value & 0xf000) << 4;
29522 newval |= (value & 0x0800) << 15;
29523 newval |= (value & 0x0700) << 4;
29524 newval |= (value & 0x00ff);
29525 put_thumb32_insn (buf, newval);
29526 }
29527 else
29528 {
29529 newval = md_chars_to_number (buf, 4);
29530 newval &= 0xfff0f000;
29531 newval |= value & 0x0fff;
29532 newval |= (value & 0xf000) << 4;
29533 md_number_to_chars (buf, newval, 4);
29534 }
29535 }
29536 return;
29537
29538 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29539 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29540 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29541 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29542 gas_assert (!fixP->fx_done);
29543 {
29544 bfd_vma insn;
29545 bfd_boolean is_mov;
29546 bfd_vma encoded_addend = value;
29547
29548 /* Check that addend can be encoded in instruction. */
29549 if (!seg->use_rela_p && (value < 0 || value > 255))
29550 as_bad_where (fixP->fx_file, fixP->fx_line,
29551 _("the offset 0x%08lX is not representable"),
29552 (unsigned long) encoded_addend);
29553
29554 /* Extract the instruction. */
29555 insn = md_chars_to_number (buf, THUMB_SIZE);
29556 is_mov = (insn & 0xf800) == 0x2000;
29557
29558 /* Encode insn. */
29559 if (is_mov)
29560 {
29561 if (!seg->use_rela_p)
29562 insn |= encoded_addend;
29563 }
29564 else
29565 {
29566 int rd, rs;
29567
29568 /* Extract the instruction. */
29569 /* Encoding is the following
29570 0x8000 SUB
29571 0x00F0 Rd
29572 0x000F Rs
29573 */
29574 /* The following conditions must be true :
29575 - ADD
29576 - Rd == Rs
29577 - Rd <= 7
29578 */
29579 rd = (insn >> 4) & 0xf;
29580 rs = insn & 0xf;
29581 if ((insn & 0x8000) || (rd != rs) || rd > 7)
29582 as_bad_where (fixP->fx_file, fixP->fx_line,
29583 _("Unable to process relocation for thumb opcode: %lx"),
29584 (unsigned long) insn);
29585
29586 /* Encode as ADD immediate8 thumb 1 code. */
29587 insn = 0x3000 | (rd << 8);
29588
29589 /* Place the encoded addend into the first 8 bits of the
29590 instruction. */
29591 if (!seg->use_rela_p)
29592 insn |= encoded_addend;
29593 }
29594
29595 /* Update the instruction. */
29596 md_number_to_chars (buf, insn, THUMB_SIZE);
29597 }
29598 break;
29599
29600 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29601 case BFD_RELOC_ARM_ALU_PC_G0:
29602 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29603 case BFD_RELOC_ARM_ALU_PC_G1:
29604 case BFD_RELOC_ARM_ALU_PC_G2:
29605 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29606 case BFD_RELOC_ARM_ALU_SB_G0:
29607 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29608 case BFD_RELOC_ARM_ALU_SB_G1:
29609 case BFD_RELOC_ARM_ALU_SB_G2:
29610 gas_assert (!fixP->fx_done);
29611 if (!seg->use_rela_p)
29612 {
29613 bfd_vma insn;
29614 bfd_vma encoded_addend;
29615 bfd_vma addend_abs = llabs (value);
29616
29617 /* Check that the absolute value of the addend can be
29618 expressed as an 8-bit constant plus a rotation. */
29619 encoded_addend = encode_arm_immediate (addend_abs);
29620 if (encoded_addend == (unsigned int) FAIL)
29621 as_bad_where (fixP->fx_file, fixP->fx_line,
29622 _("the offset 0x%08lX is not representable"),
29623 (unsigned long) addend_abs);
29624
29625 /* Extract the instruction. */
29626 insn = md_chars_to_number (buf, INSN_SIZE);
29627
29628 /* If the addend is positive, use an ADD instruction.
29629 Otherwise use a SUB. Take care not to destroy the S bit. */
29630 insn &= 0xff1fffff;
29631 if (value < 0)
29632 insn |= 1 << 22;
29633 else
29634 insn |= 1 << 23;
29635
29636 /* Place the encoded addend into the first 12 bits of the
29637 instruction. */
29638 insn &= 0xfffff000;
29639 insn |= encoded_addend;
29640
29641 /* Update the instruction. */
29642 md_number_to_chars (buf, insn, INSN_SIZE);
29643 }
29644 break;
29645
29646 case BFD_RELOC_ARM_LDR_PC_G0:
29647 case BFD_RELOC_ARM_LDR_PC_G1:
29648 case BFD_RELOC_ARM_LDR_PC_G2:
29649 case BFD_RELOC_ARM_LDR_SB_G0:
29650 case BFD_RELOC_ARM_LDR_SB_G1:
29651 case BFD_RELOC_ARM_LDR_SB_G2:
29652 gas_assert (!fixP->fx_done);
29653 if (!seg->use_rela_p)
29654 {
29655 bfd_vma insn;
29656 bfd_vma addend_abs = llabs (value);
29657
29658 /* Check that the absolute value of the addend can be
29659 encoded in 12 bits. */
29660 if (addend_abs >= 0x1000)
29661 as_bad_where (fixP->fx_file, fixP->fx_line,
29662 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29663 (unsigned long) addend_abs);
29664
29665 /* Extract the instruction. */
29666 insn = md_chars_to_number (buf, INSN_SIZE);
29667
29668 /* If the addend is negative, clear bit 23 of the instruction.
29669 Otherwise set it. */
29670 if (value < 0)
29671 insn &= ~(1 << 23);
29672 else
29673 insn |= 1 << 23;
29674
29675 /* Place the absolute value of the addend into the first 12 bits
29676 of the instruction. */
29677 insn &= 0xfffff000;
29678 insn |= addend_abs;
29679
29680 /* Update the instruction. */
29681 md_number_to_chars (buf, insn, INSN_SIZE);
29682 }
29683 break;
29684
29685 case BFD_RELOC_ARM_LDRS_PC_G0:
29686 case BFD_RELOC_ARM_LDRS_PC_G1:
29687 case BFD_RELOC_ARM_LDRS_PC_G2:
29688 case BFD_RELOC_ARM_LDRS_SB_G0:
29689 case BFD_RELOC_ARM_LDRS_SB_G1:
29690 case BFD_RELOC_ARM_LDRS_SB_G2:
29691 gas_assert (!fixP->fx_done);
29692 if (!seg->use_rela_p)
29693 {
29694 bfd_vma insn;
29695 bfd_vma addend_abs = llabs (value);
29696
29697 /* Check that the absolute value of the addend can be
29698 encoded in 8 bits. */
29699 if (addend_abs >= 0x100)
29700 as_bad_where (fixP->fx_file, fixP->fx_line,
29701 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29702 (unsigned long) addend_abs);
29703
29704 /* Extract the instruction. */
29705 insn = md_chars_to_number (buf, INSN_SIZE);
29706
29707 /* If the addend is negative, clear bit 23 of the instruction.
29708 Otherwise set it. */
29709 if (value < 0)
29710 insn &= ~(1 << 23);
29711 else
29712 insn |= 1 << 23;
29713
29714 /* Place the first four bits of the absolute value of the addend
29715 into the first 4 bits of the instruction, and the remaining
29716 four into bits 8 .. 11. */
29717 insn &= 0xfffff0f0;
29718 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
29719
29720 /* Update the instruction. */
29721 md_number_to_chars (buf, insn, INSN_SIZE);
29722 }
29723 break;
29724
29725 case BFD_RELOC_ARM_LDC_PC_G0:
29726 case BFD_RELOC_ARM_LDC_PC_G1:
29727 case BFD_RELOC_ARM_LDC_PC_G2:
29728 case BFD_RELOC_ARM_LDC_SB_G0:
29729 case BFD_RELOC_ARM_LDC_SB_G1:
29730 case BFD_RELOC_ARM_LDC_SB_G2:
29731 gas_assert (!fixP->fx_done);
29732 if (!seg->use_rela_p)
29733 {
29734 bfd_vma insn;
29735 bfd_vma addend_abs = llabs (value);
29736
29737 /* Check that the absolute value of the addend is a multiple of
29738 four and, when divided by four, fits in 8 bits. */
29739 if (addend_abs & 0x3)
29740 as_bad_where (fixP->fx_file, fixP->fx_line,
29741 _("bad offset 0x%08lX (must be word-aligned)"),
29742 (unsigned long) addend_abs);
29743
29744 if ((addend_abs >> 2) > 0xff)
29745 as_bad_where (fixP->fx_file, fixP->fx_line,
29746 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29747 (unsigned long) addend_abs);
29748
29749 /* Extract the instruction. */
29750 insn = md_chars_to_number (buf, INSN_SIZE);
29751
29752 /* If the addend is negative, clear bit 23 of the instruction.
29753 Otherwise set it. */
29754 if (value < 0)
29755 insn &= ~(1 << 23);
29756 else
29757 insn |= 1 << 23;
29758
29759 /* Place the addend (divided by four) into the first eight
29760 bits of the instruction. */
29761 insn &= 0xfffffff0;
29762 insn |= addend_abs >> 2;
29763
29764 /* Update the instruction. */
29765 md_number_to_chars (buf, insn, INSN_SIZE);
29766 }
29767 break;
29768
29769 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29770 if (fixP->fx_addsy
29771 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29772 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29773 && ARM_IS_FUNC (fixP->fx_addsy)
29774 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29775 {
29776 /* Force a relocation for a branch 5 bits wide. */
29777 fixP->fx_done = 0;
29778 }
29779 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
29780 as_bad_where (fixP->fx_file, fixP->fx_line,
29781 BAD_BRANCH_OFF);
29782
29783 if (fixP->fx_done || !seg->use_rela_p)
29784 {
29785 addressT boff = value >> 1;
29786
29787 newval = md_chars_to_number (buf, THUMB_SIZE);
29788 newval |= (boff << 7);
29789 md_number_to_chars (buf, newval, THUMB_SIZE);
29790 }
29791 break;
29792
29793 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29794 if (fixP->fx_addsy
29795 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29796 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29797 && ARM_IS_FUNC (fixP->fx_addsy)
29798 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29799 {
29800 fixP->fx_done = 0;
29801 }
29802 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
29803 as_bad_where (fixP->fx_file, fixP->fx_line,
29804 _("branch out of range"));
29805
29806 if (fixP->fx_done || !seg->use_rela_p)
29807 {
29808 newval = md_chars_to_number (buf, THUMB_SIZE);
29809
29810 addressT boff = ((newval & 0x0780) >> 7) << 1;
29811 addressT diff = value - boff;
29812
29813 if (diff == 4)
29814 {
29815 newval |= 1 << 1; /* T bit. */
29816 }
29817 else if (diff != 2)
29818 {
29819 as_bad_where (fixP->fx_file, fixP->fx_line,
29820 _("out of range label-relative fixup value"));
29821 }
29822 md_number_to_chars (buf, newval, THUMB_SIZE);
29823 }
29824 break;
29825
29826 case BFD_RELOC_ARM_THUMB_BF17:
29827 if (fixP->fx_addsy
29828 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29829 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29830 && ARM_IS_FUNC (fixP->fx_addsy)
29831 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29832 {
29833 /* Force a relocation for a branch 17 bits wide. */
29834 fixP->fx_done = 0;
29835 }
29836
29837 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
29838 as_bad_where (fixP->fx_file, fixP->fx_line,
29839 BAD_BRANCH_OFF);
29840
29841 if (fixP->fx_done || !seg->use_rela_p)
29842 {
29843 offsetT newval2;
29844 addressT immA, immB, immC;
29845
29846 immA = (value & 0x0001f000) >> 12;
29847 immB = (value & 0x00000ffc) >> 2;
29848 immC = (value & 0x00000002) >> 1;
29849
29850 newval = md_chars_to_number (buf, THUMB_SIZE);
29851 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29852 newval |= immA;
29853 newval2 |= (immC << 11) | (immB << 1);
29854 md_number_to_chars (buf, newval, THUMB_SIZE);
29855 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29856 }
29857 break;
29858
29859 case BFD_RELOC_ARM_THUMB_BF19:
29860 if (fixP->fx_addsy
29861 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29862 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29863 && ARM_IS_FUNC (fixP->fx_addsy)
29864 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29865 {
29866 /* Force a relocation for a branch 19 bits wide. */
29867 fixP->fx_done = 0;
29868 }
29869
29870 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
29871 as_bad_where (fixP->fx_file, fixP->fx_line,
29872 BAD_BRANCH_OFF);
29873
29874 if (fixP->fx_done || !seg->use_rela_p)
29875 {
29876 offsetT newval2;
29877 addressT immA, immB, immC;
29878
29879 immA = (value & 0x0007f000) >> 12;
29880 immB = (value & 0x00000ffc) >> 2;
29881 immC = (value & 0x00000002) >> 1;
29882
29883 newval = md_chars_to_number (buf, THUMB_SIZE);
29884 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29885 newval |= immA;
29886 newval2 |= (immC << 11) | (immB << 1);
29887 md_number_to_chars (buf, newval, THUMB_SIZE);
29888 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29889 }
29890 break;
29891
29892 case BFD_RELOC_ARM_THUMB_BF13:
29893 if (fixP->fx_addsy
29894 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29895 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29896 && ARM_IS_FUNC (fixP->fx_addsy)
29897 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29898 {
29899 /* Force a relocation for a branch 13 bits wide. */
29900 fixP->fx_done = 0;
29901 }
29902
29903 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
29904 as_bad_where (fixP->fx_file, fixP->fx_line,
29905 BAD_BRANCH_OFF);
29906
29907 if (fixP->fx_done || !seg->use_rela_p)
29908 {
29909 offsetT newval2;
29910 addressT immA, immB, immC;
29911
29912 immA = (value & 0x00001000) >> 12;
29913 immB = (value & 0x00000ffc) >> 2;
29914 immC = (value & 0x00000002) >> 1;
29915
29916 newval = md_chars_to_number (buf, THUMB_SIZE);
29917 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29918 newval |= immA;
29919 newval2 |= (immC << 11) | (immB << 1);
29920 md_number_to_chars (buf, newval, THUMB_SIZE);
29921 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29922 }
29923 break;
29924
29925 case BFD_RELOC_ARM_THUMB_LOOP12:
29926 if (fixP->fx_addsy
29927 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29928 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29929 && ARM_IS_FUNC (fixP->fx_addsy)
29930 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29931 {
29932 /* Force a relocation for a branch 12 bits wide. */
29933 fixP->fx_done = 0;
29934 }
29935
29936 bfd_vma insn = get_thumb32_insn (buf);
29937 /* le lr, <label>, le <label> or letp lr, <label> */
29938 if (((insn & 0xffffffff) == 0xf00fc001)
29939 || ((insn & 0xffffffff) == 0xf02fc001)
29940 || ((insn & 0xffffffff) == 0xf01fc001))
29941 value = -value;
29942
29943 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29944 as_bad_where (fixP->fx_file, fixP->fx_line,
29945 BAD_BRANCH_OFF);
29946 if (fixP->fx_done || !seg->use_rela_p)
29947 {
29948 addressT imml, immh;
29949
29950 immh = (value & 0x00000ffc) >> 2;
29951 imml = (value & 0x00000002) >> 1;
29952
29953 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29954 newval |= (imml << 11) | (immh << 1);
29955 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29956 }
29957 break;
29958
29959 case BFD_RELOC_ARM_V4BX:
29960 /* This will need to go in the object file. */
29961 fixP->fx_done = 0;
29962 break;
29963
29964 case BFD_RELOC_UNUSED:
29965 default:
29966 as_bad_where (fixP->fx_file, fixP->fx_line,
29967 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29968 }
29969 }
29970
29971 /* Translate internal representation of relocation info to BFD target
29972 format. */
29973
29974 arelent *
29975 tc_gen_reloc (asection *section, fixS *fixp)
29976 {
29977 arelent * reloc;
29978 bfd_reloc_code_real_type code;
29979
29980 reloc = XNEW (arelent);
29981
29982 reloc->sym_ptr_ptr = XNEW (asymbol *);
29983 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29984 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29985
29986 if (fixp->fx_pcrel)
29987 {
29988 if (section->use_rela_p)
29989 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29990 else
29991 fixp->fx_offset = reloc->address;
29992 }
29993 reloc->addend = fixp->fx_offset;
29994
29995 switch (fixp->fx_r_type)
29996 {
29997 case BFD_RELOC_8:
29998 if (fixp->fx_pcrel)
29999 {
30000 code = BFD_RELOC_8_PCREL;
30001 break;
30002 }
30003 /* Fall through. */
30004
30005 case BFD_RELOC_16:
30006 if (fixp->fx_pcrel)
30007 {
30008 code = BFD_RELOC_16_PCREL;
30009 break;
30010 }
30011 /* Fall through. */
30012
30013 case BFD_RELOC_32:
30014 if (fixp->fx_pcrel)
30015 {
30016 code = BFD_RELOC_32_PCREL;
30017 break;
30018 }
30019 /* Fall through. */
30020
30021 case BFD_RELOC_ARM_MOVW:
30022 if (fixp->fx_pcrel)
30023 {
30024 code = BFD_RELOC_ARM_MOVW_PCREL;
30025 break;
30026 }
30027 /* Fall through. */
30028
30029 case BFD_RELOC_ARM_MOVT:
30030 if (fixp->fx_pcrel)
30031 {
30032 code = BFD_RELOC_ARM_MOVT_PCREL;
30033 break;
30034 }
30035 /* Fall through. */
30036
30037 case BFD_RELOC_ARM_THUMB_MOVW:
30038 if (fixp->fx_pcrel)
30039 {
30040 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
30041 break;
30042 }
30043 /* Fall through. */
30044
30045 case BFD_RELOC_ARM_THUMB_MOVT:
30046 if (fixp->fx_pcrel)
30047 {
30048 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
30049 break;
30050 }
30051 /* Fall through. */
30052
30053 case BFD_RELOC_NONE:
30054 case BFD_RELOC_ARM_PCREL_BRANCH:
30055 case BFD_RELOC_ARM_PCREL_BLX:
30056 case BFD_RELOC_RVA:
30057 case BFD_RELOC_THUMB_PCREL_BRANCH7:
30058 case BFD_RELOC_THUMB_PCREL_BRANCH9:
30059 case BFD_RELOC_THUMB_PCREL_BRANCH12:
30060 case BFD_RELOC_THUMB_PCREL_BRANCH20:
30061 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30062 case BFD_RELOC_THUMB_PCREL_BRANCH25:
30063 case BFD_RELOC_VTABLE_ENTRY:
30064 case BFD_RELOC_VTABLE_INHERIT:
30065 #ifdef TE_PE
30066 case BFD_RELOC_32_SECREL:
30067 #endif
30068 code = fixp->fx_r_type;
30069 break;
30070
30071 case BFD_RELOC_THUMB_PCREL_BLX:
30072 #ifdef OBJ_ELF
30073 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
30074 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
30075 else
30076 #endif
30077 code = BFD_RELOC_THUMB_PCREL_BLX;
30078 break;
30079
30080 case BFD_RELOC_ARM_LITERAL:
30081 case BFD_RELOC_ARM_HWLITERAL:
30082 /* If this is called then the a literal has
30083 been referenced across a section boundary. */
30084 as_bad_where (fixp->fx_file, fixp->fx_line,
30085 _("literal referenced across section boundary"));
30086 return NULL;
30087
30088 #ifdef OBJ_ELF
30089 case BFD_RELOC_ARM_TLS_CALL:
30090 case BFD_RELOC_ARM_THM_TLS_CALL:
30091 case BFD_RELOC_ARM_TLS_DESCSEQ:
30092 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
30093 case BFD_RELOC_ARM_GOT32:
30094 case BFD_RELOC_ARM_GOTOFF:
30095 case BFD_RELOC_ARM_GOT_PREL:
30096 case BFD_RELOC_ARM_PLT32:
30097 case BFD_RELOC_ARM_TARGET1:
30098 case BFD_RELOC_ARM_ROSEGREL32:
30099 case BFD_RELOC_ARM_SBREL32:
30100 case BFD_RELOC_ARM_PREL31:
30101 case BFD_RELOC_ARM_TARGET2:
30102 case BFD_RELOC_ARM_TLS_LDO32:
30103 case BFD_RELOC_ARM_PCREL_CALL:
30104 case BFD_RELOC_ARM_PCREL_JUMP:
30105 case BFD_RELOC_ARM_ALU_PC_G0_NC:
30106 case BFD_RELOC_ARM_ALU_PC_G0:
30107 case BFD_RELOC_ARM_ALU_PC_G1_NC:
30108 case BFD_RELOC_ARM_ALU_PC_G1:
30109 case BFD_RELOC_ARM_ALU_PC_G2:
30110 case BFD_RELOC_ARM_LDR_PC_G0:
30111 case BFD_RELOC_ARM_LDR_PC_G1:
30112 case BFD_RELOC_ARM_LDR_PC_G2:
30113 case BFD_RELOC_ARM_LDRS_PC_G0:
30114 case BFD_RELOC_ARM_LDRS_PC_G1:
30115 case BFD_RELOC_ARM_LDRS_PC_G2:
30116 case BFD_RELOC_ARM_LDC_PC_G0:
30117 case BFD_RELOC_ARM_LDC_PC_G1:
30118 case BFD_RELOC_ARM_LDC_PC_G2:
30119 case BFD_RELOC_ARM_ALU_SB_G0_NC:
30120 case BFD_RELOC_ARM_ALU_SB_G0:
30121 case BFD_RELOC_ARM_ALU_SB_G1_NC:
30122 case BFD_RELOC_ARM_ALU_SB_G1:
30123 case BFD_RELOC_ARM_ALU_SB_G2:
30124 case BFD_RELOC_ARM_LDR_SB_G0:
30125 case BFD_RELOC_ARM_LDR_SB_G1:
30126 case BFD_RELOC_ARM_LDR_SB_G2:
30127 case BFD_RELOC_ARM_LDRS_SB_G0:
30128 case BFD_RELOC_ARM_LDRS_SB_G1:
30129 case BFD_RELOC_ARM_LDRS_SB_G2:
30130 case BFD_RELOC_ARM_LDC_SB_G0:
30131 case BFD_RELOC_ARM_LDC_SB_G1:
30132 case BFD_RELOC_ARM_LDC_SB_G2:
30133 case BFD_RELOC_ARM_V4BX:
30134 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
30135 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
30136 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
30137 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
30138 case BFD_RELOC_ARM_GOTFUNCDESC:
30139 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
30140 case BFD_RELOC_ARM_FUNCDESC:
30141 case BFD_RELOC_ARM_THUMB_BF17:
30142 case BFD_RELOC_ARM_THUMB_BF19:
30143 case BFD_RELOC_ARM_THUMB_BF13:
30144 code = fixp->fx_r_type;
30145 break;
30146
30147 case BFD_RELOC_ARM_TLS_GOTDESC:
30148 case BFD_RELOC_ARM_TLS_GD32:
30149 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
30150 case BFD_RELOC_ARM_TLS_LE32:
30151 case BFD_RELOC_ARM_TLS_IE32:
30152 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
30153 case BFD_RELOC_ARM_TLS_LDM32:
30154 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
30155 /* BFD will include the symbol's address in the addend.
30156 But we don't want that, so subtract it out again here. */
30157 if (!S_IS_COMMON (fixp->fx_addsy))
30158 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
30159 code = fixp->fx_r_type;
30160 break;
30161 #endif
30162
30163 case BFD_RELOC_ARM_IMMEDIATE:
30164 as_bad_where (fixp->fx_file, fixp->fx_line,
30165 _("internal relocation (type: IMMEDIATE) not fixed up"));
30166 return NULL;
30167
30168 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
30169 as_bad_where (fixp->fx_file, fixp->fx_line,
30170 _("ADRL used for a symbol not defined in the same file"));
30171 return NULL;
30172
30173 case BFD_RELOC_THUMB_PCREL_BRANCH5:
30174 case BFD_RELOC_THUMB_PCREL_BFCSEL:
30175 case BFD_RELOC_ARM_THUMB_LOOP12:
30176 as_bad_where (fixp->fx_file, fixp->fx_line,
30177 _("%s used for a symbol not defined in the same file"),
30178 bfd_get_reloc_code_name (fixp->fx_r_type));
30179 return NULL;
30180
30181 case BFD_RELOC_ARM_OFFSET_IMM:
30182 if (section->use_rela_p)
30183 {
30184 code = fixp->fx_r_type;
30185 break;
30186 }
30187
30188 if (fixp->fx_addsy != NULL
30189 && !S_IS_DEFINED (fixp->fx_addsy)
30190 && S_IS_LOCAL (fixp->fx_addsy))
30191 {
30192 as_bad_where (fixp->fx_file, fixp->fx_line,
30193 _("undefined local label `%s'"),
30194 S_GET_NAME (fixp->fx_addsy));
30195 return NULL;
30196 }
30197
30198 as_bad_where (fixp->fx_file, fixp->fx_line,
30199 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
30200 return NULL;
30201
30202 default:
30203 {
30204 const char * type;
30205
30206 switch (fixp->fx_r_type)
30207 {
30208 case BFD_RELOC_NONE: type = "NONE"; break;
30209 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
30210 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
30211 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
30212 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
30213 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
30214 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
30215 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
30216 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
30217 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
30218 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
30219 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
30220 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
30221 default: type = _("<unknown>"); break;
30222 }
30223 as_bad_where (fixp->fx_file, fixp->fx_line,
30224 _("cannot represent %s relocation in this object file format"),
30225 type);
30226 return NULL;
30227 }
30228 }
30229
30230 #ifdef OBJ_ELF
30231 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
30232 && GOT_symbol
30233 && fixp->fx_addsy == GOT_symbol)
30234 {
30235 code = BFD_RELOC_ARM_GOTPC;
30236 reloc->addend = fixp->fx_offset = reloc->address;
30237 }
30238 #endif
30239
30240 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
30241
30242 if (reloc->howto == NULL)
30243 {
30244 as_bad_where (fixp->fx_file, fixp->fx_line,
30245 _("cannot represent %s relocation in this object file format"),
30246 bfd_get_reloc_code_name (code));
30247 return NULL;
30248 }
30249
30250 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
30251 vtable entry to be used in the relocation's section offset. */
30252 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
30253 reloc->address = fixp->fx_offset;
30254
30255 return reloc;
30256 }
30257
30258 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
30259
30260 void
30261 cons_fix_new_arm (fragS * frag,
30262 int where,
30263 int size,
30264 expressionS * exp,
30265 bfd_reloc_code_real_type reloc)
30266 {
30267 int pcrel = 0;
30268
30269 /* Pick a reloc.
30270 FIXME: @@ Should look at CPU word size. */
30271 switch (size)
30272 {
30273 case 1:
30274 reloc = BFD_RELOC_8;
30275 break;
30276 case 2:
30277 reloc = BFD_RELOC_16;
30278 break;
30279 case 4:
30280 default:
30281 reloc = BFD_RELOC_32;
30282 break;
30283 case 8:
30284 reloc = BFD_RELOC_64;
30285 break;
30286 }
30287
30288 #ifdef TE_PE
30289 if (exp->X_op == O_secrel)
30290 {
30291 exp->X_op = O_symbol;
30292 reloc = BFD_RELOC_32_SECREL;
30293 }
30294 #endif
30295
30296 fix_new_exp (frag, where, size, exp, pcrel, reloc);
30297 }
30298
30299 #if defined (OBJ_COFF)
30300 void
30301 arm_validate_fix (fixS * fixP)
30302 {
30303 /* If the destination of the branch is a defined symbol which does not have
30304 the THUMB_FUNC attribute, then we must be calling a function which has
30305 the (interfacearm) attribute. We look for the Thumb entry point to that
30306 function and change the branch to refer to that function instead. */
30307 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
30308 && fixP->fx_addsy != NULL
30309 && S_IS_DEFINED (fixP->fx_addsy)
30310 && ! THUMB_IS_FUNC (fixP->fx_addsy))
30311 {
30312 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
30313 }
30314 }
30315 #endif
30316
30317
30318 int
30319 arm_force_relocation (struct fix * fixp)
30320 {
30321 #if defined (OBJ_COFF) && defined (TE_PE)
30322 if (fixp->fx_r_type == BFD_RELOC_RVA)
30323 return 1;
30324 #endif
30325
30326 /* In case we have a call or a branch to a function in ARM ISA mode from
30327 a thumb function or vice-versa force the relocation. These relocations
30328 are cleared off for some cores that might have blx and simple transformations
30329 are possible. */
30330
30331 #ifdef OBJ_ELF
30332 switch (fixp->fx_r_type)
30333 {
30334 case BFD_RELOC_ARM_PCREL_JUMP:
30335 case BFD_RELOC_ARM_PCREL_CALL:
30336 case BFD_RELOC_THUMB_PCREL_BLX:
30337 if (THUMB_IS_FUNC (fixp->fx_addsy))
30338 return 1;
30339 break;
30340
30341 case BFD_RELOC_ARM_PCREL_BLX:
30342 case BFD_RELOC_THUMB_PCREL_BRANCH25:
30343 case BFD_RELOC_THUMB_PCREL_BRANCH20:
30344 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30345 if (ARM_IS_FUNC (fixp->fx_addsy))
30346 return 1;
30347 break;
30348
30349 default:
30350 break;
30351 }
30352 #endif
30353
30354 /* Resolve these relocations even if the symbol is extern or weak.
30355 Technically this is probably wrong due to symbol preemption.
30356 In practice these relocations do not have enough range to be useful
30357 at dynamic link time, and some code (e.g. in the Linux kernel)
30358 expects these references to be resolved. */
30359 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
30360 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
30361 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
30362 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
30363 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
30364 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
30365 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
30366 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
30367 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
30368 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
30369 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
30370 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
30371 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
30372 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
30373 return 0;
30374
30375 /* Always leave these relocations for the linker. */
30376 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
30377 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
30378 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
30379 return 1;
30380
30381 /* Always generate relocations against function symbols. */
30382 if (fixp->fx_r_type == BFD_RELOC_32
30383 && fixp->fx_addsy
30384 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
30385 return 1;
30386
30387 return generic_force_reloc (fixp);
30388 }
30389
30390 #if defined (OBJ_ELF) || defined (OBJ_COFF)
30391 /* Relocations against function names must be left unadjusted,
30392 so that the linker can use this information to generate interworking
30393 stubs. The MIPS version of this function
30394 also prevents relocations that are mips-16 specific, but I do not
30395 know why it does this.
30396
30397 FIXME:
30398 There is one other problem that ought to be addressed here, but
30399 which currently is not: Taking the address of a label (rather
30400 than a function) and then later jumping to that address. Such
30401 addresses also ought to have their bottom bit set (assuming that
30402 they reside in Thumb code), but at the moment they will not. */
30403
30404 bfd_boolean
30405 arm_fix_adjustable (fixS * fixP)
30406 {
30407 if (fixP->fx_addsy == NULL)
30408 return 1;
30409
30410 /* Preserve relocations against symbols with function type. */
30411 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
30412 return FALSE;
30413
30414 if (THUMB_IS_FUNC (fixP->fx_addsy)
30415 && fixP->fx_subsy == NULL)
30416 return FALSE;
30417
30418 /* We need the symbol name for the VTABLE entries. */
30419 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
30420 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
30421 return FALSE;
30422
30423 /* Don't allow symbols to be discarded on GOT related relocs. */
30424 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
30425 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
30426 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
30427 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
30428 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
30429 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
30430 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
30431 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
30432 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
30433 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
30434 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
30435 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
30436 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
30437 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
30438 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
30439 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
30440 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
30441 return FALSE;
30442
30443 /* Similarly for group relocations. */
30444 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
30445 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
30446 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
30447 return FALSE;
30448
30449 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
30450 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
30451 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
30452 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
30453 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
30454 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
30455 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
30456 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
30457 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
30458 return FALSE;
30459
30460 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
30461 offsets, so keep these symbols. */
30462 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
30463 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
30464 return FALSE;
30465
30466 return TRUE;
30467 }
30468 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
30469
30470 #ifdef OBJ_ELF
30471 const char *
30472 elf32_arm_target_format (void)
30473 {
30474 #ifdef TE_SYMBIAN
30475 return (target_big_endian
30476 ? "elf32-bigarm-symbian"
30477 : "elf32-littlearm-symbian");
30478 #elif defined (TE_VXWORKS)
30479 return (target_big_endian
30480 ? "elf32-bigarm-vxworks"
30481 : "elf32-littlearm-vxworks");
30482 #elif defined (TE_NACL)
30483 return (target_big_endian
30484 ? "elf32-bigarm-nacl"
30485 : "elf32-littlearm-nacl");
30486 #else
30487 if (arm_fdpic)
30488 {
30489 if (target_big_endian)
30490 return "elf32-bigarm-fdpic";
30491 else
30492 return "elf32-littlearm-fdpic";
30493 }
30494 else
30495 {
30496 if (target_big_endian)
30497 return "elf32-bigarm";
30498 else
30499 return "elf32-littlearm";
30500 }
30501 #endif
30502 }
30503
30504 void
30505 armelf_frob_symbol (symbolS * symp,
30506 int * puntp)
30507 {
30508 elf_frob_symbol (symp, puntp);
30509 }
30510 #endif
30511
30512 /* MD interface: Finalization. */
30513
30514 void
30515 arm_cleanup (void)
30516 {
30517 literal_pool * pool;
30518
30519 /* Ensure that all the predication blocks are properly closed. */
30520 check_pred_blocks_finished ();
30521
30522 for (pool = list_of_pools; pool; pool = pool->next)
30523 {
30524 /* Put it at the end of the relevant section. */
30525 subseg_set (pool->section, pool->sub_section);
30526 #ifdef OBJ_ELF
30527 arm_elf_change_section ();
30528 #endif
30529 s_ltorg (0);
30530 }
30531 }
30532
30533 #ifdef OBJ_ELF
30534 /* Remove any excess mapping symbols generated for alignment frags in
30535 SEC. We may have created a mapping symbol before a zero byte
30536 alignment; remove it if there's a mapping symbol after the
30537 alignment. */
30538 static void
30539 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
30540 void *dummy ATTRIBUTE_UNUSED)
30541 {
30542 segment_info_type *seginfo = seg_info (sec);
30543 fragS *fragp;
30544
30545 if (seginfo == NULL || seginfo->frchainP == NULL)
30546 return;
30547
30548 for (fragp = seginfo->frchainP->frch_root;
30549 fragp != NULL;
30550 fragp = fragp->fr_next)
30551 {
30552 symbolS *sym = fragp->tc_frag_data.last_map;
30553 fragS *next = fragp->fr_next;
30554
30555 /* Variable-sized frags have been converted to fixed size by
30556 this point. But if this was variable-sized to start with,
30557 there will be a fixed-size frag after it. So don't handle
30558 next == NULL. */
30559 if (sym == NULL || next == NULL)
30560 continue;
30561
30562 if (S_GET_VALUE (sym) < next->fr_address)
30563 /* Not at the end of this frag. */
30564 continue;
30565 know (S_GET_VALUE (sym) == next->fr_address);
30566
30567 do
30568 {
30569 if (next->tc_frag_data.first_map != NULL)
30570 {
30571 /* Next frag starts with a mapping symbol. Discard this
30572 one. */
30573 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30574 break;
30575 }
30576
30577 if (next->fr_next == NULL)
30578 {
30579 /* This mapping symbol is at the end of the section. Discard
30580 it. */
30581 know (next->fr_fix == 0 && next->fr_var == 0);
30582 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30583 break;
30584 }
30585
30586 /* As long as we have empty frags without any mapping symbols,
30587 keep looking. */
30588 /* If the next frag is non-empty and does not start with a
30589 mapping symbol, then this mapping symbol is required. */
30590 if (next->fr_address != next->fr_next->fr_address)
30591 break;
30592
30593 next = next->fr_next;
30594 }
30595 while (next != NULL);
30596 }
30597 }
30598 #endif
30599
30600 /* Adjust the symbol table. This marks Thumb symbols as distinct from
30601 ARM ones. */
30602
30603 void
30604 arm_adjust_symtab (void)
30605 {
30606 #ifdef OBJ_COFF
30607 symbolS * sym;
30608
30609 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30610 {
30611 if (ARM_IS_THUMB (sym))
30612 {
30613 if (THUMB_IS_FUNC (sym))
30614 {
30615 /* Mark the symbol as a Thumb function. */
30616 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
30617 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
30618 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
30619
30620 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
30621 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
30622 else
30623 as_bad (_("%s: unexpected function type: %d"),
30624 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
30625 }
30626 else switch (S_GET_STORAGE_CLASS (sym))
30627 {
30628 case C_EXT:
30629 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
30630 break;
30631 case C_STAT:
30632 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
30633 break;
30634 case C_LABEL:
30635 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
30636 break;
30637 default:
30638 /* Do nothing. */
30639 break;
30640 }
30641 }
30642
30643 if (ARM_IS_INTERWORK (sym))
30644 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
30645 }
30646 #endif
30647 #ifdef OBJ_ELF
30648 symbolS * sym;
30649 char bind;
30650
30651 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30652 {
30653 if (ARM_IS_THUMB (sym))
30654 {
30655 elf_symbol_type * elf_sym;
30656
30657 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
30658 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
30659
30660 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
30661 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
30662 {
30663 /* If it's a .thumb_func, declare it as so,
30664 otherwise tag label as .code 16. */
30665 if (THUMB_IS_FUNC (sym))
30666 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
30667 ST_BRANCH_TO_THUMB);
30668 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30669 elf_sym->internal_elf_sym.st_info =
30670 ELF_ST_INFO (bind, STT_ARM_16BIT);
30671 }
30672 }
30673 }
30674
30675 /* Remove any overlapping mapping symbols generated by alignment frags. */
30676 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
30677 /* Now do generic ELF adjustments. */
30678 elf_adjust_symtab ();
30679 #endif
30680 }
30681
30682 /* MD interface: Initialization. */
30683
30684 static void
30685 set_constant_flonums (void)
30686 {
30687 int i;
30688
30689 for (i = 0; i < NUM_FLOAT_VALS; i++)
30690 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
30691 abort ();
30692 }
30693
30694 /* Auto-select Thumb mode if it's the only available instruction set for the
30695 given architecture. */
30696
30697 static void
30698 autoselect_thumb_from_cpu_variant (void)
30699 {
30700 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
30701 opcode_select (16);
30702 }
30703
30704 void
30705 md_begin (void)
30706 {
30707 unsigned mach;
30708 unsigned int i;
30709
30710 if ( (arm_ops_hsh = hash_new ()) == NULL
30711 || (arm_cond_hsh = hash_new ()) == NULL
30712 || (arm_vcond_hsh = hash_new ()) == NULL
30713 || (arm_shift_hsh = hash_new ()) == NULL
30714 || (arm_psr_hsh = hash_new ()) == NULL
30715 || (arm_v7m_psr_hsh = hash_new ()) == NULL
30716 || (arm_reg_hsh = hash_new ()) == NULL
30717 || (arm_reloc_hsh = hash_new ()) == NULL
30718 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
30719 as_fatal (_("virtual memory exhausted"));
30720
30721 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
30722 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
30723 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
30724 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
30725 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
30726 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
30727 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
30728 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
30729 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
30730 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
30731 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
30732 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
30733 (void *) (v7m_psrs + i));
30734 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
30735 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
30736 for (i = 0;
30737 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
30738 i++)
30739 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
30740 (void *) (barrier_opt_names + i));
30741 #ifdef OBJ_ELF
30742 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
30743 {
30744 struct reloc_entry * entry = reloc_names + i;
30745
30746 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
30747 /* This makes encode_branch() use the EABI versions of this relocation. */
30748 entry->reloc = BFD_RELOC_UNUSED;
30749
30750 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
30751 }
30752 #endif
30753
30754 set_constant_flonums ();
30755
30756 /* Set the cpu variant based on the command-line options. We prefer
30757 -mcpu= over -march= if both are set (as for GCC); and we prefer
30758 -mfpu= over any other way of setting the floating point unit.
30759 Use of legacy options with new options are faulted. */
30760 if (legacy_cpu)
30761 {
30762 if (mcpu_cpu_opt || march_cpu_opt)
30763 as_bad (_("use of old and new-style options to set CPU type"));
30764
30765 selected_arch = *legacy_cpu;
30766 }
30767 else if (mcpu_cpu_opt)
30768 {
30769 selected_arch = *mcpu_cpu_opt;
30770 selected_ext = *mcpu_ext_opt;
30771 }
30772 else if (march_cpu_opt)
30773 {
30774 selected_arch = *march_cpu_opt;
30775 selected_ext = *march_ext_opt;
30776 }
30777 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30778
30779 if (legacy_fpu)
30780 {
30781 if (mfpu_opt)
30782 as_bad (_("use of old and new-style options to set FPU type"));
30783
30784 selected_fpu = *legacy_fpu;
30785 }
30786 else if (mfpu_opt)
30787 selected_fpu = *mfpu_opt;
30788 else
30789 {
30790 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30791 || defined (TE_NetBSD) || defined (TE_VXWORKS))
30792 /* Some environments specify a default FPU. If they don't, infer it
30793 from the processor. */
30794 if (mcpu_fpu_opt)
30795 selected_fpu = *mcpu_fpu_opt;
30796 else if (march_fpu_opt)
30797 selected_fpu = *march_fpu_opt;
30798 #else
30799 selected_fpu = fpu_default;
30800 #endif
30801 }
30802
30803 if (ARM_FEATURE_ZERO (selected_fpu))
30804 {
30805 if (!no_cpu_selected ())
30806 selected_fpu = fpu_default;
30807 else
30808 selected_fpu = fpu_arch_fpa;
30809 }
30810
30811 #ifdef CPU_DEFAULT
30812 if (ARM_FEATURE_ZERO (selected_arch))
30813 {
30814 selected_arch = cpu_default;
30815 selected_cpu = selected_arch;
30816 }
30817 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30818 #else
30819 /* Autodection of feature mode: allow all features in cpu_variant but leave
30820 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30821 after all instruction have been processed and we can decide what CPU
30822 should be selected. */
30823 if (ARM_FEATURE_ZERO (selected_arch))
30824 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30825 else
30826 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30827 #endif
30828
30829 autoselect_thumb_from_cpu_variant ();
30830
30831 arm_arch_used = thumb_arch_used = arm_arch_none;
30832
30833 #if defined OBJ_COFF || defined OBJ_ELF
30834 {
30835 unsigned int flags = 0;
30836
30837 #if defined OBJ_ELF
30838 flags = meabi_flags;
30839
30840 switch (meabi_flags)
30841 {
30842 case EF_ARM_EABI_UNKNOWN:
30843 #endif
30844 /* Set the flags in the private structure. */
30845 if (uses_apcs_26) flags |= F_APCS26;
30846 if (support_interwork) flags |= F_INTERWORK;
30847 if (uses_apcs_float) flags |= F_APCS_FLOAT;
30848 if (pic_code) flags |= F_PIC;
30849 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
30850 flags |= F_SOFT_FLOAT;
30851
30852 switch (mfloat_abi_opt)
30853 {
30854 case ARM_FLOAT_ABI_SOFT:
30855 case ARM_FLOAT_ABI_SOFTFP:
30856 flags |= F_SOFT_FLOAT;
30857 break;
30858
30859 case ARM_FLOAT_ABI_HARD:
30860 if (flags & F_SOFT_FLOAT)
30861 as_bad (_("hard-float conflicts with specified fpu"));
30862 break;
30863 }
30864
30865 /* Using pure-endian doubles (even if soft-float). */
30866 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
30867 flags |= F_VFP_FLOAT;
30868
30869 #if defined OBJ_ELF
30870 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
30871 flags |= EF_ARM_MAVERICK_FLOAT;
30872 break;
30873
30874 case EF_ARM_EABI_VER4:
30875 case EF_ARM_EABI_VER5:
30876 /* No additional flags to set. */
30877 break;
30878
30879 default:
30880 abort ();
30881 }
30882 #endif
30883 bfd_set_private_flags (stdoutput, flags);
30884
30885 /* We have run out flags in the COFF header to encode the
30886 status of ATPCS support, so instead we create a dummy,
30887 empty, debug section called .arm.atpcs. */
30888 if (atpcs)
30889 {
30890 asection * sec;
30891
30892 sec = bfd_make_section (stdoutput, ".arm.atpcs");
30893
30894 if (sec != NULL)
30895 {
30896 bfd_set_section_flags (sec, SEC_READONLY | SEC_DEBUGGING);
30897 bfd_set_section_size (sec, 0);
30898 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
30899 }
30900 }
30901 }
30902 #endif
30903
30904 /* Record the CPU type as well. */
30905 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
30906 mach = bfd_mach_arm_iWMMXt2;
30907 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
30908 mach = bfd_mach_arm_iWMMXt;
30909 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
30910 mach = bfd_mach_arm_XScale;
30911 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
30912 mach = bfd_mach_arm_ep9312;
30913 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
30914 mach = bfd_mach_arm_5TE;
30915 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
30916 {
30917 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30918 mach = bfd_mach_arm_5T;
30919 else
30920 mach = bfd_mach_arm_5;
30921 }
30922 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
30923 {
30924 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30925 mach = bfd_mach_arm_4T;
30926 else
30927 mach = bfd_mach_arm_4;
30928 }
30929 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
30930 mach = bfd_mach_arm_3M;
30931 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30932 mach = bfd_mach_arm_3;
30933 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30934 mach = bfd_mach_arm_2a;
30935 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30936 mach = bfd_mach_arm_2;
30937 else
30938 mach = bfd_mach_arm_unknown;
30939
30940 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30941 }
30942
30943 /* Command line processing. */
30944
30945 /* md_parse_option
30946 Invocation line includes a switch not recognized by the base assembler.
30947 See if it's a processor-specific option.
30948
30949 This routine is somewhat complicated by the need for backwards
30950 compatibility (since older releases of gcc can't be changed).
30951 The new options try to make the interface as compatible as
30952 possible with GCC.
30953
30954 New options (supported) are:
30955
30956 -mcpu=<cpu name> Assemble for selected processor
30957 -march=<architecture name> Assemble for selected architecture
30958 -mfpu=<fpu architecture> Assemble for selected FPU.
30959 -EB/-mbig-endian Big-endian
30960 -EL/-mlittle-endian Little-endian
30961 -k Generate PIC code
30962 -mthumb Start in Thumb mode
30963 -mthumb-interwork Code supports ARM/Thumb interworking
30964
30965 -m[no-]warn-deprecated Warn about deprecated features
30966 -m[no-]warn-syms Warn when symbols match instructions
30967
30968 For now we will also provide support for:
30969
30970 -mapcs-32 32-bit Program counter
30971 -mapcs-26 26-bit Program counter
30972 -macps-float Floats passed in FP registers
30973 -mapcs-reentrant Reentrant code
30974 -matpcs
30975 (sometime these will probably be replaced with -mapcs=<list of options>
30976 and -matpcs=<list of options>)
30977
30978 The remaining options are only supported for back-wards compatibility.
30979 Cpu variants, the arm part is optional:
30980 -m[arm]1 Currently not supported.
30981 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30982 -m[arm]3 Arm 3 processor
30983 -m[arm]6[xx], Arm 6 processors
30984 -m[arm]7[xx][t][[d]m] Arm 7 processors
30985 -m[arm]8[10] Arm 8 processors
30986 -m[arm]9[20][tdmi] Arm 9 processors
30987 -mstrongarm[110[0]] StrongARM processors
30988 -mxscale XScale processors
30989 -m[arm]v[2345[t[e]]] Arm architectures
30990 -mall All (except the ARM1)
30991 FP variants:
30992 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30993 -mfpe-old (No float load/store multiples)
30994 -mvfpxd VFP Single precision
30995 -mvfp All VFP
30996 -mno-fpu Disable all floating point instructions
30997
30998 The following CPU names are recognized:
30999 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
31000 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
31001 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
31002 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
31003 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
31004 arm10t arm10e, arm1020t, arm1020e, arm10200e,
31005 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
31006
31007 */
31008
31009 const char * md_shortopts = "m:k";
31010
31011 #ifdef ARM_BI_ENDIAN
31012 #define OPTION_EB (OPTION_MD_BASE + 0)
31013 #define OPTION_EL (OPTION_MD_BASE + 1)
31014 #else
31015 #if TARGET_BYTES_BIG_ENDIAN
31016 #define OPTION_EB (OPTION_MD_BASE + 0)
31017 #else
31018 #define OPTION_EL (OPTION_MD_BASE + 1)
31019 #endif
31020 #endif
31021 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
31022 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
31023
31024 struct option md_longopts[] =
31025 {
31026 #ifdef OPTION_EB
31027 {"EB", no_argument, NULL, OPTION_EB},
31028 #endif
31029 #ifdef OPTION_EL
31030 {"EL", no_argument, NULL, OPTION_EL},
31031 #endif
31032 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
31033 #ifdef OBJ_ELF
31034 {"fdpic", no_argument, NULL, OPTION_FDPIC},
31035 #endif
31036 {NULL, no_argument, NULL, 0}
31037 };
31038
31039 size_t md_longopts_size = sizeof (md_longopts);
31040
31041 struct arm_option_table
31042 {
31043 const char * option; /* Option name to match. */
31044 const char * help; /* Help information. */
31045 int * var; /* Variable to change. */
31046 int value; /* What to change it to. */
31047 const char * deprecated; /* If non-null, print this message. */
31048 };
31049
31050 struct arm_option_table arm_opts[] =
31051 {
31052 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
31053 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
31054 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
31055 &support_interwork, 1, NULL},
31056 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
31057 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
31058 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
31059 1, NULL},
31060 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
31061 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
31062 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
31063 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
31064 NULL},
31065
31066 /* These are recognized by the assembler, but have no affect on code. */
31067 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
31068 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
31069
31070 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
31071 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
31072 &warn_on_deprecated, 0, NULL},
31073
31074 {"mwarn-restrict-it", N_("warn about performance deprecated IT instructions"
31075 " in ARMv8-A and ARMv8-R"), &warn_on_restrict_it, 1, NULL},
31076 {"mno-warn-restrict-it", NULL, &warn_on_restrict_it, 0, NULL},
31077
31078 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
31079 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
31080 {NULL, NULL, NULL, 0, NULL}
31081 };
31082
31083 struct arm_legacy_option_table
31084 {
31085 const char * option; /* Option name to match. */
31086 const arm_feature_set ** var; /* Variable to change. */
31087 const arm_feature_set value; /* What to change it to. */
31088 const char * deprecated; /* If non-null, print this message. */
31089 };
31090
31091 const struct arm_legacy_option_table arm_legacy_opts[] =
31092 {
31093 /* DON'T add any new processors to this list -- we want the whole list
31094 to go away... Add them to the processors table instead. */
31095 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
31096 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
31097 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
31098 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
31099 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
31100 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
31101 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
31102 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
31103 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
31104 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
31105 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
31106 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
31107 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
31108 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
31109 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
31110 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
31111 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
31112 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
31113 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
31114 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
31115 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
31116 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
31117 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
31118 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
31119 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
31120 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
31121 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
31122 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
31123 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
31124 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
31125 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
31126 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
31127 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
31128 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
31129 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
31130 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
31131 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
31132 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
31133 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
31134 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
31135 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
31136 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
31137 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
31138 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
31139 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
31140 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
31141 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31142 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31143 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31144 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
31145 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
31146 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
31147 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
31148 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
31149 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
31150 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
31151 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
31152 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
31153 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
31154 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
31155 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
31156 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
31157 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
31158 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
31159 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
31160 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
31161 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
31162 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
31163 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
31164 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
31165 N_("use -mcpu=strongarm110")},
31166 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
31167 N_("use -mcpu=strongarm1100")},
31168 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
31169 N_("use -mcpu=strongarm1110")},
31170 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
31171 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
31172 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
31173
31174 /* Architecture variants -- don't add any more to this list either. */
31175 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
31176 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
31177 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
31178 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
31179 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
31180 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
31181 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
31182 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
31183 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
31184 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
31185 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
31186 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
31187 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
31188 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
31189 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
31190 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
31191 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
31192 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
31193
31194 /* Floating point variants -- don't add any more to this list either. */
31195 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
31196 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
31197 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
31198 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
31199 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
31200
31201 {NULL, NULL, ARM_ARCH_NONE, NULL}
31202 };
31203
31204 struct arm_cpu_option_table
31205 {
31206 const char * name;
31207 size_t name_len;
31208 const arm_feature_set value;
31209 const arm_feature_set ext;
31210 /* For some CPUs we assume an FPU unless the user explicitly sets
31211 -mfpu=... */
31212 const arm_feature_set default_fpu;
31213 /* The canonical name of the CPU, or NULL to use NAME converted to upper
31214 case. */
31215 const char * canonical_name;
31216 };
31217
31218 /* This list should, at a minimum, contain all the cpu names
31219 recognized by GCC. */
31220 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
31221
31222 static const struct arm_cpu_option_table arm_cpus[] =
31223 {
31224 ARM_CPU_OPT ("all", NULL, ARM_ANY,
31225 ARM_ARCH_NONE,
31226 FPU_ARCH_FPA),
31227 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
31228 ARM_ARCH_NONE,
31229 FPU_ARCH_FPA),
31230 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
31231 ARM_ARCH_NONE,
31232 FPU_ARCH_FPA),
31233 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
31234 ARM_ARCH_NONE,
31235 FPU_ARCH_FPA),
31236 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
31237 ARM_ARCH_NONE,
31238 FPU_ARCH_FPA),
31239 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
31240 ARM_ARCH_NONE,
31241 FPU_ARCH_FPA),
31242 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
31243 ARM_ARCH_NONE,
31244 FPU_ARCH_FPA),
31245 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
31246 ARM_ARCH_NONE,
31247 FPU_ARCH_FPA),
31248 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
31249 ARM_ARCH_NONE,
31250 FPU_ARCH_FPA),
31251 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
31252 ARM_ARCH_NONE,
31253 FPU_ARCH_FPA),
31254 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
31255 ARM_ARCH_NONE,
31256 FPU_ARCH_FPA),
31257 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
31258 ARM_ARCH_NONE,
31259 FPU_ARCH_FPA),
31260 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
31261 ARM_ARCH_NONE,
31262 FPU_ARCH_FPA),
31263 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
31264 ARM_ARCH_NONE,
31265 FPU_ARCH_FPA),
31266 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
31267 ARM_ARCH_NONE,
31268 FPU_ARCH_FPA),
31269 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
31270 ARM_ARCH_NONE,
31271 FPU_ARCH_FPA),
31272 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
31273 ARM_ARCH_NONE,
31274 FPU_ARCH_FPA),
31275 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
31276 ARM_ARCH_NONE,
31277 FPU_ARCH_FPA),
31278 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
31279 ARM_ARCH_NONE,
31280 FPU_ARCH_FPA),
31281 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
31282 ARM_ARCH_NONE,
31283 FPU_ARCH_FPA),
31284 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
31285 ARM_ARCH_NONE,
31286 FPU_ARCH_FPA),
31287 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
31288 ARM_ARCH_NONE,
31289 FPU_ARCH_FPA),
31290 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
31291 ARM_ARCH_NONE,
31292 FPU_ARCH_FPA),
31293 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
31294 ARM_ARCH_NONE,
31295 FPU_ARCH_FPA),
31296 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
31297 ARM_ARCH_NONE,
31298 FPU_ARCH_FPA),
31299 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
31300 ARM_ARCH_NONE,
31301 FPU_ARCH_FPA),
31302 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
31303 ARM_ARCH_NONE,
31304 FPU_ARCH_FPA),
31305 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
31306 ARM_ARCH_NONE,
31307 FPU_ARCH_FPA),
31308 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
31309 ARM_ARCH_NONE,
31310 FPU_ARCH_FPA),
31311 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
31312 ARM_ARCH_NONE,
31313 FPU_ARCH_FPA),
31314 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
31315 ARM_ARCH_NONE,
31316 FPU_ARCH_FPA),
31317 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
31318 ARM_ARCH_NONE,
31319 FPU_ARCH_FPA),
31320 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
31321 ARM_ARCH_NONE,
31322 FPU_ARCH_FPA),
31323 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
31324 ARM_ARCH_NONE,
31325 FPU_ARCH_FPA),
31326 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
31327 ARM_ARCH_NONE,
31328 FPU_ARCH_FPA),
31329 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
31330 ARM_ARCH_NONE,
31331 FPU_ARCH_FPA),
31332 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
31333 ARM_ARCH_NONE,
31334 FPU_ARCH_FPA),
31335 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
31336 ARM_ARCH_NONE,
31337 FPU_ARCH_FPA),
31338 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
31339 ARM_ARCH_NONE,
31340 FPU_ARCH_FPA),
31341 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
31342 ARM_ARCH_NONE,
31343 FPU_ARCH_FPA),
31344 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
31345 ARM_ARCH_NONE,
31346 FPU_ARCH_FPA),
31347 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
31348 ARM_ARCH_NONE,
31349 FPU_ARCH_FPA),
31350 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
31351 ARM_ARCH_NONE,
31352 FPU_ARCH_FPA),
31353 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
31354 ARM_ARCH_NONE,
31355 FPU_ARCH_FPA),
31356 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
31357 ARM_ARCH_NONE,
31358 FPU_ARCH_FPA),
31359 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
31360 ARM_ARCH_NONE,
31361 FPU_ARCH_FPA),
31362
31363 /* For V5 or later processors we default to using VFP; but the user
31364 should really set the FPU type explicitly. */
31365 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
31366 ARM_ARCH_NONE,
31367 FPU_ARCH_VFP_V2),
31368 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
31369 ARM_ARCH_NONE,
31370 FPU_ARCH_VFP_V2),
31371 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
31372 ARM_ARCH_NONE,
31373 FPU_ARCH_VFP_V2),
31374 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
31375 ARM_ARCH_NONE,
31376 FPU_ARCH_VFP_V2),
31377 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
31378 ARM_ARCH_NONE,
31379 FPU_ARCH_VFP_V2),
31380 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
31381 ARM_ARCH_NONE,
31382 FPU_ARCH_VFP_V2),
31383 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
31384 ARM_ARCH_NONE,
31385 FPU_ARCH_VFP_V2),
31386 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
31387 ARM_ARCH_NONE,
31388 FPU_ARCH_VFP_V2),
31389 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
31390 ARM_ARCH_NONE,
31391 FPU_ARCH_VFP_V2),
31392 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
31393 ARM_ARCH_NONE,
31394 FPU_ARCH_VFP_V2),
31395 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
31396 ARM_ARCH_NONE,
31397 FPU_ARCH_VFP_V2),
31398 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
31399 ARM_ARCH_NONE,
31400 FPU_ARCH_VFP_V2),
31401 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
31402 ARM_ARCH_NONE,
31403 FPU_ARCH_VFP_V1),
31404 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
31405 ARM_ARCH_NONE,
31406 FPU_ARCH_VFP_V1),
31407 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
31408 ARM_ARCH_NONE,
31409 FPU_ARCH_VFP_V2),
31410 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
31411 ARM_ARCH_NONE,
31412 FPU_ARCH_VFP_V2),
31413 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
31414 ARM_ARCH_NONE,
31415 FPU_ARCH_VFP_V1),
31416 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
31417 ARM_ARCH_NONE,
31418 FPU_ARCH_VFP_V2),
31419 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
31420 ARM_ARCH_NONE,
31421 FPU_ARCH_VFP_V2),
31422 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
31423 ARM_ARCH_NONE,
31424 FPU_ARCH_VFP_V2),
31425 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
31426 ARM_ARCH_NONE,
31427 FPU_ARCH_VFP_V2),
31428 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
31429 ARM_ARCH_NONE,
31430 FPU_ARCH_VFP_V2),
31431 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
31432 ARM_ARCH_NONE,
31433 FPU_ARCH_VFP_V2),
31434 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
31435 ARM_ARCH_NONE,
31436 FPU_ARCH_VFP_V2),
31437 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
31438 ARM_ARCH_NONE,
31439 FPU_ARCH_VFP_V2),
31440 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
31441 ARM_ARCH_NONE,
31442 FPU_ARCH_VFP_V2),
31443 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
31444 ARM_ARCH_NONE,
31445 FPU_NONE),
31446 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
31447 ARM_ARCH_NONE,
31448 FPU_NONE),
31449 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
31450 ARM_ARCH_NONE,
31451 FPU_ARCH_VFP_V2),
31452 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
31453 ARM_ARCH_NONE,
31454 FPU_ARCH_VFP_V2),
31455 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
31456 ARM_ARCH_NONE,
31457 FPU_ARCH_VFP_V2),
31458 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
31459 ARM_ARCH_NONE,
31460 FPU_NONE),
31461 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
31462 ARM_ARCH_NONE,
31463 FPU_NONE),
31464 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
31465 ARM_ARCH_NONE,
31466 FPU_ARCH_VFP_V2),
31467 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
31468 ARM_ARCH_NONE,
31469 FPU_NONE),
31470 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
31471 ARM_ARCH_NONE,
31472 FPU_ARCH_VFP_V2),
31473 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
31474 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31475 FPU_NONE),
31476 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
31477 ARM_ARCH_NONE,
31478 FPU_ARCH_NEON_VFP_V4),
31479 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
31480 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31481 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
31482 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
31483 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31484 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
31485 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
31486 ARM_ARCH_NONE,
31487 FPU_ARCH_NEON_VFP_V4),
31488 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
31489 ARM_ARCH_NONE,
31490 FPU_ARCH_NEON_VFP_V4),
31491 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
31492 ARM_ARCH_NONE,
31493 FPU_ARCH_NEON_VFP_V4),
31494 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
31495 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31496 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31497 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
31498 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31499 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31500 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
31501 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31502 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31503 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
31504 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31505 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31506 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
31507 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31508 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31509 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
31510 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31511 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31512 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
31513 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31514 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31515 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
31516 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31517 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31518 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
31519 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31520 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31521 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
31522 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31523 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31524 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
31525 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31526 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31527 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
31528 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31529 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31530 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
31531 ARM_ARCH_NONE,
31532 FPU_NONE),
31533 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
31534 ARM_ARCH_NONE,
31535 FPU_ARCH_VFP_V3D16),
31536 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
31537 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31538 FPU_NONE),
31539 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
31540 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31541 FPU_ARCH_VFP_V3D16),
31542 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
31543 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31544 FPU_ARCH_VFP_V3D16),
31545 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
31546 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31547 FPU_ARCH_NEON_VFP_ARMV8),
31548 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
31549 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31550 FPU_NONE),
31551 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
31552 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31553 FPU_NONE),
31554 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
31555 ARM_ARCH_NONE,
31556 FPU_NONE),
31557 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
31558 ARM_ARCH_NONE,
31559 FPU_NONE),
31560 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
31561 ARM_ARCH_NONE,
31562 FPU_NONE),
31563 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
31564 ARM_ARCH_NONE,
31565 FPU_NONE),
31566 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
31567 ARM_ARCH_NONE,
31568 FPU_NONE),
31569 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
31570 ARM_ARCH_NONE,
31571 FPU_NONE),
31572 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
31573 ARM_ARCH_NONE,
31574 FPU_NONE),
31575 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
31576 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31577 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31578 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
31579 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31580 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31581 /* ??? XSCALE is really an architecture. */
31582 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
31583 ARM_ARCH_NONE,
31584 FPU_ARCH_VFP_V2),
31585
31586 /* ??? iwmmxt is not a processor. */
31587 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
31588 ARM_ARCH_NONE,
31589 FPU_ARCH_VFP_V2),
31590 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
31591 ARM_ARCH_NONE,
31592 FPU_ARCH_VFP_V2),
31593 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
31594 ARM_ARCH_NONE,
31595 FPU_ARCH_VFP_V2),
31596
31597 /* Maverick. */
31598 ARM_CPU_OPT ("ep9312", "ARM920T",
31599 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
31600 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
31601
31602 /* Marvell processors. */
31603 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
31604 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31605 FPU_ARCH_VFP_V3D16),
31606 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
31607 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31608 FPU_ARCH_NEON_VFP_V4),
31609
31610 /* APM X-Gene family. */
31611 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
31612 ARM_ARCH_NONE,
31613 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31614 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
31615 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31616 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31617
31618 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31619 };
31620 #undef ARM_CPU_OPT
31621
31622 struct arm_ext_table
31623 {
31624 const char * name;
31625 size_t name_len;
31626 const arm_feature_set merge;
31627 const arm_feature_set clear;
31628 };
31629
31630 struct arm_arch_option_table
31631 {
31632 const char * name;
31633 size_t name_len;
31634 const arm_feature_set value;
31635 const arm_feature_set default_fpu;
31636 const struct arm_ext_table * ext_table;
31637 };
31638
31639 /* Used to add support for +E and +noE extension. */
31640 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31641 /* Used to add support for a +E extension. */
31642 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31643 /* Used to add support for a +noE extension. */
31644 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31645
31646 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31647 ~0 & ~FPU_ENDIAN_PURE)
31648
31649 static const struct arm_ext_table armv5te_ext_table[] =
31650 {
31651 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
31652 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31653 };
31654
31655 static const struct arm_ext_table armv7_ext_table[] =
31656 {
31657 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31658 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31659 };
31660
31661 static const struct arm_ext_table armv7ve_ext_table[] =
31662 {
31663 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
31664 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
31665 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31666 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31667 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31668 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
31669 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31670
31671 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
31672 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31673
31674 /* Aliases for +simd. */
31675 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31676
31677 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31678 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31679 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31680
31681 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31682 };
31683
31684 static const struct arm_ext_table armv7a_ext_table[] =
31685 {
31686 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31687 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31688 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31689 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31690 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31691 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
31692 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31693
31694 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
31695 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31696
31697 /* Aliases for +simd. */
31698 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31699 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31700
31701 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31702 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31703
31704 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
31705 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
31706 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31707 };
31708
31709 static const struct arm_ext_table armv7r_ext_table[] =
31710 {
31711 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
31712 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
31713 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31714 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31715 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
31716 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31717 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31718 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
31719 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31720 };
31721
31722 static const struct arm_ext_table armv7em_ext_table[] =
31723 {
31724 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
31725 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31726 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
31727 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
31728 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31729 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
31730 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31731 };
31732
31733 static const struct arm_ext_table armv8a_ext_table[] =
31734 {
31735 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31736 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31737 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31738 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31739
31740 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31741 should use the +simd option to turn on FP. */
31742 ARM_REMOVE ("fp", ALL_FP),
31743 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31744 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31745 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31746 };
31747
31748
31749 static const struct arm_ext_table armv81a_ext_table[] =
31750 {
31751 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31752 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31753 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31754
31755 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31756 should use the +simd option to turn on FP. */
31757 ARM_REMOVE ("fp", ALL_FP),
31758 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31759 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31760 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31761 };
31762
31763 static const struct arm_ext_table armv82a_ext_table[] =
31764 {
31765 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31766 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
31767 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
31768 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31769 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31770 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31771 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31772 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31773
31774 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31775 should use the +simd option to turn on FP. */
31776 ARM_REMOVE ("fp", ALL_FP),
31777 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31778 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31779 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31780 };
31781
31782 static const struct arm_ext_table armv84a_ext_table[] =
31783 {
31784 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31785 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31786 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31787 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31788 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31789 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31790
31791 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31792 should use the +simd option to turn on FP. */
31793 ARM_REMOVE ("fp", ALL_FP),
31794 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31795 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31796 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31797 };
31798
31799 static const struct arm_ext_table armv85a_ext_table[] =
31800 {
31801 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31802 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31803 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31804 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31805 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31806 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31807
31808 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31809 should use the +simd option to turn on FP. */
31810 ARM_REMOVE ("fp", ALL_FP),
31811 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31812 };
31813
31814 static const struct arm_ext_table armv86a_ext_table[] =
31815 {
31816 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31817 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31818 };
31819
31820 #define CDE_EXTENSIONS \
31821 ARM_ADD ("cdecp0", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE0)), \
31822 ARM_ADD ("cdecp1", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE1)), \
31823 ARM_ADD ("cdecp2", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE2)), \
31824 ARM_ADD ("cdecp3", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE3)), \
31825 ARM_ADD ("cdecp4", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE4)), \
31826 ARM_ADD ("cdecp5", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE5)), \
31827 ARM_ADD ("cdecp6", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE6)), \
31828 ARM_ADD ("cdecp7", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE | ARM_EXT2_CDE7))
31829
31830 static const struct arm_ext_table armv8m_main_ext_table[] =
31831 {
31832 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP),
31833 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP)),
31834 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
31835 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31836 CDE_EXTENSIONS,
31837 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31838 };
31839
31840
31841 static const struct arm_ext_table armv8_1m_main_ext_table[] =
31842 {
31843 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP),
31844 ARM_FEATURE_CORE_LOW (ARM_AEXT_V8M_MAIN_DSP)),
31845 ARM_EXT ("fp",
31846 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31847 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
31848 ALL_FP),
31849 ARM_ADD ("fp.dp",
31850 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31851 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31852 ARM_EXT ("mve", ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP, ARM_EXT2_MVE, 0),
31853 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE | ARM_EXT2_MVE_FP)),
31854 ARM_ADD ("mve.fp",
31855 ARM_FEATURE (ARM_AEXT_V8M_MAIN_DSP,
31856 ARM_EXT2_FP16_INST | ARM_EXT2_MVE | ARM_EXT2_MVE_FP,
31857 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31858 CDE_EXTENSIONS,
31859 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31860 };
31861
31862 #undef CDE_EXTENSIONS
31863
31864 static const struct arm_ext_table armv8r_ext_table[] =
31865 {
31866 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31867 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31868 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31869 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31870 ARM_REMOVE ("fp", ALL_FP),
31871 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
31872 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31873 };
31874
31875 /* This list should, at a minimum, contain all the architecture names
31876 recognized by GCC. */
31877 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31878 #define ARM_ARCH_OPT2(N, V, DF, ext) \
31879 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
31880
31881 static const struct arm_arch_option_table arm_archs[] =
31882 {
31883 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
31884 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
31885 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
31886 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
31887 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
31888 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
31889 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
31890 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
31891 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
31892 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
31893 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
31894 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
31895 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
31896 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
31897 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
31898 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
31899 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
31900 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31901 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31902 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
31903 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
31904 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31905 kept to preserve existing behaviour. */
31906 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31907 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31908 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
31909 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
31910 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
31911 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31912 kept to preserve existing behaviour. */
31913 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31914 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31915 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
31916 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
31917 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
31918 /* The official spelling of the ARMv7 profile variants is the dashed form.
31919 Accept the non-dashed form for compatibility with old toolchains. */
31920 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31921 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
31922 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31923 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31924 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31925 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31926 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31927 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
31928 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
31929 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
31930 armv8m_main),
31931 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
31932 armv8_1m_main),
31933 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
31934 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
31935 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
31936 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
31937 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
31938 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
31939 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
31940 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A, FPU_ARCH_VFP, armv86a),
31941 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
31942 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
31943 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
31944 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31945 };
31946 #undef ARM_ARCH_OPT
31947
31948 /* ISA extensions in the co-processor and main instruction set space. */
31949
31950 struct arm_option_extension_value_table
31951 {
31952 const char * name;
31953 size_t name_len;
31954 const arm_feature_set merge_value;
31955 const arm_feature_set clear_value;
31956 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31957 indicates that an extension is available for all architectures while
31958 ARM_ANY marks an empty entry. */
31959 const arm_feature_set allowed_archs[2];
31960 };
31961
31962 /* The following table must be in alphabetical order with a NULL last entry. */
31963
31964 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31965 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31966
31967 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
31968 use the context sensitive approach using arm_ext_table's. */
31969 static const struct arm_option_extension_value_table arm_extensions[] =
31970 {
31971 ARM_EXT_OPT ("crc", ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31972 ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31973 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31974 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31975 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31976 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31977 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31978 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31979 ARM_ARCH_V8_2A),
31980 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31981 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31982 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
31983 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31984 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31985 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31986 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31987 ARM_ARCH_V8_2A),
31988 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31989 | ARM_EXT2_FP16_FML),
31990 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31991 | ARM_EXT2_FP16_FML),
31992 ARM_ARCH_V8_2A),
31993 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31994 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31995 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31996 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31997 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
31998 Thumb divide instruction. Due to this having the same name as the
31999 previous entry, this will be ignored when doing command-line parsing and
32000 only considered by build attribute selection code. */
32001 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
32002 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
32003 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
32004 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
32005 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
32006 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
32007 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
32008 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
32009 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
32010 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
32011 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
32012 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
32013 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
32014 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
32015 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
32016 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
32017 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
32018 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
32019 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32020 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
32021 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
32022 ARM_ARCH_V8A),
32023 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
32024 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
32025 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32026 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
32027 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
32028 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
32029 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
32030 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
32031 ARM_ARCH_V8A),
32032 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
32033 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
32034 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
32035 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
32036 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
32037 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
32038 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
32039 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
32040 | ARM_EXT_DIV),
32041 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
32042 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
32043 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
32044 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
32045 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
32046 };
32047 #undef ARM_EXT_OPT
32048
32049 /* ISA floating-point and Advanced SIMD extensions. */
32050 struct arm_option_fpu_value_table
32051 {
32052 const char * name;
32053 const arm_feature_set value;
32054 };
32055
32056 /* This list should, at a minimum, contain all the fpu names
32057 recognized by GCC. */
32058 static const struct arm_option_fpu_value_table arm_fpus[] =
32059 {
32060 {"softfpa", FPU_NONE},
32061 {"fpe", FPU_ARCH_FPE},
32062 {"fpe2", FPU_ARCH_FPE},
32063 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
32064 {"fpa", FPU_ARCH_FPA},
32065 {"fpa10", FPU_ARCH_FPA},
32066 {"fpa11", FPU_ARCH_FPA},
32067 {"arm7500fe", FPU_ARCH_FPA},
32068 {"softvfp", FPU_ARCH_VFP},
32069 {"softvfp+vfp", FPU_ARCH_VFP_V2},
32070 {"vfp", FPU_ARCH_VFP_V2},
32071 {"vfp9", FPU_ARCH_VFP_V2},
32072 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
32073 {"vfp10", FPU_ARCH_VFP_V2},
32074 {"vfp10-r0", FPU_ARCH_VFP_V1},
32075 {"vfpxd", FPU_ARCH_VFP_V1xD},
32076 {"vfpv2", FPU_ARCH_VFP_V2},
32077 {"vfpv3", FPU_ARCH_VFP_V3},
32078 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
32079 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
32080 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
32081 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
32082 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
32083 {"arm1020t", FPU_ARCH_VFP_V1},
32084 {"arm1020e", FPU_ARCH_VFP_V2},
32085 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
32086 {"arm1136jf-s", FPU_ARCH_VFP_V2},
32087 {"maverick", FPU_ARCH_MAVERICK},
32088 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
32089 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
32090 {"neon-fp16", FPU_ARCH_NEON_FP16},
32091 {"vfpv4", FPU_ARCH_VFP_V4},
32092 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
32093 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
32094 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
32095 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
32096 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
32097 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
32098 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
32099 {"crypto-neon-fp-armv8",
32100 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
32101 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
32102 {"crypto-neon-fp-armv8.1",
32103 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
32104 {NULL, ARM_ARCH_NONE}
32105 };
32106
32107 struct arm_option_value_table
32108 {
32109 const char *name;
32110 long value;
32111 };
32112
32113 static const struct arm_option_value_table arm_float_abis[] =
32114 {
32115 {"hard", ARM_FLOAT_ABI_HARD},
32116 {"softfp", ARM_FLOAT_ABI_SOFTFP},
32117 {"soft", ARM_FLOAT_ABI_SOFT},
32118 {NULL, 0}
32119 };
32120
32121 #ifdef OBJ_ELF
32122 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
32123 static const struct arm_option_value_table arm_eabis[] =
32124 {
32125 {"gnu", EF_ARM_EABI_UNKNOWN},
32126 {"4", EF_ARM_EABI_VER4},
32127 {"5", EF_ARM_EABI_VER5},
32128 {NULL, 0}
32129 };
32130 #endif
32131
32132 struct arm_long_option_table
32133 {
32134 const char * option; /* Substring to match. */
32135 const char * help; /* Help information. */
32136 int (* func) (const char * subopt); /* Function to decode sub-option. */
32137 const char * deprecated; /* If non-null, print this message. */
32138 };
32139
32140 static bfd_boolean
32141 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
32142 arm_feature_set *ext_set,
32143 const struct arm_ext_table *ext_table)
32144 {
32145 /* We insist on extensions being specified in alphabetical order, and with
32146 extensions being added before being removed. We achieve this by having
32147 the global ARM_EXTENSIONS table in alphabetical order, and using the
32148 ADDING_VALUE variable to indicate whether we are adding an extension (1)
32149 or removing it (0) and only allowing it to change in the order
32150 -1 -> 1 -> 0. */
32151 const struct arm_option_extension_value_table * opt = NULL;
32152 const arm_feature_set arm_any = ARM_ANY;
32153 int adding_value = -1;
32154
32155 while (str != NULL && *str != 0)
32156 {
32157 const char *ext;
32158 size_t len;
32159
32160 if (*str != '+')
32161 {
32162 as_bad (_("invalid architectural extension"));
32163 return FALSE;
32164 }
32165
32166 str++;
32167 ext = strchr (str, '+');
32168
32169 if (ext != NULL)
32170 len = ext - str;
32171 else
32172 len = strlen (str);
32173
32174 if (len >= 2 && strncmp (str, "no", 2) == 0)
32175 {
32176 if (adding_value != 0)
32177 {
32178 adding_value = 0;
32179 opt = arm_extensions;
32180 }
32181
32182 len -= 2;
32183 str += 2;
32184 }
32185 else if (len > 0)
32186 {
32187 if (adding_value == -1)
32188 {
32189 adding_value = 1;
32190 opt = arm_extensions;
32191 }
32192 else if (adding_value != 1)
32193 {
32194 as_bad (_("must specify extensions to add before specifying "
32195 "those to remove"));
32196 return FALSE;
32197 }
32198 }
32199
32200 if (len == 0)
32201 {
32202 as_bad (_("missing architectural extension"));
32203 return FALSE;
32204 }
32205
32206 gas_assert (adding_value != -1);
32207 gas_assert (opt != NULL);
32208
32209 if (ext_table != NULL)
32210 {
32211 const struct arm_ext_table * ext_opt = ext_table;
32212 bfd_boolean found = FALSE;
32213 for (; ext_opt->name != NULL; ext_opt++)
32214 if (ext_opt->name_len == len
32215 && strncmp (ext_opt->name, str, len) == 0)
32216 {
32217 if (adding_value)
32218 {
32219 if (ARM_FEATURE_ZERO (ext_opt->merge))
32220 /* TODO: Option not supported. When we remove the
32221 legacy table this case should error out. */
32222 continue;
32223
32224 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
32225 }
32226 else
32227 {
32228 if (ARM_FEATURE_ZERO (ext_opt->clear))
32229 /* TODO: Option not supported. When we remove the
32230 legacy table this case should error out. */
32231 continue;
32232 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
32233 }
32234 found = TRUE;
32235 break;
32236 }
32237 if (found)
32238 {
32239 str = ext;
32240 continue;
32241 }
32242 }
32243
32244 /* Scan over the options table trying to find an exact match. */
32245 for (; opt->name != NULL; opt++)
32246 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32247 {
32248 int i, nb_allowed_archs =
32249 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32250 /* Check we can apply the extension to this architecture. */
32251 for (i = 0; i < nb_allowed_archs; i++)
32252 {
32253 /* Empty entry. */
32254 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
32255 continue;
32256 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
32257 break;
32258 }
32259 if (i == nb_allowed_archs)
32260 {
32261 as_bad (_("extension does not apply to the base architecture"));
32262 return FALSE;
32263 }
32264
32265 /* Add or remove the extension. */
32266 if (adding_value)
32267 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
32268 else
32269 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
32270
32271 /* Allowing Thumb division instructions for ARMv7 in autodetection
32272 rely on this break so that duplicate extensions (extensions
32273 with the same name as a previous extension in the list) are not
32274 considered for command-line parsing. */
32275 break;
32276 }
32277
32278 if (opt->name == NULL)
32279 {
32280 /* Did we fail to find an extension because it wasn't specified in
32281 alphabetical order, or because it does not exist? */
32282
32283 for (opt = arm_extensions; opt->name != NULL; opt++)
32284 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32285 break;
32286
32287 if (opt->name == NULL)
32288 as_bad (_("unknown architectural extension `%s'"), str);
32289 else
32290 as_bad (_("architectural extensions must be specified in "
32291 "alphabetical order"));
32292
32293 return FALSE;
32294 }
32295 else
32296 {
32297 /* We should skip the extension we've just matched the next time
32298 round. */
32299 opt++;
32300 }
32301
32302 str = ext;
32303 };
32304
32305 return TRUE;
32306 }
32307
32308 static bfd_boolean
32309 arm_parse_fp16_opt (const char *str)
32310 {
32311 if (strcasecmp (str, "ieee") == 0)
32312 fp16_format = ARM_FP16_FORMAT_IEEE;
32313 else if (strcasecmp (str, "alternative") == 0)
32314 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
32315 else
32316 {
32317 as_bad (_("unrecognised float16 format \"%s\""), str);
32318 return FALSE;
32319 }
32320
32321 return TRUE;
32322 }
32323
32324 static bfd_boolean
32325 arm_parse_cpu (const char *str)
32326 {
32327 const struct arm_cpu_option_table *opt;
32328 const char *ext = strchr (str, '+');
32329 size_t len;
32330
32331 if (ext != NULL)
32332 len = ext - str;
32333 else
32334 len = strlen (str);
32335
32336 if (len == 0)
32337 {
32338 as_bad (_("missing cpu name `%s'"), str);
32339 return FALSE;
32340 }
32341
32342 for (opt = arm_cpus; opt->name != NULL; opt++)
32343 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32344 {
32345 mcpu_cpu_opt = &opt->value;
32346 if (mcpu_ext_opt == NULL)
32347 mcpu_ext_opt = XNEW (arm_feature_set);
32348 *mcpu_ext_opt = opt->ext;
32349 mcpu_fpu_opt = &opt->default_fpu;
32350 if (opt->canonical_name)
32351 {
32352 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
32353 strcpy (selected_cpu_name, opt->canonical_name);
32354 }
32355 else
32356 {
32357 size_t i;
32358
32359 if (len >= sizeof selected_cpu_name)
32360 len = (sizeof selected_cpu_name) - 1;
32361
32362 for (i = 0; i < len; i++)
32363 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32364 selected_cpu_name[i] = 0;
32365 }
32366
32367 if (ext != NULL)
32368 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
32369
32370 return TRUE;
32371 }
32372
32373 as_bad (_("unknown cpu `%s'"), str);
32374 return FALSE;
32375 }
32376
32377 static bfd_boolean
32378 arm_parse_arch (const char *str)
32379 {
32380 const struct arm_arch_option_table *opt;
32381 const char *ext = strchr (str, '+');
32382 size_t len;
32383
32384 if (ext != NULL)
32385 len = ext - str;
32386 else
32387 len = strlen (str);
32388
32389 if (len == 0)
32390 {
32391 as_bad (_("missing architecture name `%s'"), str);
32392 return FALSE;
32393 }
32394
32395 for (opt = arm_archs; opt->name != NULL; opt++)
32396 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
32397 {
32398 march_cpu_opt = &opt->value;
32399 if (march_ext_opt == NULL)
32400 march_ext_opt = XNEW (arm_feature_set);
32401 *march_ext_opt = arm_arch_none;
32402 march_fpu_opt = &opt->default_fpu;
32403 selected_ctx_ext_table = opt->ext_table;
32404 strcpy (selected_cpu_name, opt->name);
32405
32406 if (ext != NULL)
32407 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
32408 opt->ext_table);
32409
32410 return TRUE;
32411 }
32412
32413 as_bad (_("unknown architecture `%s'\n"), str);
32414 return FALSE;
32415 }
32416
32417 static bfd_boolean
32418 arm_parse_fpu (const char * str)
32419 {
32420 const struct arm_option_fpu_value_table * opt;
32421
32422 for (opt = arm_fpus; opt->name != NULL; opt++)
32423 if (streq (opt->name, str))
32424 {
32425 mfpu_opt = &opt->value;
32426 return TRUE;
32427 }
32428
32429 as_bad (_("unknown floating point format `%s'\n"), str);
32430 return FALSE;
32431 }
32432
32433 static bfd_boolean
32434 arm_parse_float_abi (const char * str)
32435 {
32436 const struct arm_option_value_table * opt;
32437
32438 for (opt = arm_float_abis; opt->name != NULL; opt++)
32439 if (streq (opt->name, str))
32440 {
32441 mfloat_abi_opt = opt->value;
32442 return TRUE;
32443 }
32444
32445 as_bad (_("unknown floating point abi `%s'\n"), str);
32446 return FALSE;
32447 }
32448
32449 #ifdef OBJ_ELF
32450 static bfd_boolean
32451 arm_parse_eabi (const char * str)
32452 {
32453 const struct arm_option_value_table *opt;
32454
32455 for (opt = arm_eabis; opt->name != NULL; opt++)
32456 if (streq (opt->name, str))
32457 {
32458 meabi_flags = opt->value;
32459 return TRUE;
32460 }
32461 as_bad (_("unknown EABI `%s'\n"), str);
32462 return FALSE;
32463 }
32464 #endif
32465
32466 static bfd_boolean
32467 arm_parse_it_mode (const char * str)
32468 {
32469 bfd_boolean ret = TRUE;
32470
32471 if (streq ("arm", str))
32472 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
32473 else if (streq ("thumb", str))
32474 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
32475 else if (streq ("always", str))
32476 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
32477 else if (streq ("never", str))
32478 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
32479 else
32480 {
32481 as_bad (_("unknown implicit IT mode `%s', should be "\
32482 "arm, thumb, always, or never."), str);
32483 ret = FALSE;
32484 }
32485
32486 return ret;
32487 }
32488
32489 static bfd_boolean
32490 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
32491 {
32492 codecomposer_syntax = TRUE;
32493 arm_comment_chars[0] = ';';
32494 arm_line_separator_chars[0] = 0;
32495 return TRUE;
32496 }
32497
32498 struct arm_long_option_table arm_long_opts[] =
32499 {
32500 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
32501 arm_parse_cpu, NULL},
32502 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
32503 arm_parse_arch, NULL},
32504 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
32505 arm_parse_fpu, NULL},
32506 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
32507 arm_parse_float_abi, NULL},
32508 #ifdef OBJ_ELF
32509 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
32510 arm_parse_eabi, NULL},
32511 #endif
32512 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
32513 arm_parse_it_mode, NULL},
32514 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
32515 arm_ccs_mode, NULL},
32516 {"mfp16-format=",
32517 N_("[ieee|alternative]\n\
32518 set the encoding for half precision floating point "
32519 "numbers to IEEE\n\
32520 or Arm alternative format."),
32521 arm_parse_fp16_opt, NULL },
32522 {NULL, NULL, 0, NULL}
32523 };
32524
32525 int
32526 md_parse_option (int c, const char * arg)
32527 {
32528 struct arm_option_table *opt;
32529 const struct arm_legacy_option_table *fopt;
32530 struct arm_long_option_table *lopt;
32531
32532 switch (c)
32533 {
32534 #ifdef OPTION_EB
32535 case OPTION_EB:
32536 target_big_endian = 1;
32537 break;
32538 #endif
32539
32540 #ifdef OPTION_EL
32541 case OPTION_EL:
32542 target_big_endian = 0;
32543 break;
32544 #endif
32545
32546 case OPTION_FIX_V4BX:
32547 fix_v4bx = TRUE;
32548 break;
32549
32550 #ifdef OBJ_ELF
32551 case OPTION_FDPIC:
32552 arm_fdpic = TRUE;
32553 break;
32554 #endif /* OBJ_ELF */
32555
32556 case 'a':
32557 /* Listing option. Just ignore these, we don't support additional
32558 ones. */
32559 return 0;
32560
32561 default:
32562 for (opt = arm_opts; opt->option != NULL; opt++)
32563 {
32564 if (c == opt->option[0]
32565 && ((arg == NULL && opt->option[1] == 0)
32566 || streq (arg, opt->option + 1)))
32567 {
32568 /* If the option is deprecated, tell the user. */
32569 if (warn_on_deprecated && opt->deprecated != NULL)
32570 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32571 arg ? arg : "", _(opt->deprecated));
32572
32573 if (opt->var != NULL)
32574 *opt->var = opt->value;
32575
32576 return 1;
32577 }
32578 }
32579
32580 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
32581 {
32582 if (c == fopt->option[0]
32583 && ((arg == NULL && fopt->option[1] == 0)
32584 || streq (arg, fopt->option + 1)))
32585 {
32586 /* If the option is deprecated, tell the user. */
32587 if (warn_on_deprecated && fopt->deprecated != NULL)
32588 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32589 arg ? arg : "", _(fopt->deprecated));
32590
32591 if (fopt->var != NULL)
32592 *fopt->var = &fopt->value;
32593
32594 return 1;
32595 }
32596 }
32597
32598 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32599 {
32600 /* These options are expected to have an argument. */
32601 if (c == lopt->option[0]
32602 && arg != NULL
32603 && strncmp (arg, lopt->option + 1,
32604 strlen (lopt->option + 1)) == 0)
32605 {
32606 /* If the option is deprecated, tell the user. */
32607 if (warn_on_deprecated && lopt->deprecated != NULL)
32608 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
32609 _(lopt->deprecated));
32610
32611 /* Call the sup-option parser. */
32612 return lopt->func (arg + strlen (lopt->option) - 1);
32613 }
32614 }
32615
32616 return 0;
32617 }
32618
32619 return 1;
32620 }
32621
32622 void
32623 md_show_usage (FILE * fp)
32624 {
32625 struct arm_option_table *opt;
32626 struct arm_long_option_table *lopt;
32627
32628 fprintf (fp, _(" ARM-specific assembler options:\n"));
32629
32630 for (opt = arm_opts; opt->option != NULL; opt++)
32631 if (opt->help != NULL)
32632 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
32633
32634 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32635 if (lopt->help != NULL)
32636 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
32637
32638 #ifdef OPTION_EB
32639 fprintf (fp, _("\
32640 -EB assemble code for a big-endian cpu\n"));
32641 #endif
32642
32643 #ifdef OPTION_EL
32644 fprintf (fp, _("\
32645 -EL assemble code for a little-endian cpu\n"));
32646 #endif
32647
32648 fprintf (fp, _("\
32649 --fix-v4bx Allow BX in ARMv4 code\n"));
32650
32651 #ifdef OBJ_ELF
32652 fprintf (fp, _("\
32653 --fdpic generate an FDPIC object file\n"));
32654 #endif /* OBJ_ELF */
32655 }
32656
32657 #ifdef OBJ_ELF
32658
32659 typedef struct
32660 {
32661 int val;
32662 arm_feature_set flags;
32663 } cpu_arch_ver_table;
32664
32665 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32666 chronologically for architectures, with an exception for ARMv6-M and
32667 ARMv6S-M due to legacy reasons. No new architecture should have a
32668 special case. This allows for build attribute selection results to be
32669 stable when new architectures are added. */
32670 static const cpu_arch_ver_table cpu_arch_ver[] =
32671 {
32672 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
32673 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
32674 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
32675 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
32676 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
32677 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
32678 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
32679 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
32680 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
32681 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
32682 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
32683 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
32684 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
32685 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
32686 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
32687 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
32688 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
32689 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
32690 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
32691 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
32692 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
32693 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
32694 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
32695 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
32696
32697 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32698 always selected build attributes to match those of ARMv6-M
32699 (resp. ARMv6S-M). However, due to these architectures being a strict
32700 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32701 would be selected when fully respecting chronology of architectures.
32702 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32703 move them before ARMv7 architectures. */
32704 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
32705 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
32706
32707 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
32708 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
32709 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
32710 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
32711 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
32712 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
32713 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
32714 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
32715 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
32716 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
32717 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
32718 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
32719 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
32720 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
32721 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
32722 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
32723 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_6A},
32724 {-1, ARM_ARCH_NONE}
32725 };
32726
32727 /* Set an attribute if it has not already been set by the user. */
32728
32729 static void
32730 aeabi_set_attribute_int (int tag, int value)
32731 {
32732 if (tag < 1
32733 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32734 || !attributes_set_explicitly[tag])
32735 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
32736 }
32737
32738 static void
32739 aeabi_set_attribute_string (int tag, const char *value)
32740 {
32741 if (tag < 1
32742 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32743 || !attributes_set_explicitly[tag])
32744 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
32745 }
32746
32747 /* Return whether features in the *NEEDED feature set are available via
32748 extensions for the architecture whose feature set is *ARCH_FSET. */
32749
32750 static bfd_boolean
32751 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
32752 const arm_feature_set *needed)
32753 {
32754 int i, nb_allowed_archs;
32755 arm_feature_set ext_fset;
32756 const struct arm_option_extension_value_table *opt;
32757
32758 ext_fset = arm_arch_none;
32759 for (opt = arm_extensions; opt->name != NULL; opt++)
32760 {
32761 /* Extension does not provide any feature we need. */
32762 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
32763 continue;
32764
32765 nb_allowed_archs =
32766 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32767 for (i = 0; i < nb_allowed_archs; i++)
32768 {
32769 /* Empty entry. */
32770 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
32771 break;
32772
32773 /* Extension is available, add it. */
32774 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
32775 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
32776 }
32777 }
32778
32779 /* Can we enable all features in *needed? */
32780 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
32781 }
32782
32783 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32784 a given architecture feature set *ARCH_EXT_FSET including extension feature
32785 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32786 - if true, check for an exact match of the architecture modulo extensions;
32787 - otherwise, select build attribute value of the first superset
32788 architecture released so that results remains stable when new architectures
32789 are added.
32790 For -march/-mcpu=all the build attribute value of the most featureful
32791 architecture is returned. Tag_CPU_arch_profile result is returned in
32792 PROFILE. */
32793
32794 static int
32795 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
32796 const arm_feature_set *ext_fset,
32797 char *profile, int exact_match)
32798 {
32799 arm_feature_set arch_fset;
32800 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
32801
32802 /* Select most featureful architecture with all its extensions if building
32803 for -march=all as the feature sets used to set build attributes. */
32804 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
32805 {
32806 /* Force revisiting of decision for each new architecture. */
32807 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
32808 *profile = 'A';
32809 return TAG_CPU_ARCH_V8;
32810 }
32811
32812 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
32813
32814 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
32815 {
32816 arm_feature_set known_arch_fset;
32817
32818 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
32819 if (exact_match)
32820 {
32821 /* Base architecture match user-specified architecture and
32822 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32823 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
32824 {
32825 p_ver_ret = p_ver;
32826 goto found;
32827 }
32828 /* Base architecture match user-specified architecture only
32829 (eg. ARMv6-M in the same case as above). Record it in case we
32830 find a match with above condition. */
32831 else if (p_ver_ret == NULL
32832 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
32833 p_ver_ret = p_ver;
32834 }
32835 else
32836 {
32837
32838 /* Architecture has all features wanted. */
32839 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
32840 {
32841 arm_feature_set added_fset;
32842
32843 /* Compute features added by this architecture over the one
32844 recorded in p_ver_ret. */
32845 if (p_ver_ret != NULL)
32846 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
32847 p_ver_ret->flags);
32848 /* First architecture that match incl. with extensions, or the
32849 only difference in features over the recorded match is
32850 features that were optional and are now mandatory. */
32851 if (p_ver_ret == NULL
32852 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
32853 {
32854 p_ver_ret = p_ver;
32855 goto found;
32856 }
32857 }
32858 else if (p_ver_ret == NULL)
32859 {
32860 arm_feature_set needed_ext_fset;
32861
32862 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
32863
32864 /* Architecture has all features needed when using some
32865 extensions. Record it and continue searching in case there
32866 exist an architecture providing all needed features without
32867 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32868 OS extension). */
32869 if (have_ext_for_needed_feat_p (&known_arch_fset,
32870 &needed_ext_fset))
32871 p_ver_ret = p_ver;
32872 }
32873 }
32874 }
32875
32876 if (p_ver_ret == NULL)
32877 return -1;
32878
32879 found:
32880 /* Tag_CPU_arch_profile. */
32881 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
32882 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
32883 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
32884 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
32885 *profile = 'A';
32886 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
32887 *profile = 'R';
32888 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
32889 *profile = 'M';
32890 else
32891 *profile = '\0';
32892 return p_ver_ret->val;
32893 }
32894
32895 /* Set the public EABI object attributes. */
32896
32897 static void
32898 aeabi_set_public_attributes (void)
32899 {
32900 char profile = '\0';
32901 int arch = -1;
32902 int virt_sec = 0;
32903 int fp16_optional = 0;
32904 int skip_exact_match = 0;
32905 arm_feature_set flags, flags_arch, flags_ext;
32906
32907 /* Autodetection mode, choose the architecture based the instructions
32908 actually used. */
32909 if (no_cpu_selected ())
32910 {
32911 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
32912
32913 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
32914 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
32915
32916 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
32917 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
32918
32919 /* Code run during relaxation relies on selected_cpu being set. */
32920 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32921 flags_ext = arm_arch_none;
32922 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
32923 selected_ext = flags_ext;
32924 selected_cpu = flags;
32925 }
32926 /* Otherwise, choose the architecture based on the capabilities of the
32927 requested cpu. */
32928 else
32929 {
32930 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
32931 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
32932 flags_ext = selected_ext;
32933 flags = selected_cpu;
32934 }
32935 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
32936
32937 /* Allow the user to override the reported architecture. */
32938 if (!ARM_FEATURE_ZERO (selected_object_arch))
32939 {
32940 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
32941 flags_ext = arm_arch_none;
32942 }
32943 else
32944 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
32945
32946 /* When this function is run again after relaxation has happened there is no
32947 way to determine whether an architecture or CPU was specified by the user:
32948 - selected_cpu is set above for relaxation to work;
32949 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32950 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32951 Therefore, if not in -march=all case we first try an exact match and fall
32952 back to autodetection. */
32953 if (!skip_exact_match)
32954 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
32955 if (arch == -1)
32956 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32957 if (arch == -1)
32958 as_bad (_("no architecture contains all the instructions used\n"));
32959
32960 /* Tag_CPU_name. */
32961 if (selected_cpu_name[0])
32962 {
32963 char *q;
32964
32965 q = selected_cpu_name;
32966 if (strncmp (q, "armv", 4) == 0)
32967 {
32968 int i;
32969
32970 q += 4;
32971 for (i = 0; q[i]; i++)
32972 q[i] = TOUPPER (q[i]);
32973 }
32974 aeabi_set_attribute_string (Tag_CPU_name, q);
32975 }
32976
32977 /* Tag_CPU_arch. */
32978 aeabi_set_attribute_int (Tag_CPU_arch, arch);
32979
32980 /* Tag_CPU_arch_profile. */
32981 if (profile != '\0')
32982 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
32983
32984 /* Tag_DSP_extension. */
32985 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
32986 aeabi_set_attribute_int (Tag_DSP_extension, 1);
32987
32988 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32989 /* Tag_ARM_ISA_use. */
32990 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
32991 || ARM_FEATURE_ZERO (flags_arch))
32992 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
32993
32994 /* Tag_THUMB_ISA_use. */
32995 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
32996 || ARM_FEATURE_ZERO (flags_arch))
32997 {
32998 int thumb_isa_use;
32999
33000 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
33001 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
33002 thumb_isa_use = 3;
33003 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
33004 thumb_isa_use = 2;
33005 else
33006 thumb_isa_use = 1;
33007 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
33008 }
33009
33010 /* Tag_VFP_arch. */
33011 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
33012 aeabi_set_attribute_int (Tag_VFP_arch,
33013 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
33014 ? 7 : 8);
33015 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
33016 aeabi_set_attribute_int (Tag_VFP_arch,
33017 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
33018 ? 5 : 6);
33019 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
33020 {
33021 fp16_optional = 1;
33022 aeabi_set_attribute_int (Tag_VFP_arch, 3);
33023 }
33024 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
33025 {
33026 aeabi_set_attribute_int (Tag_VFP_arch, 4);
33027 fp16_optional = 1;
33028 }
33029 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
33030 aeabi_set_attribute_int (Tag_VFP_arch, 2);
33031 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
33032 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
33033 aeabi_set_attribute_int (Tag_VFP_arch, 1);
33034
33035 /* Tag_ABI_HardFP_use. */
33036 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
33037 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
33038 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
33039
33040 /* Tag_WMMX_arch. */
33041 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
33042 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
33043 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
33044 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
33045
33046 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
33047 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
33048 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
33049 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
33050 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
33051 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
33052 {
33053 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
33054 {
33055 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
33056 }
33057 else
33058 {
33059 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
33060 fp16_optional = 1;
33061 }
33062 }
33063
33064 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
33065 aeabi_set_attribute_int (Tag_MVE_arch, 2);
33066 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
33067 aeabi_set_attribute_int (Tag_MVE_arch, 1);
33068
33069 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
33070 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
33071 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
33072
33073 /* Tag_DIV_use.
33074
33075 We set Tag_DIV_use to two when integer divide instructions have been used
33076 in ARM state, or when Thumb integer divide instructions have been used,
33077 but we have no architecture profile set, nor have we any ARM instructions.
33078
33079 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
33080 by the base architecture.
33081
33082 For new architectures we will have to check these tests. */
33083 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
33084 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
33085 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
33086 aeabi_set_attribute_int (Tag_DIV_use, 0);
33087 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
33088 || (profile == '\0'
33089 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
33090 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
33091 aeabi_set_attribute_int (Tag_DIV_use, 2);
33092
33093 /* Tag_MP_extension_use. */
33094 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
33095 aeabi_set_attribute_int (Tag_MPextension_use, 1);
33096
33097 /* Tag Virtualization_use. */
33098 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
33099 virt_sec |= 1;
33100 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
33101 virt_sec |= 2;
33102 if (virt_sec != 0)
33103 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
33104
33105 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
33106 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
33107 }
33108
33109 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
33110 finished and free extension feature bits which will not be used anymore. */
33111
33112 void
33113 arm_md_post_relax (void)
33114 {
33115 aeabi_set_public_attributes ();
33116 XDELETE (mcpu_ext_opt);
33117 mcpu_ext_opt = NULL;
33118 XDELETE (march_ext_opt);
33119 march_ext_opt = NULL;
33120 }
33121
33122 /* Add the default contents for the .ARM.attributes section. */
33123
33124 void
33125 arm_md_end (void)
33126 {
33127 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
33128 return;
33129
33130 aeabi_set_public_attributes ();
33131 }
33132 #endif /* OBJ_ELF */
33133
33134 /* Parse a .cpu directive. */
33135
33136 static void
33137 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
33138 {
33139 const struct arm_cpu_option_table *opt;
33140 char *name;
33141 char saved_char;
33142
33143 name = input_line_pointer;
33144 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33145 input_line_pointer++;
33146 saved_char = *input_line_pointer;
33147 *input_line_pointer = 0;
33148
33149 /* Skip the first "all" entry. */
33150 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
33151 if (streq (opt->name, name))
33152 {
33153 selected_arch = opt->value;
33154 selected_ext = opt->ext;
33155 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33156 if (opt->canonical_name)
33157 strcpy (selected_cpu_name, opt->canonical_name);
33158 else
33159 {
33160 int i;
33161 for (i = 0; opt->name[i]; i++)
33162 selected_cpu_name[i] = TOUPPER (opt->name[i]);
33163
33164 selected_cpu_name[i] = 0;
33165 }
33166 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33167
33168 *input_line_pointer = saved_char;
33169 demand_empty_rest_of_line ();
33170 return;
33171 }
33172 as_bad (_("unknown cpu `%s'"), name);
33173 *input_line_pointer = saved_char;
33174 ignore_rest_of_line ();
33175 }
33176
33177 /* Parse a .arch directive. */
33178
33179 static void
33180 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
33181 {
33182 const struct arm_arch_option_table *opt;
33183 char saved_char;
33184 char *name;
33185
33186 name = input_line_pointer;
33187 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33188 input_line_pointer++;
33189 saved_char = *input_line_pointer;
33190 *input_line_pointer = 0;
33191
33192 /* Skip the first "all" entry. */
33193 for (opt = arm_archs + 1; opt->name != NULL; opt++)
33194 if (streq (opt->name, name))
33195 {
33196 selected_arch = opt->value;
33197 selected_ctx_ext_table = opt->ext_table;
33198 selected_ext = arm_arch_none;
33199 selected_cpu = selected_arch;
33200 strcpy (selected_cpu_name, opt->name);
33201 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33202 *input_line_pointer = saved_char;
33203 demand_empty_rest_of_line ();
33204 return;
33205 }
33206
33207 as_bad (_("unknown architecture `%s'\n"), name);
33208 *input_line_pointer = saved_char;
33209 ignore_rest_of_line ();
33210 }
33211
33212 /* Parse a .object_arch directive. */
33213
33214 static void
33215 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
33216 {
33217 const struct arm_arch_option_table *opt;
33218 char saved_char;
33219 char *name;
33220
33221 name = input_line_pointer;
33222 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33223 input_line_pointer++;
33224 saved_char = *input_line_pointer;
33225 *input_line_pointer = 0;
33226
33227 /* Skip the first "all" entry. */
33228 for (opt = arm_archs + 1; opt->name != NULL; opt++)
33229 if (streq (opt->name, name))
33230 {
33231 selected_object_arch = opt->value;
33232 *input_line_pointer = saved_char;
33233 demand_empty_rest_of_line ();
33234 return;
33235 }
33236
33237 as_bad (_("unknown architecture `%s'\n"), name);
33238 *input_line_pointer = saved_char;
33239 ignore_rest_of_line ();
33240 }
33241
33242 /* Parse a .arch_extension directive. */
33243
33244 static void
33245 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
33246 {
33247 const struct arm_option_extension_value_table *opt;
33248 char saved_char;
33249 char *name;
33250 int adding_value = 1;
33251
33252 name = input_line_pointer;
33253 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33254 input_line_pointer++;
33255 saved_char = *input_line_pointer;
33256 *input_line_pointer = 0;
33257
33258 if (strlen (name) >= 2
33259 && strncmp (name, "no", 2) == 0)
33260 {
33261 adding_value = 0;
33262 name += 2;
33263 }
33264
33265 /* Check the context specific extension table */
33266 if (selected_ctx_ext_table)
33267 {
33268 const struct arm_ext_table * ext_opt;
33269 for (ext_opt = selected_ctx_ext_table; ext_opt->name != NULL; ext_opt++)
33270 {
33271 if (streq (ext_opt->name, name))
33272 {
33273 if (adding_value)
33274 {
33275 if (ARM_FEATURE_ZERO (ext_opt->merge))
33276 /* TODO: Option not supported. When we remove the
33277 legacy table this case should error out. */
33278 continue;
33279 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
33280 ext_opt->merge);
33281 }
33282 else
33283 ARM_CLEAR_FEATURE (selected_ext, selected_ext, ext_opt->clear);
33284
33285 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33286 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33287 *input_line_pointer = saved_char;
33288 demand_empty_rest_of_line ();
33289 return;
33290 }
33291 }
33292 }
33293
33294 for (opt = arm_extensions; opt->name != NULL; opt++)
33295 if (streq (opt->name, name))
33296 {
33297 int i, nb_allowed_archs =
33298 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
33299 for (i = 0; i < nb_allowed_archs; i++)
33300 {
33301 /* Empty entry. */
33302 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
33303 continue;
33304 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
33305 break;
33306 }
33307
33308 if (i == nb_allowed_archs)
33309 {
33310 as_bad (_("architectural extension `%s' is not allowed for the "
33311 "current base architecture"), name);
33312 break;
33313 }
33314
33315 if (adding_value)
33316 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
33317 opt->merge_value);
33318 else
33319 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
33320
33321 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
33322 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33323 *input_line_pointer = saved_char;
33324 demand_empty_rest_of_line ();
33325 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
33326 on this return so that duplicate extensions (extensions with the
33327 same name as a previous extension in the list) are not considered
33328 for command-line parsing. */
33329 return;
33330 }
33331
33332 if (opt->name == NULL)
33333 as_bad (_("unknown architecture extension `%s'\n"), name);
33334
33335 *input_line_pointer = saved_char;
33336 ignore_rest_of_line ();
33337 }
33338
33339 /* Parse a .fpu directive. */
33340
33341 static void
33342 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
33343 {
33344 const struct arm_option_fpu_value_table *opt;
33345 char saved_char;
33346 char *name;
33347
33348 name = input_line_pointer;
33349 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
33350 input_line_pointer++;
33351 saved_char = *input_line_pointer;
33352 *input_line_pointer = 0;
33353
33354 for (opt = arm_fpus; opt->name != NULL; opt++)
33355 if (streq (opt->name, name))
33356 {
33357 selected_fpu = opt->value;
33358 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, fpu_any);
33359 #ifndef CPU_DEFAULT
33360 if (no_cpu_selected ())
33361 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
33362 else
33363 #endif
33364 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
33365 *input_line_pointer = saved_char;
33366 demand_empty_rest_of_line ();
33367 return;
33368 }
33369
33370 as_bad (_("unknown floating point format `%s'\n"), name);
33371 *input_line_pointer = saved_char;
33372 ignore_rest_of_line ();
33373 }
33374
33375 /* Copy symbol information. */
33376
33377 void
33378 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
33379 {
33380 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
33381 }
33382
33383 #ifdef OBJ_ELF
33384 /* Given a symbolic attribute NAME, return the proper integer value.
33385 Returns -1 if the attribute is not known. */
33386
33387 int
33388 arm_convert_symbolic_attribute (const char *name)
33389 {
33390 static const struct
33391 {
33392 const char * name;
33393 const int tag;
33394 }
33395 attribute_table[] =
33396 {
33397 /* When you modify this table you should
33398 also modify the list in doc/c-arm.texi. */
33399 #define T(tag) {#tag, tag}
33400 T (Tag_CPU_raw_name),
33401 T (Tag_CPU_name),
33402 T (Tag_CPU_arch),
33403 T (Tag_CPU_arch_profile),
33404 T (Tag_ARM_ISA_use),
33405 T (Tag_THUMB_ISA_use),
33406 T (Tag_FP_arch),
33407 T (Tag_VFP_arch),
33408 T (Tag_WMMX_arch),
33409 T (Tag_Advanced_SIMD_arch),
33410 T (Tag_PCS_config),
33411 T (Tag_ABI_PCS_R9_use),
33412 T (Tag_ABI_PCS_RW_data),
33413 T (Tag_ABI_PCS_RO_data),
33414 T (Tag_ABI_PCS_GOT_use),
33415 T (Tag_ABI_PCS_wchar_t),
33416 T (Tag_ABI_FP_rounding),
33417 T (Tag_ABI_FP_denormal),
33418 T (Tag_ABI_FP_exceptions),
33419 T (Tag_ABI_FP_user_exceptions),
33420 T (Tag_ABI_FP_number_model),
33421 T (Tag_ABI_align_needed),
33422 T (Tag_ABI_align8_needed),
33423 T (Tag_ABI_align_preserved),
33424 T (Tag_ABI_align8_preserved),
33425 T (Tag_ABI_enum_size),
33426 T (Tag_ABI_HardFP_use),
33427 T (Tag_ABI_VFP_args),
33428 T (Tag_ABI_WMMX_args),
33429 T (Tag_ABI_optimization_goals),
33430 T (Tag_ABI_FP_optimization_goals),
33431 T (Tag_compatibility),
33432 T (Tag_CPU_unaligned_access),
33433 T (Tag_FP_HP_extension),
33434 T (Tag_VFP_HP_extension),
33435 T (Tag_ABI_FP_16bit_format),
33436 T (Tag_MPextension_use),
33437 T (Tag_DIV_use),
33438 T (Tag_nodefaults),
33439 T (Tag_also_compatible_with),
33440 T (Tag_conformance),
33441 T (Tag_T2EE_use),
33442 T (Tag_Virtualization_use),
33443 T (Tag_DSP_extension),
33444 T (Tag_MVE_arch),
33445 /* We deliberately do not include Tag_MPextension_use_legacy. */
33446 #undef T
33447 };
33448 unsigned int i;
33449
33450 if (name == NULL)
33451 return -1;
33452
33453 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
33454 if (streq (name, attribute_table[i].name))
33455 return attribute_table[i].tag;
33456
33457 return -1;
33458 }
33459
33460 /* Apply sym value for relocations only in the case that they are for
33461 local symbols in the same segment as the fixup and you have the
33462 respective architectural feature for blx and simple switches. */
33463
33464 int
33465 arm_apply_sym_value (struct fix * fixP, segT this_seg)
33466 {
33467 if (fixP->fx_addsy
33468 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
33469 /* PR 17444: If the local symbol is in a different section then a reloc
33470 will always be generated for it, so applying the symbol value now
33471 will result in a double offset being stored in the relocation. */
33472 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
33473 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
33474 {
33475 switch (fixP->fx_r_type)
33476 {
33477 case BFD_RELOC_ARM_PCREL_BLX:
33478 case BFD_RELOC_THUMB_PCREL_BRANCH23:
33479 if (ARM_IS_FUNC (fixP->fx_addsy))
33480 return 1;
33481 break;
33482
33483 case BFD_RELOC_ARM_PCREL_CALL:
33484 case BFD_RELOC_THUMB_PCREL_BLX:
33485 if (THUMB_IS_FUNC (fixP->fx_addsy))
33486 return 1;
33487 break;
33488
33489 default:
33490 break;
33491 }
33492
33493 }
33494 return 0;
33495 }
33496 #endif /* OBJ_ELF */
This page took 0.917722 seconds and 4 git commands to generate.