3c8bd6061b3ea4f39f8896ebfedd6196827241e4
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rm_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rd_rn (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397 }
7398
7399 static void
7400 do_rn_rd (void)
7401 {
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404 }
7405
7406 static bfd_boolean
7407 check_obsolete (const arm_feature_set *feature, const char *msg)
7408 {
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static void
7424 do_rd_rm_rn (void)
7425 {
7426 unsigned Rn = inst.operands[2].reg;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7440 }
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= Rn << 16;
7445 }
7446
7447 static void
7448 do_rd_rn_rm (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453 }
7454
7455 static void
7456 do_rm_rd_rn (void)
7457 {
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_imm0 (void)
7470 {
7471 inst.instruction |= inst.operands[0].imm;
7472 }
7473
7474 static void
7475 do_rd_cpaddr (void)
7476 {
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
7479 }
7480
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
7484
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7487
7488 static void
7489 do_adr (void)
7490 {
7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7492
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7496 inst.reloc.pc_rel = 1;
7497 inst.reloc.exp.X_add_number -= 8;
7498 }
7499
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7504
7505 static void
7506 do_adrl (void)
7507 {
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7509
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
7515 inst.reloc.exp.X_add_number -= 8;
7516 }
7517
7518 static void
7519 do_arit (void)
7520 {
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526 }
7527
7528 static void
7529 do_barrier (void)
7530 {
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
7536 _("bad barrier type"));
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541 }
7542
7543 static void
7544 do_bfc (void)
7545 {
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553 }
7554
7555 static void
7556 do_bfi (void)
7557 {
7558 unsigned int msb;
7559
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
7564
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
7573 }
7574
7575 static void
7576 do_bfx (void)
7577 {
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584 }
7585
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7591
7592 static void
7593 do_bkpt (void)
7594 {
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7597
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600 }
7601
7602 static void
7603 encode_branch (int default_reloc)
7604 {
7605 if (inst.operands[0].hasreloc)
7606 {
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7613 }
7614 else
7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7616 inst.reloc.pc_rel = 1;
7617 }
7618
7619 static void
7620 do_branch (void)
7621 {
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626 #endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628 }
7629
7630 static void
7631 do_bl (void)
7632 {
7633 #ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642 #endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7644 }
7645
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7653
7654 static void
7655 do_blx (void)
7656 {
7657 if (inst.operands[0].isreg)
7658 {
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7663
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
7667 {
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7673 inst.instruction = 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7675 }
7676 }
7677
7678 static void
7679 do_bx (void)
7680 {
7681 bfd_boolean want_reloc;
7682
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7685
7686 inst.instruction |= inst.operands[0].reg;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
7693 #ifdef OBJ_ELF
7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7695 #endif
7696 want_reloc = FALSE;
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7700 }
7701
7702
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7704
7705 static void
7706 do_bxj (void)
7707 {
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
7712 }
7713
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717 static void
7718 do_cdp (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726 }
7727
7728 static void
7729 do_cmp (void)
7730 {
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
7733 }
7734
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
7742
7743 struct deprecated_coproc_regs_s
7744 {
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754 };
7755
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761 {
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777 };
7778
7779 #undef DEPR_ACCESS_V8
7780
7781 static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
7784 static void
7785 do_co_reg (void)
7786 {
7787 unsigned Rd;
7788 size_t i;
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
7825
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
7828 inst.instruction |= Rd << 12;
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832 }
7833
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
7839
7840 Two XScale instructions are special cases of these:
7841
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7844
7845 Result unpredictable if Rd or Rn is R15. */
7846
7847 static void
7848 do_co_reg2c (void)
7849 {
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
7870 inst.instruction |= inst.operands[4].reg;
7871 }
7872
7873 static void
7874 do_cpsi (void)
7875 {
7876 inst.instruction |= inst.operands[0].imm << 6;
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
7882 }
7883
7884 static void
7885 do_dbg (void)
7886 {
7887 inst.instruction |= inst.operands[0].imm;
7888 }
7889
7890 static void
7891 do_div (void)
7892 {
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907 }
7908
7909 static void
7910 do_it (void)
7911 {
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
7917 inst.size = 0;
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
7924 }
7925
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928 static int
7929 only_one_reg_in_list (int range)
7930 {
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933 }
7934
7935 static void
7936 encode_ldmstm(int from_push_pop_mnem)
7937 {
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
7940 int one_reg;
7941
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
7944
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
7947
7948 if (inst.operands[0].writeback)
7949 {
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
7953 {
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7971 }
7972 }
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984 }
7985
7986 static void
7987 do_ldmstm (void)
7988 {
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7990 }
7991
7992 /* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
7998 static void
7999 do_ldrd (void)
8000 {
8001 constraint (inst.operands[0].reg % 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
8008
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
8011
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8015
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8020
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
8029 }
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8032 }
8033
8034 static void
8035 do_ldrex (void)
8036 {
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
8054
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
8058
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
8064 }
8065
8066 static void
8067 do_ldrexd (void)
8068 {
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
8080 }
8081
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084 static void
8085 check_ldr_r15_aligned (void)
8086 {
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092 }
8093
8094 static void
8095 do_ldst (void)
8096 {
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8100 return;
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8102 check_ldr_r15_aligned ();
8103 }
8104
8105 static void
8106 do_ldstt (void)
8107 {
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
8111 {
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
8114 _("this instruction requires a post-indexed address"));
8115
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
8119 }
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122 }
8123
8124 /* Halfword and signed-byte load/store operations. */
8125
8126 static void
8127 do_ldstv4 (void)
8128 {
8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8133 return;
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8135 }
8136
8137 static void
8138 do_ldsttv4 (void)
8139 {
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
8143 {
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
8146 _("this instruction requires a post-indexed address"));
8147
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
8151 }
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154 }
8155
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158 static void
8159 do_lstc (void)
8160 {
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
8164 }
8165
8166 static void
8167 do_mlas (void)
8168 {
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst.operands[0].reg == inst.operands[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8172 && !(inst.instruction & 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8174
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
8179 }
8180
8181 static void
8182 do_mov (void)
8183 {
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186 }
8187
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189 static void
8190 do_mov16 (void)
8191 {
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
8208 }
8209
8210 static void do_vfp_nsyn_opcode (const char *);
8211
8212 static int
8213 do_vfp_nsyn_mrs (void)
8214 {
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
8227
8228 return SUCCESS;
8229 }
8230
8231 static int
8232 do_vfp_nsyn_msr (void)
8233 {
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240 }
8241
8242 static void
8243 do_vmrs (void)
8244 {
8245 unsigned Rt = inst.operands[0].reg;
8246
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
8272
8273 inst.instruction |= (Rt << 12);
8274 }
8275
8276 static void
8277 do_vmsr (void)
8278 {
8279 unsigned Rt = inst.operands[1].reg;
8280
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
8299
8300 inst.instruction |= (Rt << 12);
8301 }
8302
8303 static void
8304 do_mrs (void)
8305 {
8306 unsigned br;
8307
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8312 inst.instruction |= inst.operands[0].reg << 12;
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
8330 }
8331
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8335
8336 static void
8337 do_msr (void)
8338 {
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
8346 {
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
8350 }
8351 }
8352
8353 static void
8354 do_mul (void)
8355 {
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8367 }
8368
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8374
8375 static void
8376 do_mull (void)
8377 {
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
8382
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
8389 || inst.operands[1].reg == inst.operands[2].reg)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392 }
8393
8394 static void
8395 do_nop (void)
8396 {
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
8405 }
8406 }
8407
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8412
8413 static void
8414 do_pkhbt (void)
8415 {
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421 }
8422
8423 /* ARM V6 PKHTB (Argument Parse). */
8424
8425 static void
8426 do_pkhtb (void)
8427 {
8428 if (!inst.operands[3].present)
8429 {
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
8436 }
8437 else
8438 {
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
8443 }
8444 }
8445
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8448
8449 PLD(W) <addr_mode>
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8452
8453 static void
8454 do_pld (void)
8455 {
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465 }
8466
8467 /* ARMv7: PLI <addr_mode> */
8468 static void
8469 do_pli (void)
8470 {
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481 }
8482
8483 static void
8484 do_push_pop (void)
8485 {
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8492 }
8493
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8499
8500 static void
8501 do_rfe (void)
8502 {
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506 }
8507
8508 /* ARM V6 ssat (argument parse). */
8509
8510 static void
8511 do_ssat (void)
8512 {
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
8516
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
8519 }
8520
8521 /* ARM V6 usat (argument parse). */
8522
8523 static void
8524 do_usat (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
8529
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
8532 }
8533
8534 /* ARM V6 ssat16 (argument parse). */
8535
8536 static void
8537 do_ssat16 (void)
8538 {
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
8542 }
8543
8544 static void
8545 do_usat16 (void)
8546 {
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550 }
8551
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8554
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
8557
8558 static void
8559 do_setend (void)
8560 {
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
8567 }
8568
8569 static void
8570 do_shift (void)
8571 {
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
8575
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8579 {
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
8585 }
8586 else
8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8588 }
8589
8590 static void
8591 do_smc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_hvc (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 static void
8605 do_swi (void)
8606 {
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
8609 }
8610
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8615
8616 static void
8617 do_smla (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623 }
8624
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8629
8630 static void
8631 do_smlal (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
8637
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640 }
8641
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8645
8646 static void
8647 do_smul (void)
8648 {
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652 }
8653
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8656
8657 static void
8658 do_srs (void)
8659 {
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
8666 }
8667 else
8668 reg = REG_SP;
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
8673 inst.instruction |= WRITE_BACK;
8674 }
8675
8676 /* ARM V6 strex (argument parse). */
8677
8678 static void
8679 do_strex (void)
8680 {
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
8688
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8691
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
8700 }
8701
8702 static void
8703 do_t_strexbh (void)
8704 {
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715 }
8716
8717 static void
8718 do_strexd (void)
8719 {
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8728
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
8733
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
8737 }
8738
8739 /* ARM V8 STRL. */
8740 static void
8741 do_strlex (void)
8742 {
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747 }
8748
8749 static void
8750 do_t_strlex (void)
8751 {
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756 }
8757
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
8766 static void
8767 do_sxtah (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773 }
8774
8775 /* ARM V6 SXTH.
8776
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8780
8781 static void
8782 do_sxth (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
8787 }
8788 \f
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8791
8792 static void
8793 do_vfp_sp_monadic (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8797 }
8798
8799 static void
8800 do_vfp_sp_dyadic (void)
8801 {
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8805 }
8806
8807 static void
8808 do_vfp_sp_compare_z (void)
8809 {
8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8811 }
8812
8813 static void
8814 do_vfp_dp_sp_cvt (void)
8815 {
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8818 }
8819
8820 static void
8821 do_vfp_sp_dp_cvt (void)
8822 {
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8825 }
8826
8827 static void
8828 do_vfp_reg_from_sp (void)
8829 {
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8832 }
8833
8834 static void
8835 do_vfp_reg2_from_sp2 (void)
8836 {
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8842 }
8843
8844 static void
8845 do_vfp_sp_from_reg (void)
8846 {
8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8848 inst.instruction |= inst.operands[1].reg << 12;
8849 }
8850
8851 static void
8852 do_vfp_sp2_from_reg2 (void)
8853 {
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
8859 }
8860
8861 static void
8862 do_vfp_sp_ldst (void)
8863 {
8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
8866 }
8867
8868 static void
8869 do_vfp_dp_ldst (void)
8870 {
8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
8873 }
8874
8875
8876 static void
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8878 {
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8886 inst.instruction |= inst.operands[1].imm;
8887 }
8888
8889 static void
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8891 {
8892 int count;
8893
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
8899
8900 inst.instruction |= inst.operands[0].reg << 16;
8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8902
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
8906
8907 inst.instruction |= count;
8908 }
8909
8910 static void
8911 do_vfp_sp_ldstmia (void)
8912 {
8913 vfp_sp_ldstm (VFP_LDSTMIA);
8914 }
8915
8916 static void
8917 do_vfp_sp_ldstmdb (void)
8918 {
8919 vfp_sp_ldstm (VFP_LDSTMDB);
8920 }
8921
8922 static void
8923 do_vfp_dp_ldstmia (void)
8924 {
8925 vfp_dp_ldstm (VFP_LDSTMIA);
8926 }
8927
8928 static void
8929 do_vfp_dp_ldstmdb (void)
8930 {
8931 vfp_dp_ldstm (VFP_LDSTMDB);
8932 }
8933
8934 static void
8935 do_vfp_xp_ldstmia (void)
8936 {
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938 }
8939
8940 static void
8941 do_vfp_xp_ldstmdb (void)
8942 {
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
8944 }
8945
8946 static void
8947 do_vfp_dp_rd_rm (void)
8948 {
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951 }
8952
8953 static void
8954 do_vfp_dp_rn_rd (void)
8955 {
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958 }
8959
8960 static void
8961 do_vfp_dp_rd_rn (void)
8962 {
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965 }
8966
8967 static void
8968 do_vfp_dp_rd_rn_rm (void)
8969 {
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973 }
8974
8975 static void
8976 do_vfp_dp_rd (void)
8977 {
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979 }
8980
8981 static void
8982 do_vfp_dp_rm_rd_rn (void)
8983 {
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987 }
8988
8989 /* VFPv3 instructions. */
8990 static void
8991 do_vfp_sp_const (void)
8992 {
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
8996 }
8997
8998 static void
8999 do_vfp_dp_const (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
9004 }
9005
9006 static void
9007 vfp_conv (int srcsize)
9008 {
9009 int immbits = srcsize - inst.operands[1].imm;
9010
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028 }
9029
9030 static void
9031 do_vfp_sp_conv_16 (void)
9032 {
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035 }
9036
9037 static void
9038 do_vfp_dp_conv_16 (void)
9039 {
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042 }
9043
9044 static void
9045 do_vfp_sp_conv_32 (void)
9046 {
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049 }
9050
9051 static void
9052 do_vfp_dp_conv_32 (void)
9053 {
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056 }
9057 \f
9058 /* FPA instructions. Also in a logical order. */
9059
9060 static void
9061 do_fpa_cmp (void)
9062 {
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065 }
9066
9067 static void
9068 do_fpa_ldmstm (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
9079
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
9089
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9092
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9095
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
9102
9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
9104 }
9105 \f
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9107
9108 static void
9109 do_iwmmxt_tandorc (void)
9110 {
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112 }
9113
9114 static void
9115 do_iwmmxt_textrc (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_textrm (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127 }
9128
9129 static void
9130 do_iwmmxt_tinsr (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135 }
9136
9137 static void
9138 do_iwmmxt_tmia (void)
9139 {
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143 }
9144
9145 static void
9146 do_iwmmxt_waligni (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152 }
9153
9154 static void
9155 do_iwmmxt_wmerge (void)
9156 {
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161 }
9162
9163 static void
9164 do_iwmmxt_wmov (void)
9165 {
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstbh (void)
9174 {
9175 int reloc;
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9182 }
9183
9184 static void
9185 do_iwmmxt_wldstw (void)
9186 {
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
9193
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196 }
9197
9198 static void
9199 do_iwmmxt_wldstd (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
9219 }
9220
9221 static void
9222 do_iwmmxt_wshufh (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228 }
9229
9230 static void
9231 do_iwmmxt_wzero (void)
9232 {
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237 }
9238
9239 static void
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9241 {
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
9255 case 7:
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287 }
9288 \f
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9291
9292 /* Insns like "foo X,Y,Z". */
9293
9294 static void
9295 do_mav_triple (void)
9296 {
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9304
9305 static void
9306 do_mav_quad (void)
9307 {
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
9312 }
9313
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315 static void
9316 do_mav_dspsc (void)
9317 {
9318 inst.instruction |= inst.operands[1].reg << 12;
9319 }
9320
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9324
9325 static void
9326 do_mav_shift (void)
9327 {
9328 int imm = inst.operands[2].imm;
9329
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
9332
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9337
9338 inst.instruction |= imm;
9339 }
9340 \f
9341 /* XScale instructions. Also sorted arithmetic before move. */
9342
9343 /* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
9347
9348 static void
9349 do_xsc_mia (void)
9350 {
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353 }
9354
9355 /* Xscale move-accumulator-register (argument parse)
9356
9357 MARcc acc0,RdLo,RdHi. */
9358
9359 static void
9360 do_xsc_mar (void)
9361 {
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
9364 }
9365
9366 /* Xscale move-register-accumulator (argument parse)
9367
9368 MRAcc RdLo,RdHi,acc0. */
9369
9370 static void
9371 do_xsc_mra (void)
9372 {
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376 }
9377 \f
9378 /* Encoding functions relevant only to Thumb. */
9379
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383 static void
9384 encode_thumb32_shifted_operand (int i)
9385 {
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
9388
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
9395 {
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
9412 }
9413 }
9414
9415
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
9422
9423 static void
9424 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425 {
9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9427
9428 constraint (!inst.operands[i].isreg,
9429 _("Instruction does not support =N addresses"));
9430
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
9433 {
9434 constraint (is_pc, BAD_PC_ADDRESSING);
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
9444
9445 inst.instruction |= inst.operands[i].imm;
9446 if (inst.operands[i].shifted)
9447 {
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
9452 _("shift out of range"));
9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9460 constraint (is_t && inst.operands[i].writeback,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
9470 }
9471 else
9472 {
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
9476 }
9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9478 }
9479 else if (inst.operands[i].postind)
9480 {
9481 gas_assert (inst.operands[i].writeback);
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493 }
9494
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9580
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586 #undef X
9587
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16[] = { T16_32_TAB };
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591 #undef X
9592
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32[] = { T16_32_TAB };
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9597 #undef X
9598 #undef T16_32_TAB
9599
9600 /* Thumb instruction encoders, in alphabetical order. */
9601
9602 /* ADDW or SUBW. */
9603
9604 static void
9605 do_t_add_sub_w (void)
9606 {
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
9618
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621 }
9622
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626 static void
9627 do_t_add_sub (void)
9628 {
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
9639 if (unified_syntax)
9640 {
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
9648 narrow = !in_it_block ();
9649 else
9650 narrow = in_it_block ();
9651 if (!inst.operands[2].isreg)
9652 {
9653 int add;
9654
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
9691 if (Rd == REG_PC)
9692 {
9693 constraint (add, BAD_PC);
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
9724 }
9725 }
9726 else
9727 {
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
9739 {
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
9747
9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9749 {
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9755 {
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
9767 }
9768 }
9769
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
9793
9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9795 {
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9804 return;
9805 }
9806
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
9809
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
9812 {
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9830 }
9831 }
9832 }
9833
9834 static void
9835 do_t_adr (void)
9836 {
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= Rd << 4;
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
9850 {
9851 /* Generate a 32-bit opcode. */
9852 inst.instruction = THUMB_OP32 (inst.instruction);
9853 inst.instruction |= Rd << 8;
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
9859 /* Generate a 16-bit opcode. */
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
9864
9865 inst.instruction |= Rd << 4;
9866 }
9867 }
9868
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9875 static void
9876 do_t_arit3 (void)
9877 {
9878 int Rd, Rs, Rn;
9879
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
9885
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
9891 if (unified_syntax)
9892 {
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
9905 bfd_boolean narrow;
9906
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst.instruction))
9909 narrow = !in_it_block ();
9910 else
9911 narrow = in_it_block ();
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
9928
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
9938 }
9939 else
9940 {
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9945
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
9951
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
9955 }
9956 }
9957
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963 static void
9964 do_t_arit3c (void)
9965 {
9966 int Rd, Rs, Rn;
9967
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
9973
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
9978
9979 if (unified_syntax)
9980 {
9981 if (!inst.operands[2].isreg)
9982 {
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9990 }
9991 else
9992 {
9993 bfd_boolean narrow;
9994
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst.instruction))
9997 narrow = !in_it_block ();
9998 else
9999 narrow = in_it_block ();
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
10009 {
10010 if (Rd == Rs)
10011 {
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
10016 }
10017 if (Rd == Rn)
10018 {
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
10023 }
10024 }
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
10034 }
10035 }
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10042
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
10057 }
10058
10059 static void
10060 do_t_barrier (void)
10061 {
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
10067 _("bad barrier type"));
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072 }
10073
10074 static void
10075 do_t_bfc (void)
10076 {
10077 unsigned Rd;
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
10088 }
10089
10090 static void
10091 do_t_bfi (void)
10092 {
10093 int Rd, Rn;
10094 unsigned int msb;
10095
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
10108
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
10118 }
10119
10120 static void
10121 do_t_bfx (void)
10122 {
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138 }
10139
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10146
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10149
10150 static void
10151 do_t_blx (void)
10152 {
10153 set_it_insn_type_last ();
10154
10155 if (inst.operands[0].isreg)
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
10161 else
10162 {
10163 /* No register. This must be BLX(1). */
10164 inst.instruction = 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10166 }
10167 }
10168
10169 static void
10170 do_t_branch (void)
10171 {
10172 int opcode;
10173 int cond;
10174 int reloc;
10175
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
10193 if (unified_syntax
10194 && (inst.size_req == 4
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
10198 {
10199 inst.instruction = THUMB_OP32(opcode);
10200 if (cond == COND_ALWAYS)
10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10202 else
10203 {
10204 gas_assert (cond != 0xF);
10205 inst.instruction |= cond << 22;
10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10207 }
10208 }
10209 else
10210 {
10211 inst.instruction = THUMB_OP16(opcode);
10212 if (cond == COND_ALWAYS)
10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10214 else
10215 {
10216 inst.instruction |= cond << 8;
10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10218 }
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
10222 }
10223 inst.reloc.type = reloc;
10224 inst.reloc.pc_rel = 1;
10225 }
10226
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
10230 static void
10231 do_t_bkpt_hlt1 (int range)
10232 {
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
10235 if (inst.operands[0].present)
10236 {
10237 constraint (inst.operands[0].imm > range,
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
10240 }
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243 }
10244
10245 static void
10246 do_t_hlt (void)
10247 {
10248 do_t_bkpt_hlt1 (63);
10249 }
10250
10251 static void
10252 do_t_bkpt (void)
10253 {
10254 do_t_bkpt_hlt1 (255);
10255 }
10256
10257 static void
10258 do_t_branch23 (void)
10259 {
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10262
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10270
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
10282 #endif
10283 }
10284
10285 static void
10286 do_t_bx (void)
10287 {
10288 set_it_insn_type_last ();
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293 }
10294
10295 static void
10296 do_t_bxj (void)
10297 {
10298 int Rm;
10299
10300 set_it_insn_type_last ();
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
10304 }
10305
10306 static void
10307 do_t_clz (void)
10308 {
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
10321 }
10322
10323 static void
10324 do_t_cps (void)
10325 {
10326 set_it_insn_type (OUTSIDE_IT_INSN);
10327 inst.instruction |= inst.operands[0].imm;
10328 }
10329
10330 static void
10331 do_t_cpsi (void)
10332 {
10333 set_it_insn_type (OUTSIDE_IT_INSN);
10334 if (unified_syntax
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10337 {
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
10344 }
10345 else
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
10355 }
10356 }
10357
10358 /* THUMB CPY instruction (argument parse). */
10359
10360 static void
10361 do_t_cpy (void)
10362 {
10363 if (inst.size_req == 4)
10364 {
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 }
10369 else
10370 {
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
10374 }
10375 }
10376
10377 static void
10378 do_t_cbz (void)
10379 {
10380 set_it_insn_type (OUTSIDE_IT_INSN);
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385 }
10386
10387 static void
10388 do_t_dbg (void)
10389 {
10390 inst.instruction |= inst.operands[0].imm;
10391 }
10392
10393 static void
10394 do_t_div (void)
10395 {
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
10410 }
10411
10412 static void
10413 do_t_hint (void)
10414 {
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 }
10420
10421 static void
10422 do_t_it (void)
10423 {
10424 unsigned int cond = inst.operands[0].imm;
10425
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
10429 now_it.warn_deprecated = FALSE;
10430
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond & 0x1) == 0x0)
10433 {
10434 unsigned int mask = inst.instruction & 0x000f;
10435
10436 if ((mask & 0x7) == 0)
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
10441 else if ((mask & 0x3) == 0)
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
10446 else if ((mask & 0x1) == 0)
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
10451 else
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
10456
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
10459 }
10460
10461 inst.instruction |= cond << 4;
10462 }
10463
10464 /* Helper function used for both push/pop and ldm/stm. */
10465 static void
10466 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467 {
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
10480 if (load)
10481 {
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
10518 mask = ffs (mask) - 1;
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526 }
10527
10528 static void
10529 do_t_ldmstm (void)
10530 {
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10536
10537 if (unified_syntax)
10538 {
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
10546 && !(inst.operands[1].imm & ~0xff))
10547 {
10548 mask = 1 << inst.operands[0].reg;
10549
10550 if (inst.operands[0].reg <= 7)
10551 {
10552 if (inst.instruction == T_MNEM_stmia
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
10562
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
10582 inst.error =
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
10593 }
10594 else if (inst.operands[0] .reg == REG_SP)
10595 {
10596 if (inst.operands[0].writeback)
10597 {
10598 inst.instruction =
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
10606 inst.instruction =
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
10612 }
10613 }
10614
10615 if (!narrow)
10616 {
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
10622 }
10623 }
10624 else
10625 {
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst.instruction == T_MNEM_stmia)
10632 {
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst.operands[0].reg);
10639 }
10640 else
10641 {
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
10648 }
10649
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654 }
10655
10656 static void
10657 do_t_ldrex (void)
10658 {
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
10663 BAD_ADDR_MODE);
10664
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670 }
10671
10672 static void
10673 do_t_ldrexd (void)
10674 {
10675 if (!inst.operands[1].present)
10676 {
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
10681 }
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
10688 }
10689
10690 static void
10691 do_t_ldst (void)
10692 {
10693 unsigned long opcode;
10694 int Rn;
10695
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
10701 opcode = inst.instruction;
10702 if (unified_syntax)
10703 {
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
10717 {
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
10723 /* [Rn, Rik] */
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
10765 }
10766 /* Definitely a 32-bit variant. */
10767
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
10783 /* Do some validations regarding addressing modes. */
10784 if (inst.operands[1].immisreg)
10785 reject_bad_reg (inst.operands[1].imm);
10786
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
10791 inst.instruction = THUMB_OP32 (opcode);
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 check_ldr_r15_aligned ();
10795 return;
10796 }
10797
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10801 {
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
10810 }
10811
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
10816
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10822 {
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
10830
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
10837
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
10842
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
10852
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
10857
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
10871
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875 }
10876
10877 static void
10878 do_t_ldstd (void)
10879 {
10880 if (!inst.operands[1].present)
10881 {
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
10887 }
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10898 }
10899
10900 static void
10901 do_t_ldstt (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905 }
10906
10907 static void
10908 do_t_mla (void)
10909 {
10910 unsigned Rd, Rn, Rm, Ra;
10911
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
10926 }
10927
10928 static void
10929 do_t_mlal (void)
10930 {
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 }
10948
10949 static void
10950 do_t_mov_cmp (void)
10951 {
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
10960 if (unified_syntax)
10961 {
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10964 unsigned long opcode;
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
10968 low_regs = (Rn <= 7 && Rm <= 7);
10969 opcode = inst.instruction;
10970 if (in_it_block ())
10971 narrow = opcode != T_MNEM_movs;
10972 else
10973 narrow = opcode != T_MNEM_movs || low_regs;
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
11037 if (!inst.operands[1].isreg)
11038 {
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode == T_MNEM_mov)
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
11045 inst.instruction |= Rn << 8;
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11055 inst.instruction |= Rn << r0off;
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
11058 }
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
11066 if (in_it_block ())
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
11077 if (Rn != Rm)
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
11101 inst.instruction |= Rn;
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
11114 else if (!narrow)
11115 {
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
11122 if (in_it_block ())
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
11148 inst.instruction |= Rn << r0off;
11149 encode_thumb32_shifted_operand (1);
11150 }
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11164 arm_ext_v6);
11165 }
11166
11167 inst.instruction = T_OPCODE_MOV_HR;
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
11171 break;
11172
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
11179 break;
11180
11181 case T_MNEM_cmp:
11182 if (low_regs)
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
11194 }
11195 break;
11196 }
11197 return;
11198 }
11199
11200 inst.instruction = THUMB_OP16 (inst.instruction);
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
11206 if (inst.operands[1].isreg)
11207 {
11208 if (Rn < 8 && Rm < 8)
11209 {
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
11214 else
11215 inst.instruction = T_OPCODE_CMP_LR;
11216
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
11219 }
11220 else
11221 {
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
11227 }
11228 }
11229 else
11230 {
11231 constraint (Rn > 7,
11232 _("only lo regs allowed with immediate"));
11233 inst.instruction |= Rn << 8;
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236 }
11237
11238 static void
11239 do_t_mov16 (void)
11240 {
11241 unsigned Rd;
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
11269 }
11270
11271 static void
11272 do_t_mvn_tst (void)
11273 {
11274 unsigned Rn, Rm;
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
11295 || Rn > 7 || Rm > 7)
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
11300 narrow = !in_it_block ();
11301 else
11302 narrow = in_it_block ();
11303
11304 if (!inst.operands[1].isreg)
11305 {
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11311 inst.instruction |= Rn << r0off;
11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11313 }
11314 else
11315 {
11316 /* See if we can do this with a 16-bit instruction. */
11317 if (narrow)
11318 {
11319 inst.instruction = THUMB_OP16 (inst.instruction);
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
11322 }
11323 else
11324 {
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rn << r0off;
11331 encode_thumb32_shifted_operand (1);
11332 }
11333 }
11334 }
11335 else
11336 {
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
11341 constraint (Rn > 7 || Rm > 7,
11342 BAD_HIREG);
11343
11344 inst.instruction = THUMB_OP16 (inst.instruction);
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
11347 }
11348 }
11349
11350 static void
11351 do_t_mrs (void)
11352 {
11353 unsigned Rd;
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
11363 {
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
11371 }
11372 else
11373 {
11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
11385 else
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11390
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
11395 }
11396
11397 static void
11398 do_t_msr (void)
11399 {
11400 int flags;
11401 unsigned Rn;
11402
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11415 {
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11428 }
11429 else
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11432
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
11439 inst.instruction |= (flags & 0xff);
11440 inst.instruction |= Rn << 16;
11441 }
11442
11443 static void
11444 do_t_mul (void)
11445 {
11446 bfd_boolean narrow;
11447 unsigned Rd, Rn, Rm;
11448
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
11451
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
11456 if (unified_syntax)
11457 {
11458 if (inst.size_req == 4
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
11465 narrow = !in_it_block ();
11466 else
11467 narrow = in_it_block ();
11468 }
11469 else
11470 {
11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11472 constraint (Rn > 7 || Rm > 7,
11473 BAD_HIREG);
11474 narrow = TRUE;
11475 }
11476
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst.instruction = THUMB_OP16 (inst.instruction);
11481 inst.instruction |= Rd;
11482
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
11490 else
11491 {
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
11503 }
11504 }
11505
11506 static void
11507 do_t_mull (void)
11508 {
11509 unsigned RdLo, RdHi, Rn, Rm;
11510
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528 }
11529
11530 static void
11531 do_t_nop (void)
11532 {
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561 }
11562
11563 static void
11564 do_t_neg (void)
11565 {
11566 if (unified_syntax)
11567 {
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
11571 narrow = !in_it_block ();
11572 else
11573 narrow = in_it_block ();
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
11584 }
11585 else
11586 {
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602 }
11603
11604 static void
11605 do_t_orn (void)
11606 {
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
11629 reject_bad_reg (Rm);
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhbt (void)
11640 {
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
11661 }
11662 }
11663
11664 static void
11665 do_t_pkhtb (void)
11666 {
11667 if (!inst.operands[3].present)
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
11678 do_t_pkhbt ();
11679 }
11680
11681 static void
11682 do_t_pld (void)
11683 {
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688 }
11689
11690 static void
11691 do_t_push_pop (void)
11692 {
11693 unsigned mask;
11694
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
11699
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11703 else if ((inst.instruction == T_MNEM_push
11704 && (mask & ~0xff) == 1 << REG_LR)
11705 || (inst.instruction == T_MNEM_pop
11706 && (mask & ~0xff) == 1 << REG_PC))
11707 {
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
11710 inst.instruction |= mask & 0xff;
11711 }
11712 else if (unified_syntax)
11713 {
11714 inst.instruction = THUMB_OP32 (inst.instruction);
11715 encode_thumb2_ldmstm (13, mask, TRUE);
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
11722 }
11723
11724 static void
11725 do_t_rbit (void)
11726 {
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739
11740 static void
11741 do_t_rev (void)
11742 {
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767 }
11768
11769 static void
11770 do_t_rrx (void)
11771 {
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
11779
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_rsb (void)
11786 {
11787 unsigned Rd, Rs;
11788
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11793
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
11806 narrow = !in_it_block ();
11807 else
11808 narrow = in_it_block ();
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837 }
11838
11839 static void
11840 do_t_setend (void)
11841 {
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
11846 set_it_insn_type (OUTSIDE_IT_INSN);
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849 }
11850
11851 static void
11852 do_t_shift (void)
11853 {
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
11876 narrow = !in_it_block ();
11877 else
11878 narrow = in_it_block ();
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
11892
11893 if (!narrow)
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 reject_bad_reg (inst.operands[2].reg);
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
11910 inst.operands[1].shift_kind = shift_kind;
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
11917 }
11918 }
11919 else
11920 {
11921 if (inst.operands[2].isreg)
11922 {
11923 switch (shift_kind)
11924 {
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (shift_kind)
11942 {
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11946 default: abort ();
11947 }
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
11951 }
11952 }
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11959
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
11965
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
11974
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
11981 }
11982 else
11983 {
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
11995 }
11996 }
11997 }
11998
11999 static void
12000 do_t_simd (void)
12001 {
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
12015 }
12016
12017 static void
12018 do_t_simd2 (void)
12019 {
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033 }
12034
12035 static void
12036 do_t_smc (void)
12037 {
12038 unsigned int value = inst.reloc.exp.X_add_number;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047 }
12048
12049 static void
12050 do_t_hvc (void)
12051 {
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057 }
12058
12059 static void
12060 do_t_ssat_usat (int bias)
12061 {
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
12071 inst.instruction |= inst.operands[1].imm - bias;
12072 inst.instruction |= Rn << 16;
12073
12074 if (inst.operands[3].present)
12075 {
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
12082
12083 if (shift_amount != 0)
12084 {
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
12093 }
12094 }
12095 }
12096
12097 static void
12098 do_t_ssat (void)
12099 {
12100 do_t_ssat_usat (1);
12101 }
12102
12103 static void
12104 do_t_ssat16 (void)
12105 {
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
12115 inst.instruction |= inst.operands[1].imm - 1;
12116 inst.instruction |= Rn << 16;
12117 }
12118
12119 static void
12120 do_t_strex (void)
12121 {
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
12126 BAD_ADDR_MODE);
12127
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12134 }
12135
12136 static void
12137 do_t_strexd (void)
12138 {
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
12141
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
12144 || inst.operands[0].reg == inst.operands[3].reg,
12145 BAD_OVERLAP);
12146
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
12151 }
12152
12153 static void
12154 do_t_sxtah (void)
12155 {
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
12169 inst.instruction |= inst.operands[3].imm << 4;
12170 }
12171
12172 static void
12173 do_t_sxth (void)
12174 {
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
12185 && Rd <= 7 && Rm <= 7
12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12187 {
12188 inst.instruction = THUMB_OP16 (inst.instruction);
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
12191 }
12192 else if (unified_syntax)
12193 {
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
12198 inst.instruction |= inst.operands[2].imm << 4;
12199 }
12200 else
12201 {
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
12205 }
12206 }
12207
12208 static void
12209 do_t_swi (void)
12210 {
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223 }
12224
12225 static void
12226 do_t_tb (void)
12227 {
12228 unsigned Rn, Rm;
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
12238
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
12244 inst.instruction |= (Rn << 16) | Rm;
12245 }
12246
12247 static void
12248 do_t_usat (void)
12249 {
12250 do_t_ssat_usat (0);
12251 }
12252
12253 static void
12254 do_t_usat16 (void)
12255 {
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
12265 inst.instruction |= inst.operands[1].imm;
12266 inst.instruction |= Rn << 16;
12267 }
12268
12269 /* Neon instruction encoder helpers. */
12270
12271 /* Encodings for the different types for various Neon opcodes. */
12272
12273 /* An "invalid" code for the following tables. */
12274 #define N_INV -1u
12275
12276 struct neon_tab_entry
12277 {
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281 };
12282
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12351 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12352 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
12353 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV)
12354
12355 enum neon_opc
12356 {
12357 #define X(OPC,I,F,S) N_MNEM_##OPC
12358 NEON_ENC_TAB
12359 #undef X
12360 };
12361
12362 static const struct neon_tab_entry neon_enc_tab[] =
12363 {
12364 #define X(OPC,I,F,S) { (I), (F), (S) }
12365 NEON_ENC_TAB
12366 #undef X
12367 };
12368
12369 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12370 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12371 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12372 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12373 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12374 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12375 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12376 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12377 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12378 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12379 #define NEON_ENC_SINGLE_(X) \
12380 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12381 #define NEON_ENC_DOUBLE_(X) \
12382 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12383 #define NEON_ENC_FPV8_(X) \
12384 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12385
12386 #define NEON_ENCODE(type, inst) \
12387 do \
12388 { \
12389 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12390 inst.is_neon = 1; \
12391 } \
12392 while (0)
12393
12394 #define check_neon_suffixes \
12395 do \
12396 { \
12397 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12398 { \
12399 as_bad (_("invalid neon suffix for non neon instruction")); \
12400 return; \
12401 } \
12402 } \
12403 while (0)
12404
12405 /* Define shapes for instruction operands. The following mnemonic characters
12406 are used in this table:
12407
12408 F - VFP S<n> register
12409 D - Neon D<n> register
12410 Q - Neon Q<n> register
12411 I - Immediate
12412 S - Scalar
12413 R - ARM register
12414 L - D<n> register list
12415
12416 This table is used to generate various data:
12417 - enumerations of the form NS_DDR to be used as arguments to
12418 neon_select_shape.
12419 - a table classifying shapes into single, double, quad, mixed.
12420 - a table used to drive neon_select_shape. */
12421
12422 #define NEON_SHAPE_DEF \
12423 X(3, (D, D, D), DOUBLE), \
12424 X(3, (Q, Q, Q), QUAD), \
12425 X(3, (D, D, I), DOUBLE), \
12426 X(3, (Q, Q, I), QUAD), \
12427 X(3, (D, D, S), DOUBLE), \
12428 X(3, (Q, Q, S), QUAD), \
12429 X(2, (D, D), DOUBLE), \
12430 X(2, (Q, Q), QUAD), \
12431 X(2, (D, S), DOUBLE), \
12432 X(2, (Q, S), QUAD), \
12433 X(2, (D, R), DOUBLE), \
12434 X(2, (Q, R), QUAD), \
12435 X(2, (D, I), DOUBLE), \
12436 X(2, (Q, I), QUAD), \
12437 X(3, (D, L, D), DOUBLE), \
12438 X(2, (D, Q), MIXED), \
12439 X(2, (Q, D), MIXED), \
12440 X(3, (D, Q, I), MIXED), \
12441 X(3, (Q, D, I), MIXED), \
12442 X(3, (Q, D, D), MIXED), \
12443 X(3, (D, Q, Q), MIXED), \
12444 X(3, (Q, Q, D), MIXED), \
12445 X(3, (Q, D, S), MIXED), \
12446 X(3, (D, Q, S), MIXED), \
12447 X(4, (D, D, D, I), DOUBLE), \
12448 X(4, (Q, Q, Q, I), QUAD), \
12449 X(2, (F, F), SINGLE), \
12450 X(3, (F, F, F), SINGLE), \
12451 X(2, (F, I), SINGLE), \
12452 X(2, (F, D), MIXED), \
12453 X(2, (D, F), MIXED), \
12454 X(3, (F, F, I), MIXED), \
12455 X(4, (R, R, F, F), SINGLE), \
12456 X(4, (F, F, R, R), SINGLE), \
12457 X(3, (D, R, R), DOUBLE), \
12458 X(3, (R, R, D), DOUBLE), \
12459 X(2, (S, R), SINGLE), \
12460 X(2, (R, S), SINGLE), \
12461 X(2, (F, R), SINGLE), \
12462 X(2, (R, F), SINGLE)
12463
12464 #define S2(A,B) NS_##A##B
12465 #define S3(A,B,C) NS_##A##B##C
12466 #define S4(A,B,C,D) NS_##A##B##C##D
12467
12468 #define X(N, L, C) S##N L
12469
12470 enum neon_shape
12471 {
12472 NEON_SHAPE_DEF,
12473 NS_NULL
12474 };
12475
12476 #undef X
12477 #undef S2
12478 #undef S3
12479 #undef S4
12480
12481 enum neon_shape_class
12482 {
12483 SC_SINGLE,
12484 SC_DOUBLE,
12485 SC_QUAD,
12486 SC_MIXED
12487 };
12488
12489 #define X(N, L, C) SC_##C
12490
12491 static enum neon_shape_class neon_shape_class[] =
12492 {
12493 NEON_SHAPE_DEF
12494 };
12495
12496 #undef X
12497
12498 enum neon_shape_el
12499 {
12500 SE_F,
12501 SE_D,
12502 SE_Q,
12503 SE_I,
12504 SE_S,
12505 SE_R,
12506 SE_L
12507 };
12508
12509 /* Register widths of above. */
12510 static unsigned neon_shape_el_size[] =
12511 {
12512 32,
12513 64,
12514 128,
12515 0,
12516 32,
12517 32,
12518 0
12519 };
12520
12521 struct neon_shape_info
12522 {
12523 unsigned els;
12524 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12525 };
12526
12527 #define S2(A,B) { SE_##A, SE_##B }
12528 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12529 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12530
12531 #define X(N, L, C) { N, S##N L }
12532
12533 static struct neon_shape_info neon_shape_tab[] =
12534 {
12535 NEON_SHAPE_DEF
12536 };
12537
12538 #undef X
12539 #undef S2
12540 #undef S3
12541 #undef S4
12542
12543 /* Bit masks used in type checking given instructions.
12544 'N_EQK' means the type must be the same as (or based on in some way) the key
12545 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12546 set, various other bits can be set as well in order to modify the meaning of
12547 the type constraint. */
12548
12549 enum neon_type_mask
12550 {
12551 N_S8 = 0x0000001,
12552 N_S16 = 0x0000002,
12553 N_S32 = 0x0000004,
12554 N_S64 = 0x0000008,
12555 N_U8 = 0x0000010,
12556 N_U16 = 0x0000020,
12557 N_U32 = 0x0000040,
12558 N_U64 = 0x0000080,
12559 N_I8 = 0x0000100,
12560 N_I16 = 0x0000200,
12561 N_I32 = 0x0000400,
12562 N_I64 = 0x0000800,
12563 N_8 = 0x0001000,
12564 N_16 = 0x0002000,
12565 N_32 = 0x0004000,
12566 N_64 = 0x0008000,
12567 N_P8 = 0x0010000,
12568 N_P16 = 0x0020000,
12569 N_F16 = 0x0040000,
12570 N_F32 = 0x0080000,
12571 N_F64 = 0x0100000,
12572 N_KEY = 0x1000000, /* Key element (main type specifier). */
12573 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12574 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12575 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12576 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12577 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12578 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12579 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12580 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12581 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12582 N_UTYP = 0,
12583 N_MAX_NONSPECIAL = N_F64
12584 };
12585
12586 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12587
12588 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12589 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12590 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12591 #define N_SUF_32 (N_SU_32 | N_F32)
12592 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12593 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12594
12595 /* Pass this as the first type argument to neon_check_type to ignore types
12596 altogether. */
12597 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12598
12599 /* Select a "shape" for the current instruction (describing register types or
12600 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12601 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12602 function of operand parsing, so this function doesn't need to be called.
12603 Shapes should be listed in order of decreasing length. */
12604
12605 static enum neon_shape
12606 neon_select_shape (enum neon_shape shape, ...)
12607 {
12608 va_list ap;
12609 enum neon_shape first_shape = shape;
12610
12611 /* Fix missing optional operands. FIXME: we don't know at this point how
12612 many arguments we should have, so this makes the assumption that we have
12613 > 1. This is true of all current Neon opcodes, I think, but may not be
12614 true in the future. */
12615 if (!inst.operands[1].present)
12616 inst.operands[1] = inst.operands[0];
12617
12618 va_start (ap, shape);
12619
12620 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12621 {
12622 unsigned j;
12623 int matches = 1;
12624
12625 for (j = 0; j < neon_shape_tab[shape].els; j++)
12626 {
12627 if (!inst.operands[j].present)
12628 {
12629 matches = 0;
12630 break;
12631 }
12632
12633 switch (neon_shape_tab[shape].el[j])
12634 {
12635 case SE_F:
12636 if (!(inst.operands[j].isreg
12637 && inst.operands[j].isvec
12638 && inst.operands[j].issingle
12639 && !inst.operands[j].isquad))
12640 matches = 0;
12641 break;
12642
12643 case SE_D:
12644 if (!(inst.operands[j].isreg
12645 && inst.operands[j].isvec
12646 && !inst.operands[j].isquad
12647 && !inst.operands[j].issingle))
12648 matches = 0;
12649 break;
12650
12651 case SE_R:
12652 if (!(inst.operands[j].isreg
12653 && !inst.operands[j].isvec))
12654 matches = 0;
12655 break;
12656
12657 case SE_Q:
12658 if (!(inst.operands[j].isreg
12659 && inst.operands[j].isvec
12660 && inst.operands[j].isquad
12661 && !inst.operands[j].issingle))
12662 matches = 0;
12663 break;
12664
12665 case SE_I:
12666 if (!(!inst.operands[j].isreg
12667 && !inst.operands[j].isscalar))
12668 matches = 0;
12669 break;
12670
12671 case SE_S:
12672 if (!(!inst.operands[j].isreg
12673 && inst.operands[j].isscalar))
12674 matches = 0;
12675 break;
12676
12677 case SE_L:
12678 break;
12679 }
12680 if (!matches)
12681 break;
12682 }
12683 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12684 /* We've matched all the entries in the shape table, and we don't
12685 have any left over operands which have not been matched. */
12686 break;
12687 }
12688
12689 va_end (ap);
12690
12691 if (shape == NS_NULL && first_shape != NS_NULL)
12692 first_error (_("invalid instruction shape"));
12693
12694 return shape;
12695 }
12696
12697 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12698 means the Q bit should be set). */
12699
12700 static int
12701 neon_quad (enum neon_shape shape)
12702 {
12703 return neon_shape_class[shape] == SC_QUAD;
12704 }
12705
12706 static void
12707 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12708 unsigned *g_size)
12709 {
12710 /* Allow modification to be made to types which are constrained to be
12711 based on the key element, based on bits set alongside N_EQK. */
12712 if ((typebits & N_EQK) != 0)
12713 {
12714 if ((typebits & N_HLF) != 0)
12715 *g_size /= 2;
12716 else if ((typebits & N_DBL) != 0)
12717 *g_size *= 2;
12718 if ((typebits & N_SGN) != 0)
12719 *g_type = NT_signed;
12720 else if ((typebits & N_UNS) != 0)
12721 *g_type = NT_unsigned;
12722 else if ((typebits & N_INT) != 0)
12723 *g_type = NT_integer;
12724 else if ((typebits & N_FLT) != 0)
12725 *g_type = NT_float;
12726 else if ((typebits & N_SIZ) != 0)
12727 *g_type = NT_untyped;
12728 }
12729 }
12730
12731 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12732 operand type, i.e. the single type specified in a Neon instruction when it
12733 is the only one given. */
12734
12735 static struct neon_type_el
12736 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12737 {
12738 struct neon_type_el dest = *key;
12739
12740 gas_assert ((thisarg & N_EQK) != 0);
12741
12742 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12743
12744 return dest;
12745 }
12746
12747 /* Convert Neon type and size into compact bitmask representation. */
12748
12749 static enum neon_type_mask
12750 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12751 {
12752 switch (type)
12753 {
12754 case NT_untyped:
12755 switch (size)
12756 {
12757 case 8: return N_8;
12758 case 16: return N_16;
12759 case 32: return N_32;
12760 case 64: return N_64;
12761 default: ;
12762 }
12763 break;
12764
12765 case NT_integer:
12766 switch (size)
12767 {
12768 case 8: return N_I8;
12769 case 16: return N_I16;
12770 case 32: return N_I32;
12771 case 64: return N_I64;
12772 default: ;
12773 }
12774 break;
12775
12776 case NT_float:
12777 switch (size)
12778 {
12779 case 16: return N_F16;
12780 case 32: return N_F32;
12781 case 64: return N_F64;
12782 default: ;
12783 }
12784 break;
12785
12786 case NT_poly:
12787 switch (size)
12788 {
12789 case 8: return N_P8;
12790 case 16: return N_P16;
12791 default: ;
12792 }
12793 break;
12794
12795 case NT_signed:
12796 switch (size)
12797 {
12798 case 8: return N_S8;
12799 case 16: return N_S16;
12800 case 32: return N_S32;
12801 case 64: return N_S64;
12802 default: ;
12803 }
12804 break;
12805
12806 case NT_unsigned:
12807 switch (size)
12808 {
12809 case 8: return N_U8;
12810 case 16: return N_U16;
12811 case 32: return N_U32;
12812 case 64: return N_U64;
12813 default: ;
12814 }
12815 break;
12816
12817 default: ;
12818 }
12819
12820 return N_UTYP;
12821 }
12822
12823 /* Convert compact Neon bitmask type representation to a type and size. Only
12824 handles the case where a single bit is set in the mask. */
12825
12826 static int
12827 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12828 enum neon_type_mask mask)
12829 {
12830 if ((mask & N_EQK) != 0)
12831 return FAIL;
12832
12833 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12834 *size = 8;
12835 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12836 *size = 16;
12837 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12838 *size = 32;
12839 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12840 *size = 64;
12841 else
12842 return FAIL;
12843
12844 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12845 *type = NT_signed;
12846 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12847 *type = NT_unsigned;
12848 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12849 *type = NT_integer;
12850 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12851 *type = NT_untyped;
12852 else if ((mask & (N_P8 | N_P16)) != 0)
12853 *type = NT_poly;
12854 else if ((mask & (N_F32 | N_F64)) != 0)
12855 *type = NT_float;
12856 else
12857 return FAIL;
12858
12859 return SUCCESS;
12860 }
12861
12862 /* Modify a bitmask of allowed types. This is only needed for type
12863 relaxation. */
12864
12865 static unsigned
12866 modify_types_allowed (unsigned allowed, unsigned mods)
12867 {
12868 unsigned size;
12869 enum neon_el_type type;
12870 unsigned destmask;
12871 int i;
12872
12873 destmask = 0;
12874
12875 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12876 {
12877 if (el_type_of_type_chk (&type, &size,
12878 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12879 {
12880 neon_modify_type_size (mods, &type, &size);
12881 destmask |= type_chk_of_el_type (type, size);
12882 }
12883 }
12884
12885 return destmask;
12886 }
12887
12888 /* Check type and return type classification.
12889 The manual states (paraphrase): If one datatype is given, it indicates the
12890 type given in:
12891 - the second operand, if there is one
12892 - the operand, if there is no second operand
12893 - the result, if there are no operands.
12894 This isn't quite good enough though, so we use a concept of a "key" datatype
12895 which is set on a per-instruction basis, which is the one which matters when
12896 only one data type is written.
12897 Note: this function has side-effects (e.g. filling in missing operands). All
12898 Neon instructions should call it before performing bit encoding. */
12899
12900 static struct neon_type_el
12901 neon_check_type (unsigned els, enum neon_shape ns, ...)
12902 {
12903 va_list ap;
12904 unsigned i, pass, key_el = 0;
12905 unsigned types[NEON_MAX_TYPE_ELS];
12906 enum neon_el_type k_type = NT_invtype;
12907 unsigned k_size = -1u;
12908 struct neon_type_el badtype = {NT_invtype, -1};
12909 unsigned key_allowed = 0;
12910
12911 /* Optional registers in Neon instructions are always (not) in operand 1.
12912 Fill in the missing operand here, if it was omitted. */
12913 if (els > 1 && !inst.operands[1].present)
12914 inst.operands[1] = inst.operands[0];
12915
12916 /* Suck up all the varargs. */
12917 va_start (ap, ns);
12918 for (i = 0; i < els; i++)
12919 {
12920 unsigned thisarg = va_arg (ap, unsigned);
12921 if (thisarg == N_IGNORE_TYPE)
12922 {
12923 va_end (ap);
12924 return badtype;
12925 }
12926 types[i] = thisarg;
12927 if ((thisarg & N_KEY) != 0)
12928 key_el = i;
12929 }
12930 va_end (ap);
12931
12932 if (inst.vectype.elems > 0)
12933 for (i = 0; i < els; i++)
12934 if (inst.operands[i].vectype.type != NT_invtype)
12935 {
12936 first_error (_("types specified in both the mnemonic and operands"));
12937 return badtype;
12938 }
12939
12940 /* Duplicate inst.vectype elements here as necessary.
12941 FIXME: No idea if this is exactly the same as the ARM assembler,
12942 particularly when an insn takes one register and one non-register
12943 operand. */
12944 if (inst.vectype.elems == 1 && els > 1)
12945 {
12946 unsigned j;
12947 inst.vectype.elems = els;
12948 inst.vectype.el[key_el] = inst.vectype.el[0];
12949 for (j = 0; j < els; j++)
12950 if (j != key_el)
12951 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12952 types[j]);
12953 }
12954 else if (inst.vectype.elems == 0 && els > 0)
12955 {
12956 unsigned j;
12957 /* No types were given after the mnemonic, so look for types specified
12958 after each operand. We allow some flexibility here; as long as the
12959 "key" operand has a type, we can infer the others. */
12960 for (j = 0; j < els; j++)
12961 if (inst.operands[j].vectype.type != NT_invtype)
12962 inst.vectype.el[j] = inst.operands[j].vectype;
12963
12964 if (inst.operands[key_el].vectype.type != NT_invtype)
12965 {
12966 for (j = 0; j < els; j++)
12967 if (inst.operands[j].vectype.type == NT_invtype)
12968 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12969 types[j]);
12970 }
12971 else
12972 {
12973 first_error (_("operand types can't be inferred"));
12974 return badtype;
12975 }
12976 }
12977 else if (inst.vectype.elems != els)
12978 {
12979 first_error (_("type specifier has the wrong number of parts"));
12980 return badtype;
12981 }
12982
12983 for (pass = 0; pass < 2; pass++)
12984 {
12985 for (i = 0; i < els; i++)
12986 {
12987 unsigned thisarg = types[i];
12988 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12989 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12990 enum neon_el_type g_type = inst.vectype.el[i].type;
12991 unsigned g_size = inst.vectype.el[i].size;
12992
12993 /* Decay more-specific signed & unsigned types to sign-insensitive
12994 integer types if sign-specific variants are unavailable. */
12995 if ((g_type == NT_signed || g_type == NT_unsigned)
12996 && (types_allowed & N_SU_ALL) == 0)
12997 g_type = NT_integer;
12998
12999 /* If only untyped args are allowed, decay any more specific types to
13000 them. Some instructions only care about signs for some element
13001 sizes, so handle that properly. */
13002 if ((g_size == 8 && (types_allowed & N_8) != 0)
13003 || (g_size == 16 && (types_allowed & N_16) != 0)
13004 || (g_size == 32 && (types_allowed & N_32) != 0)
13005 || (g_size == 64 && (types_allowed & N_64) != 0))
13006 g_type = NT_untyped;
13007
13008 if (pass == 0)
13009 {
13010 if ((thisarg & N_KEY) != 0)
13011 {
13012 k_type = g_type;
13013 k_size = g_size;
13014 key_allowed = thisarg & ~N_KEY;
13015 }
13016 }
13017 else
13018 {
13019 if ((thisarg & N_VFP) != 0)
13020 {
13021 enum neon_shape_el regshape;
13022 unsigned regwidth, match;
13023
13024 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13025 if (ns == NS_NULL)
13026 {
13027 first_error (_("invalid instruction shape"));
13028 return badtype;
13029 }
13030 regshape = neon_shape_tab[ns].el[i];
13031 regwidth = neon_shape_el_size[regshape];
13032
13033 /* In VFP mode, operands must match register widths. If we
13034 have a key operand, use its width, else use the width of
13035 the current operand. */
13036 if (k_size != -1u)
13037 match = k_size;
13038 else
13039 match = g_size;
13040
13041 if (regwidth != match)
13042 {
13043 first_error (_("operand size must match register width"));
13044 return badtype;
13045 }
13046 }
13047
13048 if ((thisarg & N_EQK) == 0)
13049 {
13050 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13051
13052 if ((given_type & types_allowed) == 0)
13053 {
13054 first_error (_("bad type in Neon instruction"));
13055 return badtype;
13056 }
13057 }
13058 else
13059 {
13060 enum neon_el_type mod_k_type = k_type;
13061 unsigned mod_k_size = k_size;
13062 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13063 if (g_type != mod_k_type || g_size != mod_k_size)
13064 {
13065 first_error (_("inconsistent types in Neon instruction"));
13066 return badtype;
13067 }
13068 }
13069 }
13070 }
13071 }
13072
13073 return inst.vectype.el[key_el];
13074 }
13075
13076 /* Neon-style VFP instruction forwarding. */
13077
13078 /* Thumb VFP instructions have 0xE in the condition field. */
13079
13080 static void
13081 do_vfp_cond_or_thumb (void)
13082 {
13083 inst.is_neon = 1;
13084
13085 if (thumb_mode)
13086 inst.instruction |= 0xe0000000;
13087 else
13088 inst.instruction |= inst.cond << 28;
13089 }
13090
13091 /* Look up and encode a simple mnemonic, for use as a helper function for the
13092 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13093 etc. It is assumed that operand parsing has already been done, and that the
13094 operands are in the form expected by the given opcode (this isn't necessarily
13095 the same as the form in which they were parsed, hence some massaging must
13096 take place before this function is called).
13097 Checks current arch version against that in the looked-up opcode. */
13098
13099 static void
13100 do_vfp_nsyn_opcode (const char *opname)
13101 {
13102 const struct asm_opcode *opcode;
13103
13104 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13105
13106 if (!opcode)
13107 abort ();
13108
13109 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13110 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13111 _(BAD_FPU));
13112
13113 inst.is_neon = 1;
13114
13115 if (thumb_mode)
13116 {
13117 inst.instruction = opcode->tvalue;
13118 opcode->tencode ();
13119 }
13120 else
13121 {
13122 inst.instruction = (inst.cond << 28) | opcode->avalue;
13123 opcode->aencode ();
13124 }
13125 }
13126
13127 static void
13128 do_vfp_nsyn_add_sub (enum neon_shape rs)
13129 {
13130 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13131
13132 if (rs == NS_FFF)
13133 {
13134 if (is_add)
13135 do_vfp_nsyn_opcode ("fadds");
13136 else
13137 do_vfp_nsyn_opcode ("fsubs");
13138 }
13139 else
13140 {
13141 if (is_add)
13142 do_vfp_nsyn_opcode ("faddd");
13143 else
13144 do_vfp_nsyn_opcode ("fsubd");
13145 }
13146 }
13147
13148 /* Check operand types to see if this is a VFP instruction, and if so call
13149 PFN (). */
13150
13151 static int
13152 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13153 {
13154 enum neon_shape rs;
13155 struct neon_type_el et;
13156
13157 switch (args)
13158 {
13159 case 2:
13160 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13161 et = neon_check_type (2, rs,
13162 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13163 break;
13164
13165 case 3:
13166 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13167 et = neon_check_type (3, rs,
13168 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13169 break;
13170
13171 default:
13172 abort ();
13173 }
13174
13175 if (et.type != NT_invtype)
13176 {
13177 pfn (rs);
13178 return SUCCESS;
13179 }
13180
13181 inst.error = NULL;
13182 return FAIL;
13183 }
13184
13185 static void
13186 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13187 {
13188 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13189
13190 if (rs == NS_FFF)
13191 {
13192 if (is_mla)
13193 do_vfp_nsyn_opcode ("fmacs");
13194 else
13195 do_vfp_nsyn_opcode ("fnmacs");
13196 }
13197 else
13198 {
13199 if (is_mla)
13200 do_vfp_nsyn_opcode ("fmacd");
13201 else
13202 do_vfp_nsyn_opcode ("fnmacd");
13203 }
13204 }
13205
13206 static void
13207 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13208 {
13209 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13210
13211 if (rs == NS_FFF)
13212 {
13213 if (is_fma)
13214 do_vfp_nsyn_opcode ("ffmas");
13215 else
13216 do_vfp_nsyn_opcode ("ffnmas");
13217 }
13218 else
13219 {
13220 if (is_fma)
13221 do_vfp_nsyn_opcode ("ffmad");
13222 else
13223 do_vfp_nsyn_opcode ("ffnmad");
13224 }
13225 }
13226
13227 static void
13228 do_vfp_nsyn_mul (enum neon_shape rs)
13229 {
13230 if (rs == NS_FFF)
13231 do_vfp_nsyn_opcode ("fmuls");
13232 else
13233 do_vfp_nsyn_opcode ("fmuld");
13234 }
13235
13236 static void
13237 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13238 {
13239 int is_neg = (inst.instruction & 0x80) != 0;
13240 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13241
13242 if (rs == NS_FF)
13243 {
13244 if (is_neg)
13245 do_vfp_nsyn_opcode ("fnegs");
13246 else
13247 do_vfp_nsyn_opcode ("fabss");
13248 }
13249 else
13250 {
13251 if (is_neg)
13252 do_vfp_nsyn_opcode ("fnegd");
13253 else
13254 do_vfp_nsyn_opcode ("fabsd");
13255 }
13256 }
13257
13258 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13259 insns belong to Neon, and are handled elsewhere. */
13260
13261 static void
13262 do_vfp_nsyn_ldm_stm (int is_dbmode)
13263 {
13264 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13265 if (is_ldm)
13266 {
13267 if (is_dbmode)
13268 do_vfp_nsyn_opcode ("fldmdbs");
13269 else
13270 do_vfp_nsyn_opcode ("fldmias");
13271 }
13272 else
13273 {
13274 if (is_dbmode)
13275 do_vfp_nsyn_opcode ("fstmdbs");
13276 else
13277 do_vfp_nsyn_opcode ("fstmias");
13278 }
13279 }
13280
13281 static void
13282 do_vfp_nsyn_sqrt (void)
13283 {
13284 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13285 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13286
13287 if (rs == NS_FF)
13288 do_vfp_nsyn_opcode ("fsqrts");
13289 else
13290 do_vfp_nsyn_opcode ("fsqrtd");
13291 }
13292
13293 static void
13294 do_vfp_nsyn_div (void)
13295 {
13296 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13297 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13298 N_F32 | N_F64 | N_KEY | N_VFP);
13299
13300 if (rs == NS_FFF)
13301 do_vfp_nsyn_opcode ("fdivs");
13302 else
13303 do_vfp_nsyn_opcode ("fdivd");
13304 }
13305
13306 static void
13307 do_vfp_nsyn_nmul (void)
13308 {
13309 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13310 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13311 N_F32 | N_F64 | N_KEY | N_VFP);
13312
13313 if (rs == NS_FFF)
13314 {
13315 NEON_ENCODE (SINGLE, inst);
13316 do_vfp_sp_dyadic ();
13317 }
13318 else
13319 {
13320 NEON_ENCODE (DOUBLE, inst);
13321 do_vfp_dp_rd_rn_rm ();
13322 }
13323 do_vfp_cond_or_thumb ();
13324 }
13325
13326 static void
13327 do_vfp_nsyn_cmp (void)
13328 {
13329 if (inst.operands[1].isreg)
13330 {
13331 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13332 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13333
13334 if (rs == NS_FF)
13335 {
13336 NEON_ENCODE (SINGLE, inst);
13337 do_vfp_sp_monadic ();
13338 }
13339 else
13340 {
13341 NEON_ENCODE (DOUBLE, inst);
13342 do_vfp_dp_rd_rm ();
13343 }
13344 }
13345 else
13346 {
13347 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13348 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13349
13350 switch (inst.instruction & 0x0fffffff)
13351 {
13352 case N_MNEM_vcmp:
13353 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13354 break;
13355 case N_MNEM_vcmpe:
13356 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13357 break;
13358 default:
13359 abort ();
13360 }
13361
13362 if (rs == NS_FI)
13363 {
13364 NEON_ENCODE (SINGLE, inst);
13365 do_vfp_sp_compare_z ();
13366 }
13367 else
13368 {
13369 NEON_ENCODE (DOUBLE, inst);
13370 do_vfp_dp_rd ();
13371 }
13372 }
13373 do_vfp_cond_or_thumb ();
13374 }
13375
13376 static void
13377 nsyn_insert_sp (void)
13378 {
13379 inst.operands[1] = inst.operands[0];
13380 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13381 inst.operands[0].reg = REG_SP;
13382 inst.operands[0].isreg = 1;
13383 inst.operands[0].writeback = 1;
13384 inst.operands[0].present = 1;
13385 }
13386
13387 static void
13388 do_vfp_nsyn_push (void)
13389 {
13390 nsyn_insert_sp ();
13391 if (inst.operands[1].issingle)
13392 do_vfp_nsyn_opcode ("fstmdbs");
13393 else
13394 do_vfp_nsyn_opcode ("fstmdbd");
13395 }
13396
13397 static void
13398 do_vfp_nsyn_pop (void)
13399 {
13400 nsyn_insert_sp ();
13401 if (inst.operands[1].issingle)
13402 do_vfp_nsyn_opcode ("fldmias");
13403 else
13404 do_vfp_nsyn_opcode ("fldmiad");
13405 }
13406
13407 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13408 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13409
13410 static void
13411 neon_dp_fixup (struct arm_it* insn)
13412 {
13413 unsigned int i = insn->instruction;
13414 insn->is_neon = 1;
13415
13416 if (thumb_mode)
13417 {
13418 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13419 if (i & (1 << 24))
13420 i |= 1 << 28;
13421
13422 i &= ~(1 << 24);
13423
13424 i |= 0xef000000;
13425 }
13426 else
13427 i |= 0xf2000000;
13428
13429 insn->instruction = i;
13430 }
13431
13432 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13433 (0, 1, 2, 3). */
13434
13435 static unsigned
13436 neon_logbits (unsigned x)
13437 {
13438 return ffs (x) - 4;
13439 }
13440
13441 #define LOW4(R) ((R) & 0xf)
13442 #define HI1(R) (((R) >> 4) & 1)
13443
13444 /* Encode insns with bit pattern:
13445
13446 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13447 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13448
13449 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13450 different meaning for some instruction. */
13451
13452 static void
13453 neon_three_same (int isquad, int ubit, int size)
13454 {
13455 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13457 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13458 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13459 inst.instruction |= LOW4 (inst.operands[2].reg);
13460 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13461 inst.instruction |= (isquad != 0) << 6;
13462 inst.instruction |= (ubit != 0) << 24;
13463 if (size != -1)
13464 inst.instruction |= neon_logbits (size) << 20;
13465
13466 neon_dp_fixup (&inst);
13467 }
13468
13469 /* Encode instructions of the form:
13470
13471 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13472 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13473
13474 Don't write size if SIZE == -1. */
13475
13476 static void
13477 neon_two_same (int qbit, int ubit, int size)
13478 {
13479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13481 inst.instruction |= LOW4 (inst.operands[1].reg);
13482 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13483 inst.instruction |= (qbit != 0) << 6;
13484 inst.instruction |= (ubit != 0) << 24;
13485
13486 if (size != -1)
13487 inst.instruction |= neon_logbits (size) << 18;
13488
13489 neon_dp_fixup (&inst);
13490 }
13491
13492 /* Neon instruction encoders, in approximate order of appearance. */
13493
13494 static void
13495 do_neon_dyadic_i_su (void)
13496 {
13497 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13498 struct neon_type_el et = neon_check_type (3, rs,
13499 N_EQK, N_EQK, N_SU_32 | N_KEY);
13500 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13501 }
13502
13503 static void
13504 do_neon_dyadic_i64_su (void)
13505 {
13506 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13507 struct neon_type_el et = neon_check_type (3, rs,
13508 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13509 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13510 }
13511
13512 static void
13513 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13514 unsigned immbits)
13515 {
13516 unsigned size = et.size >> 3;
13517 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13518 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13519 inst.instruction |= LOW4 (inst.operands[1].reg);
13520 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13521 inst.instruction |= (isquad != 0) << 6;
13522 inst.instruction |= immbits << 16;
13523 inst.instruction |= (size >> 3) << 7;
13524 inst.instruction |= (size & 0x7) << 19;
13525 if (write_ubit)
13526 inst.instruction |= (uval != 0) << 24;
13527
13528 neon_dp_fixup (&inst);
13529 }
13530
13531 static void
13532 do_neon_shl_imm (void)
13533 {
13534 if (!inst.operands[2].isreg)
13535 {
13536 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13537 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13538 NEON_ENCODE (IMMED, inst);
13539 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13540 }
13541 else
13542 {
13543 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13544 struct neon_type_el et = neon_check_type (3, rs,
13545 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13546 unsigned int tmp;
13547
13548 /* VSHL/VQSHL 3-register variants have syntax such as:
13549 vshl.xx Dd, Dm, Dn
13550 whereas other 3-register operations encoded by neon_three_same have
13551 syntax like:
13552 vadd.xx Dd, Dn, Dm
13553 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13554 here. */
13555 tmp = inst.operands[2].reg;
13556 inst.operands[2].reg = inst.operands[1].reg;
13557 inst.operands[1].reg = tmp;
13558 NEON_ENCODE (INTEGER, inst);
13559 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13560 }
13561 }
13562
13563 static void
13564 do_neon_qshl_imm (void)
13565 {
13566 if (!inst.operands[2].isreg)
13567 {
13568 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13569 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13570
13571 NEON_ENCODE (IMMED, inst);
13572 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13573 inst.operands[2].imm);
13574 }
13575 else
13576 {
13577 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13578 struct neon_type_el et = neon_check_type (3, rs,
13579 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13580 unsigned int tmp;
13581
13582 /* See note in do_neon_shl_imm. */
13583 tmp = inst.operands[2].reg;
13584 inst.operands[2].reg = inst.operands[1].reg;
13585 inst.operands[1].reg = tmp;
13586 NEON_ENCODE (INTEGER, inst);
13587 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13588 }
13589 }
13590
13591 static void
13592 do_neon_rshl (void)
13593 {
13594 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13595 struct neon_type_el et = neon_check_type (3, rs,
13596 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13597 unsigned int tmp;
13598
13599 tmp = inst.operands[2].reg;
13600 inst.operands[2].reg = inst.operands[1].reg;
13601 inst.operands[1].reg = tmp;
13602 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13603 }
13604
13605 static int
13606 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13607 {
13608 /* Handle .I8 pseudo-instructions. */
13609 if (size == 8)
13610 {
13611 /* Unfortunately, this will make everything apart from zero out-of-range.
13612 FIXME is this the intended semantics? There doesn't seem much point in
13613 accepting .I8 if so. */
13614 immediate |= immediate << 8;
13615 size = 16;
13616 }
13617
13618 if (size >= 32)
13619 {
13620 if (immediate == (immediate & 0x000000ff))
13621 {
13622 *immbits = immediate;
13623 return 0x1;
13624 }
13625 else if (immediate == (immediate & 0x0000ff00))
13626 {
13627 *immbits = immediate >> 8;
13628 return 0x3;
13629 }
13630 else if (immediate == (immediate & 0x00ff0000))
13631 {
13632 *immbits = immediate >> 16;
13633 return 0x5;
13634 }
13635 else if (immediate == (immediate & 0xff000000))
13636 {
13637 *immbits = immediate >> 24;
13638 return 0x7;
13639 }
13640 if ((immediate & 0xffff) != (immediate >> 16))
13641 goto bad_immediate;
13642 immediate &= 0xffff;
13643 }
13644
13645 if (immediate == (immediate & 0x000000ff))
13646 {
13647 *immbits = immediate;
13648 return 0x9;
13649 }
13650 else if (immediate == (immediate & 0x0000ff00))
13651 {
13652 *immbits = immediate >> 8;
13653 return 0xb;
13654 }
13655
13656 bad_immediate:
13657 first_error (_("immediate value out of range"));
13658 return FAIL;
13659 }
13660
13661 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13662 A, B, C, D. */
13663
13664 static int
13665 neon_bits_same_in_bytes (unsigned imm)
13666 {
13667 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13668 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13669 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13670 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13671 }
13672
13673 /* For immediate of above form, return 0bABCD. */
13674
13675 static unsigned
13676 neon_squash_bits (unsigned imm)
13677 {
13678 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13679 | ((imm & 0x01000000) >> 21);
13680 }
13681
13682 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13683
13684 static unsigned
13685 neon_qfloat_bits (unsigned imm)
13686 {
13687 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13688 }
13689
13690 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13691 the instruction. *OP is passed as the initial value of the op field, and
13692 may be set to a different value depending on the constant (i.e.
13693 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13694 MVN). If the immediate looks like a repeated pattern then also
13695 try smaller element sizes. */
13696
13697 static int
13698 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13699 unsigned *immbits, int *op, int size,
13700 enum neon_el_type type)
13701 {
13702 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13703 float. */
13704 if (type == NT_float && !float_p)
13705 return FAIL;
13706
13707 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13708 {
13709 if (size != 32 || *op == 1)
13710 return FAIL;
13711 *immbits = neon_qfloat_bits (immlo);
13712 return 0xf;
13713 }
13714
13715 if (size == 64)
13716 {
13717 if (neon_bits_same_in_bytes (immhi)
13718 && neon_bits_same_in_bytes (immlo))
13719 {
13720 if (*op == 1)
13721 return FAIL;
13722 *immbits = (neon_squash_bits (immhi) << 4)
13723 | neon_squash_bits (immlo);
13724 *op = 1;
13725 return 0xe;
13726 }
13727
13728 if (immhi != immlo)
13729 return FAIL;
13730 }
13731
13732 if (size >= 32)
13733 {
13734 if (immlo == (immlo & 0x000000ff))
13735 {
13736 *immbits = immlo;
13737 return 0x0;
13738 }
13739 else if (immlo == (immlo & 0x0000ff00))
13740 {
13741 *immbits = immlo >> 8;
13742 return 0x2;
13743 }
13744 else if (immlo == (immlo & 0x00ff0000))
13745 {
13746 *immbits = immlo >> 16;
13747 return 0x4;
13748 }
13749 else if (immlo == (immlo & 0xff000000))
13750 {
13751 *immbits = immlo >> 24;
13752 return 0x6;
13753 }
13754 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13755 {
13756 *immbits = (immlo >> 8) & 0xff;
13757 return 0xc;
13758 }
13759 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13760 {
13761 *immbits = (immlo >> 16) & 0xff;
13762 return 0xd;
13763 }
13764
13765 if ((immlo & 0xffff) != (immlo >> 16))
13766 return FAIL;
13767 immlo &= 0xffff;
13768 }
13769
13770 if (size >= 16)
13771 {
13772 if (immlo == (immlo & 0x000000ff))
13773 {
13774 *immbits = immlo;
13775 return 0x8;
13776 }
13777 else if (immlo == (immlo & 0x0000ff00))
13778 {
13779 *immbits = immlo >> 8;
13780 return 0xa;
13781 }
13782
13783 if ((immlo & 0xff) != (immlo >> 8))
13784 return FAIL;
13785 immlo &= 0xff;
13786 }
13787
13788 if (immlo == (immlo & 0x000000ff))
13789 {
13790 /* Don't allow MVN with 8-bit immediate. */
13791 if (*op == 1)
13792 return FAIL;
13793 *immbits = immlo;
13794 return 0xe;
13795 }
13796
13797 return FAIL;
13798 }
13799
13800 /* Write immediate bits [7:0] to the following locations:
13801
13802 |28/24|23 19|18 16|15 4|3 0|
13803 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13804
13805 This function is used by VMOV/VMVN/VORR/VBIC. */
13806
13807 static void
13808 neon_write_immbits (unsigned immbits)
13809 {
13810 inst.instruction |= immbits & 0xf;
13811 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13812 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13813 }
13814
13815 /* Invert low-order SIZE bits of XHI:XLO. */
13816
13817 static void
13818 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13819 {
13820 unsigned immlo = xlo ? *xlo : 0;
13821 unsigned immhi = xhi ? *xhi : 0;
13822
13823 switch (size)
13824 {
13825 case 8:
13826 immlo = (~immlo) & 0xff;
13827 break;
13828
13829 case 16:
13830 immlo = (~immlo) & 0xffff;
13831 break;
13832
13833 case 64:
13834 immhi = (~immhi) & 0xffffffff;
13835 /* fall through. */
13836
13837 case 32:
13838 immlo = (~immlo) & 0xffffffff;
13839 break;
13840
13841 default:
13842 abort ();
13843 }
13844
13845 if (xlo)
13846 *xlo = immlo;
13847
13848 if (xhi)
13849 *xhi = immhi;
13850 }
13851
13852 static void
13853 do_neon_logic (void)
13854 {
13855 if (inst.operands[2].present && inst.operands[2].isreg)
13856 {
13857 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13858 neon_check_type (3, rs, N_IGNORE_TYPE);
13859 /* U bit and size field were set as part of the bitmask. */
13860 NEON_ENCODE (INTEGER, inst);
13861 neon_three_same (neon_quad (rs), 0, -1);
13862 }
13863 else
13864 {
13865 const int three_ops_form = (inst.operands[2].present
13866 && !inst.operands[2].isreg);
13867 const int immoperand = (three_ops_form ? 2 : 1);
13868 enum neon_shape rs = (three_ops_form
13869 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13870 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13871 struct neon_type_el et = neon_check_type (2, rs,
13872 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13873 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13874 unsigned immbits;
13875 int cmode;
13876
13877 if (et.type == NT_invtype)
13878 return;
13879
13880 if (three_ops_form)
13881 constraint (inst.operands[0].reg != inst.operands[1].reg,
13882 _("first and second operands shall be the same register"));
13883
13884 NEON_ENCODE (IMMED, inst);
13885
13886 immbits = inst.operands[immoperand].imm;
13887 if (et.size == 64)
13888 {
13889 /* .i64 is a pseudo-op, so the immediate must be a repeating
13890 pattern. */
13891 if (immbits != (inst.operands[immoperand].regisimm ?
13892 inst.operands[immoperand].reg : 0))
13893 {
13894 /* Set immbits to an invalid constant. */
13895 immbits = 0xdeadbeef;
13896 }
13897 }
13898
13899 switch (opcode)
13900 {
13901 case N_MNEM_vbic:
13902 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13903 break;
13904
13905 case N_MNEM_vorr:
13906 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13907 break;
13908
13909 case N_MNEM_vand:
13910 /* Pseudo-instruction for VBIC. */
13911 neon_invert_size (&immbits, 0, et.size);
13912 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13913 break;
13914
13915 case N_MNEM_vorn:
13916 /* Pseudo-instruction for VORR. */
13917 neon_invert_size (&immbits, 0, et.size);
13918 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13919 break;
13920
13921 default:
13922 abort ();
13923 }
13924
13925 if (cmode == FAIL)
13926 return;
13927
13928 inst.instruction |= neon_quad (rs) << 6;
13929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13931 inst.instruction |= cmode << 8;
13932 neon_write_immbits (immbits);
13933
13934 neon_dp_fixup (&inst);
13935 }
13936 }
13937
13938 static void
13939 do_neon_bitfield (void)
13940 {
13941 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13942 neon_check_type (3, rs, N_IGNORE_TYPE);
13943 neon_three_same (neon_quad (rs), 0, -1);
13944 }
13945
13946 static void
13947 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13948 unsigned destbits)
13949 {
13950 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13951 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13952 types | N_KEY);
13953 if (et.type == NT_float)
13954 {
13955 NEON_ENCODE (FLOAT, inst);
13956 neon_three_same (neon_quad (rs), 0, -1);
13957 }
13958 else
13959 {
13960 NEON_ENCODE (INTEGER, inst);
13961 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13962 }
13963 }
13964
13965 static void
13966 do_neon_dyadic_if_su (void)
13967 {
13968 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13969 }
13970
13971 static void
13972 do_neon_dyadic_if_su_d (void)
13973 {
13974 /* This version only allow D registers, but that constraint is enforced during
13975 operand parsing so we don't need to do anything extra here. */
13976 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13977 }
13978
13979 static void
13980 do_neon_dyadic_if_i_d (void)
13981 {
13982 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13983 affected if we specify unsigned args. */
13984 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13985 }
13986
13987 enum vfp_or_neon_is_neon_bits
13988 {
13989 NEON_CHECK_CC = 1,
13990 NEON_CHECK_ARCH = 2,
13991 NEON_CHECK_ARCH8 = 4
13992 };
13993
13994 /* Call this function if an instruction which may have belonged to the VFP or
13995 Neon instruction sets, but turned out to be a Neon instruction (due to the
13996 operand types involved, etc.). We have to check and/or fix-up a couple of
13997 things:
13998
13999 - Make sure the user hasn't attempted to make a Neon instruction
14000 conditional.
14001 - Alter the value in the condition code field if necessary.
14002 - Make sure that the arch supports Neon instructions.
14003
14004 Which of these operations take place depends on bits from enum
14005 vfp_or_neon_is_neon_bits.
14006
14007 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14008 current instruction's condition is COND_ALWAYS, the condition field is
14009 changed to inst.uncond_value. This is necessary because instructions shared
14010 between VFP and Neon may be conditional for the VFP variants only, and the
14011 unconditional Neon version must have, e.g., 0xF in the condition field. */
14012
14013 static int
14014 vfp_or_neon_is_neon (unsigned check)
14015 {
14016 /* Conditions are always legal in Thumb mode (IT blocks). */
14017 if (!thumb_mode && (check & NEON_CHECK_CC))
14018 {
14019 if (inst.cond != COND_ALWAYS)
14020 {
14021 first_error (_(BAD_COND));
14022 return FAIL;
14023 }
14024 if (inst.uncond_value != -1)
14025 inst.instruction |= inst.uncond_value << 28;
14026 }
14027
14028 if ((check & NEON_CHECK_ARCH)
14029 && !mark_feature_used (&fpu_neon_ext_v1))
14030 {
14031 first_error (_(BAD_FPU));
14032 return FAIL;
14033 }
14034
14035 if ((check & NEON_CHECK_ARCH8)
14036 && !mark_feature_used (&fpu_neon_ext_armv8))
14037 {
14038 first_error (_(BAD_FPU));
14039 return FAIL;
14040 }
14041
14042 return SUCCESS;
14043 }
14044
14045 static void
14046 do_neon_addsub_if_i (void)
14047 {
14048 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14049 return;
14050
14051 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14052 return;
14053
14054 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14055 affected if we specify unsigned args. */
14056 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14057 }
14058
14059 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14060 result to be:
14061 V<op> A,B (A is operand 0, B is operand 2)
14062 to mean:
14063 V<op> A,B,A
14064 not:
14065 V<op> A,B,B
14066 so handle that case specially. */
14067
14068 static void
14069 neon_exchange_operands (void)
14070 {
14071 void *scratch = alloca (sizeof (inst.operands[0]));
14072 if (inst.operands[1].present)
14073 {
14074 /* Swap operands[1] and operands[2]. */
14075 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14076 inst.operands[1] = inst.operands[2];
14077 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14078 }
14079 else
14080 {
14081 inst.operands[1] = inst.operands[2];
14082 inst.operands[2] = inst.operands[0];
14083 }
14084 }
14085
14086 static void
14087 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14088 {
14089 if (inst.operands[2].isreg)
14090 {
14091 if (invert)
14092 neon_exchange_operands ();
14093 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14094 }
14095 else
14096 {
14097 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14098 struct neon_type_el et = neon_check_type (2, rs,
14099 N_EQK | N_SIZ, immtypes | N_KEY);
14100
14101 NEON_ENCODE (IMMED, inst);
14102 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14103 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14104 inst.instruction |= LOW4 (inst.operands[1].reg);
14105 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14106 inst.instruction |= neon_quad (rs) << 6;
14107 inst.instruction |= (et.type == NT_float) << 10;
14108 inst.instruction |= neon_logbits (et.size) << 18;
14109
14110 neon_dp_fixup (&inst);
14111 }
14112 }
14113
14114 static void
14115 do_neon_cmp (void)
14116 {
14117 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14118 }
14119
14120 static void
14121 do_neon_cmp_inv (void)
14122 {
14123 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14124 }
14125
14126 static void
14127 do_neon_ceq (void)
14128 {
14129 neon_compare (N_IF_32, N_IF_32, FALSE);
14130 }
14131
14132 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14133 scalars, which are encoded in 5 bits, M : Rm.
14134 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14135 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14136 index in M. */
14137
14138 static unsigned
14139 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14140 {
14141 unsigned regno = NEON_SCALAR_REG (scalar);
14142 unsigned elno = NEON_SCALAR_INDEX (scalar);
14143
14144 switch (elsize)
14145 {
14146 case 16:
14147 if (regno > 7 || elno > 3)
14148 goto bad_scalar;
14149 return regno | (elno << 3);
14150
14151 case 32:
14152 if (regno > 15 || elno > 1)
14153 goto bad_scalar;
14154 return regno | (elno << 4);
14155
14156 default:
14157 bad_scalar:
14158 first_error (_("scalar out of range for multiply instruction"));
14159 }
14160
14161 return 0;
14162 }
14163
14164 /* Encode multiply / multiply-accumulate scalar instructions. */
14165
14166 static void
14167 neon_mul_mac (struct neon_type_el et, int ubit)
14168 {
14169 unsigned scalar;
14170
14171 /* Give a more helpful error message if we have an invalid type. */
14172 if (et.type == NT_invtype)
14173 return;
14174
14175 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14177 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14178 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14179 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14180 inst.instruction |= LOW4 (scalar);
14181 inst.instruction |= HI1 (scalar) << 5;
14182 inst.instruction |= (et.type == NT_float) << 8;
14183 inst.instruction |= neon_logbits (et.size) << 20;
14184 inst.instruction |= (ubit != 0) << 24;
14185
14186 neon_dp_fixup (&inst);
14187 }
14188
14189 static void
14190 do_neon_mac_maybe_scalar (void)
14191 {
14192 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14193 return;
14194
14195 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14196 return;
14197
14198 if (inst.operands[2].isscalar)
14199 {
14200 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14201 struct neon_type_el et = neon_check_type (3, rs,
14202 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14203 NEON_ENCODE (SCALAR, inst);
14204 neon_mul_mac (et, neon_quad (rs));
14205 }
14206 else
14207 {
14208 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14209 affected if we specify unsigned args. */
14210 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14211 }
14212 }
14213
14214 static void
14215 do_neon_fmac (void)
14216 {
14217 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14218 return;
14219
14220 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14221 return;
14222
14223 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14224 }
14225
14226 static void
14227 do_neon_tst (void)
14228 {
14229 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14230 struct neon_type_el et = neon_check_type (3, rs,
14231 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14232 neon_three_same (neon_quad (rs), 0, et.size);
14233 }
14234
14235 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14236 same types as the MAC equivalents. The polynomial type for this instruction
14237 is encoded the same as the integer type. */
14238
14239 static void
14240 do_neon_mul (void)
14241 {
14242 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14243 return;
14244
14245 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14246 return;
14247
14248 if (inst.operands[2].isscalar)
14249 do_neon_mac_maybe_scalar ();
14250 else
14251 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14252 }
14253
14254 static void
14255 do_neon_qdmulh (void)
14256 {
14257 if (inst.operands[2].isscalar)
14258 {
14259 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14260 struct neon_type_el et = neon_check_type (3, rs,
14261 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14262 NEON_ENCODE (SCALAR, inst);
14263 neon_mul_mac (et, neon_quad (rs));
14264 }
14265 else
14266 {
14267 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14268 struct neon_type_el et = neon_check_type (3, rs,
14269 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14270 NEON_ENCODE (INTEGER, inst);
14271 /* The U bit (rounding) comes from bit mask. */
14272 neon_three_same (neon_quad (rs), 0, et.size);
14273 }
14274 }
14275
14276 static void
14277 do_neon_fcmp_absolute (void)
14278 {
14279 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14280 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14281 /* Size field comes from bit mask. */
14282 neon_three_same (neon_quad (rs), 1, -1);
14283 }
14284
14285 static void
14286 do_neon_fcmp_absolute_inv (void)
14287 {
14288 neon_exchange_operands ();
14289 do_neon_fcmp_absolute ();
14290 }
14291
14292 static void
14293 do_neon_step (void)
14294 {
14295 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14296 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14297 neon_three_same (neon_quad (rs), 0, -1);
14298 }
14299
14300 static void
14301 do_neon_abs_neg (void)
14302 {
14303 enum neon_shape rs;
14304 struct neon_type_el et;
14305
14306 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14307 return;
14308
14309 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14310 return;
14311
14312 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14313 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14314
14315 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14316 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14317 inst.instruction |= LOW4 (inst.operands[1].reg);
14318 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14319 inst.instruction |= neon_quad (rs) << 6;
14320 inst.instruction |= (et.type == NT_float) << 10;
14321 inst.instruction |= neon_logbits (et.size) << 18;
14322
14323 neon_dp_fixup (&inst);
14324 }
14325
14326 static void
14327 do_neon_sli (void)
14328 {
14329 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14330 struct neon_type_el et = neon_check_type (2, rs,
14331 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14332 int imm = inst.operands[2].imm;
14333 constraint (imm < 0 || (unsigned)imm >= et.size,
14334 _("immediate out of range for insert"));
14335 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14336 }
14337
14338 static void
14339 do_neon_sri (void)
14340 {
14341 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14342 struct neon_type_el et = neon_check_type (2, rs,
14343 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14344 int imm = inst.operands[2].imm;
14345 constraint (imm < 1 || (unsigned)imm > et.size,
14346 _("immediate out of range for insert"));
14347 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14348 }
14349
14350 static void
14351 do_neon_qshlu_imm (void)
14352 {
14353 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14354 struct neon_type_el et = neon_check_type (2, rs,
14355 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14356 int imm = inst.operands[2].imm;
14357 constraint (imm < 0 || (unsigned)imm >= et.size,
14358 _("immediate out of range for shift"));
14359 /* Only encodes the 'U present' variant of the instruction.
14360 In this case, signed types have OP (bit 8) set to 0.
14361 Unsigned types have OP set to 1. */
14362 inst.instruction |= (et.type == NT_unsigned) << 8;
14363 /* The rest of the bits are the same as other immediate shifts. */
14364 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14365 }
14366
14367 static void
14368 do_neon_qmovn (void)
14369 {
14370 struct neon_type_el et = neon_check_type (2, NS_DQ,
14371 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14372 /* Saturating move where operands can be signed or unsigned, and the
14373 destination has the same signedness. */
14374 NEON_ENCODE (INTEGER, inst);
14375 if (et.type == NT_unsigned)
14376 inst.instruction |= 0xc0;
14377 else
14378 inst.instruction |= 0x80;
14379 neon_two_same (0, 1, et.size / 2);
14380 }
14381
14382 static void
14383 do_neon_qmovun (void)
14384 {
14385 struct neon_type_el et = neon_check_type (2, NS_DQ,
14386 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14387 /* Saturating move with unsigned results. Operands must be signed. */
14388 NEON_ENCODE (INTEGER, inst);
14389 neon_two_same (0, 1, et.size / 2);
14390 }
14391
14392 static void
14393 do_neon_rshift_sat_narrow (void)
14394 {
14395 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14396 or unsigned. If operands are unsigned, results must also be unsigned. */
14397 struct neon_type_el et = neon_check_type (2, NS_DQI,
14398 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14399 int imm = inst.operands[2].imm;
14400 /* This gets the bounds check, size encoding and immediate bits calculation
14401 right. */
14402 et.size /= 2;
14403
14404 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14405 VQMOVN.I<size> <Dd>, <Qm>. */
14406 if (imm == 0)
14407 {
14408 inst.operands[2].present = 0;
14409 inst.instruction = N_MNEM_vqmovn;
14410 do_neon_qmovn ();
14411 return;
14412 }
14413
14414 constraint (imm < 1 || (unsigned)imm > et.size,
14415 _("immediate out of range"));
14416 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14417 }
14418
14419 static void
14420 do_neon_rshift_sat_narrow_u (void)
14421 {
14422 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14423 or unsigned. If operands are unsigned, results must also be unsigned. */
14424 struct neon_type_el et = neon_check_type (2, NS_DQI,
14425 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14426 int imm = inst.operands[2].imm;
14427 /* This gets the bounds check, size encoding and immediate bits calculation
14428 right. */
14429 et.size /= 2;
14430
14431 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14432 VQMOVUN.I<size> <Dd>, <Qm>. */
14433 if (imm == 0)
14434 {
14435 inst.operands[2].present = 0;
14436 inst.instruction = N_MNEM_vqmovun;
14437 do_neon_qmovun ();
14438 return;
14439 }
14440
14441 constraint (imm < 1 || (unsigned)imm > et.size,
14442 _("immediate out of range"));
14443 /* FIXME: The manual is kind of unclear about what value U should have in
14444 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14445 must be 1. */
14446 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14447 }
14448
14449 static void
14450 do_neon_movn (void)
14451 {
14452 struct neon_type_el et = neon_check_type (2, NS_DQ,
14453 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14454 NEON_ENCODE (INTEGER, inst);
14455 neon_two_same (0, 1, et.size / 2);
14456 }
14457
14458 static void
14459 do_neon_rshift_narrow (void)
14460 {
14461 struct neon_type_el et = neon_check_type (2, NS_DQI,
14462 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14463 int imm = inst.operands[2].imm;
14464 /* This gets the bounds check, size encoding and immediate bits calculation
14465 right. */
14466 et.size /= 2;
14467
14468 /* If immediate is zero then we are a pseudo-instruction for
14469 VMOVN.I<size> <Dd>, <Qm> */
14470 if (imm == 0)
14471 {
14472 inst.operands[2].present = 0;
14473 inst.instruction = N_MNEM_vmovn;
14474 do_neon_movn ();
14475 return;
14476 }
14477
14478 constraint (imm < 1 || (unsigned)imm > et.size,
14479 _("immediate out of range for narrowing operation"));
14480 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14481 }
14482
14483 static void
14484 do_neon_shll (void)
14485 {
14486 /* FIXME: Type checking when lengthening. */
14487 struct neon_type_el et = neon_check_type (2, NS_QDI,
14488 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14489 unsigned imm = inst.operands[2].imm;
14490
14491 if (imm == et.size)
14492 {
14493 /* Maximum shift variant. */
14494 NEON_ENCODE (INTEGER, inst);
14495 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14496 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14497 inst.instruction |= LOW4 (inst.operands[1].reg);
14498 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14499 inst.instruction |= neon_logbits (et.size) << 18;
14500
14501 neon_dp_fixup (&inst);
14502 }
14503 else
14504 {
14505 /* A more-specific type check for non-max versions. */
14506 et = neon_check_type (2, NS_QDI,
14507 N_EQK | N_DBL, N_SU_32 | N_KEY);
14508 NEON_ENCODE (IMMED, inst);
14509 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14510 }
14511 }
14512
14513 /* Check the various types for the VCVT instruction, and return which version
14514 the current instruction is. */
14515
14516 #define CVT_FLAVOUR_VAR \
14517 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14518 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14519 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14520 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14521 /* Half-precision conversions. */ \
14522 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14523 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14524 /* VFP instructions. */ \
14525 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14526 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14527 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14528 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14529 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14530 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14531 /* VFP instructions with bitshift. */ \
14532 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14533 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14534 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14535 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14536 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14537 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14538 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14539 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14540
14541 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14542 neon_cvt_flavour_##C,
14543
14544 /* The different types of conversions we can do. */
14545 enum neon_cvt_flavour
14546 {
14547 CVT_FLAVOUR_VAR
14548 neon_cvt_flavour_invalid,
14549 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14550 };
14551
14552 #undef CVT_VAR
14553
14554 static enum neon_cvt_flavour
14555 get_neon_cvt_flavour (enum neon_shape rs)
14556 {
14557 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14558 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14559 if (et.type != NT_invtype) \
14560 { \
14561 inst.error = NULL; \
14562 return (neon_cvt_flavour_##C); \
14563 }
14564
14565 struct neon_type_el et;
14566 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14567 || rs == NS_FF) ? N_VFP : 0;
14568 /* The instruction versions which take an immediate take one register
14569 argument, which is extended to the width of the full register. Thus the
14570 "source" and "destination" registers must have the same width. Hack that
14571 here by making the size equal to the key (wider, in this case) operand. */
14572 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14573
14574 CVT_FLAVOUR_VAR;
14575
14576 return neon_cvt_flavour_invalid;
14577 #undef CVT_VAR
14578 }
14579
14580 enum neon_cvt_mode
14581 {
14582 neon_cvt_mode_a,
14583 neon_cvt_mode_n,
14584 neon_cvt_mode_p,
14585 neon_cvt_mode_m,
14586 neon_cvt_mode_z,
14587 neon_cvt_mode_x,
14588 neon_cvt_mode_r
14589 };
14590
14591 /* Neon-syntax VFP conversions. */
14592
14593 static void
14594 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14595 {
14596 const char *opname = 0;
14597
14598 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14599 {
14600 /* Conversions with immediate bitshift. */
14601 const char *enc[] =
14602 {
14603 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14604 CVT_FLAVOUR_VAR
14605 NULL
14606 #undef CVT_VAR
14607 };
14608
14609 if (flavour < (int) ARRAY_SIZE (enc))
14610 {
14611 opname = enc[flavour];
14612 constraint (inst.operands[0].reg != inst.operands[1].reg,
14613 _("operands 0 and 1 must be the same register"));
14614 inst.operands[1] = inst.operands[2];
14615 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14616 }
14617 }
14618 else
14619 {
14620 /* Conversions without bitshift. */
14621 const char *enc[] =
14622 {
14623 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14624 CVT_FLAVOUR_VAR
14625 NULL
14626 #undef CVT_VAR
14627 };
14628
14629 if (flavour < (int) ARRAY_SIZE (enc))
14630 opname = enc[flavour];
14631 }
14632
14633 if (opname)
14634 do_vfp_nsyn_opcode (opname);
14635 }
14636
14637 static void
14638 do_vfp_nsyn_cvtz (void)
14639 {
14640 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14641 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14642 const char *enc[] =
14643 {
14644 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14645 CVT_FLAVOUR_VAR
14646 NULL
14647 #undef CVT_VAR
14648 };
14649
14650 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14651 do_vfp_nsyn_opcode (enc[flavour]);
14652 }
14653
14654 static void
14655 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14656 enum neon_cvt_mode mode)
14657 {
14658 int sz, op;
14659 int rm;
14660
14661 set_it_insn_type (OUTSIDE_IT_INSN);
14662
14663 switch (flavour)
14664 {
14665 case neon_cvt_flavour_s32_f64:
14666 sz = 1;
14667 op = 0;
14668 break;
14669 case neon_cvt_flavour_s32_f32:
14670 sz = 0;
14671 op = 1;
14672 break;
14673 case neon_cvt_flavour_u32_f64:
14674 sz = 1;
14675 op = 0;
14676 break;
14677 case neon_cvt_flavour_u32_f32:
14678 sz = 0;
14679 op = 0;
14680 break;
14681 default:
14682 first_error (_("invalid instruction shape"));
14683 return;
14684 }
14685
14686 switch (mode)
14687 {
14688 case neon_cvt_mode_a: rm = 0; break;
14689 case neon_cvt_mode_n: rm = 1; break;
14690 case neon_cvt_mode_p: rm = 2; break;
14691 case neon_cvt_mode_m: rm = 3; break;
14692 default: first_error (_("invalid rounding mode")); return;
14693 }
14694
14695 NEON_ENCODE (FPV8, inst);
14696 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14697 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14698 inst.instruction |= sz << 8;
14699 inst.instruction |= op << 7;
14700 inst.instruction |= rm << 16;
14701 inst.instruction |= 0xf0000000;
14702 inst.is_neon = TRUE;
14703 }
14704
14705 static void
14706 do_neon_cvt_1 (enum neon_cvt_mode mode)
14707 {
14708 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14709 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14710 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14711
14712 /* PR11109: Handle round-to-zero for VCVT conversions. */
14713 if (mode == neon_cvt_mode_z
14714 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14715 && (flavour == neon_cvt_flavour_s32_f32
14716 || flavour == neon_cvt_flavour_u32_f32
14717 || flavour == neon_cvt_flavour_s32_f64
14718 || flavour == neon_cvt_flavour_u32_f64)
14719 && (rs == NS_FD || rs == NS_FF))
14720 {
14721 do_vfp_nsyn_cvtz ();
14722 return;
14723 }
14724
14725 /* VFP rather than Neon conversions. */
14726 if (flavour >= neon_cvt_flavour_first_fp)
14727 {
14728 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14729 do_vfp_nsyn_cvt (rs, flavour);
14730 else
14731 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14732
14733 return;
14734 }
14735
14736 switch (rs)
14737 {
14738 case NS_DDI:
14739 case NS_QQI:
14740 {
14741 unsigned immbits;
14742 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14743
14744 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14745 return;
14746
14747 /* Fixed-point conversion with #0 immediate is encoded as an
14748 integer conversion. */
14749 if (inst.operands[2].present && inst.operands[2].imm == 0)
14750 goto int_encode;
14751 immbits = 32 - inst.operands[2].imm;
14752 NEON_ENCODE (IMMED, inst);
14753 if (flavour != neon_cvt_flavour_invalid)
14754 inst.instruction |= enctab[flavour];
14755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14757 inst.instruction |= LOW4 (inst.operands[1].reg);
14758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14759 inst.instruction |= neon_quad (rs) << 6;
14760 inst.instruction |= 1 << 21;
14761 inst.instruction |= immbits << 16;
14762
14763 neon_dp_fixup (&inst);
14764 }
14765 break;
14766
14767 case NS_DD:
14768 case NS_QQ:
14769 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14770 {
14771 NEON_ENCODE (FLOAT, inst);
14772 set_it_insn_type (OUTSIDE_IT_INSN);
14773
14774 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14775 return;
14776
14777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14778 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14779 inst.instruction |= LOW4 (inst.operands[1].reg);
14780 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14781 inst.instruction |= neon_quad (rs) << 6;
14782 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14783 inst.instruction |= mode << 8;
14784 if (thumb_mode)
14785 inst.instruction |= 0xfc000000;
14786 else
14787 inst.instruction |= 0xf0000000;
14788 }
14789 else
14790 {
14791 int_encode:
14792 {
14793 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14794
14795 NEON_ENCODE (INTEGER, inst);
14796
14797 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14798 return;
14799
14800 if (flavour != neon_cvt_flavour_invalid)
14801 inst.instruction |= enctab[flavour];
14802
14803 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14804 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14805 inst.instruction |= LOW4 (inst.operands[1].reg);
14806 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14807 inst.instruction |= neon_quad (rs) << 6;
14808 inst.instruction |= 2 << 18;
14809
14810 neon_dp_fixup (&inst);
14811 }
14812 }
14813 break;
14814
14815 /* Half-precision conversions for Advanced SIMD -- neon. */
14816 case NS_QD:
14817 case NS_DQ:
14818
14819 if ((rs == NS_DQ)
14820 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14821 {
14822 as_bad (_("operand size must match register width"));
14823 break;
14824 }
14825
14826 if ((rs == NS_QD)
14827 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14828 {
14829 as_bad (_("operand size must match register width"));
14830 break;
14831 }
14832
14833 if (rs == NS_DQ)
14834 inst.instruction = 0x3b60600;
14835 else
14836 inst.instruction = 0x3b60700;
14837
14838 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14839 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14840 inst.instruction |= LOW4 (inst.operands[1].reg);
14841 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14842 neon_dp_fixup (&inst);
14843 break;
14844
14845 default:
14846 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14847 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14848 do_vfp_nsyn_cvt (rs, flavour);
14849 else
14850 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14851 }
14852 }
14853
14854 static void
14855 do_neon_cvtr (void)
14856 {
14857 do_neon_cvt_1 (neon_cvt_mode_x);
14858 }
14859
14860 static void
14861 do_neon_cvt (void)
14862 {
14863 do_neon_cvt_1 (neon_cvt_mode_z);
14864 }
14865
14866 static void
14867 do_neon_cvta (void)
14868 {
14869 do_neon_cvt_1 (neon_cvt_mode_a);
14870 }
14871
14872 static void
14873 do_neon_cvtn (void)
14874 {
14875 do_neon_cvt_1 (neon_cvt_mode_n);
14876 }
14877
14878 static void
14879 do_neon_cvtp (void)
14880 {
14881 do_neon_cvt_1 (neon_cvt_mode_p);
14882 }
14883
14884 static void
14885 do_neon_cvtm (void)
14886 {
14887 do_neon_cvt_1 (neon_cvt_mode_m);
14888 }
14889
14890 static void
14891 do_neon_cvtb (void)
14892 {
14893 inst.instruction = 0xeb20a40;
14894
14895 /* The sizes are attached to the mnemonic. */
14896 if (inst.vectype.el[0].type != NT_invtype
14897 && inst.vectype.el[0].size == 16)
14898 inst.instruction |= 0x00010000;
14899
14900 /* Programmer's syntax: the sizes are attached to the operands. */
14901 else if (inst.operands[0].vectype.type != NT_invtype
14902 && inst.operands[0].vectype.size == 16)
14903 inst.instruction |= 0x00010000;
14904
14905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14906 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14907 do_vfp_cond_or_thumb ();
14908 }
14909
14910
14911 static void
14912 do_neon_cvtt (void)
14913 {
14914 do_neon_cvtb ();
14915 inst.instruction |= 0x80;
14916 }
14917
14918 static void
14919 neon_move_immediate (void)
14920 {
14921 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14922 struct neon_type_el et = neon_check_type (2, rs,
14923 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14924 unsigned immlo, immhi = 0, immbits;
14925 int op, cmode, float_p;
14926
14927 constraint (et.type == NT_invtype,
14928 _("operand size must be specified for immediate VMOV"));
14929
14930 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14931 op = (inst.instruction & (1 << 5)) != 0;
14932
14933 immlo = inst.operands[1].imm;
14934 if (inst.operands[1].regisimm)
14935 immhi = inst.operands[1].reg;
14936
14937 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14938 _("immediate has bits set outside the operand size"));
14939
14940 float_p = inst.operands[1].immisfloat;
14941
14942 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14943 et.size, et.type)) == FAIL)
14944 {
14945 /* Invert relevant bits only. */
14946 neon_invert_size (&immlo, &immhi, et.size);
14947 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14948 with one or the other; those cases are caught by
14949 neon_cmode_for_move_imm. */
14950 op = !op;
14951 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14952 &op, et.size, et.type)) == FAIL)
14953 {
14954 first_error (_("immediate out of range"));
14955 return;
14956 }
14957 }
14958
14959 inst.instruction &= ~(1 << 5);
14960 inst.instruction |= op << 5;
14961
14962 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14963 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14964 inst.instruction |= neon_quad (rs) << 6;
14965 inst.instruction |= cmode << 8;
14966
14967 neon_write_immbits (immbits);
14968 }
14969
14970 static void
14971 do_neon_mvn (void)
14972 {
14973 if (inst.operands[1].isreg)
14974 {
14975 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14976
14977 NEON_ENCODE (INTEGER, inst);
14978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14979 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14980 inst.instruction |= LOW4 (inst.operands[1].reg);
14981 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14982 inst.instruction |= neon_quad (rs) << 6;
14983 }
14984 else
14985 {
14986 NEON_ENCODE (IMMED, inst);
14987 neon_move_immediate ();
14988 }
14989
14990 neon_dp_fixup (&inst);
14991 }
14992
14993 /* Encode instructions of form:
14994
14995 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14996 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14997
14998 static void
14999 neon_mixed_length (struct neon_type_el et, unsigned size)
15000 {
15001 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15002 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15003 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15004 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15005 inst.instruction |= LOW4 (inst.operands[2].reg);
15006 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15007 inst.instruction |= (et.type == NT_unsigned) << 24;
15008 inst.instruction |= neon_logbits (size) << 20;
15009
15010 neon_dp_fixup (&inst);
15011 }
15012
15013 static void
15014 do_neon_dyadic_long (void)
15015 {
15016 /* FIXME: Type checking for lengthening op. */
15017 struct neon_type_el et = neon_check_type (3, NS_QDD,
15018 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15019 neon_mixed_length (et, et.size);
15020 }
15021
15022 static void
15023 do_neon_abal (void)
15024 {
15025 struct neon_type_el et = neon_check_type (3, NS_QDD,
15026 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15027 neon_mixed_length (et, et.size);
15028 }
15029
15030 static void
15031 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15032 {
15033 if (inst.operands[2].isscalar)
15034 {
15035 struct neon_type_el et = neon_check_type (3, NS_QDS,
15036 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15037 NEON_ENCODE (SCALAR, inst);
15038 neon_mul_mac (et, et.type == NT_unsigned);
15039 }
15040 else
15041 {
15042 struct neon_type_el et = neon_check_type (3, NS_QDD,
15043 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15044 NEON_ENCODE (INTEGER, inst);
15045 neon_mixed_length (et, et.size);
15046 }
15047 }
15048
15049 static void
15050 do_neon_mac_maybe_scalar_long (void)
15051 {
15052 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15053 }
15054
15055 static void
15056 do_neon_dyadic_wide (void)
15057 {
15058 struct neon_type_el et = neon_check_type (3, NS_QQD,
15059 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15060 neon_mixed_length (et, et.size);
15061 }
15062
15063 static void
15064 do_neon_dyadic_narrow (void)
15065 {
15066 struct neon_type_el et = neon_check_type (3, NS_QDD,
15067 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15068 /* Operand sign is unimportant, and the U bit is part of the opcode,
15069 so force the operand type to integer. */
15070 et.type = NT_integer;
15071 neon_mixed_length (et, et.size / 2);
15072 }
15073
15074 static void
15075 do_neon_mul_sat_scalar_long (void)
15076 {
15077 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15078 }
15079
15080 static void
15081 do_neon_vmull (void)
15082 {
15083 if (inst.operands[2].isscalar)
15084 do_neon_mac_maybe_scalar_long ();
15085 else
15086 {
15087 struct neon_type_el et = neon_check_type (3, NS_QDD,
15088 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
15089 if (et.type == NT_poly)
15090 NEON_ENCODE (POLY, inst);
15091 else
15092 NEON_ENCODE (INTEGER, inst);
15093 /* For polynomial encoding, size field must be 0b00 and the U bit must be
15094 zero. Should be OK as-is. */
15095 neon_mixed_length (et, et.size);
15096 }
15097 }
15098
15099 static void
15100 do_neon_ext (void)
15101 {
15102 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15103 struct neon_type_el et = neon_check_type (3, rs,
15104 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15105 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15106
15107 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15108 _("shift out of range"));
15109 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15110 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15111 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15112 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15113 inst.instruction |= LOW4 (inst.operands[2].reg);
15114 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15115 inst.instruction |= neon_quad (rs) << 6;
15116 inst.instruction |= imm << 8;
15117
15118 neon_dp_fixup (&inst);
15119 }
15120
15121 static void
15122 do_neon_rev (void)
15123 {
15124 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15125 struct neon_type_el et = neon_check_type (2, rs,
15126 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15127 unsigned op = (inst.instruction >> 7) & 3;
15128 /* N (width of reversed regions) is encoded as part of the bitmask. We
15129 extract it here to check the elements to be reversed are smaller.
15130 Otherwise we'd get a reserved instruction. */
15131 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15132 gas_assert (elsize != 0);
15133 constraint (et.size >= elsize,
15134 _("elements must be smaller than reversal region"));
15135 neon_two_same (neon_quad (rs), 1, et.size);
15136 }
15137
15138 static void
15139 do_neon_dup (void)
15140 {
15141 if (inst.operands[1].isscalar)
15142 {
15143 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15144 struct neon_type_el et = neon_check_type (2, rs,
15145 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15146 unsigned sizebits = et.size >> 3;
15147 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15148 int logsize = neon_logbits (et.size);
15149 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15150
15151 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15152 return;
15153
15154 NEON_ENCODE (SCALAR, inst);
15155 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15156 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15157 inst.instruction |= LOW4 (dm);
15158 inst.instruction |= HI1 (dm) << 5;
15159 inst.instruction |= neon_quad (rs) << 6;
15160 inst.instruction |= x << 17;
15161 inst.instruction |= sizebits << 16;
15162
15163 neon_dp_fixup (&inst);
15164 }
15165 else
15166 {
15167 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15168 struct neon_type_el et = neon_check_type (2, rs,
15169 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15170 /* Duplicate ARM register to lanes of vector. */
15171 NEON_ENCODE (ARMREG, inst);
15172 switch (et.size)
15173 {
15174 case 8: inst.instruction |= 0x400000; break;
15175 case 16: inst.instruction |= 0x000020; break;
15176 case 32: inst.instruction |= 0x000000; break;
15177 default: break;
15178 }
15179 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15180 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15181 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15182 inst.instruction |= neon_quad (rs) << 21;
15183 /* The encoding for this instruction is identical for the ARM and Thumb
15184 variants, except for the condition field. */
15185 do_vfp_cond_or_thumb ();
15186 }
15187 }
15188
15189 /* VMOV has particularly many variations. It can be one of:
15190 0. VMOV<c><q> <Qd>, <Qm>
15191 1. VMOV<c><q> <Dd>, <Dm>
15192 (Register operations, which are VORR with Rm = Rn.)
15193 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15194 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15195 (Immediate loads.)
15196 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15197 (ARM register to scalar.)
15198 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15199 (Two ARM registers to vector.)
15200 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15201 (Scalar to ARM register.)
15202 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15203 (Vector to two ARM registers.)
15204 8. VMOV.F32 <Sd>, <Sm>
15205 9. VMOV.F64 <Dd>, <Dm>
15206 (VFP register moves.)
15207 10. VMOV.F32 <Sd>, #imm
15208 11. VMOV.F64 <Dd>, #imm
15209 (VFP float immediate load.)
15210 12. VMOV <Rd>, <Sm>
15211 (VFP single to ARM reg.)
15212 13. VMOV <Sd>, <Rm>
15213 (ARM reg to VFP single.)
15214 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15215 (Two ARM regs to two VFP singles.)
15216 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15217 (Two VFP singles to two ARM regs.)
15218
15219 These cases can be disambiguated using neon_select_shape, except cases 1/9
15220 and 3/11 which depend on the operand type too.
15221
15222 All the encoded bits are hardcoded by this function.
15223
15224 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15225 Cases 5, 7 may be used with VFPv2 and above.
15226
15227 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15228 can specify a type where it doesn't make sense to, and is ignored). */
15229
15230 static void
15231 do_neon_mov (void)
15232 {
15233 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15234 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15235 NS_NULL);
15236 struct neon_type_el et;
15237 const char *ldconst = 0;
15238
15239 switch (rs)
15240 {
15241 case NS_DD: /* case 1/9. */
15242 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15243 /* It is not an error here if no type is given. */
15244 inst.error = NULL;
15245 if (et.type == NT_float && et.size == 64)
15246 {
15247 do_vfp_nsyn_opcode ("fcpyd");
15248 break;
15249 }
15250 /* fall through. */
15251
15252 case NS_QQ: /* case 0/1. */
15253 {
15254 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15255 return;
15256 /* The architecture manual I have doesn't explicitly state which
15257 value the U bit should have for register->register moves, but
15258 the equivalent VORR instruction has U = 0, so do that. */
15259 inst.instruction = 0x0200110;
15260 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15261 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15262 inst.instruction |= LOW4 (inst.operands[1].reg);
15263 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15264 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15265 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15266 inst.instruction |= neon_quad (rs) << 6;
15267
15268 neon_dp_fixup (&inst);
15269 }
15270 break;
15271
15272 case NS_DI: /* case 3/11. */
15273 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15274 inst.error = NULL;
15275 if (et.type == NT_float && et.size == 64)
15276 {
15277 /* case 11 (fconstd). */
15278 ldconst = "fconstd";
15279 goto encode_fconstd;
15280 }
15281 /* fall through. */
15282
15283 case NS_QI: /* case 2/3. */
15284 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15285 return;
15286 inst.instruction = 0x0800010;
15287 neon_move_immediate ();
15288 neon_dp_fixup (&inst);
15289 break;
15290
15291 case NS_SR: /* case 4. */
15292 {
15293 unsigned bcdebits = 0;
15294 int logsize;
15295 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15296 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15297
15298 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15299 logsize = neon_logbits (et.size);
15300
15301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15302 _(BAD_FPU));
15303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15304 && et.size != 32, _(BAD_FPU));
15305 constraint (et.type == NT_invtype, _("bad type for scalar"));
15306 constraint (x >= 64 / et.size, _("scalar index out of range"));
15307
15308 switch (et.size)
15309 {
15310 case 8: bcdebits = 0x8; break;
15311 case 16: bcdebits = 0x1; break;
15312 case 32: bcdebits = 0x0; break;
15313 default: ;
15314 }
15315
15316 bcdebits |= x << logsize;
15317
15318 inst.instruction = 0xe000b10;
15319 do_vfp_cond_or_thumb ();
15320 inst.instruction |= LOW4 (dn) << 16;
15321 inst.instruction |= HI1 (dn) << 7;
15322 inst.instruction |= inst.operands[1].reg << 12;
15323 inst.instruction |= (bcdebits & 3) << 5;
15324 inst.instruction |= (bcdebits >> 2) << 21;
15325 }
15326 break;
15327
15328 case NS_DRR: /* case 5 (fmdrr). */
15329 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15330 _(BAD_FPU));
15331
15332 inst.instruction = 0xc400b10;
15333 do_vfp_cond_or_thumb ();
15334 inst.instruction |= LOW4 (inst.operands[0].reg);
15335 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15336 inst.instruction |= inst.operands[1].reg << 12;
15337 inst.instruction |= inst.operands[2].reg << 16;
15338 break;
15339
15340 case NS_RS: /* case 6. */
15341 {
15342 unsigned logsize;
15343 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15344 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15345 unsigned abcdebits = 0;
15346
15347 et = neon_check_type (2, NS_NULL,
15348 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15349 logsize = neon_logbits (et.size);
15350
15351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15352 _(BAD_FPU));
15353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15354 && et.size != 32, _(BAD_FPU));
15355 constraint (et.type == NT_invtype, _("bad type for scalar"));
15356 constraint (x >= 64 / et.size, _("scalar index out of range"));
15357
15358 switch (et.size)
15359 {
15360 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15361 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15362 case 32: abcdebits = 0x00; break;
15363 default: ;
15364 }
15365
15366 abcdebits |= x << logsize;
15367 inst.instruction = 0xe100b10;
15368 do_vfp_cond_or_thumb ();
15369 inst.instruction |= LOW4 (dn) << 16;
15370 inst.instruction |= HI1 (dn) << 7;
15371 inst.instruction |= inst.operands[0].reg << 12;
15372 inst.instruction |= (abcdebits & 3) << 5;
15373 inst.instruction |= (abcdebits >> 2) << 21;
15374 }
15375 break;
15376
15377 case NS_RRD: /* case 7 (fmrrd). */
15378 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15379 _(BAD_FPU));
15380
15381 inst.instruction = 0xc500b10;
15382 do_vfp_cond_or_thumb ();
15383 inst.instruction |= inst.operands[0].reg << 12;
15384 inst.instruction |= inst.operands[1].reg << 16;
15385 inst.instruction |= LOW4 (inst.operands[2].reg);
15386 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15387 break;
15388
15389 case NS_FF: /* case 8 (fcpys). */
15390 do_vfp_nsyn_opcode ("fcpys");
15391 break;
15392
15393 case NS_FI: /* case 10 (fconsts). */
15394 ldconst = "fconsts";
15395 encode_fconstd:
15396 if (is_quarter_float (inst.operands[1].imm))
15397 {
15398 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15399 do_vfp_nsyn_opcode (ldconst);
15400 }
15401 else
15402 first_error (_("immediate out of range"));
15403 break;
15404
15405 case NS_RF: /* case 12 (fmrs). */
15406 do_vfp_nsyn_opcode ("fmrs");
15407 break;
15408
15409 case NS_FR: /* case 13 (fmsr). */
15410 do_vfp_nsyn_opcode ("fmsr");
15411 break;
15412
15413 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15414 (one of which is a list), but we have parsed four. Do some fiddling to
15415 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15416 expect. */
15417 case NS_RRFF: /* case 14 (fmrrs). */
15418 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15419 _("VFP registers must be adjacent"));
15420 inst.operands[2].imm = 2;
15421 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15422 do_vfp_nsyn_opcode ("fmrrs");
15423 break;
15424
15425 case NS_FFRR: /* case 15 (fmsrr). */
15426 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15427 _("VFP registers must be adjacent"));
15428 inst.operands[1] = inst.operands[2];
15429 inst.operands[2] = inst.operands[3];
15430 inst.operands[0].imm = 2;
15431 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15432 do_vfp_nsyn_opcode ("fmsrr");
15433 break;
15434
15435 default:
15436 abort ();
15437 }
15438 }
15439
15440 static void
15441 do_neon_rshift_round_imm (void)
15442 {
15443 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15444 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15445 int imm = inst.operands[2].imm;
15446
15447 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15448 if (imm == 0)
15449 {
15450 inst.operands[2].present = 0;
15451 do_neon_mov ();
15452 return;
15453 }
15454
15455 constraint (imm < 1 || (unsigned)imm > et.size,
15456 _("immediate out of range for shift"));
15457 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15458 et.size - imm);
15459 }
15460
15461 static void
15462 do_neon_movl (void)
15463 {
15464 struct neon_type_el et = neon_check_type (2, NS_QD,
15465 N_EQK | N_DBL, N_SU_32 | N_KEY);
15466 unsigned sizebits = et.size >> 3;
15467 inst.instruction |= sizebits << 19;
15468 neon_two_same (0, et.type == NT_unsigned, -1);
15469 }
15470
15471 static void
15472 do_neon_trn (void)
15473 {
15474 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15475 struct neon_type_el et = neon_check_type (2, rs,
15476 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15477 NEON_ENCODE (INTEGER, inst);
15478 neon_two_same (neon_quad (rs), 1, et.size);
15479 }
15480
15481 static void
15482 do_neon_zip_uzp (void)
15483 {
15484 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15485 struct neon_type_el et = neon_check_type (2, rs,
15486 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15487 if (rs == NS_DD && et.size == 32)
15488 {
15489 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15490 inst.instruction = N_MNEM_vtrn;
15491 do_neon_trn ();
15492 return;
15493 }
15494 neon_two_same (neon_quad (rs), 1, et.size);
15495 }
15496
15497 static void
15498 do_neon_sat_abs_neg (void)
15499 {
15500 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15501 struct neon_type_el et = neon_check_type (2, rs,
15502 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15503 neon_two_same (neon_quad (rs), 1, et.size);
15504 }
15505
15506 static void
15507 do_neon_pair_long (void)
15508 {
15509 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15510 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15511 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15512 inst.instruction |= (et.type == NT_unsigned) << 7;
15513 neon_two_same (neon_quad (rs), 1, et.size);
15514 }
15515
15516 static void
15517 do_neon_recip_est (void)
15518 {
15519 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15520 struct neon_type_el et = neon_check_type (2, rs,
15521 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15522 inst.instruction |= (et.type == NT_float) << 8;
15523 neon_two_same (neon_quad (rs), 1, et.size);
15524 }
15525
15526 static void
15527 do_neon_cls (void)
15528 {
15529 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15530 struct neon_type_el et = neon_check_type (2, rs,
15531 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15532 neon_two_same (neon_quad (rs), 1, et.size);
15533 }
15534
15535 static void
15536 do_neon_clz (void)
15537 {
15538 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15539 struct neon_type_el et = neon_check_type (2, rs,
15540 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15541 neon_two_same (neon_quad (rs), 1, et.size);
15542 }
15543
15544 static void
15545 do_neon_cnt (void)
15546 {
15547 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15548 struct neon_type_el et = neon_check_type (2, rs,
15549 N_EQK | N_INT, N_8 | N_KEY);
15550 neon_two_same (neon_quad (rs), 1, et.size);
15551 }
15552
15553 static void
15554 do_neon_swp (void)
15555 {
15556 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15557 neon_two_same (neon_quad (rs), 1, -1);
15558 }
15559
15560 static void
15561 do_neon_tbl_tbx (void)
15562 {
15563 unsigned listlenbits;
15564 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15565
15566 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15567 {
15568 first_error (_("bad list length for table lookup"));
15569 return;
15570 }
15571
15572 listlenbits = inst.operands[1].imm - 1;
15573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15575 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15576 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15577 inst.instruction |= LOW4 (inst.operands[2].reg);
15578 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15579 inst.instruction |= listlenbits << 8;
15580
15581 neon_dp_fixup (&inst);
15582 }
15583
15584 static void
15585 do_neon_ldm_stm (void)
15586 {
15587 /* P, U and L bits are part of bitmask. */
15588 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15589 unsigned offsetbits = inst.operands[1].imm * 2;
15590
15591 if (inst.operands[1].issingle)
15592 {
15593 do_vfp_nsyn_ldm_stm (is_dbmode);
15594 return;
15595 }
15596
15597 constraint (is_dbmode && !inst.operands[0].writeback,
15598 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15599
15600 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15601 _("register list must contain at least 1 and at most 16 "
15602 "registers"));
15603
15604 inst.instruction |= inst.operands[0].reg << 16;
15605 inst.instruction |= inst.operands[0].writeback << 21;
15606 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15607 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15608
15609 inst.instruction |= offsetbits;
15610
15611 do_vfp_cond_or_thumb ();
15612 }
15613
15614 static void
15615 do_neon_ldr_str (void)
15616 {
15617 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15618
15619 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15620 And is UNPREDICTABLE in thumb mode. */
15621 if (!is_ldr
15622 && inst.operands[1].reg == REG_PC
15623 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15624 {
15625 if (!thumb_mode && warn_on_deprecated)
15626 as_warn (_("Use of PC here is deprecated"));
15627 else
15628 inst.error = _("Use of PC here is UNPREDICTABLE");
15629 }
15630
15631 if (inst.operands[0].issingle)
15632 {
15633 if (is_ldr)
15634 do_vfp_nsyn_opcode ("flds");
15635 else
15636 do_vfp_nsyn_opcode ("fsts");
15637 }
15638 else
15639 {
15640 if (is_ldr)
15641 do_vfp_nsyn_opcode ("fldd");
15642 else
15643 do_vfp_nsyn_opcode ("fstd");
15644 }
15645 }
15646
15647 /* "interleave" version also handles non-interleaving register VLD1/VST1
15648 instructions. */
15649
15650 static void
15651 do_neon_ld_st_interleave (void)
15652 {
15653 struct neon_type_el et = neon_check_type (1, NS_NULL,
15654 N_8 | N_16 | N_32 | N_64);
15655 unsigned alignbits = 0;
15656 unsigned idx;
15657 /* The bits in this table go:
15658 0: register stride of one (0) or two (1)
15659 1,2: register list length, minus one (1, 2, 3, 4).
15660 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15661 We use -1 for invalid entries. */
15662 const int typetable[] =
15663 {
15664 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15665 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15666 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15667 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15668 };
15669 int typebits;
15670
15671 if (et.type == NT_invtype)
15672 return;
15673
15674 if (inst.operands[1].immisalign)
15675 switch (inst.operands[1].imm >> 8)
15676 {
15677 case 64: alignbits = 1; break;
15678 case 128:
15679 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15680 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15681 goto bad_alignment;
15682 alignbits = 2;
15683 break;
15684 case 256:
15685 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15686 goto bad_alignment;
15687 alignbits = 3;
15688 break;
15689 default:
15690 bad_alignment:
15691 first_error (_("bad alignment"));
15692 return;
15693 }
15694
15695 inst.instruction |= alignbits << 4;
15696 inst.instruction |= neon_logbits (et.size) << 6;
15697
15698 /* Bits [4:6] of the immediate in a list specifier encode register stride
15699 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15700 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15701 up the right value for "type" in a table based on this value and the given
15702 list style, then stick it back. */
15703 idx = ((inst.operands[0].imm >> 4) & 7)
15704 | (((inst.instruction >> 8) & 3) << 3);
15705
15706 typebits = typetable[idx];
15707
15708 constraint (typebits == -1, _("bad list type for instruction"));
15709
15710 inst.instruction &= ~0xf00;
15711 inst.instruction |= typebits << 8;
15712 }
15713
15714 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15715 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15716 otherwise. The variable arguments are a list of pairs of legal (size, align)
15717 values, terminated with -1. */
15718
15719 static int
15720 neon_alignment_bit (int size, int align, int *do_align, ...)
15721 {
15722 va_list ap;
15723 int result = FAIL, thissize, thisalign;
15724
15725 if (!inst.operands[1].immisalign)
15726 {
15727 *do_align = 0;
15728 return SUCCESS;
15729 }
15730
15731 va_start (ap, do_align);
15732
15733 do
15734 {
15735 thissize = va_arg (ap, int);
15736 if (thissize == -1)
15737 break;
15738 thisalign = va_arg (ap, int);
15739
15740 if (size == thissize && align == thisalign)
15741 result = SUCCESS;
15742 }
15743 while (result != SUCCESS);
15744
15745 va_end (ap);
15746
15747 if (result == SUCCESS)
15748 *do_align = 1;
15749 else
15750 first_error (_("unsupported alignment for instruction"));
15751
15752 return result;
15753 }
15754
15755 static void
15756 do_neon_ld_st_lane (void)
15757 {
15758 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15759 int align_good, do_align = 0;
15760 int logsize = neon_logbits (et.size);
15761 int align = inst.operands[1].imm >> 8;
15762 int n = (inst.instruction >> 8) & 3;
15763 int max_el = 64 / et.size;
15764
15765 if (et.type == NT_invtype)
15766 return;
15767
15768 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15769 _("bad list length"));
15770 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15771 _("scalar index out of range"));
15772 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15773 && et.size == 8,
15774 _("stride of 2 unavailable when element size is 8"));
15775
15776 switch (n)
15777 {
15778 case 0: /* VLD1 / VST1. */
15779 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15780 32, 32, -1);
15781 if (align_good == FAIL)
15782 return;
15783 if (do_align)
15784 {
15785 unsigned alignbits = 0;
15786 switch (et.size)
15787 {
15788 case 16: alignbits = 0x1; break;
15789 case 32: alignbits = 0x3; break;
15790 default: ;
15791 }
15792 inst.instruction |= alignbits << 4;
15793 }
15794 break;
15795
15796 case 1: /* VLD2 / VST2. */
15797 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15798 32, 64, -1);
15799 if (align_good == FAIL)
15800 return;
15801 if (do_align)
15802 inst.instruction |= 1 << 4;
15803 break;
15804
15805 case 2: /* VLD3 / VST3. */
15806 constraint (inst.operands[1].immisalign,
15807 _("can't use alignment with this instruction"));
15808 break;
15809
15810 case 3: /* VLD4 / VST4. */
15811 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15812 16, 64, 32, 64, 32, 128, -1);
15813 if (align_good == FAIL)
15814 return;
15815 if (do_align)
15816 {
15817 unsigned alignbits = 0;
15818 switch (et.size)
15819 {
15820 case 8: alignbits = 0x1; break;
15821 case 16: alignbits = 0x1; break;
15822 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15823 default: ;
15824 }
15825 inst.instruction |= alignbits << 4;
15826 }
15827 break;
15828
15829 default: ;
15830 }
15831
15832 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15833 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15834 inst.instruction |= 1 << (4 + logsize);
15835
15836 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15837 inst.instruction |= logsize << 10;
15838 }
15839
15840 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15841
15842 static void
15843 do_neon_ld_dup (void)
15844 {
15845 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15846 int align_good, do_align = 0;
15847
15848 if (et.type == NT_invtype)
15849 return;
15850
15851 switch ((inst.instruction >> 8) & 3)
15852 {
15853 case 0: /* VLD1. */
15854 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15855 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15856 &do_align, 16, 16, 32, 32, -1);
15857 if (align_good == FAIL)
15858 return;
15859 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15860 {
15861 case 1: break;
15862 case 2: inst.instruction |= 1 << 5; break;
15863 default: first_error (_("bad list length")); return;
15864 }
15865 inst.instruction |= neon_logbits (et.size) << 6;
15866 break;
15867
15868 case 1: /* VLD2. */
15869 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15870 &do_align, 8, 16, 16, 32, 32, 64, -1);
15871 if (align_good == FAIL)
15872 return;
15873 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15874 _("bad list length"));
15875 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15876 inst.instruction |= 1 << 5;
15877 inst.instruction |= neon_logbits (et.size) << 6;
15878 break;
15879
15880 case 2: /* VLD3. */
15881 constraint (inst.operands[1].immisalign,
15882 _("can't use alignment with this instruction"));
15883 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15884 _("bad list length"));
15885 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15886 inst.instruction |= 1 << 5;
15887 inst.instruction |= neon_logbits (et.size) << 6;
15888 break;
15889
15890 case 3: /* VLD4. */
15891 {
15892 int align = inst.operands[1].imm >> 8;
15893 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15894 16, 64, 32, 64, 32, 128, -1);
15895 if (align_good == FAIL)
15896 return;
15897 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15898 _("bad list length"));
15899 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15900 inst.instruction |= 1 << 5;
15901 if (et.size == 32 && align == 128)
15902 inst.instruction |= 0x3 << 6;
15903 else
15904 inst.instruction |= neon_logbits (et.size) << 6;
15905 }
15906 break;
15907
15908 default: ;
15909 }
15910
15911 inst.instruction |= do_align << 4;
15912 }
15913
15914 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15915 apart from bits [11:4]. */
15916
15917 static void
15918 do_neon_ldx_stx (void)
15919 {
15920 if (inst.operands[1].isreg)
15921 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15922
15923 switch (NEON_LANE (inst.operands[0].imm))
15924 {
15925 case NEON_INTERLEAVE_LANES:
15926 NEON_ENCODE (INTERLV, inst);
15927 do_neon_ld_st_interleave ();
15928 break;
15929
15930 case NEON_ALL_LANES:
15931 NEON_ENCODE (DUP, inst);
15932 do_neon_ld_dup ();
15933 break;
15934
15935 default:
15936 NEON_ENCODE (LANE, inst);
15937 do_neon_ld_st_lane ();
15938 }
15939
15940 /* L bit comes from bit mask. */
15941 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15942 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15943 inst.instruction |= inst.operands[1].reg << 16;
15944
15945 if (inst.operands[1].postind)
15946 {
15947 int postreg = inst.operands[1].imm & 0xf;
15948 constraint (!inst.operands[1].immisreg,
15949 _("post-index must be a register"));
15950 constraint (postreg == 0xd || postreg == 0xf,
15951 _("bad register for post-index"));
15952 inst.instruction |= postreg;
15953 }
15954 else if (inst.operands[1].writeback)
15955 {
15956 inst.instruction |= 0xd;
15957 }
15958 else
15959 inst.instruction |= 0xf;
15960
15961 if (thumb_mode)
15962 inst.instruction |= 0xf9000000;
15963 else
15964 inst.instruction |= 0xf4000000;
15965 }
15966
15967 /* FP v8. */
15968 static void
15969 do_vfp_nsyn_fpv8 (enum neon_shape rs)
15970 {
15971 NEON_ENCODE (FPV8, inst);
15972
15973 if (rs == NS_FFF)
15974 do_vfp_sp_dyadic ();
15975 else
15976 do_vfp_dp_rd_rn_rm ();
15977
15978 if (rs == NS_DDD)
15979 inst.instruction |= 0x100;
15980
15981 inst.instruction |= 0xf0000000;
15982 }
15983
15984 static void
15985 do_vsel (void)
15986 {
15987 set_it_insn_type (OUTSIDE_IT_INSN);
15988
15989 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
15990 first_error (_("invalid instruction shape"));
15991 }
15992
15993 static void
15994 do_vmaxnm (void)
15995 {
15996 set_it_insn_type (OUTSIDE_IT_INSN);
15997
15998 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
15999 return;
16000
16001 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16002 return;
16003
16004 neon_dyadic_misc (NT_untyped, N_F32, 0);
16005 }
16006
16007 static void
16008 do_vrint_1 (enum neon_cvt_mode mode)
16009 {
16010 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16011 struct neon_type_el et;
16012
16013 if (rs == NS_NULL)
16014 return;
16015
16016 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16017 if (et.type != NT_invtype)
16018 {
16019 /* VFP encodings. */
16020 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16021 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16022 set_it_insn_type (OUTSIDE_IT_INSN);
16023
16024 NEON_ENCODE (FPV8, inst);
16025 if (rs == NS_FF)
16026 do_vfp_sp_monadic ();
16027 else
16028 do_vfp_dp_rd_rm ();
16029
16030 switch (mode)
16031 {
16032 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16033 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16034 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16035 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16036 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16037 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16038 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16039 default: abort ();
16040 }
16041
16042 inst.instruction |= (rs == NS_DD) << 8;
16043 do_vfp_cond_or_thumb ();
16044 }
16045 else
16046 {
16047 /* Neon encodings (or something broken...). */
16048 inst.error = NULL;
16049 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16050
16051 if (et.type == NT_invtype)
16052 return;
16053
16054 set_it_insn_type (OUTSIDE_IT_INSN);
16055 NEON_ENCODE (FLOAT, inst);
16056
16057 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16058 return;
16059
16060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16061 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16062 inst.instruction |= LOW4 (inst.operands[1].reg);
16063 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16064 inst.instruction |= neon_quad (rs) << 6;
16065 switch (mode)
16066 {
16067 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16068 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16069 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16070 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16071 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16072 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16073 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16074 default: abort ();
16075 }
16076
16077 if (thumb_mode)
16078 inst.instruction |= 0xfc000000;
16079 else
16080 inst.instruction |= 0xf0000000;
16081 }
16082 }
16083
16084 static void
16085 do_vrintx (void)
16086 {
16087 do_vrint_1 (neon_cvt_mode_x);
16088 }
16089
16090 static void
16091 do_vrintz (void)
16092 {
16093 do_vrint_1 (neon_cvt_mode_z);
16094 }
16095
16096 static void
16097 do_vrintr (void)
16098 {
16099 do_vrint_1 (neon_cvt_mode_r);
16100 }
16101
16102 static void
16103 do_vrinta (void)
16104 {
16105 do_vrint_1 (neon_cvt_mode_a);
16106 }
16107
16108 static void
16109 do_vrintn (void)
16110 {
16111 do_vrint_1 (neon_cvt_mode_n);
16112 }
16113
16114 static void
16115 do_vrintp (void)
16116 {
16117 do_vrint_1 (neon_cvt_mode_p);
16118 }
16119
16120 static void
16121 do_vrintm (void)
16122 {
16123 do_vrint_1 (neon_cvt_mode_m);
16124 }
16125
16126 \f
16127 /* Overall per-instruction processing. */
16128
16129 /* We need to be able to fix up arbitrary expressions in some statements.
16130 This is so that we can handle symbols that are an arbitrary distance from
16131 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16132 which returns part of an address in a form which will be valid for
16133 a data instruction. We do this by pushing the expression into a symbol
16134 in the expr_section, and creating a fix for that. */
16135
16136 static void
16137 fix_new_arm (fragS * frag,
16138 int where,
16139 short int size,
16140 expressionS * exp,
16141 int pc_rel,
16142 int reloc)
16143 {
16144 fixS * new_fix;
16145
16146 switch (exp->X_op)
16147 {
16148 case O_constant:
16149 if (pc_rel)
16150 {
16151 /* Create an absolute valued symbol, so we have something to
16152 refer to in the object file. Unfortunately for us, gas's
16153 generic expression parsing will already have folded out
16154 any use of .set foo/.type foo %function that may have
16155 been used to set type information of the target location,
16156 that's being specified symbolically. We have to presume
16157 the user knows what they are doing. */
16158 char name[16 + 8];
16159 symbolS *symbol;
16160
16161 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16162
16163 symbol = symbol_find_or_make (name);
16164 S_SET_SEGMENT (symbol, absolute_section);
16165 symbol_set_frag (symbol, &zero_address_frag);
16166 S_SET_VALUE (symbol, exp->X_add_number);
16167 exp->X_op = O_symbol;
16168 exp->X_add_symbol = symbol;
16169 exp->X_add_number = 0;
16170 }
16171 /* FALLTHROUGH */
16172 case O_symbol:
16173 case O_add:
16174 case O_subtract:
16175 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16176 (enum bfd_reloc_code_real) reloc);
16177 break;
16178
16179 default:
16180 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16181 pc_rel, (enum bfd_reloc_code_real) reloc);
16182 break;
16183 }
16184
16185 /* Mark whether the fix is to a THUMB instruction, or an ARM
16186 instruction. */
16187 new_fix->tc_fix_data = thumb_mode;
16188 }
16189
16190 /* Create a frg for an instruction requiring relaxation. */
16191 static void
16192 output_relax_insn (void)
16193 {
16194 char * to;
16195 symbolS *sym;
16196 int offset;
16197
16198 /* The size of the instruction is unknown, so tie the debug info to the
16199 start of the instruction. */
16200 dwarf2_emit_insn (0);
16201
16202 switch (inst.reloc.exp.X_op)
16203 {
16204 case O_symbol:
16205 sym = inst.reloc.exp.X_add_symbol;
16206 offset = inst.reloc.exp.X_add_number;
16207 break;
16208 case O_constant:
16209 sym = NULL;
16210 offset = inst.reloc.exp.X_add_number;
16211 break;
16212 default:
16213 sym = make_expr_symbol (&inst.reloc.exp);
16214 offset = 0;
16215 break;
16216 }
16217 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16218 inst.relax, sym, offset, NULL/*offset, opcode*/);
16219 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16220 }
16221
16222 /* Write a 32-bit thumb instruction to buf. */
16223 static void
16224 put_thumb32_insn (char * buf, unsigned long insn)
16225 {
16226 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16227 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16228 }
16229
16230 static void
16231 output_inst (const char * str)
16232 {
16233 char * to = NULL;
16234
16235 if (inst.error)
16236 {
16237 as_bad ("%s -- `%s'", inst.error, str);
16238 return;
16239 }
16240 if (inst.relax)
16241 {
16242 output_relax_insn ();
16243 return;
16244 }
16245 if (inst.size == 0)
16246 return;
16247
16248 to = frag_more (inst.size);
16249 /* PR 9814: Record the thumb mode into the current frag so that we know
16250 what type of NOP padding to use, if necessary. We override any previous
16251 setting so that if the mode has changed then the NOPS that we use will
16252 match the encoding of the last instruction in the frag. */
16253 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16254
16255 if (thumb_mode && (inst.size > THUMB_SIZE))
16256 {
16257 gas_assert (inst.size == (2 * THUMB_SIZE));
16258 put_thumb32_insn (to, inst.instruction);
16259 }
16260 else if (inst.size > INSN_SIZE)
16261 {
16262 gas_assert (inst.size == (2 * INSN_SIZE));
16263 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16264 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16265 }
16266 else
16267 md_number_to_chars (to, inst.instruction, inst.size);
16268
16269 if (inst.reloc.type != BFD_RELOC_UNUSED)
16270 fix_new_arm (frag_now, to - frag_now->fr_literal,
16271 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16272 inst.reloc.type);
16273
16274 dwarf2_emit_insn (inst.size);
16275 }
16276
16277 static char *
16278 output_it_inst (int cond, int mask, char * to)
16279 {
16280 unsigned long instruction = 0xbf00;
16281
16282 mask &= 0xf;
16283 instruction |= mask;
16284 instruction |= cond << 4;
16285
16286 if (to == NULL)
16287 {
16288 to = frag_more (2);
16289 #ifdef OBJ_ELF
16290 dwarf2_emit_insn (2);
16291 #endif
16292 }
16293
16294 md_number_to_chars (to, instruction, 2);
16295
16296 return to;
16297 }
16298
16299 /* Tag values used in struct asm_opcode's tag field. */
16300 enum opcode_tag
16301 {
16302 OT_unconditional, /* Instruction cannot be conditionalized.
16303 The ARM condition field is still 0xE. */
16304 OT_unconditionalF, /* Instruction cannot be conditionalized
16305 and carries 0xF in its ARM condition field. */
16306 OT_csuffix, /* Instruction takes a conditional suffix. */
16307 OT_csuffixF, /* Some forms of the instruction take a conditional
16308 suffix, others place 0xF where the condition field
16309 would be. */
16310 OT_cinfix3, /* Instruction takes a conditional infix,
16311 beginning at character index 3. (In
16312 unified mode, it becomes a suffix.) */
16313 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16314 tsts, cmps, cmns, and teqs. */
16315 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16316 character index 3, even in unified mode. Used for
16317 legacy instructions where suffix and infix forms
16318 may be ambiguous. */
16319 OT_csuf_or_in3, /* Instruction takes either a conditional
16320 suffix or an infix at character index 3. */
16321 OT_odd_infix_unc, /* This is the unconditional variant of an
16322 instruction that takes a conditional infix
16323 at an unusual position. In unified mode,
16324 this variant will accept a suffix. */
16325 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16326 are the conditional variants of instructions that
16327 take conditional infixes in unusual positions.
16328 The infix appears at character index
16329 (tag - OT_odd_infix_0). These are not accepted
16330 in unified mode. */
16331 };
16332
16333 /* Subroutine of md_assemble, responsible for looking up the primary
16334 opcode from the mnemonic the user wrote. STR points to the
16335 beginning of the mnemonic.
16336
16337 This is not simply a hash table lookup, because of conditional
16338 variants. Most instructions have conditional variants, which are
16339 expressed with a _conditional affix_ to the mnemonic. If we were
16340 to encode each conditional variant as a literal string in the opcode
16341 table, it would have approximately 20,000 entries.
16342
16343 Most mnemonics take this affix as a suffix, and in unified syntax,
16344 'most' is upgraded to 'all'. However, in the divided syntax, some
16345 instructions take the affix as an infix, notably the s-variants of
16346 the arithmetic instructions. Of those instructions, all but six
16347 have the infix appear after the third character of the mnemonic.
16348
16349 Accordingly, the algorithm for looking up primary opcodes given
16350 an identifier is:
16351
16352 1. Look up the identifier in the opcode table.
16353 If we find a match, go to step U.
16354
16355 2. Look up the last two characters of the identifier in the
16356 conditions table. If we find a match, look up the first N-2
16357 characters of the identifier in the opcode table. If we
16358 find a match, go to step CE.
16359
16360 3. Look up the fourth and fifth characters of the identifier in
16361 the conditions table. If we find a match, extract those
16362 characters from the identifier, and look up the remaining
16363 characters in the opcode table. If we find a match, go
16364 to step CM.
16365
16366 4. Fail.
16367
16368 U. Examine the tag field of the opcode structure, in case this is
16369 one of the six instructions with its conditional infix in an
16370 unusual place. If it is, the tag tells us where to find the
16371 infix; look it up in the conditions table and set inst.cond
16372 accordingly. Otherwise, this is an unconditional instruction.
16373 Again set inst.cond accordingly. Return the opcode structure.
16374
16375 CE. Examine the tag field to make sure this is an instruction that
16376 should receive a conditional suffix. If it is not, fail.
16377 Otherwise, set inst.cond from the suffix we already looked up,
16378 and return the opcode structure.
16379
16380 CM. Examine the tag field to make sure this is an instruction that
16381 should receive a conditional infix after the third character.
16382 If it is not, fail. Otherwise, undo the edits to the current
16383 line of input and proceed as for case CE. */
16384
16385 static const struct asm_opcode *
16386 opcode_lookup (char **str)
16387 {
16388 char *end, *base;
16389 char *affix;
16390 const struct asm_opcode *opcode;
16391 const struct asm_cond *cond;
16392 char save[2];
16393
16394 /* Scan up to the end of the mnemonic, which must end in white space,
16395 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16396 for (base = end = *str; *end != '\0'; end++)
16397 if (*end == ' ' || *end == '.')
16398 break;
16399
16400 if (end == base)
16401 return NULL;
16402
16403 /* Handle a possible width suffix and/or Neon type suffix. */
16404 if (end[0] == '.')
16405 {
16406 int offset = 2;
16407
16408 /* The .w and .n suffixes are only valid if the unified syntax is in
16409 use. */
16410 if (unified_syntax && end[1] == 'w')
16411 inst.size_req = 4;
16412 else if (unified_syntax && end[1] == 'n')
16413 inst.size_req = 2;
16414 else
16415 offset = 0;
16416
16417 inst.vectype.elems = 0;
16418
16419 *str = end + offset;
16420
16421 if (end[offset] == '.')
16422 {
16423 /* See if we have a Neon type suffix (possible in either unified or
16424 non-unified ARM syntax mode). */
16425 if (parse_neon_type (&inst.vectype, str) == FAIL)
16426 return NULL;
16427 }
16428 else if (end[offset] != '\0' && end[offset] != ' ')
16429 return NULL;
16430 }
16431 else
16432 *str = end;
16433
16434 /* Look for unaffixed or special-case affixed mnemonic. */
16435 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16436 end - base);
16437 if (opcode)
16438 {
16439 /* step U */
16440 if (opcode->tag < OT_odd_infix_0)
16441 {
16442 inst.cond = COND_ALWAYS;
16443 return opcode;
16444 }
16445
16446 if (warn_on_deprecated && unified_syntax)
16447 as_warn (_("conditional infixes are deprecated in unified syntax"));
16448 affix = base + (opcode->tag - OT_odd_infix_0);
16449 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16450 gas_assert (cond);
16451
16452 inst.cond = cond->value;
16453 return opcode;
16454 }
16455
16456 /* Cannot have a conditional suffix on a mnemonic of less than two
16457 characters. */
16458 if (end - base < 3)
16459 return NULL;
16460
16461 /* Look for suffixed mnemonic. */
16462 affix = end - 2;
16463 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16464 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16465 affix - base);
16466 if (opcode && cond)
16467 {
16468 /* step CE */
16469 switch (opcode->tag)
16470 {
16471 case OT_cinfix3_legacy:
16472 /* Ignore conditional suffixes matched on infix only mnemonics. */
16473 break;
16474
16475 case OT_cinfix3:
16476 case OT_cinfix3_deprecated:
16477 case OT_odd_infix_unc:
16478 if (!unified_syntax)
16479 return 0;
16480 /* else fall through */
16481
16482 case OT_csuffix:
16483 case OT_csuffixF:
16484 case OT_csuf_or_in3:
16485 inst.cond = cond->value;
16486 return opcode;
16487
16488 case OT_unconditional:
16489 case OT_unconditionalF:
16490 if (thumb_mode)
16491 inst.cond = cond->value;
16492 else
16493 {
16494 /* Delayed diagnostic. */
16495 inst.error = BAD_COND;
16496 inst.cond = COND_ALWAYS;
16497 }
16498 return opcode;
16499
16500 default:
16501 return NULL;
16502 }
16503 }
16504
16505 /* Cannot have a usual-position infix on a mnemonic of less than
16506 six characters (five would be a suffix). */
16507 if (end - base < 6)
16508 return NULL;
16509
16510 /* Look for infixed mnemonic in the usual position. */
16511 affix = base + 3;
16512 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16513 if (!cond)
16514 return NULL;
16515
16516 memcpy (save, affix, 2);
16517 memmove (affix, affix + 2, (end - affix) - 2);
16518 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16519 (end - base) - 2);
16520 memmove (affix + 2, affix, (end - affix) - 2);
16521 memcpy (affix, save, 2);
16522
16523 if (opcode
16524 && (opcode->tag == OT_cinfix3
16525 || opcode->tag == OT_cinfix3_deprecated
16526 || opcode->tag == OT_csuf_or_in3
16527 || opcode->tag == OT_cinfix3_legacy))
16528 {
16529 /* Step CM. */
16530 if (warn_on_deprecated && unified_syntax
16531 && (opcode->tag == OT_cinfix3
16532 || opcode->tag == OT_cinfix3_deprecated))
16533 as_warn (_("conditional infixes are deprecated in unified syntax"));
16534
16535 inst.cond = cond->value;
16536 return opcode;
16537 }
16538
16539 return NULL;
16540 }
16541
16542 /* This function generates an initial IT instruction, leaving its block
16543 virtually open for the new instructions. Eventually,
16544 the mask will be updated by now_it_add_mask () each time
16545 a new instruction needs to be included in the IT block.
16546 Finally, the block is closed with close_automatic_it_block ().
16547 The block closure can be requested either from md_assemble (),
16548 a tencode (), or due to a label hook. */
16549
16550 static void
16551 new_automatic_it_block (int cond)
16552 {
16553 now_it.state = AUTOMATIC_IT_BLOCK;
16554 now_it.mask = 0x18;
16555 now_it.cc = cond;
16556 now_it.block_length = 1;
16557 mapping_state (MAP_THUMB);
16558 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16559 now_it.warn_deprecated = FALSE;
16560 now_it.insn_cond = TRUE;
16561 }
16562
16563 /* Close an automatic IT block.
16564 See comments in new_automatic_it_block (). */
16565
16566 static void
16567 close_automatic_it_block (void)
16568 {
16569 now_it.mask = 0x10;
16570 now_it.block_length = 0;
16571 }
16572
16573 /* Update the mask of the current automatically-generated IT
16574 instruction. See comments in new_automatic_it_block (). */
16575
16576 static void
16577 now_it_add_mask (int cond)
16578 {
16579 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16580 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16581 | ((bitvalue) << (nbit)))
16582 const int resulting_bit = (cond & 1);
16583
16584 now_it.mask &= 0xf;
16585 now_it.mask = SET_BIT_VALUE (now_it.mask,
16586 resulting_bit,
16587 (5 - now_it.block_length));
16588 now_it.mask = SET_BIT_VALUE (now_it.mask,
16589 1,
16590 ((5 - now_it.block_length) - 1) );
16591 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16592
16593 #undef CLEAR_BIT
16594 #undef SET_BIT_VALUE
16595 }
16596
16597 /* The IT blocks handling machinery is accessed through the these functions:
16598 it_fsm_pre_encode () from md_assemble ()
16599 set_it_insn_type () optional, from the tencode functions
16600 set_it_insn_type_last () ditto
16601 in_it_block () ditto
16602 it_fsm_post_encode () from md_assemble ()
16603 force_automatic_it_block_close () from label habdling functions
16604
16605 Rationale:
16606 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16607 initializing the IT insn type with a generic initial value depending
16608 on the inst.condition.
16609 2) During the tencode function, two things may happen:
16610 a) The tencode function overrides the IT insn type by
16611 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16612 b) The tencode function queries the IT block state by
16613 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16614
16615 Both set_it_insn_type and in_it_block run the internal FSM state
16616 handling function (handle_it_state), because: a) setting the IT insn
16617 type may incur in an invalid state (exiting the function),
16618 and b) querying the state requires the FSM to be updated.
16619 Specifically we want to avoid creating an IT block for conditional
16620 branches, so it_fsm_pre_encode is actually a guess and we can't
16621 determine whether an IT block is required until the tencode () routine
16622 has decided what type of instruction this actually it.
16623 Because of this, if set_it_insn_type and in_it_block have to be used,
16624 set_it_insn_type has to be called first.
16625
16626 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16627 determines the insn IT type depending on the inst.cond code.
16628 When a tencode () routine encodes an instruction that can be
16629 either outside an IT block, or, in the case of being inside, has to be
16630 the last one, set_it_insn_type_last () will determine the proper
16631 IT instruction type based on the inst.cond code. Otherwise,
16632 set_it_insn_type can be called for overriding that logic or
16633 for covering other cases.
16634
16635 Calling handle_it_state () may not transition the IT block state to
16636 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16637 still queried. Instead, if the FSM determines that the state should
16638 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16639 after the tencode () function: that's what it_fsm_post_encode () does.
16640
16641 Since in_it_block () calls the state handling function to get an
16642 updated state, an error may occur (due to invalid insns combination).
16643 In that case, inst.error is set.
16644 Therefore, inst.error has to be checked after the execution of
16645 the tencode () routine.
16646
16647 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16648 any pending state change (if any) that didn't take place in
16649 handle_it_state () as explained above. */
16650
16651 static void
16652 it_fsm_pre_encode (void)
16653 {
16654 if (inst.cond != COND_ALWAYS)
16655 inst.it_insn_type = INSIDE_IT_INSN;
16656 else
16657 inst.it_insn_type = OUTSIDE_IT_INSN;
16658
16659 now_it.state_handled = 0;
16660 }
16661
16662 /* IT state FSM handling function. */
16663
16664 static int
16665 handle_it_state (void)
16666 {
16667 now_it.state_handled = 1;
16668 now_it.insn_cond = FALSE;
16669
16670 switch (now_it.state)
16671 {
16672 case OUTSIDE_IT_BLOCK:
16673 switch (inst.it_insn_type)
16674 {
16675 case OUTSIDE_IT_INSN:
16676 break;
16677
16678 case INSIDE_IT_INSN:
16679 case INSIDE_IT_LAST_INSN:
16680 if (thumb_mode == 0)
16681 {
16682 if (unified_syntax
16683 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16684 as_tsktsk (_("Warning: conditional outside an IT block"\
16685 " for Thumb."));
16686 }
16687 else
16688 {
16689 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16690 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16691 {
16692 /* Automatically generate the IT instruction. */
16693 new_automatic_it_block (inst.cond);
16694 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16695 close_automatic_it_block ();
16696 }
16697 else
16698 {
16699 inst.error = BAD_OUT_IT;
16700 return FAIL;
16701 }
16702 }
16703 break;
16704
16705 case IF_INSIDE_IT_LAST_INSN:
16706 case NEUTRAL_IT_INSN:
16707 break;
16708
16709 case IT_INSN:
16710 now_it.state = MANUAL_IT_BLOCK;
16711 now_it.block_length = 0;
16712 break;
16713 }
16714 break;
16715
16716 case AUTOMATIC_IT_BLOCK:
16717 /* Three things may happen now:
16718 a) We should increment current it block size;
16719 b) We should close current it block (closing insn or 4 insns);
16720 c) We should close current it block and start a new one (due
16721 to incompatible conditions or
16722 4 insns-length block reached). */
16723
16724 switch (inst.it_insn_type)
16725 {
16726 case OUTSIDE_IT_INSN:
16727 /* The closure of the block shall happen immediatelly,
16728 so any in_it_block () call reports the block as closed. */
16729 force_automatic_it_block_close ();
16730 break;
16731
16732 case INSIDE_IT_INSN:
16733 case INSIDE_IT_LAST_INSN:
16734 case IF_INSIDE_IT_LAST_INSN:
16735 now_it.block_length++;
16736
16737 if (now_it.block_length > 4
16738 || !now_it_compatible (inst.cond))
16739 {
16740 force_automatic_it_block_close ();
16741 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16742 new_automatic_it_block (inst.cond);
16743 }
16744 else
16745 {
16746 now_it.insn_cond = TRUE;
16747 now_it_add_mask (inst.cond);
16748 }
16749
16750 if (now_it.state == AUTOMATIC_IT_BLOCK
16751 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16752 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16753 close_automatic_it_block ();
16754 break;
16755
16756 case NEUTRAL_IT_INSN:
16757 now_it.block_length++;
16758 now_it.insn_cond = TRUE;
16759
16760 if (now_it.block_length > 4)
16761 force_automatic_it_block_close ();
16762 else
16763 now_it_add_mask (now_it.cc & 1);
16764 break;
16765
16766 case IT_INSN:
16767 close_automatic_it_block ();
16768 now_it.state = MANUAL_IT_BLOCK;
16769 break;
16770 }
16771 break;
16772
16773 case MANUAL_IT_BLOCK:
16774 {
16775 /* Check conditional suffixes. */
16776 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16777 int is_last;
16778 now_it.mask <<= 1;
16779 now_it.mask &= 0x1f;
16780 is_last = (now_it.mask == 0x10);
16781 now_it.insn_cond = TRUE;
16782
16783 switch (inst.it_insn_type)
16784 {
16785 case OUTSIDE_IT_INSN:
16786 inst.error = BAD_NOT_IT;
16787 return FAIL;
16788
16789 case INSIDE_IT_INSN:
16790 if (cond != inst.cond)
16791 {
16792 inst.error = BAD_IT_COND;
16793 return FAIL;
16794 }
16795 break;
16796
16797 case INSIDE_IT_LAST_INSN:
16798 case IF_INSIDE_IT_LAST_INSN:
16799 if (cond != inst.cond)
16800 {
16801 inst.error = BAD_IT_COND;
16802 return FAIL;
16803 }
16804 if (!is_last)
16805 {
16806 inst.error = BAD_BRANCH;
16807 return FAIL;
16808 }
16809 break;
16810
16811 case NEUTRAL_IT_INSN:
16812 /* The BKPT instruction is unconditional even in an IT block. */
16813 break;
16814
16815 case IT_INSN:
16816 inst.error = BAD_IT_IT;
16817 return FAIL;
16818 }
16819 }
16820 break;
16821 }
16822
16823 return SUCCESS;
16824 }
16825
16826 struct depr_insn_mask
16827 {
16828 unsigned long pattern;
16829 unsigned long mask;
16830 const char* description;
16831 };
16832
16833 /* List of 16-bit instruction patterns deprecated in an IT block in
16834 ARMv8. */
16835 static const struct depr_insn_mask depr_it_insns[] = {
16836 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16837 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16838 { 0xa000, 0xb800, N_("ADR") },
16839 { 0x4800, 0xf800, N_("Literal loads") },
16840 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16841 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16842 { 0, 0, NULL }
16843 };
16844
16845 static void
16846 it_fsm_post_encode (void)
16847 {
16848 int is_last;
16849
16850 if (!now_it.state_handled)
16851 handle_it_state ();
16852
16853 if (now_it.insn_cond
16854 && !now_it.warn_deprecated
16855 && warn_on_deprecated
16856 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16857 {
16858 if (inst.instruction >= 0x10000)
16859 {
16860 as_warn (_("it blocks containing wide Thumb instructions are "
16861 "deprecated in ARMv8"));
16862 now_it.warn_deprecated = TRUE;
16863 }
16864 else
16865 {
16866 const struct depr_insn_mask *p = depr_it_insns;
16867
16868 while (p->mask != 0)
16869 {
16870 if ((inst.instruction & p->mask) == p->pattern)
16871 {
16872 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16873 "of the following class are deprecated in ARMv8: "
16874 "%s"), p->description);
16875 now_it.warn_deprecated = TRUE;
16876 break;
16877 }
16878
16879 ++p;
16880 }
16881 }
16882
16883 if (now_it.block_length > 1)
16884 {
16885 as_warn (_("it blocks of more than one conditional instruction are "
16886 "deprecated in ARMv8"));
16887 now_it.warn_deprecated = TRUE;
16888 }
16889 }
16890
16891 is_last = (now_it.mask == 0x10);
16892 if (is_last)
16893 {
16894 now_it.state = OUTSIDE_IT_BLOCK;
16895 now_it.mask = 0;
16896 }
16897 }
16898
16899 static void
16900 force_automatic_it_block_close (void)
16901 {
16902 if (now_it.state == AUTOMATIC_IT_BLOCK)
16903 {
16904 close_automatic_it_block ();
16905 now_it.state = OUTSIDE_IT_BLOCK;
16906 now_it.mask = 0;
16907 }
16908 }
16909
16910 static int
16911 in_it_block (void)
16912 {
16913 if (!now_it.state_handled)
16914 handle_it_state ();
16915
16916 return now_it.state != OUTSIDE_IT_BLOCK;
16917 }
16918
16919 void
16920 md_assemble (char *str)
16921 {
16922 char *p = str;
16923 const struct asm_opcode * opcode;
16924
16925 /* Align the previous label if needed. */
16926 if (last_label_seen != NULL)
16927 {
16928 symbol_set_frag (last_label_seen, frag_now);
16929 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16930 S_SET_SEGMENT (last_label_seen, now_seg);
16931 }
16932
16933 memset (&inst, '\0', sizeof (inst));
16934 inst.reloc.type = BFD_RELOC_UNUSED;
16935
16936 opcode = opcode_lookup (&p);
16937 if (!opcode)
16938 {
16939 /* It wasn't an instruction, but it might be a register alias of
16940 the form alias .req reg, or a Neon .dn/.qn directive. */
16941 if (! create_register_alias (str, p)
16942 && ! create_neon_reg_alias (str, p))
16943 as_bad (_("bad instruction `%s'"), str);
16944
16945 return;
16946 }
16947
16948 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16949 as_warn (_("s suffix on comparison instruction is deprecated"));
16950
16951 /* The value which unconditional instructions should have in place of the
16952 condition field. */
16953 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16954
16955 if (thumb_mode)
16956 {
16957 arm_feature_set variant;
16958
16959 variant = cpu_variant;
16960 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16961 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16962 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16963 /* Check that this instruction is supported for this CPU. */
16964 if (!opcode->tvariant
16965 || (thumb_mode == 1
16966 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16967 {
16968 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16969 return;
16970 }
16971 if (inst.cond != COND_ALWAYS && !unified_syntax
16972 && opcode->tencode != do_t_branch)
16973 {
16974 as_bad (_("Thumb does not support conditional execution"));
16975 return;
16976 }
16977
16978 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16979 {
16980 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16981 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16982 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16983 {
16984 /* Two things are addressed here.
16985 1) Implicit require narrow instructions on Thumb-1.
16986 This avoids relaxation accidentally introducing Thumb-2
16987 instructions.
16988 2) Reject wide instructions in non Thumb-2 cores. */
16989 if (inst.size_req == 0)
16990 inst.size_req = 2;
16991 else if (inst.size_req == 4)
16992 {
16993 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16994 return;
16995 }
16996 }
16997 }
16998
16999 inst.instruction = opcode->tvalue;
17000
17001 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17002 {
17003 /* Prepare the it_insn_type for those encodings that don't set
17004 it. */
17005 it_fsm_pre_encode ();
17006
17007 opcode->tencode ();
17008
17009 it_fsm_post_encode ();
17010 }
17011
17012 if (!(inst.error || inst.relax))
17013 {
17014 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17015 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17016 if (inst.size_req && inst.size_req != inst.size)
17017 {
17018 as_bad (_("cannot honor width suffix -- `%s'"), str);
17019 return;
17020 }
17021 }
17022
17023 /* Something has gone badly wrong if we try to relax a fixed size
17024 instruction. */
17025 gas_assert (inst.size_req == 0 || !inst.relax);
17026
17027 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17028 *opcode->tvariant);
17029 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17030 set those bits when Thumb-2 32-bit instructions are seen. ie.
17031 anything other than bl/blx and v6-M instructions.
17032 This is overly pessimistic for relaxable instructions. */
17033 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17034 || inst.relax)
17035 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17036 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17037 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17038 arm_ext_v6t2);
17039
17040 check_neon_suffixes;
17041
17042 if (!inst.error)
17043 {
17044 mapping_state (MAP_THUMB);
17045 }
17046 }
17047 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17048 {
17049 bfd_boolean is_bx;
17050
17051 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17052 is_bx = (opcode->aencode == do_bx);
17053
17054 /* Check that this instruction is supported for this CPU. */
17055 if (!(is_bx && fix_v4bx)
17056 && !(opcode->avariant &&
17057 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17058 {
17059 as_bad (_("selected processor does not support ARM mode `%s'"), str);
17060 return;
17061 }
17062 if (inst.size_req)
17063 {
17064 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17065 return;
17066 }
17067
17068 inst.instruction = opcode->avalue;
17069 if (opcode->tag == OT_unconditionalF)
17070 inst.instruction |= 0xF << 28;
17071 else
17072 inst.instruction |= inst.cond << 28;
17073 inst.size = INSN_SIZE;
17074 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17075 {
17076 it_fsm_pre_encode ();
17077 opcode->aencode ();
17078 it_fsm_post_encode ();
17079 }
17080 /* Arm mode bx is marked as both v4T and v5 because it's still required
17081 on a hypothetical non-thumb v5 core. */
17082 if (is_bx)
17083 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17084 else
17085 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17086 *opcode->avariant);
17087
17088 check_neon_suffixes;
17089
17090 if (!inst.error)
17091 {
17092 mapping_state (MAP_ARM);
17093 }
17094 }
17095 else
17096 {
17097 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17098 "-- `%s'"), str);
17099 return;
17100 }
17101 output_inst (str);
17102 }
17103
17104 static void
17105 check_it_blocks_finished (void)
17106 {
17107 #ifdef OBJ_ELF
17108 asection *sect;
17109
17110 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17111 if (seg_info (sect)->tc_segment_info_data.current_it.state
17112 == MANUAL_IT_BLOCK)
17113 {
17114 as_warn (_("section '%s' finished with an open IT block."),
17115 sect->name);
17116 }
17117 #else
17118 if (now_it.state == MANUAL_IT_BLOCK)
17119 as_warn (_("file finished with an open IT block."));
17120 #endif
17121 }
17122
17123 /* Various frobbings of labels and their addresses. */
17124
17125 void
17126 arm_start_line_hook (void)
17127 {
17128 last_label_seen = NULL;
17129 }
17130
17131 void
17132 arm_frob_label (symbolS * sym)
17133 {
17134 last_label_seen = sym;
17135
17136 ARM_SET_THUMB (sym, thumb_mode);
17137
17138 #if defined OBJ_COFF || defined OBJ_ELF
17139 ARM_SET_INTERWORK (sym, support_interwork);
17140 #endif
17141
17142 force_automatic_it_block_close ();
17143
17144 /* Note - do not allow local symbols (.Lxxx) to be labelled
17145 as Thumb functions. This is because these labels, whilst
17146 they exist inside Thumb code, are not the entry points for
17147 possible ARM->Thumb calls. Also, these labels can be used
17148 as part of a computed goto or switch statement. eg gcc
17149 can generate code that looks like this:
17150
17151 ldr r2, [pc, .Laaa]
17152 lsl r3, r3, #2
17153 ldr r2, [r3, r2]
17154 mov pc, r2
17155
17156 .Lbbb: .word .Lxxx
17157 .Lccc: .word .Lyyy
17158 ..etc...
17159 .Laaa: .word Lbbb
17160
17161 The first instruction loads the address of the jump table.
17162 The second instruction converts a table index into a byte offset.
17163 The third instruction gets the jump address out of the table.
17164 The fourth instruction performs the jump.
17165
17166 If the address stored at .Laaa is that of a symbol which has the
17167 Thumb_Func bit set, then the linker will arrange for this address
17168 to have the bottom bit set, which in turn would mean that the
17169 address computation performed by the third instruction would end
17170 up with the bottom bit set. Since the ARM is capable of unaligned
17171 word loads, the instruction would then load the incorrect address
17172 out of the jump table, and chaos would ensue. */
17173 if (label_is_thumb_function_name
17174 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17175 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17176 {
17177 /* When the address of a Thumb function is taken the bottom
17178 bit of that address should be set. This will allow
17179 interworking between Arm and Thumb functions to work
17180 correctly. */
17181
17182 THUMB_SET_FUNC (sym, 1);
17183
17184 label_is_thumb_function_name = FALSE;
17185 }
17186
17187 dwarf2_emit_label (sym);
17188 }
17189
17190 bfd_boolean
17191 arm_data_in_code (void)
17192 {
17193 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17194 {
17195 *input_line_pointer = '/';
17196 input_line_pointer += 5;
17197 *input_line_pointer = 0;
17198 return TRUE;
17199 }
17200
17201 return FALSE;
17202 }
17203
17204 char *
17205 arm_canonicalize_symbol_name (char * name)
17206 {
17207 int len;
17208
17209 if (thumb_mode && (len = strlen (name)) > 5
17210 && streq (name + len - 5, "/data"))
17211 *(name + len - 5) = 0;
17212
17213 return name;
17214 }
17215 \f
17216 /* Table of all register names defined by default. The user can
17217 define additional names with .req. Note that all register names
17218 should appear in both upper and lowercase variants. Some registers
17219 also have mixed-case names. */
17220
17221 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17222 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17223 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17224 #define REGSET(p,t) \
17225 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17226 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17227 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17228 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17229 #define REGSETH(p,t) \
17230 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17231 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17232 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17233 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17234 #define REGSET2(p,t) \
17235 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17236 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17237 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17238 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17239 #define SPLRBANK(base,bank,t) \
17240 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17241 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17242 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17243 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17244 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17245 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17246
17247 static const struct reg_entry reg_names[] =
17248 {
17249 /* ARM integer registers. */
17250 REGSET(r, RN), REGSET(R, RN),
17251
17252 /* ATPCS synonyms. */
17253 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17254 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17255 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17256
17257 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17258 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17259 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17260
17261 /* Well-known aliases. */
17262 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17263 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17264
17265 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17266 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17267
17268 /* Coprocessor numbers. */
17269 REGSET(p, CP), REGSET(P, CP),
17270
17271 /* Coprocessor register numbers. The "cr" variants are for backward
17272 compatibility. */
17273 REGSET(c, CN), REGSET(C, CN),
17274 REGSET(cr, CN), REGSET(CR, CN),
17275
17276 /* ARM banked registers. */
17277 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17278 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17279 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17280 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17281 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17282 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17283 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17284
17285 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17286 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17287 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17288 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17289 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17290 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17291 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17292 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17293
17294 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17295 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17296 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17297 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17298 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17299 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17300 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17301 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17302 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17303
17304 /* FPA registers. */
17305 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17306 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17307
17308 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17309 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17310
17311 /* VFP SP registers. */
17312 REGSET(s,VFS), REGSET(S,VFS),
17313 REGSETH(s,VFS), REGSETH(S,VFS),
17314
17315 /* VFP DP Registers. */
17316 REGSET(d,VFD), REGSET(D,VFD),
17317 /* Extra Neon DP registers. */
17318 REGSETH(d,VFD), REGSETH(D,VFD),
17319
17320 /* Neon QP registers. */
17321 REGSET2(q,NQ), REGSET2(Q,NQ),
17322
17323 /* VFP control registers. */
17324 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17325 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17326 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17327 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17328 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17329 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17330
17331 /* Maverick DSP coprocessor registers. */
17332 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17333 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17334
17335 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17336 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17337 REGDEF(dspsc,0,DSPSC),
17338
17339 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17340 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17341 REGDEF(DSPSC,0,DSPSC),
17342
17343 /* iWMMXt data registers - p0, c0-15. */
17344 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17345
17346 /* iWMMXt control registers - p1, c0-3. */
17347 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17348 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17349 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17350 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17351
17352 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17353 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17354 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17355 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17356 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17357
17358 /* XScale accumulator registers. */
17359 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17360 };
17361 #undef REGDEF
17362 #undef REGNUM
17363 #undef REGSET
17364
17365 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17366 within psr_required_here. */
17367 static const struct asm_psr psrs[] =
17368 {
17369 /* Backward compatibility notation. Note that "all" is no longer
17370 truly all possible PSR bits. */
17371 {"all", PSR_c | PSR_f},
17372 {"flg", PSR_f},
17373 {"ctl", PSR_c},
17374
17375 /* Individual flags. */
17376 {"f", PSR_f},
17377 {"c", PSR_c},
17378 {"x", PSR_x},
17379 {"s", PSR_s},
17380
17381 /* Combinations of flags. */
17382 {"fs", PSR_f | PSR_s},
17383 {"fx", PSR_f | PSR_x},
17384 {"fc", PSR_f | PSR_c},
17385 {"sf", PSR_s | PSR_f},
17386 {"sx", PSR_s | PSR_x},
17387 {"sc", PSR_s | PSR_c},
17388 {"xf", PSR_x | PSR_f},
17389 {"xs", PSR_x | PSR_s},
17390 {"xc", PSR_x | PSR_c},
17391 {"cf", PSR_c | PSR_f},
17392 {"cs", PSR_c | PSR_s},
17393 {"cx", PSR_c | PSR_x},
17394 {"fsx", PSR_f | PSR_s | PSR_x},
17395 {"fsc", PSR_f | PSR_s | PSR_c},
17396 {"fxs", PSR_f | PSR_x | PSR_s},
17397 {"fxc", PSR_f | PSR_x | PSR_c},
17398 {"fcs", PSR_f | PSR_c | PSR_s},
17399 {"fcx", PSR_f | PSR_c | PSR_x},
17400 {"sfx", PSR_s | PSR_f | PSR_x},
17401 {"sfc", PSR_s | PSR_f | PSR_c},
17402 {"sxf", PSR_s | PSR_x | PSR_f},
17403 {"sxc", PSR_s | PSR_x | PSR_c},
17404 {"scf", PSR_s | PSR_c | PSR_f},
17405 {"scx", PSR_s | PSR_c | PSR_x},
17406 {"xfs", PSR_x | PSR_f | PSR_s},
17407 {"xfc", PSR_x | PSR_f | PSR_c},
17408 {"xsf", PSR_x | PSR_s | PSR_f},
17409 {"xsc", PSR_x | PSR_s | PSR_c},
17410 {"xcf", PSR_x | PSR_c | PSR_f},
17411 {"xcs", PSR_x | PSR_c | PSR_s},
17412 {"cfs", PSR_c | PSR_f | PSR_s},
17413 {"cfx", PSR_c | PSR_f | PSR_x},
17414 {"csf", PSR_c | PSR_s | PSR_f},
17415 {"csx", PSR_c | PSR_s | PSR_x},
17416 {"cxf", PSR_c | PSR_x | PSR_f},
17417 {"cxs", PSR_c | PSR_x | PSR_s},
17418 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17419 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17420 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17421 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17422 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17423 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17424 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17425 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17426 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17427 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17428 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17429 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17430 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17431 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17432 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17433 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17434 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17435 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17436 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17437 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17438 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17439 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17440 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17441 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17442 };
17443
17444 /* Table of V7M psr names. */
17445 static const struct asm_psr v7m_psrs[] =
17446 {
17447 {"apsr", 0 }, {"APSR", 0 },
17448 {"iapsr", 1 }, {"IAPSR", 1 },
17449 {"eapsr", 2 }, {"EAPSR", 2 },
17450 {"psr", 3 }, {"PSR", 3 },
17451 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17452 {"ipsr", 5 }, {"IPSR", 5 },
17453 {"epsr", 6 }, {"EPSR", 6 },
17454 {"iepsr", 7 }, {"IEPSR", 7 },
17455 {"msp", 8 }, {"MSP", 8 },
17456 {"psp", 9 }, {"PSP", 9 },
17457 {"primask", 16}, {"PRIMASK", 16},
17458 {"basepri", 17}, {"BASEPRI", 17},
17459 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17460 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17461 {"faultmask", 19}, {"FAULTMASK", 19},
17462 {"control", 20}, {"CONTROL", 20}
17463 };
17464
17465 /* Table of all shift-in-operand names. */
17466 static const struct asm_shift_name shift_names [] =
17467 {
17468 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17469 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17470 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17471 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17472 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17473 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17474 };
17475
17476 /* Table of all explicit relocation names. */
17477 #ifdef OBJ_ELF
17478 static struct reloc_entry reloc_names[] =
17479 {
17480 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17481 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17482 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17483 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17484 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17485 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17486 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17487 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17488 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17489 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17490 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17491 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17492 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17493 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17494 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17495 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17496 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17497 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17498 };
17499 #endif
17500
17501 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17502 static const struct asm_cond conds[] =
17503 {
17504 {"eq", 0x0},
17505 {"ne", 0x1},
17506 {"cs", 0x2}, {"hs", 0x2},
17507 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17508 {"mi", 0x4},
17509 {"pl", 0x5},
17510 {"vs", 0x6},
17511 {"vc", 0x7},
17512 {"hi", 0x8},
17513 {"ls", 0x9},
17514 {"ge", 0xa},
17515 {"lt", 0xb},
17516 {"gt", 0xc},
17517 {"le", 0xd},
17518 {"al", 0xe}
17519 };
17520
17521 #define UL_BARRIER(L,U,CODE,FEAT) \
17522 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17523 { U, CODE, ARM_FEATURE (FEAT, 0) }
17524
17525 static struct asm_barrier_opt barrier_opt_names[] =
17526 {
17527 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17528 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17529 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17530 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17531 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17532 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17533 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17534 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17535 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17536 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17537 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17538 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17539 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17540 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17541 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17542 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17543 };
17544
17545 #undef UL_BARRIER
17546
17547 /* Table of ARM-format instructions. */
17548
17549 /* Macros for gluing together operand strings. N.B. In all cases
17550 other than OPS0, the trailing OP_stop comes from default
17551 zero-initialization of the unspecified elements of the array. */
17552 #define OPS0() { OP_stop, }
17553 #define OPS1(a) { OP_##a, }
17554 #define OPS2(a,b) { OP_##a,OP_##b, }
17555 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17556 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17557 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17558 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17559
17560 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17561 This is useful when mixing operands for ARM and THUMB, i.e. using the
17562 MIX_ARM_THUMB_OPERANDS macro.
17563 In order to use these macros, prefix the number of operands with _
17564 e.g. _3. */
17565 #define OPS_1(a) { a, }
17566 #define OPS_2(a,b) { a,b, }
17567 #define OPS_3(a,b,c) { a,b,c, }
17568 #define OPS_4(a,b,c,d) { a,b,c,d, }
17569 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17570 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17571
17572 /* These macros abstract out the exact format of the mnemonic table and
17573 save some repeated characters. */
17574
17575 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17576 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17577 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17578 THUMB_VARIANT, do_##ae, do_##te }
17579
17580 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17581 a T_MNEM_xyz enumerator. */
17582 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17583 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17584 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17585 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17586
17587 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17588 infix after the third character. */
17589 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17590 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17591 THUMB_VARIANT, do_##ae, do_##te }
17592 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17593 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17594 THUMB_VARIANT, do_##ae, do_##te }
17595 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17596 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17597 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17598 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17599 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17600 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17601 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17602 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17603
17604 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17605 appear in the condition table. */
17606 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17607 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17608 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17609
17610 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17611 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17612 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17613 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17614 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17615 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17616 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17617 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17618 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17619 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17620 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17621 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17622 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17623 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17624 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17625 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17626 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17627 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17628 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17629 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17630
17631 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17632 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17633 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17634 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17635
17636 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17637 field is still 0xE. Many of the Thumb variants can be executed
17638 conditionally, so this is checked separately. */
17639 #define TUE(mnem, op, top, nops, ops, ae, te) \
17640 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17641 THUMB_VARIANT, do_##ae, do_##te }
17642
17643 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17644 condition code field. */
17645 #define TUF(mnem, op, top, nops, ops, ae, te) \
17646 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17647 THUMB_VARIANT, do_##ae, do_##te }
17648
17649 /* ARM-only variants of all the above. */
17650 #define CE(mnem, op, nops, ops, ae) \
17651 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17652
17653 #define C3(mnem, op, nops, ops, ae) \
17654 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17655
17656 /* Legacy mnemonics that always have conditional infix after the third
17657 character. */
17658 #define CL(mnem, op, nops, ops, ae) \
17659 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17660 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17661
17662 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17663 #define cCE(mnem, op, nops, ops, ae) \
17664 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17665
17666 /* Legacy coprocessor instructions where conditional infix and conditional
17667 suffix are ambiguous. For consistency this includes all FPA instructions,
17668 not just the potentially ambiguous ones. */
17669 #define cCL(mnem, op, nops, ops, ae) \
17670 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17671 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17672
17673 /* Coprocessor, takes either a suffix or a position-3 infix
17674 (for an FPA corner case). */
17675 #define C3E(mnem, op, nops, ops, ae) \
17676 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17677 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17678
17679 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17680 { m1 #m2 m3, OPS##nops ops, \
17681 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17682 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17683
17684 #define CM(m1, m2, op, nops, ops, ae) \
17685 xCM_ (m1, , m2, op, nops, ops, ae), \
17686 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17687 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17688 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17689 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17690 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17691 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17692 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17693 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17694 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17695 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17696 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17697 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17698 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17699 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17700 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17701 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17702 xCM_ (m1, le, m2, op, nops, ops, ae), \
17703 xCM_ (m1, al, m2, op, nops, ops, ae)
17704
17705 #define UE(mnem, op, nops, ops, ae) \
17706 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17707
17708 #define UF(mnem, op, nops, ops, ae) \
17709 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17710
17711 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17712 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17713 use the same encoding function for each. */
17714 #define NUF(mnem, op, nops, ops, enc) \
17715 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17716 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17717
17718 /* Neon data processing, version which indirects through neon_enc_tab for
17719 the various overloaded versions of opcodes. */
17720 #define nUF(mnem, op, nops, ops, enc) \
17721 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17722 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17723
17724 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17725 version. */
17726 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17727 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17728 THUMB_VARIANT, do_##enc, do_##enc }
17729
17730 #define NCE(mnem, op, nops, ops, enc) \
17731 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17732
17733 #define NCEF(mnem, op, nops, ops, enc) \
17734 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17735
17736 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17737 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17738 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17739 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17740
17741 #define nCE(mnem, op, nops, ops, enc) \
17742 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17743
17744 #define nCEF(mnem, op, nops, ops, enc) \
17745 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17746
17747 #define do_0 0
17748
17749 static const struct asm_opcode insns[] =
17750 {
17751 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17752 #define THUMB_VARIANT &arm_ext_v4t
17753 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17754 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17755 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17756 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17757 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17758 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17759 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17760 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17761 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17762 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17763 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17764 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17765 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17766 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17767 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17768 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17769
17770 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17771 for setting PSR flag bits. They are obsolete in V6 and do not
17772 have Thumb equivalents. */
17773 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17774 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17775 CL("tstp", 110f000, 2, (RR, SH), cmp),
17776 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17777 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17778 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17779 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17780 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17781 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17782
17783 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17784 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17785 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17786 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17787
17788 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17789 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17790 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17791 OP_RRnpc),
17792 OP_ADDRGLDR),ldst, t_ldst),
17793 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17794
17795 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17796 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17797 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17798 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17799 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17800 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17801
17802 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17803 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17804 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17805 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17806
17807 /* Pseudo ops. */
17808 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17809 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17810 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17811
17812 /* Thumb-compatibility pseudo ops. */
17813 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17814 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17815 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17816 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17817 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17818 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17819 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17820 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17821 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17822 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17823 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17824 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17825
17826 /* These may simplify to neg. */
17827 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17828 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17829
17830 #undef THUMB_VARIANT
17831 #define THUMB_VARIANT & arm_ext_v6
17832
17833 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17834
17835 /* V1 instructions with no Thumb analogue prior to V6T2. */
17836 #undef THUMB_VARIANT
17837 #define THUMB_VARIANT & arm_ext_v6t2
17838
17839 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17840 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17841 CL("teqp", 130f000, 2, (RR, SH), cmp),
17842
17843 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17844 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17845 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17846 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17847
17848 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17849 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17850
17851 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17852 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17853
17854 /* V1 instructions with no Thumb analogue at all. */
17855 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17856 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17857
17858 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17859 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17860 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17861 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17862 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17863 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17864 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17865 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17866
17867 #undef ARM_VARIANT
17868 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17869 #undef THUMB_VARIANT
17870 #define THUMB_VARIANT & arm_ext_v4t
17871
17872 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17873 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17874
17875 #undef THUMB_VARIANT
17876 #define THUMB_VARIANT & arm_ext_v6t2
17877
17878 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17879 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17880
17881 /* Generic coprocessor instructions. */
17882 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17883 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17884 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17885 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17886 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17887 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17888 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17889
17890 #undef ARM_VARIANT
17891 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17892
17893 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17894 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17895
17896 #undef ARM_VARIANT
17897 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17898 #undef THUMB_VARIANT
17899 #define THUMB_VARIANT & arm_ext_msr
17900
17901 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17902 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17903
17904 #undef ARM_VARIANT
17905 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17906 #undef THUMB_VARIANT
17907 #define THUMB_VARIANT & arm_ext_v6t2
17908
17909 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17910 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17911 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17912 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17913 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17914 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17915 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17916 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17917
17918 #undef ARM_VARIANT
17919 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17920 #undef THUMB_VARIANT
17921 #define THUMB_VARIANT & arm_ext_v4t
17922
17923 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17924 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17925 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17926 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17927 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17928 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17929
17930 #undef ARM_VARIANT
17931 #define ARM_VARIANT & arm_ext_v4t_5
17932
17933 /* ARM Architecture 4T. */
17934 /* Note: bx (and blx) are required on V5, even if the processor does
17935 not support Thumb. */
17936 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17937
17938 #undef ARM_VARIANT
17939 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17940 #undef THUMB_VARIANT
17941 #define THUMB_VARIANT & arm_ext_v5t
17942
17943 /* Note: blx has 2 variants; the .value coded here is for
17944 BLX(2). Only this variant has conditional execution. */
17945 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17946 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17947
17948 #undef THUMB_VARIANT
17949 #define THUMB_VARIANT & arm_ext_v6t2
17950
17951 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17952 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17953 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17954 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17955 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17956 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17957 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17958 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17959
17960 #undef ARM_VARIANT
17961 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17962 #undef THUMB_VARIANT
17963 #define THUMB_VARIANT &arm_ext_v5exp
17964
17965 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17966 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17967 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17968 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17969
17970 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17971 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17972
17973 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17974 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17975 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17976 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17977
17978 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17979 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17980 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17981 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17982
17983 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17984 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17985
17986 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17987 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17988 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17989 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17990
17991 #undef ARM_VARIANT
17992 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17993 #undef THUMB_VARIANT
17994 #define THUMB_VARIANT &arm_ext_v6t2
17995
17996 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17997 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17998 ldrd, t_ldstd),
17999 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18000 ADDRGLDRS), ldrd, t_ldstd),
18001
18002 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18003 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18004
18005 #undef ARM_VARIANT
18006 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18007
18008 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18009
18010 #undef ARM_VARIANT
18011 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18012 #undef THUMB_VARIANT
18013 #define THUMB_VARIANT & arm_ext_v6
18014
18015 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18016 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18017 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18018 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18019 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18020 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18021 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18022 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18023 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18024 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18025
18026 #undef THUMB_VARIANT
18027 #define THUMB_VARIANT & arm_ext_v6t2
18028
18029 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18030 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18031 strex, t_strex),
18032 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18033 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18034
18035 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18036 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18037
18038 /* ARM V6 not included in V7M. */
18039 #undef THUMB_VARIANT
18040 #define THUMB_VARIANT & arm_ext_v6_notm
18041 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18042 UF(rfeib, 9900a00, 1, (RRw), rfe),
18043 UF(rfeda, 8100a00, 1, (RRw), rfe),
18044 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18045 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18046 UF(rfefa, 9900a00, 1, (RRw), rfe),
18047 UF(rfeea, 8100a00, 1, (RRw), rfe),
18048 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18049 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18050 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18051 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18052 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18053
18054 /* ARM V6 not included in V7M (eg. integer SIMD). */
18055 #undef THUMB_VARIANT
18056 #define THUMB_VARIANT & arm_ext_v6_dsp
18057 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18058 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18059 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18060 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18061 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18062 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18063 /* Old name for QASX. */
18064 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18065 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18066 /* Old name for QSAX. */
18067 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18068 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18069 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18070 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18071 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18072 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18073 /* Old name for SASX. */
18074 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18075 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18076 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18077 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18078 /* Old name for SHASX. */
18079 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18080 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18081 /* Old name for SHSAX. */
18082 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18083 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18084 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18085 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18086 /* Old name for SSAX. */
18087 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18088 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18089 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18090 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18091 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18092 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18093 /* Old name for UASX. */
18094 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18095 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18096 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18097 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18098 /* Old name for UHASX. */
18099 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18100 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18101 /* Old name for UHSAX. */
18102 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18103 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18104 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18105 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18106 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18107 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18108 /* Old name for UQASX. */
18109 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18110 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18111 /* Old name for UQSAX. */
18112 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18113 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18114 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18115 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18116 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18117 /* Old name for USAX. */
18118 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18119 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18120 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18121 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18122 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18123 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18124 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18125 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18126 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18127 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18128 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18129 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18130 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18131 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18132 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18133 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18134 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18135 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18136 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18137 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18138 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18139 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18140 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18141 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18142 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18143 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18144 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18145 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18146 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18147 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18148 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18149 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18150 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18151 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18152
18153 #undef ARM_VARIANT
18154 #define ARM_VARIANT & arm_ext_v6k
18155 #undef THUMB_VARIANT
18156 #define THUMB_VARIANT & arm_ext_v6k
18157
18158 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18159 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18160 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18161 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18162
18163 #undef THUMB_VARIANT
18164 #define THUMB_VARIANT & arm_ext_v6_notm
18165 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18166 ldrexd, t_ldrexd),
18167 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18168 RRnpcb), strexd, t_strexd),
18169
18170 #undef THUMB_VARIANT
18171 #define THUMB_VARIANT & arm_ext_v6t2
18172 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18173 rd_rn, rd_rn),
18174 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18175 rd_rn, rd_rn),
18176 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18177 strex, t_strexbh),
18178 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18179 strex, t_strexbh),
18180 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18181
18182 #undef ARM_VARIANT
18183 #define ARM_VARIANT & arm_ext_sec
18184 #undef THUMB_VARIANT
18185 #define THUMB_VARIANT & arm_ext_sec
18186
18187 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18188
18189 #undef ARM_VARIANT
18190 #define ARM_VARIANT & arm_ext_virt
18191 #undef THUMB_VARIANT
18192 #define THUMB_VARIANT & arm_ext_virt
18193
18194 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18195 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18196
18197 #undef ARM_VARIANT
18198 #define ARM_VARIANT & arm_ext_v6t2
18199 #undef THUMB_VARIANT
18200 #define THUMB_VARIANT & arm_ext_v6t2
18201
18202 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18203 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18204 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18205 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18206
18207 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18208 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18209 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18210 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18211
18212 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18213 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18214 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18215 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18216
18217 /* Thumb-only instructions. */
18218 #undef ARM_VARIANT
18219 #define ARM_VARIANT NULL
18220 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18221 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18222
18223 /* ARM does not really have an IT instruction, so always allow it.
18224 The opcode is copied from Thumb in order to allow warnings in
18225 -mimplicit-it=[never | arm] modes. */
18226 #undef ARM_VARIANT
18227 #define ARM_VARIANT & arm_ext_v1
18228
18229 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18230 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18231 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18232 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18233 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18234 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18235 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18236 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18237 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18238 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18239 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18240 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18241 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18242 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18243 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18244 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18245 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18246 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18247
18248 /* Thumb2 only instructions. */
18249 #undef ARM_VARIANT
18250 #define ARM_VARIANT NULL
18251
18252 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18253 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18254 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18255 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18256 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18257 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18258
18259 /* Hardware division instructions. */
18260 #undef ARM_VARIANT
18261 #define ARM_VARIANT & arm_ext_adiv
18262 #undef THUMB_VARIANT
18263 #define THUMB_VARIANT & arm_ext_div
18264
18265 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18266 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18267
18268 /* ARM V6M/V7 instructions. */
18269 #undef ARM_VARIANT
18270 #define ARM_VARIANT & arm_ext_barrier
18271 #undef THUMB_VARIANT
18272 #define THUMB_VARIANT & arm_ext_barrier
18273
18274 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18275 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18276 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
18277
18278 /* ARM V7 instructions. */
18279 #undef ARM_VARIANT
18280 #define ARM_VARIANT & arm_ext_v7
18281 #undef THUMB_VARIANT
18282 #define THUMB_VARIANT & arm_ext_v7
18283
18284 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18285 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18286
18287 #undef ARM_VARIANT
18288 #define ARM_VARIANT & arm_ext_mp
18289 #undef THUMB_VARIANT
18290 #define THUMB_VARIANT & arm_ext_mp
18291
18292 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18293
18294 /* AArchv8 instructions. */
18295 #undef ARM_VARIANT
18296 #define ARM_VARIANT & arm_ext_v8
18297 #undef THUMB_VARIANT
18298 #define THUMB_VARIANT & arm_ext_v8
18299
18300 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18301 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18302 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18303 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18304 ldrexd, t_ldrexd),
18305 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18306 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18307 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18308 strlex, t_strlex),
18309 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18310 strexd, t_strexd),
18311 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18312 strlex, t_strlex),
18313 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18314 strlex, t_strlex),
18315 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18316 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18317 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18318 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18319 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18320 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18321
18322 /* ARMv8 T32 only. */
18323 #undef ARM_VARIANT
18324 #define ARM_VARIANT NULL
18325 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18326 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18327 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18328
18329 /* FP for ARMv8. */
18330 #undef ARM_VARIANT
18331 #define ARM_VARIANT & fpu_vfp_ext_armv8
18332 #undef THUMB_VARIANT
18333 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18334
18335 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18336 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18337 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18338 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18339 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18340 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18341 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18342 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18343 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18344 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
18345 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18346 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18347 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18348 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18349 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18350 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18351 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
18352
18353 #undef ARM_VARIANT
18354 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18355 #undef THUMB_VARIANT
18356 #define THUMB_VARIANT NULL
18357
18358 cCE("wfs", e200110, 1, (RR), rd),
18359 cCE("rfs", e300110, 1, (RR), rd),
18360 cCE("wfc", e400110, 1, (RR), rd),
18361 cCE("rfc", e500110, 1, (RR), rd),
18362
18363 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18364 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18365 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18366 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18367
18368 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18369 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18370 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18371 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18372
18373 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18374 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18375 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18376 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18377 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18378 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18379 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18380 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18381 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18382 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18383 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18384 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18385
18386 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18387 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18388 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18389 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18390 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18391 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18392 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18393 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18394 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18395 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18396 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18397 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18398
18399 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18400 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18401 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18402 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18403 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18404 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18405 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18406 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18407 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18408 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18409 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18410 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18411
18412 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18413 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18414 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18415 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18416 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18417 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18418 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18419 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18420 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18421 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18422 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18423 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18424
18425 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18426 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18427 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18428 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18429 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18430 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18431 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18432 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18433 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18434 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18435 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18436 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18437
18438 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18439 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18440 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18441 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18442 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18443 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18444 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18445 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18446 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18447 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18448 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18449 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18450
18451 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18452 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18453 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18454 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18455 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18456 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18457 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18458 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18459 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18460 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18461 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18462 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18463
18464 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18465 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18466 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18467 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18468 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18469 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18470 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18471 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18472 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18473 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18474 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18475 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18476
18477 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18478 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18479 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18480 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18481 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18482 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18483 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18484 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18485 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18486 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18487 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18488 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18489
18490 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18491 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18492 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18493 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18494 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18495 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18496 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18497 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18498 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18499 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18500 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18501 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18502
18503 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18504 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18505 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18506 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18507 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18508 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18509 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18510 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18511 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18512 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18513 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18514 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18515
18516 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18517 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18518 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18519 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18520 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18521 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18522 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18523 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18524 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18525 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18526 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18527 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18528
18529 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18530 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18531 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18532 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18533 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18534 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18535 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18536 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18537 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18538 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18539 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18540 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18541
18542 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18543 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18544 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18545 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18546 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18547 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18548 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18549 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18550 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18551 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18552 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18553 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18554
18555 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18556 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18557 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18558 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18559 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18560 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18561 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18562 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18563 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18564 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18565 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18566 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18567
18568 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18569 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18570 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18571 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18572 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18573 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18574 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18575 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18576 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18577 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18578 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18579 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18580
18581 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18582 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18583 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18584 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18585 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18586 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18587 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18588 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18589 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18590 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18591 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18592 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18593
18594 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18595 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18596 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18597 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18598 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18599 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18600 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18601 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18602 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18603 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18604 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18605 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18606
18607 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18608 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18609 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18610 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18611 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18612 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18613 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18614 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18615 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18616 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18617 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18618 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18619
18620 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18621 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18622 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18623 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18624 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18625 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18626 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18627 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18628 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18629 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18630 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18631 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18632
18633 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18634 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18635 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18636 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18637 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18638 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18639 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18640 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18641 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18642 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18643 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18644 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18645
18646 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18647 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18648 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18649 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18650 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18651 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18652 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18653 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18654 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18655 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18656 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18657 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18658
18659 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18660 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18661 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18662 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18663 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18664 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18665 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18666 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18667 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18668 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18669 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18670 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18671
18672 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18673 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18674 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18675 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18676 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18677 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18678 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18679 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18680 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18681 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18682 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18683 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18684
18685 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18686 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18687 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18688 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18689 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18690 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18691 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18692 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18693 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18694 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18695 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18696 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18697
18698 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18699 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18700 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18701 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18702 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18703 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18704 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18705 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18706 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18707 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18708 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18709 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18710
18711 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18712 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18713 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18714 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18715 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18716 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18717 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18718 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18719 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18720 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18721 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18722 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18723
18724 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18725 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18726 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18727 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18728 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18729 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18730 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18731 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18732 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18733 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18734 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18735 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18736
18737 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18738 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18739 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18740 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18741 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18742 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18743 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18744 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18745 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18746 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18747 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18748 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18749
18750 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18751 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18752 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18753 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18754
18755 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18756 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18757 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18758 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18759 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18760 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18761 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18762 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18763 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18764 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18765 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18766 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18767
18768 /* The implementation of the FIX instruction is broken on some
18769 assemblers, in that it accepts a precision specifier as well as a
18770 rounding specifier, despite the fact that this is meaningless.
18771 To be more compatible, we accept it as well, though of course it
18772 does not set any bits. */
18773 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18774 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18775 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18776 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18777 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18778 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18779 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18780 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18781 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18782 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18783 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18784 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18785 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18786
18787 /* Instructions that were new with the real FPA, call them V2. */
18788 #undef ARM_VARIANT
18789 #define ARM_VARIANT & fpu_fpa_ext_v2
18790
18791 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18792 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18793 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18794 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18795 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18796 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18797
18798 #undef ARM_VARIANT
18799 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18800
18801 /* Moves and type conversions. */
18802 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18803 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18804 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18805 cCE("fmstat", ef1fa10, 0, (), noargs),
18806 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18807 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18808 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18809 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18810 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18811 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18812 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18813 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18814 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18815 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18816
18817 /* Memory operations. */
18818 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18819 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18820 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18821 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18822 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18823 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18824 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18825 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18826 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18827 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18828 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18829 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18830 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18831 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18832 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18833 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18834 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18835 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18836
18837 /* Monadic operations. */
18838 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18839 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18840 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18841
18842 /* Dyadic operations. */
18843 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18844 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18845 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18846 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18847 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18848 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18849 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18850 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18851 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18852
18853 /* Comparisons. */
18854 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18855 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18856 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18857 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18858
18859 /* Double precision load/store are still present on single precision
18860 implementations. */
18861 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18862 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18863 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18864 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18865 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18866 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18867 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18868 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18869 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18870 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18871
18872 #undef ARM_VARIANT
18873 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18874
18875 /* Moves and type conversions. */
18876 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18877 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18878 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18879 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18880 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18881 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18882 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18883 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18884 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18885 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18886 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18887 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18888 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18889
18890 /* Monadic operations. */
18891 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18892 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18893 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18894
18895 /* Dyadic operations. */
18896 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18897 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18898 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18899 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18900 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18901 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18902 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18903 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18904 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18905
18906 /* Comparisons. */
18907 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18908 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18909 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18910 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18911
18912 #undef ARM_VARIANT
18913 #define ARM_VARIANT & fpu_vfp_ext_v2
18914
18915 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18916 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18917 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18918 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18919
18920 /* Instructions which may belong to either the Neon or VFP instruction sets.
18921 Individual encoder functions perform additional architecture checks. */
18922 #undef ARM_VARIANT
18923 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18924 #undef THUMB_VARIANT
18925 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18926
18927 /* These mnemonics are unique to VFP. */
18928 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18929 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18930 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18931 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18932 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18933 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18934 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18935 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18936 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18937 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18938
18939 /* Mnemonics shared by Neon and VFP. */
18940 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18941 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18942 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18943
18944 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18945 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18946
18947 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18948 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18949
18950 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18951 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18952 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18953 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18954 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18955 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18956 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18957 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18958
18959 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18960 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18961 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18962 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18963
18964
18965 /* NOTE: All VMOV encoding is special-cased! */
18966 NCE(vmov, 0, 1, (VMOV), neon_mov),
18967 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18968
18969 #undef THUMB_VARIANT
18970 #define THUMB_VARIANT & fpu_neon_ext_v1
18971 #undef ARM_VARIANT
18972 #define ARM_VARIANT & fpu_neon_ext_v1
18973
18974 /* Data processing with three registers of the same length. */
18975 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18976 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18977 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18978 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18979 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18980 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18981 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18982 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18983 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18984 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18985 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18986 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18987 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18988 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18989 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18990 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18991 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18992 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18993 /* If not immediate, fall back to neon_dyadic_i64_su.
18994 shl_imm should accept I8 I16 I32 I64,
18995 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18996 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18997 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18998 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18999 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19000 /* Logic ops, types optional & ignored. */
19001 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19002 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19003 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19004 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19005 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19006 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19007 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19008 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19009 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19010 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19011 /* Bitfield ops, untyped. */
19012 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19013 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19014 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19015 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19016 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19017 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19018 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19019 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19020 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19021 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19022 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19023 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19024 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19025 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19026 back to neon_dyadic_if_su. */
19027 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19028 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19029 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19030 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19031 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19032 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19033 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19034 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19035 /* Comparison. Type I8 I16 I32 F32. */
19036 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19037 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19038 /* As above, D registers only. */
19039 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19040 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19041 /* Int and float variants, signedness unimportant. */
19042 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19043 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19044 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19045 /* Add/sub take types I8 I16 I32 I64 F32. */
19046 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19047 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19048 /* vtst takes sizes 8, 16, 32. */
19049 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19050 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19051 /* VMUL takes I8 I16 I32 F32 P8. */
19052 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19053 /* VQD{R}MULH takes S16 S32. */
19054 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19055 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19056 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19057 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19058 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19059 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19060 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19061 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19062 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19063 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19064 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19065 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19066 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19067 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19068 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19069 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19070
19071 /* Two address, int/float. Types S8 S16 S32 F32. */
19072 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19073 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19074
19075 /* Data processing with two registers and a shift amount. */
19076 /* Right shifts, and variants with rounding.
19077 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19078 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19079 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19080 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19081 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19082 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19083 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19084 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19085 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19086 /* Shift and insert. Sizes accepted 8 16 32 64. */
19087 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19088 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19089 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19090 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19091 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19092 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19093 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19094 /* Right shift immediate, saturating & narrowing, with rounding variants.
19095 Types accepted S16 S32 S64 U16 U32 U64. */
19096 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19097 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19098 /* As above, unsigned. Types accepted S16 S32 S64. */
19099 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19100 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19101 /* Right shift narrowing. Types accepted I16 I32 I64. */
19102 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19103 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19104 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19105 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19106 /* CVT with optional immediate for fixed-point variant. */
19107 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19108
19109 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19110 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19111
19112 /* Data processing, three registers of different lengths. */
19113 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19114 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19115 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19116 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19117 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19118 /* If not scalar, fall back to neon_dyadic_long.
19119 Vector types as above, scalar types S16 S32 U16 U32. */
19120 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19121 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19122 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19123 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19124 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19125 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19126 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19127 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19128 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19129 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19130 /* Saturating doubling multiplies. Types S16 S32. */
19131 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19132 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19133 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19134 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19135 S16 S32 U16 U32. */
19136 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19137
19138 /* Extract. Size 8. */
19139 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19140 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19141
19142 /* Two registers, miscellaneous. */
19143 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19144 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19145 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19146 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19147 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19148 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19149 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19150 /* Vector replicate. Sizes 8 16 32. */
19151 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19152 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19153 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19154 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19155 /* VMOVN. Types I16 I32 I64. */
19156 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19157 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19158 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19159 /* VQMOVUN. Types S16 S32 S64. */
19160 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19161 /* VZIP / VUZP. Sizes 8 16 32. */
19162 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19163 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19164 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19165 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19166 /* VQABS / VQNEG. Types S8 S16 S32. */
19167 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19168 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19169 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19170 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19171 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19172 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19173 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19174 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19175 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19176 /* Reciprocal estimates. Types U32 F32. */
19177 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19178 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19179 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19180 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19181 /* VCLS. Types S8 S16 S32. */
19182 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19183 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19184 /* VCLZ. Types I8 I16 I32. */
19185 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19186 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19187 /* VCNT. Size 8. */
19188 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19189 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19190 /* Two address, untyped. */
19191 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19192 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19193 /* VTRN. Sizes 8 16 32. */
19194 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19195 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19196
19197 /* Table lookup. Size 8. */
19198 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19199 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19200
19201 #undef THUMB_VARIANT
19202 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19203 #undef ARM_VARIANT
19204 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19205
19206 /* Neon element/structure load/store. */
19207 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19208 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19209 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19210 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19211 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19212 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19213 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19214 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19215
19216 #undef THUMB_VARIANT
19217 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
19218 #undef ARM_VARIANT
19219 #define ARM_VARIANT &fpu_vfp_ext_v3xd
19220 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19221 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19222 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19223 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19224 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19225 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19226 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19227 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19228 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19229
19230 #undef THUMB_VARIANT
19231 #define THUMB_VARIANT & fpu_vfp_ext_v3
19232 #undef ARM_VARIANT
19233 #define ARM_VARIANT & fpu_vfp_ext_v3
19234
19235 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19236 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19237 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19238 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19239 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19240 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19241 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19242 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19243 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19244
19245 #undef ARM_VARIANT
19246 #define ARM_VARIANT &fpu_vfp_ext_fma
19247 #undef THUMB_VARIANT
19248 #define THUMB_VARIANT &fpu_vfp_ext_fma
19249 /* Mnemonics shared by Neon and VFP. These are included in the
19250 VFP FMA variant; NEON and VFP FMA always includes the NEON
19251 FMA instructions. */
19252 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19253 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19254 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19255 the v form should always be used. */
19256 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19257 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19258 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19259 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19260 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19261 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19262
19263 #undef THUMB_VARIANT
19264 #undef ARM_VARIANT
19265 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19266
19267 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19268 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19269 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19270 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19271 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19272 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19273 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19274 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19275
19276 #undef ARM_VARIANT
19277 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19278
19279 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19280 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19281 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19282 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19283 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19284 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19285 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19286 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19287 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19288 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19289 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19290 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19291 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19292 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19293 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19294 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19295 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19296 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19297 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19298 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19299 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19300 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19301 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19302 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19303 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19304 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19305 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19306 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19307 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19308 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19309 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19310 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19311 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19312 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19313 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19314 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19315 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19316 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19317 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19318 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19319 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19320 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19321 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19322 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19323 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19324 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19325 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19326 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19327 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19328 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19329 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19330 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19331 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19332 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19333 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19334 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19335 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19336 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19337 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19338 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19339 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19340 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19341 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19342 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19343 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19344 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19345 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19346 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19347 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19348 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19349 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19350 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19351 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19352 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19353 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19354 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19355 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19356 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19357 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19358 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19359 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19360 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19361 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19362 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19363 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19364 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19365 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19366 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19367 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19368 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19369 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19370 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19371 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19372 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19373 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19374 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19375 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19376 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19377 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19378 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19379 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19380 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19381 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19382 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19383 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19384 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19385 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19386 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19387 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19388 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19389 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19390 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19391 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19392 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19393 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19394 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19395 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19396 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19397 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19398 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19399 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19400 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19401 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19402 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19403 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19404 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19405 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19406 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19407 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19408 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19409 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19410 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19411 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19412 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19413 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19414 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19415 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19416 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19417 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19418 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19419 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19420 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19421 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19422 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19423 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19424 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19425 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19426 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19427 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19428 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19429 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19430 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19431 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19432 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19433 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19434 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19435 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19436 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19437 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19438 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19439 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19440 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19441
19442 #undef ARM_VARIANT
19443 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19444
19445 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19446 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19447 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19448 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19449 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19450 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19451 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19452 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19453 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19454 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19455 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19456 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19457 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19458 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19459 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19460 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19461 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19462 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19463 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19464 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19465 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19466 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19467 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19468 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19469 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19470 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19471 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19472 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19473 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19474 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19475 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19476 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19477 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19478 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19479 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19480 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19481 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19482 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19483 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19484 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19485 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19486 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19487 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19488 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19489 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19490 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19491 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19492 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19493 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19494 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19495 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19496 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19497 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19498 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19499 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19500 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19501 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19502
19503 #undef ARM_VARIANT
19504 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19505
19506 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19507 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19508 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19509 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19510 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19511 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19512 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19513 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19514 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19515 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19516 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19517 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19518 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19519 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19520 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19521 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19522 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19523 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19524 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19525 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19526 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19527 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19528 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19529 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19530 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19531 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19532 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19533 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19534 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19535 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19536 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19537 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19538 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19539 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19540 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19541 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19542 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19543 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19544 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19545 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19546 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19547 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19548 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19549 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19550 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19551 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19552 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19553 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19554 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19555 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19556 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19557 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19558 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19559 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19560 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19561 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19562 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19563 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19564 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19565 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19566 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19567 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19568 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19569 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19570 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19571 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19572 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19573 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19574 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19575 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19576 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19577 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19578 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19579 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19580 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19581 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19582 };
19583 #undef ARM_VARIANT
19584 #undef THUMB_VARIANT
19585 #undef TCE
19586 #undef TCM
19587 #undef TUE
19588 #undef TUF
19589 #undef TCC
19590 #undef cCE
19591 #undef cCL
19592 #undef C3E
19593 #undef CE
19594 #undef CM
19595 #undef UE
19596 #undef UF
19597 #undef UT
19598 #undef NUF
19599 #undef nUF
19600 #undef NCE
19601 #undef nCE
19602 #undef OPS0
19603 #undef OPS1
19604 #undef OPS2
19605 #undef OPS3
19606 #undef OPS4
19607 #undef OPS5
19608 #undef OPS6
19609 #undef do_0
19610 \f
19611 /* MD interface: bits in the object file. */
19612
19613 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19614 for use in the a.out file, and stores them in the array pointed to by buf.
19615 This knows about the endian-ness of the target machine and does
19616 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19617 2 (short) and 4 (long) Floating numbers are put out as a series of
19618 LITTLENUMS (shorts, here at least). */
19619
19620 void
19621 md_number_to_chars (char * buf, valueT val, int n)
19622 {
19623 if (target_big_endian)
19624 number_to_chars_bigendian (buf, val, n);
19625 else
19626 number_to_chars_littleendian (buf, val, n);
19627 }
19628
19629 static valueT
19630 md_chars_to_number (char * buf, int n)
19631 {
19632 valueT result = 0;
19633 unsigned char * where = (unsigned char *) buf;
19634
19635 if (target_big_endian)
19636 {
19637 while (n--)
19638 {
19639 result <<= 8;
19640 result |= (*where++ & 255);
19641 }
19642 }
19643 else
19644 {
19645 while (n--)
19646 {
19647 result <<= 8;
19648 result |= (where[n] & 255);
19649 }
19650 }
19651
19652 return result;
19653 }
19654
19655 /* MD interface: Sections. */
19656
19657 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19658 that an rs_machine_dependent frag may reach. */
19659
19660 unsigned int
19661 arm_frag_max_var (fragS *fragp)
19662 {
19663 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19664 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19665
19666 Note that we generate relaxable instructions even for cases that don't
19667 really need it, like an immediate that's a trivial constant. So we're
19668 overestimating the instruction size for some of those cases. Rather
19669 than putting more intelligence here, it would probably be better to
19670 avoid generating a relaxation frag in the first place when it can be
19671 determined up front that a short instruction will suffice. */
19672
19673 gas_assert (fragp->fr_type == rs_machine_dependent);
19674 return INSN_SIZE;
19675 }
19676
19677 /* Estimate the size of a frag before relaxing. Assume everything fits in
19678 2 bytes. */
19679
19680 int
19681 md_estimate_size_before_relax (fragS * fragp,
19682 segT segtype ATTRIBUTE_UNUSED)
19683 {
19684 fragp->fr_var = 2;
19685 return 2;
19686 }
19687
19688 /* Convert a machine dependent frag. */
19689
19690 void
19691 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19692 {
19693 unsigned long insn;
19694 unsigned long old_op;
19695 char *buf;
19696 expressionS exp;
19697 fixS *fixp;
19698 int reloc_type;
19699 int pc_rel;
19700 int opcode;
19701
19702 buf = fragp->fr_literal + fragp->fr_fix;
19703
19704 old_op = bfd_get_16(abfd, buf);
19705 if (fragp->fr_symbol)
19706 {
19707 exp.X_op = O_symbol;
19708 exp.X_add_symbol = fragp->fr_symbol;
19709 }
19710 else
19711 {
19712 exp.X_op = O_constant;
19713 }
19714 exp.X_add_number = fragp->fr_offset;
19715 opcode = fragp->fr_subtype;
19716 switch (opcode)
19717 {
19718 case T_MNEM_ldr_pc:
19719 case T_MNEM_ldr_pc2:
19720 case T_MNEM_ldr_sp:
19721 case T_MNEM_str_sp:
19722 case T_MNEM_ldr:
19723 case T_MNEM_ldrb:
19724 case T_MNEM_ldrh:
19725 case T_MNEM_str:
19726 case T_MNEM_strb:
19727 case T_MNEM_strh:
19728 if (fragp->fr_var == 4)
19729 {
19730 insn = THUMB_OP32 (opcode);
19731 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19732 {
19733 insn |= (old_op & 0x700) << 4;
19734 }
19735 else
19736 {
19737 insn |= (old_op & 7) << 12;
19738 insn |= (old_op & 0x38) << 13;
19739 }
19740 insn |= 0x00000c00;
19741 put_thumb32_insn (buf, insn);
19742 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19743 }
19744 else
19745 {
19746 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19747 }
19748 pc_rel = (opcode == T_MNEM_ldr_pc2);
19749 break;
19750 case T_MNEM_adr:
19751 if (fragp->fr_var == 4)
19752 {
19753 insn = THUMB_OP32 (opcode);
19754 insn |= (old_op & 0xf0) << 4;
19755 put_thumb32_insn (buf, insn);
19756 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19757 }
19758 else
19759 {
19760 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19761 exp.X_add_number -= 4;
19762 }
19763 pc_rel = 1;
19764 break;
19765 case T_MNEM_mov:
19766 case T_MNEM_movs:
19767 case T_MNEM_cmp:
19768 case T_MNEM_cmn:
19769 if (fragp->fr_var == 4)
19770 {
19771 int r0off = (opcode == T_MNEM_mov
19772 || opcode == T_MNEM_movs) ? 0 : 8;
19773 insn = THUMB_OP32 (opcode);
19774 insn = (insn & 0xe1ffffff) | 0x10000000;
19775 insn |= (old_op & 0x700) << r0off;
19776 put_thumb32_insn (buf, insn);
19777 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19778 }
19779 else
19780 {
19781 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19782 }
19783 pc_rel = 0;
19784 break;
19785 case T_MNEM_b:
19786 if (fragp->fr_var == 4)
19787 {
19788 insn = THUMB_OP32(opcode);
19789 put_thumb32_insn (buf, insn);
19790 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19791 }
19792 else
19793 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19794 pc_rel = 1;
19795 break;
19796 case T_MNEM_bcond:
19797 if (fragp->fr_var == 4)
19798 {
19799 insn = THUMB_OP32(opcode);
19800 insn |= (old_op & 0xf00) << 14;
19801 put_thumb32_insn (buf, insn);
19802 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19803 }
19804 else
19805 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19806 pc_rel = 1;
19807 break;
19808 case T_MNEM_add_sp:
19809 case T_MNEM_add_pc:
19810 case T_MNEM_inc_sp:
19811 case T_MNEM_dec_sp:
19812 if (fragp->fr_var == 4)
19813 {
19814 /* ??? Choose between add and addw. */
19815 insn = THUMB_OP32 (opcode);
19816 insn |= (old_op & 0xf0) << 4;
19817 put_thumb32_insn (buf, insn);
19818 if (opcode == T_MNEM_add_pc)
19819 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19820 else
19821 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19822 }
19823 else
19824 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19825 pc_rel = 0;
19826 break;
19827
19828 case T_MNEM_addi:
19829 case T_MNEM_addis:
19830 case T_MNEM_subi:
19831 case T_MNEM_subis:
19832 if (fragp->fr_var == 4)
19833 {
19834 insn = THUMB_OP32 (opcode);
19835 insn |= (old_op & 0xf0) << 4;
19836 insn |= (old_op & 0xf) << 16;
19837 put_thumb32_insn (buf, insn);
19838 if (insn & (1 << 20))
19839 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19840 else
19841 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19842 }
19843 else
19844 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19845 pc_rel = 0;
19846 break;
19847 default:
19848 abort ();
19849 }
19850 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19851 (enum bfd_reloc_code_real) reloc_type);
19852 fixp->fx_file = fragp->fr_file;
19853 fixp->fx_line = fragp->fr_line;
19854 fragp->fr_fix += fragp->fr_var;
19855 }
19856
19857 /* Return the size of a relaxable immediate operand instruction.
19858 SHIFT and SIZE specify the form of the allowable immediate. */
19859 static int
19860 relax_immediate (fragS *fragp, int size, int shift)
19861 {
19862 offsetT offset;
19863 offsetT mask;
19864 offsetT low;
19865
19866 /* ??? Should be able to do better than this. */
19867 if (fragp->fr_symbol)
19868 return 4;
19869
19870 low = (1 << shift) - 1;
19871 mask = (1 << (shift + size)) - (1 << shift);
19872 offset = fragp->fr_offset;
19873 /* Force misaligned offsets to 32-bit variant. */
19874 if (offset & low)
19875 return 4;
19876 if (offset & ~mask)
19877 return 4;
19878 return 2;
19879 }
19880
19881 /* Get the address of a symbol during relaxation. */
19882 static addressT
19883 relaxed_symbol_addr (fragS *fragp, long stretch)
19884 {
19885 fragS *sym_frag;
19886 addressT addr;
19887 symbolS *sym;
19888
19889 sym = fragp->fr_symbol;
19890 sym_frag = symbol_get_frag (sym);
19891 know (S_GET_SEGMENT (sym) != absolute_section
19892 || sym_frag == &zero_address_frag);
19893 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19894
19895 /* If frag has yet to be reached on this pass, assume it will
19896 move by STRETCH just as we did. If this is not so, it will
19897 be because some frag between grows, and that will force
19898 another pass. */
19899
19900 if (stretch != 0
19901 && sym_frag->relax_marker != fragp->relax_marker)
19902 {
19903 fragS *f;
19904
19905 /* Adjust stretch for any alignment frag. Note that if have
19906 been expanding the earlier code, the symbol may be
19907 defined in what appears to be an earlier frag. FIXME:
19908 This doesn't handle the fr_subtype field, which specifies
19909 a maximum number of bytes to skip when doing an
19910 alignment. */
19911 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19912 {
19913 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19914 {
19915 if (stretch < 0)
19916 stretch = - ((- stretch)
19917 & ~ ((1 << (int) f->fr_offset) - 1));
19918 else
19919 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19920 if (stretch == 0)
19921 break;
19922 }
19923 }
19924 if (f != NULL)
19925 addr += stretch;
19926 }
19927
19928 return addr;
19929 }
19930
19931 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19932 load. */
19933 static int
19934 relax_adr (fragS *fragp, asection *sec, long stretch)
19935 {
19936 addressT addr;
19937 offsetT val;
19938
19939 /* Assume worst case for symbols not known to be in the same section. */
19940 if (fragp->fr_symbol == NULL
19941 || !S_IS_DEFINED (fragp->fr_symbol)
19942 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19943 || S_IS_WEAK (fragp->fr_symbol))
19944 return 4;
19945
19946 val = relaxed_symbol_addr (fragp, stretch);
19947 addr = fragp->fr_address + fragp->fr_fix;
19948 addr = (addr + 4) & ~3;
19949 /* Force misaligned targets to 32-bit variant. */
19950 if (val & 3)
19951 return 4;
19952 val -= addr;
19953 if (val < 0 || val > 1020)
19954 return 4;
19955 return 2;
19956 }
19957
19958 /* Return the size of a relaxable add/sub immediate instruction. */
19959 static int
19960 relax_addsub (fragS *fragp, asection *sec)
19961 {
19962 char *buf;
19963 int op;
19964
19965 buf = fragp->fr_literal + fragp->fr_fix;
19966 op = bfd_get_16(sec->owner, buf);
19967 if ((op & 0xf) == ((op >> 4) & 0xf))
19968 return relax_immediate (fragp, 8, 0);
19969 else
19970 return relax_immediate (fragp, 3, 0);
19971 }
19972
19973
19974 /* Return the size of a relaxable branch instruction. BITS is the
19975 size of the offset field in the narrow instruction. */
19976
19977 static int
19978 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19979 {
19980 addressT addr;
19981 offsetT val;
19982 offsetT limit;
19983
19984 /* Assume worst case for symbols not known to be in the same section. */
19985 if (!S_IS_DEFINED (fragp->fr_symbol)
19986 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19987 || S_IS_WEAK (fragp->fr_symbol))
19988 return 4;
19989
19990 #ifdef OBJ_ELF
19991 if (S_IS_DEFINED (fragp->fr_symbol)
19992 && ARM_IS_FUNC (fragp->fr_symbol))
19993 return 4;
19994
19995 /* PR 12532. Global symbols with default visibility might
19996 be preempted, so do not relax relocations to them. */
19997 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19998 && (! S_IS_LOCAL (fragp->fr_symbol)))
19999 return 4;
20000 #endif
20001
20002 val = relaxed_symbol_addr (fragp, stretch);
20003 addr = fragp->fr_address + fragp->fr_fix + 4;
20004 val -= addr;
20005
20006 /* Offset is a signed value *2 */
20007 limit = 1 << bits;
20008 if (val >= limit || val < -limit)
20009 return 4;
20010 return 2;
20011 }
20012
20013
20014 /* Relax a machine dependent frag. This returns the amount by which
20015 the current size of the frag should change. */
20016
20017 int
20018 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20019 {
20020 int oldsize;
20021 int newsize;
20022
20023 oldsize = fragp->fr_var;
20024 switch (fragp->fr_subtype)
20025 {
20026 case T_MNEM_ldr_pc2:
20027 newsize = relax_adr (fragp, sec, stretch);
20028 break;
20029 case T_MNEM_ldr_pc:
20030 case T_MNEM_ldr_sp:
20031 case T_MNEM_str_sp:
20032 newsize = relax_immediate (fragp, 8, 2);
20033 break;
20034 case T_MNEM_ldr:
20035 case T_MNEM_str:
20036 newsize = relax_immediate (fragp, 5, 2);
20037 break;
20038 case T_MNEM_ldrh:
20039 case T_MNEM_strh:
20040 newsize = relax_immediate (fragp, 5, 1);
20041 break;
20042 case T_MNEM_ldrb:
20043 case T_MNEM_strb:
20044 newsize = relax_immediate (fragp, 5, 0);
20045 break;
20046 case T_MNEM_adr:
20047 newsize = relax_adr (fragp, sec, stretch);
20048 break;
20049 case T_MNEM_mov:
20050 case T_MNEM_movs:
20051 case T_MNEM_cmp:
20052 case T_MNEM_cmn:
20053 newsize = relax_immediate (fragp, 8, 0);
20054 break;
20055 case T_MNEM_b:
20056 newsize = relax_branch (fragp, sec, 11, stretch);
20057 break;
20058 case T_MNEM_bcond:
20059 newsize = relax_branch (fragp, sec, 8, stretch);
20060 break;
20061 case T_MNEM_add_sp:
20062 case T_MNEM_add_pc:
20063 newsize = relax_immediate (fragp, 8, 2);
20064 break;
20065 case T_MNEM_inc_sp:
20066 case T_MNEM_dec_sp:
20067 newsize = relax_immediate (fragp, 7, 2);
20068 break;
20069 case T_MNEM_addi:
20070 case T_MNEM_addis:
20071 case T_MNEM_subi:
20072 case T_MNEM_subis:
20073 newsize = relax_addsub (fragp, sec);
20074 break;
20075 default:
20076 abort ();
20077 }
20078
20079 fragp->fr_var = newsize;
20080 /* Freeze wide instructions that are at or before the same location as
20081 in the previous pass. This avoids infinite loops.
20082 Don't freeze them unconditionally because targets may be artificially
20083 misaligned by the expansion of preceding frags. */
20084 if (stretch <= 0 && newsize > 2)
20085 {
20086 md_convert_frag (sec->owner, sec, fragp);
20087 frag_wane (fragp);
20088 }
20089
20090 return newsize - oldsize;
20091 }
20092
20093 /* Round up a section size to the appropriate boundary. */
20094
20095 valueT
20096 md_section_align (segT segment ATTRIBUTE_UNUSED,
20097 valueT size)
20098 {
20099 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20100 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20101 {
20102 /* For a.out, force the section size to be aligned. If we don't do
20103 this, BFD will align it for us, but it will not write out the
20104 final bytes of the section. This may be a bug in BFD, but it is
20105 easier to fix it here since that is how the other a.out targets
20106 work. */
20107 int align;
20108
20109 align = bfd_get_section_alignment (stdoutput, segment);
20110 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20111 }
20112 #endif
20113
20114 return size;
20115 }
20116
20117 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20118 of an rs_align_code fragment. */
20119
20120 void
20121 arm_handle_align (fragS * fragP)
20122 {
20123 static char const arm_noop[2][2][4] =
20124 {
20125 { /* ARMv1 */
20126 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20127 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20128 },
20129 { /* ARMv6k */
20130 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20131 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20132 },
20133 };
20134 static char const thumb_noop[2][2][2] =
20135 {
20136 { /* Thumb-1 */
20137 {0xc0, 0x46}, /* LE */
20138 {0x46, 0xc0}, /* BE */
20139 },
20140 { /* Thumb-2 */
20141 {0x00, 0xbf}, /* LE */
20142 {0xbf, 0x00} /* BE */
20143 }
20144 };
20145 static char const wide_thumb_noop[2][4] =
20146 { /* Wide Thumb-2 */
20147 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20148 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20149 };
20150
20151 unsigned bytes, fix, noop_size;
20152 char * p;
20153 const char * noop;
20154 const char *narrow_noop = NULL;
20155 #ifdef OBJ_ELF
20156 enum mstate state;
20157 #endif
20158
20159 if (fragP->fr_type != rs_align_code)
20160 return;
20161
20162 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20163 p = fragP->fr_literal + fragP->fr_fix;
20164 fix = 0;
20165
20166 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20167 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20168
20169 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20170
20171 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20172 {
20173 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20174 {
20175 narrow_noop = thumb_noop[1][target_big_endian];
20176 noop = wide_thumb_noop[target_big_endian];
20177 }
20178 else
20179 noop = thumb_noop[0][target_big_endian];
20180 noop_size = 2;
20181 #ifdef OBJ_ELF
20182 state = MAP_THUMB;
20183 #endif
20184 }
20185 else
20186 {
20187 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20188 [target_big_endian];
20189 noop_size = 4;
20190 #ifdef OBJ_ELF
20191 state = MAP_ARM;
20192 #endif
20193 }
20194
20195 fragP->fr_var = noop_size;
20196
20197 if (bytes & (noop_size - 1))
20198 {
20199 fix = bytes & (noop_size - 1);
20200 #ifdef OBJ_ELF
20201 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20202 #endif
20203 memset (p, 0, fix);
20204 p += fix;
20205 bytes -= fix;
20206 }
20207
20208 if (narrow_noop)
20209 {
20210 if (bytes & noop_size)
20211 {
20212 /* Insert a narrow noop. */
20213 memcpy (p, narrow_noop, noop_size);
20214 p += noop_size;
20215 bytes -= noop_size;
20216 fix += noop_size;
20217 }
20218
20219 /* Use wide noops for the remainder */
20220 noop_size = 4;
20221 }
20222
20223 while (bytes >= noop_size)
20224 {
20225 memcpy (p, noop, noop_size);
20226 p += noop_size;
20227 bytes -= noop_size;
20228 fix += noop_size;
20229 }
20230
20231 fragP->fr_fix += fix;
20232 }
20233
20234 /* Called from md_do_align. Used to create an alignment
20235 frag in a code section. */
20236
20237 void
20238 arm_frag_align_code (int n, int max)
20239 {
20240 char * p;
20241
20242 /* We assume that there will never be a requirement
20243 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20244 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20245 {
20246 char err_msg[128];
20247
20248 sprintf (err_msg,
20249 _("alignments greater than %d bytes not supported in .text sections."),
20250 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20251 as_fatal ("%s", err_msg);
20252 }
20253
20254 p = frag_var (rs_align_code,
20255 MAX_MEM_FOR_RS_ALIGN_CODE,
20256 1,
20257 (relax_substateT) max,
20258 (symbolS *) NULL,
20259 (offsetT) n,
20260 (char *) NULL);
20261 *p = 0;
20262 }
20263
20264 /* Perform target specific initialisation of a frag.
20265 Note - despite the name this initialisation is not done when the frag
20266 is created, but only when its type is assigned. A frag can be created
20267 and used a long time before its type is set, so beware of assuming that
20268 this initialisationis performed first. */
20269
20270 #ifndef OBJ_ELF
20271 void
20272 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20273 {
20274 /* Record whether this frag is in an ARM or a THUMB area. */
20275 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20276 }
20277
20278 #else /* OBJ_ELF is defined. */
20279 void
20280 arm_init_frag (fragS * fragP, int max_chars)
20281 {
20282 /* If the current ARM vs THUMB mode has not already
20283 been recorded into this frag then do so now. */
20284 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20285 {
20286 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20287
20288 /* Record a mapping symbol for alignment frags. We will delete this
20289 later if the alignment ends up empty. */
20290 switch (fragP->fr_type)
20291 {
20292 case rs_align:
20293 case rs_align_test:
20294 case rs_fill:
20295 mapping_state_2 (MAP_DATA, max_chars);
20296 break;
20297 case rs_align_code:
20298 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20299 break;
20300 default:
20301 break;
20302 }
20303 }
20304 }
20305
20306 /* When we change sections we need to issue a new mapping symbol. */
20307
20308 void
20309 arm_elf_change_section (void)
20310 {
20311 /* Link an unlinked unwind index table section to the .text section. */
20312 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20313 && elf_linked_to_section (now_seg) == NULL)
20314 elf_linked_to_section (now_seg) = text_section;
20315 }
20316
20317 int
20318 arm_elf_section_type (const char * str, size_t len)
20319 {
20320 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20321 return SHT_ARM_EXIDX;
20322
20323 return -1;
20324 }
20325 \f
20326 /* Code to deal with unwinding tables. */
20327
20328 static void add_unwind_adjustsp (offsetT);
20329
20330 /* Generate any deferred unwind frame offset. */
20331
20332 static void
20333 flush_pending_unwind (void)
20334 {
20335 offsetT offset;
20336
20337 offset = unwind.pending_offset;
20338 unwind.pending_offset = 0;
20339 if (offset != 0)
20340 add_unwind_adjustsp (offset);
20341 }
20342
20343 /* Add an opcode to this list for this function. Two-byte opcodes should
20344 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20345 order. */
20346
20347 static void
20348 add_unwind_opcode (valueT op, int length)
20349 {
20350 /* Add any deferred stack adjustment. */
20351 if (unwind.pending_offset)
20352 flush_pending_unwind ();
20353
20354 unwind.sp_restored = 0;
20355
20356 if (unwind.opcode_count + length > unwind.opcode_alloc)
20357 {
20358 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20359 if (unwind.opcodes)
20360 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20361 unwind.opcode_alloc);
20362 else
20363 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20364 }
20365 while (length > 0)
20366 {
20367 length--;
20368 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20369 op >>= 8;
20370 unwind.opcode_count++;
20371 }
20372 }
20373
20374 /* Add unwind opcodes to adjust the stack pointer. */
20375
20376 static void
20377 add_unwind_adjustsp (offsetT offset)
20378 {
20379 valueT op;
20380
20381 if (offset > 0x200)
20382 {
20383 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20384 char bytes[5];
20385 int n;
20386 valueT o;
20387
20388 /* Long form: 0xb2, uleb128. */
20389 /* This might not fit in a word so add the individual bytes,
20390 remembering the list is built in reverse order. */
20391 o = (valueT) ((offset - 0x204) >> 2);
20392 if (o == 0)
20393 add_unwind_opcode (0, 1);
20394
20395 /* Calculate the uleb128 encoding of the offset. */
20396 n = 0;
20397 while (o)
20398 {
20399 bytes[n] = o & 0x7f;
20400 o >>= 7;
20401 if (o)
20402 bytes[n] |= 0x80;
20403 n++;
20404 }
20405 /* Add the insn. */
20406 for (; n; n--)
20407 add_unwind_opcode (bytes[n - 1], 1);
20408 add_unwind_opcode (0xb2, 1);
20409 }
20410 else if (offset > 0x100)
20411 {
20412 /* Two short opcodes. */
20413 add_unwind_opcode (0x3f, 1);
20414 op = (offset - 0x104) >> 2;
20415 add_unwind_opcode (op, 1);
20416 }
20417 else if (offset > 0)
20418 {
20419 /* Short opcode. */
20420 op = (offset - 4) >> 2;
20421 add_unwind_opcode (op, 1);
20422 }
20423 else if (offset < 0)
20424 {
20425 offset = -offset;
20426 while (offset > 0x100)
20427 {
20428 add_unwind_opcode (0x7f, 1);
20429 offset -= 0x100;
20430 }
20431 op = ((offset - 4) >> 2) | 0x40;
20432 add_unwind_opcode (op, 1);
20433 }
20434 }
20435
20436 /* Finish the list of unwind opcodes for this function. */
20437 static void
20438 finish_unwind_opcodes (void)
20439 {
20440 valueT op;
20441
20442 if (unwind.fp_used)
20443 {
20444 /* Adjust sp as necessary. */
20445 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20446 flush_pending_unwind ();
20447
20448 /* After restoring sp from the frame pointer. */
20449 op = 0x90 | unwind.fp_reg;
20450 add_unwind_opcode (op, 1);
20451 }
20452 else
20453 flush_pending_unwind ();
20454 }
20455
20456
20457 /* Start an exception table entry. If idx is nonzero this is an index table
20458 entry. */
20459
20460 static void
20461 start_unwind_section (const segT text_seg, int idx)
20462 {
20463 const char * text_name;
20464 const char * prefix;
20465 const char * prefix_once;
20466 const char * group_name;
20467 size_t prefix_len;
20468 size_t text_len;
20469 char * sec_name;
20470 size_t sec_name_len;
20471 int type;
20472 int flags;
20473 int linkonce;
20474
20475 if (idx)
20476 {
20477 prefix = ELF_STRING_ARM_unwind;
20478 prefix_once = ELF_STRING_ARM_unwind_once;
20479 type = SHT_ARM_EXIDX;
20480 }
20481 else
20482 {
20483 prefix = ELF_STRING_ARM_unwind_info;
20484 prefix_once = ELF_STRING_ARM_unwind_info_once;
20485 type = SHT_PROGBITS;
20486 }
20487
20488 text_name = segment_name (text_seg);
20489 if (streq (text_name, ".text"))
20490 text_name = "";
20491
20492 if (strncmp (text_name, ".gnu.linkonce.t.",
20493 strlen (".gnu.linkonce.t.")) == 0)
20494 {
20495 prefix = prefix_once;
20496 text_name += strlen (".gnu.linkonce.t.");
20497 }
20498
20499 prefix_len = strlen (prefix);
20500 text_len = strlen (text_name);
20501 sec_name_len = prefix_len + text_len;
20502 sec_name = (char *) xmalloc (sec_name_len + 1);
20503 memcpy (sec_name, prefix, prefix_len);
20504 memcpy (sec_name + prefix_len, text_name, text_len);
20505 sec_name[prefix_len + text_len] = '\0';
20506
20507 flags = SHF_ALLOC;
20508 linkonce = 0;
20509 group_name = 0;
20510
20511 /* Handle COMDAT group. */
20512 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20513 {
20514 group_name = elf_group_name (text_seg);
20515 if (group_name == NULL)
20516 {
20517 as_bad (_("Group section `%s' has no group signature"),
20518 segment_name (text_seg));
20519 ignore_rest_of_line ();
20520 return;
20521 }
20522 flags |= SHF_GROUP;
20523 linkonce = 1;
20524 }
20525
20526 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20527
20528 /* Set the section link for index tables. */
20529 if (idx)
20530 elf_linked_to_section (now_seg) = text_seg;
20531 }
20532
20533
20534 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20535 personality routine data. Returns zero, or the index table value for
20536 and inline entry. */
20537
20538 static valueT
20539 create_unwind_entry (int have_data)
20540 {
20541 int size;
20542 addressT where;
20543 char *ptr;
20544 /* The current word of data. */
20545 valueT data;
20546 /* The number of bytes left in this word. */
20547 int n;
20548
20549 finish_unwind_opcodes ();
20550
20551 /* Remember the current text section. */
20552 unwind.saved_seg = now_seg;
20553 unwind.saved_subseg = now_subseg;
20554
20555 start_unwind_section (now_seg, 0);
20556
20557 if (unwind.personality_routine == NULL)
20558 {
20559 if (unwind.personality_index == -2)
20560 {
20561 if (have_data)
20562 as_bad (_("handlerdata in cantunwind frame"));
20563 return 1; /* EXIDX_CANTUNWIND. */
20564 }
20565
20566 /* Use a default personality routine if none is specified. */
20567 if (unwind.personality_index == -1)
20568 {
20569 if (unwind.opcode_count > 3)
20570 unwind.personality_index = 1;
20571 else
20572 unwind.personality_index = 0;
20573 }
20574
20575 /* Space for the personality routine entry. */
20576 if (unwind.personality_index == 0)
20577 {
20578 if (unwind.opcode_count > 3)
20579 as_bad (_("too many unwind opcodes for personality routine 0"));
20580
20581 if (!have_data)
20582 {
20583 /* All the data is inline in the index table. */
20584 data = 0x80;
20585 n = 3;
20586 while (unwind.opcode_count > 0)
20587 {
20588 unwind.opcode_count--;
20589 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20590 n--;
20591 }
20592
20593 /* Pad with "finish" opcodes. */
20594 while (n--)
20595 data = (data << 8) | 0xb0;
20596
20597 return data;
20598 }
20599 size = 0;
20600 }
20601 else
20602 /* We get two opcodes "free" in the first word. */
20603 size = unwind.opcode_count - 2;
20604 }
20605 else
20606 {
20607 gas_assert (unwind.personality_index == -1);
20608
20609 /* An extra byte is required for the opcode count. */
20610 size = unwind.opcode_count + 1;
20611 }
20612
20613 size = (size + 3) >> 2;
20614 if (size > 0xff)
20615 as_bad (_("too many unwind opcodes"));
20616
20617 frag_align (2, 0, 0);
20618 record_alignment (now_seg, 2);
20619 unwind.table_entry = expr_build_dot ();
20620
20621 /* Allocate the table entry. */
20622 ptr = frag_more ((size << 2) + 4);
20623 /* PR 13449: Zero the table entries in case some of them are not used. */
20624 memset (ptr, 0, (size << 2) + 4);
20625 where = frag_now_fix () - ((size << 2) + 4);
20626
20627 switch (unwind.personality_index)
20628 {
20629 case -1:
20630 /* ??? Should this be a PLT generating relocation? */
20631 /* Custom personality routine. */
20632 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20633 BFD_RELOC_ARM_PREL31);
20634
20635 where += 4;
20636 ptr += 4;
20637
20638 /* Set the first byte to the number of additional words. */
20639 data = size > 0 ? size - 1 : 0;
20640 n = 3;
20641 break;
20642
20643 /* ABI defined personality routines. */
20644 case 0:
20645 /* Three opcodes bytes are packed into the first word. */
20646 data = 0x80;
20647 n = 3;
20648 break;
20649
20650 case 1:
20651 case 2:
20652 /* The size and first two opcode bytes go in the first word. */
20653 data = ((0x80 + unwind.personality_index) << 8) | size;
20654 n = 2;
20655 break;
20656
20657 default:
20658 /* Should never happen. */
20659 abort ();
20660 }
20661
20662 /* Pack the opcodes into words (MSB first), reversing the list at the same
20663 time. */
20664 while (unwind.opcode_count > 0)
20665 {
20666 if (n == 0)
20667 {
20668 md_number_to_chars (ptr, data, 4);
20669 ptr += 4;
20670 n = 4;
20671 data = 0;
20672 }
20673 unwind.opcode_count--;
20674 n--;
20675 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20676 }
20677
20678 /* Finish off the last word. */
20679 if (n < 4)
20680 {
20681 /* Pad with "finish" opcodes. */
20682 while (n--)
20683 data = (data << 8) | 0xb0;
20684
20685 md_number_to_chars (ptr, data, 4);
20686 }
20687
20688 if (!have_data)
20689 {
20690 /* Add an empty descriptor if there is no user-specified data. */
20691 ptr = frag_more (4);
20692 md_number_to_chars (ptr, 0, 4);
20693 }
20694
20695 return 0;
20696 }
20697
20698
20699 /* Initialize the DWARF-2 unwind information for this procedure. */
20700
20701 void
20702 tc_arm_frame_initial_instructions (void)
20703 {
20704 cfi_add_CFA_def_cfa (REG_SP, 0);
20705 }
20706 #endif /* OBJ_ELF */
20707
20708 /* Convert REGNAME to a DWARF-2 register number. */
20709
20710 int
20711 tc_arm_regname_to_dw2regnum (char *regname)
20712 {
20713 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20714
20715 if (reg == FAIL)
20716 return -1;
20717
20718 return reg;
20719 }
20720
20721 #ifdef TE_PE
20722 void
20723 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20724 {
20725 expressionS exp;
20726
20727 exp.X_op = O_secrel;
20728 exp.X_add_symbol = symbol;
20729 exp.X_add_number = 0;
20730 emit_expr (&exp, size);
20731 }
20732 #endif
20733
20734 /* MD interface: Symbol and relocation handling. */
20735
20736 /* Return the address within the segment that a PC-relative fixup is
20737 relative to. For ARM, PC-relative fixups applied to instructions
20738 are generally relative to the location of the fixup plus 8 bytes.
20739 Thumb branches are offset by 4, and Thumb loads relative to PC
20740 require special handling. */
20741
20742 long
20743 md_pcrel_from_section (fixS * fixP, segT seg)
20744 {
20745 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20746
20747 /* If this is pc-relative and we are going to emit a relocation
20748 then we just want to put out any pipeline compensation that the linker
20749 will need. Otherwise we want to use the calculated base.
20750 For WinCE we skip the bias for externals as well, since this
20751 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20752 if (fixP->fx_pcrel
20753 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20754 || (arm_force_relocation (fixP)
20755 #ifdef TE_WINCE
20756 && !S_IS_EXTERNAL (fixP->fx_addsy)
20757 #endif
20758 )))
20759 base = 0;
20760
20761
20762 switch (fixP->fx_r_type)
20763 {
20764 /* PC relative addressing on the Thumb is slightly odd as the
20765 bottom two bits of the PC are forced to zero for the
20766 calculation. This happens *after* application of the
20767 pipeline offset. However, Thumb adrl already adjusts for
20768 this, so we need not do it again. */
20769 case BFD_RELOC_ARM_THUMB_ADD:
20770 return base & ~3;
20771
20772 case BFD_RELOC_ARM_THUMB_OFFSET:
20773 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20774 case BFD_RELOC_ARM_T32_ADD_PC12:
20775 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20776 return (base + 4) & ~3;
20777
20778 /* Thumb branches are simply offset by +4. */
20779 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20780 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20781 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20782 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20783 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20784 return base + 4;
20785
20786 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20787 if (fixP->fx_addsy
20788 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20789 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20790 && ARM_IS_FUNC (fixP->fx_addsy)
20791 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20792 base = fixP->fx_where + fixP->fx_frag->fr_address;
20793 return base + 4;
20794
20795 /* BLX is like branches above, but forces the low two bits of PC to
20796 zero. */
20797 case BFD_RELOC_THUMB_PCREL_BLX:
20798 if (fixP->fx_addsy
20799 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20800 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20801 && THUMB_IS_FUNC (fixP->fx_addsy)
20802 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20803 base = fixP->fx_where + fixP->fx_frag->fr_address;
20804 return (base + 4) & ~3;
20805
20806 /* ARM mode branches are offset by +8. However, the Windows CE
20807 loader expects the relocation not to take this into account. */
20808 case BFD_RELOC_ARM_PCREL_BLX:
20809 if (fixP->fx_addsy
20810 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20811 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20812 && ARM_IS_FUNC (fixP->fx_addsy)
20813 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20814 base = fixP->fx_where + fixP->fx_frag->fr_address;
20815 return base + 8;
20816
20817 case BFD_RELOC_ARM_PCREL_CALL:
20818 if (fixP->fx_addsy
20819 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20820 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20821 && THUMB_IS_FUNC (fixP->fx_addsy)
20822 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20823 base = fixP->fx_where + fixP->fx_frag->fr_address;
20824 return base + 8;
20825
20826 case BFD_RELOC_ARM_PCREL_BRANCH:
20827 case BFD_RELOC_ARM_PCREL_JUMP:
20828 case BFD_RELOC_ARM_PLT32:
20829 #ifdef TE_WINCE
20830 /* When handling fixups immediately, because we have already
20831 discovered the value of a symbol, or the address of the frag involved
20832 we must account for the offset by +8, as the OS loader will never see the reloc.
20833 see fixup_segment() in write.c
20834 The S_IS_EXTERNAL test handles the case of global symbols.
20835 Those need the calculated base, not just the pipe compensation the linker will need. */
20836 if (fixP->fx_pcrel
20837 && fixP->fx_addsy != NULL
20838 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20839 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20840 return base + 8;
20841 return base;
20842 #else
20843 return base + 8;
20844 #endif
20845
20846
20847 /* ARM mode loads relative to PC are also offset by +8. Unlike
20848 branches, the Windows CE loader *does* expect the relocation
20849 to take this into account. */
20850 case BFD_RELOC_ARM_OFFSET_IMM:
20851 case BFD_RELOC_ARM_OFFSET_IMM8:
20852 case BFD_RELOC_ARM_HWLITERAL:
20853 case BFD_RELOC_ARM_LITERAL:
20854 case BFD_RELOC_ARM_CP_OFF_IMM:
20855 return base + 8;
20856
20857
20858 /* Other PC-relative relocations are un-offset. */
20859 default:
20860 return base;
20861 }
20862 }
20863
20864 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20865 Otherwise we have no need to default values of symbols. */
20866
20867 symbolS *
20868 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20869 {
20870 #ifdef OBJ_ELF
20871 if (name[0] == '_' && name[1] == 'G'
20872 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20873 {
20874 if (!GOT_symbol)
20875 {
20876 if (symbol_find (name))
20877 as_bad (_("GOT already in the symbol table"));
20878
20879 GOT_symbol = symbol_new (name, undefined_section,
20880 (valueT) 0, & zero_address_frag);
20881 }
20882
20883 return GOT_symbol;
20884 }
20885 #endif
20886
20887 return NULL;
20888 }
20889
20890 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20891 computed as two separate immediate values, added together. We
20892 already know that this value cannot be computed by just one ARM
20893 instruction. */
20894
20895 static unsigned int
20896 validate_immediate_twopart (unsigned int val,
20897 unsigned int * highpart)
20898 {
20899 unsigned int a;
20900 unsigned int i;
20901
20902 for (i = 0; i < 32; i += 2)
20903 if (((a = rotate_left (val, i)) & 0xff) != 0)
20904 {
20905 if (a & 0xff00)
20906 {
20907 if (a & ~ 0xffff)
20908 continue;
20909 * highpart = (a >> 8) | ((i + 24) << 7);
20910 }
20911 else if (a & 0xff0000)
20912 {
20913 if (a & 0xff000000)
20914 continue;
20915 * highpart = (a >> 16) | ((i + 16) << 7);
20916 }
20917 else
20918 {
20919 gas_assert (a & 0xff000000);
20920 * highpart = (a >> 24) | ((i + 8) << 7);
20921 }
20922
20923 return (a & 0xff) | (i << 7);
20924 }
20925
20926 return FAIL;
20927 }
20928
20929 static int
20930 validate_offset_imm (unsigned int val, int hwse)
20931 {
20932 if ((hwse && val > 255) || val > 4095)
20933 return FAIL;
20934 return val;
20935 }
20936
20937 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20938 negative immediate constant by altering the instruction. A bit of
20939 a hack really.
20940 MOV <-> MVN
20941 AND <-> BIC
20942 ADC <-> SBC
20943 by inverting the second operand, and
20944 ADD <-> SUB
20945 CMP <-> CMN
20946 by negating the second operand. */
20947
20948 static int
20949 negate_data_op (unsigned long * instruction,
20950 unsigned long value)
20951 {
20952 int op, new_inst;
20953 unsigned long negated, inverted;
20954
20955 negated = encode_arm_immediate (-value);
20956 inverted = encode_arm_immediate (~value);
20957
20958 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20959 switch (op)
20960 {
20961 /* First negates. */
20962 case OPCODE_SUB: /* ADD <-> SUB */
20963 new_inst = OPCODE_ADD;
20964 value = negated;
20965 break;
20966
20967 case OPCODE_ADD:
20968 new_inst = OPCODE_SUB;
20969 value = negated;
20970 break;
20971
20972 case OPCODE_CMP: /* CMP <-> CMN */
20973 new_inst = OPCODE_CMN;
20974 value = negated;
20975 break;
20976
20977 case OPCODE_CMN:
20978 new_inst = OPCODE_CMP;
20979 value = negated;
20980 break;
20981
20982 /* Now Inverted ops. */
20983 case OPCODE_MOV: /* MOV <-> MVN */
20984 new_inst = OPCODE_MVN;
20985 value = inverted;
20986 break;
20987
20988 case OPCODE_MVN:
20989 new_inst = OPCODE_MOV;
20990 value = inverted;
20991 break;
20992
20993 case OPCODE_AND: /* AND <-> BIC */
20994 new_inst = OPCODE_BIC;
20995 value = inverted;
20996 break;
20997
20998 case OPCODE_BIC:
20999 new_inst = OPCODE_AND;
21000 value = inverted;
21001 break;
21002
21003 case OPCODE_ADC: /* ADC <-> SBC */
21004 new_inst = OPCODE_SBC;
21005 value = inverted;
21006 break;
21007
21008 case OPCODE_SBC:
21009 new_inst = OPCODE_ADC;
21010 value = inverted;
21011 break;
21012
21013 /* We cannot do anything. */
21014 default:
21015 return FAIL;
21016 }
21017
21018 if (value == (unsigned) FAIL)
21019 return FAIL;
21020
21021 *instruction &= OPCODE_MASK;
21022 *instruction |= new_inst << DATA_OP_SHIFT;
21023 return value;
21024 }
21025
21026 /* Like negate_data_op, but for Thumb-2. */
21027
21028 static unsigned int
21029 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21030 {
21031 int op, new_inst;
21032 int rd;
21033 unsigned int negated, inverted;
21034
21035 negated = encode_thumb32_immediate (-value);
21036 inverted = encode_thumb32_immediate (~value);
21037
21038 rd = (*instruction >> 8) & 0xf;
21039 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21040 switch (op)
21041 {
21042 /* ADD <-> SUB. Includes CMP <-> CMN. */
21043 case T2_OPCODE_SUB:
21044 new_inst = T2_OPCODE_ADD;
21045 value = negated;
21046 break;
21047
21048 case T2_OPCODE_ADD:
21049 new_inst = T2_OPCODE_SUB;
21050 value = negated;
21051 break;
21052
21053 /* ORR <-> ORN. Includes MOV <-> MVN. */
21054 case T2_OPCODE_ORR:
21055 new_inst = T2_OPCODE_ORN;
21056 value = inverted;
21057 break;
21058
21059 case T2_OPCODE_ORN:
21060 new_inst = T2_OPCODE_ORR;
21061 value = inverted;
21062 break;
21063
21064 /* AND <-> BIC. TST has no inverted equivalent. */
21065 case T2_OPCODE_AND:
21066 new_inst = T2_OPCODE_BIC;
21067 if (rd == 15)
21068 value = FAIL;
21069 else
21070 value = inverted;
21071 break;
21072
21073 case T2_OPCODE_BIC:
21074 new_inst = T2_OPCODE_AND;
21075 value = inverted;
21076 break;
21077
21078 /* ADC <-> SBC */
21079 case T2_OPCODE_ADC:
21080 new_inst = T2_OPCODE_SBC;
21081 value = inverted;
21082 break;
21083
21084 case T2_OPCODE_SBC:
21085 new_inst = T2_OPCODE_ADC;
21086 value = inverted;
21087 break;
21088
21089 /* We cannot do anything. */
21090 default:
21091 return FAIL;
21092 }
21093
21094 if (value == (unsigned int)FAIL)
21095 return FAIL;
21096
21097 *instruction &= T2_OPCODE_MASK;
21098 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21099 return value;
21100 }
21101
21102 /* Read a 32-bit thumb instruction from buf. */
21103 static unsigned long
21104 get_thumb32_insn (char * buf)
21105 {
21106 unsigned long insn;
21107 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21108 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21109
21110 return insn;
21111 }
21112
21113
21114 /* We usually want to set the low bit on the address of thumb function
21115 symbols. In particular .word foo - . should have the low bit set.
21116 Generic code tries to fold the difference of two symbols to
21117 a constant. Prevent this and force a relocation when the first symbols
21118 is a thumb function. */
21119
21120 bfd_boolean
21121 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21122 {
21123 if (op == O_subtract
21124 && l->X_op == O_symbol
21125 && r->X_op == O_symbol
21126 && THUMB_IS_FUNC (l->X_add_symbol))
21127 {
21128 l->X_op = O_subtract;
21129 l->X_op_symbol = r->X_add_symbol;
21130 l->X_add_number -= r->X_add_number;
21131 return TRUE;
21132 }
21133
21134 /* Process as normal. */
21135 return FALSE;
21136 }
21137
21138 /* Encode Thumb2 unconditional branches and calls. The encoding
21139 for the 2 are identical for the immediate values. */
21140
21141 static void
21142 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21143 {
21144 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21145 offsetT newval;
21146 offsetT newval2;
21147 addressT S, I1, I2, lo, hi;
21148
21149 S = (value >> 24) & 0x01;
21150 I1 = (value >> 23) & 0x01;
21151 I2 = (value >> 22) & 0x01;
21152 hi = (value >> 12) & 0x3ff;
21153 lo = (value >> 1) & 0x7ff;
21154 newval = md_chars_to_number (buf, THUMB_SIZE);
21155 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21156 newval |= (S << 10) | hi;
21157 newval2 &= ~T2I1I2MASK;
21158 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21159 md_number_to_chars (buf, newval, THUMB_SIZE);
21160 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21161 }
21162
21163 void
21164 md_apply_fix (fixS * fixP,
21165 valueT * valP,
21166 segT seg)
21167 {
21168 offsetT value = * valP;
21169 offsetT newval;
21170 unsigned int newimm;
21171 unsigned long temp;
21172 int sign;
21173 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21174
21175 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21176
21177 /* Note whether this will delete the relocation. */
21178
21179 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21180 fixP->fx_done = 1;
21181
21182 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21183 consistency with the behaviour on 32-bit hosts. Remember value
21184 for emit_reloc. */
21185 value &= 0xffffffff;
21186 value ^= 0x80000000;
21187 value -= 0x80000000;
21188
21189 *valP = value;
21190 fixP->fx_addnumber = value;
21191
21192 /* Same treatment for fixP->fx_offset. */
21193 fixP->fx_offset &= 0xffffffff;
21194 fixP->fx_offset ^= 0x80000000;
21195 fixP->fx_offset -= 0x80000000;
21196
21197 switch (fixP->fx_r_type)
21198 {
21199 case BFD_RELOC_NONE:
21200 /* This will need to go in the object file. */
21201 fixP->fx_done = 0;
21202 break;
21203
21204 case BFD_RELOC_ARM_IMMEDIATE:
21205 /* We claim that this fixup has been processed here,
21206 even if in fact we generate an error because we do
21207 not have a reloc for it, so tc_gen_reloc will reject it. */
21208 fixP->fx_done = 1;
21209
21210 if (fixP->fx_addsy)
21211 {
21212 const char *msg = 0;
21213
21214 if (! S_IS_DEFINED (fixP->fx_addsy))
21215 msg = _("undefined symbol %s used as an immediate value");
21216 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21217 msg = _("symbol %s is in a different section");
21218 else if (S_IS_WEAK (fixP->fx_addsy))
21219 msg = _("symbol %s is weak and may be overridden later");
21220
21221 if (msg)
21222 {
21223 as_bad_where (fixP->fx_file, fixP->fx_line,
21224 msg, S_GET_NAME (fixP->fx_addsy));
21225 break;
21226 }
21227 }
21228
21229 temp = md_chars_to_number (buf, INSN_SIZE);
21230
21231 /* If the offset is negative, we should use encoding A2 for ADR. */
21232 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21233 newimm = negate_data_op (&temp, value);
21234 else
21235 {
21236 newimm = encode_arm_immediate (value);
21237
21238 /* If the instruction will fail, see if we can fix things up by
21239 changing the opcode. */
21240 if (newimm == (unsigned int) FAIL)
21241 newimm = negate_data_op (&temp, value);
21242 }
21243
21244 if (newimm == (unsigned int) FAIL)
21245 {
21246 as_bad_where (fixP->fx_file, fixP->fx_line,
21247 _("invalid constant (%lx) after fixup"),
21248 (unsigned long) value);
21249 break;
21250 }
21251
21252 newimm |= (temp & 0xfffff000);
21253 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21254 break;
21255
21256 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21257 {
21258 unsigned int highpart = 0;
21259 unsigned int newinsn = 0xe1a00000; /* nop. */
21260
21261 if (fixP->fx_addsy)
21262 {
21263 const char *msg = 0;
21264
21265 if (! S_IS_DEFINED (fixP->fx_addsy))
21266 msg = _("undefined symbol %s used as an immediate value");
21267 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21268 msg = _("symbol %s is in a different section");
21269 else if (S_IS_WEAK (fixP->fx_addsy))
21270 msg = _("symbol %s is weak and may be overridden later");
21271
21272 if (msg)
21273 {
21274 as_bad_where (fixP->fx_file, fixP->fx_line,
21275 msg, S_GET_NAME (fixP->fx_addsy));
21276 break;
21277 }
21278 }
21279
21280 newimm = encode_arm_immediate (value);
21281 temp = md_chars_to_number (buf, INSN_SIZE);
21282
21283 /* If the instruction will fail, see if we can fix things up by
21284 changing the opcode. */
21285 if (newimm == (unsigned int) FAIL
21286 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21287 {
21288 /* No ? OK - try using two ADD instructions to generate
21289 the value. */
21290 newimm = validate_immediate_twopart (value, & highpart);
21291
21292 /* Yes - then make sure that the second instruction is
21293 also an add. */
21294 if (newimm != (unsigned int) FAIL)
21295 newinsn = temp;
21296 /* Still No ? Try using a negated value. */
21297 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21298 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21299 /* Otherwise - give up. */
21300 else
21301 {
21302 as_bad_where (fixP->fx_file, fixP->fx_line,
21303 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21304 (long) value);
21305 break;
21306 }
21307
21308 /* Replace the first operand in the 2nd instruction (which
21309 is the PC) with the destination register. We have
21310 already added in the PC in the first instruction and we
21311 do not want to do it again. */
21312 newinsn &= ~ 0xf0000;
21313 newinsn |= ((newinsn & 0x0f000) << 4);
21314 }
21315
21316 newimm |= (temp & 0xfffff000);
21317 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21318
21319 highpart |= (newinsn & 0xfffff000);
21320 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21321 }
21322 break;
21323
21324 case BFD_RELOC_ARM_OFFSET_IMM:
21325 if (!fixP->fx_done && seg->use_rela_p)
21326 value = 0;
21327
21328 case BFD_RELOC_ARM_LITERAL:
21329 sign = value > 0;
21330
21331 if (value < 0)
21332 value = - value;
21333
21334 if (validate_offset_imm (value, 0) == FAIL)
21335 {
21336 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21337 as_bad_where (fixP->fx_file, fixP->fx_line,
21338 _("invalid literal constant: pool needs to be closer"));
21339 else
21340 as_bad_where (fixP->fx_file, fixP->fx_line,
21341 _("bad immediate value for offset (%ld)"),
21342 (long) value);
21343 break;
21344 }
21345
21346 newval = md_chars_to_number (buf, INSN_SIZE);
21347 if (value == 0)
21348 newval &= 0xfffff000;
21349 else
21350 {
21351 newval &= 0xff7ff000;
21352 newval |= value | (sign ? INDEX_UP : 0);
21353 }
21354 md_number_to_chars (buf, newval, INSN_SIZE);
21355 break;
21356
21357 case BFD_RELOC_ARM_OFFSET_IMM8:
21358 case BFD_RELOC_ARM_HWLITERAL:
21359 sign = value > 0;
21360
21361 if (value < 0)
21362 value = - value;
21363
21364 if (validate_offset_imm (value, 1) == FAIL)
21365 {
21366 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21367 as_bad_where (fixP->fx_file, fixP->fx_line,
21368 _("invalid literal constant: pool needs to be closer"));
21369 else
21370 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21371 (long) value);
21372 break;
21373 }
21374
21375 newval = md_chars_to_number (buf, INSN_SIZE);
21376 if (value == 0)
21377 newval &= 0xfffff0f0;
21378 else
21379 {
21380 newval &= 0xff7ff0f0;
21381 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21382 }
21383 md_number_to_chars (buf, newval, INSN_SIZE);
21384 break;
21385
21386 case BFD_RELOC_ARM_T32_OFFSET_U8:
21387 if (value < 0 || value > 1020 || value % 4 != 0)
21388 as_bad_where (fixP->fx_file, fixP->fx_line,
21389 _("bad immediate value for offset (%ld)"), (long) value);
21390 value /= 4;
21391
21392 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21393 newval |= value;
21394 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21395 break;
21396
21397 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21398 /* This is a complicated relocation used for all varieties of Thumb32
21399 load/store instruction with immediate offset:
21400
21401 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21402 *4, optional writeback(W)
21403 (doubleword load/store)
21404
21405 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21406 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21407 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21408 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21409 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21410
21411 Uppercase letters indicate bits that are already encoded at
21412 this point. Lowercase letters are our problem. For the
21413 second block of instructions, the secondary opcode nybble
21414 (bits 8..11) is present, and bit 23 is zero, even if this is
21415 a PC-relative operation. */
21416 newval = md_chars_to_number (buf, THUMB_SIZE);
21417 newval <<= 16;
21418 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21419
21420 if ((newval & 0xf0000000) == 0xe0000000)
21421 {
21422 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21423 if (value >= 0)
21424 newval |= (1 << 23);
21425 else
21426 value = -value;
21427 if (value % 4 != 0)
21428 {
21429 as_bad_where (fixP->fx_file, fixP->fx_line,
21430 _("offset not a multiple of 4"));
21431 break;
21432 }
21433 value /= 4;
21434 if (value > 0xff)
21435 {
21436 as_bad_where (fixP->fx_file, fixP->fx_line,
21437 _("offset out of range"));
21438 break;
21439 }
21440 newval &= ~0xff;
21441 }
21442 else if ((newval & 0x000f0000) == 0x000f0000)
21443 {
21444 /* PC-relative, 12-bit offset. */
21445 if (value >= 0)
21446 newval |= (1 << 23);
21447 else
21448 value = -value;
21449 if (value > 0xfff)
21450 {
21451 as_bad_where (fixP->fx_file, fixP->fx_line,
21452 _("offset out of range"));
21453 break;
21454 }
21455 newval &= ~0xfff;
21456 }
21457 else if ((newval & 0x00000100) == 0x00000100)
21458 {
21459 /* Writeback: 8-bit, +/- offset. */
21460 if (value >= 0)
21461 newval |= (1 << 9);
21462 else
21463 value = -value;
21464 if (value > 0xff)
21465 {
21466 as_bad_where (fixP->fx_file, fixP->fx_line,
21467 _("offset out of range"));
21468 break;
21469 }
21470 newval &= ~0xff;
21471 }
21472 else if ((newval & 0x00000f00) == 0x00000e00)
21473 {
21474 /* T-instruction: positive 8-bit offset. */
21475 if (value < 0 || value > 0xff)
21476 {
21477 as_bad_where (fixP->fx_file, fixP->fx_line,
21478 _("offset out of range"));
21479 break;
21480 }
21481 newval &= ~0xff;
21482 newval |= value;
21483 }
21484 else
21485 {
21486 /* Positive 12-bit or negative 8-bit offset. */
21487 int limit;
21488 if (value >= 0)
21489 {
21490 newval |= (1 << 23);
21491 limit = 0xfff;
21492 }
21493 else
21494 {
21495 value = -value;
21496 limit = 0xff;
21497 }
21498 if (value > limit)
21499 {
21500 as_bad_where (fixP->fx_file, fixP->fx_line,
21501 _("offset out of range"));
21502 break;
21503 }
21504 newval &= ~limit;
21505 }
21506
21507 newval |= value;
21508 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21509 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21510 break;
21511
21512 case BFD_RELOC_ARM_SHIFT_IMM:
21513 newval = md_chars_to_number (buf, INSN_SIZE);
21514 if (((unsigned long) value) > 32
21515 || (value == 32
21516 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21517 {
21518 as_bad_where (fixP->fx_file, fixP->fx_line,
21519 _("shift expression is too large"));
21520 break;
21521 }
21522
21523 if (value == 0)
21524 /* Shifts of zero must be done as lsl. */
21525 newval &= ~0x60;
21526 else if (value == 32)
21527 value = 0;
21528 newval &= 0xfffff07f;
21529 newval |= (value & 0x1f) << 7;
21530 md_number_to_chars (buf, newval, INSN_SIZE);
21531 break;
21532
21533 case BFD_RELOC_ARM_T32_IMMEDIATE:
21534 case BFD_RELOC_ARM_T32_ADD_IMM:
21535 case BFD_RELOC_ARM_T32_IMM12:
21536 case BFD_RELOC_ARM_T32_ADD_PC12:
21537 /* We claim that this fixup has been processed here,
21538 even if in fact we generate an error because we do
21539 not have a reloc for it, so tc_gen_reloc will reject it. */
21540 fixP->fx_done = 1;
21541
21542 if (fixP->fx_addsy
21543 && ! S_IS_DEFINED (fixP->fx_addsy))
21544 {
21545 as_bad_where (fixP->fx_file, fixP->fx_line,
21546 _("undefined symbol %s used as an immediate value"),
21547 S_GET_NAME (fixP->fx_addsy));
21548 break;
21549 }
21550
21551 newval = md_chars_to_number (buf, THUMB_SIZE);
21552 newval <<= 16;
21553 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21554
21555 newimm = FAIL;
21556 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21557 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21558 {
21559 newimm = encode_thumb32_immediate (value);
21560 if (newimm == (unsigned int) FAIL)
21561 newimm = thumb32_negate_data_op (&newval, value);
21562 }
21563 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21564 && newimm == (unsigned int) FAIL)
21565 {
21566 /* Turn add/sum into addw/subw. */
21567 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21568 newval = (newval & 0xfeffffff) | 0x02000000;
21569 /* No flat 12-bit imm encoding for addsw/subsw. */
21570 if ((newval & 0x00100000) == 0)
21571 {
21572 /* 12 bit immediate for addw/subw. */
21573 if (value < 0)
21574 {
21575 value = -value;
21576 newval ^= 0x00a00000;
21577 }
21578 if (value > 0xfff)
21579 newimm = (unsigned int) FAIL;
21580 else
21581 newimm = value;
21582 }
21583 }
21584
21585 if (newimm == (unsigned int)FAIL)
21586 {
21587 as_bad_where (fixP->fx_file, fixP->fx_line,
21588 _("invalid constant (%lx) after fixup"),
21589 (unsigned long) value);
21590 break;
21591 }
21592
21593 newval |= (newimm & 0x800) << 15;
21594 newval |= (newimm & 0x700) << 4;
21595 newval |= (newimm & 0x0ff);
21596
21597 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21598 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21599 break;
21600
21601 case BFD_RELOC_ARM_SMC:
21602 if (((unsigned long) value) > 0xffff)
21603 as_bad_where (fixP->fx_file, fixP->fx_line,
21604 _("invalid smc expression"));
21605 newval = md_chars_to_number (buf, INSN_SIZE);
21606 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21607 md_number_to_chars (buf, newval, INSN_SIZE);
21608 break;
21609
21610 case BFD_RELOC_ARM_HVC:
21611 if (((unsigned long) value) > 0xffff)
21612 as_bad_where (fixP->fx_file, fixP->fx_line,
21613 _("invalid hvc expression"));
21614 newval = md_chars_to_number (buf, INSN_SIZE);
21615 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21616 md_number_to_chars (buf, newval, INSN_SIZE);
21617 break;
21618
21619 case BFD_RELOC_ARM_SWI:
21620 if (fixP->tc_fix_data != 0)
21621 {
21622 if (((unsigned long) value) > 0xff)
21623 as_bad_where (fixP->fx_file, fixP->fx_line,
21624 _("invalid swi expression"));
21625 newval = md_chars_to_number (buf, THUMB_SIZE);
21626 newval |= value;
21627 md_number_to_chars (buf, newval, THUMB_SIZE);
21628 }
21629 else
21630 {
21631 if (((unsigned long) value) > 0x00ffffff)
21632 as_bad_where (fixP->fx_file, fixP->fx_line,
21633 _("invalid swi expression"));
21634 newval = md_chars_to_number (buf, INSN_SIZE);
21635 newval |= value;
21636 md_number_to_chars (buf, newval, INSN_SIZE);
21637 }
21638 break;
21639
21640 case BFD_RELOC_ARM_MULTI:
21641 if (((unsigned long) value) > 0xffff)
21642 as_bad_where (fixP->fx_file, fixP->fx_line,
21643 _("invalid expression in load/store multiple"));
21644 newval = value | md_chars_to_number (buf, INSN_SIZE);
21645 md_number_to_chars (buf, newval, INSN_SIZE);
21646 break;
21647
21648 #ifdef OBJ_ELF
21649 case BFD_RELOC_ARM_PCREL_CALL:
21650
21651 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21652 && fixP->fx_addsy
21653 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21654 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21655 && THUMB_IS_FUNC (fixP->fx_addsy))
21656 /* Flip the bl to blx. This is a simple flip
21657 bit here because we generate PCREL_CALL for
21658 unconditional bls. */
21659 {
21660 newval = md_chars_to_number (buf, INSN_SIZE);
21661 newval = newval | 0x10000000;
21662 md_number_to_chars (buf, newval, INSN_SIZE);
21663 temp = 1;
21664 fixP->fx_done = 1;
21665 }
21666 else
21667 temp = 3;
21668 goto arm_branch_common;
21669
21670 case BFD_RELOC_ARM_PCREL_JUMP:
21671 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21672 && fixP->fx_addsy
21673 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21674 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21675 && THUMB_IS_FUNC (fixP->fx_addsy))
21676 {
21677 /* This would map to a bl<cond>, b<cond>,
21678 b<always> to a Thumb function. We
21679 need to force a relocation for this particular
21680 case. */
21681 newval = md_chars_to_number (buf, INSN_SIZE);
21682 fixP->fx_done = 0;
21683 }
21684
21685 case BFD_RELOC_ARM_PLT32:
21686 #endif
21687 case BFD_RELOC_ARM_PCREL_BRANCH:
21688 temp = 3;
21689 goto arm_branch_common;
21690
21691 case BFD_RELOC_ARM_PCREL_BLX:
21692
21693 temp = 1;
21694 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21695 && fixP->fx_addsy
21696 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21697 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21698 && ARM_IS_FUNC (fixP->fx_addsy))
21699 {
21700 /* Flip the blx to a bl and warn. */
21701 const char *name = S_GET_NAME (fixP->fx_addsy);
21702 newval = 0xeb000000;
21703 as_warn_where (fixP->fx_file, fixP->fx_line,
21704 _("blx to '%s' an ARM ISA state function changed to bl"),
21705 name);
21706 md_number_to_chars (buf, newval, INSN_SIZE);
21707 temp = 3;
21708 fixP->fx_done = 1;
21709 }
21710
21711 #ifdef OBJ_ELF
21712 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21713 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21714 #endif
21715
21716 arm_branch_common:
21717 /* We are going to store value (shifted right by two) in the
21718 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21719 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21720 also be be clear. */
21721 if (value & temp)
21722 as_bad_where (fixP->fx_file, fixP->fx_line,
21723 _("misaligned branch destination"));
21724 if ((value & (offsetT)0xfe000000) != (offsetT)0
21725 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21726 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21727
21728 if (fixP->fx_done || !seg->use_rela_p)
21729 {
21730 newval = md_chars_to_number (buf, INSN_SIZE);
21731 newval |= (value >> 2) & 0x00ffffff;
21732 /* Set the H bit on BLX instructions. */
21733 if (temp == 1)
21734 {
21735 if (value & 2)
21736 newval |= 0x01000000;
21737 else
21738 newval &= ~0x01000000;
21739 }
21740 md_number_to_chars (buf, newval, INSN_SIZE);
21741 }
21742 break;
21743
21744 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21745 /* CBZ can only branch forward. */
21746
21747 /* Attempts to use CBZ to branch to the next instruction
21748 (which, strictly speaking, are prohibited) will be turned into
21749 no-ops.
21750
21751 FIXME: It may be better to remove the instruction completely and
21752 perform relaxation. */
21753 if (value == -2)
21754 {
21755 newval = md_chars_to_number (buf, THUMB_SIZE);
21756 newval = 0xbf00; /* NOP encoding T1 */
21757 md_number_to_chars (buf, newval, THUMB_SIZE);
21758 }
21759 else
21760 {
21761 if (value & ~0x7e)
21762 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21763
21764 if (fixP->fx_done || !seg->use_rela_p)
21765 {
21766 newval = md_chars_to_number (buf, THUMB_SIZE);
21767 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21768 md_number_to_chars (buf, newval, THUMB_SIZE);
21769 }
21770 }
21771 break;
21772
21773 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21774 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21775 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21776
21777 if (fixP->fx_done || !seg->use_rela_p)
21778 {
21779 newval = md_chars_to_number (buf, THUMB_SIZE);
21780 newval |= (value & 0x1ff) >> 1;
21781 md_number_to_chars (buf, newval, THUMB_SIZE);
21782 }
21783 break;
21784
21785 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21786 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21787 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21788
21789 if (fixP->fx_done || !seg->use_rela_p)
21790 {
21791 newval = md_chars_to_number (buf, THUMB_SIZE);
21792 newval |= (value & 0xfff) >> 1;
21793 md_number_to_chars (buf, newval, THUMB_SIZE);
21794 }
21795 break;
21796
21797 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21798 if (fixP->fx_addsy
21799 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21800 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21801 && ARM_IS_FUNC (fixP->fx_addsy)
21802 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21803 {
21804 /* Force a relocation for a branch 20 bits wide. */
21805 fixP->fx_done = 0;
21806 }
21807 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21808 as_bad_where (fixP->fx_file, fixP->fx_line,
21809 _("conditional branch out of range"));
21810
21811 if (fixP->fx_done || !seg->use_rela_p)
21812 {
21813 offsetT newval2;
21814 addressT S, J1, J2, lo, hi;
21815
21816 S = (value & 0x00100000) >> 20;
21817 J2 = (value & 0x00080000) >> 19;
21818 J1 = (value & 0x00040000) >> 18;
21819 hi = (value & 0x0003f000) >> 12;
21820 lo = (value & 0x00000ffe) >> 1;
21821
21822 newval = md_chars_to_number (buf, THUMB_SIZE);
21823 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21824 newval |= (S << 10) | hi;
21825 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21826 md_number_to_chars (buf, newval, THUMB_SIZE);
21827 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21828 }
21829 break;
21830
21831 case BFD_RELOC_THUMB_PCREL_BLX:
21832 /* If there is a blx from a thumb state function to
21833 another thumb function flip this to a bl and warn
21834 about it. */
21835
21836 if (fixP->fx_addsy
21837 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21838 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21839 && THUMB_IS_FUNC (fixP->fx_addsy))
21840 {
21841 const char *name = S_GET_NAME (fixP->fx_addsy);
21842 as_warn_where (fixP->fx_file, fixP->fx_line,
21843 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21844 name);
21845 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21846 newval = newval | 0x1000;
21847 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21848 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21849 fixP->fx_done = 1;
21850 }
21851
21852
21853 goto thumb_bl_common;
21854
21855 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21856 /* A bl from Thumb state ISA to an internal ARM state function
21857 is converted to a blx. */
21858 if (fixP->fx_addsy
21859 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21860 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21861 && ARM_IS_FUNC (fixP->fx_addsy)
21862 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21863 {
21864 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21865 newval = newval & ~0x1000;
21866 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21867 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21868 fixP->fx_done = 1;
21869 }
21870
21871 thumb_bl_common:
21872
21873 #ifdef OBJ_ELF
21874 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21875 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21876 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21877 #endif
21878
21879 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21880 /* For a BLX instruction, make sure that the relocation is rounded up
21881 to a word boundary. This follows the semantics of the instruction
21882 which specifies that bit 1 of the target address will come from bit
21883 1 of the base address. */
21884 value = (value + 1) & ~ 1;
21885
21886 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21887 {
21888 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21889 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21890 else if ((value & ~0x1ffffff)
21891 && ((value & ~0x1ffffff) != ~0x1ffffff))
21892 as_bad_where (fixP->fx_file, fixP->fx_line,
21893 _("Thumb2 branch out of range"));
21894 }
21895
21896 if (fixP->fx_done || !seg->use_rela_p)
21897 encode_thumb2_b_bl_offset (buf, value);
21898
21899 break;
21900
21901 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21902 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21903 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21904
21905 if (fixP->fx_done || !seg->use_rela_p)
21906 encode_thumb2_b_bl_offset (buf, value);
21907
21908 break;
21909
21910 case BFD_RELOC_8:
21911 if (fixP->fx_done || !seg->use_rela_p)
21912 md_number_to_chars (buf, value, 1);
21913 break;
21914
21915 case BFD_RELOC_16:
21916 if (fixP->fx_done || !seg->use_rela_p)
21917 md_number_to_chars (buf, value, 2);
21918 break;
21919
21920 #ifdef OBJ_ELF
21921 case BFD_RELOC_ARM_TLS_CALL:
21922 case BFD_RELOC_ARM_THM_TLS_CALL:
21923 case BFD_RELOC_ARM_TLS_DESCSEQ:
21924 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21925 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21926 break;
21927
21928 case BFD_RELOC_ARM_TLS_GOTDESC:
21929 case BFD_RELOC_ARM_TLS_GD32:
21930 case BFD_RELOC_ARM_TLS_LE32:
21931 case BFD_RELOC_ARM_TLS_IE32:
21932 case BFD_RELOC_ARM_TLS_LDM32:
21933 case BFD_RELOC_ARM_TLS_LDO32:
21934 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21935 /* fall through */
21936
21937 case BFD_RELOC_ARM_GOT32:
21938 case BFD_RELOC_ARM_GOTOFF:
21939 if (fixP->fx_done || !seg->use_rela_p)
21940 md_number_to_chars (buf, 0, 4);
21941 break;
21942
21943 case BFD_RELOC_ARM_GOT_PREL:
21944 if (fixP->fx_done || !seg->use_rela_p)
21945 md_number_to_chars (buf, value, 4);
21946 break;
21947
21948 case BFD_RELOC_ARM_TARGET2:
21949 /* TARGET2 is not partial-inplace, so we need to write the
21950 addend here for REL targets, because it won't be written out
21951 during reloc processing later. */
21952 if (fixP->fx_done || !seg->use_rela_p)
21953 md_number_to_chars (buf, fixP->fx_offset, 4);
21954 break;
21955 #endif
21956
21957 case BFD_RELOC_RVA:
21958 case BFD_RELOC_32:
21959 case BFD_RELOC_ARM_TARGET1:
21960 case BFD_RELOC_ARM_ROSEGREL32:
21961 case BFD_RELOC_ARM_SBREL32:
21962 case BFD_RELOC_32_PCREL:
21963 #ifdef TE_PE
21964 case BFD_RELOC_32_SECREL:
21965 #endif
21966 if (fixP->fx_done || !seg->use_rela_p)
21967 #ifdef TE_WINCE
21968 /* For WinCE we only do this for pcrel fixups. */
21969 if (fixP->fx_done || fixP->fx_pcrel)
21970 #endif
21971 md_number_to_chars (buf, value, 4);
21972 break;
21973
21974 #ifdef OBJ_ELF
21975 case BFD_RELOC_ARM_PREL31:
21976 if (fixP->fx_done || !seg->use_rela_p)
21977 {
21978 newval = md_chars_to_number (buf, 4) & 0x80000000;
21979 if ((value ^ (value >> 1)) & 0x40000000)
21980 {
21981 as_bad_where (fixP->fx_file, fixP->fx_line,
21982 _("rel31 relocation overflow"));
21983 }
21984 newval |= value & 0x7fffffff;
21985 md_number_to_chars (buf, newval, 4);
21986 }
21987 break;
21988 #endif
21989
21990 case BFD_RELOC_ARM_CP_OFF_IMM:
21991 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21992 if (value < -1023 || value > 1023 || (value & 3))
21993 as_bad_where (fixP->fx_file, fixP->fx_line,
21994 _("co-processor offset out of range"));
21995 cp_off_common:
21996 sign = value > 0;
21997 if (value < 0)
21998 value = -value;
21999 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22000 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22001 newval = md_chars_to_number (buf, INSN_SIZE);
22002 else
22003 newval = get_thumb32_insn (buf);
22004 if (value == 0)
22005 newval &= 0xffffff00;
22006 else
22007 {
22008 newval &= 0xff7fff00;
22009 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22010 }
22011 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22012 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22013 md_number_to_chars (buf, newval, INSN_SIZE);
22014 else
22015 put_thumb32_insn (buf, newval);
22016 break;
22017
22018 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22019 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22020 if (value < -255 || value > 255)
22021 as_bad_where (fixP->fx_file, fixP->fx_line,
22022 _("co-processor offset out of range"));
22023 value *= 4;
22024 goto cp_off_common;
22025
22026 case BFD_RELOC_ARM_THUMB_OFFSET:
22027 newval = md_chars_to_number (buf, THUMB_SIZE);
22028 /* Exactly what ranges, and where the offset is inserted depends
22029 on the type of instruction, we can establish this from the
22030 top 4 bits. */
22031 switch (newval >> 12)
22032 {
22033 case 4: /* PC load. */
22034 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22035 forced to zero for these loads; md_pcrel_from has already
22036 compensated for this. */
22037 if (value & 3)
22038 as_bad_where (fixP->fx_file, fixP->fx_line,
22039 _("invalid offset, target not word aligned (0x%08lX)"),
22040 (((unsigned long) fixP->fx_frag->fr_address
22041 + (unsigned long) fixP->fx_where) & ~3)
22042 + (unsigned long) value);
22043
22044 if (value & ~0x3fc)
22045 as_bad_where (fixP->fx_file, fixP->fx_line,
22046 _("invalid offset, value too big (0x%08lX)"),
22047 (long) value);
22048
22049 newval |= value >> 2;
22050 break;
22051
22052 case 9: /* SP load/store. */
22053 if (value & ~0x3fc)
22054 as_bad_where (fixP->fx_file, fixP->fx_line,
22055 _("invalid offset, value too big (0x%08lX)"),
22056 (long) value);
22057 newval |= value >> 2;
22058 break;
22059
22060 case 6: /* Word load/store. */
22061 if (value & ~0x7c)
22062 as_bad_where (fixP->fx_file, fixP->fx_line,
22063 _("invalid offset, value too big (0x%08lX)"),
22064 (long) value);
22065 newval |= value << 4; /* 6 - 2. */
22066 break;
22067
22068 case 7: /* Byte load/store. */
22069 if (value & ~0x1f)
22070 as_bad_where (fixP->fx_file, fixP->fx_line,
22071 _("invalid offset, value too big (0x%08lX)"),
22072 (long) value);
22073 newval |= value << 6;
22074 break;
22075
22076 case 8: /* Halfword load/store. */
22077 if (value & ~0x3e)
22078 as_bad_where (fixP->fx_file, fixP->fx_line,
22079 _("invalid offset, value too big (0x%08lX)"),
22080 (long) value);
22081 newval |= value << 5; /* 6 - 1. */
22082 break;
22083
22084 default:
22085 as_bad_where (fixP->fx_file, fixP->fx_line,
22086 "Unable to process relocation for thumb opcode: %lx",
22087 (unsigned long) newval);
22088 break;
22089 }
22090 md_number_to_chars (buf, newval, THUMB_SIZE);
22091 break;
22092
22093 case BFD_RELOC_ARM_THUMB_ADD:
22094 /* This is a complicated relocation, since we use it for all of
22095 the following immediate relocations:
22096
22097 3bit ADD/SUB
22098 8bit ADD/SUB
22099 9bit ADD/SUB SP word-aligned
22100 10bit ADD PC/SP word-aligned
22101
22102 The type of instruction being processed is encoded in the
22103 instruction field:
22104
22105 0x8000 SUB
22106 0x00F0 Rd
22107 0x000F Rs
22108 */
22109 newval = md_chars_to_number (buf, THUMB_SIZE);
22110 {
22111 int rd = (newval >> 4) & 0xf;
22112 int rs = newval & 0xf;
22113 int subtract = !!(newval & 0x8000);
22114
22115 /* Check for HI regs, only very restricted cases allowed:
22116 Adjusting SP, and using PC or SP to get an address. */
22117 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22118 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22119 as_bad_where (fixP->fx_file, fixP->fx_line,
22120 _("invalid Hi register with immediate"));
22121
22122 /* If value is negative, choose the opposite instruction. */
22123 if (value < 0)
22124 {
22125 value = -value;
22126 subtract = !subtract;
22127 if (value < 0)
22128 as_bad_where (fixP->fx_file, fixP->fx_line,
22129 _("immediate value out of range"));
22130 }
22131
22132 if (rd == REG_SP)
22133 {
22134 if (value & ~0x1fc)
22135 as_bad_where (fixP->fx_file, fixP->fx_line,
22136 _("invalid immediate for stack address calculation"));
22137 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22138 newval |= value >> 2;
22139 }
22140 else if (rs == REG_PC || rs == REG_SP)
22141 {
22142 if (subtract || value & ~0x3fc)
22143 as_bad_where (fixP->fx_file, fixP->fx_line,
22144 _("invalid immediate for address calculation (value = 0x%08lX)"),
22145 (unsigned long) value);
22146 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22147 newval |= rd << 8;
22148 newval |= value >> 2;
22149 }
22150 else if (rs == rd)
22151 {
22152 if (value & ~0xff)
22153 as_bad_where (fixP->fx_file, fixP->fx_line,
22154 _("immediate value out of range"));
22155 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22156 newval |= (rd << 8) | value;
22157 }
22158 else
22159 {
22160 if (value & ~0x7)
22161 as_bad_where (fixP->fx_file, fixP->fx_line,
22162 _("immediate value out of range"));
22163 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22164 newval |= rd | (rs << 3) | (value << 6);
22165 }
22166 }
22167 md_number_to_chars (buf, newval, THUMB_SIZE);
22168 break;
22169
22170 case BFD_RELOC_ARM_THUMB_IMM:
22171 newval = md_chars_to_number (buf, THUMB_SIZE);
22172 if (value < 0 || value > 255)
22173 as_bad_where (fixP->fx_file, fixP->fx_line,
22174 _("invalid immediate: %ld is out of range"),
22175 (long) value);
22176 newval |= value;
22177 md_number_to_chars (buf, newval, THUMB_SIZE);
22178 break;
22179
22180 case BFD_RELOC_ARM_THUMB_SHIFT:
22181 /* 5bit shift value (0..32). LSL cannot take 32. */
22182 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22183 temp = newval & 0xf800;
22184 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22185 as_bad_where (fixP->fx_file, fixP->fx_line,
22186 _("invalid shift value: %ld"), (long) value);
22187 /* Shifts of zero must be encoded as LSL. */
22188 if (value == 0)
22189 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22190 /* Shifts of 32 are encoded as zero. */
22191 else if (value == 32)
22192 value = 0;
22193 newval |= value << 6;
22194 md_number_to_chars (buf, newval, THUMB_SIZE);
22195 break;
22196
22197 case BFD_RELOC_VTABLE_INHERIT:
22198 case BFD_RELOC_VTABLE_ENTRY:
22199 fixP->fx_done = 0;
22200 return;
22201
22202 case BFD_RELOC_ARM_MOVW:
22203 case BFD_RELOC_ARM_MOVT:
22204 case BFD_RELOC_ARM_THUMB_MOVW:
22205 case BFD_RELOC_ARM_THUMB_MOVT:
22206 if (fixP->fx_done || !seg->use_rela_p)
22207 {
22208 /* REL format relocations are limited to a 16-bit addend. */
22209 if (!fixP->fx_done)
22210 {
22211 if (value < -0x8000 || value > 0x7fff)
22212 as_bad_where (fixP->fx_file, fixP->fx_line,
22213 _("offset out of range"));
22214 }
22215 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22216 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22217 {
22218 value >>= 16;
22219 }
22220
22221 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22222 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22223 {
22224 newval = get_thumb32_insn (buf);
22225 newval &= 0xfbf08f00;
22226 newval |= (value & 0xf000) << 4;
22227 newval |= (value & 0x0800) << 15;
22228 newval |= (value & 0x0700) << 4;
22229 newval |= (value & 0x00ff);
22230 put_thumb32_insn (buf, newval);
22231 }
22232 else
22233 {
22234 newval = md_chars_to_number (buf, 4);
22235 newval &= 0xfff0f000;
22236 newval |= value & 0x0fff;
22237 newval |= (value & 0xf000) << 4;
22238 md_number_to_chars (buf, newval, 4);
22239 }
22240 }
22241 return;
22242
22243 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22244 case BFD_RELOC_ARM_ALU_PC_G0:
22245 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22246 case BFD_RELOC_ARM_ALU_PC_G1:
22247 case BFD_RELOC_ARM_ALU_PC_G2:
22248 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22249 case BFD_RELOC_ARM_ALU_SB_G0:
22250 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22251 case BFD_RELOC_ARM_ALU_SB_G1:
22252 case BFD_RELOC_ARM_ALU_SB_G2:
22253 gas_assert (!fixP->fx_done);
22254 if (!seg->use_rela_p)
22255 {
22256 bfd_vma insn;
22257 bfd_vma encoded_addend;
22258 bfd_vma addend_abs = abs (value);
22259
22260 /* Check that the absolute value of the addend can be
22261 expressed as an 8-bit constant plus a rotation. */
22262 encoded_addend = encode_arm_immediate (addend_abs);
22263 if (encoded_addend == (unsigned int) FAIL)
22264 as_bad_where (fixP->fx_file, fixP->fx_line,
22265 _("the offset 0x%08lX is not representable"),
22266 (unsigned long) addend_abs);
22267
22268 /* Extract the instruction. */
22269 insn = md_chars_to_number (buf, INSN_SIZE);
22270
22271 /* If the addend is positive, use an ADD instruction.
22272 Otherwise use a SUB. Take care not to destroy the S bit. */
22273 insn &= 0xff1fffff;
22274 if (value < 0)
22275 insn |= 1 << 22;
22276 else
22277 insn |= 1 << 23;
22278
22279 /* Place the encoded addend into the first 12 bits of the
22280 instruction. */
22281 insn &= 0xfffff000;
22282 insn |= encoded_addend;
22283
22284 /* Update the instruction. */
22285 md_number_to_chars (buf, insn, INSN_SIZE);
22286 }
22287 break;
22288
22289 case BFD_RELOC_ARM_LDR_PC_G0:
22290 case BFD_RELOC_ARM_LDR_PC_G1:
22291 case BFD_RELOC_ARM_LDR_PC_G2:
22292 case BFD_RELOC_ARM_LDR_SB_G0:
22293 case BFD_RELOC_ARM_LDR_SB_G1:
22294 case BFD_RELOC_ARM_LDR_SB_G2:
22295 gas_assert (!fixP->fx_done);
22296 if (!seg->use_rela_p)
22297 {
22298 bfd_vma insn;
22299 bfd_vma addend_abs = abs (value);
22300
22301 /* Check that the absolute value of the addend can be
22302 encoded in 12 bits. */
22303 if (addend_abs >= 0x1000)
22304 as_bad_where (fixP->fx_file, fixP->fx_line,
22305 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22306 (unsigned long) addend_abs);
22307
22308 /* Extract the instruction. */
22309 insn = md_chars_to_number (buf, INSN_SIZE);
22310
22311 /* If the addend is negative, clear bit 23 of the instruction.
22312 Otherwise set it. */
22313 if (value < 0)
22314 insn &= ~(1 << 23);
22315 else
22316 insn |= 1 << 23;
22317
22318 /* Place the absolute value of the addend into the first 12 bits
22319 of the instruction. */
22320 insn &= 0xfffff000;
22321 insn |= addend_abs;
22322
22323 /* Update the instruction. */
22324 md_number_to_chars (buf, insn, INSN_SIZE);
22325 }
22326 break;
22327
22328 case BFD_RELOC_ARM_LDRS_PC_G0:
22329 case BFD_RELOC_ARM_LDRS_PC_G1:
22330 case BFD_RELOC_ARM_LDRS_PC_G2:
22331 case BFD_RELOC_ARM_LDRS_SB_G0:
22332 case BFD_RELOC_ARM_LDRS_SB_G1:
22333 case BFD_RELOC_ARM_LDRS_SB_G2:
22334 gas_assert (!fixP->fx_done);
22335 if (!seg->use_rela_p)
22336 {
22337 bfd_vma insn;
22338 bfd_vma addend_abs = abs (value);
22339
22340 /* Check that the absolute value of the addend can be
22341 encoded in 8 bits. */
22342 if (addend_abs >= 0x100)
22343 as_bad_where (fixP->fx_file, fixP->fx_line,
22344 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22345 (unsigned long) addend_abs);
22346
22347 /* Extract the instruction. */
22348 insn = md_chars_to_number (buf, INSN_SIZE);
22349
22350 /* If the addend is negative, clear bit 23 of the instruction.
22351 Otherwise set it. */
22352 if (value < 0)
22353 insn &= ~(1 << 23);
22354 else
22355 insn |= 1 << 23;
22356
22357 /* Place the first four bits of the absolute value of the addend
22358 into the first 4 bits of the instruction, and the remaining
22359 four into bits 8 .. 11. */
22360 insn &= 0xfffff0f0;
22361 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22362
22363 /* Update the instruction. */
22364 md_number_to_chars (buf, insn, INSN_SIZE);
22365 }
22366 break;
22367
22368 case BFD_RELOC_ARM_LDC_PC_G0:
22369 case BFD_RELOC_ARM_LDC_PC_G1:
22370 case BFD_RELOC_ARM_LDC_PC_G2:
22371 case BFD_RELOC_ARM_LDC_SB_G0:
22372 case BFD_RELOC_ARM_LDC_SB_G1:
22373 case BFD_RELOC_ARM_LDC_SB_G2:
22374 gas_assert (!fixP->fx_done);
22375 if (!seg->use_rela_p)
22376 {
22377 bfd_vma insn;
22378 bfd_vma addend_abs = abs (value);
22379
22380 /* Check that the absolute value of the addend is a multiple of
22381 four and, when divided by four, fits in 8 bits. */
22382 if (addend_abs & 0x3)
22383 as_bad_where (fixP->fx_file, fixP->fx_line,
22384 _("bad offset 0x%08lX (must be word-aligned)"),
22385 (unsigned long) addend_abs);
22386
22387 if ((addend_abs >> 2) > 0xff)
22388 as_bad_where (fixP->fx_file, fixP->fx_line,
22389 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22390 (unsigned long) addend_abs);
22391
22392 /* Extract the instruction. */
22393 insn = md_chars_to_number (buf, INSN_SIZE);
22394
22395 /* If the addend is negative, clear bit 23 of the instruction.
22396 Otherwise set it. */
22397 if (value < 0)
22398 insn &= ~(1 << 23);
22399 else
22400 insn |= 1 << 23;
22401
22402 /* Place the addend (divided by four) into the first eight
22403 bits of the instruction. */
22404 insn &= 0xfffffff0;
22405 insn |= addend_abs >> 2;
22406
22407 /* Update the instruction. */
22408 md_number_to_chars (buf, insn, INSN_SIZE);
22409 }
22410 break;
22411
22412 case BFD_RELOC_ARM_V4BX:
22413 /* This will need to go in the object file. */
22414 fixP->fx_done = 0;
22415 break;
22416
22417 case BFD_RELOC_UNUSED:
22418 default:
22419 as_bad_where (fixP->fx_file, fixP->fx_line,
22420 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22421 }
22422 }
22423
22424 /* Translate internal representation of relocation info to BFD target
22425 format. */
22426
22427 arelent *
22428 tc_gen_reloc (asection *section, fixS *fixp)
22429 {
22430 arelent * reloc;
22431 bfd_reloc_code_real_type code;
22432
22433 reloc = (arelent *) xmalloc (sizeof (arelent));
22434
22435 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22436 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22437 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22438
22439 if (fixp->fx_pcrel)
22440 {
22441 if (section->use_rela_p)
22442 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22443 else
22444 fixp->fx_offset = reloc->address;
22445 }
22446 reloc->addend = fixp->fx_offset;
22447
22448 switch (fixp->fx_r_type)
22449 {
22450 case BFD_RELOC_8:
22451 if (fixp->fx_pcrel)
22452 {
22453 code = BFD_RELOC_8_PCREL;
22454 break;
22455 }
22456
22457 case BFD_RELOC_16:
22458 if (fixp->fx_pcrel)
22459 {
22460 code = BFD_RELOC_16_PCREL;
22461 break;
22462 }
22463
22464 case BFD_RELOC_32:
22465 if (fixp->fx_pcrel)
22466 {
22467 code = BFD_RELOC_32_PCREL;
22468 break;
22469 }
22470
22471 case BFD_RELOC_ARM_MOVW:
22472 if (fixp->fx_pcrel)
22473 {
22474 code = BFD_RELOC_ARM_MOVW_PCREL;
22475 break;
22476 }
22477
22478 case BFD_RELOC_ARM_MOVT:
22479 if (fixp->fx_pcrel)
22480 {
22481 code = BFD_RELOC_ARM_MOVT_PCREL;
22482 break;
22483 }
22484
22485 case BFD_RELOC_ARM_THUMB_MOVW:
22486 if (fixp->fx_pcrel)
22487 {
22488 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22489 break;
22490 }
22491
22492 case BFD_RELOC_ARM_THUMB_MOVT:
22493 if (fixp->fx_pcrel)
22494 {
22495 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22496 break;
22497 }
22498
22499 case BFD_RELOC_NONE:
22500 case BFD_RELOC_ARM_PCREL_BRANCH:
22501 case BFD_RELOC_ARM_PCREL_BLX:
22502 case BFD_RELOC_RVA:
22503 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22504 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22505 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22506 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22507 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22508 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22509 case BFD_RELOC_VTABLE_ENTRY:
22510 case BFD_RELOC_VTABLE_INHERIT:
22511 #ifdef TE_PE
22512 case BFD_RELOC_32_SECREL:
22513 #endif
22514 code = fixp->fx_r_type;
22515 break;
22516
22517 case BFD_RELOC_THUMB_PCREL_BLX:
22518 #ifdef OBJ_ELF
22519 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22520 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22521 else
22522 #endif
22523 code = BFD_RELOC_THUMB_PCREL_BLX;
22524 break;
22525
22526 case BFD_RELOC_ARM_LITERAL:
22527 case BFD_RELOC_ARM_HWLITERAL:
22528 /* If this is called then the a literal has
22529 been referenced across a section boundary. */
22530 as_bad_where (fixp->fx_file, fixp->fx_line,
22531 _("literal referenced across section boundary"));
22532 return NULL;
22533
22534 #ifdef OBJ_ELF
22535 case BFD_RELOC_ARM_TLS_CALL:
22536 case BFD_RELOC_ARM_THM_TLS_CALL:
22537 case BFD_RELOC_ARM_TLS_DESCSEQ:
22538 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22539 case BFD_RELOC_ARM_GOT32:
22540 case BFD_RELOC_ARM_GOTOFF:
22541 case BFD_RELOC_ARM_GOT_PREL:
22542 case BFD_RELOC_ARM_PLT32:
22543 case BFD_RELOC_ARM_TARGET1:
22544 case BFD_RELOC_ARM_ROSEGREL32:
22545 case BFD_RELOC_ARM_SBREL32:
22546 case BFD_RELOC_ARM_PREL31:
22547 case BFD_RELOC_ARM_TARGET2:
22548 case BFD_RELOC_ARM_TLS_LE32:
22549 case BFD_RELOC_ARM_TLS_LDO32:
22550 case BFD_RELOC_ARM_PCREL_CALL:
22551 case BFD_RELOC_ARM_PCREL_JUMP:
22552 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22553 case BFD_RELOC_ARM_ALU_PC_G0:
22554 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22555 case BFD_RELOC_ARM_ALU_PC_G1:
22556 case BFD_RELOC_ARM_ALU_PC_G2:
22557 case BFD_RELOC_ARM_LDR_PC_G0:
22558 case BFD_RELOC_ARM_LDR_PC_G1:
22559 case BFD_RELOC_ARM_LDR_PC_G2:
22560 case BFD_RELOC_ARM_LDRS_PC_G0:
22561 case BFD_RELOC_ARM_LDRS_PC_G1:
22562 case BFD_RELOC_ARM_LDRS_PC_G2:
22563 case BFD_RELOC_ARM_LDC_PC_G0:
22564 case BFD_RELOC_ARM_LDC_PC_G1:
22565 case BFD_RELOC_ARM_LDC_PC_G2:
22566 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22567 case BFD_RELOC_ARM_ALU_SB_G0:
22568 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22569 case BFD_RELOC_ARM_ALU_SB_G1:
22570 case BFD_RELOC_ARM_ALU_SB_G2:
22571 case BFD_RELOC_ARM_LDR_SB_G0:
22572 case BFD_RELOC_ARM_LDR_SB_G1:
22573 case BFD_RELOC_ARM_LDR_SB_G2:
22574 case BFD_RELOC_ARM_LDRS_SB_G0:
22575 case BFD_RELOC_ARM_LDRS_SB_G1:
22576 case BFD_RELOC_ARM_LDRS_SB_G2:
22577 case BFD_RELOC_ARM_LDC_SB_G0:
22578 case BFD_RELOC_ARM_LDC_SB_G1:
22579 case BFD_RELOC_ARM_LDC_SB_G2:
22580 case BFD_RELOC_ARM_V4BX:
22581 code = fixp->fx_r_type;
22582 break;
22583
22584 case BFD_RELOC_ARM_TLS_GOTDESC:
22585 case BFD_RELOC_ARM_TLS_GD32:
22586 case BFD_RELOC_ARM_TLS_IE32:
22587 case BFD_RELOC_ARM_TLS_LDM32:
22588 /* BFD will include the symbol's address in the addend.
22589 But we don't want that, so subtract it out again here. */
22590 if (!S_IS_COMMON (fixp->fx_addsy))
22591 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22592 code = fixp->fx_r_type;
22593 break;
22594 #endif
22595
22596 case BFD_RELOC_ARM_IMMEDIATE:
22597 as_bad_where (fixp->fx_file, fixp->fx_line,
22598 _("internal relocation (type: IMMEDIATE) not fixed up"));
22599 return NULL;
22600
22601 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22602 as_bad_where (fixp->fx_file, fixp->fx_line,
22603 _("ADRL used for a symbol not defined in the same file"));
22604 return NULL;
22605
22606 case BFD_RELOC_ARM_OFFSET_IMM:
22607 if (section->use_rela_p)
22608 {
22609 code = fixp->fx_r_type;
22610 break;
22611 }
22612
22613 if (fixp->fx_addsy != NULL
22614 && !S_IS_DEFINED (fixp->fx_addsy)
22615 && S_IS_LOCAL (fixp->fx_addsy))
22616 {
22617 as_bad_where (fixp->fx_file, fixp->fx_line,
22618 _("undefined local label `%s'"),
22619 S_GET_NAME (fixp->fx_addsy));
22620 return NULL;
22621 }
22622
22623 as_bad_where (fixp->fx_file, fixp->fx_line,
22624 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22625 return NULL;
22626
22627 default:
22628 {
22629 char * type;
22630
22631 switch (fixp->fx_r_type)
22632 {
22633 case BFD_RELOC_NONE: type = "NONE"; break;
22634 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22635 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22636 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22637 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22638 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22639 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22640 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22641 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22642 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22643 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22644 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22645 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22646 default: type = _("<unknown>"); break;
22647 }
22648 as_bad_where (fixp->fx_file, fixp->fx_line,
22649 _("cannot represent %s relocation in this object file format"),
22650 type);
22651 return NULL;
22652 }
22653 }
22654
22655 #ifdef OBJ_ELF
22656 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22657 && GOT_symbol
22658 && fixp->fx_addsy == GOT_symbol)
22659 {
22660 code = BFD_RELOC_ARM_GOTPC;
22661 reloc->addend = fixp->fx_offset = reloc->address;
22662 }
22663 #endif
22664
22665 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22666
22667 if (reloc->howto == NULL)
22668 {
22669 as_bad_where (fixp->fx_file, fixp->fx_line,
22670 _("cannot represent %s relocation in this object file format"),
22671 bfd_get_reloc_code_name (code));
22672 return NULL;
22673 }
22674
22675 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22676 vtable entry to be used in the relocation's section offset. */
22677 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22678 reloc->address = fixp->fx_offset;
22679
22680 return reloc;
22681 }
22682
22683 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22684
22685 void
22686 cons_fix_new_arm (fragS * frag,
22687 int where,
22688 int size,
22689 expressionS * exp)
22690 {
22691 bfd_reloc_code_real_type type;
22692 int pcrel = 0;
22693
22694 /* Pick a reloc.
22695 FIXME: @@ Should look at CPU word size. */
22696 switch (size)
22697 {
22698 case 1:
22699 type = BFD_RELOC_8;
22700 break;
22701 case 2:
22702 type = BFD_RELOC_16;
22703 break;
22704 case 4:
22705 default:
22706 type = BFD_RELOC_32;
22707 break;
22708 case 8:
22709 type = BFD_RELOC_64;
22710 break;
22711 }
22712
22713 #ifdef TE_PE
22714 if (exp->X_op == O_secrel)
22715 {
22716 exp->X_op = O_symbol;
22717 type = BFD_RELOC_32_SECREL;
22718 }
22719 #endif
22720
22721 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22722 }
22723
22724 #if defined (OBJ_COFF)
22725 void
22726 arm_validate_fix (fixS * fixP)
22727 {
22728 /* If the destination of the branch is a defined symbol which does not have
22729 the THUMB_FUNC attribute, then we must be calling a function which has
22730 the (interfacearm) attribute. We look for the Thumb entry point to that
22731 function and change the branch to refer to that function instead. */
22732 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22733 && fixP->fx_addsy != NULL
22734 && S_IS_DEFINED (fixP->fx_addsy)
22735 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22736 {
22737 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22738 }
22739 }
22740 #endif
22741
22742
22743 int
22744 arm_force_relocation (struct fix * fixp)
22745 {
22746 #if defined (OBJ_COFF) && defined (TE_PE)
22747 if (fixp->fx_r_type == BFD_RELOC_RVA)
22748 return 1;
22749 #endif
22750
22751 /* In case we have a call or a branch to a function in ARM ISA mode from
22752 a thumb function or vice-versa force the relocation. These relocations
22753 are cleared off for some cores that might have blx and simple transformations
22754 are possible. */
22755
22756 #ifdef OBJ_ELF
22757 switch (fixp->fx_r_type)
22758 {
22759 case BFD_RELOC_ARM_PCREL_JUMP:
22760 case BFD_RELOC_ARM_PCREL_CALL:
22761 case BFD_RELOC_THUMB_PCREL_BLX:
22762 if (THUMB_IS_FUNC (fixp->fx_addsy))
22763 return 1;
22764 break;
22765
22766 case BFD_RELOC_ARM_PCREL_BLX:
22767 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22768 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22769 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22770 if (ARM_IS_FUNC (fixp->fx_addsy))
22771 return 1;
22772 break;
22773
22774 default:
22775 break;
22776 }
22777 #endif
22778
22779 /* Resolve these relocations even if the symbol is extern or weak.
22780 Technically this is probably wrong due to symbol preemption.
22781 In practice these relocations do not have enough range to be useful
22782 at dynamic link time, and some code (e.g. in the Linux kernel)
22783 expects these references to be resolved. */
22784 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22785 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22786 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22787 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22788 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22789 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22790 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22791 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22792 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22793 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22794 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22795 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22796 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22797 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22798 return 0;
22799
22800 /* Always leave these relocations for the linker. */
22801 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22802 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22803 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22804 return 1;
22805
22806 /* Always generate relocations against function symbols. */
22807 if (fixp->fx_r_type == BFD_RELOC_32
22808 && fixp->fx_addsy
22809 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22810 return 1;
22811
22812 return generic_force_reloc (fixp);
22813 }
22814
22815 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22816 /* Relocations against function names must be left unadjusted,
22817 so that the linker can use this information to generate interworking
22818 stubs. The MIPS version of this function
22819 also prevents relocations that are mips-16 specific, but I do not
22820 know why it does this.
22821
22822 FIXME:
22823 There is one other problem that ought to be addressed here, but
22824 which currently is not: Taking the address of a label (rather
22825 than a function) and then later jumping to that address. Such
22826 addresses also ought to have their bottom bit set (assuming that
22827 they reside in Thumb code), but at the moment they will not. */
22828
22829 bfd_boolean
22830 arm_fix_adjustable (fixS * fixP)
22831 {
22832 if (fixP->fx_addsy == NULL)
22833 return 1;
22834
22835 /* Preserve relocations against symbols with function type. */
22836 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22837 return FALSE;
22838
22839 if (THUMB_IS_FUNC (fixP->fx_addsy)
22840 && fixP->fx_subsy == NULL)
22841 return FALSE;
22842
22843 /* We need the symbol name for the VTABLE entries. */
22844 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22845 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22846 return FALSE;
22847
22848 /* Don't allow symbols to be discarded on GOT related relocs. */
22849 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22850 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22851 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22852 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22853 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22854 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22855 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22856 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22857 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22858 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22859 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22860 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22861 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22862 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22863 return FALSE;
22864
22865 /* Similarly for group relocations. */
22866 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22867 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22868 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22869 return FALSE;
22870
22871 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22872 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22873 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22874 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22875 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22876 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22877 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22878 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22879 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22880 return FALSE;
22881
22882 return TRUE;
22883 }
22884 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22885
22886 #ifdef OBJ_ELF
22887
22888 const char *
22889 elf32_arm_target_format (void)
22890 {
22891 #ifdef TE_SYMBIAN
22892 return (target_big_endian
22893 ? "elf32-bigarm-symbian"
22894 : "elf32-littlearm-symbian");
22895 #elif defined (TE_VXWORKS)
22896 return (target_big_endian
22897 ? "elf32-bigarm-vxworks"
22898 : "elf32-littlearm-vxworks");
22899 #elif defined (TE_NACL)
22900 return (target_big_endian
22901 ? "elf32-bigarm-nacl"
22902 : "elf32-littlearm-nacl");
22903 #else
22904 if (target_big_endian)
22905 return "elf32-bigarm";
22906 else
22907 return "elf32-littlearm";
22908 #endif
22909 }
22910
22911 void
22912 armelf_frob_symbol (symbolS * symp,
22913 int * puntp)
22914 {
22915 elf_frob_symbol (symp, puntp);
22916 }
22917 #endif
22918
22919 /* MD interface: Finalization. */
22920
22921 void
22922 arm_cleanup (void)
22923 {
22924 literal_pool * pool;
22925
22926 /* Ensure that all the IT blocks are properly closed. */
22927 check_it_blocks_finished ();
22928
22929 for (pool = list_of_pools; pool; pool = pool->next)
22930 {
22931 /* Put it at the end of the relevant section. */
22932 subseg_set (pool->section, pool->sub_section);
22933 #ifdef OBJ_ELF
22934 arm_elf_change_section ();
22935 #endif
22936 s_ltorg (0);
22937 }
22938 }
22939
22940 #ifdef OBJ_ELF
22941 /* Remove any excess mapping symbols generated for alignment frags in
22942 SEC. We may have created a mapping symbol before a zero byte
22943 alignment; remove it if there's a mapping symbol after the
22944 alignment. */
22945 static void
22946 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22947 void *dummy ATTRIBUTE_UNUSED)
22948 {
22949 segment_info_type *seginfo = seg_info (sec);
22950 fragS *fragp;
22951
22952 if (seginfo == NULL || seginfo->frchainP == NULL)
22953 return;
22954
22955 for (fragp = seginfo->frchainP->frch_root;
22956 fragp != NULL;
22957 fragp = fragp->fr_next)
22958 {
22959 symbolS *sym = fragp->tc_frag_data.last_map;
22960 fragS *next = fragp->fr_next;
22961
22962 /* Variable-sized frags have been converted to fixed size by
22963 this point. But if this was variable-sized to start with,
22964 there will be a fixed-size frag after it. So don't handle
22965 next == NULL. */
22966 if (sym == NULL || next == NULL)
22967 continue;
22968
22969 if (S_GET_VALUE (sym) < next->fr_address)
22970 /* Not at the end of this frag. */
22971 continue;
22972 know (S_GET_VALUE (sym) == next->fr_address);
22973
22974 do
22975 {
22976 if (next->tc_frag_data.first_map != NULL)
22977 {
22978 /* Next frag starts with a mapping symbol. Discard this
22979 one. */
22980 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22981 break;
22982 }
22983
22984 if (next->fr_next == NULL)
22985 {
22986 /* This mapping symbol is at the end of the section. Discard
22987 it. */
22988 know (next->fr_fix == 0 && next->fr_var == 0);
22989 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22990 break;
22991 }
22992
22993 /* As long as we have empty frags without any mapping symbols,
22994 keep looking. */
22995 /* If the next frag is non-empty and does not start with a
22996 mapping symbol, then this mapping symbol is required. */
22997 if (next->fr_address != next->fr_next->fr_address)
22998 break;
22999
23000 next = next->fr_next;
23001 }
23002 while (next != NULL);
23003 }
23004 }
23005 #endif
23006
23007 /* Adjust the symbol table. This marks Thumb symbols as distinct from
23008 ARM ones. */
23009
23010 void
23011 arm_adjust_symtab (void)
23012 {
23013 #ifdef OBJ_COFF
23014 symbolS * sym;
23015
23016 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23017 {
23018 if (ARM_IS_THUMB (sym))
23019 {
23020 if (THUMB_IS_FUNC (sym))
23021 {
23022 /* Mark the symbol as a Thumb function. */
23023 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23024 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23025 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
23026
23027 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23028 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23029 else
23030 as_bad (_("%s: unexpected function type: %d"),
23031 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23032 }
23033 else switch (S_GET_STORAGE_CLASS (sym))
23034 {
23035 case C_EXT:
23036 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23037 break;
23038 case C_STAT:
23039 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23040 break;
23041 case C_LABEL:
23042 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23043 break;
23044 default:
23045 /* Do nothing. */
23046 break;
23047 }
23048 }
23049
23050 if (ARM_IS_INTERWORK (sym))
23051 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
23052 }
23053 #endif
23054 #ifdef OBJ_ELF
23055 symbolS * sym;
23056 char bind;
23057
23058 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23059 {
23060 if (ARM_IS_THUMB (sym))
23061 {
23062 elf_symbol_type * elf_sym;
23063
23064 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23065 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
23066
23067 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23068 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
23069 {
23070 /* If it's a .thumb_func, declare it as so,
23071 otherwise tag label as .code 16. */
23072 if (THUMB_IS_FUNC (sym))
23073 elf_sym->internal_elf_sym.st_target_internal
23074 = ST_BRANCH_TO_THUMB;
23075 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23076 elf_sym->internal_elf_sym.st_info =
23077 ELF_ST_INFO (bind, STT_ARM_16BIT);
23078 }
23079 }
23080 }
23081
23082 /* Remove any overlapping mapping symbols generated by alignment frags. */
23083 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
23084 /* Now do generic ELF adjustments. */
23085 elf_adjust_symtab ();
23086 #endif
23087 }
23088
23089 /* MD interface: Initialization. */
23090
23091 static void
23092 set_constant_flonums (void)
23093 {
23094 int i;
23095
23096 for (i = 0; i < NUM_FLOAT_VALS; i++)
23097 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23098 abort ();
23099 }
23100
23101 /* Auto-select Thumb mode if it's the only available instruction set for the
23102 given architecture. */
23103
23104 static void
23105 autoselect_thumb_from_cpu_variant (void)
23106 {
23107 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23108 opcode_select (16);
23109 }
23110
23111 void
23112 md_begin (void)
23113 {
23114 unsigned mach;
23115 unsigned int i;
23116
23117 if ( (arm_ops_hsh = hash_new ()) == NULL
23118 || (arm_cond_hsh = hash_new ()) == NULL
23119 || (arm_shift_hsh = hash_new ()) == NULL
23120 || (arm_psr_hsh = hash_new ()) == NULL
23121 || (arm_v7m_psr_hsh = hash_new ()) == NULL
23122 || (arm_reg_hsh = hash_new ()) == NULL
23123 || (arm_reloc_hsh = hash_new ()) == NULL
23124 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
23125 as_fatal (_("virtual memory exhausted"));
23126
23127 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
23128 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23129 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23130 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23131 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23132 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23133 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23134 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23135 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23136 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23137 (void *) (v7m_psrs + i));
23138 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23139 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23140 for (i = 0;
23141 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23142 i++)
23143 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23144 (void *) (barrier_opt_names + i));
23145 #ifdef OBJ_ELF
23146 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23147 {
23148 struct reloc_entry * entry = reloc_names + i;
23149
23150 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23151 /* This makes encode_branch() use the EABI versions of this relocation. */
23152 entry->reloc = BFD_RELOC_UNUSED;
23153
23154 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23155 }
23156 #endif
23157
23158 set_constant_flonums ();
23159
23160 /* Set the cpu variant based on the command-line options. We prefer
23161 -mcpu= over -march= if both are set (as for GCC); and we prefer
23162 -mfpu= over any other way of setting the floating point unit.
23163 Use of legacy options with new options are faulted. */
23164 if (legacy_cpu)
23165 {
23166 if (mcpu_cpu_opt || march_cpu_opt)
23167 as_bad (_("use of old and new-style options to set CPU type"));
23168
23169 mcpu_cpu_opt = legacy_cpu;
23170 }
23171 else if (!mcpu_cpu_opt)
23172 mcpu_cpu_opt = march_cpu_opt;
23173
23174 if (legacy_fpu)
23175 {
23176 if (mfpu_opt)
23177 as_bad (_("use of old and new-style options to set FPU type"));
23178
23179 mfpu_opt = legacy_fpu;
23180 }
23181 else if (!mfpu_opt)
23182 {
23183 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23184 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23185 /* Some environments specify a default FPU. If they don't, infer it
23186 from the processor. */
23187 if (mcpu_fpu_opt)
23188 mfpu_opt = mcpu_fpu_opt;
23189 else
23190 mfpu_opt = march_fpu_opt;
23191 #else
23192 mfpu_opt = &fpu_default;
23193 #endif
23194 }
23195
23196 if (!mfpu_opt)
23197 {
23198 if (mcpu_cpu_opt != NULL)
23199 mfpu_opt = &fpu_default;
23200 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23201 mfpu_opt = &fpu_arch_vfp_v2;
23202 else
23203 mfpu_opt = &fpu_arch_fpa;
23204 }
23205
23206 #ifdef CPU_DEFAULT
23207 if (!mcpu_cpu_opt)
23208 {
23209 mcpu_cpu_opt = &cpu_default;
23210 selected_cpu = cpu_default;
23211 }
23212 #else
23213 if (mcpu_cpu_opt)
23214 selected_cpu = *mcpu_cpu_opt;
23215 else
23216 mcpu_cpu_opt = &arm_arch_any;
23217 #endif
23218
23219 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23220
23221 autoselect_thumb_from_cpu_variant ();
23222
23223 arm_arch_used = thumb_arch_used = arm_arch_none;
23224
23225 #if defined OBJ_COFF || defined OBJ_ELF
23226 {
23227 unsigned int flags = 0;
23228
23229 #if defined OBJ_ELF
23230 flags = meabi_flags;
23231
23232 switch (meabi_flags)
23233 {
23234 case EF_ARM_EABI_UNKNOWN:
23235 #endif
23236 /* Set the flags in the private structure. */
23237 if (uses_apcs_26) flags |= F_APCS26;
23238 if (support_interwork) flags |= F_INTERWORK;
23239 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23240 if (pic_code) flags |= F_PIC;
23241 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23242 flags |= F_SOFT_FLOAT;
23243
23244 switch (mfloat_abi_opt)
23245 {
23246 case ARM_FLOAT_ABI_SOFT:
23247 case ARM_FLOAT_ABI_SOFTFP:
23248 flags |= F_SOFT_FLOAT;
23249 break;
23250
23251 case ARM_FLOAT_ABI_HARD:
23252 if (flags & F_SOFT_FLOAT)
23253 as_bad (_("hard-float conflicts with specified fpu"));
23254 break;
23255 }
23256
23257 /* Using pure-endian doubles (even if soft-float). */
23258 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
23259 flags |= F_VFP_FLOAT;
23260
23261 #if defined OBJ_ELF
23262 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23263 flags |= EF_ARM_MAVERICK_FLOAT;
23264 break;
23265
23266 case EF_ARM_EABI_VER4:
23267 case EF_ARM_EABI_VER5:
23268 /* No additional flags to set. */
23269 break;
23270
23271 default:
23272 abort ();
23273 }
23274 #endif
23275 bfd_set_private_flags (stdoutput, flags);
23276
23277 /* We have run out flags in the COFF header to encode the
23278 status of ATPCS support, so instead we create a dummy,
23279 empty, debug section called .arm.atpcs. */
23280 if (atpcs)
23281 {
23282 asection * sec;
23283
23284 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23285
23286 if (sec != NULL)
23287 {
23288 bfd_set_section_flags
23289 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23290 bfd_set_section_size (stdoutput, sec, 0);
23291 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23292 }
23293 }
23294 }
23295 #endif
23296
23297 /* Record the CPU type as well. */
23298 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23299 mach = bfd_mach_arm_iWMMXt2;
23300 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23301 mach = bfd_mach_arm_iWMMXt;
23302 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23303 mach = bfd_mach_arm_XScale;
23304 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23305 mach = bfd_mach_arm_ep9312;
23306 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23307 mach = bfd_mach_arm_5TE;
23308 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23309 {
23310 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23311 mach = bfd_mach_arm_5T;
23312 else
23313 mach = bfd_mach_arm_5;
23314 }
23315 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23316 {
23317 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23318 mach = bfd_mach_arm_4T;
23319 else
23320 mach = bfd_mach_arm_4;
23321 }
23322 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23323 mach = bfd_mach_arm_3M;
23324 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23325 mach = bfd_mach_arm_3;
23326 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23327 mach = bfd_mach_arm_2a;
23328 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23329 mach = bfd_mach_arm_2;
23330 else
23331 mach = bfd_mach_arm_unknown;
23332
23333 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23334 }
23335
23336 /* Command line processing. */
23337
23338 /* md_parse_option
23339 Invocation line includes a switch not recognized by the base assembler.
23340 See if it's a processor-specific option.
23341
23342 This routine is somewhat complicated by the need for backwards
23343 compatibility (since older releases of gcc can't be changed).
23344 The new options try to make the interface as compatible as
23345 possible with GCC.
23346
23347 New options (supported) are:
23348
23349 -mcpu=<cpu name> Assemble for selected processor
23350 -march=<architecture name> Assemble for selected architecture
23351 -mfpu=<fpu architecture> Assemble for selected FPU.
23352 -EB/-mbig-endian Big-endian
23353 -EL/-mlittle-endian Little-endian
23354 -k Generate PIC code
23355 -mthumb Start in Thumb mode
23356 -mthumb-interwork Code supports ARM/Thumb interworking
23357
23358 -m[no-]warn-deprecated Warn about deprecated features
23359
23360 For now we will also provide support for:
23361
23362 -mapcs-32 32-bit Program counter
23363 -mapcs-26 26-bit Program counter
23364 -macps-float Floats passed in FP registers
23365 -mapcs-reentrant Reentrant code
23366 -matpcs
23367 (sometime these will probably be replaced with -mapcs=<list of options>
23368 and -matpcs=<list of options>)
23369
23370 The remaining options are only supported for back-wards compatibility.
23371 Cpu variants, the arm part is optional:
23372 -m[arm]1 Currently not supported.
23373 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23374 -m[arm]3 Arm 3 processor
23375 -m[arm]6[xx], Arm 6 processors
23376 -m[arm]7[xx][t][[d]m] Arm 7 processors
23377 -m[arm]8[10] Arm 8 processors
23378 -m[arm]9[20][tdmi] Arm 9 processors
23379 -mstrongarm[110[0]] StrongARM processors
23380 -mxscale XScale processors
23381 -m[arm]v[2345[t[e]]] Arm architectures
23382 -mall All (except the ARM1)
23383 FP variants:
23384 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23385 -mfpe-old (No float load/store multiples)
23386 -mvfpxd VFP Single precision
23387 -mvfp All VFP
23388 -mno-fpu Disable all floating point instructions
23389
23390 The following CPU names are recognized:
23391 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23392 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23393 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23394 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23395 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23396 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23397 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23398
23399 */
23400
23401 const char * md_shortopts = "m:k";
23402
23403 #ifdef ARM_BI_ENDIAN
23404 #define OPTION_EB (OPTION_MD_BASE + 0)
23405 #define OPTION_EL (OPTION_MD_BASE + 1)
23406 #else
23407 #if TARGET_BYTES_BIG_ENDIAN
23408 #define OPTION_EB (OPTION_MD_BASE + 0)
23409 #else
23410 #define OPTION_EL (OPTION_MD_BASE + 1)
23411 #endif
23412 #endif
23413 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23414
23415 struct option md_longopts[] =
23416 {
23417 #ifdef OPTION_EB
23418 {"EB", no_argument, NULL, OPTION_EB},
23419 #endif
23420 #ifdef OPTION_EL
23421 {"EL", no_argument, NULL, OPTION_EL},
23422 #endif
23423 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23424 {NULL, no_argument, NULL, 0}
23425 };
23426
23427 size_t md_longopts_size = sizeof (md_longopts);
23428
23429 struct arm_option_table
23430 {
23431 char *option; /* Option name to match. */
23432 char *help; /* Help information. */
23433 int *var; /* Variable to change. */
23434 int value; /* What to change it to. */
23435 char *deprecated; /* If non-null, print this message. */
23436 };
23437
23438 struct arm_option_table arm_opts[] =
23439 {
23440 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23441 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23442 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23443 &support_interwork, 1, NULL},
23444 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23445 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23446 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23447 1, NULL},
23448 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23449 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23450 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23451 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23452 NULL},
23453
23454 /* These are recognized by the assembler, but have no affect on code. */
23455 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23456 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23457
23458 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23459 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23460 &warn_on_deprecated, 0, NULL},
23461 {NULL, NULL, NULL, 0, NULL}
23462 };
23463
23464 struct arm_legacy_option_table
23465 {
23466 char *option; /* Option name to match. */
23467 const arm_feature_set **var; /* Variable to change. */
23468 const arm_feature_set value; /* What to change it to. */
23469 char *deprecated; /* If non-null, print this message. */
23470 };
23471
23472 const struct arm_legacy_option_table arm_legacy_opts[] =
23473 {
23474 /* DON'T add any new processors to this list -- we want the whole list
23475 to go away... Add them to the processors table instead. */
23476 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23477 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23478 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23479 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23480 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23481 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23482 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23483 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23484 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23485 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23486 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23487 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23488 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23489 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23490 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23491 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23492 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23493 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23494 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23495 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23496 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23497 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23498 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23499 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23500 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23501 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23502 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23503 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23504 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23505 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23506 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23507 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23508 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23509 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23510 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23511 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23512 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23513 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23514 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23515 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23516 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23517 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23518 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23519 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23520 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23521 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23522 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23523 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23524 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23525 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23526 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23527 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23528 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23529 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23530 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23531 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23532 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23533 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23534 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23535 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23536 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23537 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23538 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23539 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23540 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23541 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23542 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23543 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23544 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23545 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23546 N_("use -mcpu=strongarm110")},
23547 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23548 N_("use -mcpu=strongarm1100")},
23549 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23550 N_("use -mcpu=strongarm1110")},
23551 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23552 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23553 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23554
23555 /* Architecture variants -- don't add any more to this list either. */
23556 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23557 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23558 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23559 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23560 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23561 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23562 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23563 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23564 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23565 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23566 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23567 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23568 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23569 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23570 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23571 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23572 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23573 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23574
23575 /* Floating point variants -- don't add any more to this list either. */
23576 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23577 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23578 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23579 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23580 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23581
23582 {NULL, NULL, ARM_ARCH_NONE, NULL}
23583 };
23584
23585 struct arm_cpu_option_table
23586 {
23587 char *name;
23588 size_t name_len;
23589 const arm_feature_set value;
23590 /* For some CPUs we assume an FPU unless the user explicitly sets
23591 -mfpu=... */
23592 const arm_feature_set default_fpu;
23593 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23594 case. */
23595 const char *canonical_name;
23596 };
23597
23598 /* This list should, at a minimum, contain all the cpu names
23599 recognized by GCC. */
23600 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23601 static const struct arm_cpu_option_table arm_cpus[] =
23602 {
23603 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23604 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23605 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23606 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23607 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23608 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23609 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23610 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23611 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23612 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23613 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23614 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23615 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23616 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23617 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23618 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23619 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23620 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23621 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23622 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23623 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23624 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23625 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23626 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23627 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23628 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23629 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23630 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23631 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23632 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23633 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23634 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23635 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23636 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23637 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23638 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23639 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23640 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23641 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23642 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23643 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23644 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23645 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23646 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23647 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23648 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23649 /* For V5 or later processors we default to using VFP; but the user
23650 should really set the FPU type explicitly. */
23651 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23652 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23653 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23654 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23655 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23656 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23657 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23658 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23659 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23660 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23661 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23662 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23663 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23664 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23665 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23666 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23667 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23668 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23669 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23670 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23671 "ARM1026EJ-S"),
23672 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23673 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23674 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23675 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23676 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23677 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23678 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23679 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23680 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23681 "ARM1136JF-S"),
23682 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23683 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23684 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23685 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23686 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23687 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23688 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23689 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23690 FPU_NONE, "Cortex-A5"),
23691 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23692 FPU_ARCH_NEON_VFP_V4,
23693 "Cortex-A7"),
23694 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23695 ARM_FEATURE (0, FPU_VFP_V3
23696 | FPU_NEON_EXT_V1),
23697 "Cortex-A8"),
23698 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23699 ARM_FEATURE (0, FPU_VFP_V3
23700 | FPU_NEON_EXT_V1),
23701 "Cortex-A9"),
23702 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23703 FPU_ARCH_NEON_VFP_V4,
23704 "Cortex-A15"),
23705 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23706 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23707 "Cortex-R4F"),
23708 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23709 FPU_NONE, "Cortex-R5"),
23710 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23711 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23712 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23713 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23714 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23715 /* ??? XSCALE is really an architecture. */
23716 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23717 /* ??? iwmmxt is not a processor. */
23718 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23719 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23720 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23721 /* Maverick */
23722 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23723 FPU_ARCH_MAVERICK,
23724 "ARM920T"),
23725 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23726 };
23727 #undef ARM_CPU_OPT
23728
23729 struct arm_arch_option_table
23730 {
23731 char *name;
23732 size_t name_len;
23733 const arm_feature_set value;
23734 const arm_feature_set default_fpu;
23735 };
23736
23737 /* This list should, at a minimum, contain all the architecture names
23738 recognized by GCC. */
23739 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23740 static const struct arm_arch_option_table arm_archs[] =
23741 {
23742 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23743 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23744 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23745 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23746 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23747 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23748 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23749 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23750 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23751 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23752 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23753 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23754 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23755 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23756 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23757 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23758 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23759 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23760 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23761 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23762 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23763 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23764 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23765 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23766 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23767 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23768 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23769 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23770 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23771 /* The official spelling of the ARMv7 profile variants is the dashed form.
23772 Accept the non-dashed form for compatibility with old toolchains. */
23773 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23774 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23775 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23776 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23777 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23778 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23779 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23780 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23781 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23782 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23783 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23784 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23785 };
23786 #undef ARM_ARCH_OPT
23787
23788 /* ISA extensions in the co-processor and main instruction set space. */
23789 struct arm_option_extension_value_table
23790 {
23791 char *name;
23792 size_t name_len;
23793 const arm_feature_set value;
23794 const arm_feature_set allowed_archs;
23795 };
23796
23797 /* The following table must be in alphabetical order with a NULL last entry.
23798 */
23799 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23800 static const struct arm_option_extension_value_table arm_extensions[] =
23801 {
23802 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23803 ARM_FEATURE (ARM_EXT_V8, 0)),
23804 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23805 ARM_FEATURE (ARM_EXT_V8, 0)),
23806 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23807 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23808 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23809 ARM_EXT_OPT ("iwmmxt2",
23810 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23811 ARM_EXT_OPT ("maverick",
23812 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23813 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23814 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23815 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23816 ARM_FEATURE (ARM_EXT_V8, 0)),
23817 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23818 ARM_FEATURE (ARM_EXT_V6M, 0)),
23819 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23820 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23821 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23822 | ARM_EXT_DIV, 0),
23823 ARM_FEATURE (ARM_EXT_V7A, 0)),
23824 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23825 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23826 };
23827 #undef ARM_EXT_OPT
23828
23829 /* ISA floating-point and Advanced SIMD extensions. */
23830 struct arm_option_fpu_value_table
23831 {
23832 char *name;
23833 const arm_feature_set value;
23834 };
23835
23836 /* This list should, at a minimum, contain all the fpu names
23837 recognized by GCC. */
23838 static const struct arm_option_fpu_value_table arm_fpus[] =
23839 {
23840 {"softfpa", FPU_NONE},
23841 {"fpe", FPU_ARCH_FPE},
23842 {"fpe2", FPU_ARCH_FPE},
23843 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23844 {"fpa", FPU_ARCH_FPA},
23845 {"fpa10", FPU_ARCH_FPA},
23846 {"fpa11", FPU_ARCH_FPA},
23847 {"arm7500fe", FPU_ARCH_FPA},
23848 {"softvfp", FPU_ARCH_VFP},
23849 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23850 {"vfp", FPU_ARCH_VFP_V2},
23851 {"vfp9", FPU_ARCH_VFP_V2},
23852 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23853 {"vfp10", FPU_ARCH_VFP_V2},
23854 {"vfp10-r0", FPU_ARCH_VFP_V1},
23855 {"vfpxd", FPU_ARCH_VFP_V1xD},
23856 {"vfpv2", FPU_ARCH_VFP_V2},
23857 {"vfpv3", FPU_ARCH_VFP_V3},
23858 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23859 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23860 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23861 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23862 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23863 {"arm1020t", FPU_ARCH_VFP_V1},
23864 {"arm1020e", FPU_ARCH_VFP_V2},
23865 {"arm1136jfs", FPU_ARCH_VFP_V2},
23866 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23867 {"maverick", FPU_ARCH_MAVERICK},
23868 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23869 {"neon-fp16", FPU_ARCH_NEON_FP16},
23870 {"vfpv4", FPU_ARCH_VFP_V4},
23871 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23872 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23873 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23874 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23875 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23876 {"crypto-neon-fp-armv8",
23877 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23878 {NULL, ARM_ARCH_NONE}
23879 };
23880
23881 struct arm_option_value_table
23882 {
23883 char *name;
23884 long value;
23885 };
23886
23887 static const struct arm_option_value_table arm_float_abis[] =
23888 {
23889 {"hard", ARM_FLOAT_ABI_HARD},
23890 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23891 {"soft", ARM_FLOAT_ABI_SOFT},
23892 {NULL, 0}
23893 };
23894
23895 #ifdef OBJ_ELF
23896 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23897 static const struct arm_option_value_table arm_eabis[] =
23898 {
23899 {"gnu", EF_ARM_EABI_UNKNOWN},
23900 {"4", EF_ARM_EABI_VER4},
23901 {"5", EF_ARM_EABI_VER5},
23902 {NULL, 0}
23903 };
23904 #endif
23905
23906 struct arm_long_option_table
23907 {
23908 char * option; /* Substring to match. */
23909 char * help; /* Help information. */
23910 int (* func) (char * subopt); /* Function to decode sub-option. */
23911 char * deprecated; /* If non-null, print this message. */
23912 };
23913
23914 static bfd_boolean
23915 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23916 {
23917 arm_feature_set *ext_set = (arm_feature_set *)
23918 xmalloc (sizeof (arm_feature_set));
23919
23920 /* We insist on extensions being specified in alphabetical order, and with
23921 extensions being added before being removed. We achieve this by having
23922 the global ARM_EXTENSIONS table in alphabetical order, and using the
23923 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23924 or removing it (0) and only allowing it to change in the order
23925 -1 -> 1 -> 0. */
23926 const struct arm_option_extension_value_table * opt = NULL;
23927 int adding_value = -1;
23928
23929 /* Copy the feature set, so that we can modify it. */
23930 *ext_set = **opt_p;
23931 *opt_p = ext_set;
23932
23933 while (str != NULL && *str != 0)
23934 {
23935 char *ext;
23936 size_t len;
23937
23938 if (*str != '+')
23939 {
23940 as_bad (_("invalid architectural extension"));
23941 return FALSE;
23942 }
23943
23944 str++;
23945 ext = strchr (str, '+');
23946
23947 if (ext != NULL)
23948 len = ext - str;
23949 else
23950 len = strlen (str);
23951
23952 if (len >= 2 && strncmp (str, "no", 2) == 0)
23953 {
23954 if (adding_value != 0)
23955 {
23956 adding_value = 0;
23957 opt = arm_extensions;
23958 }
23959
23960 len -= 2;
23961 str += 2;
23962 }
23963 else if (len > 0)
23964 {
23965 if (adding_value == -1)
23966 {
23967 adding_value = 1;
23968 opt = arm_extensions;
23969 }
23970 else if (adding_value != 1)
23971 {
23972 as_bad (_("must specify extensions to add before specifying "
23973 "those to remove"));
23974 return FALSE;
23975 }
23976 }
23977
23978 if (len == 0)
23979 {
23980 as_bad (_("missing architectural extension"));
23981 return FALSE;
23982 }
23983
23984 gas_assert (adding_value != -1);
23985 gas_assert (opt != NULL);
23986
23987 /* Scan over the options table trying to find an exact match. */
23988 for (; opt->name != NULL; opt++)
23989 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23990 {
23991 /* Check we can apply the extension to this architecture. */
23992 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23993 {
23994 as_bad (_("extension does not apply to the base architecture"));
23995 return FALSE;
23996 }
23997
23998 /* Add or remove the extension. */
23999 if (adding_value)
24000 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24001 else
24002 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24003
24004 break;
24005 }
24006
24007 if (opt->name == NULL)
24008 {
24009 /* Did we fail to find an extension because it wasn't specified in
24010 alphabetical order, or because it does not exist? */
24011
24012 for (opt = arm_extensions; opt->name != NULL; opt++)
24013 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24014 break;
24015
24016 if (opt->name == NULL)
24017 as_bad (_("unknown architectural extension `%s'"), str);
24018 else
24019 as_bad (_("architectural extensions must be specified in "
24020 "alphabetical order"));
24021
24022 return FALSE;
24023 }
24024 else
24025 {
24026 /* We should skip the extension we've just matched the next time
24027 round. */
24028 opt++;
24029 }
24030
24031 str = ext;
24032 };
24033
24034 return TRUE;
24035 }
24036
24037 static bfd_boolean
24038 arm_parse_cpu (char *str)
24039 {
24040 const struct arm_cpu_option_table *opt;
24041 char *ext = strchr (str, '+');
24042 size_t len;
24043
24044 if (ext != NULL)
24045 len = ext - str;
24046 else
24047 len = strlen (str);
24048
24049 if (len == 0)
24050 {
24051 as_bad (_("missing cpu name `%s'"), str);
24052 return FALSE;
24053 }
24054
24055 for (opt = arm_cpus; opt->name != NULL; opt++)
24056 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24057 {
24058 mcpu_cpu_opt = &opt->value;
24059 mcpu_fpu_opt = &opt->default_fpu;
24060 if (opt->canonical_name)
24061 strcpy (selected_cpu_name, opt->canonical_name);
24062 else
24063 {
24064 size_t i;
24065
24066 for (i = 0; i < len; i++)
24067 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24068 selected_cpu_name[i] = 0;
24069 }
24070
24071 if (ext != NULL)
24072 return arm_parse_extension (ext, &mcpu_cpu_opt);
24073
24074 return TRUE;
24075 }
24076
24077 as_bad (_("unknown cpu `%s'"), str);
24078 return FALSE;
24079 }
24080
24081 static bfd_boolean
24082 arm_parse_arch (char *str)
24083 {
24084 const struct arm_arch_option_table *opt;
24085 char *ext = strchr (str, '+');
24086 size_t len;
24087
24088 if (ext != NULL)
24089 len = ext - str;
24090 else
24091 len = strlen (str);
24092
24093 if (len == 0)
24094 {
24095 as_bad (_("missing architecture name `%s'"), str);
24096 return FALSE;
24097 }
24098
24099 for (opt = arm_archs; opt->name != NULL; opt++)
24100 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24101 {
24102 march_cpu_opt = &opt->value;
24103 march_fpu_opt = &opt->default_fpu;
24104 strcpy (selected_cpu_name, opt->name);
24105
24106 if (ext != NULL)
24107 return arm_parse_extension (ext, &march_cpu_opt);
24108
24109 return TRUE;
24110 }
24111
24112 as_bad (_("unknown architecture `%s'\n"), str);
24113 return FALSE;
24114 }
24115
24116 static bfd_boolean
24117 arm_parse_fpu (char * str)
24118 {
24119 const struct arm_option_fpu_value_table * opt;
24120
24121 for (opt = arm_fpus; opt->name != NULL; opt++)
24122 if (streq (opt->name, str))
24123 {
24124 mfpu_opt = &opt->value;
24125 return TRUE;
24126 }
24127
24128 as_bad (_("unknown floating point format `%s'\n"), str);
24129 return FALSE;
24130 }
24131
24132 static bfd_boolean
24133 arm_parse_float_abi (char * str)
24134 {
24135 const struct arm_option_value_table * opt;
24136
24137 for (opt = arm_float_abis; opt->name != NULL; opt++)
24138 if (streq (opt->name, str))
24139 {
24140 mfloat_abi_opt = opt->value;
24141 return TRUE;
24142 }
24143
24144 as_bad (_("unknown floating point abi `%s'\n"), str);
24145 return FALSE;
24146 }
24147
24148 #ifdef OBJ_ELF
24149 static bfd_boolean
24150 arm_parse_eabi (char * str)
24151 {
24152 const struct arm_option_value_table *opt;
24153
24154 for (opt = arm_eabis; opt->name != NULL; opt++)
24155 if (streq (opt->name, str))
24156 {
24157 meabi_flags = opt->value;
24158 return TRUE;
24159 }
24160 as_bad (_("unknown EABI `%s'\n"), str);
24161 return FALSE;
24162 }
24163 #endif
24164
24165 static bfd_boolean
24166 arm_parse_it_mode (char * str)
24167 {
24168 bfd_boolean ret = TRUE;
24169
24170 if (streq ("arm", str))
24171 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24172 else if (streq ("thumb", str))
24173 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24174 else if (streq ("always", str))
24175 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24176 else if (streq ("never", str))
24177 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24178 else
24179 {
24180 as_bad (_("unknown implicit IT mode `%s', should be "\
24181 "arm, thumb, always, or never."), str);
24182 ret = FALSE;
24183 }
24184
24185 return ret;
24186 }
24187
24188 struct arm_long_option_table arm_long_opts[] =
24189 {
24190 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24191 arm_parse_cpu, NULL},
24192 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24193 arm_parse_arch, NULL},
24194 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24195 arm_parse_fpu, NULL},
24196 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24197 arm_parse_float_abi, NULL},
24198 #ifdef OBJ_ELF
24199 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24200 arm_parse_eabi, NULL},
24201 #endif
24202 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24203 arm_parse_it_mode, NULL},
24204 {NULL, NULL, 0, NULL}
24205 };
24206
24207 int
24208 md_parse_option (int c, char * arg)
24209 {
24210 struct arm_option_table *opt;
24211 const struct arm_legacy_option_table *fopt;
24212 struct arm_long_option_table *lopt;
24213
24214 switch (c)
24215 {
24216 #ifdef OPTION_EB
24217 case OPTION_EB:
24218 target_big_endian = 1;
24219 break;
24220 #endif
24221
24222 #ifdef OPTION_EL
24223 case OPTION_EL:
24224 target_big_endian = 0;
24225 break;
24226 #endif
24227
24228 case OPTION_FIX_V4BX:
24229 fix_v4bx = TRUE;
24230 break;
24231
24232 case 'a':
24233 /* Listing option. Just ignore these, we don't support additional
24234 ones. */
24235 return 0;
24236
24237 default:
24238 for (opt = arm_opts; opt->option != NULL; opt++)
24239 {
24240 if (c == opt->option[0]
24241 && ((arg == NULL && opt->option[1] == 0)
24242 || streq (arg, opt->option + 1)))
24243 {
24244 /* If the option is deprecated, tell the user. */
24245 if (warn_on_deprecated && opt->deprecated != NULL)
24246 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24247 arg ? arg : "", _(opt->deprecated));
24248
24249 if (opt->var != NULL)
24250 *opt->var = opt->value;
24251
24252 return 1;
24253 }
24254 }
24255
24256 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24257 {
24258 if (c == fopt->option[0]
24259 && ((arg == NULL && fopt->option[1] == 0)
24260 || streq (arg, fopt->option + 1)))
24261 {
24262 /* If the option is deprecated, tell the user. */
24263 if (warn_on_deprecated && fopt->deprecated != NULL)
24264 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24265 arg ? arg : "", _(fopt->deprecated));
24266
24267 if (fopt->var != NULL)
24268 *fopt->var = &fopt->value;
24269
24270 return 1;
24271 }
24272 }
24273
24274 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24275 {
24276 /* These options are expected to have an argument. */
24277 if (c == lopt->option[0]
24278 && arg != NULL
24279 && strncmp (arg, lopt->option + 1,
24280 strlen (lopt->option + 1)) == 0)
24281 {
24282 /* If the option is deprecated, tell the user. */
24283 if (warn_on_deprecated && lopt->deprecated != NULL)
24284 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24285 _(lopt->deprecated));
24286
24287 /* Call the sup-option parser. */
24288 return lopt->func (arg + strlen (lopt->option) - 1);
24289 }
24290 }
24291
24292 return 0;
24293 }
24294
24295 return 1;
24296 }
24297
24298 void
24299 md_show_usage (FILE * fp)
24300 {
24301 struct arm_option_table *opt;
24302 struct arm_long_option_table *lopt;
24303
24304 fprintf (fp, _(" ARM-specific assembler options:\n"));
24305
24306 for (opt = arm_opts; opt->option != NULL; opt++)
24307 if (opt->help != NULL)
24308 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24309
24310 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24311 if (lopt->help != NULL)
24312 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24313
24314 #ifdef OPTION_EB
24315 fprintf (fp, _("\
24316 -EB assemble code for a big-endian cpu\n"));
24317 #endif
24318
24319 #ifdef OPTION_EL
24320 fprintf (fp, _("\
24321 -EL assemble code for a little-endian cpu\n"));
24322 #endif
24323
24324 fprintf (fp, _("\
24325 --fix-v4bx Allow BX in ARMv4 code\n"));
24326 }
24327
24328
24329 #ifdef OBJ_ELF
24330 typedef struct
24331 {
24332 int val;
24333 arm_feature_set flags;
24334 } cpu_arch_ver_table;
24335
24336 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24337 least features first. */
24338 static const cpu_arch_ver_table cpu_arch_ver[] =
24339 {
24340 {1, ARM_ARCH_V4},
24341 {2, ARM_ARCH_V4T},
24342 {3, ARM_ARCH_V5},
24343 {3, ARM_ARCH_V5T},
24344 {4, ARM_ARCH_V5TE},
24345 {5, ARM_ARCH_V5TEJ},
24346 {6, ARM_ARCH_V6},
24347 {9, ARM_ARCH_V6K},
24348 {7, ARM_ARCH_V6Z},
24349 {11, ARM_ARCH_V6M},
24350 {12, ARM_ARCH_V6SM},
24351 {8, ARM_ARCH_V6T2},
24352 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24353 {10, ARM_ARCH_V7R},
24354 {10, ARM_ARCH_V7M},
24355 {14, ARM_ARCH_V8A},
24356 {0, ARM_ARCH_NONE}
24357 };
24358
24359 /* Set an attribute if it has not already been set by the user. */
24360 static void
24361 aeabi_set_attribute_int (int tag, int value)
24362 {
24363 if (tag < 1
24364 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24365 || !attributes_set_explicitly[tag])
24366 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24367 }
24368
24369 static void
24370 aeabi_set_attribute_string (int tag, const char *value)
24371 {
24372 if (tag < 1
24373 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24374 || !attributes_set_explicitly[tag])
24375 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24376 }
24377
24378 /* Set the public EABI object attributes. */
24379 static void
24380 aeabi_set_public_attributes (void)
24381 {
24382 int arch;
24383 char profile;
24384 int virt_sec = 0;
24385 int fp16_optional = 0;
24386 arm_feature_set flags;
24387 arm_feature_set tmp;
24388 const cpu_arch_ver_table *p;
24389
24390 /* Choose the architecture based on the capabilities of the requested cpu
24391 (if any) and/or the instructions actually used. */
24392 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24393 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24394 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24395
24396 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24397 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24398
24399 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24400 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24401
24402 /* Allow the user to override the reported architecture. */
24403 if (object_arch)
24404 {
24405 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24406 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24407 }
24408
24409 /* We need to make sure that the attributes do not identify us as v6S-M
24410 when the only v6S-M feature in use is the Operating System Extensions. */
24411 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24412 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24413 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24414
24415 tmp = flags;
24416 arch = 0;
24417 for (p = cpu_arch_ver; p->val; p++)
24418 {
24419 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24420 {
24421 arch = p->val;
24422 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24423 }
24424 }
24425
24426 /* The table lookup above finds the last architecture to contribute
24427 a new feature. Unfortunately, Tag13 is a subset of the union of
24428 v6T2 and v7-M, so it is never seen as contributing a new feature.
24429 We can not search for the last entry which is entirely used,
24430 because if no CPU is specified we build up only those flags
24431 actually used. Perhaps we should separate out the specified
24432 and implicit cases. Avoid taking this path for -march=all by
24433 checking for contradictory v7-A / v7-M features. */
24434 if (arch == 10
24435 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24436 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24437 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24438 arch = 13;
24439
24440 /* Tag_CPU_name. */
24441 if (selected_cpu_name[0])
24442 {
24443 char *q;
24444
24445 q = selected_cpu_name;
24446 if (strncmp (q, "armv", 4) == 0)
24447 {
24448 int i;
24449
24450 q += 4;
24451 for (i = 0; q[i]; i++)
24452 q[i] = TOUPPER (q[i]);
24453 }
24454 aeabi_set_attribute_string (Tag_CPU_name, q);
24455 }
24456
24457 /* Tag_CPU_arch. */
24458 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24459
24460 /* Tag_CPU_arch_profile. */
24461 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24462 profile = 'A';
24463 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24464 profile = 'R';
24465 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24466 profile = 'M';
24467 else
24468 profile = '\0';
24469
24470 if (profile != '\0')
24471 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24472
24473 /* Tag_ARM_ISA_use. */
24474 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24475 || arch == 0)
24476 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24477
24478 /* Tag_THUMB_ISA_use. */
24479 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24480 || arch == 0)
24481 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24482 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24483
24484 /* Tag_VFP_arch. */
24485 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24486 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24487 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24488 aeabi_set_attribute_int (Tag_VFP_arch,
24489 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24490 ? 5 : 6);
24491 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24492 {
24493 fp16_optional = 1;
24494 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24495 }
24496 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24497 {
24498 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24499 fp16_optional = 1;
24500 }
24501 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24502 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24503 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24504 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24505 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24506
24507 /* Tag_ABI_HardFP_use. */
24508 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24509 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24510 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24511
24512 /* Tag_WMMX_arch. */
24513 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24514 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24515 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24516 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24517
24518 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24519 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24520 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24521 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24522 {
24523 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24524 {
24525 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24526 }
24527 else
24528 {
24529 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24530 fp16_optional = 1;
24531 }
24532 }
24533
24534 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24535 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24536 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24537
24538 /* Tag_DIV_use.
24539
24540 We set Tag_DIV_use to two when integer divide instructions have been used
24541 in ARM state, or when Thumb integer divide instructions have been used,
24542 but we have no architecture profile set, nor have we any ARM instructions.
24543
24544 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24545 architecture.
24546
24547 For new architectures we will have to check these tests. */
24548 gas_assert (arch <= TAG_CPU_ARCH_V8);
24549 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24550 aeabi_set_attribute_int (Tag_DIV_use, 0);
24551 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24552 || (profile == '\0'
24553 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24554 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24555 aeabi_set_attribute_int (Tag_DIV_use, 2);
24556
24557 /* Tag_MP_extension_use. */
24558 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24559 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24560
24561 /* Tag Virtualization_use. */
24562 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24563 virt_sec |= 1;
24564 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24565 virt_sec |= 2;
24566 if (virt_sec != 0)
24567 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24568 }
24569
24570 /* Add the default contents for the .ARM.attributes section. */
24571 void
24572 arm_md_end (void)
24573 {
24574 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24575 return;
24576
24577 aeabi_set_public_attributes ();
24578 }
24579 #endif /* OBJ_ELF */
24580
24581
24582 /* Parse a .cpu directive. */
24583
24584 static void
24585 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24586 {
24587 const struct arm_cpu_option_table *opt;
24588 char *name;
24589 char saved_char;
24590
24591 name = input_line_pointer;
24592 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24593 input_line_pointer++;
24594 saved_char = *input_line_pointer;
24595 *input_line_pointer = 0;
24596
24597 /* Skip the first "all" entry. */
24598 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24599 if (streq (opt->name, name))
24600 {
24601 mcpu_cpu_opt = &opt->value;
24602 selected_cpu = opt->value;
24603 if (opt->canonical_name)
24604 strcpy (selected_cpu_name, opt->canonical_name);
24605 else
24606 {
24607 int i;
24608 for (i = 0; opt->name[i]; i++)
24609 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24610
24611 selected_cpu_name[i] = 0;
24612 }
24613 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24614 *input_line_pointer = saved_char;
24615 demand_empty_rest_of_line ();
24616 return;
24617 }
24618 as_bad (_("unknown cpu `%s'"), name);
24619 *input_line_pointer = saved_char;
24620 ignore_rest_of_line ();
24621 }
24622
24623
24624 /* Parse a .arch directive. */
24625
24626 static void
24627 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24628 {
24629 const struct arm_arch_option_table *opt;
24630 char saved_char;
24631 char *name;
24632
24633 name = input_line_pointer;
24634 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24635 input_line_pointer++;
24636 saved_char = *input_line_pointer;
24637 *input_line_pointer = 0;
24638
24639 /* Skip the first "all" entry. */
24640 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24641 if (streq (opt->name, name))
24642 {
24643 mcpu_cpu_opt = &opt->value;
24644 selected_cpu = opt->value;
24645 strcpy (selected_cpu_name, opt->name);
24646 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24647 *input_line_pointer = saved_char;
24648 demand_empty_rest_of_line ();
24649 return;
24650 }
24651
24652 as_bad (_("unknown architecture `%s'\n"), name);
24653 *input_line_pointer = saved_char;
24654 ignore_rest_of_line ();
24655 }
24656
24657
24658 /* Parse a .object_arch directive. */
24659
24660 static void
24661 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24662 {
24663 const struct arm_arch_option_table *opt;
24664 char saved_char;
24665 char *name;
24666
24667 name = input_line_pointer;
24668 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24669 input_line_pointer++;
24670 saved_char = *input_line_pointer;
24671 *input_line_pointer = 0;
24672
24673 /* Skip the first "all" entry. */
24674 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24675 if (streq (opt->name, name))
24676 {
24677 object_arch = &opt->value;
24678 *input_line_pointer = saved_char;
24679 demand_empty_rest_of_line ();
24680 return;
24681 }
24682
24683 as_bad (_("unknown architecture `%s'\n"), name);
24684 *input_line_pointer = saved_char;
24685 ignore_rest_of_line ();
24686 }
24687
24688 /* Parse a .arch_extension directive. */
24689
24690 static void
24691 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24692 {
24693 const struct arm_option_extension_value_table *opt;
24694 char saved_char;
24695 char *name;
24696 int adding_value = 1;
24697
24698 name = input_line_pointer;
24699 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24700 input_line_pointer++;
24701 saved_char = *input_line_pointer;
24702 *input_line_pointer = 0;
24703
24704 if (strlen (name) >= 2
24705 && strncmp (name, "no", 2) == 0)
24706 {
24707 adding_value = 0;
24708 name += 2;
24709 }
24710
24711 for (opt = arm_extensions; opt->name != NULL; opt++)
24712 if (streq (opt->name, name))
24713 {
24714 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24715 {
24716 as_bad (_("architectural extension `%s' is not allowed for the "
24717 "current base architecture"), name);
24718 break;
24719 }
24720
24721 if (adding_value)
24722 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24723 else
24724 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24725
24726 mcpu_cpu_opt = &selected_cpu;
24727 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24728 *input_line_pointer = saved_char;
24729 demand_empty_rest_of_line ();
24730 return;
24731 }
24732
24733 if (opt->name == NULL)
24734 as_bad (_("unknown architecture `%s'\n"), name);
24735
24736 *input_line_pointer = saved_char;
24737 ignore_rest_of_line ();
24738 }
24739
24740 /* Parse a .fpu directive. */
24741
24742 static void
24743 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24744 {
24745 const struct arm_option_fpu_value_table *opt;
24746 char saved_char;
24747 char *name;
24748
24749 name = input_line_pointer;
24750 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24751 input_line_pointer++;
24752 saved_char = *input_line_pointer;
24753 *input_line_pointer = 0;
24754
24755 for (opt = arm_fpus; opt->name != NULL; opt++)
24756 if (streq (opt->name, name))
24757 {
24758 mfpu_opt = &opt->value;
24759 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24760 *input_line_pointer = saved_char;
24761 demand_empty_rest_of_line ();
24762 return;
24763 }
24764
24765 as_bad (_("unknown floating point format `%s'\n"), name);
24766 *input_line_pointer = saved_char;
24767 ignore_rest_of_line ();
24768 }
24769
24770 /* Copy symbol information. */
24771
24772 void
24773 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24774 {
24775 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24776 }
24777
24778 #ifdef OBJ_ELF
24779 /* Given a symbolic attribute NAME, return the proper integer value.
24780 Returns -1 if the attribute is not known. */
24781
24782 int
24783 arm_convert_symbolic_attribute (const char *name)
24784 {
24785 static const struct
24786 {
24787 const char * name;
24788 const int tag;
24789 }
24790 attribute_table[] =
24791 {
24792 /* When you modify this table you should
24793 also modify the list in doc/c-arm.texi. */
24794 #define T(tag) {#tag, tag}
24795 T (Tag_CPU_raw_name),
24796 T (Tag_CPU_name),
24797 T (Tag_CPU_arch),
24798 T (Tag_CPU_arch_profile),
24799 T (Tag_ARM_ISA_use),
24800 T (Tag_THUMB_ISA_use),
24801 T (Tag_FP_arch),
24802 T (Tag_VFP_arch),
24803 T (Tag_WMMX_arch),
24804 T (Tag_Advanced_SIMD_arch),
24805 T (Tag_PCS_config),
24806 T (Tag_ABI_PCS_R9_use),
24807 T (Tag_ABI_PCS_RW_data),
24808 T (Tag_ABI_PCS_RO_data),
24809 T (Tag_ABI_PCS_GOT_use),
24810 T (Tag_ABI_PCS_wchar_t),
24811 T (Tag_ABI_FP_rounding),
24812 T (Tag_ABI_FP_denormal),
24813 T (Tag_ABI_FP_exceptions),
24814 T (Tag_ABI_FP_user_exceptions),
24815 T (Tag_ABI_FP_number_model),
24816 T (Tag_ABI_align_needed),
24817 T (Tag_ABI_align8_needed),
24818 T (Tag_ABI_align_preserved),
24819 T (Tag_ABI_align8_preserved),
24820 T (Tag_ABI_enum_size),
24821 T (Tag_ABI_HardFP_use),
24822 T (Tag_ABI_VFP_args),
24823 T (Tag_ABI_WMMX_args),
24824 T (Tag_ABI_optimization_goals),
24825 T (Tag_ABI_FP_optimization_goals),
24826 T (Tag_compatibility),
24827 T (Tag_CPU_unaligned_access),
24828 T (Tag_FP_HP_extension),
24829 T (Tag_VFP_HP_extension),
24830 T (Tag_ABI_FP_16bit_format),
24831 T (Tag_MPextension_use),
24832 T (Tag_DIV_use),
24833 T (Tag_nodefaults),
24834 T (Tag_also_compatible_with),
24835 T (Tag_conformance),
24836 T (Tag_T2EE_use),
24837 T (Tag_Virtualization_use),
24838 /* We deliberately do not include Tag_MPextension_use_legacy. */
24839 #undef T
24840 };
24841 unsigned int i;
24842
24843 if (name == NULL)
24844 return -1;
24845
24846 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24847 if (streq (name, attribute_table[i].name))
24848 return attribute_table[i].tag;
24849
24850 return -1;
24851 }
24852
24853
24854 /* Apply sym value for relocations only in the case that
24855 they are for local symbols and you have the respective
24856 architectural feature for blx and simple switches. */
24857 int
24858 arm_apply_sym_value (struct fix * fixP)
24859 {
24860 if (fixP->fx_addsy
24861 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24862 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24863 {
24864 switch (fixP->fx_r_type)
24865 {
24866 case BFD_RELOC_ARM_PCREL_BLX:
24867 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24868 if (ARM_IS_FUNC (fixP->fx_addsy))
24869 return 1;
24870 break;
24871
24872 case BFD_RELOC_ARM_PCREL_CALL:
24873 case BFD_RELOC_THUMB_PCREL_BLX:
24874 if (THUMB_IS_FUNC (fixP->fx_addsy))
24875 return 1;
24876 break;
24877
24878 default:
24879 break;
24880 }
24881
24882 }
24883 return 0;
24884 }
24885 #endif /* OBJ_ELF */
This page took 1.087524 seconds and 4 git commands to generate.