42c9cfbc339e99c739902f9afe7d7e08f0a9a397
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR, /* MVE vector or ARM register. */
6927
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
6934 OP_REGLST, /* ARM register list */
6935 OP_CLRMLST, /* CLRM register list */
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
6944
6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6969 OP_VLDR, /* VLDR operand. */
6970
6971 OP_I0, /* immediate zero */
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
6975 OP_I16z, /* 0 .. 16 */
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
6981 OP_I63s, /* -64 .. 63 */
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
6984 OP_I255, /* 0 .. 255 */
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
6992 OP_SHG, /* shifter operand with possible group relocation */
6993 OP_ADDR, /* Memory address expression (any mode) */
6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7010 OP_COND, /* conditional code */
7011 OP_TB, /* Table branch. */
7012
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
7015 OP_RRnpc_I0, /* ARM register or literal 0 */
7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
7025 OP_oI32b, /* 1 .. 32 */
7026 OP_oI32z, /* 0 .. 32 */
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
7031 OP_oLR, /* ARM LR register */
7032 OP_oRRnpc, /* ARM register, not the PC */
7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7047
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056 };
7057
7058 /* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062 static int
7063 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7064 {
7065 unsigned const int *upat = pattern;
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
7068 int i, val = 0, backtrack_index = 0;
7069 enum arm_reg_type rtype;
7070 parse_operand_result result;
7071 unsigned int op_parse_code;
7072 bfd_boolean partial_match;
7073
7074 #define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
7078 goto bad_args; \
7079 } \
7080 while (0)
7081
7082 #define po_reg_or_fail(regtype) \
7083 do \
7084 { \
7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7086 & inst.operands[i].vectype); \
7087 if (val == FAIL) \
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7100 } \
7101 while (0)
7102
7103 #define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
7110 \
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7116 || rtype == REG_TYPE_VFD \
7117 || rtype == REG_TYPE_NQ); \
7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7119 } \
7120 while (0)
7121
7122 #define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
7131 #define po_scalar_or_goto(elsz, label, reg_type) \
7132 do \
7133 { \
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143 #define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151 #define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
7161
7162 #define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
7172 { \
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
7176 } \
7177 } \
7178 while (0)
7179
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
7190 {
7191 /* Remember where we are in case we need to backtrack. */
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
7197 if (i > 0 && (i > 1 || inst.operands[0].present))
7198 po_char_or_fail (',');
7199
7200 switch (op_parse_code)
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
7204 case OP_oRRnpcsp:
7205 case OP_RRnpc:
7206 case OP_RRnpcsp:
7207 case OP_oRR:
7208 case OP_RRe:
7209 case OP_RRo:
7210 case OP_LR:
7211 case OP_oLR:
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7218 case OP_oRND:
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7245 case OP_oRNQ:
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
7261 case OP_oRNDQ:
7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
7329 case OP_RR_RNSC:
7330 {
7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
7346 case OP_RNSDQ_RNSC:
7347 {
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
7353 inst.error = 0;
7354 }
7355 break;
7356
7357 case OP_RNSD_RNSC:
7358 {
7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7360 break;
7361 try_s_scalar:
7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
7380 case OP_RNDQ_RNSC:
7381 {
7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
7438
7439 case OP_RRnpctw:
7440 case OP_RRw:
7441 case OP_oRRw:
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7509 GE_NO_PREFIX));
7510 if (inst.relocs[0].exp.X_op == O_symbol)
7511 {
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
7523 }
7524 break;
7525
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
7545 /* Register or expression. */
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7548
7549 /* Register or immediate. */
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
7552
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
7566
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
7570 /* Two kinds of register. */
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
7586
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
7606 try_cond:
7607 case OP_COND: val = parse_cond (&str); break;
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7612 goto failure;
7613 break;
7614
7615 case OP_wPSR:
7616 case OP_rPSR:
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
7628
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
7660 }
7661 else
7662 goto failure;
7663 break;
7664
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
7669 /* Register lists. */
7670 case OP_REGLST:
7671 val = parse_reg_list (&str, REGLIST_RN);
7672 if (*str == '^')
7673 {
7674 inst.operands[i].writeback = 1;
7675 str++;
7676 }
7677 break;
7678
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
7683 case OP_VRSLST:
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
7686 break;
7687
7688 case OP_VRDLST:
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
7691 break;
7692
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7696 REGLIST_NEON_D, &partial_match);
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7720 REGLIST_NEON_D, &partial_match);
7721 break;
7722
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
7730 case OP_NSTRLST:
7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7732 0, &inst.operands[i].vectype);
7733 break;
7734
7735 /* Addressing modes */
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
7743
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str, i, GROUP_LDR));
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
7756 parse_address_group_reloc (&str, i, GROUP_LDC));
7757 break;
7758
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
7762
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
7765 parse_shifter_operand_group_reloc (&str, i));
7766 break;
7767
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
7771
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
7775
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
7779
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
7791 default:
7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
7793 }
7794
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
7798 switch (op_parse_code)
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
7804 case OP_oRRw:
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
7809
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
7824 }
7825 break;
7826
7827 case OP_RRnpctw:
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
7834 case OP_RVSD_COND:
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
7839
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
7843 case OP_wPSR:
7844 case OP_rPSR:
7845 case OP_COND:
7846 case OP_oBARRIER_I15:
7847 case OP_REGLST:
7848 case OP_CLRMLST:
7849 case OP_VRSLST:
7850 case OP_VRDLST:
7851 case OP_VRSDLST:
7852 case OP_VRSDVLST:
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
7861
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
7892 default:
7893 break;
7894 }
7895
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
7899
7900 bad_args:
7901 inst.error = BAD_ARGS;
7902
7903 failure:
7904 if (!backtrack_pos)
7905 {
7906 /* The parse routine should already have set inst.error, but set a
7907 default here just in case. */
7908 if (!inst.error)
7909 inst.error = BAD_SYNTAX;
7910 return FAIL;
7911 }
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
7919 {
7920 if (!inst.error)
7921 inst.error = BAD_SYNTAX;
7922 return FAIL;
7923 }
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
7931 }
7932
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
7936
7937 return inst.error ? FAIL : SUCCESS;
7938 }
7939
7940 #undef po_char_or_fail
7941 #undef po_reg_or_fail
7942 #undef po_reg_or_goto
7943 #undef po_imm_or_fail
7944 #undef po_scalar_or_fail
7945 #undef po_barrier_or_imm
7946
7947 /* Shorthand macro for instruction encoding functions issuing errors. */
7948 #define constraint(expr, err) \
7949 do \
7950 { \
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
7956 } \
7957 while (0)
7958
7959 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965 #define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
7978 while (0)
7979
7980 /* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982 #define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
7985 as_tsktsk (_("use of r13 is deprecated")); \
7986 while (0)
7987
7988 /* Functions for operand encoding. ARM, then Thumb. */
7989
7990 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7991
7992 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
7996 instruction is the same as the equivalent Coprocessor 10 instruction that
7997 exists for Single-Precision operation. */
7998
7999 static void
8000 do_scalar_fp16_v82_encode (void)
8001 {
8002 if (inst.cond < COND_ALWAYS)
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010 }
8011
8012 /* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015 static unsigned int
8016 encode_arm_immediate (unsigned int val)
8017 {
8018 unsigned int a, i;
8019
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
8028 }
8029
8030 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032 static unsigned int
8033 encode_thumb32_immediate (unsigned int val)
8034 {
8035 unsigned int a, i;
8036
8037 if (val <= 0xff)
8038 return val;
8039
8040 for (i = 1; i <= 24; i++)
8041 {
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8045 }
8046
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
8052
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
8056
8057 return FAIL;
8058 }
8059 /* Encode a VFP SP or DP register number into inst.instruction. */
8060
8061 static void
8062 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063 {
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
8076 else
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
8081 }
8082
8083 switch (pos)
8084 {
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
8100
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
8104
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
8109 default:
8110 abort ();
8111 }
8112 }
8113
8114 /* Encode a <shift> in an ARM-format instruction. The immediate,
8115 if any, is handled by md_apply_fix. */
8116 static void
8117 encode_arm_shift (int i)
8118 {
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
8124 {
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
8140 {
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8149 }
8150 }
8151
8152 static void
8153 encode_arm_shifter_operand (int i)
8154 {
8155 if (inst.operands[i].isreg)
8156 {
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
8159 }
8160 else
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8164 inst.instruction |= inst.operands[i].imm;
8165 }
8166 }
8167
8168 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8169 static void
8170 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8171 {
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
8177 inst.instruction |= inst.operands[i].reg << 16;
8178
8179 if (inst.operands[i].preind)
8180 {
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
8189
8190 }
8191 else if (inst.operands[i].postind)
8192 {
8193 gas_assert (inst.operands[i].writeback);
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
8198 {
8199 inst.error = _("instruction does not accept unindexed addressing");
8200 return;
8201 }
8202
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
8209 }
8210
8211 /* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
8215 static void
8216 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8217 {
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
8220 encode_arm_addr_mode_common (i, is_t);
8221
8222 if (inst.operands[i].immisreg)
8223 {
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8239 }
8240 }
8241 }
8242 else /* immediate offset in inst.relocs[0] */
8243 {
8244 if (is_pc && !inst.relocs[0].pc_rel)
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
8252 BAD_PC_ADDRESSING);
8253
8254 /* Use of PC in str is deprecated for ARMv7. */
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
8259 }
8260
8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8267 }
8268 }
8269 }
8270
8271 /* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276 static void
8277 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8278 {
8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8280 {
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
8283 }
8284
8285 encode_arm_addr_mode_common (i, is_t);
8286
8287 if (inst.operands[i].immisreg)
8288 {
8289 constraint ((inst.operands[i].imm == REG_PC
8290 || (is_t && inst.operands[i].reg == REG_PC)),
8291 BAD_PC_ADDRESSING);
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
8298 else /* immediate offset in inst.relocs[0] */
8299 {
8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
8303 inst.instruction |= HWOFFSET_IMM;
8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8311 }
8312 }
8313 }
8314
8315 /* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322 static void
8323 neon_write_immbits (unsigned immbits)
8324 {
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328 }
8329
8330 /* Invert low-order SIZE bits of XHI:XLO. */
8331
8332 static void
8333 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334 {
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365 }
8366
8367 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
8369
8370 static int
8371 neon_bits_same_in_bytes (unsigned imm)
8372 {
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377 }
8378
8379 /* For immediate of above form, return 0bABCD. */
8380
8381 static unsigned
8382 neon_squash_bits (unsigned imm)
8383 {
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386 }
8387
8388 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390 static unsigned
8391 neon_qfloat_bits (unsigned imm)
8392 {
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394 }
8395
8396 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403 static int
8404 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407 {
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8414 {
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
8425 {
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
8432 }
8433
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
8437
8438 if (size >= 32)
8439 {
8440 if (immlo == (immlo & 0x000000ff))
8441 {
8442 *immbits = immlo;
8443 return 0x0;
8444 }
8445 else if (immlo == (immlo & 0x0000ff00))
8446 {
8447 *immbits = immlo >> 8;
8448 return 0x2;
8449 }
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
8474 }
8475
8476 if (size >= 16)
8477 {
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
8492 }
8493
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
8502
8503 return FAIL;
8504 }
8505
8506 #if defined BFD_HOST_64_BIT
8507 /* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510 static bfd_boolean
8511 is_double_a_single (bfd_int64_t v)
8512 {
8513 int exp = (int)((v >> 52) & 0x7FF);
8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519 }
8520
8521 /* Returns a double precision value casted to single precision
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524 static int
8525 double_to_single (bfd_int64_t v)
8526 {
8527 int sign = (int) ((v >> 63) & 1l);
8528 int exp = (int) ((v >> 52) & 0x7FF);
8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551 }
8552 #endif /* BFD_HOST_64_BIT */
8553
8554 enum lit_type
8555 {
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559 };
8560
8561 static void do_vfp_nsyn_opcode (const char *);
8562
8563 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
8569
8570 inst.operands[i] describes the destination register. */
8571
8572 static bfd_boolean
8573 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8574 {
8575 unsigned long tbit;
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
8585 {
8586 inst.error = _("invalid pseudo operation");
8587 return TRUE;
8588 }
8589
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
8593 {
8594 inst.error = _("constant expression expected");
8595 return TRUE;
8596 }
8597
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8600 {
8601 #if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603 #else
8604 offsetT v;
8605 #endif
8606 if (inst.relocs[0].exp.X_op == O_big)
8607 {
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
8611 if (inst.relocs[0].exp.X_add_number == -1)
8612 {
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8616 }
8617 else
8618 l = generic_bignum;
8619
8620 #if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629 #else
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
8632 #endif
8633 }
8634 else
8635 v = inst.relocs[0].exp.X_add_number;
8636
8637 if (!inst.operands[i].issingle)
8638 {
8639 if (thumb_p)
8640 {
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
8643
8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
8648 {
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
8659 newimm = encode_thumb32_immediate (~v);
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8668 {
8669 inst.instruction = (0xf04f0000 /* MOV.W. */
8670 | (inst.operands[i].reg << 8));
8671 /* Change to MOVN. */
8672 inst.instruction |= (isNegated ? 0x200000 : 0);
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
8678 /* The number can be loaded with a movw instruction. */
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8681 {
8682 int imm = v & 0xFFFF;
8683
8684 inst.instruction = 0xf2400000; /* MOVW. */
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8693 }
8694 else if (arm_p)
8695 {
8696 int value = encode_arm_immediate (v);
8697
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8706
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8718 {
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
8724 : inst.relocs[0].exp.X_unsigned
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
8749 else
8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8754 }
8755 }
8756
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8763 {
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8768 }
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775 #if defined BFD_HOST_64_BIT
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8778 {
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8787 }
8788 #endif
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806 }
8807
8808 /* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816 static int
8817 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818 {
8819 if (!inst.operands[i].isreg)
8820 {
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
8852 {
8853 if (inst.operands[i].reg == REG_PC)
8854 {
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
8857 }
8858 if (!wb_ok)
8859 {
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
8862 }
8863 inst.instruction |= WRITE_BACK;
8864 }
8865
8866 if (reloc_override)
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8871 {
8872 if (thumb_mode)
8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8874 else
8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8876 }
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
8883 }
8884
8885 /* Functions for instruction encoding, sorted by sub-architecture.
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
8888
8889 static void
8890 do_noargs (void)
8891 {
8892 }
8893
8894 static void
8895 do_rd (void)
8896 {
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 }
8899
8900 static void
8901 do_rn (void)
8902 {
8903 inst.instruction |= inst.operands[0].reg << 16;
8904 }
8905
8906 static void
8907 do_rd_rm (void)
8908 {
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911 }
8912
8913 static void
8914 do_rm_rn (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918 }
8919
8920 static void
8921 do_rd_rn (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 }
8926
8927 static void
8928 do_rn_rd (void)
8929 {
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932 }
8933
8934 static void
8935 do_tt (void)
8936 {
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939 }
8940
8941 static bfd_boolean
8942 check_obsolete (const arm_feature_set *feature, const char *msg)
8943 {
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
8946 as_tsktsk ("%s", msg);
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956 }
8957
8958 static void
8959 do_rd_rm_rn (void)
8960 {
8961 unsigned Rn = inst.operands[2].reg;
8962 /* Enforce restrictions on SWP instruction. */
8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8975 }
8976
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
8979 inst.instruction |= Rn << 16;
8980 }
8981
8982 static void
8983 do_rd_rn_rm (void)
8984 {
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988 }
8989
8990 static void
8991 do_rm_rd_rn (void)
8992 {
8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
8997 BAD_ADDR_MODE);
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001 }
9002
9003 static void
9004 do_imm0 (void)
9005 {
9006 inst.instruction |= inst.operands[0].imm;
9007 }
9008
9009 static void
9010 do_rd_cpaddr (void)
9011 {
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
9014 }
9015
9016 /* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
9019
9020 /* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
9022
9023 static void
9024 do_adr (void)
9025 {
9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9027
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
9033
9034 if (support_interwork
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
9040 }
9041
9042 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
9046
9047 static void
9048 do_adrl (void)
9049 {
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9051
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
9056 inst.size = INSN_SIZE * 2;
9057 inst.relocs[0].exp.X_add_number -= 8;
9058
9059 if (support_interwork
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
9065 }
9066
9067 static void
9068 do_arit (void)
9069 {
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9072 THUMB1_RELOC_ONLY);
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078 }
9079
9080 static void
9081 do_barrier (void)
9082 {
9083 if (inst.operands[0].present)
9084 inst.instruction |= inst.operands[0].imm;
9085 else
9086 inst.instruction |= 0xf;
9087 }
9088
9089 static void
9090 do_bfc (void)
9091 {
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099 }
9100
9101 static void
9102 do_bfi (void)
9103 {
9104 unsigned int msb;
9105
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
9110
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
9119 }
9120
9121 static void
9122 do_bfx (void)
9123 {
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130 }
9131
9132 /* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
9137
9138 static void
9139 do_bkpt (void)
9140 {
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9143
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146 }
9147
9148 static void
9149 encode_branch (int default_reloc)
9150 {
9151 if (inst.operands[0].hasreloc)
9152 {
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9159 }
9160 else
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
9163 }
9164
9165 static void
9166 do_branch (void)
9167 {
9168 #ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172 #endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174 }
9175
9176 static void
9177 do_bl (void)
9178 {
9179 #ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188 #endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9190 }
9191
9192 /* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9199
9200 static void
9201 do_blx (void)
9202 {
9203 if (inst.operands[0].isreg)
9204 {
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9209
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
9213 {
9214 /* Arg is an address; this instruction cannot be executed
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9219 inst.instruction = 0xfa000000;
9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9221 }
9222 }
9223
9224 static void
9225 do_bx (void)
9226 {
9227 bfd_boolean want_reloc;
9228
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9238 want_reloc = TRUE;
9239
9240 #ifdef OBJ_ELF
9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9242 #endif
9243 want_reloc = FALSE;
9244
9245 if (want_reloc)
9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9247 }
9248
9249
9250 /* ARM v5TEJ. Jump to Jazelle code. */
9251
9252 static void
9253 do_bxj (void)
9254 {
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
9259 }
9260
9261 /* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264 static void
9265 do_cdp (void)
9266 {
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273 }
9274
9275 static void
9276 do_cmp (void)
9277 {
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
9280 }
9281
9282 /* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
9289
9290 struct deprecated_coproc_regs_s
9291 {
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301 };
9302
9303 #define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306 /* Table of all deprecated coprocessor registers. */
9307 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308 {
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9323 DEPR_ACCESS_V8, NULL},
9324 };
9325
9326 #undef DEPR_ACCESS_V8
9327
9328 static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
9331 static void
9332 do_co_reg (void)
9333 {
9334 unsigned Rd;
9335 size_t i;
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
9366 if (! ARM_CPU_IS_ANY (cpu_variant)
9367 && warn_on_deprecated
9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9369 as_tsktsk ("%s", r->dep_msg);
9370 }
9371 }
9372
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
9375 inst.instruction |= Rd << 12;
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379 }
9380
9381 /* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
9386
9387 Two XScale instructions are special cases of these:
9388
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9391
9392 Result unpredictable if Rd or Rn is R15. */
9393
9394 static void
9395 do_co_reg2c (void)
9396 {
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
9425 inst.instruction |= inst.operands[4].reg;
9426 }
9427
9428 static void
9429 do_cpsi (void)
9430 {
9431 inst.instruction |= inst.operands[0].imm << 6;
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
9437 }
9438
9439 static void
9440 do_dbg (void)
9441 {
9442 inst.instruction |= inst.operands[0].imm;
9443 }
9444
9445 static void
9446 do_div (void)
9447 {
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462 }
9463
9464 static void
9465 do_it (void)
9466 {
9467 /* There is no IT instruction in ARM mode. We
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
9472 inst.size = 0;
9473 if (unified_syntax)
9474 {
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
9478 }
9479 }
9480
9481 /* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483 static int
9484 only_one_reg_in_list (int range)
9485 {
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488 }
9489
9490 static void
9491 encode_ldmstm(int from_push_pop_mnem)
9492 {
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
9495 int one_reg;
9496
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
9499
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
9502
9503 if (inst.operands[0].writeback)
9504 {
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
9508 {
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9526 }
9527 }
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544 }
9545
9546 static void
9547 do_ldmstm (void)
9548 {
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9550 }
9551
9552 /* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
9558 static void
9559 do_ldrd (void)
9560 {
9561 constraint (inst.operands[0].reg % 2 != 0,
9562 _("first transfer register must be even"));
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
9565 _("can only transfer two consecutive registers"));
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
9568
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
9571
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
9575
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
9580
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
9583 /* For an index-register load, the index register must not overlap the
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
9589 }
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9592 }
9593
9594 static void
9595 do_ldrex (void)
9596 {
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
9614
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
9617 _("offset must be zero in ARM encoding"));
9618
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
9624 }
9625
9626 static void
9627 do_ldrexd (void)
9628 {
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9637
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
9640 }
9641
9642 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644 static void
9645 check_ldr_r15_aligned (void)
9646 {
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
9651 _("ldr to register 15 must be 4-byte aligned"));
9652 }
9653
9654 static void
9655 do_ldst (void)
9656 {
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9660 return;
9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9662 check_ldr_r15_aligned ();
9663 }
9664
9665 static void
9666 do_ldstt (void)
9667 {
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
9671 {
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
9674 _("this instruction requires a post-indexed address"));
9675
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
9679 }
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682 }
9683
9684 /* Halfword and signed-byte load/store operations. */
9685
9686 static void
9687 do_ldstv4 (void)
9688 {
9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9693 return;
9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9695 }
9696
9697 static void
9698 do_ldsttv4 (void)
9699 {
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
9703 {
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
9706 _("this instruction requires a post-indexed address"));
9707
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
9711 }
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714 }
9715
9716 /* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718 static void
9719 do_lstc (void)
9720 {
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
9724 }
9725
9726 static void
9727 do_mlas (void)
9728 {
9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9730 if (inst.operands[0].reg == inst.operands[1].reg
9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9732 && !(inst.instruction & 0x00400000))
9733 as_tsktsk (_("Rd and Rm should be different in mla"));
9734
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
9739 }
9740
9741 static void
9742 do_mov (void)
9743 {
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9746 THUMB1_RELOC_ONLY);
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749 }
9750
9751 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752 static void
9753 do_mov16 (void)
9754 {
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9760 _(":lower16: not allowed in this instruction"));
9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9762 _(":upper16: not allowed in this instruction"));
9763 inst.instruction |= inst.operands[0].reg << 12;
9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9765 {
9766 imm = inst.relocs[0].exp.X_add_number;
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
9771 }
9772
9773 static int
9774 do_vfp_nsyn_mrs (void)
9775 {
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
9779 first_error (_("operand 1 must be FPSCR"));
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
9788
9789 return SUCCESS;
9790 }
9791
9792 static int
9793 do_vfp_nsyn_msr (void)
9794 {
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801 }
9802
9803 static void
9804 do_vmrs (void)
9805 {
9806 unsigned Rt = inst.operands[0].reg;
9807
9808 if (thumb_mode && Rt == REG_SP)
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
9820 if (!inst.operands[0].isvec && Rt == REG_PC)
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
9829 inst.instruction |= (Rt << 12);
9830 }
9831
9832 static void
9833 do_vmsr (void)
9834 {
9835 unsigned Rt = inst.operands[1].reg;
9836
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
9853 inst.instruction |= (Rt << 12);
9854 }
9855
9856 static void
9857 do_mrs (void)
9858 {
9859 unsigned br;
9860
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9865 inst.instruction |= inst.operands[0].reg << 12;
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
9883 }
9884
9885 /* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
9888
9889 static void
9890 do_msr (void)
9891 {
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
9899 {
9900 inst.instruction |= INST_IMMEDIATE;
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
9903 }
9904 }
9905
9906 static void
9907 do_mul (void)
9908 {
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
9916
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
9920 }
9921
9922 /* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
9927
9928 static void
9929 do_mull (void)
9930 {
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
9935
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
9942 || inst.operands[1].reg == inst.operands[2].reg)
9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945 }
9946
9947 static void
9948 do_nop (void)
9949 {
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
9958 }
9959 }
9960
9961 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
9965
9966 static void
9967 do_pkhbt (void)
9968 {
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974 }
9975
9976 /* ARM V6 PKHTB (Argument Parse). */
9977
9978 static void
9979 do_pkhtb (void)
9980 {
9981 if (!inst.operands[3].present)
9982 {
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
9989 }
9990 else
9991 {
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
9996 }
9997 }
9998
9999 /* ARMv5TE: Preload-Cache
10000 MP Extensions: Preload for write
10001
10002 PLD(W) <addr_mode>
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
10005
10006 static void
10007 do_pld (void)
10008 {
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 }
10019
10020 /* ARMv7: PLI <addr_mode> */
10021 static void
10022 do_pli (void)
10023 {
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034 }
10035
10036 static void
10037 do_push_pop (void)
10038 {
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10047 }
10048
10049 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
10054
10055 static void
10056 do_rfe (void)
10057 {
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061 }
10062
10063 /* ARM V6 ssat (argument parse). */
10064
10065 static void
10066 do_ssat (void)
10067 {
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
10071
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
10074 }
10075
10076 /* ARM V6 usat (argument parse). */
10077
10078 static void
10079 do_usat (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
10087 }
10088
10089 /* ARM V6 ssat16 (argument parse). */
10090
10091 static void
10092 do_ssat16 (void)
10093 {
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
10097 }
10098
10099 static void
10100 do_usat16 (void)
10101 {
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105 }
10106
10107 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
10109
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
10112
10113 static void
10114 do_setend (void)
10115 {
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
10119
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
10122 }
10123
10124 static void
10125 do_shift (void)
10126 {
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
10130
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10134 {
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
10140 }
10141 else
10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10143 }
10144
10145 static void
10146 do_smc (void)
10147 {
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
10150 }
10151
10152 static void
10153 do_hvc (void)
10154 {
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
10157 }
10158
10159 static void
10160 do_swi (void)
10161 {
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
10164 }
10165
10166 static void
10167 do_setpan (void)
10168 {
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173 }
10174
10175 static void
10176 do_t_setpan (void)
10177 {
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182 }
10183
10184 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
10188
10189 static void
10190 do_smla (void)
10191 {
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196 }
10197
10198 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
10202
10203 static void
10204 do_smlal (void)
10205 {
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
10210
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213 }
10214
10215 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
10218
10219 static void
10220 do_smul (void)
10221 {
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225 }
10226
10227 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
10229
10230 static void
10231 do_srs (void)
10232 {
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
10239 }
10240 else
10241 reg = REG_SP;
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
10246 inst.instruction |= WRITE_BACK;
10247 }
10248
10249 /* ARM V6 strex (argument parse). */
10250
10251 static void
10252 do_strex (void)
10253 {
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
10261
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10264
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
10267 _("offset must be zero in ARM encoding"));
10268
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
10273 }
10274
10275 static void
10276 do_t_strexbh (void)
10277 {
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288 }
10289
10290 static void
10291 do_strexd (void)
10292 {
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10301
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
10306
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
10310 }
10311
10312 /* ARM V8 STRL. */
10313 static void
10314 do_stlex (void)
10315 {
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320 }
10321
10322 static void
10323 do_t_stlex (void)
10324 {
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329 }
10330
10331 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
10339 static void
10340 do_sxtah (void)
10341 {
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346 }
10347
10348 /* ARM V6 SXTH.
10349
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
10353
10354 static void
10355 do_sxth (void)
10356 {
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
10360 }
10361 \f
10362 /* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
10364
10365 static void
10366 do_vfp_sp_monadic (void)
10367 {
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10374 }
10375
10376 static void
10377 do_vfp_sp_dyadic (void)
10378 {
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10382 }
10383
10384 static void
10385 do_vfp_sp_compare_z (void)
10386 {
10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10388 }
10389
10390 static void
10391 do_vfp_dp_sp_cvt (void)
10392 {
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10395 }
10396
10397 static void
10398 do_vfp_sp_dp_cvt (void)
10399 {
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10402 }
10403
10404 static void
10405 do_vfp_reg_from_sp (void)
10406 {
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
10411 inst.instruction |= inst.operands[0].reg << 12;
10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10413 }
10414
10415 static void
10416 do_vfp_reg2_from_sp2 (void)
10417 {
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10423 }
10424
10425 static void
10426 do_vfp_sp_from_reg (void)
10427 {
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10433 inst.instruction |= inst.operands[1].reg << 12;
10434 }
10435
10436 static void
10437 do_vfp_sp2_from_reg2 (void)
10438 {
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
10444 }
10445
10446 static void
10447 do_vfp_sp_ldst (void)
10448 {
10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
10451 }
10452
10453 static void
10454 do_vfp_dp_ldst (void)
10455 {
10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
10458 }
10459
10460
10461 static void
10462 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10463 {
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10471 inst.instruction |= inst.operands[1].imm;
10472 }
10473
10474 static void
10475 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10476 {
10477 int count;
10478
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
10484
10485 inst.instruction |= inst.operands[0].reg << 16;
10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10487
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
10491
10492 inst.instruction |= count;
10493 }
10494
10495 static void
10496 do_vfp_sp_ldstmia (void)
10497 {
10498 vfp_sp_ldstm (VFP_LDSTMIA);
10499 }
10500
10501 static void
10502 do_vfp_sp_ldstmdb (void)
10503 {
10504 vfp_sp_ldstm (VFP_LDSTMDB);
10505 }
10506
10507 static void
10508 do_vfp_dp_ldstmia (void)
10509 {
10510 vfp_dp_ldstm (VFP_LDSTMIA);
10511 }
10512
10513 static void
10514 do_vfp_dp_ldstmdb (void)
10515 {
10516 vfp_dp_ldstm (VFP_LDSTMDB);
10517 }
10518
10519 static void
10520 do_vfp_xp_ldstmia (void)
10521 {
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523 }
10524
10525 static void
10526 do_vfp_xp_ldstmdb (void)
10527 {
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
10529 }
10530
10531 static void
10532 do_vfp_dp_rd_rm (void)
10533 {
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540 }
10541
10542 static void
10543 do_vfp_dp_rn_rd (void)
10544 {
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547 }
10548
10549 static void
10550 do_vfp_dp_rd_rn (void)
10551 {
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554 }
10555
10556 static void
10557 do_vfp_dp_rd_rn_rm (void)
10558 {
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566 }
10567
10568 static void
10569 do_vfp_dp_rd (void)
10570 {
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572 }
10573
10574 static void
10575 do_vfp_dp_rm_rd_rn (void)
10576 {
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584 }
10585
10586 /* VFPv3 instructions. */
10587 static void
10588 do_vfp_sp_const (void)
10589 {
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
10593 }
10594
10595 static void
10596 do_vfp_dp_const (void)
10597 {
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
10601 }
10602
10603 static void
10604 vfp_conv (int srcsize)
10605 {
10606 int immbits = srcsize - inst.operands[1].imm;
10607
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10611 i.e. immbits must be in range 0 - 16. */
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10618 i.e. immbits must be in range 0 - 31. */
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625 }
10626
10627 static void
10628 do_vfp_sp_conv_16 (void)
10629 {
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632 }
10633
10634 static void
10635 do_vfp_dp_conv_16 (void)
10636 {
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639 }
10640
10641 static void
10642 do_vfp_sp_conv_32 (void)
10643 {
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646 }
10647
10648 static void
10649 do_vfp_dp_conv_32 (void)
10650 {
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653 }
10654 \f
10655 /* FPA instructions. Also in a logical order. */
10656
10657 static void
10658 do_fpa_cmp (void)
10659 {
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662 }
10663
10664 static void
10665 do_fpa_ldmstm (void)
10666 {
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
10676
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
10685 _("this instruction does not support indexing"));
10686
10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10689
10690 if (!(inst.instruction & INDEX_UP))
10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10692
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
10699
10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
10701 }
10702 \f
10703 /* iWMMXt instructions: strictly in alphabetical order. */
10704
10705 static void
10706 do_iwmmxt_tandorc (void)
10707 {
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709 }
10710
10711 static void
10712 do_iwmmxt_textrc (void)
10713 {
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716 }
10717
10718 static void
10719 do_iwmmxt_textrm (void)
10720 {
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724 }
10725
10726 static void
10727 do_iwmmxt_tinsr (void)
10728 {
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732 }
10733
10734 static void
10735 do_iwmmxt_tmia (void)
10736 {
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740 }
10741
10742 static void
10743 do_iwmmxt_waligni (void)
10744 {
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749 }
10750
10751 static void
10752 do_iwmmxt_wmerge (void)
10753 {
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758 }
10759
10760 static void
10761 do_iwmmxt_wmov (void)
10762 {
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767 }
10768
10769 static void
10770 do_iwmmxt_wldstbh (void)
10771 {
10772 int reloc;
10773 inst.instruction |= inst.operands[0].reg << 12;
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10779 }
10780
10781 static void
10782 do_iwmmxt_wldstw (void)
10783 {
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
10790
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793 }
10794
10795 static void
10796 do_iwmmxt_wldstd (void)
10797 {
10798 inst.instruction |= inst.operands[0].reg << 12;
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
10803 inst.instruction |= (0xfU << 28);
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
10816 }
10817
10818 static void
10819 do_iwmmxt_wshufh (void)
10820 {
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825 }
10826
10827 static void
10828 do_iwmmxt_wzero (void)
10829 {
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834 }
10835
10836 static void
10837 do_iwmmxt_wrwrwr_or_imm5 (void)
10838 {
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
10852 case 7:
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10883 }
10884 }
10885 \f
10886 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
10888
10889 /* Insns like "foo X,Y,Z". */
10890
10891 static void
10892 do_mav_triple (void)
10893 {
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897 }
10898
10899 /* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10901
10902 static void
10903 do_mav_quad (void)
10904 {
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
10909 }
10910
10911 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912 static void
10913 do_mav_dspsc (void)
10914 {
10915 inst.instruction |= inst.operands[1].reg << 12;
10916 }
10917
10918 /* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10921
10922 static void
10923 do_mav_shift (void)
10924 {
10925 int imm = inst.operands[2].imm;
10926
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
10929
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10934
10935 inst.instruction |= imm;
10936 }
10937 \f
10938 /* XScale instructions. Also sorted arithmetic before move. */
10939
10940 /* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
10944
10945 static void
10946 do_xsc_mia (void)
10947 {
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950 }
10951
10952 /* Xscale move-accumulator-register (argument parse)
10953
10954 MARcc acc0,RdLo,RdHi. */
10955
10956 static void
10957 do_xsc_mar (void)
10958 {
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
10961 }
10962
10963 /* Xscale move-register-accumulator (argument parse)
10964
10965 MRAcc RdLo,RdHi,acc0. */
10966
10967 static void
10968 do_xsc_mra (void)
10969 {
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973 }
10974 \f
10975 /* Encoding functions relevant only to Thumb. */
10976
10977 /* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980 static void
10981 encode_thumb32_shifted_operand (int i)
10982 {
10983 unsigned int value = inst.relocs[0].exp.X_add_number;
10984 unsigned int shift = inst.operands[i].shift_kind;
10985
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
10992 {
10993 constraint (inst.relocs[0].exp.X_op != O_constant,
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
11009 }
11010 }
11011
11012
11013 /* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
11019
11020 static void
11021 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022 {
11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11024
11025 constraint (!inst.operands[i].isreg,
11026 _("Instruction does not support =N addresses"));
11027
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
11030 {
11031 constraint (is_pc, BAD_PC_ADDRESSING);
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
11041
11042 inst.instruction |= inst.operands[i].imm;
11043 if (inst.operands[i].shifted)
11044 {
11045 constraint (inst.relocs[0].exp.X_op != O_constant,
11046 _("expression too complex"));
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
11049 _("shift out of range"));
11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11051 }
11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
11053 }
11054 else if (inst.operands[i].preind)
11055 {
11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11057 constraint (is_t && inst.operands[i].writeback,
11058 _("cannot use writeback with this instruction"));
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
11067 }
11068 else
11069 {
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
11073 }
11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11075 }
11076 else if (inst.operands[i].postind)
11077 {
11078 gas_assert (inst.operands[i].writeback);
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090 }
11091
11092 /* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
11098 #define T16_32_TAB \
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
11114 X(_bf, 0000, f040e001), \
11115 X(_bfcsel,0000, f000e001), \
11116 X(_bfx, 0000, f060e001), \
11117 X(_bfl, 0000, f000c001), \
11118 X(_bflx, 0000, f070e001), \
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
11127 X(_dls, 0000, f040e001), \
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
11140 X(_le, 0000, f00fc001), \
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
11182 X(_wls, 0000, f040c001), \
11183 X(_sev, bf40, f3af8004), \
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
11186
11187 /* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
11190 #define X(a,b,c) T_MNEM##a
11191 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192 #undef X
11193
11194 #define X(a,b,c) 0x##b
11195 static const unsigned short thumb_op16[] = { T16_32_TAB };
11196 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197 #undef X
11198
11199 #define X(a,b,c) 0x##c
11200 static const unsigned int thumb_op32[] = { T16_32_TAB };
11201 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11203 #undef X
11204 #undef T16_32_TAB
11205
11206 /* Thumb instruction encoders, in alphabetical order. */
11207
11208 /* ADDW or SUBW. */
11209
11210 static void
11211 do_t_add_sub_w (void)
11212 {
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
11224
11225 inst.instruction |= (Rn << 16) | (Rd << 8);
11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11227 }
11228
11229 /* Parse an add or subtract instruction. We get here with inst.instruction
11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11231
11232 static void
11233 do_t_add_sub (void)
11234 {
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
11242 if (Rd == REG_PC)
11243 set_pred_insn_type_last ();
11244
11245 if (unified_syntax)
11246 {
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
11254 narrow = !in_pred_block ();
11255 else
11256 narrow = in_pred_block ();
11257 if (!inst.operands[2].isreg)
11258 {
11259 int add;
11260
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11263
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
11269 /* Attempt to use a narrow opcode, with relaxation if
11270 appropriate. */
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11291 {
11292 if (inst.size_req == 2)
11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11294 else
11295 inst.relax = opcode;
11296 }
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11308 THUMB1_RELOC_ONLY);
11309 if (Rd == REG_PC)
11310 {
11311 constraint (add, BAD_PC);
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
11314 constraint (inst.relocs[0].exp.X_op != O_constant,
11315 _("expression too complex"));
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
11322 return;
11323 }
11324 else if (Rs == REG_PC)
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11337 else
11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11339 }
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
11342 }
11343 }
11344 else
11345 {
11346 unsigned int value = inst.relocs[0].exp.X_add_number;
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
11357 {
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
11365
11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11367 {
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11373 {
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
11385 }
11386 }
11387
11388 constraint (Rd == REG_PC, BAD_PC);
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
11412
11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11414 {
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11423 return;
11424 }
11425
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
11428
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
11431 {
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11449 }
11450 }
11451 }
11452
11453 static void
11454 do_t_adr (void)
11455 {
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
11466 inst.instruction |= Rd << 4;
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
11469 {
11470 /* Generate a 32-bit opcode. */
11471 inst.instruction = THUMB_OP32 (inst.instruction);
11472 inst.instruction |= Rd << 8;
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
11475 }
11476 else
11477 {
11478 /* Generate a 16-bit opcode. */
11479 inst.instruction = THUMB_OP16 (inst.instruction);
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
11483 inst.instruction |= Rd << 4;
11484 }
11485
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
11491 }
11492
11493 /* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
11499 static void
11500 do_t_arit3 (void)
11501 {
11502 int Rd, Rs, Rn;
11503
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
11509
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
11515 if (unified_syntax)
11516 {
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11526 }
11527 else
11528 {
11529 bfd_boolean narrow;
11530
11531 /* See if we can do this with a 16-bit instruction. */
11532 if (THUMB_SETS_FLAGS (inst.instruction))
11533 narrow = !in_pred_block ();
11534 else
11535 narrow = in_pred_block ();
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
11552
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
11562 }
11563 else
11564 {
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11569
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
11575
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
11579 }
11580 }
11581
11582 /* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587 static void
11588 do_t_arit3c (void)
11589 {
11590 int Rd, Rs, Rn;
11591
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
11597
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
11602
11603 if (unified_syntax)
11604 {
11605 if (!inst.operands[2].isreg)
11606 {
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11614 }
11615 else
11616 {
11617 bfd_boolean narrow;
11618
11619 /* See if we can do this with a 16-bit instruction. */
11620 if (THUMB_SETS_FLAGS (inst.instruction))
11621 narrow = !in_pred_block ();
11622 else
11623 narrow = in_pred_block ();
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
11633 {
11634 if (Rd == Rs)
11635 {
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
11640 }
11641 if (Rd == Rn)
11642 {
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
11647 }
11648 }
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
11658 }
11659 }
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11666
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
11681 }
11682
11683 static void
11684 do_t_bfc (void)
11685 {
11686 unsigned Rd;
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
11697 }
11698
11699 static void
11700 do_t_bfi (void)
11701 {
11702 int Rd, Rn;
11703 unsigned int msb;
11704
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
11717
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
11727 }
11728
11729 static void
11730 do_t_bfx (void)
11731 {
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747 }
11748
11749 /* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
11755
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
11758
11759 static void
11760 do_t_blx (void)
11761 {
11762 set_pred_insn_type_last ();
11763
11764 if (inst.operands[0].isreg)
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
11770 else
11771 {
11772 /* No register. This must be BLX(1). */
11773 inst.instruction = 0xf000e800;
11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11775 }
11776 }
11777
11778 static void
11779 do_t_branch (void)
11780 {
11781 int opcode;
11782 int cond;
11783 bfd_reloc_code_real_type reloc;
11784
11785 cond = inst.cond;
11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11787
11788 if (in_pred_block ())
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
11791 branches. */
11792 cond = COND_ALWAYS;
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
11802 if (unified_syntax
11803 && (inst.size_req == 4
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
11806 || inst.relocs[0].exp.X_op == O_constant))))
11807 {
11808 inst.instruction = THUMB_OP32(opcode);
11809 if (cond == COND_ALWAYS)
11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11811 else
11812 {
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
11817 gas_assert (cond != 0xF);
11818 inst.instruction |= cond << 22;
11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11820 }
11821 }
11822 else
11823 {
11824 inst.instruction = THUMB_OP16(opcode);
11825 if (cond == COND_ALWAYS)
11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11827 else
11828 {
11829 inst.instruction |= cond << 8;
11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11831 }
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
11835 }
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
11838 }
11839
11840 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11841 between the two is the maximum immediate allowed - which is passed in
11842 RANGE. */
11843 static void
11844 do_t_bkpt_hlt1 (int range)
11845 {
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
11848 if (inst.operands[0].present)
11849 {
11850 constraint (inst.operands[0].imm > range,
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
11853 }
11854
11855 set_pred_insn_type (NEUTRAL_IT_INSN);
11856 }
11857
11858 static void
11859 do_t_hlt (void)
11860 {
11861 do_t_bkpt_hlt1 (63);
11862 }
11863
11864 static void
11865 do_t_bkpt (void)
11866 {
11867 do_t_bkpt_hlt1 (255);
11868 }
11869
11870 static void
11871 do_t_branch23 (void)
11872 {
11873 set_pred_insn_type_last ();
11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11875
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11883
11884 #if defined(OBJ_COFF)
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11895 #endif
11896 }
11897
11898 static void
11899 do_t_bx (void)
11900 {
11901 set_pred_insn_type_last ();
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906 }
11907
11908 static void
11909 do_t_bxj (void)
11910 {
11911 int Rm;
11912
11913 set_pred_insn_type_last ();
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
11917 }
11918
11919 static void
11920 do_t_clz (void)
11921 {
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
11934 }
11935
11936 static void
11937 do_t_csdb (void)
11938 {
11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
11940 }
11941
11942 static void
11943 do_t_cps (void)
11944 {
11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
11946 inst.instruction |= inst.operands[0].imm;
11947 }
11948
11949 static void
11950 do_t_cpsi (void)
11951 {
11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
11953 if (unified_syntax
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11956 {
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
11963 }
11964 else
11965 {
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
11974 }
11975 }
11976
11977 /* THUMB CPY instruction (argument parse). */
11978
11979 static void
11980 do_t_cpy (void)
11981 {
11982 if (inst.size_req == 4)
11983 {
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
11987 }
11988 else
11989 {
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
11993 }
11994 }
11995
11996 static void
11997 do_t_cbz (void)
11998 {
11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12004 }
12005
12006 static void
12007 do_t_dbg (void)
12008 {
12009 inst.instruction |= inst.operands[0].imm;
12010 }
12011
12012 static void
12013 do_t_div (void)
12014 {
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
12029 }
12030
12031 static void
12032 do_t_hint (void)
12033 {
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038 }
12039
12040 static void
12041 do_t_it (void)
12042 {
12043 unsigned int cond = inst.operands[0].imm;
12044
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
12050
12051 /* If the condition is a negative condition, invert the mask. */
12052 if ((cond & 0x1) == 0x0)
12053 {
12054 unsigned int mask = inst.instruction & 0x000f;
12055
12056 if ((mask & 0x7) == 0)
12057 {
12058 /* No conversion needed. */
12059 now_pred.block_length = 1;
12060 }
12061 else if ((mask & 0x3) == 0)
12062 {
12063 mask ^= 0x8;
12064 now_pred.block_length = 2;
12065 }
12066 else if ((mask & 0x1) == 0)
12067 {
12068 mask ^= 0xC;
12069 now_pred.block_length = 3;
12070 }
12071 else
12072 {
12073 mask ^= 0xE;
12074 now_pred.block_length = 4;
12075 }
12076
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
12079 }
12080
12081 inst.instruction |= cond << 4;
12082 }
12083
12084 /* Helper function used for both push/pop and ldm/stm. */
12085 static void
12086 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
12088 {
12089 bfd_boolean load, store;
12090
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
12097
12098 if (do_io && (mask & (1 << base)) != 0
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
12103 if (load)
12104 {
12105 if (mask & (1 << 15))
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
12110 set_pred_insn_type_last ();
12111 }
12112 }
12113 else if (store)
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
12117 }
12118
12119 if (do_io && ((mask & (mask - 1)) == 0))
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
12141 mask = ffs (mask) - 1;
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
12148 if (do_io)
12149 inst.instruction |= base << 16;
12150 }
12151
12152 static void
12153 do_t_ldmstm (void)
12154 {
12155 /* This really doesn't seem worth it. */
12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
12160
12161 if (unified_syntax)
12162 {
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
12170 && !(inst.operands[1].imm & ~0xff))
12171 {
12172 mask = 1 << inst.operands[0].reg;
12173
12174 if (inst.operands[0].reg <= 7)
12175 {
12176 if (inst.instruction == T_MNEM_stmia
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
12180 {
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
12186
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
12197 reglist.
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
12206 inst.error =
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
12217 }
12218 else if (inst.operands[0] .reg == REG_SP)
12219 {
12220 if (inst.operands[0].writeback)
12221 {
12222 inst.instruction =
12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12224 ? T_MNEM_push : T_MNEM_pop);
12225 inst.instruction |= inst.operands[1].imm;
12226 narrow = TRUE;
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
12230 inst.instruction =
12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12234 narrow = TRUE;
12235 }
12236 }
12237 }
12238
12239 if (!narrow)
12240 {
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
12243
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
12247 }
12248 }
12249 else
12250 {
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
12256 if (inst.instruction == T_MNEM_stmia)
12257 {
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12262 as_warn (_("value stored for r%d is UNKNOWN"),
12263 inst.operands[0].reg);
12264 }
12265 else
12266 {
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
12273 }
12274
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279 }
12280
12281 static void
12282 do_t_ldrex (void)
12283 {
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
12288 BAD_ADDR_MODE);
12289
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12295 }
12296
12297 static void
12298 do_t_ldrexd (void)
12299 {
12300 if (!inst.operands[1].present)
12301 {
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
12306 }
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
12309
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
12313 }
12314
12315 static void
12316 do_t_ldst (void)
12317 {
12318 unsigned long opcode;
12319 int Rn;
12320
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
12324 set_pred_insn_type_last ();
12325
12326 opcode = inst.instruction;
12327 if (unified_syntax)
12328 {
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12334 return;
12335 }
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
12342 {
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
12348 /* [Rn, Rik] */
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
12364 if (inst.relocs[0].pc_rel)
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
12390 }
12391 /* Definitely a 32-bit variant. */
12392
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
12408 /* Do some validations regarding addressing modes. */
12409 if (inst.operands[1].immisreg)
12410 reject_bad_reg (inst.operands[1].imm);
12411
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
12416 inst.instruction = THUMB_OP32 (opcode);
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12419 check_ldr_r15_aligned ();
12420 return;
12421 }
12422
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12426 {
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
12435 }
12436
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12440 return;
12441
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12447 {
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
12455
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
12462
12463 inst.instruction |= inst.operands[0].reg << 8;
12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12465 return;
12466 }
12467
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12475 return;
12476 }
12477
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
12482
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
12496
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500 }
12501
12502 static void
12503 do_t_ldstd (void)
12504 {
12505 if (!inst.operands[1].present)
12506 {
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
12510 constraint (inst.operands[0].reg == REG_R12,
12511 _("r12 not allowed here"));
12512 }
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
12518 "one of transfer registers"));
12519
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12523 }
12524
12525 static void
12526 do_t_ldstt (void)
12527 {
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530 }
12531
12532 static void
12533 do_t_mla (void)
12534 {
12535 unsigned Rd, Rn, Rm, Ra;
12536
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
12551 }
12552
12553 static void
12554 do_t_mlal (void)
12555 {
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
12572 }
12573
12574 static void
12575 do_t_mov_cmp (void)
12576 {
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
12582 if (Rn == REG_PC)
12583 set_pred_insn_type_last ();
12584
12585 if (unified_syntax)
12586 {
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12589 unsigned long opcode;
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
12593 low_regs = (Rn <= 7 && Rm <= 7);
12594 opcode = inst.instruction;
12595 if (in_pred_block ())
12596 narrow = opcode != T_MNEM_movs;
12597 else
12598 narrow = opcode != T_MNEM_movs || low_regs;
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
12645 as_tsktsk (_("Use of r%u as a source register is "
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12657 }
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
12663 if (!inst.operands[1].isreg)
12664 {
12665 /* Immediate operand. */
12666 if (!in_pred_block () && opcode == T_MNEM_mov)
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
12671 inst.instruction |= Rn << 8;
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12674 {
12675 if (inst.size_req == 2)
12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12677 else
12678 inst.relax = opcode;
12679 }
12680 }
12681 else
12682 {
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12687 THUMB1_RELOC_ONLY);
12688
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12691 inst.instruction |= Rn << r0off;
12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12693 }
12694 }
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
12702 if (in_pred_block ())
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
12713 if (Rn != Rm)
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
12731 abort ();
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
12737 inst.instruction |= Rn;
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
12750 else if (!narrow)
12751 {
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
12758 if (in_pred_block ())
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
12784 inst.instruction |= Rn << r0off;
12785 encode_thumb32_shifted_operand (1);
12786 }
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
12792 /* In v4t or v5t a move of two lowregs produces unpredictable
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12800 arm_ext_v6);
12801 }
12802
12803 inst.instruction = T_OPCODE_MOV_HR;
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
12807 break;
12808
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
12815 break;
12816
12817 case T_MNEM_cmp:
12818 if (low_regs)
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
12830 }
12831 break;
12832 }
12833 return;
12834 }
12835
12836 inst.instruction = THUMB_OP16 (inst.instruction);
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
12842 if (inst.operands[1].isreg)
12843 {
12844 if (Rn < 8 && Rm < 8)
12845 {
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
12850 else
12851 inst.instruction = T_OPCODE_CMP_LR;
12852
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
12855 }
12856 else
12857 {
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
12863 }
12864 }
12865 else
12866 {
12867 constraint (Rn > 7,
12868 _("only lo regs allowed with immediate"));
12869 inst.instruction |= Rn << 8;
12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12871 }
12872 }
12873
12874 static void
12875 do_t_mov16 (void)
12876 {
12877 unsigned Rd;
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12883 {
12884 constraint (top, _(":lower16: not allowed in this instruction"));
12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12886 }
12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12888 {
12889 constraint (!top, _(":upper16: not allowed in this instruction"));
12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12891 }
12892
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12898 {
12899 imm = inst.relocs[0].exp.X_add_number;
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
12905 }
12906
12907 static void
12908 do_t_mvn_tst (void)
12909 {
12910 unsigned Rn, Rm;
12911
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
12931 || Rn > 7 || Rm > 7)
12932 narrow = FALSE;
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
12937 narrow = !in_pred_block ();
12938 else
12939 narrow = in_pred_block ();
12940
12941 if (!inst.operands[1].isreg)
12942 {
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12948 inst.instruction |= Rn << r0off;
12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12950 }
12951 else
12952 {
12953 /* See if we can do this with a 16-bit instruction. */
12954 if (narrow)
12955 {
12956 inst.instruction = THUMB_OP16 (inst.instruction);
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
12959 }
12960 else
12961 {
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
12967 inst.instruction |= Rn << r0off;
12968 encode_thumb32_shifted_operand (1);
12969 }
12970 }
12971 }
12972 else
12973 {
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
12978 constraint (Rn > 7 || Rm > 7,
12979 BAD_HIREG);
12980
12981 inst.instruction = THUMB_OP16 (inst.instruction);
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
12984 }
12985 }
12986
12987 static void
12988 do_t_mrs (void)
12989 {
12990 unsigned Rd;
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
13000 {
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
13008 }
13009 else
13010 {
13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13012
13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
13023 else
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
13028
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
13033 }
13034
13035 static void
13036 do_t_msr (void)
13037 {
13038 int flags;
13039 unsigned Rn;
13040
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13053 {
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
13056 /* PR gas/12698: The constraint is only applied for m_profile.
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
13067 }
13068 else
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
13071
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
13078 inst.instruction |= (flags & 0xff);
13079 inst.instruction |= Rn << 16;
13080 }
13081
13082 static void
13083 do_t_mul (void)
13084 {
13085 bfd_boolean narrow;
13086 unsigned Rd, Rn, Rm;
13087
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
13090
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
13095 if (unified_syntax)
13096 {
13097 if (inst.size_req == 4
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
13104 narrow = !in_pred_block ();
13105 else
13106 narrow = in_pred_block ();
13107 }
13108 else
13109 {
13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13111 constraint (Rn > 7 || Rm > 7,
13112 BAD_HIREG);
13113 narrow = TRUE;
13114 }
13115
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
13119 inst.instruction = THUMB_OP16 (inst.instruction);
13120 inst.instruction |= Rd;
13121
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
13129 else
13130 {
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
13142 }
13143 }
13144
13145 static void
13146 do_t_mull (void)
13147 {
13148 unsigned RdLo, RdHi, Rn, Rm;
13149
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167 }
13168
13169 static void
13170 do_t_nop (void)
13171 {
13172 set_pred_insn_type (NEUTRAL_IT_INSN);
13173
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13177 {
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200 }
13201
13202 static void
13203 do_t_neg (void)
13204 {
13205 if (unified_syntax)
13206 {
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
13210 narrow = !in_pred_block ();
13211 else
13212 narrow = in_pred_block ();
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
13223 }
13224 else
13225 {
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
13229 }
13230 }
13231 else
13232 {
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241 }
13242
13243 static void
13244 do_t_orn (void)
13245 {
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
13268 reject_bad_reg (Rm);
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275 }
13276
13277 static void
13278 do_t_pkhbt (void)
13279 {
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
13293 if (inst.operands[3].present)
13294 {
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
13300 }
13301 }
13302
13303 static void
13304 do_t_pkhtb (void)
13305 {
13306 if (!inst.operands[3].present)
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
13317 do_t_pkhbt ();
13318 }
13319
13320 static void
13321 do_t_pld (void)
13322 {
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327 }
13328
13329 static void
13330 do_t_push_pop (void)
13331 {
13332 unsigned mask;
13333
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13337 _("expression too complex"));
13338
13339 mask = inst.operands[0].imm;
13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13342 else if (inst.size_req != 4
13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13344 ? REG_LR : REG_PC)))
13345 {
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
13348 inst.instruction |= mask & 0xff;
13349 }
13350 else if (unified_syntax)
13351 {
13352 inst.instruction = THUMB_OP32 (inst.instruction);
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
13359 }
13360 }
13361
13362 static void
13363 do_t_clrm (void)
13364 {
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
13372 }
13373
13374 static void
13375 do_t_vscclrm (void)
13376 {
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390 }
13391
13392 static void
13393 do_t_rbit (void)
13394 {
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13406 }
13407
13408 static void
13409 do_t_rev (void)
13410 {
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435 }
13436
13437 static void
13438 do_t_rrx (void)
13439 {
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
13447
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450 }
13451
13452 static void
13453 do_t_rsb (void)
13454 {
13455 unsigned Rd, Rs;
13456
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13461
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
13474 narrow = !in_pred_block ();
13475 else
13476 narrow = in_pred_block ();
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13489 relaxation, but it doesn't seem worth the hassle. */
13490 if (narrow)
13491 {
13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13501 }
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505 }
13506
13507 static void
13508 do_t_setend (void)
13509 {
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
13513
13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517 }
13518
13519 static void
13520 do_t_shift (void)
13521 {
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
13544 narrow = !in_pred_block ();
13545 else
13546 narrow = in_pred_block ();
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
13560
13561 if (!narrow)
13562 {
13563 if (inst.operands[2].isreg)
13564 {
13565 reject_bad_reg (inst.operands[2].reg);
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
13578 inst.operands[1].shift_kind = shift_kind;
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
13585 }
13586 }
13587 else
13588 {
13589 if (inst.operands[2].isreg)
13590 {
13591 switch (shift_kind)
13592 {
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13597 default: abort ();
13598 }
13599
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
13606 }
13607 else
13608 {
13609 switch (shift_kind)
13610 {
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13614 default: abort ();
13615 }
13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
13619 }
13620 }
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13627
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
13633
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
13642
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
13649 }
13650 else
13651 {
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
13663 }
13664 }
13665 }
13666
13667 static void
13668 do_t_simd (void)
13669 {
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
13683 }
13684
13685 static void
13686 do_t_simd2 (void)
13687 {
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701 }
13702
13703 static void
13704 do_t_smc (void)
13705 {
13706 unsigned int value = inst.relocs[0].exp.X_add_number;
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
13709 constraint (inst.relocs[0].exp.X_op != O_constant,
13710 _("expression too complex"));
13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
13716 set_pred_insn_type_last ();
13717 }
13718
13719 static void
13720 do_t_hvc (void)
13721 {
13722 unsigned int value = inst.relocs[0].exp.X_add_number;
13723
13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727 }
13728
13729 static void
13730 do_t_ssat_usat (int bias)
13731 {
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
13741 inst.instruction |= inst.operands[1].imm - bias;
13742 inst.instruction |= Rn << 16;
13743
13744 if (inst.operands[3].present)
13745 {
13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13747
13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
13749
13750 constraint (inst.relocs[0].exp.X_op != O_constant,
13751 _("expression too complex"));
13752
13753 if (shift_amount != 0)
13754 {
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
13763 }
13764 }
13765 }
13766
13767 static void
13768 do_t_ssat (void)
13769 {
13770 do_t_ssat_usat (1);
13771 }
13772
13773 static void
13774 do_t_ssat16 (void)
13775 {
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
13785 inst.instruction |= inst.operands[1].imm - 1;
13786 inst.instruction |= Rn << 16;
13787 }
13788
13789 static void
13790 do_t_strex (void)
13791 {
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
13796 BAD_ADDR_MODE);
13797
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13804 }
13805
13806 static void
13807 do_t_strexd (void)
13808 {
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
13811
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
13814 || inst.operands[0].reg == inst.operands[3].reg,
13815 BAD_OVERLAP);
13816
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
13821 }
13822
13823 static void
13824 do_t_sxtah (void)
13825 {
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
13839 inst.instruction |= inst.operands[3].imm << 4;
13840 }
13841
13842 static void
13843 do_t_sxth (void)
13844 {
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
13855 && Rd <= 7 && Rm <= 7
13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13857 {
13858 inst.instruction = THUMB_OP16 (inst.instruction);
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
13861 }
13862 else if (unified_syntax)
13863 {
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
13868 inst.instruction |= inst.operands[2].imm << 4;
13869 }
13870 else
13871 {
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
13875 }
13876 }
13877
13878 static void
13879 do_t_swi (void)
13880 {
13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13882 }
13883
13884 static void
13885 do_t_tb (void)
13886 {
13887 unsigned Rn, Rm;
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
13891 set_pred_insn_type_last ();
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
13897
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
13900 reject_bad_reg (Rm);
13901
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
13904 inst.instruction |= (Rn << 16) | Rm;
13905 }
13906
13907 static void
13908 do_t_udf (void)
13909 {
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
13927 set_pred_insn_type (NEUTRAL_IT_INSN);
13928 }
13929
13930
13931 static void
13932 do_t_usat (void)
13933 {
13934 do_t_ssat_usat (0);
13935 }
13936
13937 static void
13938 do_t_usat16 (void)
13939 {
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
13949 inst.instruction |= inst.operands[1].imm;
13950 inst.instruction |= Rn << 16;
13951 }
13952
13953 /* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955 static int
13956 v8_1_branch_value_check (int val, int nbits, int is_signed)
13957 {
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971 }
13972
13973 /* For branches in Armv8.1-M Mainline. */
13974 static void
13975 do_t_branch_future (void)
13976 {
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
14078 default: abort ();
14079 }
14080 }
14081
14082 /* Helper function for do_t_loloop to handle relocations. */
14083 static void
14084 v8_1_loop_reloc (int is_le)
14085 {
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106 }
14107
14108 /* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110 static void
14111 do_t_loloop (void)
14112 {
14113 unsigned long insn = inst.instruction;
14114
14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138 }
14139
14140 /* MVE instruction encoder helpers. */
14141 #define M_MNEM_vabav 0xee800f01
14142 #define M_MNEM_vmladav 0xeef00e00
14143 #define M_MNEM_vmladava 0xeef00e20
14144 #define M_MNEM_vmladavx 0xeef01e00
14145 #define M_MNEM_vmladavax 0xeef01e20
14146 #define M_MNEM_vmlsdav 0xeef00e01
14147 #define M_MNEM_vmlsdava 0xeef00e21
14148 #define M_MNEM_vmlsdavx 0xeef01e01
14149 #define M_MNEM_vmlsdavax 0xeef01e21
14150 #define M_MNEM_vmullt 0xee011e00
14151 #define M_MNEM_vmullb 0xee010e00
14152 #define M_MNEM_vst20 0xfc801e00
14153 #define M_MNEM_vst21 0xfc801e20
14154 #define M_MNEM_vst40 0xfc801e01
14155 #define M_MNEM_vst41 0xfc801e21
14156 #define M_MNEM_vst42 0xfc801e41
14157 #define M_MNEM_vst43 0xfc801e61
14158 #define M_MNEM_vld20 0xfc901e00
14159 #define M_MNEM_vld21 0xfc901e20
14160 #define M_MNEM_vld40 0xfc901e01
14161 #define M_MNEM_vld41 0xfc901e21
14162 #define M_MNEM_vld42 0xfc901e41
14163 #define M_MNEM_vld43 0xfc901e61
14164 #define M_MNEM_vstrb 0xec000e00
14165 #define M_MNEM_vstrh 0xec000e10
14166 #define M_MNEM_vstrw 0xec000e40
14167 #define M_MNEM_vstrd 0xec000e50
14168 #define M_MNEM_vldrb 0xec100e00
14169 #define M_MNEM_vldrh 0xec100e10
14170 #define M_MNEM_vldrw 0xec100e40
14171 #define M_MNEM_vldrd 0xec100e50
14172 #define M_MNEM_vmovlt 0xeea01f40
14173 #define M_MNEM_vmovlb 0xeea00f40
14174 #define M_MNEM_vmovnt 0xfe311e81
14175 #define M_MNEM_vmovnb 0xfe310e81
14176 #define M_MNEM_vadc 0xee300f00
14177 #define M_MNEM_vadci 0xee301f00
14178 #define M_MNEM_vbrsr 0xfe011e60
14179 #define M_MNEM_vaddlv 0xee890f00
14180 #define M_MNEM_vaddlva 0xee890f20
14181 #define M_MNEM_vaddv 0xeef10f00
14182 #define M_MNEM_vaddva 0xeef10f20
14183 #define M_MNEM_vddup 0xee011f6e
14184 #define M_MNEM_vdwdup 0xee011f60
14185 #define M_MNEM_vidup 0xee010f6e
14186 #define M_MNEM_viwdup 0xee010f60
14187 #define M_MNEM_vmaxv 0xeee20f00
14188 #define M_MNEM_vmaxav 0xeee00f00
14189 #define M_MNEM_vminv 0xeee20f80
14190 #define M_MNEM_vminav 0xeee00f80
14191 #define M_MNEM_vmlaldav 0xee800e00
14192 #define M_MNEM_vmlaldava 0xee800e20
14193 #define M_MNEM_vmlaldavx 0xee801e00
14194 #define M_MNEM_vmlaldavax 0xee801e20
14195 #define M_MNEM_vmlsldav 0xee800e01
14196 #define M_MNEM_vmlsldava 0xee800e21
14197 #define M_MNEM_vmlsldavx 0xee801e01
14198 #define M_MNEM_vmlsldavax 0xee801e21
14199 #define M_MNEM_vrmlaldavhx 0xee801f00
14200 #define M_MNEM_vrmlaldavhax 0xee801f20
14201 #define M_MNEM_vrmlsldavh 0xfe800e01
14202 #define M_MNEM_vrmlsldavha 0xfe800e21
14203 #define M_MNEM_vrmlsldavhx 0xfe801e01
14204 #define M_MNEM_vrmlsldavhax 0xfe801e21
14205
14206 /* Neon instruction encoder helpers. */
14207
14208 /* Encodings for the different types for various Neon opcodes. */
14209
14210 /* An "invalid" code for the following tables. */
14211 #define N_INV -1u
14212
14213 struct neon_tab_entry
14214 {
14215 unsigned integer;
14216 unsigned float_or_poly;
14217 unsigned scalar_or_imm;
14218 };
14219
14220 /* Map overloaded Neon opcodes to their respective encodings. */
14221 #define NEON_ENC_TAB \
14222 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14223 X(vabdl, 0x0800700, N_INV, N_INV), \
14224 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14225 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14226 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14227 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14228 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14229 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14230 X(vaddl, 0x0800000, N_INV, N_INV), \
14231 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14232 X(vsubl, 0x0800200, N_INV, N_INV), \
14233 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14234 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14235 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14236 /* Register variants of the following two instructions are encoded as
14237 vcge / vcgt with the operands reversed. */ \
14238 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14239 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14240 X(vfma, N_INV, 0x0000c10, N_INV), \
14241 X(vfms, N_INV, 0x0200c10, N_INV), \
14242 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14243 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14244 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14245 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14246 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14247 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14248 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14249 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14250 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14251 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14252 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14253 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14254 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14255 X(vshl, 0x0000400, N_INV, 0x0800510), \
14256 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14257 X(vand, 0x0000110, N_INV, 0x0800030), \
14258 X(vbic, 0x0100110, N_INV, 0x0800030), \
14259 X(veor, 0x1000110, N_INV, N_INV), \
14260 X(vorn, 0x0300110, N_INV, 0x0800010), \
14261 X(vorr, 0x0200110, N_INV, 0x0800010), \
14262 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14263 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14264 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14265 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14266 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14267 X(vst1, 0x0000000, 0x0800000, N_INV), \
14268 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14269 X(vst2, 0x0000100, 0x0800100, N_INV), \
14270 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14271 X(vst3, 0x0000200, 0x0800200, N_INV), \
14272 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14273 X(vst4, 0x0000300, 0x0800300, N_INV), \
14274 X(vmovn, 0x1b20200, N_INV, N_INV), \
14275 X(vtrn, 0x1b20080, N_INV, N_INV), \
14276 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14277 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14278 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14279 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14280 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14281 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14282 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14283 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14284 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14285 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14286 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14287 X(vseleq, 0xe000a00, N_INV, N_INV), \
14288 X(vselvs, 0xe100a00, N_INV, N_INV), \
14289 X(vselge, 0xe200a00, N_INV, N_INV), \
14290 X(vselgt, 0xe300a00, N_INV, N_INV), \
14291 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14292 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14293 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14294 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14295 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14296 X(aes, 0x3b00300, N_INV, N_INV), \
14297 X(sha3op, 0x2000c00, N_INV, N_INV), \
14298 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14299 X(sha2op, 0x3ba0380, N_INV, N_INV)
14300
14301 enum neon_opc
14302 {
14303 #define X(OPC,I,F,S) N_MNEM_##OPC
14304 NEON_ENC_TAB
14305 #undef X
14306 };
14307
14308 static const struct neon_tab_entry neon_enc_tab[] =
14309 {
14310 #define X(OPC,I,F,S) { (I), (F), (S) }
14311 NEON_ENC_TAB
14312 #undef X
14313 };
14314
14315 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14316 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14317 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14318 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14319 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14320 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14321 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14322 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14323 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14324 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14325 #define NEON_ENC_SINGLE_(X) \
14326 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14327 #define NEON_ENC_DOUBLE_(X) \
14328 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14329 #define NEON_ENC_FPV8_(X) \
14330 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14331
14332 #define NEON_ENCODE(type, inst) \
14333 do \
14334 { \
14335 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14336 inst.is_neon = 1; \
14337 } \
14338 while (0)
14339
14340 #define check_neon_suffixes \
14341 do \
14342 { \
14343 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14344 { \
14345 as_bad (_("invalid neon suffix for non neon instruction")); \
14346 return; \
14347 } \
14348 } \
14349 while (0)
14350
14351 /* Define shapes for instruction operands. The following mnemonic characters
14352 are used in this table:
14353
14354 F - VFP S<n> register
14355 D - Neon D<n> register
14356 Q - Neon Q<n> register
14357 I - Immediate
14358 S - Scalar
14359 R - ARM register
14360 L - D<n> register list
14361
14362 This table is used to generate various data:
14363 - enumerations of the form NS_DDR to be used as arguments to
14364 neon_select_shape.
14365 - a table classifying shapes into single, double, quad, mixed.
14366 - a table used to drive neon_select_shape. */
14367
14368 #define NEON_SHAPE_DEF \
14369 X(4, (R, R, Q, Q), QUAD), \
14370 X(4, (Q, R, R, I), QUAD), \
14371 X(4, (R, R, S, S), QUAD), \
14372 X(4, (S, S, R, R), QUAD), \
14373 X(3, (Q, R, I), QUAD), \
14374 X(3, (I, Q, Q), QUAD), \
14375 X(3, (I, Q, R), QUAD), \
14376 X(3, (R, Q, Q), QUAD), \
14377 X(3, (D, D, D), DOUBLE), \
14378 X(3, (Q, Q, Q), QUAD), \
14379 X(3, (D, D, I), DOUBLE), \
14380 X(3, (Q, Q, I), QUAD), \
14381 X(3, (D, D, S), DOUBLE), \
14382 X(3, (Q, Q, S), QUAD), \
14383 X(3, (Q, Q, R), QUAD), \
14384 X(3, (R, R, Q), QUAD), \
14385 X(2, (R, Q), QUAD), \
14386 X(2, (D, D), DOUBLE), \
14387 X(2, (Q, Q), QUAD), \
14388 X(2, (D, S), DOUBLE), \
14389 X(2, (Q, S), QUAD), \
14390 X(2, (D, R), DOUBLE), \
14391 X(2, (Q, R), QUAD), \
14392 X(2, (D, I), DOUBLE), \
14393 X(2, (Q, I), QUAD), \
14394 X(3, (D, L, D), DOUBLE), \
14395 X(2, (D, Q), MIXED), \
14396 X(2, (Q, D), MIXED), \
14397 X(3, (D, Q, I), MIXED), \
14398 X(3, (Q, D, I), MIXED), \
14399 X(3, (Q, D, D), MIXED), \
14400 X(3, (D, Q, Q), MIXED), \
14401 X(3, (Q, Q, D), MIXED), \
14402 X(3, (Q, D, S), MIXED), \
14403 X(3, (D, Q, S), MIXED), \
14404 X(4, (D, D, D, I), DOUBLE), \
14405 X(4, (Q, Q, Q, I), QUAD), \
14406 X(4, (D, D, S, I), DOUBLE), \
14407 X(4, (Q, Q, S, I), QUAD), \
14408 X(2, (F, F), SINGLE), \
14409 X(3, (F, F, F), SINGLE), \
14410 X(2, (F, I), SINGLE), \
14411 X(2, (F, D), MIXED), \
14412 X(2, (D, F), MIXED), \
14413 X(3, (F, F, I), MIXED), \
14414 X(4, (R, R, F, F), SINGLE), \
14415 X(4, (F, F, R, R), SINGLE), \
14416 X(3, (D, R, R), DOUBLE), \
14417 X(3, (R, R, D), DOUBLE), \
14418 X(2, (S, R), SINGLE), \
14419 X(2, (R, S), SINGLE), \
14420 X(2, (F, R), SINGLE), \
14421 X(2, (R, F), SINGLE), \
14422 /* Half float shape supported so far. */\
14423 X (2, (H, D), MIXED), \
14424 X (2, (D, H), MIXED), \
14425 X (2, (H, F), MIXED), \
14426 X (2, (F, H), MIXED), \
14427 X (2, (H, H), HALF), \
14428 X (2, (H, R), HALF), \
14429 X (2, (R, H), HALF), \
14430 X (2, (H, I), HALF), \
14431 X (3, (H, H, H), HALF), \
14432 X (3, (H, F, I), MIXED), \
14433 X (3, (F, H, I), MIXED), \
14434 X (3, (D, H, H), MIXED), \
14435 X (3, (D, H, S), MIXED)
14436
14437 #define S2(A,B) NS_##A##B
14438 #define S3(A,B,C) NS_##A##B##C
14439 #define S4(A,B,C,D) NS_##A##B##C##D
14440
14441 #define X(N, L, C) S##N L
14442
14443 enum neon_shape
14444 {
14445 NEON_SHAPE_DEF,
14446 NS_NULL
14447 };
14448
14449 #undef X
14450 #undef S2
14451 #undef S3
14452 #undef S4
14453
14454 enum neon_shape_class
14455 {
14456 SC_HALF,
14457 SC_SINGLE,
14458 SC_DOUBLE,
14459 SC_QUAD,
14460 SC_MIXED
14461 };
14462
14463 #define X(N, L, C) SC_##C
14464
14465 static enum neon_shape_class neon_shape_class[] =
14466 {
14467 NEON_SHAPE_DEF
14468 };
14469
14470 #undef X
14471
14472 enum neon_shape_el
14473 {
14474 SE_H,
14475 SE_F,
14476 SE_D,
14477 SE_Q,
14478 SE_I,
14479 SE_S,
14480 SE_R,
14481 SE_L
14482 };
14483
14484 /* Register widths of above. */
14485 static unsigned neon_shape_el_size[] =
14486 {
14487 16,
14488 32,
14489 64,
14490 128,
14491 0,
14492 32,
14493 32,
14494 0
14495 };
14496
14497 struct neon_shape_info
14498 {
14499 unsigned els;
14500 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14501 };
14502
14503 #define S2(A,B) { SE_##A, SE_##B }
14504 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14505 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14506
14507 #define X(N, L, C) { N, S##N L }
14508
14509 static struct neon_shape_info neon_shape_tab[] =
14510 {
14511 NEON_SHAPE_DEF
14512 };
14513
14514 #undef X
14515 #undef S2
14516 #undef S3
14517 #undef S4
14518
14519 /* Bit masks used in type checking given instructions.
14520 'N_EQK' means the type must be the same as (or based on in some way) the key
14521 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14522 set, various other bits can be set as well in order to modify the meaning of
14523 the type constraint. */
14524
14525 enum neon_type_mask
14526 {
14527 N_S8 = 0x0000001,
14528 N_S16 = 0x0000002,
14529 N_S32 = 0x0000004,
14530 N_S64 = 0x0000008,
14531 N_U8 = 0x0000010,
14532 N_U16 = 0x0000020,
14533 N_U32 = 0x0000040,
14534 N_U64 = 0x0000080,
14535 N_I8 = 0x0000100,
14536 N_I16 = 0x0000200,
14537 N_I32 = 0x0000400,
14538 N_I64 = 0x0000800,
14539 N_8 = 0x0001000,
14540 N_16 = 0x0002000,
14541 N_32 = 0x0004000,
14542 N_64 = 0x0008000,
14543 N_P8 = 0x0010000,
14544 N_P16 = 0x0020000,
14545 N_F16 = 0x0040000,
14546 N_F32 = 0x0080000,
14547 N_F64 = 0x0100000,
14548 N_P64 = 0x0200000,
14549 N_KEY = 0x1000000, /* Key element (main type specifier). */
14550 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14551 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14552 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14553 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14554 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14555 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14556 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14557 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14558 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14559 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14560 N_UTYP = 0,
14561 N_MAX_NONSPECIAL = N_P64
14562 };
14563
14564 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14565
14566 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14567 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14568 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14569 #define N_S_32 (N_S8 | N_S16 | N_S32)
14570 #define N_F_16_32 (N_F16 | N_F32)
14571 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14572 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14573 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14574 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14575 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14576 #define N_F_MVE (N_F16 | N_F32)
14577 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14578
14579 /* Pass this as the first type argument to neon_check_type to ignore types
14580 altogether. */
14581 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14582
14583 /* Select a "shape" for the current instruction (describing register types or
14584 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14585 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14586 function of operand parsing, so this function doesn't need to be called.
14587 Shapes should be listed in order of decreasing length. */
14588
14589 static enum neon_shape
14590 neon_select_shape (enum neon_shape shape, ...)
14591 {
14592 va_list ap;
14593 enum neon_shape first_shape = shape;
14594
14595 /* Fix missing optional operands. FIXME: we don't know at this point how
14596 many arguments we should have, so this makes the assumption that we have
14597 > 1. This is true of all current Neon opcodes, I think, but may not be
14598 true in the future. */
14599 if (!inst.operands[1].present)
14600 inst.operands[1] = inst.operands[0];
14601
14602 va_start (ap, shape);
14603
14604 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14605 {
14606 unsigned j;
14607 int matches = 1;
14608
14609 for (j = 0; j < neon_shape_tab[shape].els; j++)
14610 {
14611 if (!inst.operands[j].present)
14612 {
14613 matches = 0;
14614 break;
14615 }
14616
14617 switch (neon_shape_tab[shape].el[j])
14618 {
14619 /* If a .f16, .16, .u16, .s16 type specifier is given over
14620 a VFP single precision register operand, it's essentially
14621 means only half of the register is used.
14622
14623 If the type specifier is given after the mnemonics, the
14624 information is stored in inst.vectype. If the type specifier
14625 is given after register operand, the information is stored
14626 in inst.operands[].vectype.
14627
14628 When there is only one type specifier, and all the register
14629 operands are the same type of hardware register, the type
14630 specifier applies to all register operands.
14631
14632 If no type specifier is given, the shape is inferred from
14633 operand information.
14634
14635 for example:
14636 vadd.f16 s0, s1, s2: NS_HHH
14637 vabs.f16 s0, s1: NS_HH
14638 vmov.f16 s0, r1: NS_HR
14639 vmov.f16 r0, s1: NS_RH
14640 vcvt.f16 r0, s1: NS_RH
14641 vcvt.f16.s32 s2, s2, #29: NS_HFI
14642 vcvt.f16.s32 s2, s2: NS_HF
14643 */
14644 case SE_H:
14645 if (!(inst.operands[j].isreg
14646 && inst.operands[j].isvec
14647 && inst.operands[j].issingle
14648 && !inst.operands[j].isquad
14649 && ((inst.vectype.elems == 1
14650 && inst.vectype.el[0].size == 16)
14651 || (inst.vectype.elems > 1
14652 && inst.vectype.el[j].size == 16)
14653 || (inst.vectype.elems == 0
14654 && inst.operands[j].vectype.type != NT_invtype
14655 && inst.operands[j].vectype.size == 16))))
14656 matches = 0;
14657 break;
14658
14659 case SE_F:
14660 if (!(inst.operands[j].isreg
14661 && inst.operands[j].isvec
14662 && inst.operands[j].issingle
14663 && !inst.operands[j].isquad
14664 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14665 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14666 || (inst.vectype.elems == 0
14667 && (inst.operands[j].vectype.size == 32
14668 || inst.operands[j].vectype.type == NT_invtype)))))
14669 matches = 0;
14670 break;
14671
14672 case SE_D:
14673 if (!(inst.operands[j].isreg
14674 && inst.operands[j].isvec
14675 && !inst.operands[j].isquad
14676 && !inst.operands[j].issingle))
14677 matches = 0;
14678 break;
14679
14680 case SE_R:
14681 if (!(inst.operands[j].isreg
14682 && !inst.operands[j].isvec))
14683 matches = 0;
14684 break;
14685
14686 case SE_Q:
14687 if (!(inst.operands[j].isreg
14688 && inst.operands[j].isvec
14689 && inst.operands[j].isquad
14690 && !inst.operands[j].issingle))
14691 matches = 0;
14692 break;
14693
14694 case SE_I:
14695 if (!(!inst.operands[j].isreg
14696 && !inst.operands[j].isscalar))
14697 matches = 0;
14698 break;
14699
14700 case SE_S:
14701 if (!(!inst.operands[j].isreg
14702 && inst.operands[j].isscalar))
14703 matches = 0;
14704 break;
14705
14706 case SE_L:
14707 break;
14708 }
14709 if (!matches)
14710 break;
14711 }
14712 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14713 /* We've matched all the entries in the shape table, and we don't
14714 have any left over operands which have not been matched. */
14715 break;
14716 }
14717
14718 va_end (ap);
14719
14720 if (shape == NS_NULL && first_shape != NS_NULL)
14721 first_error (_("invalid instruction shape"));
14722
14723 return shape;
14724 }
14725
14726 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14727 means the Q bit should be set). */
14728
14729 static int
14730 neon_quad (enum neon_shape shape)
14731 {
14732 return neon_shape_class[shape] == SC_QUAD;
14733 }
14734
14735 static void
14736 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14737 unsigned *g_size)
14738 {
14739 /* Allow modification to be made to types which are constrained to be
14740 based on the key element, based on bits set alongside N_EQK. */
14741 if ((typebits & N_EQK) != 0)
14742 {
14743 if ((typebits & N_HLF) != 0)
14744 *g_size /= 2;
14745 else if ((typebits & N_DBL) != 0)
14746 *g_size *= 2;
14747 if ((typebits & N_SGN) != 0)
14748 *g_type = NT_signed;
14749 else if ((typebits & N_UNS) != 0)
14750 *g_type = NT_unsigned;
14751 else if ((typebits & N_INT) != 0)
14752 *g_type = NT_integer;
14753 else if ((typebits & N_FLT) != 0)
14754 *g_type = NT_float;
14755 else if ((typebits & N_SIZ) != 0)
14756 *g_type = NT_untyped;
14757 }
14758 }
14759
14760 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14761 operand type, i.e. the single type specified in a Neon instruction when it
14762 is the only one given. */
14763
14764 static struct neon_type_el
14765 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14766 {
14767 struct neon_type_el dest = *key;
14768
14769 gas_assert ((thisarg & N_EQK) != 0);
14770
14771 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14772
14773 return dest;
14774 }
14775
14776 /* Convert Neon type and size into compact bitmask representation. */
14777
14778 static enum neon_type_mask
14779 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14780 {
14781 switch (type)
14782 {
14783 case NT_untyped:
14784 switch (size)
14785 {
14786 case 8: return N_8;
14787 case 16: return N_16;
14788 case 32: return N_32;
14789 case 64: return N_64;
14790 default: ;
14791 }
14792 break;
14793
14794 case NT_integer:
14795 switch (size)
14796 {
14797 case 8: return N_I8;
14798 case 16: return N_I16;
14799 case 32: return N_I32;
14800 case 64: return N_I64;
14801 default: ;
14802 }
14803 break;
14804
14805 case NT_float:
14806 switch (size)
14807 {
14808 case 16: return N_F16;
14809 case 32: return N_F32;
14810 case 64: return N_F64;
14811 default: ;
14812 }
14813 break;
14814
14815 case NT_poly:
14816 switch (size)
14817 {
14818 case 8: return N_P8;
14819 case 16: return N_P16;
14820 case 64: return N_P64;
14821 default: ;
14822 }
14823 break;
14824
14825 case NT_signed:
14826 switch (size)
14827 {
14828 case 8: return N_S8;
14829 case 16: return N_S16;
14830 case 32: return N_S32;
14831 case 64: return N_S64;
14832 default: ;
14833 }
14834 break;
14835
14836 case NT_unsigned:
14837 switch (size)
14838 {
14839 case 8: return N_U8;
14840 case 16: return N_U16;
14841 case 32: return N_U32;
14842 case 64: return N_U64;
14843 default: ;
14844 }
14845 break;
14846
14847 default: ;
14848 }
14849
14850 return N_UTYP;
14851 }
14852
14853 /* Convert compact Neon bitmask type representation to a type and size. Only
14854 handles the case where a single bit is set in the mask. */
14855
14856 static int
14857 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14858 enum neon_type_mask mask)
14859 {
14860 if ((mask & N_EQK) != 0)
14861 return FAIL;
14862
14863 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14864 *size = 8;
14865 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14866 *size = 16;
14867 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14868 *size = 32;
14869 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14870 *size = 64;
14871 else
14872 return FAIL;
14873
14874 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14875 *type = NT_signed;
14876 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14877 *type = NT_unsigned;
14878 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14879 *type = NT_integer;
14880 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14881 *type = NT_untyped;
14882 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14883 *type = NT_poly;
14884 else if ((mask & (N_F_ALL)) != 0)
14885 *type = NT_float;
14886 else
14887 return FAIL;
14888
14889 return SUCCESS;
14890 }
14891
14892 /* Modify a bitmask of allowed types. This is only needed for type
14893 relaxation. */
14894
14895 static unsigned
14896 modify_types_allowed (unsigned allowed, unsigned mods)
14897 {
14898 unsigned size;
14899 enum neon_el_type type;
14900 unsigned destmask;
14901 int i;
14902
14903 destmask = 0;
14904
14905 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14906 {
14907 if (el_type_of_type_chk (&type, &size,
14908 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14909 {
14910 neon_modify_type_size (mods, &type, &size);
14911 destmask |= type_chk_of_el_type (type, size);
14912 }
14913 }
14914
14915 return destmask;
14916 }
14917
14918 /* Check type and return type classification.
14919 The manual states (paraphrase): If one datatype is given, it indicates the
14920 type given in:
14921 - the second operand, if there is one
14922 - the operand, if there is no second operand
14923 - the result, if there are no operands.
14924 This isn't quite good enough though, so we use a concept of a "key" datatype
14925 which is set on a per-instruction basis, which is the one which matters when
14926 only one data type is written.
14927 Note: this function has side-effects (e.g. filling in missing operands). All
14928 Neon instructions should call it before performing bit encoding. */
14929
14930 static struct neon_type_el
14931 neon_check_type (unsigned els, enum neon_shape ns, ...)
14932 {
14933 va_list ap;
14934 unsigned i, pass, key_el = 0;
14935 unsigned types[NEON_MAX_TYPE_ELS];
14936 enum neon_el_type k_type = NT_invtype;
14937 unsigned k_size = -1u;
14938 struct neon_type_el badtype = {NT_invtype, -1};
14939 unsigned key_allowed = 0;
14940
14941 /* Optional registers in Neon instructions are always (not) in operand 1.
14942 Fill in the missing operand here, if it was omitted. */
14943 if (els > 1 && !inst.operands[1].present)
14944 inst.operands[1] = inst.operands[0];
14945
14946 /* Suck up all the varargs. */
14947 va_start (ap, ns);
14948 for (i = 0; i < els; i++)
14949 {
14950 unsigned thisarg = va_arg (ap, unsigned);
14951 if (thisarg == N_IGNORE_TYPE)
14952 {
14953 va_end (ap);
14954 return badtype;
14955 }
14956 types[i] = thisarg;
14957 if ((thisarg & N_KEY) != 0)
14958 key_el = i;
14959 }
14960 va_end (ap);
14961
14962 if (inst.vectype.elems > 0)
14963 for (i = 0; i < els; i++)
14964 if (inst.operands[i].vectype.type != NT_invtype)
14965 {
14966 first_error (_("types specified in both the mnemonic and operands"));
14967 return badtype;
14968 }
14969
14970 /* Duplicate inst.vectype elements here as necessary.
14971 FIXME: No idea if this is exactly the same as the ARM assembler,
14972 particularly when an insn takes one register and one non-register
14973 operand. */
14974 if (inst.vectype.elems == 1 && els > 1)
14975 {
14976 unsigned j;
14977 inst.vectype.elems = els;
14978 inst.vectype.el[key_el] = inst.vectype.el[0];
14979 for (j = 0; j < els; j++)
14980 if (j != key_el)
14981 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14982 types[j]);
14983 }
14984 else if (inst.vectype.elems == 0 && els > 0)
14985 {
14986 unsigned j;
14987 /* No types were given after the mnemonic, so look for types specified
14988 after each operand. We allow some flexibility here; as long as the
14989 "key" operand has a type, we can infer the others. */
14990 for (j = 0; j < els; j++)
14991 if (inst.operands[j].vectype.type != NT_invtype)
14992 inst.vectype.el[j] = inst.operands[j].vectype;
14993
14994 if (inst.operands[key_el].vectype.type != NT_invtype)
14995 {
14996 for (j = 0; j < els; j++)
14997 if (inst.operands[j].vectype.type == NT_invtype)
14998 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14999 types[j]);
15000 }
15001 else
15002 {
15003 first_error (_("operand types can't be inferred"));
15004 return badtype;
15005 }
15006 }
15007 else if (inst.vectype.elems != els)
15008 {
15009 first_error (_("type specifier has the wrong number of parts"));
15010 return badtype;
15011 }
15012
15013 for (pass = 0; pass < 2; pass++)
15014 {
15015 for (i = 0; i < els; i++)
15016 {
15017 unsigned thisarg = types[i];
15018 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15019 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15020 enum neon_el_type g_type = inst.vectype.el[i].type;
15021 unsigned g_size = inst.vectype.el[i].size;
15022
15023 /* Decay more-specific signed & unsigned types to sign-insensitive
15024 integer types if sign-specific variants are unavailable. */
15025 if ((g_type == NT_signed || g_type == NT_unsigned)
15026 && (types_allowed & N_SU_ALL) == 0)
15027 g_type = NT_integer;
15028
15029 /* If only untyped args are allowed, decay any more specific types to
15030 them. Some instructions only care about signs for some element
15031 sizes, so handle that properly. */
15032 if (((types_allowed & N_UNT) == 0)
15033 && ((g_size == 8 && (types_allowed & N_8) != 0)
15034 || (g_size == 16 && (types_allowed & N_16) != 0)
15035 || (g_size == 32 && (types_allowed & N_32) != 0)
15036 || (g_size == 64 && (types_allowed & N_64) != 0)))
15037 g_type = NT_untyped;
15038
15039 if (pass == 0)
15040 {
15041 if ((thisarg & N_KEY) != 0)
15042 {
15043 k_type = g_type;
15044 k_size = g_size;
15045 key_allowed = thisarg & ~N_KEY;
15046
15047 /* Check architecture constraint on FP16 extension. */
15048 if (k_size == 16
15049 && k_type == NT_float
15050 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15051 {
15052 inst.error = _(BAD_FP16);
15053 return badtype;
15054 }
15055 }
15056 }
15057 else
15058 {
15059 if ((thisarg & N_VFP) != 0)
15060 {
15061 enum neon_shape_el regshape;
15062 unsigned regwidth, match;
15063
15064 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15065 if (ns == NS_NULL)
15066 {
15067 first_error (_("invalid instruction shape"));
15068 return badtype;
15069 }
15070 regshape = neon_shape_tab[ns].el[i];
15071 regwidth = neon_shape_el_size[regshape];
15072
15073 /* In VFP mode, operands must match register widths. If we
15074 have a key operand, use its width, else use the width of
15075 the current operand. */
15076 if (k_size != -1u)
15077 match = k_size;
15078 else
15079 match = g_size;
15080
15081 /* FP16 will use a single precision register. */
15082 if (regwidth == 32 && match == 16)
15083 {
15084 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15085 match = regwidth;
15086 else
15087 {
15088 inst.error = _(BAD_FP16);
15089 return badtype;
15090 }
15091 }
15092
15093 if (regwidth != match)
15094 {
15095 first_error (_("operand size must match register width"));
15096 return badtype;
15097 }
15098 }
15099
15100 if ((thisarg & N_EQK) == 0)
15101 {
15102 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15103
15104 if ((given_type & types_allowed) == 0)
15105 {
15106 first_error (BAD_SIMD_TYPE);
15107 return badtype;
15108 }
15109 }
15110 else
15111 {
15112 enum neon_el_type mod_k_type = k_type;
15113 unsigned mod_k_size = k_size;
15114 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15115 if (g_type != mod_k_type || g_size != mod_k_size)
15116 {
15117 first_error (_("inconsistent types in Neon instruction"));
15118 return badtype;
15119 }
15120 }
15121 }
15122 }
15123 }
15124
15125 return inst.vectype.el[key_el];
15126 }
15127
15128 /* Neon-style VFP instruction forwarding. */
15129
15130 /* Thumb VFP instructions have 0xE in the condition field. */
15131
15132 static void
15133 do_vfp_cond_or_thumb (void)
15134 {
15135 inst.is_neon = 1;
15136
15137 if (thumb_mode)
15138 inst.instruction |= 0xe0000000;
15139 else
15140 inst.instruction |= inst.cond << 28;
15141 }
15142
15143 /* Look up and encode a simple mnemonic, for use as a helper function for the
15144 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15145 etc. It is assumed that operand parsing has already been done, and that the
15146 operands are in the form expected by the given opcode (this isn't necessarily
15147 the same as the form in which they were parsed, hence some massaging must
15148 take place before this function is called).
15149 Checks current arch version against that in the looked-up opcode. */
15150
15151 static void
15152 do_vfp_nsyn_opcode (const char *opname)
15153 {
15154 const struct asm_opcode *opcode;
15155
15156 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15157
15158 if (!opcode)
15159 abort ();
15160
15161 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15162 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15163 _(BAD_FPU));
15164
15165 inst.is_neon = 1;
15166
15167 if (thumb_mode)
15168 {
15169 inst.instruction = opcode->tvalue;
15170 opcode->tencode ();
15171 }
15172 else
15173 {
15174 inst.instruction = (inst.cond << 28) | opcode->avalue;
15175 opcode->aencode ();
15176 }
15177 }
15178
15179 static void
15180 do_vfp_nsyn_add_sub (enum neon_shape rs)
15181 {
15182 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15183
15184 if (rs == NS_FFF || rs == NS_HHH)
15185 {
15186 if (is_add)
15187 do_vfp_nsyn_opcode ("fadds");
15188 else
15189 do_vfp_nsyn_opcode ("fsubs");
15190
15191 /* ARMv8.2 fp16 instruction. */
15192 if (rs == NS_HHH)
15193 do_scalar_fp16_v82_encode ();
15194 }
15195 else
15196 {
15197 if (is_add)
15198 do_vfp_nsyn_opcode ("faddd");
15199 else
15200 do_vfp_nsyn_opcode ("fsubd");
15201 }
15202 }
15203
15204 /* Check operand types to see if this is a VFP instruction, and if so call
15205 PFN (). */
15206
15207 static int
15208 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15209 {
15210 enum neon_shape rs;
15211 struct neon_type_el et;
15212
15213 switch (args)
15214 {
15215 case 2:
15216 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15217 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15218 break;
15219
15220 case 3:
15221 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15222 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15223 N_F_ALL | N_KEY | N_VFP);
15224 break;
15225
15226 default:
15227 abort ();
15228 }
15229
15230 if (et.type != NT_invtype)
15231 {
15232 pfn (rs);
15233 return SUCCESS;
15234 }
15235
15236 inst.error = NULL;
15237 return FAIL;
15238 }
15239
15240 static void
15241 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15242 {
15243 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15244
15245 if (rs == NS_FFF || rs == NS_HHH)
15246 {
15247 if (is_mla)
15248 do_vfp_nsyn_opcode ("fmacs");
15249 else
15250 do_vfp_nsyn_opcode ("fnmacs");
15251
15252 /* ARMv8.2 fp16 instruction. */
15253 if (rs == NS_HHH)
15254 do_scalar_fp16_v82_encode ();
15255 }
15256 else
15257 {
15258 if (is_mla)
15259 do_vfp_nsyn_opcode ("fmacd");
15260 else
15261 do_vfp_nsyn_opcode ("fnmacd");
15262 }
15263 }
15264
15265 static void
15266 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15267 {
15268 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15269
15270 if (rs == NS_FFF || rs == NS_HHH)
15271 {
15272 if (is_fma)
15273 do_vfp_nsyn_opcode ("ffmas");
15274 else
15275 do_vfp_nsyn_opcode ("ffnmas");
15276
15277 /* ARMv8.2 fp16 instruction. */
15278 if (rs == NS_HHH)
15279 do_scalar_fp16_v82_encode ();
15280 }
15281 else
15282 {
15283 if (is_fma)
15284 do_vfp_nsyn_opcode ("ffmad");
15285 else
15286 do_vfp_nsyn_opcode ("ffnmad");
15287 }
15288 }
15289
15290 static void
15291 do_vfp_nsyn_mul (enum neon_shape rs)
15292 {
15293 if (rs == NS_FFF || rs == NS_HHH)
15294 {
15295 do_vfp_nsyn_opcode ("fmuls");
15296
15297 /* ARMv8.2 fp16 instruction. */
15298 if (rs == NS_HHH)
15299 do_scalar_fp16_v82_encode ();
15300 }
15301 else
15302 do_vfp_nsyn_opcode ("fmuld");
15303 }
15304
15305 static void
15306 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15307 {
15308 int is_neg = (inst.instruction & 0x80) != 0;
15309 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15310
15311 if (rs == NS_FF || rs == NS_HH)
15312 {
15313 if (is_neg)
15314 do_vfp_nsyn_opcode ("fnegs");
15315 else
15316 do_vfp_nsyn_opcode ("fabss");
15317
15318 /* ARMv8.2 fp16 instruction. */
15319 if (rs == NS_HH)
15320 do_scalar_fp16_v82_encode ();
15321 }
15322 else
15323 {
15324 if (is_neg)
15325 do_vfp_nsyn_opcode ("fnegd");
15326 else
15327 do_vfp_nsyn_opcode ("fabsd");
15328 }
15329 }
15330
15331 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15332 insns belong to Neon, and are handled elsewhere. */
15333
15334 static void
15335 do_vfp_nsyn_ldm_stm (int is_dbmode)
15336 {
15337 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15338 if (is_ldm)
15339 {
15340 if (is_dbmode)
15341 do_vfp_nsyn_opcode ("fldmdbs");
15342 else
15343 do_vfp_nsyn_opcode ("fldmias");
15344 }
15345 else
15346 {
15347 if (is_dbmode)
15348 do_vfp_nsyn_opcode ("fstmdbs");
15349 else
15350 do_vfp_nsyn_opcode ("fstmias");
15351 }
15352 }
15353
15354 static void
15355 do_vfp_nsyn_sqrt (void)
15356 {
15357 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15358 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15359
15360 if (rs == NS_FF || rs == NS_HH)
15361 {
15362 do_vfp_nsyn_opcode ("fsqrts");
15363
15364 /* ARMv8.2 fp16 instruction. */
15365 if (rs == NS_HH)
15366 do_scalar_fp16_v82_encode ();
15367 }
15368 else
15369 do_vfp_nsyn_opcode ("fsqrtd");
15370 }
15371
15372 static void
15373 do_vfp_nsyn_div (void)
15374 {
15375 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15376 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15377 N_F_ALL | N_KEY | N_VFP);
15378
15379 if (rs == NS_FFF || rs == NS_HHH)
15380 {
15381 do_vfp_nsyn_opcode ("fdivs");
15382
15383 /* ARMv8.2 fp16 instruction. */
15384 if (rs == NS_HHH)
15385 do_scalar_fp16_v82_encode ();
15386 }
15387 else
15388 do_vfp_nsyn_opcode ("fdivd");
15389 }
15390
15391 static void
15392 do_vfp_nsyn_nmul (void)
15393 {
15394 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15395 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15396 N_F_ALL | N_KEY | N_VFP);
15397
15398 if (rs == NS_FFF || rs == NS_HHH)
15399 {
15400 NEON_ENCODE (SINGLE, inst);
15401 do_vfp_sp_dyadic ();
15402
15403 /* ARMv8.2 fp16 instruction. */
15404 if (rs == NS_HHH)
15405 do_scalar_fp16_v82_encode ();
15406 }
15407 else
15408 {
15409 NEON_ENCODE (DOUBLE, inst);
15410 do_vfp_dp_rd_rn_rm ();
15411 }
15412 do_vfp_cond_or_thumb ();
15413
15414 }
15415
15416 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15417 (0, 1, 2, 3). */
15418
15419 static unsigned
15420 neon_logbits (unsigned x)
15421 {
15422 return ffs (x) - 4;
15423 }
15424
15425 #define LOW4(R) ((R) & 0xf)
15426 #define HI1(R) (((R) >> 4) & 1)
15427
15428 static unsigned
15429 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15430 {
15431 switch (et.type)
15432 {
15433 default:
15434 first_error (BAD_EL_TYPE);
15435 return 0;
15436 case NT_float:
15437 switch (inst.operands[0].imm)
15438 {
15439 default:
15440 first_error (_("invalid condition"));
15441 return 0;
15442 case 0x0:
15443 /* eq. */
15444 return 0;
15445 case 0x1:
15446 /* ne. */
15447 return 1;
15448 case 0xa:
15449 /* ge/ */
15450 return 4;
15451 case 0xb:
15452 /* lt. */
15453 return 5;
15454 case 0xc:
15455 /* gt. */
15456 return 6;
15457 case 0xd:
15458 /* le. */
15459 return 7;
15460 }
15461 case NT_integer:
15462 /* only accept eq and ne. */
15463 if (inst.operands[0].imm > 1)
15464 {
15465 first_error (_("invalid condition"));
15466 return 0;
15467 }
15468 return inst.operands[0].imm;
15469 case NT_unsigned:
15470 if (inst.operands[0].imm == 0x2)
15471 return 2;
15472 else if (inst.operands[0].imm == 0x8)
15473 return 3;
15474 else
15475 {
15476 first_error (_("invalid condition"));
15477 return 0;
15478 }
15479 case NT_signed:
15480 switch (inst.operands[0].imm)
15481 {
15482 default:
15483 first_error (_("invalid condition"));
15484 return 0;
15485 case 0xa:
15486 /* ge. */
15487 return 4;
15488 case 0xb:
15489 /* lt. */
15490 return 5;
15491 case 0xc:
15492 /* gt. */
15493 return 6;
15494 case 0xd:
15495 /* le. */
15496 return 7;
15497 }
15498 }
15499 /* Should be unreachable. */
15500 abort ();
15501 }
15502
15503 static void
15504 do_mve_vpt (void)
15505 {
15506 /* We are dealing with a vector predicated block. */
15507 if (inst.operands[0].present)
15508 {
15509 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15510 struct neon_type_el et
15511 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15512 N_EQK);
15513
15514 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15515
15516 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15517
15518 if (et.type == NT_invtype)
15519 return;
15520
15521 if (et.type == NT_float)
15522 {
15523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15524 BAD_FPU);
15525 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15526 inst.instruction |= (et.size == 16) << 28;
15527 inst.instruction |= 0x3 << 20;
15528 }
15529 else
15530 {
15531 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15532 BAD_EL_TYPE);
15533 inst.instruction |= 1 << 28;
15534 inst.instruction |= neon_logbits (et.size) << 20;
15535 }
15536
15537 if (inst.operands[2].isquad)
15538 {
15539 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15540 inst.instruction |= LOW4 (inst.operands[2].reg);
15541 inst.instruction |= (fcond & 0x2) >> 1;
15542 }
15543 else
15544 {
15545 if (inst.operands[2].reg == REG_SP)
15546 as_tsktsk (MVE_BAD_SP);
15547 inst.instruction |= 1 << 6;
15548 inst.instruction |= (fcond & 0x2) << 4;
15549 inst.instruction |= inst.operands[2].reg;
15550 }
15551 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15552 inst.instruction |= (fcond & 0x4) << 10;
15553 inst.instruction |= (fcond & 0x1) << 7;
15554
15555 }
15556 set_pred_insn_type (VPT_INSN);
15557 now_pred.cc = 0;
15558 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15559 | ((inst.instruction & 0xe000) >> 13);
15560 now_pred.warn_deprecated = FALSE;
15561 now_pred.type = VECTOR_PRED;
15562 inst.is_neon = 1;
15563 }
15564
15565 static void
15566 do_mve_vcmp (void)
15567 {
15568 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15569 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15570 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15571 if (!inst.operands[2].present)
15572 first_error (_("MVE vector or ARM register expected"));
15573 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15574
15575 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15576 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15577 && inst.operands[1].isquad)
15578 {
15579 inst.instruction = N_MNEM_vcmp;
15580 inst.cond = 0x10;
15581 }
15582
15583 if (inst.cond > COND_ALWAYS)
15584 inst.pred_insn_type = INSIDE_VPT_INSN;
15585 else
15586 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15587
15588 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15589 struct neon_type_el et
15590 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15591 N_EQK);
15592
15593 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15594 && !inst.operands[2].iszr, BAD_PC);
15595
15596 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15597
15598 inst.instruction = 0xee010f00;
15599 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15600 inst.instruction |= (fcond & 0x4) << 10;
15601 inst.instruction |= (fcond & 0x1) << 7;
15602 if (et.type == NT_float)
15603 {
15604 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15605 BAD_FPU);
15606 inst.instruction |= (et.size == 16) << 28;
15607 inst.instruction |= 0x3 << 20;
15608 }
15609 else
15610 {
15611 inst.instruction |= 1 << 28;
15612 inst.instruction |= neon_logbits (et.size) << 20;
15613 }
15614 if (inst.operands[2].isquad)
15615 {
15616 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15617 inst.instruction |= (fcond & 0x2) >> 1;
15618 inst.instruction |= LOW4 (inst.operands[2].reg);
15619 }
15620 else
15621 {
15622 if (inst.operands[2].reg == REG_SP)
15623 as_tsktsk (MVE_BAD_SP);
15624 inst.instruction |= 1 << 6;
15625 inst.instruction |= (fcond & 0x2) << 4;
15626 inst.instruction |= inst.operands[2].reg;
15627 }
15628
15629 inst.is_neon = 1;
15630 return;
15631 }
15632
15633 static void
15634 do_mve_vmaxa_vmina (void)
15635 {
15636 if (inst.cond > COND_ALWAYS)
15637 inst.pred_insn_type = INSIDE_VPT_INSN;
15638 else
15639 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15640
15641 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15642 struct neon_type_el et
15643 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15644
15645 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15646 inst.instruction |= neon_logbits (et.size) << 18;
15647 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15648 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15649 inst.instruction |= LOW4 (inst.operands[1].reg);
15650 inst.is_neon = 1;
15651 }
15652
15653 static void
15654 do_mve_vfmas (void)
15655 {
15656 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15657 struct neon_type_el et
15658 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15659
15660 if (inst.cond > COND_ALWAYS)
15661 inst.pred_insn_type = INSIDE_VPT_INSN;
15662 else
15663 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15664
15665 if (inst.operands[2].reg == REG_SP)
15666 as_tsktsk (MVE_BAD_SP);
15667 else if (inst.operands[2].reg == REG_PC)
15668 as_tsktsk (MVE_BAD_PC);
15669
15670 inst.instruction |= (et.size == 16) << 28;
15671 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15672 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15673 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15674 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15675 inst.instruction |= inst.operands[2].reg;
15676 inst.is_neon = 1;
15677 }
15678
15679 static void
15680 do_mve_viddup (void)
15681 {
15682 if (inst.cond > COND_ALWAYS)
15683 inst.pred_insn_type = INSIDE_VPT_INSN;
15684 else
15685 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15686
15687 unsigned imm = inst.relocs[0].exp.X_add_number;
15688 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15689 _("immediate must be either 1, 2, 4 or 8"));
15690
15691 enum neon_shape rs;
15692 struct neon_type_el et;
15693 unsigned Rm;
15694 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15695 {
15696 rs = neon_select_shape (NS_QRI, NS_NULL);
15697 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15698 Rm = 7;
15699 }
15700 else
15701 {
15702 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15703 if (inst.operands[2].reg == REG_SP)
15704 as_tsktsk (MVE_BAD_SP);
15705 else if (inst.operands[2].reg == REG_PC)
15706 first_error (BAD_PC);
15707
15708 rs = neon_select_shape (NS_QRRI, NS_NULL);
15709 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15710 Rm = inst.operands[2].reg >> 1;
15711 }
15712 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15713 inst.instruction |= neon_logbits (et.size) << 20;
15714 inst.instruction |= inst.operands[1].reg << 16;
15715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15716 inst.instruction |= (imm > 2) << 7;
15717 inst.instruction |= Rm << 1;
15718 inst.instruction |= (imm == 2 || imm == 8);
15719 inst.is_neon = 1;
15720 }
15721
15722 static void
15723 do_mve_vmlas (void)
15724 {
15725 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15726 struct neon_type_el et
15727 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15728
15729 if (inst.operands[2].reg == REG_PC)
15730 as_tsktsk (MVE_BAD_PC);
15731 else if (inst.operands[2].reg == REG_SP)
15732 as_tsktsk (MVE_BAD_SP);
15733
15734 if (inst.cond > COND_ALWAYS)
15735 inst.pred_insn_type = INSIDE_VPT_INSN;
15736 else
15737 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15738
15739 inst.instruction |= (et.type == NT_unsigned) << 28;
15740 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15741 inst.instruction |= neon_logbits (et.size) << 20;
15742 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15743 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15744 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15745 inst.instruction |= inst.operands[2].reg;
15746 inst.is_neon = 1;
15747 }
15748
15749 static void
15750 do_mve_vpsel (void)
15751 {
15752 neon_select_shape (NS_QQQ, NS_NULL);
15753
15754 if (inst.cond > COND_ALWAYS)
15755 inst.pred_insn_type = INSIDE_VPT_INSN;
15756 else
15757 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15758
15759 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15760 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15761 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15762 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15763 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15764 inst.instruction |= LOW4 (inst.operands[2].reg);
15765 inst.is_neon = 1;
15766 }
15767
15768 static void
15769 do_mve_vpnot (void)
15770 {
15771 if (inst.cond > COND_ALWAYS)
15772 inst.pred_insn_type = INSIDE_VPT_INSN;
15773 else
15774 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15775 }
15776
15777 static void
15778 do_mve_vmaxnma_vminnma (void)
15779 {
15780 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15781 struct neon_type_el et
15782 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15783
15784 if (inst.cond > COND_ALWAYS)
15785 inst.pred_insn_type = INSIDE_VPT_INSN;
15786 else
15787 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15788
15789 inst.instruction |= (et.size == 16) << 28;
15790 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15791 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15792 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15793 inst.instruction |= LOW4 (inst.operands[1].reg);
15794 inst.is_neon = 1;
15795 }
15796
15797 static void
15798 do_mve_vcmul (void)
15799 {
15800 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15801 struct neon_type_el et
15802 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15803
15804 if (inst.cond > COND_ALWAYS)
15805 inst.pred_insn_type = INSIDE_VPT_INSN;
15806 else
15807 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15808
15809 unsigned rot = inst.relocs[0].exp.X_add_number;
15810 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15811 _("immediate out of range"));
15812
15813 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15814 || inst.operands[0].reg == inst.operands[2].reg))
15815 as_tsktsk (BAD_MVE_SRCDEST);
15816
15817 inst.instruction |= (et.size == 32) << 28;
15818 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15819 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15820 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15821 inst.instruction |= (rot > 90) << 12;
15822 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15823 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15824 inst.instruction |= LOW4 (inst.operands[2].reg);
15825 inst.instruction |= (rot == 90 || rot == 270);
15826 inst.is_neon = 1;
15827 }
15828
15829 static void
15830 do_vfp_nsyn_cmp (void)
15831 {
15832 enum neon_shape rs;
15833 if (!inst.operands[0].isreg)
15834 {
15835 do_mve_vcmp ();
15836 return;
15837 }
15838 else
15839 {
15840 constraint (inst.operands[2].present, BAD_SYNTAX);
15841 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15842 BAD_FPU);
15843 }
15844
15845 if (inst.operands[1].isreg)
15846 {
15847 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15848 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15849
15850 if (rs == NS_FF || rs == NS_HH)
15851 {
15852 NEON_ENCODE (SINGLE, inst);
15853 do_vfp_sp_monadic ();
15854 }
15855 else
15856 {
15857 NEON_ENCODE (DOUBLE, inst);
15858 do_vfp_dp_rd_rm ();
15859 }
15860 }
15861 else
15862 {
15863 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15864 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15865
15866 switch (inst.instruction & 0x0fffffff)
15867 {
15868 case N_MNEM_vcmp:
15869 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15870 break;
15871 case N_MNEM_vcmpe:
15872 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15873 break;
15874 default:
15875 abort ();
15876 }
15877
15878 if (rs == NS_FI || rs == NS_HI)
15879 {
15880 NEON_ENCODE (SINGLE, inst);
15881 do_vfp_sp_compare_z ();
15882 }
15883 else
15884 {
15885 NEON_ENCODE (DOUBLE, inst);
15886 do_vfp_dp_rd ();
15887 }
15888 }
15889 do_vfp_cond_or_thumb ();
15890
15891 /* ARMv8.2 fp16 instruction. */
15892 if (rs == NS_HI || rs == NS_HH)
15893 do_scalar_fp16_v82_encode ();
15894 }
15895
15896 static void
15897 nsyn_insert_sp (void)
15898 {
15899 inst.operands[1] = inst.operands[0];
15900 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15901 inst.operands[0].reg = REG_SP;
15902 inst.operands[0].isreg = 1;
15903 inst.operands[0].writeback = 1;
15904 inst.operands[0].present = 1;
15905 }
15906
15907 static void
15908 do_vfp_nsyn_push (void)
15909 {
15910 nsyn_insert_sp ();
15911
15912 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15913 _("register list must contain at least 1 and at most 16 "
15914 "registers"));
15915
15916 if (inst.operands[1].issingle)
15917 do_vfp_nsyn_opcode ("fstmdbs");
15918 else
15919 do_vfp_nsyn_opcode ("fstmdbd");
15920 }
15921
15922 static void
15923 do_vfp_nsyn_pop (void)
15924 {
15925 nsyn_insert_sp ();
15926
15927 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15928 _("register list must contain at least 1 and at most 16 "
15929 "registers"));
15930
15931 if (inst.operands[1].issingle)
15932 do_vfp_nsyn_opcode ("fldmias");
15933 else
15934 do_vfp_nsyn_opcode ("fldmiad");
15935 }
15936
15937 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15938 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15939
15940 static void
15941 neon_dp_fixup (struct arm_it* insn)
15942 {
15943 unsigned int i = insn->instruction;
15944 insn->is_neon = 1;
15945
15946 if (thumb_mode)
15947 {
15948 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15949 if (i & (1 << 24))
15950 i |= 1 << 28;
15951
15952 i &= ~(1 << 24);
15953
15954 i |= 0xef000000;
15955 }
15956 else
15957 i |= 0xf2000000;
15958
15959 insn->instruction = i;
15960 }
15961
15962 static void
15963 mve_encode_qqr (int size, int U, int fp)
15964 {
15965 if (inst.operands[2].reg == REG_SP)
15966 as_tsktsk (MVE_BAD_SP);
15967 else if (inst.operands[2].reg == REG_PC)
15968 as_tsktsk (MVE_BAD_PC);
15969
15970 if (fp)
15971 {
15972 /* vadd. */
15973 if (((unsigned)inst.instruction) == 0xd00)
15974 inst.instruction = 0xee300f40;
15975 /* vsub. */
15976 else if (((unsigned)inst.instruction) == 0x200d00)
15977 inst.instruction = 0xee301f40;
15978 /* vmul. */
15979 else if (((unsigned)inst.instruction) == 0x1000d10)
15980 inst.instruction = 0xee310e60;
15981
15982 /* Setting size which is 1 for F16 and 0 for F32. */
15983 inst.instruction |= (size == 16) << 28;
15984 }
15985 else
15986 {
15987 /* vadd. */
15988 if (((unsigned)inst.instruction) == 0x800)
15989 inst.instruction = 0xee010f40;
15990 /* vsub. */
15991 else if (((unsigned)inst.instruction) == 0x1000800)
15992 inst.instruction = 0xee011f40;
15993 /* vhadd. */
15994 else if (((unsigned)inst.instruction) == 0)
15995 inst.instruction = 0xee000f40;
15996 /* vhsub. */
15997 else if (((unsigned)inst.instruction) == 0x200)
15998 inst.instruction = 0xee001f40;
15999 /* vmla. */
16000 else if (((unsigned)inst.instruction) == 0x900)
16001 inst.instruction = 0xee010e40;
16002 /* vmul. */
16003 else if (((unsigned)inst.instruction) == 0x910)
16004 inst.instruction = 0xee011e60;
16005 /* vqadd. */
16006 else if (((unsigned)inst.instruction) == 0x10)
16007 inst.instruction = 0xee000f60;
16008 /* vqsub. */
16009 else if (((unsigned)inst.instruction) == 0x210)
16010 inst.instruction = 0xee001f60;
16011 /* vqrdmlah. */
16012 else if (((unsigned)inst.instruction) == 0x3000b10)
16013 inst.instruction = 0xee000e40;
16014 /* vqdmulh. */
16015 else if (((unsigned)inst.instruction) == 0x0000b00)
16016 inst.instruction = 0xee010e60;
16017 /* vqrdmulh. */
16018 else if (((unsigned)inst.instruction) == 0x1000b00)
16019 inst.instruction = 0xfe010e60;
16020
16021 /* Set U-bit. */
16022 inst.instruction |= U << 28;
16023
16024 /* Setting bits for size. */
16025 inst.instruction |= neon_logbits (size) << 20;
16026 }
16027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16029 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16030 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16031 inst.instruction |= inst.operands[2].reg;
16032 inst.is_neon = 1;
16033 }
16034
16035 static void
16036 mve_encode_rqq (unsigned bit28, unsigned size)
16037 {
16038 inst.instruction |= bit28 << 28;
16039 inst.instruction |= neon_logbits (size) << 20;
16040 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16041 inst.instruction |= inst.operands[0].reg << 12;
16042 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16043 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16044 inst.instruction |= LOW4 (inst.operands[2].reg);
16045 inst.is_neon = 1;
16046 }
16047
16048 static void
16049 mve_encode_qqq (int ubit, int size)
16050 {
16051
16052 inst.instruction |= (ubit != 0) << 28;
16053 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16054 inst.instruction |= neon_logbits (size) << 20;
16055 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16057 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16058 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16059 inst.instruction |= LOW4 (inst.operands[2].reg);
16060
16061 inst.is_neon = 1;
16062 }
16063
16064 static void
16065 mve_encode_rq (unsigned bit28, unsigned size)
16066 {
16067 inst.instruction |= bit28 << 28;
16068 inst.instruction |= neon_logbits (size) << 18;
16069 inst.instruction |= inst.operands[0].reg << 12;
16070 inst.instruction |= LOW4 (inst.operands[1].reg);
16071 inst.is_neon = 1;
16072 }
16073
16074 static void
16075 mve_encode_rrqq (unsigned U, unsigned size)
16076 {
16077 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16078
16079 inst.instruction |= U << 28;
16080 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16081 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16082 inst.instruction |= (size == 32) << 16;
16083 inst.instruction |= inst.operands[0].reg << 12;
16084 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16085 inst.instruction |= inst.operands[3].reg;
16086 inst.is_neon = 1;
16087 }
16088
16089 /* Encode insns with bit pattern:
16090
16091 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16092 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16093
16094 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16095 different meaning for some instruction. */
16096
16097 static void
16098 neon_three_same (int isquad, int ubit, int size)
16099 {
16100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16102 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16103 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16104 inst.instruction |= LOW4 (inst.operands[2].reg);
16105 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16106 inst.instruction |= (isquad != 0) << 6;
16107 inst.instruction |= (ubit != 0) << 24;
16108 if (size != -1)
16109 inst.instruction |= neon_logbits (size) << 20;
16110
16111 neon_dp_fixup (&inst);
16112 }
16113
16114 /* Encode instructions of the form:
16115
16116 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16117 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16118
16119 Don't write size if SIZE == -1. */
16120
16121 static void
16122 neon_two_same (int qbit, int ubit, int size)
16123 {
16124 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16125 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16126 inst.instruction |= LOW4 (inst.operands[1].reg);
16127 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16128 inst.instruction |= (qbit != 0) << 6;
16129 inst.instruction |= (ubit != 0) << 24;
16130
16131 if (size != -1)
16132 inst.instruction |= neon_logbits (size) << 18;
16133
16134 neon_dp_fixup (&inst);
16135 }
16136
16137 enum vfp_or_neon_is_neon_bits
16138 {
16139 NEON_CHECK_CC = 1,
16140 NEON_CHECK_ARCH = 2,
16141 NEON_CHECK_ARCH8 = 4
16142 };
16143
16144 /* Call this function if an instruction which may have belonged to the VFP or
16145 Neon instruction sets, but turned out to be a Neon instruction (due to the
16146 operand types involved, etc.). We have to check and/or fix-up a couple of
16147 things:
16148
16149 - Make sure the user hasn't attempted to make a Neon instruction
16150 conditional.
16151 - Alter the value in the condition code field if necessary.
16152 - Make sure that the arch supports Neon instructions.
16153
16154 Which of these operations take place depends on bits from enum
16155 vfp_or_neon_is_neon_bits.
16156
16157 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16158 current instruction's condition is COND_ALWAYS, the condition field is
16159 changed to inst.uncond_value. This is necessary because instructions shared
16160 between VFP and Neon may be conditional for the VFP variants only, and the
16161 unconditional Neon version must have, e.g., 0xF in the condition field. */
16162
16163 static int
16164 vfp_or_neon_is_neon (unsigned check)
16165 {
16166 /* Conditions are always legal in Thumb mode (IT blocks). */
16167 if (!thumb_mode && (check & NEON_CHECK_CC))
16168 {
16169 if (inst.cond != COND_ALWAYS)
16170 {
16171 first_error (_(BAD_COND));
16172 return FAIL;
16173 }
16174 if (inst.uncond_value != -1)
16175 inst.instruction |= inst.uncond_value << 28;
16176 }
16177
16178
16179 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16180 || ((check & NEON_CHECK_ARCH8)
16181 && !mark_feature_used (&fpu_neon_ext_armv8)))
16182 {
16183 first_error (_(BAD_FPU));
16184 return FAIL;
16185 }
16186
16187 return SUCCESS;
16188 }
16189
16190 static int
16191 check_simd_pred_availability (int fp, unsigned check)
16192 {
16193 if (inst.cond > COND_ALWAYS)
16194 {
16195 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16196 {
16197 inst.error = BAD_FPU;
16198 return 1;
16199 }
16200 inst.pred_insn_type = INSIDE_VPT_INSN;
16201 }
16202 else if (inst.cond < COND_ALWAYS)
16203 {
16204 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16205 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16206 else if (vfp_or_neon_is_neon (check) == FAIL)
16207 return 2;
16208 }
16209 else
16210 {
16211 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16212 && vfp_or_neon_is_neon (check) == FAIL)
16213 return 3;
16214
16215 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16216 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16217 }
16218 return 0;
16219 }
16220
16221 /* Neon instruction encoders, in approximate order of appearance. */
16222
16223 static void
16224 do_neon_dyadic_i_su (void)
16225 {
16226 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16227 return;
16228
16229 enum neon_shape rs;
16230 struct neon_type_el et;
16231 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16232 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16233 else
16234 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16235
16236 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16237
16238
16239 if (rs != NS_QQR)
16240 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16241 else
16242 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16243 }
16244
16245 static void
16246 do_neon_dyadic_i64_su (void)
16247 {
16248 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16249 return;
16250 enum neon_shape rs;
16251 struct neon_type_el et;
16252 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16253 {
16254 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16255 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16256 }
16257 else
16258 {
16259 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16260 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16261 }
16262 if (rs == NS_QQR)
16263 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16264 else
16265 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16266 }
16267
16268 static void
16269 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16270 unsigned immbits)
16271 {
16272 unsigned size = et.size >> 3;
16273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16275 inst.instruction |= LOW4 (inst.operands[1].reg);
16276 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16277 inst.instruction |= (isquad != 0) << 6;
16278 inst.instruction |= immbits << 16;
16279 inst.instruction |= (size >> 3) << 7;
16280 inst.instruction |= (size & 0x7) << 19;
16281 if (write_ubit)
16282 inst.instruction |= (uval != 0) << 24;
16283
16284 neon_dp_fixup (&inst);
16285 }
16286
16287 static void
16288 do_neon_shl_imm (void)
16289 {
16290 if (!inst.operands[2].isreg)
16291 {
16292 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16293 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16294 int imm = inst.operands[2].imm;
16295
16296 constraint (imm < 0 || (unsigned)imm >= et.size,
16297 _("immediate out of range for shift"));
16298 NEON_ENCODE (IMMED, inst);
16299 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16300 }
16301 else
16302 {
16303 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16304 struct neon_type_el et = neon_check_type (3, rs,
16305 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16306 unsigned int tmp;
16307
16308 /* VSHL/VQSHL 3-register variants have syntax such as:
16309 vshl.xx Dd, Dm, Dn
16310 whereas other 3-register operations encoded by neon_three_same have
16311 syntax like:
16312 vadd.xx Dd, Dn, Dm
16313 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16314 here. */
16315 tmp = inst.operands[2].reg;
16316 inst.operands[2].reg = inst.operands[1].reg;
16317 inst.operands[1].reg = tmp;
16318 NEON_ENCODE (INTEGER, inst);
16319 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16320 }
16321 }
16322
16323 static void
16324 do_neon_qshl_imm (void)
16325 {
16326 if (!inst.operands[2].isreg)
16327 {
16328 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16329 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16330 int imm = inst.operands[2].imm;
16331
16332 constraint (imm < 0 || (unsigned)imm >= et.size,
16333 _("immediate out of range for shift"));
16334 NEON_ENCODE (IMMED, inst);
16335 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16336 }
16337 else
16338 {
16339 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16340 struct neon_type_el et = neon_check_type (3, rs,
16341 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16342 unsigned int tmp;
16343
16344 /* See note in do_neon_shl_imm. */
16345 tmp = inst.operands[2].reg;
16346 inst.operands[2].reg = inst.operands[1].reg;
16347 inst.operands[1].reg = tmp;
16348 NEON_ENCODE (INTEGER, inst);
16349 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16350 }
16351 }
16352
16353 static void
16354 do_neon_rshl (void)
16355 {
16356 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16357 struct neon_type_el et = neon_check_type (3, rs,
16358 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16359 unsigned int tmp;
16360
16361 tmp = inst.operands[2].reg;
16362 inst.operands[2].reg = inst.operands[1].reg;
16363 inst.operands[1].reg = tmp;
16364 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16365 }
16366
16367 static int
16368 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16369 {
16370 /* Handle .I8 pseudo-instructions. */
16371 if (size == 8)
16372 {
16373 /* Unfortunately, this will make everything apart from zero out-of-range.
16374 FIXME is this the intended semantics? There doesn't seem much point in
16375 accepting .I8 if so. */
16376 immediate |= immediate << 8;
16377 size = 16;
16378 }
16379
16380 if (size >= 32)
16381 {
16382 if (immediate == (immediate & 0x000000ff))
16383 {
16384 *immbits = immediate;
16385 return 0x1;
16386 }
16387 else if (immediate == (immediate & 0x0000ff00))
16388 {
16389 *immbits = immediate >> 8;
16390 return 0x3;
16391 }
16392 else if (immediate == (immediate & 0x00ff0000))
16393 {
16394 *immbits = immediate >> 16;
16395 return 0x5;
16396 }
16397 else if (immediate == (immediate & 0xff000000))
16398 {
16399 *immbits = immediate >> 24;
16400 return 0x7;
16401 }
16402 if ((immediate & 0xffff) != (immediate >> 16))
16403 goto bad_immediate;
16404 immediate &= 0xffff;
16405 }
16406
16407 if (immediate == (immediate & 0x000000ff))
16408 {
16409 *immbits = immediate;
16410 return 0x9;
16411 }
16412 else if (immediate == (immediate & 0x0000ff00))
16413 {
16414 *immbits = immediate >> 8;
16415 return 0xb;
16416 }
16417
16418 bad_immediate:
16419 first_error (_("immediate value out of range"));
16420 return FAIL;
16421 }
16422
16423 static void
16424 do_neon_logic (void)
16425 {
16426 if (inst.operands[2].present && inst.operands[2].isreg)
16427 {
16428 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16429 if (rs == NS_QQQ
16430 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16431 == FAIL)
16432 return;
16433 else if (rs != NS_QQQ
16434 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16435 first_error (BAD_FPU);
16436
16437 neon_check_type (3, rs, N_IGNORE_TYPE);
16438 /* U bit and size field were set as part of the bitmask. */
16439 NEON_ENCODE (INTEGER, inst);
16440 neon_three_same (neon_quad (rs), 0, -1);
16441 }
16442 else
16443 {
16444 const int three_ops_form = (inst.operands[2].present
16445 && !inst.operands[2].isreg);
16446 const int immoperand = (three_ops_form ? 2 : 1);
16447 enum neon_shape rs = (three_ops_form
16448 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16449 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16450 /* Because neon_select_shape makes the second operand a copy of the first
16451 if the second operand is not present. */
16452 if (rs == NS_QQI
16453 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16454 == FAIL)
16455 return;
16456 else if (rs != NS_QQI
16457 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16458 first_error (BAD_FPU);
16459
16460 struct neon_type_el et;
16461 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16462 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16463 else
16464 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16465 | N_KEY, N_EQK);
16466
16467 if (et.type == NT_invtype)
16468 return;
16469 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16470 unsigned immbits;
16471 int cmode;
16472
16473
16474 if (three_ops_form)
16475 constraint (inst.operands[0].reg != inst.operands[1].reg,
16476 _("first and second operands shall be the same register"));
16477
16478 NEON_ENCODE (IMMED, inst);
16479
16480 immbits = inst.operands[immoperand].imm;
16481 if (et.size == 64)
16482 {
16483 /* .i64 is a pseudo-op, so the immediate must be a repeating
16484 pattern. */
16485 if (immbits != (inst.operands[immoperand].regisimm ?
16486 inst.operands[immoperand].reg : 0))
16487 {
16488 /* Set immbits to an invalid constant. */
16489 immbits = 0xdeadbeef;
16490 }
16491 }
16492
16493 switch (opcode)
16494 {
16495 case N_MNEM_vbic:
16496 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16497 break;
16498
16499 case N_MNEM_vorr:
16500 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16501 break;
16502
16503 case N_MNEM_vand:
16504 /* Pseudo-instruction for VBIC. */
16505 neon_invert_size (&immbits, 0, et.size);
16506 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16507 break;
16508
16509 case N_MNEM_vorn:
16510 /* Pseudo-instruction for VORR. */
16511 neon_invert_size (&immbits, 0, et.size);
16512 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16513 break;
16514
16515 default:
16516 abort ();
16517 }
16518
16519 if (cmode == FAIL)
16520 return;
16521
16522 inst.instruction |= neon_quad (rs) << 6;
16523 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16524 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16525 inst.instruction |= cmode << 8;
16526 neon_write_immbits (immbits);
16527
16528 neon_dp_fixup (&inst);
16529 }
16530 }
16531
16532 static void
16533 do_neon_bitfield (void)
16534 {
16535 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16536 neon_check_type (3, rs, N_IGNORE_TYPE);
16537 neon_three_same (neon_quad (rs), 0, -1);
16538 }
16539
16540 static void
16541 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16542 unsigned destbits)
16543 {
16544 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16545 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16546 types | N_KEY);
16547 if (et.type == NT_float)
16548 {
16549 NEON_ENCODE (FLOAT, inst);
16550 if (rs == NS_QQR)
16551 mve_encode_qqr (et.size, 0, 1);
16552 else
16553 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16554 }
16555 else
16556 {
16557 NEON_ENCODE (INTEGER, inst);
16558 if (rs == NS_QQR)
16559 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16560 else
16561 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16562 }
16563 }
16564
16565
16566 static void
16567 do_neon_dyadic_if_su_d (void)
16568 {
16569 /* This version only allow D registers, but that constraint is enforced during
16570 operand parsing so we don't need to do anything extra here. */
16571 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16572 }
16573
16574 static void
16575 do_neon_dyadic_if_i_d (void)
16576 {
16577 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16578 affected if we specify unsigned args. */
16579 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16580 }
16581
16582 static void
16583 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16584 {
16585 constraint (size < 32, BAD_ADDR_MODE);
16586 constraint (size != elsize, BAD_EL_TYPE);
16587 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16588 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16589 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16590 _("destination register and offset register may not be the"
16591 " same"));
16592
16593 int imm = inst.relocs[0].exp.X_add_number;
16594 int add = 1;
16595 if (imm < 0)
16596 {
16597 add = 0;
16598 imm = -imm;
16599 }
16600 constraint ((imm % (size / 8) != 0)
16601 || imm > (0x7f << neon_logbits (size)),
16602 (size == 32) ? _("immediate must be a multiple of 4 in the"
16603 " range of +/-[0,508]")
16604 : _("immediate must be a multiple of 8 in the"
16605 " range of +/-[0,1016]"));
16606 inst.instruction |= 0x11 << 24;
16607 inst.instruction |= add << 23;
16608 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16609 inst.instruction |= inst.operands[1].writeback << 21;
16610 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16612 inst.instruction |= 1 << 12;
16613 inst.instruction |= (size == 64) << 8;
16614 inst.instruction &= 0xffffff00;
16615 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16616 inst.instruction |= imm >> neon_logbits (size);
16617 }
16618
16619 static void
16620 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16621 {
16622 unsigned os = inst.operands[1].imm >> 5;
16623 constraint (os != 0 && size == 8,
16624 _("can not shift offsets when accessing less than half-word"));
16625 constraint (os && os != neon_logbits (size),
16626 _("shift immediate must be 1, 2 or 3 for half-word, word"
16627 " or double-word accesses respectively"));
16628 if (inst.operands[1].reg == REG_PC)
16629 as_tsktsk (MVE_BAD_PC);
16630
16631 switch (size)
16632 {
16633 case 8:
16634 constraint (elsize >= 64, BAD_EL_TYPE);
16635 break;
16636 case 16:
16637 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16638 break;
16639 case 32:
16640 case 64:
16641 constraint (elsize != size, BAD_EL_TYPE);
16642 break;
16643 default:
16644 break;
16645 }
16646 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16647 BAD_ADDR_MODE);
16648 if (load)
16649 {
16650 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16651 _("destination register and offset register may not be"
16652 " the same"));
16653 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16654 BAD_EL_TYPE);
16655 constraint (inst.vectype.el[0].type != NT_unsigned
16656 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16657 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16658 }
16659 else
16660 {
16661 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16662 }
16663
16664 inst.instruction |= 1 << 23;
16665 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16666 inst.instruction |= inst.operands[1].reg << 16;
16667 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16668 inst.instruction |= neon_logbits (elsize) << 7;
16669 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16670 inst.instruction |= LOW4 (inst.operands[1].imm);
16671 inst.instruction |= !!os;
16672 }
16673
16674 static void
16675 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16676 {
16677 enum neon_el_type type = inst.vectype.el[0].type;
16678
16679 constraint (size >= 64, BAD_ADDR_MODE);
16680 switch (size)
16681 {
16682 case 16:
16683 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16684 break;
16685 case 32:
16686 constraint (elsize != size, BAD_EL_TYPE);
16687 break;
16688 default:
16689 break;
16690 }
16691 if (load)
16692 {
16693 constraint (elsize != size && type != NT_unsigned
16694 && type != NT_signed, BAD_EL_TYPE);
16695 }
16696 else
16697 {
16698 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16699 }
16700
16701 int imm = inst.relocs[0].exp.X_add_number;
16702 int add = 1;
16703 if (imm < 0)
16704 {
16705 add = 0;
16706 imm = -imm;
16707 }
16708
16709 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16710 {
16711 switch (size)
16712 {
16713 case 8:
16714 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16715 break;
16716 case 16:
16717 constraint (1, _("immediate must be a multiple of 2 in the"
16718 " range of +/-[0,254]"));
16719 break;
16720 case 32:
16721 constraint (1, _("immediate must be a multiple of 4 in the"
16722 " range of +/-[0,508]"));
16723 break;
16724 }
16725 }
16726
16727 if (size != elsize)
16728 {
16729 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16730 constraint (inst.operands[0].reg > 14,
16731 _("MVE vector register in the range [Q0..Q7] expected"));
16732 inst.instruction |= (load && type == NT_unsigned) << 28;
16733 inst.instruction |= (size == 16) << 19;
16734 inst.instruction |= neon_logbits (elsize) << 7;
16735 }
16736 else
16737 {
16738 if (inst.operands[1].reg == REG_PC)
16739 as_tsktsk (MVE_BAD_PC);
16740 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16741 as_tsktsk (MVE_BAD_SP);
16742 inst.instruction |= 1 << 12;
16743 inst.instruction |= neon_logbits (size) << 7;
16744 }
16745 inst.instruction |= inst.operands[1].preind << 24;
16746 inst.instruction |= add << 23;
16747 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16748 inst.instruction |= inst.operands[1].writeback << 21;
16749 inst.instruction |= inst.operands[1].reg << 16;
16750 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16751 inst.instruction &= 0xffffff80;
16752 inst.instruction |= imm >> neon_logbits (size);
16753
16754 }
16755
16756 static void
16757 do_mve_vstr_vldr (void)
16758 {
16759 unsigned size;
16760 int load = 0;
16761
16762 if (inst.cond > COND_ALWAYS)
16763 inst.pred_insn_type = INSIDE_VPT_INSN;
16764 else
16765 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16766
16767 switch (inst.instruction)
16768 {
16769 default:
16770 gas_assert (0);
16771 break;
16772 case M_MNEM_vldrb:
16773 load = 1;
16774 /* fall through. */
16775 case M_MNEM_vstrb:
16776 size = 8;
16777 break;
16778 case M_MNEM_vldrh:
16779 load = 1;
16780 /* fall through. */
16781 case M_MNEM_vstrh:
16782 size = 16;
16783 break;
16784 case M_MNEM_vldrw:
16785 load = 1;
16786 /* fall through. */
16787 case M_MNEM_vstrw:
16788 size = 32;
16789 break;
16790 case M_MNEM_vldrd:
16791 load = 1;
16792 /* fall through. */
16793 case M_MNEM_vstrd:
16794 size = 64;
16795 break;
16796 }
16797 unsigned elsize = inst.vectype.el[0].size;
16798
16799 if (inst.operands[1].isquad)
16800 {
16801 /* We are dealing with [Q, imm]{!} cases. */
16802 do_mve_vstr_vldr_QI (size, elsize, load);
16803 }
16804 else
16805 {
16806 if (inst.operands[1].immisreg == 2)
16807 {
16808 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16809 do_mve_vstr_vldr_RQ (size, elsize, load);
16810 }
16811 else if (!inst.operands[1].immisreg)
16812 {
16813 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16814 do_mve_vstr_vldr_RI (size, elsize, load);
16815 }
16816 else
16817 constraint (1, BAD_ADDR_MODE);
16818 }
16819
16820 inst.is_neon = 1;
16821 }
16822
16823 static void
16824 do_mve_vst_vld (void)
16825 {
16826 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16827 return;
16828
16829 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16830 || inst.relocs[0].exp.X_add_number != 0
16831 || inst.operands[1].immisreg != 0,
16832 BAD_ADDR_MODE);
16833 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16834 if (inst.operands[1].reg == REG_PC)
16835 as_tsktsk (MVE_BAD_PC);
16836 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16837 as_tsktsk (MVE_BAD_SP);
16838
16839
16840 /* These instructions are one of the "exceptions" mentioned in
16841 handle_pred_state. They are MVE instructions that are not VPT compatible
16842 and do not accept a VPT code, thus appending such a code is a syntax
16843 error. */
16844 if (inst.cond > COND_ALWAYS)
16845 first_error (BAD_SYNTAX);
16846 /* If we append a scalar condition code we can set this to
16847 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16848 else if (inst.cond < COND_ALWAYS)
16849 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16850 else
16851 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16852
16853 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16854 inst.instruction |= inst.operands[1].writeback << 21;
16855 inst.instruction |= inst.operands[1].reg << 16;
16856 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16857 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16858 inst.is_neon = 1;
16859 }
16860
16861 static void
16862 do_mve_vaddlv (void)
16863 {
16864 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16865 struct neon_type_el et
16866 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16867
16868 if (et.type == NT_invtype)
16869 first_error (BAD_EL_TYPE);
16870
16871 if (inst.cond > COND_ALWAYS)
16872 inst.pred_insn_type = INSIDE_VPT_INSN;
16873 else
16874 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16875
16876 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16877
16878 inst.instruction |= (et.type == NT_unsigned) << 28;
16879 inst.instruction |= inst.operands[1].reg << 19;
16880 inst.instruction |= inst.operands[0].reg << 12;
16881 inst.instruction |= inst.operands[2].reg;
16882 inst.is_neon = 1;
16883 }
16884
16885 static void
16886 do_neon_dyadic_if_su (void)
16887 {
16888 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16889 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16890 N_SUF_32 | N_KEY);
16891
16892 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16893 || inst.instruction == ((unsigned) N_MNEM_vmin))
16894 && et.type == NT_float
16895 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16896
16897 if (check_simd_pred_availability (et.type == NT_float,
16898 NEON_CHECK_ARCH | NEON_CHECK_CC))
16899 return;
16900
16901 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16902 }
16903
16904 static void
16905 do_neon_addsub_if_i (void)
16906 {
16907 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16908 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16909 return;
16910
16911 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16912 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16913 N_EQK, N_IF_32 | N_I64 | N_KEY);
16914
16915 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16916 /* If we are parsing Q registers and the element types match MVE, which NEON
16917 also supports, then we must check whether this is an instruction that can
16918 be used by both MVE/NEON. This distinction can be made based on whether
16919 they are predicated or not. */
16920 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16921 {
16922 if (check_simd_pred_availability (et.type == NT_float,
16923 NEON_CHECK_ARCH | NEON_CHECK_CC))
16924 return;
16925 }
16926 else
16927 {
16928 /* If they are either in a D register or are using an unsupported. */
16929 if (rs != NS_QQR
16930 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16931 return;
16932 }
16933
16934 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16935 affected if we specify unsigned args. */
16936 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16937 }
16938
16939 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16940 result to be:
16941 V<op> A,B (A is operand 0, B is operand 2)
16942 to mean:
16943 V<op> A,B,A
16944 not:
16945 V<op> A,B,B
16946 so handle that case specially. */
16947
16948 static void
16949 neon_exchange_operands (void)
16950 {
16951 if (inst.operands[1].present)
16952 {
16953 void *scratch = xmalloc (sizeof (inst.operands[0]));
16954
16955 /* Swap operands[1] and operands[2]. */
16956 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16957 inst.operands[1] = inst.operands[2];
16958 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16959 free (scratch);
16960 }
16961 else
16962 {
16963 inst.operands[1] = inst.operands[2];
16964 inst.operands[2] = inst.operands[0];
16965 }
16966 }
16967
16968 static void
16969 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16970 {
16971 if (inst.operands[2].isreg)
16972 {
16973 if (invert)
16974 neon_exchange_operands ();
16975 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16976 }
16977 else
16978 {
16979 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16980 struct neon_type_el et = neon_check_type (2, rs,
16981 N_EQK | N_SIZ, immtypes | N_KEY);
16982
16983 NEON_ENCODE (IMMED, inst);
16984 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16985 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16986 inst.instruction |= LOW4 (inst.operands[1].reg);
16987 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16988 inst.instruction |= neon_quad (rs) << 6;
16989 inst.instruction |= (et.type == NT_float) << 10;
16990 inst.instruction |= neon_logbits (et.size) << 18;
16991
16992 neon_dp_fixup (&inst);
16993 }
16994 }
16995
16996 static void
16997 do_neon_cmp (void)
16998 {
16999 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17000 }
17001
17002 static void
17003 do_neon_cmp_inv (void)
17004 {
17005 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17006 }
17007
17008 static void
17009 do_neon_ceq (void)
17010 {
17011 neon_compare (N_IF_32, N_IF_32, FALSE);
17012 }
17013
17014 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17015 scalars, which are encoded in 5 bits, M : Rm.
17016 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17017 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17018 index in M.
17019
17020 Dot Product instructions are similar to multiply instructions except elsize
17021 should always be 32.
17022
17023 This function translates SCALAR, which is GAS's internal encoding of indexed
17024 scalar register, to raw encoding. There is also register and index range
17025 check based on ELSIZE. */
17026
17027 static unsigned
17028 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17029 {
17030 unsigned regno = NEON_SCALAR_REG (scalar);
17031 unsigned elno = NEON_SCALAR_INDEX (scalar);
17032
17033 switch (elsize)
17034 {
17035 case 16:
17036 if (regno > 7 || elno > 3)
17037 goto bad_scalar;
17038 return regno | (elno << 3);
17039
17040 case 32:
17041 if (regno > 15 || elno > 1)
17042 goto bad_scalar;
17043 return regno | (elno << 4);
17044
17045 default:
17046 bad_scalar:
17047 first_error (_("scalar out of range for multiply instruction"));
17048 }
17049
17050 return 0;
17051 }
17052
17053 /* Encode multiply / multiply-accumulate scalar instructions. */
17054
17055 static void
17056 neon_mul_mac (struct neon_type_el et, int ubit)
17057 {
17058 unsigned scalar;
17059
17060 /* Give a more helpful error message if we have an invalid type. */
17061 if (et.type == NT_invtype)
17062 return;
17063
17064 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17065 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17066 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17067 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17068 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17069 inst.instruction |= LOW4 (scalar);
17070 inst.instruction |= HI1 (scalar) << 5;
17071 inst.instruction |= (et.type == NT_float) << 8;
17072 inst.instruction |= neon_logbits (et.size) << 20;
17073 inst.instruction |= (ubit != 0) << 24;
17074
17075 neon_dp_fixup (&inst);
17076 }
17077
17078 static void
17079 do_neon_mac_maybe_scalar (void)
17080 {
17081 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17082 return;
17083
17084 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17085 return;
17086
17087 if (inst.operands[2].isscalar)
17088 {
17089 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17090 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17091 struct neon_type_el et = neon_check_type (3, rs,
17092 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17093 NEON_ENCODE (SCALAR, inst);
17094 neon_mul_mac (et, neon_quad (rs));
17095 }
17096 else if (!inst.operands[2].isvec)
17097 {
17098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17099
17100 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17101 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17102
17103 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17104 }
17105 else
17106 {
17107 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17108 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17109 affected if we specify unsigned args. */
17110 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17111 }
17112 }
17113
17114 static void
17115 do_neon_fmac (void)
17116 {
17117 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17118 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17119 return;
17120
17121 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17122 return;
17123
17124 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17125 {
17126 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17127 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17128 N_EQK);
17129
17130 if (rs == NS_QQR)
17131 {
17132 if (inst.operands[2].reg == REG_SP)
17133 as_tsktsk (MVE_BAD_SP);
17134 else if (inst.operands[2].reg == REG_PC)
17135 as_tsktsk (MVE_BAD_PC);
17136
17137 inst.instruction = 0xee310e40;
17138 inst.instruction |= (et.size == 16) << 28;
17139 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17140 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17142 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17143 inst.instruction |= inst.operands[2].reg;
17144 inst.is_neon = 1;
17145 return;
17146 }
17147 }
17148 else
17149 {
17150 constraint (!inst.operands[2].isvec, BAD_FPU);
17151 }
17152
17153 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17154 }
17155
17156 static void
17157 do_neon_tst (void)
17158 {
17159 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17160 struct neon_type_el et = neon_check_type (3, rs,
17161 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17162 neon_three_same (neon_quad (rs), 0, et.size);
17163 }
17164
17165 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17166 same types as the MAC equivalents. The polynomial type for this instruction
17167 is encoded the same as the integer type. */
17168
17169 static void
17170 do_neon_mul (void)
17171 {
17172 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17173 return;
17174
17175 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17176 return;
17177
17178 if (inst.operands[2].isscalar)
17179 {
17180 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17181 do_neon_mac_maybe_scalar ();
17182 }
17183 else
17184 {
17185 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17186 {
17187 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17188 struct neon_type_el et
17189 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17190 if (et.type == NT_float)
17191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17192 BAD_FPU);
17193
17194 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17195 }
17196 else
17197 {
17198 constraint (!inst.operands[2].isvec, BAD_FPU);
17199 neon_dyadic_misc (NT_poly,
17200 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17201 }
17202 }
17203 }
17204
17205 static void
17206 do_neon_qdmulh (void)
17207 {
17208 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17209 return;
17210
17211 if (inst.operands[2].isscalar)
17212 {
17213 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17214 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17215 struct neon_type_el et = neon_check_type (3, rs,
17216 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17217 NEON_ENCODE (SCALAR, inst);
17218 neon_mul_mac (et, neon_quad (rs));
17219 }
17220 else
17221 {
17222 enum neon_shape rs;
17223 struct neon_type_el et;
17224 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17225 {
17226 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17227 et = neon_check_type (3, rs,
17228 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17229 }
17230 else
17231 {
17232 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17233 et = neon_check_type (3, rs,
17234 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17235 }
17236
17237 NEON_ENCODE (INTEGER, inst);
17238 if (rs == NS_QQR)
17239 mve_encode_qqr (et.size, 0, 0);
17240 else
17241 /* The U bit (rounding) comes from bit mask. */
17242 neon_three_same (neon_quad (rs), 0, et.size);
17243 }
17244 }
17245
17246 static void
17247 do_mve_vaddv (void)
17248 {
17249 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17250 struct neon_type_el et
17251 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17252
17253 if (et.type == NT_invtype)
17254 first_error (BAD_EL_TYPE);
17255
17256 if (inst.cond > COND_ALWAYS)
17257 inst.pred_insn_type = INSIDE_VPT_INSN;
17258 else
17259 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17260
17261 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17262
17263 mve_encode_rq (et.type == NT_unsigned, et.size);
17264 }
17265
17266 static void
17267 do_mve_vhcadd (void)
17268 {
17269 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17270 struct neon_type_el et
17271 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17272
17273 if (inst.cond > COND_ALWAYS)
17274 inst.pred_insn_type = INSIDE_VPT_INSN;
17275 else
17276 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17277
17278 unsigned rot = inst.relocs[0].exp.X_add_number;
17279 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17280
17281 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17282 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17283 "operand makes instruction UNPREDICTABLE"));
17284
17285 mve_encode_qqq (0, et.size);
17286 inst.instruction |= (rot == 270) << 12;
17287 inst.is_neon = 1;
17288 }
17289
17290 static void
17291 do_mve_vqdmull (void)
17292 {
17293 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17294 struct neon_type_el et
17295 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17296
17297 if (et.size == 32
17298 && (inst.operands[0].reg == inst.operands[1].reg
17299 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17300 as_tsktsk (BAD_MVE_SRCDEST);
17301
17302 if (inst.cond > COND_ALWAYS)
17303 inst.pred_insn_type = INSIDE_VPT_INSN;
17304 else
17305 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17306
17307 if (rs == NS_QQQ)
17308 {
17309 mve_encode_qqq (et.size == 32, 64);
17310 inst.instruction |= 1;
17311 }
17312 else
17313 {
17314 mve_encode_qqr (64, et.size == 32, 0);
17315 inst.instruction |= 0x3 << 5;
17316 }
17317 }
17318
17319 static void
17320 do_mve_vadc (void)
17321 {
17322 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17323 struct neon_type_el et
17324 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17325
17326 if (et.type == NT_invtype)
17327 first_error (BAD_EL_TYPE);
17328
17329 if (inst.cond > COND_ALWAYS)
17330 inst.pred_insn_type = INSIDE_VPT_INSN;
17331 else
17332 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17333
17334 mve_encode_qqq (0, 64);
17335 }
17336
17337 static void
17338 do_mve_vbrsr (void)
17339 {
17340 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17341 struct neon_type_el et
17342 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17343
17344 if (inst.cond > COND_ALWAYS)
17345 inst.pred_insn_type = INSIDE_VPT_INSN;
17346 else
17347 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17348
17349 mve_encode_qqr (et.size, 0, 0);
17350 }
17351
17352 static void
17353 do_mve_vsbc (void)
17354 {
17355 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17356
17357 if (inst.cond > COND_ALWAYS)
17358 inst.pred_insn_type = INSIDE_VPT_INSN;
17359 else
17360 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17361
17362 mve_encode_qqq (1, 64);
17363 }
17364
17365 static void
17366 do_mve_vmulh (void)
17367 {
17368 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17369 struct neon_type_el et
17370 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17371
17372 if (inst.cond > COND_ALWAYS)
17373 inst.pred_insn_type = INSIDE_VPT_INSN;
17374 else
17375 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17376
17377 mve_encode_qqq (et.type == NT_unsigned, et.size);
17378 }
17379
17380 static void
17381 do_mve_vqdmlah (void)
17382 {
17383 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17384 struct neon_type_el et
17385 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17386
17387 if (inst.cond > COND_ALWAYS)
17388 inst.pred_insn_type = INSIDE_VPT_INSN;
17389 else
17390 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17391
17392 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17393 }
17394
17395 static void
17396 do_mve_vqdmladh (void)
17397 {
17398 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17399 struct neon_type_el et
17400 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17401
17402 if (inst.cond > COND_ALWAYS)
17403 inst.pred_insn_type = INSIDE_VPT_INSN;
17404 else
17405 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17406
17407 if (et.size == 32
17408 && (inst.operands[0].reg == inst.operands[1].reg
17409 || inst.operands[0].reg == inst.operands[2].reg))
17410 as_tsktsk (BAD_MVE_SRCDEST);
17411
17412 mve_encode_qqq (0, et.size);
17413 }
17414
17415
17416 static void
17417 do_mve_vmull (void)
17418 {
17419
17420 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17421 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17422 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17423 && inst.cond == COND_ALWAYS
17424 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17425 {
17426 if (rs == NS_QQQ)
17427 {
17428
17429 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17430 N_SUF_32 | N_F64 | N_P8
17431 | N_P16 | N_I_MVE | N_KEY);
17432 if (((et.type == NT_poly) && et.size == 8
17433 && ARM_CPU_IS_ANY (cpu_variant))
17434 || (et.type == NT_integer) || (et.type == NT_float))
17435 goto neon_vmul;
17436 }
17437 else
17438 goto neon_vmul;
17439 }
17440
17441 constraint (rs != NS_QQQ, BAD_FPU);
17442 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17443 N_SU_32 | N_P8 | N_P16 | N_KEY);
17444
17445 /* We are dealing with MVE's vmullt. */
17446 if (et.size == 32
17447 && (inst.operands[0].reg == inst.operands[1].reg
17448 || inst.operands[0].reg == inst.operands[2].reg))
17449 as_tsktsk (BAD_MVE_SRCDEST);
17450
17451 if (inst.cond > COND_ALWAYS)
17452 inst.pred_insn_type = INSIDE_VPT_INSN;
17453 else
17454 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17455
17456 if (et.type == NT_poly)
17457 mve_encode_qqq (neon_logbits (et.size), 64);
17458 else
17459 mve_encode_qqq (et.type == NT_unsigned, et.size);
17460
17461 return;
17462
17463 neon_vmul:
17464 inst.instruction = N_MNEM_vmul;
17465 inst.cond = 0xb;
17466 if (thumb_mode)
17467 inst.pred_insn_type = INSIDE_IT_INSN;
17468 do_neon_mul ();
17469 }
17470
17471 static void
17472 do_mve_vabav (void)
17473 {
17474 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17475
17476 if (rs == NS_NULL)
17477 return;
17478
17479 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17480 return;
17481
17482 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17483 | N_S16 | N_S32 | N_U8 | N_U16
17484 | N_U32);
17485
17486 if (inst.cond > COND_ALWAYS)
17487 inst.pred_insn_type = INSIDE_VPT_INSN;
17488 else
17489 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17490
17491 mve_encode_rqq (et.type == NT_unsigned, et.size);
17492 }
17493
17494 static void
17495 do_mve_vmladav (void)
17496 {
17497 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17498 struct neon_type_el et = neon_check_type (3, rs,
17499 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17500
17501 if (et.type == NT_unsigned
17502 && (inst.instruction == M_MNEM_vmladavx
17503 || inst.instruction == M_MNEM_vmladavax
17504 || inst.instruction == M_MNEM_vmlsdav
17505 || inst.instruction == M_MNEM_vmlsdava
17506 || inst.instruction == M_MNEM_vmlsdavx
17507 || inst.instruction == M_MNEM_vmlsdavax))
17508 first_error (BAD_SIMD_TYPE);
17509
17510 constraint (inst.operands[2].reg > 14,
17511 _("MVE vector register in the range [Q0..Q7] expected"));
17512
17513 if (inst.cond > COND_ALWAYS)
17514 inst.pred_insn_type = INSIDE_VPT_INSN;
17515 else
17516 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17517
17518 if (inst.instruction == M_MNEM_vmlsdav
17519 || inst.instruction == M_MNEM_vmlsdava
17520 || inst.instruction == M_MNEM_vmlsdavx
17521 || inst.instruction == M_MNEM_vmlsdavax)
17522 inst.instruction |= (et.size == 8) << 28;
17523 else
17524 inst.instruction |= (et.size == 8) << 8;
17525
17526 mve_encode_rqq (et.type == NT_unsigned, 64);
17527 inst.instruction |= (et.size == 32) << 16;
17528 }
17529
17530 static void
17531 do_mve_vmlaldav (void)
17532 {
17533 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17534 struct neon_type_el et
17535 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17536 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17537
17538 if (et.type == NT_unsigned
17539 && (inst.instruction == M_MNEM_vmlsldav
17540 || inst.instruction == M_MNEM_vmlsldava
17541 || inst.instruction == M_MNEM_vmlsldavx
17542 || inst.instruction == M_MNEM_vmlsldavax))
17543 first_error (BAD_SIMD_TYPE);
17544
17545 if (inst.cond > COND_ALWAYS)
17546 inst.pred_insn_type = INSIDE_VPT_INSN;
17547 else
17548 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17549
17550 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17551 }
17552
17553 static void
17554 do_mve_vrmlaldavh (void)
17555 {
17556 struct neon_type_el et;
17557 if (inst.instruction == M_MNEM_vrmlsldavh
17558 || inst.instruction == M_MNEM_vrmlsldavha
17559 || inst.instruction == M_MNEM_vrmlsldavhx
17560 || inst.instruction == M_MNEM_vrmlsldavhax)
17561 {
17562 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17563 if (inst.operands[1].reg == REG_SP)
17564 as_tsktsk (MVE_BAD_SP);
17565 }
17566 else
17567 {
17568 if (inst.instruction == M_MNEM_vrmlaldavhx
17569 || inst.instruction == M_MNEM_vrmlaldavhax)
17570 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17571 else
17572 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17573 N_U32 | N_S32 | N_KEY);
17574 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17575 with vmax/min instructions, making the use of SP in assembly really
17576 nonsensical, so instead of issuing a warning like we do for other uses
17577 of SP for the odd register operand we error out. */
17578 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17579 }
17580
17581 /* Make sure we still check the second operand is an odd one and that PC is
17582 disallowed. This because we are parsing for any GPR operand, to be able
17583 to distinguish between giving a warning or an error for SP as described
17584 above. */
17585 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17586 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17587
17588 if (inst.cond > COND_ALWAYS)
17589 inst.pred_insn_type = INSIDE_VPT_INSN;
17590 else
17591 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17592
17593 mve_encode_rrqq (et.type == NT_unsigned, 0);
17594 }
17595
17596
17597 static void
17598 do_mve_vmaxnmv (void)
17599 {
17600 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17601 struct neon_type_el et
17602 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17603
17604 if (inst.cond > COND_ALWAYS)
17605 inst.pred_insn_type = INSIDE_VPT_INSN;
17606 else
17607 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17608
17609 if (inst.operands[0].reg == REG_SP)
17610 as_tsktsk (MVE_BAD_SP);
17611 else if (inst.operands[0].reg == REG_PC)
17612 as_tsktsk (MVE_BAD_PC);
17613
17614 mve_encode_rq (et.size == 16, 64);
17615 }
17616
17617 static void
17618 do_mve_vmaxv (void)
17619 {
17620 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17621 struct neon_type_el et;
17622
17623 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17624 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17625 else
17626 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17627
17628 if (inst.cond > COND_ALWAYS)
17629 inst.pred_insn_type = INSIDE_VPT_INSN;
17630 else
17631 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17632
17633 if (inst.operands[0].reg == REG_SP)
17634 as_tsktsk (MVE_BAD_SP);
17635 else if (inst.operands[0].reg == REG_PC)
17636 as_tsktsk (MVE_BAD_PC);
17637
17638 mve_encode_rq (et.type == NT_unsigned, et.size);
17639 }
17640
17641
17642 static void
17643 do_neon_qrdmlah (void)
17644 {
17645 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17646 return;
17647 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17648 {
17649 /* Check we're on the correct architecture. */
17650 if (!mark_feature_used (&fpu_neon_ext_armv8))
17651 inst.error
17652 = _("instruction form not available on this architecture.");
17653 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17654 {
17655 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17656 record_feature_use (&fpu_neon_ext_v8_1);
17657 }
17658 if (inst.operands[2].isscalar)
17659 {
17660 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17661 struct neon_type_el et = neon_check_type (3, rs,
17662 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17663 NEON_ENCODE (SCALAR, inst);
17664 neon_mul_mac (et, neon_quad (rs));
17665 }
17666 else
17667 {
17668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17669 struct neon_type_el et = neon_check_type (3, rs,
17670 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17671 NEON_ENCODE (INTEGER, inst);
17672 /* The U bit (rounding) comes from bit mask. */
17673 neon_three_same (neon_quad (rs), 0, et.size);
17674 }
17675 }
17676 else
17677 {
17678 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17679 struct neon_type_el et
17680 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17681
17682 NEON_ENCODE (INTEGER, inst);
17683 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17684 }
17685 }
17686
17687 static void
17688 do_neon_fcmp_absolute (void)
17689 {
17690 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17691 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17692 N_F_16_32 | N_KEY);
17693 /* Size field comes from bit mask. */
17694 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17695 }
17696
17697 static void
17698 do_neon_fcmp_absolute_inv (void)
17699 {
17700 neon_exchange_operands ();
17701 do_neon_fcmp_absolute ();
17702 }
17703
17704 static void
17705 do_neon_step (void)
17706 {
17707 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17708 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17709 N_F_16_32 | N_KEY);
17710 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17711 }
17712
17713 static void
17714 do_neon_abs_neg (void)
17715 {
17716 enum neon_shape rs;
17717 struct neon_type_el et;
17718
17719 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17720 return;
17721
17722 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17723 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17724
17725 if (check_simd_pred_availability (et.type == NT_float,
17726 NEON_CHECK_ARCH | NEON_CHECK_CC))
17727 return;
17728
17729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17731 inst.instruction |= LOW4 (inst.operands[1].reg);
17732 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17733 inst.instruction |= neon_quad (rs) << 6;
17734 inst.instruction |= (et.type == NT_float) << 10;
17735 inst.instruction |= neon_logbits (et.size) << 18;
17736
17737 neon_dp_fixup (&inst);
17738 }
17739
17740 static void
17741 do_neon_sli (void)
17742 {
17743 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17744 struct neon_type_el et = neon_check_type (2, rs,
17745 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17746 int imm = inst.operands[2].imm;
17747 constraint (imm < 0 || (unsigned)imm >= et.size,
17748 _("immediate out of range for insert"));
17749 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17750 }
17751
17752 static void
17753 do_neon_sri (void)
17754 {
17755 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17756 struct neon_type_el et = neon_check_type (2, rs,
17757 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17758 int imm = inst.operands[2].imm;
17759 constraint (imm < 1 || (unsigned)imm > et.size,
17760 _("immediate out of range for insert"));
17761 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17762 }
17763
17764 static void
17765 do_neon_qshlu_imm (void)
17766 {
17767 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17768 struct neon_type_el et = neon_check_type (2, rs,
17769 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17770 int imm = inst.operands[2].imm;
17771 constraint (imm < 0 || (unsigned)imm >= et.size,
17772 _("immediate out of range for shift"));
17773 /* Only encodes the 'U present' variant of the instruction.
17774 In this case, signed types have OP (bit 8) set to 0.
17775 Unsigned types have OP set to 1. */
17776 inst.instruction |= (et.type == NT_unsigned) << 8;
17777 /* The rest of the bits are the same as other immediate shifts. */
17778 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17779 }
17780
17781 static void
17782 do_neon_qmovn (void)
17783 {
17784 struct neon_type_el et = neon_check_type (2, NS_DQ,
17785 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17786 /* Saturating move where operands can be signed or unsigned, and the
17787 destination has the same signedness. */
17788 NEON_ENCODE (INTEGER, inst);
17789 if (et.type == NT_unsigned)
17790 inst.instruction |= 0xc0;
17791 else
17792 inst.instruction |= 0x80;
17793 neon_two_same (0, 1, et.size / 2);
17794 }
17795
17796 static void
17797 do_neon_qmovun (void)
17798 {
17799 struct neon_type_el et = neon_check_type (2, NS_DQ,
17800 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17801 /* Saturating move with unsigned results. Operands must be signed. */
17802 NEON_ENCODE (INTEGER, inst);
17803 neon_two_same (0, 1, et.size / 2);
17804 }
17805
17806 static void
17807 do_neon_rshift_sat_narrow (void)
17808 {
17809 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17810 or unsigned. If operands are unsigned, results must also be unsigned. */
17811 struct neon_type_el et = neon_check_type (2, NS_DQI,
17812 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17813 int imm = inst.operands[2].imm;
17814 /* This gets the bounds check, size encoding and immediate bits calculation
17815 right. */
17816 et.size /= 2;
17817
17818 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17819 VQMOVN.I<size> <Dd>, <Qm>. */
17820 if (imm == 0)
17821 {
17822 inst.operands[2].present = 0;
17823 inst.instruction = N_MNEM_vqmovn;
17824 do_neon_qmovn ();
17825 return;
17826 }
17827
17828 constraint (imm < 1 || (unsigned)imm > et.size,
17829 _("immediate out of range"));
17830 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17831 }
17832
17833 static void
17834 do_neon_rshift_sat_narrow_u (void)
17835 {
17836 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17837 or unsigned. If operands are unsigned, results must also be unsigned. */
17838 struct neon_type_el et = neon_check_type (2, NS_DQI,
17839 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17840 int imm = inst.operands[2].imm;
17841 /* This gets the bounds check, size encoding and immediate bits calculation
17842 right. */
17843 et.size /= 2;
17844
17845 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17846 VQMOVUN.I<size> <Dd>, <Qm>. */
17847 if (imm == 0)
17848 {
17849 inst.operands[2].present = 0;
17850 inst.instruction = N_MNEM_vqmovun;
17851 do_neon_qmovun ();
17852 return;
17853 }
17854
17855 constraint (imm < 1 || (unsigned)imm > et.size,
17856 _("immediate out of range"));
17857 /* FIXME: The manual is kind of unclear about what value U should have in
17858 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17859 must be 1. */
17860 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17861 }
17862
17863 static void
17864 do_neon_movn (void)
17865 {
17866 struct neon_type_el et = neon_check_type (2, NS_DQ,
17867 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17868 NEON_ENCODE (INTEGER, inst);
17869 neon_two_same (0, 1, et.size / 2);
17870 }
17871
17872 static void
17873 do_neon_rshift_narrow (void)
17874 {
17875 struct neon_type_el et = neon_check_type (2, NS_DQI,
17876 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17877 int imm = inst.operands[2].imm;
17878 /* This gets the bounds check, size encoding and immediate bits calculation
17879 right. */
17880 et.size /= 2;
17881
17882 /* If immediate is zero then we are a pseudo-instruction for
17883 VMOVN.I<size> <Dd>, <Qm> */
17884 if (imm == 0)
17885 {
17886 inst.operands[2].present = 0;
17887 inst.instruction = N_MNEM_vmovn;
17888 do_neon_movn ();
17889 return;
17890 }
17891
17892 constraint (imm < 1 || (unsigned)imm > et.size,
17893 _("immediate out of range for narrowing operation"));
17894 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17895 }
17896
17897 static void
17898 do_neon_shll (void)
17899 {
17900 /* FIXME: Type checking when lengthening. */
17901 struct neon_type_el et = neon_check_type (2, NS_QDI,
17902 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17903 unsigned imm = inst.operands[2].imm;
17904
17905 if (imm == et.size)
17906 {
17907 /* Maximum shift variant. */
17908 NEON_ENCODE (INTEGER, inst);
17909 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17910 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17911 inst.instruction |= LOW4 (inst.operands[1].reg);
17912 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17913 inst.instruction |= neon_logbits (et.size) << 18;
17914
17915 neon_dp_fixup (&inst);
17916 }
17917 else
17918 {
17919 /* A more-specific type check for non-max versions. */
17920 et = neon_check_type (2, NS_QDI,
17921 N_EQK | N_DBL, N_SU_32 | N_KEY);
17922 NEON_ENCODE (IMMED, inst);
17923 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17924 }
17925 }
17926
17927 /* Check the various types for the VCVT instruction, and return which version
17928 the current instruction is. */
17929
17930 #define CVT_FLAVOUR_VAR \
17931 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17932 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17933 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17934 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17935 /* Half-precision conversions. */ \
17936 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17937 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17938 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17939 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17940 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17941 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17942 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17943 Compared with single/double precision variants, only the co-processor \
17944 field is different, so the encoding flow is reused here. */ \
17945 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17946 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17947 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17948 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17949 /* VFP instructions. */ \
17950 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17951 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17952 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17953 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17954 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17955 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17956 /* VFP instructions with bitshift. */ \
17957 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17958 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17959 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17960 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17961 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17962 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17963 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17964 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17965
17966 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17967 neon_cvt_flavour_##C,
17968
17969 /* The different types of conversions we can do. */
17970 enum neon_cvt_flavour
17971 {
17972 CVT_FLAVOUR_VAR
17973 neon_cvt_flavour_invalid,
17974 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17975 };
17976
17977 #undef CVT_VAR
17978
17979 static enum neon_cvt_flavour
17980 get_neon_cvt_flavour (enum neon_shape rs)
17981 {
17982 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17983 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17984 if (et.type != NT_invtype) \
17985 { \
17986 inst.error = NULL; \
17987 return (neon_cvt_flavour_##C); \
17988 }
17989
17990 struct neon_type_el et;
17991 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17992 || rs == NS_FF) ? N_VFP : 0;
17993 /* The instruction versions which take an immediate take one register
17994 argument, which is extended to the width of the full register. Thus the
17995 "source" and "destination" registers must have the same width. Hack that
17996 here by making the size equal to the key (wider, in this case) operand. */
17997 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17998
17999 CVT_FLAVOUR_VAR;
18000
18001 return neon_cvt_flavour_invalid;
18002 #undef CVT_VAR
18003 }
18004
18005 enum neon_cvt_mode
18006 {
18007 neon_cvt_mode_a,
18008 neon_cvt_mode_n,
18009 neon_cvt_mode_p,
18010 neon_cvt_mode_m,
18011 neon_cvt_mode_z,
18012 neon_cvt_mode_x,
18013 neon_cvt_mode_r
18014 };
18015
18016 /* Neon-syntax VFP conversions. */
18017
18018 static void
18019 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18020 {
18021 const char *opname = 0;
18022
18023 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18024 || rs == NS_FHI || rs == NS_HFI)
18025 {
18026 /* Conversions with immediate bitshift. */
18027 const char *enc[] =
18028 {
18029 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18030 CVT_FLAVOUR_VAR
18031 NULL
18032 #undef CVT_VAR
18033 };
18034
18035 if (flavour < (int) ARRAY_SIZE (enc))
18036 {
18037 opname = enc[flavour];
18038 constraint (inst.operands[0].reg != inst.operands[1].reg,
18039 _("operands 0 and 1 must be the same register"));
18040 inst.operands[1] = inst.operands[2];
18041 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18042 }
18043 }
18044 else
18045 {
18046 /* Conversions without bitshift. */
18047 const char *enc[] =
18048 {
18049 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18050 CVT_FLAVOUR_VAR
18051 NULL
18052 #undef CVT_VAR
18053 };
18054
18055 if (flavour < (int) ARRAY_SIZE (enc))
18056 opname = enc[flavour];
18057 }
18058
18059 if (opname)
18060 do_vfp_nsyn_opcode (opname);
18061
18062 /* ARMv8.2 fp16 VCVT instruction. */
18063 if (flavour == neon_cvt_flavour_s32_f16
18064 || flavour == neon_cvt_flavour_u32_f16
18065 || flavour == neon_cvt_flavour_f16_u32
18066 || flavour == neon_cvt_flavour_f16_s32)
18067 do_scalar_fp16_v82_encode ();
18068 }
18069
18070 static void
18071 do_vfp_nsyn_cvtz (void)
18072 {
18073 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18074 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18075 const char *enc[] =
18076 {
18077 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18078 CVT_FLAVOUR_VAR
18079 NULL
18080 #undef CVT_VAR
18081 };
18082
18083 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18084 do_vfp_nsyn_opcode (enc[flavour]);
18085 }
18086
18087 static void
18088 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18089 enum neon_cvt_mode mode)
18090 {
18091 int sz, op;
18092 int rm;
18093
18094 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18095 D register operands. */
18096 if (flavour == neon_cvt_flavour_s32_f64
18097 || flavour == neon_cvt_flavour_u32_f64)
18098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18099 _(BAD_FPU));
18100
18101 if (flavour == neon_cvt_flavour_s32_f16
18102 || flavour == neon_cvt_flavour_u32_f16)
18103 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18104 _(BAD_FP16));
18105
18106 set_pred_insn_type (OUTSIDE_PRED_INSN);
18107
18108 switch (flavour)
18109 {
18110 case neon_cvt_flavour_s32_f64:
18111 sz = 1;
18112 op = 1;
18113 break;
18114 case neon_cvt_flavour_s32_f32:
18115 sz = 0;
18116 op = 1;
18117 break;
18118 case neon_cvt_flavour_s32_f16:
18119 sz = 0;
18120 op = 1;
18121 break;
18122 case neon_cvt_flavour_u32_f64:
18123 sz = 1;
18124 op = 0;
18125 break;
18126 case neon_cvt_flavour_u32_f32:
18127 sz = 0;
18128 op = 0;
18129 break;
18130 case neon_cvt_flavour_u32_f16:
18131 sz = 0;
18132 op = 0;
18133 break;
18134 default:
18135 first_error (_("invalid instruction shape"));
18136 return;
18137 }
18138
18139 switch (mode)
18140 {
18141 case neon_cvt_mode_a: rm = 0; break;
18142 case neon_cvt_mode_n: rm = 1; break;
18143 case neon_cvt_mode_p: rm = 2; break;
18144 case neon_cvt_mode_m: rm = 3; break;
18145 default: first_error (_("invalid rounding mode")); return;
18146 }
18147
18148 NEON_ENCODE (FPV8, inst);
18149 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18150 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18151 inst.instruction |= sz << 8;
18152
18153 /* ARMv8.2 fp16 VCVT instruction. */
18154 if (flavour == neon_cvt_flavour_s32_f16
18155 ||flavour == neon_cvt_flavour_u32_f16)
18156 do_scalar_fp16_v82_encode ();
18157 inst.instruction |= op << 7;
18158 inst.instruction |= rm << 16;
18159 inst.instruction |= 0xf0000000;
18160 inst.is_neon = TRUE;
18161 }
18162
18163 static void
18164 do_neon_cvt_1 (enum neon_cvt_mode mode)
18165 {
18166 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18167 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18168 NS_FH, NS_HF, NS_FHI, NS_HFI,
18169 NS_NULL);
18170 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18171
18172 if (flavour == neon_cvt_flavour_invalid)
18173 return;
18174
18175 /* PR11109: Handle round-to-zero for VCVT conversions. */
18176 if (mode == neon_cvt_mode_z
18177 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18178 && (flavour == neon_cvt_flavour_s16_f16
18179 || flavour == neon_cvt_flavour_u16_f16
18180 || flavour == neon_cvt_flavour_s32_f32
18181 || flavour == neon_cvt_flavour_u32_f32
18182 || flavour == neon_cvt_flavour_s32_f64
18183 || flavour == neon_cvt_flavour_u32_f64)
18184 && (rs == NS_FD || rs == NS_FF))
18185 {
18186 do_vfp_nsyn_cvtz ();
18187 return;
18188 }
18189
18190 /* ARMv8.2 fp16 VCVT conversions. */
18191 if (mode == neon_cvt_mode_z
18192 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18193 && (flavour == neon_cvt_flavour_s32_f16
18194 || flavour == neon_cvt_flavour_u32_f16)
18195 && (rs == NS_FH))
18196 {
18197 do_vfp_nsyn_cvtz ();
18198 do_scalar_fp16_v82_encode ();
18199 return;
18200 }
18201
18202 /* VFP rather than Neon conversions. */
18203 if (flavour >= neon_cvt_flavour_first_fp)
18204 {
18205 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18206 do_vfp_nsyn_cvt (rs, flavour);
18207 else
18208 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18209
18210 return;
18211 }
18212
18213 switch (rs)
18214 {
18215 case NS_QQI:
18216 if (mode == neon_cvt_mode_z
18217 && (flavour == neon_cvt_flavour_f16_s16
18218 || flavour == neon_cvt_flavour_f16_u16
18219 || flavour == neon_cvt_flavour_s16_f16
18220 || flavour == neon_cvt_flavour_u16_f16
18221 || flavour == neon_cvt_flavour_f32_u32
18222 || flavour == neon_cvt_flavour_f32_s32
18223 || flavour == neon_cvt_flavour_s32_f32
18224 || flavour == neon_cvt_flavour_u32_f32))
18225 {
18226 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18227 return;
18228 }
18229 else if (mode == neon_cvt_mode_n)
18230 {
18231 /* We are dealing with vcvt with the 'ne' condition. */
18232 inst.cond = 0x1;
18233 inst.instruction = N_MNEM_vcvt;
18234 do_neon_cvt_1 (neon_cvt_mode_z);
18235 return;
18236 }
18237 /* fall through. */
18238 case NS_DDI:
18239 {
18240 unsigned immbits;
18241 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18242 0x0000100, 0x1000100, 0x0, 0x1000000};
18243
18244 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18245 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18246 return;
18247
18248 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18249 {
18250 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18251 _("immediate value out of range"));
18252 switch (flavour)
18253 {
18254 case neon_cvt_flavour_f16_s16:
18255 case neon_cvt_flavour_f16_u16:
18256 case neon_cvt_flavour_s16_f16:
18257 case neon_cvt_flavour_u16_f16:
18258 constraint (inst.operands[2].imm > 16,
18259 _("immediate value out of range"));
18260 break;
18261 case neon_cvt_flavour_f32_u32:
18262 case neon_cvt_flavour_f32_s32:
18263 case neon_cvt_flavour_s32_f32:
18264 case neon_cvt_flavour_u32_f32:
18265 constraint (inst.operands[2].imm > 32,
18266 _("immediate value out of range"));
18267 break;
18268 default:
18269 inst.error = BAD_FPU;
18270 return;
18271 }
18272 }
18273
18274 /* Fixed-point conversion with #0 immediate is encoded as an
18275 integer conversion. */
18276 if (inst.operands[2].present && inst.operands[2].imm == 0)
18277 goto int_encode;
18278 NEON_ENCODE (IMMED, inst);
18279 if (flavour != neon_cvt_flavour_invalid)
18280 inst.instruction |= enctab[flavour];
18281 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18282 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18283 inst.instruction |= LOW4 (inst.operands[1].reg);
18284 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18285 inst.instruction |= neon_quad (rs) << 6;
18286 inst.instruction |= 1 << 21;
18287 if (flavour < neon_cvt_flavour_s16_f16)
18288 {
18289 inst.instruction |= 1 << 21;
18290 immbits = 32 - inst.operands[2].imm;
18291 inst.instruction |= immbits << 16;
18292 }
18293 else
18294 {
18295 inst.instruction |= 3 << 20;
18296 immbits = 16 - inst.operands[2].imm;
18297 inst.instruction |= immbits << 16;
18298 inst.instruction &= ~(1 << 9);
18299 }
18300
18301 neon_dp_fixup (&inst);
18302 }
18303 break;
18304
18305 case NS_QQ:
18306 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18307 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18308 && (flavour == neon_cvt_flavour_s16_f16
18309 || flavour == neon_cvt_flavour_u16_f16
18310 || flavour == neon_cvt_flavour_s32_f32
18311 || flavour == neon_cvt_flavour_u32_f32))
18312 {
18313 if (check_simd_pred_availability (1,
18314 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18315 return;
18316 }
18317 else if (mode == neon_cvt_mode_z
18318 && (flavour == neon_cvt_flavour_f16_s16
18319 || flavour == neon_cvt_flavour_f16_u16
18320 || flavour == neon_cvt_flavour_s16_f16
18321 || flavour == neon_cvt_flavour_u16_f16
18322 || flavour == neon_cvt_flavour_f32_u32
18323 || flavour == neon_cvt_flavour_f32_s32
18324 || flavour == neon_cvt_flavour_s32_f32
18325 || flavour == neon_cvt_flavour_u32_f32))
18326 {
18327 if (check_simd_pred_availability (1,
18328 NEON_CHECK_CC | NEON_CHECK_ARCH))
18329 return;
18330 }
18331 /* fall through. */
18332 case NS_DD:
18333 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18334 {
18335
18336 NEON_ENCODE (FLOAT, inst);
18337 if (check_simd_pred_availability (1,
18338 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18339 return;
18340
18341 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18342 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18343 inst.instruction |= LOW4 (inst.operands[1].reg);
18344 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18345 inst.instruction |= neon_quad (rs) << 6;
18346 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18347 || flavour == neon_cvt_flavour_u32_f32) << 7;
18348 inst.instruction |= mode << 8;
18349 if (flavour == neon_cvt_flavour_u16_f16
18350 || flavour == neon_cvt_flavour_s16_f16)
18351 /* Mask off the original size bits and reencode them. */
18352 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18353
18354 if (thumb_mode)
18355 inst.instruction |= 0xfc000000;
18356 else
18357 inst.instruction |= 0xf0000000;
18358 }
18359 else
18360 {
18361 int_encode:
18362 {
18363 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18364 0x100, 0x180, 0x0, 0x080};
18365
18366 NEON_ENCODE (INTEGER, inst);
18367
18368 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18369 {
18370 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18371 return;
18372 }
18373
18374 if (flavour != neon_cvt_flavour_invalid)
18375 inst.instruction |= enctab[flavour];
18376
18377 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18378 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18379 inst.instruction |= LOW4 (inst.operands[1].reg);
18380 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18381 inst.instruction |= neon_quad (rs) << 6;
18382 if (flavour >= neon_cvt_flavour_s16_f16
18383 && flavour <= neon_cvt_flavour_f16_u16)
18384 /* Half precision. */
18385 inst.instruction |= 1 << 18;
18386 else
18387 inst.instruction |= 2 << 18;
18388
18389 neon_dp_fixup (&inst);
18390 }
18391 }
18392 break;
18393
18394 /* Half-precision conversions for Advanced SIMD -- neon. */
18395 case NS_QD:
18396 case NS_DQ:
18397 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18398 return;
18399
18400 if ((rs == NS_DQ)
18401 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18402 {
18403 as_bad (_("operand size must match register width"));
18404 break;
18405 }
18406
18407 if ((rs == NS_QD)
18408 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18409 {
18410 as_bad (_("operand size must match register width"));
18411 break;
18412 }
18413
18414 if (rs == NS_DQ)
18415 inst.instruction = 0x3b60600;
18416 else
18417 inst.instruction = 0x3b60700;
18418
18419 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18421 inst.instruction |= LOW4 (inst.operands[1].reg);
18422 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18423 neon_dp_fixup (&inst);
18424 break;
18425
18426 default:
18427 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18428 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18429 do_vfp_nsyn_cvt (rs, flavour);
18430 else
18431 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18432 }
18433 }
18434
18435 static void
18436 do_neon_cvtr (void)
18437 {
18438 do_neon_cvt_1 (neon_cvt_mode_x);
18439 }
18440
18441 static void
18442 do_neon_cvt (void)
18443 {
18444 do_neon_cvt_1 (neon_cvt_mode_z);
18445 }
18446
18447 static void
18448 do_neon_cvta (void)
18449 {
18450 do_neon_cvt_1 (neon_cvt_mode_a);
18451 }
18452
18453 static void
18454 do_neon_cvtn (void)
18455 {
18456 do_neon_cvt_1 (neon_cvt_mode_n);
18457 }
18458
18459 static void
18460 do_neon_cvtp (void)
18461 {
18462 do_neon_cvt_1 (neon_cvt_mode_p);
18463 }
18464
18465 static void
18466 do_neon_cvtm (void)
18467 {
18468 do_neon_cvt_1 (neon_cvt_mode_m);
18469 }
18470
18471 static void
18472 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18473 {
18474 if (is_double)
18475 mark_feature_used (&fpu_vfp_ext_armv8);
18476
18477 encode_arm_vfp_reg (inst.operands[0].reg,
18478 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18479 encode_arm_vfp_reg (inst.operands[1].reg,
18480 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18481 inst.instruction |= to ? 0x10000 : 0;
18482 inst.instruction |= t ? 0x80 : 0;
18483 inst.instruction |= is_double ? 0x100 : 0;
18484 do_vfp_cond_or_thumb ();
18485 }
18486
18487 static void
18488 do_neon_cvttb_1 (bfd_boolean t)
18489 {
18490 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18491 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18492
18493 if (rs == NS_NULL)
18494 return;
18495 else if (rs == NS_QQ || rs == NS_QQI)
18496 {
18497 int single_to_half = 0;
18498 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18499 return;
18500
18501 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18502
18503 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18504 && (flavour == neon_cvt_flavour_u16_f16
18505 || flavour == neon_cvt_flavour_s16_f16
18506 || flavour == neon_cvt_flavour_f16_s16
18507 || flavour == neon_cvt_flavour_f16_u16
18508 || flavour == neon_cvt_flavour_u32_f32
18509 || flavour == neon_cvt_flavour_s32_f32
18510 || flavour == neon_cvt_flavour_f32_s32
18511 || flavour == neon_cvt_flavour_f32_u32))
18512 {
18513 inst.cond = 0xf;
18514 inst.instruction = N_MNEM_vcvt;
18515 set_pred_insn_type (INSIDE_VPT_INSN);
18516 do_neon_cvt_1 (neon_cvt_mode_z);
18517 return;
18518 }
18519 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18520 single_to_half = 1;
18521 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18522 {
18523 first_error (BAD_FPU);
18524 return;
18525 }
18526
18527 inst.instruction = 0xee3f0e01;
18528 inst.instruction |= single_to_half << 28;
18529 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18530 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18531 inst.instruction |= t << 12;
18532 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18533 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18534 inst.is_neon = 1;
18535 }
18536 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18537 {
18538 inst.error = NULL;
18539 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18540 }
18541 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18542 {
18543 inst.error = NULL;
18544 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18545 }
18546 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18547 {
18548 /* The VCVTB and VCVTT instructions with D-register operands
18549 don't work for SP only targets. */
18550 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18551 _(BAD_FPU));
18552
18553 inst.error = NULL;
18554 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18555 }
18556 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18557 {
18558 /* The VCVTB and VCVTT instructions with D-register operands
18559 don't work for SP only targets. */
18560 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18561 _(BAD_FPU));
18562
18563 inst.error = NULL;
18564 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18565 }
18566 else
18567 return;
18568 }
18569
18570 static void
18571 do_neon_cvtb (void)
18572 {
18573 do_neon_cvttb_1 (FALSE);
18574 }
18575
18576
18577 static void
18578 do_neon_cvtt (void)
18579 {
18580 do_neon_cvttb_1 (TRUE);
18581 }
18582
18583 static void
18584 neon_move_immediate (void)
18585 {
18586 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18587 struct neon_type_el et = neon_check_type (2, rs,
18588 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18589 unsigned immlo, immhi = 0, immbits;
18590 int op, cmode, float_p;
18591
18592 constraint (et.type == NT_invtype,
18593 _("operand size must be specified for immediate VMOV"));
18594
18595 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18596 op = (inst.instruction & (1 << 5)) != 0;
18597
18598 immlo = inst.operands[1].imm;
18599 if (inst.operands[1].regisimm)
18600 immhi = inst.operands[1].reg;
18601
18602 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18603 _("immediate has bits set outside the operand size"));
18604
18605 float_p = inst.operands[1].immisfloat;
18606
18607 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18608 et.size, et.type)) == FAIL)
18609 {
18610 /* Invert relevant bits only. */
18611 neon_invert_size (&immlo, &immhi, et.size);
18612 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18613 with one or the other; those cases are caught by
18614 neon_cmode_for_move_imm. */
18615 op = !op;
18616 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18617 &op, et.size, et.type)) == FAIL)
18618 {
18619 first_error (_("immediate out of range"));
18620 return;
18621 }
18622 }
18623
18624 inst.instruction &= ~(1 << 5);
18625 inst.instruction |= op << 5;
18626
18627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18628 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18629 inst.instruction |= neon_quad (rs) << 6;
18630 inst.instruction |= cmode << 8;
18631
18632 neon_write_immbits (immbits);
18633 }
18634
18635 static void
18636 do_neon_mvn (void)
18637 {
18638 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18639 return;
18640
18641 if (inst.operands[1].isreg)
18642 {
18643 enum neon_shape rs;
18644 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18645 rs = neon_select_shape (NS_QQ, NS_NULL);
18646 else
18647 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18648
18649 NEON_ENCODE (INTEGER, inst);
18650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18652 inst.instruction |= LOW4 (inst.operands[1].reg);
18653 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18654 inst.instruction |= neon_quad (rs) << 6;
18655 }
18656 else
18657 {
18658 NEON_ENCODE (IMMED, inst);
18659 neon_move_immediate ();
18660 }
18661
18662 neon_dp_fixup (&inst);
18663
18664 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18665 {
18666 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18667 constraint ((inst.instruction & 0xd00) == 0xd00,
18668 _("immediate value out of range"));
18669 }
18670 }
18671
18672 /* Encode instructions of form:
18673
18674 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18675 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18676
18677 static void
18678 neon_mixed_length (struct neon_type_el et, unsigned size)
18679 {
18680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18681 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18682 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18683 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18684 inst.instruction |= LOW4 (inst.operands[2].reg);
18685 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18686 inst.instruction |= (et.type == NT_unsigned) << 24;
18687 inst.instruction |= neon_logbits (size) << 20;
18688
18689 neon_dp_fixup (&inst);
18690 }
18691
18692 static void
18693 do_neon_dyadic_long (void)
18694 {
18695 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18696 if (rs == NS_QDD)
18697 {
18698 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18699 return;
18700
18701 NEON_ENCODE (INTEGER, inst);
18702 /* FIXME: Type checking for lengthening op. */
18703 struct neon_type_el et = neon_check_type (3, NS_QDD,
18704 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18705 neon_mixed_length (et, et.size);
18706 }
18707 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18708 && (inst.cond == 0xf || inst.cond == 0x10))
18709 {
18710 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18711 in an IT block with le/lt conditions. */
18712
18713 if (inst.cond == 0xf)
18714 inst.cond = 0xb;
18715 else if (inst.cond == 0x10)
18716 inst.cond = 0xd;
18717
18718 inst.pred_insn_type = INSIDE_IT_INSN;
18719
18720 if (inst.instruction == N_MNEM_vaddl)
18721 {
18722 inst.instruction = N_MNEM_vadd;
18723 do_neon_addsub_if_i ();
18724 }
18725 else if (inst.instruction == N_MNEM_vsubl)
18726 {
18727 inst.instruction = N_MNEM_vsub;
18728 do_neon_addsub_if_i ();
18729 }
18730 else if (inst.instruction == N_MNEM_vabdl)
18731 {
18732 inst.instruction = N_MNEM_vabd;
18733 do_neon_dyadic_if_su ();
18734 }
18735 }
18736 else
18737 first_error (BAD_FPU);
18738 }
18739
18740 static void
18741 do_neon_abal (void)
18742 {
18743 struct neon_type_el et = neon_check_type (3, NS_QDD,
18744 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18745 neon_mixed_length (et, et.size);
18746 }
18747
18748 static void
18749 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18750 {
18751 if (inst.operands[2].isscalar)
18752 {
18753 struct neon_type_el et = neon_check_type (3, NS_QDS,
18754 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18755 NEON_ENCODE (SCALAR, inst);
18756 neon_mul_mac (et, et.type == NT_unsigned);
18757 }
18758 else
18759 {
18760 struct neon_type_el et = neon_check_type (3, NS_QDD,
18761 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18762 NEON_ENCODE (INTEGER, inst);
18763 neon_mixed_length (et, et.size);
18764 }
18765 }
18766
18767 static void
18768 do_neon_mac_maybe_scalar_long (void)
18769 {
18770 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18771 }
18772
18773 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18774 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18775
18776 static unsigned
18777 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18778 {
18779 unsigned regno = NEON_SCALAR_REG (scalar);
18780 unsigned elno = NEON_SCALAR_INDEX (scalar);
18781
18782 if (quad_p)
18783 {
18784 if (regno > 7 || elno > 3)
18785 goto bad_scalar;
18786
18787 return ((regno & 0x7)
18788 | ((elno & 0x1) << 3)
18789 | (((elno >> 1) & 0x1) << 5));
18790 }
18791 else
18792 {
18793 if (regno > 15 || elno > 1)
18794 goto bad_scalar;
18795
18796 return (((regno & 0x1) << 5)
18797 | ((regno >> 1) & 0x7)
18798 | ((elno & 0x1) << 3));
18799 }
18800
18801 bad_scalar:
18802 first_error (_("scalar out of range for multiply instruction"));
18803 return 0;
18804 }
18805
18806 static void
18807 do_neon_fmac_maybe_scalar_long (int subtype)
18808 {
18809 enum neon_shape rs;
18810 int high8;
18811 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18812 field (bits[21:20]) has different meaning. For scalar index variant, it's
18813 used to differentiate add and subtract, otherwise it's with fixed value
18814 0x2. */
18815 int size = -1;
18816
18817 if (inst.cond != COND_ALWAYS)
18818 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18819 "behaviour is UNPREDICTABLE"));
18820
18821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18822 _(BAD_FP16));
18823
18824 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18825 _(BAD_FPU));
18826
18827 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18828 be a scalar index register. */
18829 if (inst.operands[2].isscalar)
18830 {
18831 high8 = 0xfe000000;
18832 if (subtype)
18833 size = 16;
18834 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18835 }
18836 else
18837 {
18838 high8 = 0xfc000000;
18839 size = 32;
18840 if (subtype)
18841 inst.instruction |= (0x1 << 23);
18842 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18843 }
18844
18845 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18846
18847 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18848 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18849 so we simply pass -1 as size. */
18850 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18851 neon_three_same (quad_p, 0, size);
18852
18853 /* Undo neon_dp_fixup. Redo the high eight bits. */
18854 inst.instruction &= 0x00ffffff;
18855 inst.instruction |= high8;
18856
18857 #define LOW1(R) ((R) & 0x1)
18858 #define HI4(R) (((R) >> 1) & 0xf)
18859 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18860 whether the instruction is in Q form and whether Vm is a scalar indexed
18861 operand. */
18862 if (inst.operands[2].isscalar)
18863 {
18864 unsigned rm
18865 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18866 inst.instruction &= 0xffffffd0;
18867 inst.instruction |= rm;
18868
18869 if (!quad_p)
18870 {
18871 /* Redo Rn as well. */
18872 inst.instruction &= 0xfff0ff7f;
18873 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18874 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18875 }
18876 }
18877 else if (!quad_p)
18878 {
18879 /* Redo Rn and Rm. */
18880 inst.instruction &= 0xfff0ff50;
18881 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18882 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18883 inst.instruction |= HI4 (inst.operands[2].reg);
18884 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18885 }
18886 }
18887
18888 static void
18889 do_neon_vfmal (void)
18890 {
18891 return do_neon_fmac_maybe_scalar_long (0);
18892 }
18893
18894 static void
18895 do_neon_vfmsl (void)
18896 {
18897 return do_neon_fmac_maybe_scalar_long (1);
18898 }
18899
18900 static void
18901 do_neon_dyadic_wide (void)
18902 {
18903 struct neon_type_el et = neon_check_type (3, NS_QQD,
18904 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18905 neon_mixed_length (et, et.size);
18906 }
18907
18908 static void
18909 do_neon_dyadic_narrow (void)
18910 {
18911 struct neon_type_el et = neon_check_type (3, NS_QDD,
18912 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18913 /* Operand sign is unimportant, and the U bit is part of the opcode,
18914 so force the operand type to integer. */
18915 et.type = NT_integer;
18916 neon_mixed_length (et, et.size / 2);
18917 }
18918
18919 static void
18920 do_neon_mul_sat_scalar_long (void)
18921 {
18922 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18923 }
18924
18925 static void
18926 do_neon_vmull (void)
18927 {
18928 if (inst.operands[2].isscalar)
18929 do_neon_mac_maybe_scalar_long ();
18930 else
18931 {
18932 struct neon_type_el et = neon_check_type (3, NS_QDD,
18933 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18934
18935 if (et.type == NT_poly)
18936 NEON_ENCODE (POLY, inst);
18937 else
18938 NEON_ENCODE (INTEGER, inst);
18939
18940 /* For polynomial encoding the U bit must be zero, and the size must
18941 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18942 obviously, as 0b10). */
18943 if (et.size == 64)
18944 {
18945 /* Check we're on the correct architecture. */
18946 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18947 inst.error =
18948 _("Instruction form not available on this architecture.");
18949
18950 et.size = 32;
18951 }
18952
18953 neon_mixed_length (et, et.size);
18954 }
18955 }
18956
18957 static void
18958 do_neon_ext (void)
18959 {
18960 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18961 struct neon_type_el et = neon_check_type (3, rs,
18962 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18963 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18964
18965 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18966 _("shift out of range"));
18967 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18968 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18969 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18970 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18971 inst.instruction |= LOW4 (inst.operands[2].reg);
18972 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18973 inst.instruction |= neon_quad (rs) << 6;
18974 inst.instruction |= imm << 8;
18975
18976 neon_dp_fixup (&inst);
18977 }
18978
18979 static void
18980 do_neon_rev (void)
18981 {
18982 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18983 struct neon_type_el et = neon_check_type (2, rs,
18984 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18985 unsigned op = (inst.instruction >> 7) & 3;
18986 /* N (width of reversed regions) is encoded as part of the bitmask. We
18987 extract it here to check the elements to be reversed are smaller.
18988 Otherwise we'd get a reserved instruction. */
18989 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18990 gas_assert (elsize != 0);
18991 constraint (et.size >= elsize,
18992 _("elements must be smaller than reversal region"));
18993 neon_two_same (neon_quad (rs), 1, et.size);
18994 }
18995
18996 static void
18997 do_neon_dup (void)
18998 {
18999 if (inst.operands[1].isscalar)
19000 {
19001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19002 BAD_FPU);
19003 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19004 struct neon_type_el et = neon_check_type (2, rs,
19005 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19006 unsigned sizebits = et.size >> 3;
19007 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19008 int logsize = neon_logbits (et.size);
19009 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19010
19011 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19012 return;
19013
19014 NEON_ENCODE (SCALAR, inst);
19015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19016 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19017 inst.instruction |= LOW4 (dm);
19018 inst.instruction |= HI1 (dm) << 5;
19019 inst.instruction |= neon_quad (rs) << 6;
19020 inst.instruction |= x << 17;
19021 inst.instruction |= sizebits << 16;
19022
19023 neon_dp_fixup (&inst);
19024 }
19025 else
19026 {
19027 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19028 struct neon_type_el et = neon_check_type (2, rs,
19029 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19030 if (rs == NS_QR)
19031 {
19032 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19033 return;
19034 }
19035 else
19036 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19037 BAD_FPU);
19038
19039 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19040 {
19041 if (inst.operands[1].reg == REG_SP)
19042 as_tsktsk (MVE_BAD_SP);
19043 else if (inst.operands[1].reg == REG_PC)
19044 as_tsktsk (MVE_BAD_PC);
19045 }
19046
19047 /* Duplicate ARM register to lanes of vector. */
19048 NEON_ENCODE (ARMREG, inst);
19049 switch (et.size)
19050 {
19051 case 8: inst.instruction |= 0x400000; break;
19052 case 16: inst.instruction |= 0x000020; break;
19053 case 32: inst.instruction |= 0x000000; break;
19054 default: break;
19055 }
19056 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19057 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19058 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19059 inst.instruction |= neon_quad (rs) << 21;
19060 /* The encoding for this instruction is identical for the ARM and Thumb
19061 variants, except for the condition field. */
19062 do_vfp_cond_or_thumb ();
19063 }
19064 }
19065
19066 static void
19067 do_mve_mov (int toQ)
19068 {
19069 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19070 return;
19071 if (inst.cond > COND_ALWAYS)
19072 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19073
19074 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19075 if (toQ)
19076 {
19077 Q0 = 0;
19078 Q1 = 1;
19079 Rt = 2;
19080 Rt2 = 3;
19081 }
19082
19083 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19084 _("Index one must be [2,3] and index two must be two less than"
19085 " index one."));
19086 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19087 _("General purpose registers may not be the same"));
19088 constraint (inst.operands[Rt].reg == REG_SP
19089 || inst.operands[Rt2].reg == REG_SP,
19090 BAD_SP);
19091 constraint (inst.operands[Rt].reg == REG_PC
19092 || inst.operands[Rt2].reg == REG_PC,
19093 BAD_PC);
19094
19095 inst.instruction = 0xec000f00;
19096 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19097 inst.instruction |= !!toQ << 20;
19098 inst.instruction |= inst.operands[Rt2].reg << 16;
19099 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19100 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19101 inst.instruction |= inst.operands[Rt].reg;
19102 }
19103
19104 static void
19105 do_mve_movn (void)
19106 {
19107 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19108 return;
19109
19110 if (inst.cond > COND_ALWAYS)
19111 inst.pred_insn_type = INSIDE_VPT_INSN;
19112 else
19113 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19114
19115 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19116 | N_KEY);
19117
19118 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19119 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19120 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19121 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19122 inst.instruction |= LOW4 (inst.operands[1].reg);
19123 inst.is_neon = 1;
19124
19125 }
19126
19127 /* VMOV has particularly many variations. It can be one of:
19128 0. VMOV<c><q> <Qd>, <Qm>
19129 1. VMOV<c><q> <Dd>, <Dm>
19130 (Register operations, which are VORR with Rm = Rn.)
19131 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19132 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19133 (Immediate loads.)
19134 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19135 (ARM register to scalar.)
19136 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19137 (Two ARM registers to vector.)
19138 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19139 (Scalar to ARM register.)
19140 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19141 (Vector to two ARM registers.)
19142 8. VMOV.F32 <Sd>, <Sm>
19143 9. VMOV.F64 <Dd>, <Dm>
19144 (VFP register moves.)
19145 10. VMOV.F32 <Sd>, #imm
19146 11. VMOV.F64 <Dd>, #imm
19147 (VFP float immediate load.)
19148 12. VMOV <Rd>, <Sm>
19149 (VFP single to ARM reg.)
19150 13. VMOV <Sd>, <Rm>
19151 (ARM reg to VFP single.)
19152 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19153 (Two ARM regs to two VFP singles.)
19154 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19155 (Two VFP singles to two ARM regs.)
19156 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19157 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19158 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19159 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19160
19161 These cases can be disambiguated using neon_select_shape, except cases 1/9
19162 and 3/11 which depend on the operand type too.
19163
19164 All the encoded bits are hardcoded by this function.
19165
19166 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19167 Cases 5, 7 may be used with VFPv2 and above.
19168
19169 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19170 can specify a type where it doesn't make sense to, and is ignored). */
19171
19172 static void
19173 do_neon_mov (void)
19174 {
19175 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19176 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19177 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19178 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19179 NS_NULL);
19180 struct neon_type_el et;
19181 const char *ldconst = 0;
19182
19183 switch (rs)
19184 {
19185 case NS_DD: /* case 1/9. */
19186 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19187 /* It is not an error here if no type is given. */
19188 inst.error = NULL;
19189 if (et.type == NT_float && et.size == 64)
19190 {
19191 do_vfp_nsyn_opcode ("fcpyd");
19192 break;
19193 }
19194 /* fall through. */
19195
19196 case NS_QQ: /* case 0/1. */
19197 {
19198 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19199 return;
19200 /* The architecture manual I have doesn't explicitly state which
19201 value the U bit should have for register->register moves, but
19202 the equivalent VORR instruction has U = 0, so do that. */
19203 inst.instruction = 0x0200110;
19204 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19205 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19206 inst.instruction |= LOW4 (inst.operands[1].reg);
19207 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19208 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19209 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19210 inst.instruction |= neon_quad (rs) << 6;
19211
19212 neon_dp_fixup (&inst);
19213 }
19214 break;
19215
19216 case NS_DI: /* case 3/11. */
19217 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19218 inst.error = NULL;
19219 if (et.type == NT_float && et.size == 64)
19220 {
19221 /* case 11 (fconstd). */
19222 ldconst = "fconstd";
19223 goto encode_fconstd;
19224 }
19225 /* fall through. */
19226
19227 case NS_QI: /* case 2/3. */
19228 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19229 return;
19230 inst.instruction = 0x0800010;
19231 neon_move_immediate ();
19232 neon_dp_fixup (&inst);
19233 break;
19234
19235 case NS_SR: /* case 4. */
19236 {
19237 unsigned bcdebits = 0;
19238 int logsize;
19239 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19240 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19241
19242 /* .<size> is optional here, defaulting to .32. */
19243 if (inst.vectype.elems == 0
19244 && inst.operands[0].vectype.type == NT_invtype
19245 && inst.operands[1].vectype.type == NT_invtype)
19246 {
19247 inst.vectype.el[0].type = NT_untyped;
19248 inst.vectype.el[0].size = 32;
19249 inst.vectype.elems = 1;
19250 }
19251
19252 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19253 logsize = neon_logbits (et.size);
19254
19255 if (et.size != 32)
19256 {
19257 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19258 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19259 return;
19260 }
19261 else
19262 {
19263 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19264 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19265 _(BAD_FPU));
19266 }
19267
19268 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19269 {
19270 if (inst.operands[1].reg == REG_SP)
19271 as_tsktsk (MVE_BAD_SP);
19272 else if (inst.operands[1].reg == REG_PC)
19273 as_tsktsk (MVE_BAD_PC);
19274 }
19275 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19276
19277 constraint (et.type == NT_invtype, _("bad type for scalar"));
19278 constraint (x >= size / et.size, _("scalar index out of range"));
19279
19280
19281 switch (et.size)
19282 {
19283 case 8: bcdebits = 0x8; break;
19284 case 16: bcdebits = 0x1; break;
19285 case 32: bcdebits = 0x0; break;
19286 default: ;
19287 }
19288
19289 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19290
19291 inst.instruction = 0xe000b10;
19292 do_vfp_cond_or_thumb ();
19293 inst.instruction |= LOW4 (dn) << 16;
19294 inst.instruction |= HI1 (dn) << 7;
19295 inst.instruction |= inst.operands[1].reg << 12;
19296 inst.instruction |= (bcdebits & 3) << 5;
19297 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19298 inst.instruction |= (x >> (3-logsize)) << 16;
19299 }
19300 break;
19301
19302 case NS_DRR: /* case 5 (fmdrr). */
19303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19304 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19305 _(BAD_FPU));
19306
19307 inst.instruction = 0xc400b10;
19308 do_vfp_cond_or_thumb ();
19309 inst.instruction |= LOW4 (inst.operands[0].reg);
19310 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19311 inst.instruction |= inst.operands[1].reg << 12;
19312 inst.instruction |= inst.operands[2].reg << 16;
19313 break;
19314
19315 case NS_RS: /* case 6. */
19316 {
19317 unsigned logsize;
19318 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19319 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19320 unsigned abcdebits = 0;
19321
19322 /* .<dt> is optional here, defaulting to .32. */
19323 if (inst.vectype.elems == 0
19324 && inst.operands[0].vectype.type == NT_invtype
19325 && inst.operands[1].vectype.type == NT_invtype)
19326 {
19327 inst.vectype.el[0].type = NT_untyped;
19328 inst.vectype.el[0].size = 32;
19329 inst.vectype.elems = 1;
19330 }
19331
19332 et = neon_check_type (2, NS_NULL,
19333 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19334 logsize = neon_logbits (et.size);
19335
19336 if (et.size != 32)
19337 {
19338 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19339 && vfp_or_neon_is_neon (NEON_CHECK_CC
19340 | NEON_CHECK_ARCH) == FAIL)
19341 return;
19342 }
19343 else
19344 {
19345 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19346 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19347 _(BAD_FPU));
19348 }
19349
19350 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19351 {
19352 if (inst.operands[0].reg == REG_SP)
19353 as_tsktsk (MVE_BAD_SP);
19354 else if (inst.operands[0].reg == REG_PC)
19355 as_tsktsk (MVE_BAD_PC);
19356 }
19357
19358 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19359
19360 constraint (et.type == NT_invtype, _("bad type for scalar"));
19361 constraint (x >= size / et.size, _("scalar index out of range"));
19362
19363 switch (et.size)
19364 {
19365 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19366 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19367 case 32: abcdebits = 0x00; break;
19368 default: ;
19369 }
19370
19371 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19372 inst.instruction = 0xe100b10;
19373 do_vfp_cond_or_thumb ();
19374 inst.instruction |= LOW4 (dn) << 16;
19375 inst.instruction |= HI1 (dn) << 7;
19376 inst.instruction |= inst.operands[0].reg << 12;
19377 inst.instruction |= (abcdebits & 3) << 5;
19378 inst.instruction |= (abcdebits >> 2) << 21;
19379 inst.instruction |= (x >> (3-logsize)) << 16;
19380 }
19381 break;
19382
19383 case NS_RRD: /* case 7 (fmrrd). */
19384 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19385 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19386 _(BAD_FPU));
19387
19388 inst.instruction = 0xc500b10;
19389 do_vfp_cond_or_thumb ();
19390 inst.instruction |= inst.operands[0].reg << 12;
19391 inst.instruction |= inst.operands[1].reg << 16;
19392 inst.instruction |= LOW4 (inst.operands[2].reg);
19393 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19394 break;
19395
19396 case NS_FF: /* case 8 (fcpys). */
19397 do_vfp_nsyn_opcode ("fcpys");
19398 break;
19399
19400 case NS_HI:
19401 case NS_FI: /* case 10 (fconsts). */
19402 ldconst = "fconsts";
19403 encode_fconstd:
19404 if (!inst.operands[1].immisfloat)
19405 {
19406 unsigned new_imm;
19407 /* Immediate has to fit in 8 bits so float is enough. */
19408 float imm = (float) inst.operands[1].imm;
19409 memcpy (&new_imm, &imm, sizeof (float));
19410 /* But the assembly may have been written to provide an integer
19411 bit pattern that equates to a float, so check that the
19412 conversion has worked. */
19413 if (is_quarter_float (new_imm))
19414 {
19415 if (is_quarter_float (inst.operands[1].imm))
19416 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19417
19418 inst.operands[1].imm = new_imm;
19419 inst.operands[1].immisfloat = 1;
19420 }
19421 }
19422
19423 if (is_quarter_float (inst.operands[1].imm))
19424 {
19425 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19426 do_vfp_nsyn_opcode (ldconst);
19427
19428 /* ARMv8.2 fp16 vmov.f16 instruction. */
19429 if (rs == NS_HI)
19430 do_scalar_fp16_v82_encode ();
19431 }
19432 else
19433 first_error (_("immediate out of range"));
19434 break;
19435
19436 case NS_RH:
19437 case NS_RF: /* case 12 (fmrs). */
19438 do_vfp_nsyn_opcode ("fmrs");
19439 /* ARMv8.2 fp16 vmov.f16 instruction. */
19440 if (rs == NS_RH)
19441 do_scalar_fp16_v82_encode ();
19442 break;
19443
19444 case NS_HR:
19445 case NS_FR: /* case 13 (fmsr). */
19446 do_vfp_nsyn_opcode ("fmsr");
19447 /* ARMv8.2 fp16 vmov.f16 instruction. */
19448 if (rs == NS_HR)
19449 do_scalar_fp16_v82_encode ();
19450 break;
19451
19452 case NS_RRSS:
19453 do_mve_mov (0);
19454 break;
19455 case NS_SSRR:
19456 do_mve_mov (1);
19457 break;
19458
19459 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19460 (one of which is a list), but we have parsed four. Do some fiddling to
19461 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19462 expect. */
19463 case NS_RRFF: /* case 14 (fmrrs). */
19464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19465 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19466 _(BAD_FPU));
19467 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19468 _("VFP registers must be adjacent"));
19469 inst.operands[2].imm = 2;
19470 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19471 do_vfp_nsyn_opcode ("fmrrs");
19472 break;
19473
19474 case NS_FFRR: /* case 15 (fmsrr). */
19475 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19476 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19477 _(BAD_FPU));
19478 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19479 _("VFP registers must be adjacent"));
19480 inst.operands[1] = inst.operands[2];
19481 inst.operands[2] = inst.operands[3];
19482 inst.operands[0].imm = 2;
19483 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19484 do_vfp_nsyn_opcode ("fmsrr");
19485 break;
19486
19487 case NS_NULL:
19488 /* neon_select_shape has determined that the instruction
19489 shape is wrong and has already set the error message. */
19490 break;
19491
19492 default:
19493 abort ();
19494 }
19495 }
19496
19497 static void
19498 do_mve_movl (void)
19499 {
19500 if (!(inst.operands[0].present && inst.operands[0].isquad
19501 && inst.operands[1].present && inst.operands[1].isquad
19502 && !inst.operands[2].present))
19503 {
19504 inst.instruction = 0;
19505 inst.cond = 0xb;
19506 if (thumb_mode)
19507 set_pred_insn_type (INSIDE_IT_INSN);
19508 do_neon_mov ();
19509 return;
19510 }
19511
19512 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19513 return;
19514
19515 if (inst.cond != COND_ALWAYS)
19516 inst.pred_insn_type = INSIDE_VPT_INSN;
19517
19518 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19519 | N_S16 | N_U16 | N_KEY);
19520
19521 inst.instruction |= (et.type == NT_unsigned) << 28;
19522 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19523 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19524 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19525 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19526 inst.instruction |= LOW4 (inst.operands[1].reg);
19527 inst.is_neon = 1;
19528 }
19529
19530 static void
19531 do_neon_rshift_round_imm (void)
19532 {
19533 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19534 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19535 int imm = inst.operands[2].imm;
19536
19537 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19538 if (imm == 0)
19539 {
19540 inst.operands[2].present = 0;
19541 do_neon_mov ();
19542 return;
19543 }
19544
19545 constraint (imm < 1 || (unsigned)imm > et.size,
19546 _("immediate out of range for shift"));
19547 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19548 et.size - imm);
19549 }
19550
19551 static void
19552 do_neon_movhf (void)
19553 {
19554 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19555 constraint (rs != NS_HH, _("invalid suffix"));
19556
19557 if (inst.cond != COND_ALWAYS)
19558 {
19559 if (thumb_mode)
19560 {
19561 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19562 " the behaviour is UNPREDICTABLE"));
19563 }
19564 else
19565 {
19566 inst.error = BAD_COND;
19567 return;
19568 }
19569 }
19570
19571 do_vfp_sp_monadic ();
19572
19573 inst.is_neon = 1;
19574 inst.instruction |= 0xf0000000;
19575 }
19576
19577 static void
19578 do_neon_movl (void)
19579 {
19580 struct neon_type_el et = neon_check_type (2, NS_QD,
19581 N_EQK | N_DBL, N_SU_32 | N_KEY);
19582 unsigned sizebits = et.size >> 3;
19583 inst.instruction |= sizebits << 19;
19584 neon_two_same (0, et.type == NT_unsigned, -1);
19585 }
19586
19587 static void
19588 do_neon_trn (void)
19589 {
19590 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19591 struct neon_type_el et = neon_check_type (2, rs,
19592 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19593 NEON_ENCODE (INTEGER, inst);
19594 neon_two_same (neon_quad (rs), 1, et.size);
19595 }
19596
19597 static void
19598 do_neon_zip_uzp (void)
19599 {
19600 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19601 struct neon_type_el et = neon_check_type (2, rs,
19602 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19603 if (rs == NS_DD && et.size == 32)
19604 {
19605 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19606 inst.instruction = N_MNEM_vtrn;
19607 do_neon_trn ();
19608 return;
19609 }
19610 neon_two_same (neon_quad (rs), 1, et.size);
19611 }
19612
19613 static void
19614 do_neon_sat_abs_neg (void)
19615 {
19616 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19617 return;
19618
19619 enum neon_shape rs;
19620 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19621 rs = neon_select_shape (NS_QQ, NS_NULL);
19622 else
19623 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19624 struct neon_type_el et = neon_check_type (2, rs,
19625 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19626 neon_two_same (neon_quad (rs), 1, et.size);
19627 }
19628
19629 static void
19630 do_neon_pair_long (void)
19631 {
19632 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19633 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19634 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19635 inst.instruction |= (et.type == NT_unsigned) << 7;
19636 neon_two_same (neon_quad (rs), 1, et.size);
19637 }
19638
19639 static void
19640 do_neon_recip_est (void)
19641 {
19642 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19643 struct neon_type_el et = neon_check_type (2, rs,
19644 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19645 inst.instruction |= (et.type == NT_float) << 8;
19646 neon_two_same (neon_quad (rs), 1, et.size);
19647 }
19648
19649 static void
19650 do_neon_cls (void)
19651 {
19652 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19653 return;
19654
19655 enum neon_shape rs;
19656 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19657 rs = neon_select_shape (NS_QQ, NS_NULL);
19658 else
19659 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19660
19661 struct neon_type_el et = neon_check_type (2, rs,
19662 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19663 neon_two_same (neon_quad (rs), 1, et.size);
19664 }
19665
19666 static void
19667 do_neon_clz (void)
19668 {
19669 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19670 return;
19671
19672 enum neon_shape rs;
19673 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19674 rs = neon_select_shape (NS_QQ, NS_NULL);
19675 else
19676 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19677
19678 struct neon_type_el et = neon_check_type (2, rs,
19679 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19680 neon_two_same (neon_quad (rs), 1, et.size);
19681 }
19682
19683 static void
19684 do_neon_cnt (void)
19685 {
19686 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19687 struct neon_type_el et = neon_check_type (2, rs,
19688 N_EQK | N_INT, N_8 | N_KEY);
19689 neon_two_same (neon_quad (rs), 1, et.size);
19690 }
19691
19692 static void
19693 do_neon_swp (void)
19694 {
19695 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19696 neon_two_same (neon_quad (rs), 1, -1);
19697 }
19698
19699 static void
19700 do_neon_tbl_tbx (void)
19701 {
19702 unsigned listlenbits;
19703 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19704
19705 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19706 {
19707 first_error (_("bad list length for table lookup"));
19708 return;
19709 }
19710
19711 listlenbits = inst.operands[1].imm - 1;
19712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19713 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19714 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19715 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19716 inst.instruction |= LOW4 (inst.operands[2].reg);
19717 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19718 inst.instruction |= listlenbits << 8;
19719
19720 neon_dp_fixup (&inst);
19721 }
19722
19723 static void
19724 do_neon_ldm_stm (void)
19725 {
19726 /* P, U and L bits are part of bitmask. */
19727 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19728 unsigned offsetbits = inst.operands[1].imm * 2;
19729
19730 if (inst.operands[1].issingle)
19731 {
19732 do_vfp_nsyn_ldm_stm (is_dbmode);
19733 return;
19734 }
19735
19736 constraint (is_dbmode && !inst.operands[0].writeback,
19737 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19738
19739 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19740 _("register list must contain at least 1 and at most 16 "
19741 "registers"));
19742
19743 inst.instruction |= inst.operands[0].reg << 16;
19744 inst.instruction |= inst.operands[0].writeback << 21;
19745 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19746 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19747
19748 inst.instruction |= offsetbits;
19749
19750 do_vfp_cond_or_thumb ();
19751 }
19752
19753 static void
19754 do_neon_ldr_str (void)
19755 {
19756 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19757
19758 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19759 And is UNPREDICTABLE in thumb mode. */
19760 if (!is_ldr
19761 && inst.operands[1].reg == REG_PC
19762 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19763 {
19764 if (thumb_mode)
19765 inst.error = _("Use of PC here is UNPREDICTABLE");
19766 else if (warn_on_deprecated)
19767 as_tsktsk (_("Use of PC here is deprecated"));
19768 }
19769
19770 if (inst.operands[0].issingle)
19771 {
19772 if (is_ldr)
19773 do_vfp_nsyn_opcode ("flds");
19774 else
19775 do_vfp_nsyn_opcode ("fsts");
19776
19777 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19778 if (inst.vectype.el[0].size == 16)
19779 do_scalar_fp16_v82_encode ();
19780 }
19781 else
19782 {
19783 if (is_ldr)
19784 do_vfp_nsyn_opcode ("fldd");
19785 else
19786 do_vfp_nsyn_opcode ("fstd");
19787 }
19788 }
19789
19790 static void
19791 do_t_vldr_vstr_sysreg (void)
19792 {
19793 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19794 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19795
19796 /* Use of PC is UNPREDICTABLE. */
19797 if (inst.operands[1].reg == REG_PC)
19798 inst.error = _("Use of PC here is UNPREDICTABLE");
19799
19800 if (inst.operands[1].immisreg)
19801 inst.error = _("instruction does not accept register index");
19802
19803 if (!inst.operands[1].isreg)
19804 inst.error = _("instruction does not accept PC-relative addressing");
19805
19806 if (abs (inst.operands[1].imm) >= (1 << 7))
19807 inst.error = _("immediate value out of range");
19808
19809 inst.instruction = 0xec000f80;
19810 if (is_vldr)
19811 inst.instruction |= 1 << sysreg_vldr_bitno;
19812 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19813 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19814 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19815 }
19816
19817 static void
19818 do_vldr_vstr (void)
19819 {
19820 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19821
19822 /* VLDR/VSTR (System Register). */
19823 if (sysreg_op)
19824 {
19825 if (!mark_feature_used (&arm_ext_v8_1m_main))
19826 as_bad (_("Instruction not permitted on this architecture"));
19827
19828 do_t_vldr_vstr_sysreg ();
19829 }
19830 /* VLDR/VSTR. */
19831 else
19832 {
19833 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19834 as_bad (_("Instruction not permitted on this architecture"));
19835 do_neon_ldr_str ();
19836 }
19837 }
19838
19839 /* "interleave" version also handles non-interleaving register VLD1/VST1
19840 instructions. */
19841
19842 static void
19843 do_neon_ld_st_interleave (void)
19844 {
19845 struct neon_type_el et = neon_check_type (1, NS_NULL,
19846 N_8 | N_16 | N_32 | N_64);
19847 unsigned alignbits = 0;
19848 unsigned idx;
19849 /* The bits in this table go:
19850 0: register stride of one (0) or two (1)
19851 1,2: register list length, minus one (1, 2, 3, 4).
19852 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19853 We use -1 for invalid entries. */
19854 const int typetable[] =
19855 {
19856 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19857 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19858 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19859 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19860 };
19861 int typebits;
19862
19863 if (et.type == NT_invtype)
19864 return;
19865
19866 if (inst.operands[1].immisalign)
19867 switch (inst.operands[1].imm >> 8)
19868 {
19869 case 64: alignbits = 1; break;
19870 case 128:
19871 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19872 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19873 goto bad_alignment;
19874 alignbits = 2;
19875 break;
19876 case 256:
19877 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19878 goto bad_alignment;
19879 alignbits = 3;
19880 break;
19881 default:
19882 bad_alignment:
19883 first_error (_("bad alignment"));
19884 return;
19885 }
19886
19887 inst.instruction |= alignbits << 4;
19888 inst.instruction |= neon_logbits (et.size) << 6;
19889
19890 /* Bits [4:6] of the immediate in a list specifier encode register stride
19891 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19892 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19893 up the right value for "type" in a table based on this value and the given
19894 list style, then stick it back. */
19895 idx = ((inst.operands[0].imm >> 4) & 7)
19896 | (((inst.instruction >> 8) & 3) << 3);
19897
19898 typebits = typetable[idx];
19899
19900 constraint (typebits == -1, _("bad list type for instruction"));
19901 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19902 BAD_EL_TYPE);
19903
19904 inst.instruction &= ~0xf00;
19905 inst.instruction |= typebits << 8;
19906 }
19907
19908 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19909 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19910 otherwise. The variable arguments are a list of pairs of legal (size, align)
19911 values, terminated with -1. */
19912
19913 static int
19914 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19915 {
19916 va_list ap;
19917 int result = FAIL, thissize, thisalign;
19918
19919 if (!inst.operands[1].immisalign)
19920 {
19921 *do_alignment = 0;
19922 return SUCCESS;
19923 }
19924
19925 va_start (ap, do_alignment);
19926
19927 do
19928 {
19929 thissize = va_arg (ap, int);
19930 if (thissize == -1)
19931 break;
19932 thisalign = va_arg (ap, int);
19933
19934 if (size == thissize && align == thisalign)
19935 result = SUCCESS;
19936 }
19937 while (result != SUCCESS);
19938
19939 va_end (ap);
19940
19941 if (result == SUCCESS)
19942 *do_alignment = 1;
19943 else
19944 first_error (_("unsupported alignment for instruction"));
19945
19946 return result;
19947 }
19948
19949 static void
19950 do_neon_ld_st_lane (void)
19951 {
19952 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19953 int align_good, do_alignment = 0;
19954 int logsize = neon_logbits (et.size);
19955 int align = inst.operands[1].imm >> 8;
19956 int n = (inst.instruction >> 8) & 3;
19957 int max_el = 64 / et.size;
19958
19959 if (et.type == NT_invtype)
19960 return;
19961
19962 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19963 _("bad list length"));
19964 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19965 _("scalar index out of range"));
19966 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19967 && et.size == 8,
19968 _("stride of 2 unavailable when element size is 8"));
19969
19970 switch (n)
19971 {
19972 case 0: /* VLD1 / VST1. */
19973 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19974 32, 32, -1);
19975 if (align_good == FAIL)
19976 return;
19977 if (do_alignment)
19978 {
19979 unsigned alignbits = 0;
19980 switch (et.size)
19981 {
19982 case 16: alignbits = 0x1; break;
19983 case 32: alignbits = 0x3; break;
19984 default: ;
19985 }
19986 inst.instruction |= alignbits << 4;
19987 }
19988 break;
19989
19990 case 1: /* VLD2 / VST2. */
19991 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19992 16, 32, 32, 64, -1);
19993 if (align_good == FAIL)
19994 return;
19995 if (do_alignment)
19996 inst.instruction |= 1 << 4;
19997 break;
19998
19999 case 2: /* VLD3 / VST3. */
20000 constraint (inst.operands[1].immisalign,
20001 _("can't use alignment with this instruction"));
20002 break;
20003
20004 case 3: /* VLD4 / VST4. */
20005 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20006 16, 64, 32, 64, 32, 128, -1);
20007 if (align_good == FAIL)
20008 return;
20009 if (do_alignment)
20010 {
20011 unsigned alignbits = 0;
20012 switch (et.size)
20013 {
20014 case 8: alignbits = 0x1; break;
20015 case 16: alignbits = 0x1; break;
20016 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20017 default: ;
20018 }
20019 inst.instruction |= alignbits << 4;
20020 }
20021 break;
20022
20023 default: ;
20024 }
20025
20026 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20027 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20028 inst.instruction |= 1 << (4 + logsize);
20029
20030 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20031 inst.instruction |= logsize << 10;
20032 }
20033
20034 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20035
20036 static void
20037 do_neon_ld_dup (void)
20038 {
20039 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20040 int align_good, do_alignment = 0;
20041
20042 if (et.type == NT_invtype)
20043 return;
20044
20045 switch ((inst.instruction >> 8) & 3)
20046 {
20047 case 0: /* VLD1. */
20048 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20049 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20050 &do_alignment, 16, 16, 32, 32, -1);
20051 if (align_good == FAIL)
20052 return;
20053 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20054 {
20055 case 1: break;
20056 case 2: inst.instruction |= 1 << 5; break;
20057 default: first_error (_("bad list length")); return;
20058 }
20059 inst.instruction |= neon_logbits (et.size) << 6;
20060 break;
20061
20062 case 1: /* VLD2. */
20063 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20064 &do_alignment, 8, 16, 16, 32, 32, 64,
20065 -1);
20066 if (align_good == FAIL)
20067 return;
20068 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20069 _("bad list length"));
20070 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20071 inst.instruction |= 1 << 5;
20072 inst.instruction |= neon_logbits (et.size) << 6;
20073 break;
20074
20075 case 2: /* VLD3. */
20076 constraint (inst.operands[1].immisalign,
20077 _("can't use alignment with this instruction"));
20078 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20079 _("bad list length"));
20080 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20081 inst.instruction |= 1 << 5;
20082 inst.instruction |= neon_logbits (et.size) << 6;
20083 break;
20084
20085 case 3: /* VLD4. */
20086 {
20087 int align = inst.operands[1].imm >> 8;
20088 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20089 16, 64, 32, 64, 32, 128, -1);
20090 if (align_good == FAIL)
20091 return;
20092 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20093 _("bad list length"));
20094 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20095 inst.instruction |= 1 << 5;
20096 if (et.size == 32 && align == 128)
20097 inst.instruction |= 0x3 << 6;
20098 else
20099 inst.instruction |= neon_logbits (et.size) << 6;
20100 }
20101 break;
20102
20103 default: ;
20104 }
20105
20106 inst.instruction |= do_alignment << 4;
20107 }
20108
20109 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20110 apart from bits [11:4]. */
20111
20112 static void
20113 do_neon_ldx_stx (void)
20114 {
20115 if (inst.operands[1].isreg)
20116 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20117
20118 switch (NEON_LANE (inst.operands[0].imm))
20119 {
20120 case NEON_INTERLEAVE_LANES:
20121 NEON_ENCODE (INTERLV, inst);
20122 do_neon_ld_st_interleave ();
20123 break;
20124
20125 case NEON_ALL_LANES:
20126 NEON_ENCODE (DUP, inst);
20127 if (inst.instruction == N_INV)
20128 {
20129 first_error ("only loads support such operands");
20130 break;
20131 }
20132 do_neon_ld_dup ();
20133 break;
20134
20135 default:
20136 NEON_ENCODE (LANE, inst);
20137 do_neon_ld_st_lane ();
20138 }
20139
20140 /* L bit comes from bit mask. */
20141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20143 inst.instruction |= inst.operands[1].reg << 16;
20144
20145 if (inst.operands[1].postind)
20146 {
20147 int postreg = inst.operands[1].imm & 0xf;
20148 constraint (!inst.operands[1].immisreg,
20149 _("post-index must be a register"));
20150 constraint (postreg == 0xd || postreg == 0xf,
20151 _("bad register for post-index"));
20152 inst.instruction |= postreg;
20153 }
20154 else
20155 {
20156 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20157 constraint (inst.relocs[0].exp.X_op != O_constant
20158 || inst.relocs[0].exp.X_add_number != 0,
20159 BAD_ADDR_MODE);
20160
20161 if (inst.operands[1].writeback)
20162 {
20163 inst.instruction |= 0xd;
20164 }
20165 else
20166 inst.instruction |= 0xf;
20167 }
20168
20169 if (thumb_mode)
20170 inst.instruction |= 0xf9000000;
20171 else
20172 inst.instruction |= 0xf4000000;
20173 }
20174
20175 /* FP v8. */
20176 static void
20177 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20178 {
20179 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20180 D register operands. */
20181 if (neon_shape_class[rs] == SC_DOUBLE)
20182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20183 _(BAD_FPU));
20184
20185 NEON_ENCODE (FPV8, inst);
20186
20187 if (rs == NS_FFF || rs == NS_HHH)
20188 {
20189 do_vfp_sp_dyadic ();
20190
20191 /* ARMv8.2 fp16 instruction. */
20192 if (rs == NS_HHH)
20193 do_scalar_fp16_v82_encode ();
20194 }
20195 else
20196 do_vfp_dp_rd_rn_rm ();
20197
20198 if (rs == NS_DDD)
20199 inst.instruction |= 0x100;
20200
20201 inst.instruction |= 0xf0000000;
20202 }
20203
20204 static void
20205 do_vsel (void)
20206 {
20207 set_pred_insn_type (OUTSIDE_PRED_INSN);
20208
20209 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20210 first_error (_("invalid instruction shape"));
20211 }
20212
20213 static void
20214 do_vmaxnm (void)
20215 {
20216 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20217 set_pred_insn_type (OUTSIDE_PRED_INSN);
20218
20219 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20220 return;
20221
20222 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20223 return;
20224
20225 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20226 }
20227
20228 static void
20229 do_vrint_1 (enum neon_cvt_mode mode)
20230 {
20231 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20232 struct neon_type_el et;
20233
20234 if (rs == NS_NULL)
20235 return;
20236
20237 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20238 D register operands. */
20239 if (neon_shape_class[rs] == SC_DOUBLE)
20240 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20241 _(BAD_FPU));
20242
20243 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20244 | N_VFP);
20245 if (et.type != NT_invtype)
20246 {
20247 /* VFP encodings. */
20248 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20249 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20250 set_pred_insn_type (OUTSIDE_PRED_INSN);
20251
20252 NEON_ENCODE (FPV8, inst);
20253 if (rs == NS_FF || rs == NS_HH)
20254 do_vfp_sp_monadic ();
20255 else
20256 do_vfp_dp_rd_rm ();
20257
20258 switch (mode)
20259 {
20260 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20261 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20262 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20263 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20264 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20265 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20266 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20267 default: abort ();
20268 }
20269
20270 inst.instruction |= (rs == NS_DD) << 8;
20271 do_vfp_cond_or_thumb ();
20272
20273 /* ARMv8.2 fp16 vrint instruction. */
20274 if (rs == NS_HH)
20275 do_scalar_fp16_v82_encode ();
20276 }
20277 else
20278 {
20279 /* Neon encodings (or something broken...). */
20280 inst.error = NULL;
20281 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20282
20283 if (et.type == NT_invtype)
20284 return;
20285
20286 set_pred_insn_type (OUTSIDE_PRED_INSN);
20287 NEON_ENCODE (FLOAT, inst);
20288
20289 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20290 return;
20291
20292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20294 inst.instruction |= LOW4 (inst.operands[1].reg);
20295 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20296 inst.instruction |= neon_quad (rs) << 6;
20297 /* Mask off the original size bits and reencode them. */
20298 inst.instruction = ((inst.instruction & 0xfff3ffff)
20299 | neon_logbits (et.size) << 18);
20300
20301 switch (mode)
20302 {
20303 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20304 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20305 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20306 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20307 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20308 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20309 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20310 default: abort ();
20311 }
20312
20313 if (thumb_mode)
20314 inst.instruction |= 0xfc000000;
20315 else
20316 inst.instruction |= 0xf0000000;
20317 }
20318 }
20319
20320 static void
20321 do_vrintx (void)
20322 {
20323 do_vrint_1 (neon_cvt_mode_x);
20324 }
20325
20326 static void
20327 do_vrintz (void)
20328 {
20329 do_vrint_1 (neon_cvt_mode_z);
20330 }
20331
20332 static void
20333 do_vrintr (void)
20334 {
20335 do_vrint_1 (neon_cvt_mode_r);
20336 }
20337
20338 static void
20339 do_vrinta (void)
20340 {
20341 do_vrint_1 (neon_cvt_mode_a);
20342 }
20343
20344 static void
20345 do_vrintn (void)
20346 {
20347 do_vrint_1 (neon_cvt_mode_n);
20348 }
20349
20350 static void
20351 do_vrintp (void)
20352 {
20353 do_vrint_1 (neon_cvt_mode_p);
20354 }
20355
20356 static void
20357 do_vrintm (void)
20358 {
20359 do_vrint_1 (neon_cvt_mode_m);
20360 }
20361
20362 static unsigned
20363 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20364 {
20365 unsigned regno = NEON_SCALAR_REG (opnd);
20366 unsigned elno = NEON_SCALAR_INDEX (opnd);
20367
20368 if (elsize == 16 && elno < 2 && regno < 16)
20369 return regno | (elno << 4);
20370 else if (elsize == 32 && elno == 0)
20371 return regno;
20372
20373 first_error (_("scalar out of range"));
20374 return 0;
20375 }
20376
20377 static void
20378 do_vcmla (void)
20379 {
20380 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20381 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20382 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20383 constraint (inst.relocs[0].exp.X_op != O_constant,
20384 _("expression too complex"));
20385 unsigned rot = inst.relocs[0].exp.X_add_number;
20386 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20387 _("immediate out of range"));
20388 rot /= 90;
20389
20390 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20391 return;
20392
20393 if (inst.operands[2].isscalar)
20394 {
20395 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20396 first_error (_("invalid instruction shape"));
20397 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20398 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20399 N_KEY | N_F16 | N_F32).size;
20400 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20401 inst.is_neon = 1;
20402 inst.instruction = 0xfe000800;
20403 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20404 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20405 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20406 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20407 inst.instruction |= LOW4 (m);
20408 inst.instruction |= HI1 (m) << 5;
20409 inst.instruction |= neon_quad (rs) << 6;
20410 inst.instruction |= rot << 20;
20411 inst.instruction |= (size == 32) << 23;
20412 }
20413 else
20414 {
20415 enum neon_shape rs;
20416 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20417 rs = neon_select_shape (NS_QQQI, NS_NULL);
20418 else
20419 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20420
20421 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20422 N_KEY | N_F16 | N_F32).size;
20423 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20424 && (inst.operands[0].reg == inst.operands[1].reg
20425 || inst.operands[0].reg == inst.operands[2].reg))
20426 as_tsktsk (BAD_MVE_SRCDEST);
20427
20428 neon_three_same (neon_quad (rs), 0, -1);
20429 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20430 inst.instruction |= 0xfc200800;
20431 inst.instruction |= rot << 23;
20432 inst.instruction |= (size == 32) << 20;
20433 }
20434 }
20435
20436 static void
20437 do_vcadd (void)
20438 {
20439 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20440 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20441 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20442 constraint (inst.relocs[0].exp.X_op != O_constant,
20443 _("expression too complex"));
20444
20445 unsigned rot = inst.relocs[0].exp.X_add_number;
20446 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20447 enum neon_shape rs;
20448 struct neon_type_el et;
20449 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20450 {
20451 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20452 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20453 }
20454 else
20455 {
20456 rs = neon_select_shape (NS_QQQI, NS_NULL);
20457 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20458 | N_I16 | N_I32);
20459 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20460 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20461 "operand makes instruction UNPREDICTABLE"));
20462 }
20463
20464 if (et.type == NT_invtype)
20465 return;
20466
20467 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20468 | NEON_CHECK_CC))
20469 return;
20470
20471 if (et.type == NT_float)
20472 {
20473 neon_three_same (neon_quad (rs), 0, -1);
20474 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20475 inst.instruction |= 0xfc800800;
20476 inst.instruction |= (rot == 270) << 24;
20477 inst.instruction |= (et.size == 32) << 20;
20478 }
20479 else
20480 {
20481 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20482 inst.instruction = 0xfe000f00;
20483 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20484 inst.instruction |= neon_logbits (et.size) << 20;
20485 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20486 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20487 inst.instruction |= (rot == 270) << 12;
20488 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20489 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20490 inst.instruction |= LOW4 (inst.operands[2].reg);
20491 inst.is_neon = 1;
20492 }
20493 }
20494
20495 /* Dot Product instructions encoding support. */
20496
20497 static void
20498 do_neon_dotproduct (int unsigned_p)
20499 {
20500 enum neon_shape rs;
20501 unsigned scalar_oprd2 = 0;
20502 int high8;
20503
20504 if (inst.cond != COND_ALWAYS)
20505 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20506 "is UNPREDICTABLE"));
20507
20508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20509 _(BAD_FPU));
20510
20511 /* Dot Product instructions are in three-same D/Q register format or the third
20512 operand can be a scalar index register. */
20513 if (inst.operands[2].isscalar)
20514 {
20515 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20516 high8 = 0xfe000000;
20517 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20518 }
20519 else
20520 {
20521 high8 = 0xfc000000;
20522 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20523 }
20524
20525 if (unsigned_p)
20526 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20527 else
20528 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20529
20530 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20531 Product instruction, so we pass 0 as the "ubit" parameter. And the
20532 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20533 neon_three_same (neon_quad (rs), 0, 32);
20534
20535 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20536 different NEON three-same encoding. */
20537 inst.instruction &= 0x00ffffff;
20538 inst.instruction |= high8;
20539 /* Encode 'U' bit which indicates signedness. */
20540 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20541 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20542 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20543 the instruction encoding. */
20544 if (inst.operands[2].isscalar)
20545 {
20546 inst.instruction &= 0xffffffd0;
20547 inst.instruction |= LOW4 (scalar_oprd2);
20548 inst.instruction |= HI1 (scalar_oprd2) << 5;
20549 }
20550 }
20551
20552 /* Dot Product instructions for signed integer. */
20553
20554 static void
20555 do_neon_dotproduct_s (void)
20556 {
20557 return do_neon_dotproduct (0);
20558 }
20559
20560 /* Dot Product instructions for unsigned integer. */
20561
20562 static void
20563 do_neon_dotproduct_u (void)
20564 {
20565 return do_neon_dotproduct (1);
20566 }
20567
20568 /* Crypto v1 instructions. */
20569 static void
20570 do_crypto_2op_1 (unsigned elttype, int op)
20571 {
20572 set_pred_insn_type (OUTSIDE_PRED_INSN);
20573
20574 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20575 == NT_invtype)
20576 return;
20577
20578 inst.error = NULL;
20579
20580 NEON_ENCODE (INTEGER, inst);
20581 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20582 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20583 inst.instruction |= LOW4 (inst.operands[1].reg);
20584 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20585 if (op != -1)
20586 inst.instruction |= op << 6;
20587
20588 if (thumb_mode)
20589 inst.instruction |= 0xfc000000;
20590 else
20591 inst.instruction |= 0xf0000000;
20592 }
20593
20594 static void
20595 do_crypto_3op_1 (int u, int op)
20596 {
20597 set_pred_insn_type (OUTSIDE_PRED_INSN);
20598
20599 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20600 N_32 | N_UNT | N_KEY).type == NT_invtype)
20601 return;
20602
20603 inst.error = NULL;
20604
20605 NEON_ENCODE (INTEGER, inst);
20606 neon_three_same (1, u, 8 << op);
20607 }
20608
20609 static void
20610 do_aese (void)
20611 {
20612 do_crypto_2op_1 (N_8, 0);
20613 }
20614
20615 static void
20616 do_aesd (void)
20617 {
20618 do_crypto_2op_1 (N_8, 1);
20619 }
20620
20621 static void
20622 do_aesmc (void)
20623 {
20624 do_crypto_2op_1 (N_8, 2);
20625 }
20626
20627 static void
20628 do_aesimc (void)
20629 {
20630 do_crypto_2op_1 (N_8, 3);
20631 }
20632
20633 static void
20634 do_sha1c (void)
20635 {
20636 do_crypto_3op_1 (0, 0);
20637 }
20638
20639 static void
20640 do_sha1p (void)
20641 {
20642 do_crypto_3op_1 (0, 1);
20643 }
20644
20645 static void
20646 do_sha1m (void)
20647 {
20648 do_crypto_3op_1 (0, 2);
20649 }
20650
20651 static void
20652 do_sha1su0 (void)
20653 {
20654 do_crypto_3op_1 (0, 3);
20655 }
20656
20657 static void
20658 do_sha256h (void)
20659 {
20660 do_crypto_3op_1 (1, 0);
20661 }
20662
20663 static void
20664 do_sha256h2 (void)
20665 {
20666 do_crypto_3op_1 (1, 1);
20667 }
20668
20669 static void
20670 do_sha256su1 (void)
20671 {
20672 do_crypto_3op_1 (1, 2);
20673 }
20674
20675 static void
20676 do_sha1h (void)
20677 {
20678 do_crypto_2op_1 (N_32, -1);
20679 }
20680
20681 static void
20682 do_sha1su1 (void)
20683 {
20684 do_crypto_2op_1 (N_32, 0);
20685 }
20686
20687 static void
20688 do_sha256su0 (void)
20689 {
20690 do_crypto_2op_1 (N_32, 1);
20691 }
20692
20693 static void
20694 do_crc32_1 (unsigned int poly, unsigned int sz)
20695 {
20696 unsigned int Rd = inst.operands[0].reg;
20697 unsigned int Rn = inst.operands[1].reg;
20698 unsigned int Rm = inst.operands[2].reg;
20699
20700 set_pred_insn_type (OUTSIDE_PRED_INSN);
20701 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20702 inst.instruction |= LOW4 (Rn) << 16;
20703 inst.instruction |= LOW4 (Rm);
20704 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20705 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20706
20707 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20708 as_warn (UNPRED_REG ("r15"));
20709 }
20710
20711 static void
20712 do_crc32b (void)
20713 {
20714 do_crc32_1 (0, 0);
20715 }
20716
20717 static void
20718 do_crc32h (void)
20719 {
20720 do_crc32_1 (0, 1);
20721 }
20722
20723 static void
20724 do_crc32w (void)
20725 {
20726 do_crc32_1 (0, 2);
20727 }
20728
20729 static void
20730 do_crc32cb (void)
20731 {
20732 do_crc32_1 (1, 0);
20733 }
20734
20735 static void
20736 do_crc32ch (void)
20737 {
20738 do_crc32_1 (1, 1);
20739 }
20740
20741 static void
20742 do_crc32cw (void)
20743 {
20744 do_crc32_1 (1, 2);
20745 }
20746
20747 static void
20748 do_vjcvt (void)
20749 {
20750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20751 _(BAD_FPU));
20752 neon_check_type (2, NS_FD, N_S32, N_F64);
20753 do_vfp_sp_dp_cvt ();
20754 do_vfp_cond_or_thumb ();
20755 }
20756
20757 \f
20758 /* Overall per-instruction processing. */
20759
20760 /* We need to be able to fix up arbitrary expressions in some statements.
20761 This is so that we can handle symbols that are an arbitrary distance from
20762 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20763 which returns part of an address in a form which will be valid for
20764 a data instruction. We do this by pushing the expression into a symbol
20765 in the expr_section, and creating a fix for that. */
20766
20767 static void
20768 fix_new_arm (fragS * frag,
20769 int where,
20770 short int size,
20771 expressionS * exp,
20772 int pc_rel,
20773 int reloc)
20774 {
20775 fixS * new_fix;
20776
20777 switch (exp->X_op)
20778 {
20779 case O_constant:
20780 if (pc_rel)
20781 {
20782 /* Create an absolute valued symbol, so we have something to
20783 refer to in the object file. Unfortunately for us, gas's
20784 generic expression parsing will already have folded out
20785 any use of .set foo/.type foo %function that may have
20786 been used to set type information of the target location,
20787 that's being specified symbolically. We have to presume
20788 the user knows what they are doing. */
20789 char name[16 + 8];
20790 symbolS *symbol;
20791
20792 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20793
20794 symbol = symbol_find_or_make (name);
20795 S_SET_SEGMENT (symbol, absolute_section);
20796 symbol_set_frag (symbol, &zero_address_frag);
20797 S_SET_VALUE (symbol, exp->X_add_number);
20798 exp->X_op = O_symbol;
20799 exp->X_add_symbol = symbol;
20800 exp->X_add_number = 0;
20801 }
20802 /* FALLTHROUGH */
20803 case O_symbol:
20804 case O_add:
20805 case O_subtract:
20806 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20807 (enum bfd_reloc_code_real) reloc);
20808 break;
20809
20810 default:
20811 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20812 pc_rel, (enum bfd_reloc_code_real) reloc);
20813 break;
20814 }
20815
20816 /* Mark whether the fix is to a THUMB instruction, or an ARM
20817 instruction. */
20818 new_fix->tc_fix_data = thumb_mode;
20819 }
20820
20821 /* Create a frg for an instruction requiring relaxation. */
20822 static void
20823 output_relax_insn (void)
20824 {
20825 char * to;
20826 symbolS *sym;
20827 int offset;
20828
20829 /* The size of the instruction is unknown, so tie the debug info to the
20830 start of the instruction. */
20831 dwarf2_emit_insn (0);
20832
20833 switch (inst.relocs[0].exp.X_op)
20834 {
20835 case O_symbol:
20836 sym = inst.relocs[0].exp.X_add_symbol;
20837 offset = inst.relocs[0].exp.X_add_number;
20838 break;
20839 case O_constant:
20840 sym = NULL;
20841 offset = inst.relocs[0].exp.X_add_number;
20842 break;
20843 default:
20844 sym = make_expr_symbol (&inst.relocs[0].exp);
20845 offset = 0;
20846 break;
20847 }
20848 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20849 inst.relax, sym, offset, NULL/*offset, opcode*/);
20850 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20851 }
20852
20853 /* Write a 32-bit thumb instruction to buf. */
20854 static void
20855 put_thumb32_insn (char * buf, unsigned long insn)
20856 {
20857 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20858 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20859 }
20860
20861 static void
20862 output_inst (const char * str)
20863 {
20864 char * to = NULL;
20865
20866 if (inst.error)
20867 {
20868 as_bad ("%s -- `%s'", inst.error, str);
20869 return;
20870 }
20871 if (inst.relax)
20872 {
20873 output_relax_insn ();
20874 return;
20875 }
20876 if (inst.size == 0)
20877 return;
20878
20879 to = frag_more (inst.size);
20880 /* PR 9814: Record the thumb mode into the current frag so that we know
20881 what type of NOP padding to use, if necessary. We override any previous
20882 setting so that if the mode has changed then the NOPS that we use will
20883 match the encoding of the last instruction in the frag. */
20884 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20885
20886 if (thumb_mode && (inst.size > THUMB_SIZE))
20887 {
20888 gas_assert (inst.size == (2 * THUMB_SIZE));
20889 put_thumb32_insn (to, inst.instruction);
20890 }
20891 else if (inst.size > INSN_SIZE)
20892 {
20893 gas_assert (inst.size == (2 * INSN_SIZE));
20894 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20895 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20896 }
20897 else
20898 md_number_to_chars (to, inst.instruction, inst.size);
20899
20900 int r;
20901 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20902 {
20903 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20904 fix_new_arm (frag_now, to - frag_now->fr_literal,
20905 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20906 inst.relocs[r].type);
20907 }
20908
20909 dwarf2_emit_insn (inst.size);
20910 }
20911
20912 static char *
20913 output_it_inst (int cond, int mask, char * to)
20914 {
20915 unsigned long instruction = 0xbf00;
20916
20917 mask &= 0xf;
20918 instruction |= mask;
20919 instruction |= cond << 4;
20920
20921 if (to == NULL)
20922 {
20923 to = frag_more (2);
20924 #ifdef OBJ_ELF
20925 dwarf2_emit_insn (2);
20926 #endif
20927 }
20928
20929 md_number_to_chars (to, instruction, 2);
20930
20931 return to;
20932 }
20933
20934 /* Tag values used in struct asm_opcode's tag field. */
20935 enum opcode_tag
20936 {
20937 OT_unconditional, /* Instruction cannot be conditionalized.
20938 The ARM condition field is still 0xE. */
20939 OT_unconditionalF, /* Instruction cannot be conditionalized
20940 and carries 0xF in its ARM condition field. */
20941 OT_csuffix, /* Instruction takes a conditional suffix. */
20942 OT_csuffixF, /* Some forms of the instruction take a scalar
20943 conditional suffix, others place 0xF where the
20944 condition field would be, others take a vector
20945 conditional suffix. */
20946 OT_cinfix3, /* Instruction takes a conditional infix,
20947 beginning at character index 3. (In
20948 unified mode, it becomes a suffix.) */
20949 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20950 tsts, cmps, cmns, and teqs. */
20951 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20952 character index 3, even in unified mode. Used for
20953 legacy instructions where suffix and infix forms
20954 may be ambiguous. */
20955 OT_csuf_or_in3, /* Instruction takes either a conditional
20956 suffix or an infix at character index 3. */
20957 OT_odd_infix_unc, /* This is the unconditional variant of an
20958 instruction that takes a conditional infix
20959 at an unusual position. In unified mode,
20960 this variant will accept a suffix. */
20961 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20962 are the conditional variants of instructions that
20963 take conditional infixes in unusual positions.
20964 The infix appears at character index
20965 (tag - OT_odd_infix_0). These are not accepted
20966 in unified mode. */
20967 };
20968
20969 /* Subroutine of md_assemble, responsible for looking up the primary
20970 opcode from the mnemonic the user wrote. STR points to the
20971 beginning of the mnemonic.
20972
20973 This is not simply a hash table lookup, because of conditional
20974 variants. Most instructions have conditional variants, which are
20975 expressed with a _conditional affix_ to the mnemonic. If we were
20976 to encode each conditional variant as a literal string in the opcode
20977 table, it would have approximately 20,000 entries.
20978
20979 Most mnemonics take this affix as a suffix, and in unified syntax,
20980 'most' is upgraded to 'all'. However, in the divided syntax, some
20981 instructions take the affix as an infix, notably the s-variants of
20982 the arithmetic instructions. Of those instructions, all but six
20983 have the infix appear after the third character of the mnemonic.
20984
20985 Accordingly, the algorithm for looking up primary opcodes given
20986 an identifier is:
20987
20988 1. Look up the identifier in the opcode table.
20989 If we find a match, go to step U.
20990
20991 2. Look up the last two characters of the identifier in the
20992 conditions table. If we find a match, look up the first N-2
20993 characters of the identifier in the opcode table. If we
20994 find a match, go to step CE.
20995
20996 3. Look up the fourth and fifth characters of the identifier in
20997 the conditions table. If we find a match, extract those
20998 characters from the identifier, and look up the remaining
20999 characters in the opcode table. If we find a match, go
21000 to step CM.
21001
21002 4. Fail.
21003
21004 U. Examine the tag field of the opcode structure, in case this is
21005 one of the six instructions with its conditional infix in an
21006 unusual place. If it is, the tag tells us where to find the
21007 infix; look it up in the conditions table and set inst.cond
21008 accordingly. Otherwise, this is an unconditional instruction.
21009 Again set inst.cond accordingly. Return the opcode structure.
21010
21011 CE. Examine the tag field to make sure this is an instruction that
21012 should receive a conditional suffix. If it is not, fail.
21013 Otherwise, set inst.cond from the suffix we already looked up,
21014 and return the opcode structure.
21015
21016 CM. Examine the tag field to make sure this is an instruction that
21017 should receive a conditional infix after the third character.
21018 If it is not, fail. Otherwise, undo the edits to the current
21019 line of input and proceed as for case CE. */
21020
21021 static const struct asm_opcode *
21022 opcode_lookup (char **str)
21023 {
21024 char *end, *base;
21025 char *affix;
21026 const struct asm_opcode *opcode;
21027 const struct asm_cond *cond;
21028 char save[2];
21029
21030 /* Scan up to the end of the mnemonic, which must end in white space,
21031 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21032 for (base = end = *str; *end != '\0'; end++)
21033 if (*end == ' ' || *end == '.')
21034 break;
21035
21036 if (end == base)
21037 return NULL;
21038
21039 /* Handle a possible width suffix and/or Neon type suffix. */
21040 if (end[0] == '.')
21041 {
21042 int offset = 2;
21043
21044 /* The .w and .n suffixes are only valid if the unified syntax is in
21045 use. */
21046 if (unified_syntax && end[1] == 'w')
21047 inst.size_req = 4;
21048 else if (unified_syntax && end[1] == 'n')
21049 inst.size_req = 2;
21050 else
21051 offset = 0;
21052
21053 inst.vectype.elems = 0;
21054
21055 *str = end + offset;
21056
21057 if (end[offset] == '.')
21058 {
21059 /* See if we have a Neon type suffix (possible in either unified or
21060 non-unified ARM syntax mode). */
21061 if (parse_neon_type (&inst.vectype, str) == FAIL)
21062 return NULL;
21063 }
21064 else if (end[offset] != '\0' && end[offset] != ' ')
21065 return NULL;
21066 }
21067 else
21068 *str = end;
21069
21070 /* Look for unaffixed or special-case affixed mnemonic. */
21071 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21072 end - base);
21073 if (opcode)
21074 {
21075 /* step U */
21076 if (opcode->tag < OT_odd_infix_0)
21077 {
21078 inst.cond = COND_ALWAYS;
21079 return opcode;
21080 }
21081
21082 if (warn_on_deprecated && unified_syntax)
21083 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21084 affix = base + (opcode->tag - OT_odd_infix_0);
21085 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21086 gas_assert (cond);
21087
21088 inst.cond = cond->value;
21089 return opcode;
21090 }
21091 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21092 {
21093 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21094 */
21095 if (end - base < 2)
21096 return NULL;
21097 affix = end - 1;
21098 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21099 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21100 affix - base);
21101 /* If this opcode can not be vector predicated then don't accept it with a
21102 vector predication code. */
21103 if (opcode && !opcode->mayBeVecPred)
21104 opcode = NULL;
21105 }
21106 if (!opcode || !cond)
21107 {
21108 /* Cannot have a conditional suffix on a mnemonic of less than two
21109 characters. */
21110 if (end - base < 3)
21111 return NULL;
21112
21113 /* Look for suffixed mnemonic. */
21114 affix = end - 2;
21115 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21116 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21117 affix - base);
21118 }
21119
21120 if (opcode && cond)
21121 {
21122 /* step CE */
21123 switch (opcode->tag)
21124 {
21125 case OT_cinfix3_legacy:
21126 /* Ignore conditional suffixes matched on infix only mnemonics. */
21127 break;
21128
21129 case OT_cinfix3:
21130 case OT_cinfix3_deprecated:
21131 case OT_odd_infix_unc:
21132 if (!unified_syntax)
21133 return NULL;
21134 /* Fall through. */
21135
21136 case OT_csuffix:
21137 case OT_csuffixF:
21138 case OT_csuf_or_in3:
21139 inst.cond = cond->value;
21140 return opcode;
21141
21142 case OT_unconditional:
21143 case OT_unconditionalF:
21144 if (thumb_mode)
21145 inst.cond = cond->value;
21146 else
21147 {
21148 /* Delayed diagnostic. */
21149 inst.error = BAD_COND;
21150 inst.cond = COND_ALWAYS;
21151 }
21152 return opcode;
21153
21154 default:
21155 return NULL;
21156 }
21157 }
21158
21159 /* Cannot have a usual-position infix on a mnemonic of less than
21160 six characters (five would be a suffix). */
21161 if (end - base < 6)
21162 return NULL;
21163
21164 /* Look for infixed mnemonic in the usual position. */
21165 affix = base + 3;
21166 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21167 if (!cond)
21168 return NULL;
21169
21170 memcpy (save, affix, 2);
21171 memmove (affix, affix + 2, (end - affix) - 2);
21172 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21173 (end - base) - 2);
21174 memmove (affix + 2, affix, (end - affix) - 2);
21175 memcpy (affix, save, 2);
21176
21177 if (opcode
21178 && (opcode->tag == OT_cinfix3
21179 || opcode->tag == OT_cinfix3_deprecated
21180 || opcode->tag == OT_csuf_or_in3
21181 || opcode->tag == OT_cinfix3_legacy))
21182 {
21183 /* Step CM. */
21184 if (warn_on_deprecated && unified_syntax
21185 && (opcode->tag == OT_cinfix3
21186 || opcode->tag == OT_cinfix3_deprecated))
21187 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21188
21189 inst.cond = cond->value;
21190 return opcode;
21191 }
21192
21193 return NULL;
21194 }
21195
21196 /* This function generates an initial IT instruction, leaving its block
21197 virtually open for the new instructions. Eventually,
21198 the mask will be updated by now_pred_add_mask () each time
21199 a new instruction needs to be included in the IT block.
21200 Finally, the block is closed with close_automatic_it_block ().
21201 The block closure can be requested either from md_assemble (),
21202 a tencode (), or due to a label hook. */
21203
21204 static void
21205 new_automatic_it_block (int cond)
21206 {
21207 now_pred.state = AUTOMATIC_PRED_BLOCK;
21208 now_pred.mask = 0x18;
21209 now_pred.cc = cond;
21210 now_pred.block_length = 1;
21211 mapping_state (MAP_THUMB);
21212 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21213 now_pred.warn_deprecated = FALSE;
21214 now_pred.insn_cond = TRUE;
21215 }
21216
21217 /* Close an automatic IT block.
21218 See comments in new_automatic_it_block (). */
21219
21220 static void
21221 close_automatic_it_block (void)
21222 {
21223 now_pred.mask = 0x10;
21224 now_pred.block_length = 0;
21225 }
21226
21227 /* Update the mask of the current automatically-generated IT
21228 instruction. See comments in new_automatic_it_block (). */
21229
21230 static void
21231 now_pred_add_mask (int cond)
21232 {
21233 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21234 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21235 | ((bitvalue) << (nbit)))
21236 const int resulting_bit = (cond & 1);
21237
21238 now_pred.mask &= 0xf;
21239 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21240 resulting_bit,
21241 (5 - now_pred.block_length));
21242 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21243 1,
21244 ((5 - now_pred.block_length) - 1));
21245 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21246
21247 #undef CLEAR_BIT
21248 #undef SET_BIT_VALUE
21249 }
21250
21251 /* The IT blocks handling machinery is accessed through the these functions:
21252 it_fsm_pre_encode () from md_assemble ()
21253 set_pred_insn_type () optional, from the tencode functions
21254 set_pred_insn_type_last () ditto
21255 in_pred_block () ditto
21256 it_fsm_post_encode () from md_assemble ()
21257 force_automatic_it_block_close () from label handling functions
21258
21259 Rationale:
21260 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21261 initializing the IT insn type with a generic initial value depending
21262 on the inst.condition.
21263 2) During the tencode function, two things may happen:
21264 a) The tencode function overrides the IT insn type by
21265 calling either set_pred_insn_type (type) or
21266 set_pred_insn_type_last ().
21267 b) The tencode function queries the IT block state by
21268 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21269
21270 Both set_pred_insn_type and in_pred_block run the internal FSM state
21271 handling function (handle_pred_state), because: a) setting the IT insn
21272 type may incur in an invalid state (exiting the function),
21273 and b) querying the state requires the FSM to be updated.
21274 Specifically we want to avoid creating an IT block for conditional
21275 branches, so it_fsm_pre_encode is actually a guess and we can't
21276 determine whether an IT block is required until the tencode () routine
21277 has decided what type of instruction this actually it.
21278 Because of this, if set_pred_insn_type and in_pred_block have to be
21279 used, set_pred_insn_type has to be called first.
21280
21281 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21282 that determines the insn IT type depending on the inst.cond code.
21283 When a tencode () routine encodes an instruction that can be
21284 either outside an IT block, or, in the case of being inside, has to be
21285 the last one, set_pred_insn_type_last () will determine the proper
21286 IT instruction type based on the inst.cond code. Otherwise,
21287 set_pred_insn_type can be called for overriding that logic or
21288 for covering other cases.
21289
21290 Calling handle_pred_state () may not transition the IT block state to
21291 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21292 still queried. Instead, if the FSM determines that the state should
21293 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21294 after the tencode () function: that's what it_fsm_post_encode () does.
21295
21296 Since in_pred_block () calls the state handling function to get an
21297 updated state, an error may occur (due to invalid insns combination).
21298 In that case, inst.error is set.
21299 Therefore, inst.error has to be checked after the execution of
21300 the tencode () routine.
21301
21302 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21303 any pending state change (if any) that didn't take place in
21304 handle_pred_state () as explained above. */
21305
21306 static void
21307 it_fsm_pre_encode (void)
21308 {
21309 if (inst.cond != COND_ALWAYS)
21310 inst.pred_insn_type = INSIDE_IT_INSN;
21311 else
21312 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21313
21314 now_pred.state_handled = 0;
21315 }
21316
21317 /* IT state FSM handling function. */
21318 /* MVE instructions and non-MVE instructions are handled differently because of
21319 the introduction of VPT blocks.
21320 Specifications say that any non-MVE instruction inside a VPT block is
21321 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21322 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21323 few exceptions we have MVE_UNPREDICABLE_INSN.
21324 The error messages provided depending on the different combinations possible
21325 are described in the cases below:
21326 For 'most' MVE instructions:
21327 1) In an IT block, with an IT code: syntax error
21328 2) In an IT block, with a VPT code: error: must be in a VPT block
21329 3) In an IT block, with no code: warning: UNPREDICTABLE
21330 4) In a VPT block, with an IT code: syntax error
21331 5) In a VPT block, with a VPT code: OK!
21332 6) In a VPT block, with no code: error: missing code
21333 7) Outside a pred block, with an IT code: error: syntax error
21334 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21335 9) Outside a pred block, with no code: OK!
21336 For non-MVE instructions:
21337 10) In an IT block, with an IT code: OK!
21338 11) In an IT block, with a VPT code: syntax error
21339 12) In an IT block, with no code: error: missing code
21340 13) In a VPT block, with an IT code: error: should be in an IT block
21341 14) In a VPT block, with a VPT code: syntax error
21342 15) In a VPT block, with no code: UNPREDICTABLE
21343 16) Outside a pred block, with an IT code: error: should be in an IT block
21344 17) Outside a pred block, with a VPT code: syntax error
21345 18) Outside a pred block, with no code: OK!
21346 */
21347
21348
21349 static int
21350 handle_pred_state (void)
21351 {
21352 now_pred.state_handled = 1;
21353 now_pred.insn_cond = FALSE;
21354
21355 switch (now_pred.state)
21356 {
21357 case OUTSIDE_PRED_BLOCK:
21358 switch (inst.pred_insn_type)
21359 {
21360 case MVE_UNPREDICABLE_INSN:
21361 case MVE_OUTSIDE_PRED_INSN:
21362 if (inst.cond < COND_ALWAYS)
21363 {
21364 /* Case 7: Outside a pred block, with an IT code: error: syntax
21365 error. */
21366 inst.error = BAD_SYNTAX;
21367 return FAIL;
21368 }
21369 /* Case 9: Outside a pred block, with no code: OK! */
21370 break;
21371 case OUTSIDE_PRED_INSN:
21372 if (inst.cond > COND_ALWAYS)
21373 {
21374 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21375 */
21376 inst.error = BAD_SYNTAX;
21377 return FAIL;
21378 }
21379 /* Case 18: Outside a pred block, with no code: OK! */
21380 break;
21381
21382 case INSIDE_VPT_INSN:
21383 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21384 a VPT block. */
21385 inst.error = BAD_OUT_VPT;
21386 return FAIL;
21387
21388 case INSIDE_IT_INSN:
21389 case INSIDE_IT_LAST_INSN:
21390 if (inst.cond < COND_ALWAYS)
21391 {
21392 /* Case 16: Outside a pred block, with an IT code: error: should
21393 be in an IT block. */
21394 if (thumb_mode == 0)
21395 {
21396 if (unified_syntax
21397 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21398 as_tsktsk (_("Warning: conditional outside an IT block"\
21399 " for Thumb."));
21400 }
21401 else
21402 {
21403 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21404 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21405 {
21406 /* Automatically generate the IT instruction. */
21407 new_automatic_it_block (inst.cond);
21408 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21409 close_automatic_it_block ();
21410 }
21411 else
21412 {
21413 inst.error = BAD_OUT_IT;
21414 return FAIL;
21415 }
21416 }
21417 break;
21418 }
21419 else if (inst.cond > COND_ALWAYS)
21420 {
21421 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21422 */
21423 inst.error = BAD_SYNTAX;
21424 return FAIL;
21425 }
21426 else
21427 gas_assert (0);
21428 case IF_INSIDE_IT_LAST_INSN:
21429 case NEUTRAL_IT_INSN:
21430 break;
21431
21432 case VPT_INSN:
21433 if (inst.cond != COND_ALWAYS)
21434 first_error (BAD_SYNTAX);
21435 now_pred.state = MANUAL_PRED_BLOCK;
21436 now_pred.block_length = 0;
21437 now_pred.type = VECTOR_PRED;
21438 now_pred.cc = 0;
21439 break;
21440 case IT_INSN:
21441 now_pred.state = MANUAL_PRED_BLOCK;
21442 now_pred.block_length = 0;
21443 now_pred.type = SCALAR_PRED;
21444 break;
21445 }
21446 break;
21447
21448 case AUTOMATIC_PRED_BLOCK:
21449 /* Three things may happen now:
21450 a) We should increment current it block size;
21451 b) We should close current it block (closing insn or 4 insns);
21452 c) We should close current it block and start a new one (due
21453 to incompatible conditions or
21454 4 insns-length block reached). */
21455
21456 switch (inst.pred_insn_type)
21457 {
21458 case INSIDE_VPT_INSN:
21459 case VPT_INSN:
21460 case MVE_UNPREDICABLE_INSN:
21461 case MVE_OUTSIDE_PRED_INSN:
21462 gas_assert (0);
21463 case OUTSIDE_PRED_INSN:
21464 /* The closure of the block shall happen immediately,
21465 so any in_pred_block () call reports the block as closed. */
21466 force_automatic_it_block_close ();
21467 break;
21468
21469 case INSIDE_IT_INSN:
21470 case INSIDE_IT_LAST_INSN:
21471 case IF_INSIDE_IT_LAST_INSN:
21472 now_pred.block_length++;
21473
21474 if (now_pred.block_length > 4
21475 || !now_pred_compatible (inst.cond))
21476 {
21477 force_automatic_it_block_close ();
21478 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21479 new_automatic_it_block (inst.cond);
21480 }
21481 else
21482 {
21483 now_pred.insn_cond = TRUE;
21484 now_pred_add_mask (inst.cond);
21485 }
21486
21487 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21488 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21489 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21490 close_automatic_it_block ();
21491 break;
21492
21493 case NEUTRAL_IT_INSN:
21494 now_pred.block_length++;
21495 now_pred.insn_cond = TRUE;
21496
21497 if (now_pred.block_length > 4)
21498 force_automatic_it_block_close ();
21499 else
21500 now_pred_add_mask (now_pred.cc & 1);
21501 break;
21502
21503 case IT_INSN:
21504 close_automatic_it_block ();
21505 now_pred.state = MANUAL_PRED_BLOCK;
21506 break;
21507 }
21508 break;
21509
21510 case MANUAL_PRED_BLOCK:
21511 {
21512 int cond, is_last;
21513 if (now_pred.type == SCALAR_PRED)
21514 {
21515 /* Check conditional suffixes. */
21516 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21517 now_pred.mask <<= 1;
21518 now_pred.mask &= 0x1f;
21519 is_last = (now_pred.mask == 0x10);
21520 }
21521 else
21522 {
21523 now_pred.cc ^= (now_pred.mask >> 4);
21524 cond = now_pred.cc + 0xf;
21525 now_pred.mask <<= 1;
21526 now_pred.mask &= 0x1f;
21527 is_last = now_pred.mask == 0x10;
21528 }
21529 now_pred.insn_cond = TRUE;
21530
21531 switch (inst.pred_insn_type)
21532 {
21533 case OUTSIDE_PRED_INSN:
21534 if (now_pred.type == SCALAR_PRED)
21535 {
21536 if (inst.cond == COND_ALWAYS)
21537 {
21538 /* Case 12: In an IT block, with no code: error: missing
21539 code. */
21540 inst.error = BAD_NOT_IT;
21541 return FAIL;
21542 }
21543 else if (inst.cond > COND_ALWAYS)
21544 {
21545 /* Case 11: In an IT block, with a VPT code: syntax error.
21546 */
21547 inst.error = BAD_SYNTAX;
21548 return FAIL;
21549 }
21550 else if (thumb_mode)
21551 {
21552 /* This is for some special cases where a non-MVE
21553 instruction is not allowed in an IT block, such as cbz,
21554 but are put into one with a condition code.
21555 You could argue this should be a syntax error, but we
21556 gave the 'not allowed in IT block' diagnostic in the
21557 past so we will keep doing so. */
21558 inst.error = BAD_NOT_IT;
21559 return FAIL;
21560 }
21561 break;
21562 }
21563 else
21564 {
21565 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21566 as_tsktsk (MVE_NOT_VPT);
21567 return SUCCESS;
21568 }
21569 case MVE_OUTSIDE_PRED_INSN:
21570 if (now_pred.type == SCALAR_PRED)
21571 {
21572 if (inst.cond == COND_ALWAYS)
21573 {
21574 /* Case 3: In an IT block, with no code: warning:
21575 UNPREDICTABLE. */
21576 as_tsktsk (MVE_NOT_IT);
21577 return SUCCESS;
21578 }
21579 else if (inst.cond < COND_ALWAYS)
21580 {
21581 /* Case 1: In an IT block, with an IT code: syntax error.
21582 */
21583 inst.error = BAD_SYNTAX;
21584 return FAIL;
21585 }
21586 else
21587 gas_assert (0);
21588 }
21589 else
21590 {
21591 if (inst.cond < COND_ALWAYS)
21592 {
21593 /* Case 4: In a VPT block, with an IT code: syntax error.
21594 */
21595 inst.error = BAD_SYNTAX;
21596 return FAIL;
21597 }
21598 else if (inst.cond == COND_ALWAYS)
21599 {
21600 /* Case 6: In a VPT block, with no code: error: missing
21601 code. */
21602 inst.error = BAD_NOT_VPT;
21603 return FAIL;
21604 }
21605 else
21606 {
21607 gas_assert (0);
21608 }
21609 }
21610 case MVE_UNPREDICABLE_INSN:
21611 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21612 return SUCCESS;
21613 case INSIDE_IT_INSN:
21614 if (inst.cond > COND_ALWAYS)
21615 {
21616 /* Case 11: In an IT block, with a VPT code: syntax error. */
21617 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21618 inst.error = BAD_SYNTAX;
21619 return FAIL;
21620 }
21621 else if (now_pred.type == SCALAR_PRED)
21622 {
21623 /* Case 10: In an IT block, with an IT code: OK! */
21624 if (cond != inst.cond)
21625 {
21626 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21627 BAD_VPT_COND;
21628 return FAIL;
21629 }
21630 }
21631 else
21632 {
21633 /* Case 13: In a VPT block, with an IT code: error: should be
21634 in an IT block. */
21635 inst.error = BAD_OUT_IT;
21636 return FAIL;
21637 }
21638 break;
21639
21640 case INSIDE_VPT_INSN:
21641 if (now_pred.type == SCALAR_PRED)
21642 {
21643 /* Case 2: In an IT block, with a VPT code: error: must be in a
21644 VPT block. */
21645 inst.error = BAD_OUT_VPT;
21646 return FAIL;
21647 }
21648 /* Case 5: In a VPT block, with a VPT code: OK! */
21649 else if (cond != inst.cond)
21650 {
21651 inst.error = BAD_VPT_COND;
21652 return FAIL;
21653 }
21654 break;
21655 case INSIDE_IT_LAST_INSN:
21656 case IF_INSIDE_IT_LAST_INSN:
21657 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21658 {
21659 /* Case 4: In a VPT block, with an IT code: syntax error. */
21660 /* Case 11: In an IT block, with a VPT code: syntax error. */
21661 inst.error = BAD_SYNTAX;
21662 return FAIL;
21663 }
21664 else if (cond != inst.cond)
21665 {
21666 inst.error = BAD_IT_COND;
21667 return FAIL;
21668 }
21669 if (!is_last)
21670 {
21671 inst.error = BAD_BRANCH;
21672 return FAIL;
21673 }
21674 break;
21675
21676 case NEUTRAL_IT_INSN:
21677 /* The BKPT instruction is unconditional even in a IT or VPT
21678 block. */
21679 break;
21680
21681 case IT_INSN:
21682 if (now_pred.type == SCALAR_PRED)
21683 {
21684 inst.error = BAD_IT_IT;
21685 return FAIL;
21686 }
21687 /* fall through. */
21688 case VPT_INSN:
21689 if (inst.cond == COND_ALWAYS)
21690 {
21691 /* Executing a VPT/VPST instruction inside an IT block or a
21692 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21693 */
21694 if (now_pred.type == SCALAR_PRED)
21695 as_tsktsk (MVE_NOT_IT);
21696 else
21697 as_tsktsk (MVE_NOT_VPT);
21698 return SUCCESS;
21699 }
21700 else
21701 {
21702 /* VPT/VPST do not accept condition codes. */
21703 inst.error = BAD_SYNTAX;
21704 return FAIL;
21705 }
21706 }
21707 }
21708 break;
21709 }
21710
21711 return SUCCESS;
21712 }
21713
21714 struct depr_insn_mask
21715 {
21716 unsigned long pattern;
21717 unsigned long mask;
21718 const char* description;
21719 };
21720
21721 /* List of 16-bit instruction patterns deprecated in an IT block in
21722 ARMv8. */
21723 static const struct depr_insn_mask depr_it_insns[] = {
21724 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21725 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21726 { 0xa000, 0xb800, N_("ADR") },
21727 { 0x4800, 0xf800, N_("Literal loads") },
21728 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21729 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21730 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21731 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21732 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21733 { 0, 0, NULL }
21734 };
21735
21736 static void
21737 it_fsm_post_encode (void)
21738 {
21739 int is_last;
21740
21741 if (!now_pred.state_handled)
21742 handle_pred_state ();
21743
21744 if (now_pred.insn_cond
21745 && !now_pred.warn_deprecated
21746 && warn_on_deprecated
21747 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21748 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21749 {
21750 if (inst.instruction >= 0x10000)
21751 {
21752 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21753 "performance deprecated in ARMv8-A and ARMv8-R"));
21754 now_pred.warn_deprecated = TRUE;
21755 }
21756 else
21757 {
21758 const struct depr_insn_mask *p = depr_it_insns;
21759
21760 while (p->mask != 0)
21761 {
21762 if ((inst.instruction & p->mask) == p->pattern)
21763 {
21764 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21765 "instructions of the following class are "
21766 "performance deprecated in ARMv8-A and "
21767 "ARMv8-R: %s"), p->description);
21768 now_pred.warn_deprecated = TRUE;
21769 break;
21770 }
21771
21772 ++p;
21773 }
21774 }
21775
21776 if (now_pred.block_length > 1)
21777 {
21778 as_tsktsk (_("IT blocks containing more than one conditional "
21779 "instruction are performance deprecated in ARMv8-A and "
21780 "ARMv8-R"));
21781 now_pred.warn_deprecated = TRUE;
21782 }
21783 }
21784
21785 is_last = (now_pred.mask == 0x10);
21786 if (is_last)
21787 {
21788 now_pred.state = OUTSIDE_PRED_BLOCK;
21789 now_pred.mask = 0;
21790 }
21791 }
21792
21793 static void
21794 force_automatic_it_block_close (void)
21795 {
21796 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21797 {
21798 close_automatic_it_block ();
21799 now_pred.state = OUTSIDE_PRED_BLOCK;
21800 now_pred.mask = 0;
21801 }
21802 }
21803
21804 static int
21805 in_pred_block (void)
21806 {
21807 if (!now_pred.state_handled)
21808 handle_pred_state ();
21809
21810 return now_pred.state != OUTSIDE_PRED_BLOCK;
21811 }
21812
21813 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21814 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21815 here, hence the "known" in the function name. */
21816
21817 static bfd_boolean
21818 known_t32_only_insn (const struct asm_opcode *opcode)
21819 {
21820 /* Original Thumb-1 wide instruction. */
21821 if (opcode->tencode == do_t_blx
21822 || opcode->tencode == do_t_branch23
21823 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21824 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21825 return TRUE;
21826
21827 /* Wide-only instruction added to ARMv8-M Baseline. */
21828 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21829 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21830 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21831 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21832 return TRUE;
21833
21834 return FALSE;
21835 }
21836
21837 /* Whether wide instruction variant can be used if available for a valid OPCODE
21838 in ARCH. */
21839
21840 static bfd_boolean
21841 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21842 {
21843 if (known_t32_only_insn (opcode))
21844 return TRUE;
21845
21846 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21847 of variant T3 of B.W is checked in do_t_branch. */
21848 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21849 && opcode->tencode == do_t_branch)
21850 return TRUE;
21851
21852 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21853 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21854 && opcode->tencode == do_t_mov_cmp
21855 /* Make sure CMP instruction is not affected. */
21856 && opcode->aencode == do_mov)
21857 return TRUE;
21858
21859 /* Wide instruction variants of all instructions with narrow *and* wide
21860 variants become available with ARMv6t2. Other opcodes are either
21861 narrow-only or wide-only and are thus available if OPCODE is valid. */
21862 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21863 return TRUE;
21864
21865 /* OPCODE with narrow only instruction variant or wide variant not
21866 available. */
21867 return FALSE;
21868 }
21869
21870 void
21871 md_assemble (char *str)
21872 {
21873 char *p = str;
21874 const struct asm_opcode * opcode;
21875
21876 /* Align the previous label if needed. */
21877 if (last_label_seen != NULL)
21878 {
21879 symbol_set_frag (last_label_seen, frag_now);
21880 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21881 S_SET_SEGMENT (last_label_seen, now_seg);
21882 }
21883
21884 memset (&inst, '\0', sizeof (inst));
21885 int r;
21886 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21887 inst.relocs[r].type = BFD_RELOC_UNUSED;
21888
21889 opcode = opcode_lookup (&p);
21890 if (!opcode)
21891 {
21892 /* It wasn't an instruction, but it might be a register alias of
21893 the form alias .req reg, or a Neon .dn/.qn directive. */
21894 if (! create_register_alias (str, p)
21895 && ! create_neon_reg_alias (str, p))
21896 as_bad (_("bad instruction `%s'"), str);
21897
21898 return;
21899 }
21900
21901 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21902 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21903
21904 /* The value which unconditional instructions should have in place of the
21905 condition field. */
21906 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21907
21908 if (thumb_mode)
21909 {
21910 arm_feature_set variant;
21911
21912 variant = cpu_variant;
21913 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21914 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21915 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21916 /* Check that this instruction is supported for this CPU. */
21917 if (!opcode->tvariant
21918 || (thumb_mode == 1
21919 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21920 {
21921 if (opcode->tencode == do_t_swi)
21922 as_bad (_("SVC is not permitted on this architecture"));
21923 else
21924 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21925 return;
21926 }
21927 if (inst.cond != COND_ALWAYS && !unified_syntax
21928 && opcode->tencode != do_t_branch)
21929 {
21930 as_bad (_("Thumb does not support conditional execution"));
21931 return;
21932 }
21933
21934 /* Two things are addressed here:
21935 1) Implicit require narrow instructions on Thumb-1.
21936 This avoids relaxation accidentally introducing Thumb-2
21937 instructions.
21938 2) Reject wide instructions in non Thumb-2 cores.
21939
21940 Only instructions with narrow and wide variants need to be handled
21941 but selecting all non wide-only instructions is easier. */
21942 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21943 && !t32_insn_ok (variant, opcode))
21944 {
21945 if (inst.size_req == 0)
21946 inst.size_req = 2;
21947 else if (inst.size_req == 4)
21948 {
21949 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21950 as_bad (_("selected processor does not support 32bit wide "
21951 "variant of instruction `%s'"), str);
21952 else
21953 as_bad (_("selected processor does not support `%s' in "
21954 "Thumb-2 mode"), str);
21955 return;
21956 }
21957 }
21958
21959 inst.instruction = opcode->tvalue;
21960
21961 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21962 {
21963 /* Prepare the pred_insn_type for those encodings that don't set
21964 it. */
21965 it_fsm_pre_encode ();
21966
21967 opcode->tencode ();
21968
21969 it_fsm_post_encode ();
21970 }
21971
21972 if (!(inst.error || inst.relax))
21973 {
21974 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21975 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21976 if (inst.size_req && inst.size_req != inst.size)
21977 {
21978 as_bad (_("cannot honor width suffix -- `%s'"), str);
21979 return;
21980 }
21981 }
21982
21983 /* Something has gone badly wrong if we try to relax a fixed size
21984 instruction. */
21985 gas_assert (inst.size_req == 0 || !inst.relax);
21986
21987 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21988 *opcode->tvariant);
21989 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21990 set those bits when Thumb-2 32-bit instructions are seen. The impact
21991 of relaxable instructions will be considered later after we finish all
21992 relaxation. */
21993 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21994 variant = arm_arch_none;
21995 else
21996 variant = cpu_variant;
21997 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21998 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21999 arm_ext_v6t2);
22000
22001 check_neon_suffixes;
22002
22003 if (!inst.error)
22004 {
22005 mapping_state (MAP_THUMB);
22006 }
22007 }
22008 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22009 {
22010 bfd_boolean is_bx;
22011
22012 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22013 is_bx = (opcode->aencode == do_bx);
22014
22015 /* Check that this instruction is supported for this CPU. */
22016 if (!(is_bx && fix_v4bx)
22017 && !(opcode->avariant &&
22018 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22019 {
22020 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22021 return;
22022 }
22023 if (inst.size_req)
22024 {
22025 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22026 return;
22027 }
22028
22029 inst.instruction = opcode->avalue;
22030 if (opcode->tag == OT_unconditionalF)
22031 inst.instruction |= 0xFU << 28;
22032 else
22033 inst.instruction |= inst.cond << 28;
22034 inst.size = INSN_SIZE;
22035 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22036 {
22037 it_fsm_pre_encode ();
22038 opcode->aencode ();
22039 it_fsm_post_encode ();
22040 }
22041 /* Arm mode bx is marked as both v4T and v5 because it's still required
22042 on a hypothetical non-thumb v5 core. */
22043 if (is_bx)
22044 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22045 else
22046 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22047 *opcode->avariant);
22048
22049 check_neon_suffixes;
22050
22051 if (!inst.error)
22052 {
22053 mapping_state (MAP_ARM);
22054 }
22055 }
22056 else
22057 {
22058 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22059 "-- `%s'"), str);
22060 return;
22061 }
22062 output_inst (str);
22063 }
22064
22065 static void
22066 check_pred_blocks_finished (void)
22067 {
22068 #ifdef OBJ_ELF
22069 asection *sect;
22070
22071 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22072 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22073 == MANUAL_PRED_BLOCK)
22074 {
22075 if (now_pred.type == SCALAR_PRED)
22076 as_warn (_("section '%s' finished with an open IT block."),
22077 sect->name);
22078 else
22079 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22080 sect->name);
22081 }
22082 #else
22083 if (now_pred.state == MANUAL_PRED_BLOCK)
22084 {
22085 if (now_pred.type == SCALAR_PRED)
22086 as_warn (_("file finished with an open IT block."));
22087 else
22088 as_warn (_("file finished with an open VPT/VPST block."));
22089 }
22090 #endif
22091 }
22092
22093 /* Various frobbings of labels and their addresses. */
22094
22095 void
22096 arm_start_line_hook (void)
22097 {
22098 last_label_seen = NULL;
22099 }
22100
22101 void
22102 arm_frob_label (symbolS * sym)
22103 {
22104 last_label_seen = sym;
22105
22106 ARM_SET_THUMB (sym, thumb_mode);
22107
22108 #if defined OBJ_COFF || defined OBJ_ELF
22109 ARM_SET_INTERWORK (sym, support_interwork);
22110 #endif
22111
22112 force_automatic_it_block_close ();
22113
22114 /* Note - do not allow local symbols (.Lxxx) to be labelled
22115 as Thumb functions. This is because these labels, whilst
22116 they exist inside Thumb code, are not the entry points for
22117 possible ARM->Thumb calls. Also, these labels can be used
22118 as part of a computed goto or switch statement. eg gcc
22119 can generate code that looks like this:
22120
22121 ldr r2, [pc, .Laaa]
22122 lsl r3, r3, #2
22123 ldr r2, [r3, r2]
22124 mov pc, r2
22125
22126 .Lbbb: .word .Lxxx
22127 .Lccc: .word .Lyyy
22128 ..etc...
22129 .Laaa: .word Lbbb
22130
22131 The first instruction loads the address of the jump table.
22132 The second instruction converts a table index into a byte offset.
22133 The third instruction gets the jump address out of the table.
22134 The fourth instruction performs the jump.
22135
22136 If the address stored at .Laaa is that of a symbol which has the
22137 Thumb_Func bit set, then the linker will arrange for this address
22138 to have the bottom bit set, which in turn would mean that the
22139 address computation performed by the third instruction would end
22140 up with the bottom bit set. Since the ARM is capable of unaligned
22141 word loads, the instruction would then load the incorrect address
22142 out of the jump table, and chaos would ensue. */
22143 if (label_is_thumb_function_name
22144 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22145 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22146 {
22147 /* When the address of a Thumb function is taken the bottom
22148 bit of that address should be set. This will allow
22149 interworking between Arm and Thumb functions to work
22150 correctly. */
22151
22152 THUMB_SET_FUNC (sym, 1);
22153
22154 label_is_thumb_function_name = FALSE;
22155 }
22156
22157 dwarf2_emit_label (sym);
22158 }
22159
22160 bfd_boolean
22161 arm_data_in_code (void)
22162 {
22163 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22164 {
22165 *input_line_pointer = '/';
22166 input_line_pointer += 5;
22167 *input_line_pointer = 0;
22168 return TRUE;
22169 }
22170
22171 return FALSE;
22172 }
22173
22174 char *
22175 arm_canonicalize_symbol_name (char * name)
22176 {
22177 int len;
22178
22179 if (thumb_mode && (len = strlen (name)) > 5
22180 && streq (name + len - 5, "/data"))
22181 *(name + len - 5) = 0;
22182
22183 return name;
22184 }
22185 \f
22186 /* Table of all register names defined by default. The user can
22187 define additional names with .req. Note that all register names
22188 should appear in both upper and lowercase variants. Some registers
22189 also have mixed-case names. */
22190
22191 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22192 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22193 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22194 #define REGSET(p,t) \
22195 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22196 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22197 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22198 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22199 #define REGSETH(p,t) \
22200 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22201 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22202 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22203 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22204 #define REGSET2(p,t) \
22205 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22206 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22207 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22208 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22209 #define SPLRBANK(base,bank,t) \
22210 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22211 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22212 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22213 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22214 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22215 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22216
22217 static const struct reg_entry reg_names[] =
22218 {
22219 /* ARM integer registers. */
22220 REGSET(r, RN), REGSET(R, RN),
22221
22222 /* ATPCS synonyms. */
22223 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22224 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22225 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22226
22227 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22228 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22229 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22230
22231 /* Well-known aliases. */
22232 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22233 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22234
22235 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22236 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22237
22238 /* Defining the new Zero register from ARMv8.1-M. */
22239 REGDEF(zr,15,ZR),
22240 REGDEF(ZR,15,ZR),
22241
22242 /* Coprocessor numbers. */
22243 REGSET(p, CP), REGSET(P, CP),
22244
22245 /* Coprocessor register numbers. The "cr" variants are for backward
22246 compatibility. */
22247 REGSET(c, CN), REGSET(C, CN),
22248 REGSET(cr, CN), REGSET(CR, CN),
22249
22250 /* ARM banked registers. */
22251 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22252 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22253 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22254 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22255 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22256 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22257 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22258
22259 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22260 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22261 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22262 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22263 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22264 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22265 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22266 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22267
22268 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22269 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22270 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22271 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22272 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22273 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22274 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22275 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22276 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22277
22278 /* FPA registers. */
22279 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22280 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22281
22282 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22283 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22284
22285 /* VFP SP registers. */
22286 REGSET(s,VFS), REGSET(S,VFS),
22287 REGSETH(s,VFS), REGSETH(S,VFS),
22288
22289 /* VFP DP Registers. */
22290 REGSET(d,VFD), REGSET(D,VFD),
22291 /* Extra Neon DP registers. */
22292 REGSETH(d,VFD), REGSETH(D,VFD),
22293
22294 /* Neon QP registers. */
22295 REGSET2(q,NQ), REGSET2(Q,NQ),
22296
22297 /* VFP control registers. */
22298 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22299 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22300 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22301 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22302 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22303 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22304 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22305
22306 /* Maverick DSP coprocessor registers. */
22307 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22308 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22309
22310 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22311 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22312 REGDEF(dspsc,0,DSPSC),
22313
22314 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22315 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22316 REGDEF(DSPSC,0,DSPSC),
22317
22318 /* iWMMXt data registers - p0, c0-15. */
22319 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22320
22321 /* iWMMXt control registers - p1, c0-3. */
22322 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22323 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22324 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22325 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22326
22327 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22328 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22329 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22330 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22331 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22332
22333 /* XScale accumulator registers. */
22334 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22335 };
22336 #undef REGDEF
22337 #undef REGNUM
22338 #undef REGSET
22339
22340 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22341 within psr_required_here. */
22342 static const struct asm_psr psrs[] =
22343 {
22344 /* Backward compatibility notation. Note that "all" is no longer
22345 truly all possible PSR bits. */
22346 {"all", PSR_c | PSR_f},
22347 {"flg", PSR_f},
22348 {"ctl", PSR_c},
22349
22350 /* Individual flags. */
22351 {"f", PSR_f},
22352 {"c", PSR_c},
22353 {"x", PSR_x},
22354 {"s", PSR_s},
22355
22356 /* Combinations of flags. */
22357 {"fs", PSR_f | PSR_s},
22358 {"fx", PSR_f | PSR_x},
22359 {"fc", PSR_f | PSR_c},
22360 {"sf", PSR_s | PSR_f},
22361 {"sx", PSR_s | PSR_x},
22362 {"sc", PSR_s | PSR_c},
22363 {"xf", PSR_x | PSR_f},
22364 {"xs", PSR_x | PSR_s},
22365 {"xc", PSR_x | PSR_c},
22366 {"cf", PSR_c | PSR_f},
22367 {"cs", PSR_c | PSR_s},
22368 {"cx", PSR_c | PSR_x},
22369 {"fsx", PSR_f | PSR_s | PSR_x},
22370 {"fsc", PSR_f | PSR_s | PSR_c},
22371 {"fxs", PSR_f | PSR_x | PSR_s},
22372 {"fxc", PSR_f | PSR_x | PSR_c},
22373 {"fcs", PSR_f | PSR_c | PSR_s},
22374 {"fcx", PSR_f | PSR_c | PSR_x},
22375 {"sfx", PSR_s | PSR_f | PSR_x},
22376 {"sfc", PSR_s | PSR_f | PSR_c},
22377 {"sxf", PSR_s | PSR_x | PSR_f},
22378 {"sxc", PSR_s | PSR_x | PSR_c},
22379 {"scf", PSR_s | PSR_c | PSR_f},
22380 {"scx", PSR_s | PSR_c | PSR_x},
22381 {"xfs", PSR_x | PSR_f | PSR_s},
22382 {"xfc", PSR_x | PSR_f | PSR_c},
22383 {"xsf", PSR_x | PSR_s | PSR_f},
22384 {"xsc", PSR_x | PSR_s | PSR_c},
22385 {"xcf", PSR_x | PSR_c | PSR_f},
22386 {"xcs", PSR_x | PSR_c | PSR_s},
22387 {"cfs", PSR_c | PSR_f | PSR_s},
22388 {"cfx", PSR_c | PSR_f | PSR_x},
22389 {"csf", PSR_c | PSR_s | PSR_f},
22390 {"csx", PSR_c | PSR_s | PSR_x},
22391 {"cxf", PSR_c | PSR_x | PSR_f},
22392 {"cxs", PSR_c | PSR_x | PSR_s},
22393 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22394 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22395 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22396 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22397 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22398 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22399 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22400 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22401 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22402 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22403 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22404 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22405 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22406 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22407 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22408 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22409 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22410 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22411 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22412 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22413 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22414 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22415 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22416 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22417 };
22418
22419 /* Table of V7M psr names. */
22420 static const struct asm_psr v7m_psrs[] =
22421 {
22422 {"apsr", 0x0 }, {"APSR", 0x0 },
22423 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22424 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22425 {"psr", 0x3 }, {"PSR", 0x3 },
22426 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22427 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22428 {"epsr", 0x6 }, {"EPSR", 0x6 },
22429 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22430 {"msp", 0x8 }, {"MSP", 0x8 },
22431 {"psp", 0x9 }, {"PSP", 0x9 },
22432 {"msplim", 0xa }, {"MSPLIM", 0xa },
22433 {"psplim", 0xb }, {"PSPLIM", 0xb },
22434 {"primask", 0x10}, {"PRIMASK", 0x10},
22435 {"basepri", 0x11}, {"BASEPRI", 0x11},
22436 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22437 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22438 {"control", 0x14}, {"CONTROL", 0x14},
22439 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22440 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22441 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22442 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22443 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22444 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22445 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22446 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22447 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22448 };
22449
22450 /* Table of all shift-in-operand names. */
22451 static const struct asm_shift_name shift_names [] =
22452 {
22453 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22454 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22455 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22456 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22457 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22458 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22459 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22460 };
22461
22462 /* Table of all explicit relocation names. */
22463 #ifdef OBJ_ELF
22464 static struct reloc_entry reloc_names[] =
22465 {
22466 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22467 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22468 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22469 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22470 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22471 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22472 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22473 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22474 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22475 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22476 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22477 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22478 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22479 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22480 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22481 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22482 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22483 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22484 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22485 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22486 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22487 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22488 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22489 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22490 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22491 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22492 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22493 };
22494 #endif
22495
22496 /* Table of all conditional affixes. */
22497 static const struct asm_cond conds[] =
22498 {
22499 {"eq", 0x0},
22500 {"ne", 0x1},
22501 {"cs", 0x2}, {"hs", 0x2},
22502 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22503 {"mi", 0x4},
22504 {"pl", 0x5},
22505 {"vs", 0x6},
22506 {"vc", 0x7},
22507 {"hi", 0x8},
22508 {"ls", 0x9},
22509 {"ge", 0xa},
22510 {"lt", 0xb},
22511 {"gt", 0xc},
22512 {"le", 0xd},
22513 {"al", 0xe}
22514 };
22515 static const struct asm_cond vconds[] =
22516 {
22517 {"t", 0xf},
22518 {"e", 0x10}
22519 };
22520
22521 #define UL_BARRIER(L,U,CODE,FEAT) \
22522 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22523 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22524
22525 static struct asm_barrier_opt barrier_opt_names[] =
22526 {
22527 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22528 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22529 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22530 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22531 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22532 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22533 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22534 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22535 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22536 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22537 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22538 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22539 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22540 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22541 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22542 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22543 };
22544
22545 #undef UL_BARRIER
22546
22547 /* Table of ARM-format instructions. */
22548
22549 /* Macros for gluing together operand strings. N.B. In all cases
22550 other than OPS0, the trailing OP_stop comes from default
22551 zero-initialization of the unspecified elements of the array. */
22552 #define OPS0() { OP_stop, }
22553 #define OPS1(a) { OP_##a, }
22554 #define OPS2(a,b) { OP_##a,OP_##b, }
22555 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22556 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22557 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22558 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22559
22560 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22561 This is useful when mixing operands for ARM and THUMB, i.e. using the
22562 MIX_ARM_THUMB_OPERANDS macro.
22563 In order to use these macros, prefix the number of operands with _
22564 e.g. _3. */
22565 #define OPS_1(a) { a, }
22566 #define OPS_2(a,b) { a,b, }
22567 #define OPS_3(a,b,c) { a,b,c, }
22568 #define OPS_4(a,b,c,d) { a,b,c,d, }
22569 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22570 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22571
22572 /* These macros abstract out the exact format of the mnemonic table and
22573 save some repeated characters. */
22574
22575 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22576 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22577 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22578 THUMB_VARIANT, do_##ae, do_##te, 0 }
22579
22580 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22581 a T_MNEM_xyz enumerator. */
22582 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22583 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22584 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22585 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22586
22587 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22588 infix after the third character. */
22589 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22590 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22591 THUMB_VARIANT, do_##ae, do_##te, 0 }
22592 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22593 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22594 THUMB_VARIANT, do_##ae, do_##te, 0 }
22595 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22596 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22597 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22598 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22599 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22600 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22601 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22602 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22603
22604 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22605 field is still 0xE. Many of the Thumb variants can be executed
22606 conditionally, so this is checked separately. */
22607 #define TUE(mnem, op, top, nops, ops, ae, te) \
22608 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22609 THUMB_VARIANT, do_##ae, do_##te, 0 }
22610
22611 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22612 Used by mnemonics that have very minimal differences in the encoding for
22613 ARM and Thumb variants and can be handled in a common function. */
22614 #define TUEc(mnem, op, top, nops, ops, en) \
22615 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22616 THUMB_VARIANT, do_##en, do_##en, 0 }
22617
22618 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22619 condition code field. */
22620 #define TUF(mnem, op, top, nops, ops, ae, te) \
22621 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22622 THUMB_VARIANT, do_##ae, do_##te, 0 }
22623
22624 /* ARM-only variants of all the above. */
22625 #define CE(mnem, op, nops, ops, ae) \
22626 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22627
22628 #define C3(mnem, op, nops, ops, ae) \
22629 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22630
22631 /* Thumb-only variants of TCE and TUE. */
22632 #define ToC(mnem, top, nops, ops, te) \
22633 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22634 do_##te, 0 }
22635
22636 #define ToU(mnem, top, nops, ops, te) \
22637 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22638 NULL, do_##te, 0 }
22639
22640 /* T_MNEM_xyz enumerator variants of ToC. */
22641 #define toC(mnem, top, nops, ops, te) \
22642 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22643 do_##te, 0 }
22644
22645 /* T_MNEM_xyz enumerator variants of ToU. */
22646 #define toU(mnem, top, nops, ops, te) \
22647 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22648 NULL, do_##te, 0 }
22649
22650 /* Legacy mnemonics that always have conditional infix after the third
22651 character. */
22652 #define CL(mnem, op, nops, ops, ae) \
22653 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22654 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22655
22656 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22657 #define cCE(mnem, op, nops, ops, ae) \
22658 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22659
22660 /* mov instructions that are shared between coprocessor and MVE. */
22661 #define mcCE(mnem, op, nops, ops, ae) \
22662 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22663
22664 /* Legacy coprocessor instructions where conditional infix and conditional
22665 suffix are ambiguous. For consistency this includes all FPA instructions,
22666 not just the potentially ambiguous ones. */
22667 #define cCL(mnem, op, nops, ops, ae) \
22668 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22669 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22670
22671 /* Coprocessor, takes either a suffix or a position-3 infix
22672 (for an FPA corner case). */
22673 #define C3E(mnem, op, nops, ops, ae) \
22674 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22675 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22676
22677 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22678 { m1 #m2 m3, OPS##nops ops, \
22679 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22680 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22681
22682 #define CM(m1, m2, op, nops, ops, ae) \
22683 xCM_ (m1, , m2, op, nops, ops, ae), \
22684 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22685 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22686 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22687 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22688 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22689 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22690 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22691 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22692 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22693 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22694 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22695 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22696 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22697 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22698 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22699 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22700 xCM_ (m1, le, m2, op, nops, ops, ae), \
22701 xCM_ (m1, al, m2, op, nops, ops, ae)
22702
22703 #define UE(mnem, op, nops, ops, ae) \
22704 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22705
22706 #define UF(mnem, op, nops, ops, ae) \
22707 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22708
22709 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22710 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22711 use the same encoding function for each. */
22712 #define NUF(mnem, op, nops, ops, enc) \
22713 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22714 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22715
22716 /* Neon data processing, version which indirects through neon_enc_tab for
22717 the various overloaded versions of opcodes. */
22718 #define nUF(mnem, op, nops, ops, enc) \
22719 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22720 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22721
22722 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22723 version. */
22724 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22725 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22726 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22727
22728 #define NCE(mnem, op, nops, ops, enc) \
22729 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22730
22731 #define NCEF(mnem, op, nops, ops, enc) \
22732 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22733
22734 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22735 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22736 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22737 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22738
22739 #define nCE(mnem, op, nops, ops, enc) \
22740 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22741
22742 #define nCEF(mnem, op, nops, ops, enc) \
22743 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22744
22745 /* */
22746 #define mCEF(mnem, op, nops, ops, enc) \
22747 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22748 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22749
22750
22751 /* nCEF but for MVE predicated instructions. */
22752 #define mnCEF(mnem, op, nops, ops, enc) \
22753 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22754
22755 /* nCE but for MVE predicated instructions. */
22756 #define mnCE(mnem, op, nops, ops, enc) \
22757 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22758
22759 /* NUF but for potentially MVE predicated instructions. */
22760 #define MNUF(mnem, op, nops, ops, enc) \
22761 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22762 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22763
22764 /* nUF but for potentially MVE predicated instructions. */
22765 #define mnUF(mnem, op, nops, ops, enc) \
22766 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22767 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22768
22769 /* ToC but for potentially MVE predicated instructions. */
22770 #define mToC(mnem, top, nops, ops, te) \
22771 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22772 do_##te, 1 }
22773
22774 /* NCE but for MVE predicated instructions. */
22775 #define MNCE(mnem, op, nops, ops, enc) \
22776 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22777
22778 /* NCEF but for MVE predicated instructions. */
22779 #define MNCEF(mnem, op, nops, ops, enc) \
22780 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22781 #define do_0 0
22782
22783 static const struct asm_opcode insns[] =
22784 {
22785 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22786 #define THUMB_VARIANT & arm_ext_v4t
22787 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22788 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22789 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22790 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22791 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22792 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22793 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22794 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22795 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22796 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22797 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22798 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22799 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22800 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22801 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22802 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22803
22804 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22805 for setting PSR flag bits. They are obsolete in V6 and do not
22806 have Thumb equivalents. */
22807 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22808 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22809 CL("tstp", 110f000, 2, (RR, SH), cmp),
22810 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22811 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22812 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22813 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22814 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22815 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22816
22817 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22818 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22819 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22820 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22821
22822 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22823 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22824 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22825 OP_RRnpc),
22826 OP_ADDRGLDR),ldst, t_ldst),
22827 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22828
22829 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22830 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22831 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22832 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22833 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22834 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22835
22836 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22837 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22838
22839 /* Pseudo ops. */
22840 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22841 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22842 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22843 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22844
22845 /* Thumb-compatibility pseudo ops. */
22846 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22847 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22848 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22849 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22850 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22851 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22852 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22853 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22854 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22855 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22856 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22857 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22858
22859 /* These may simplify to neg. */
22860 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22861 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22862
22863 #undef THUMB_VARIANT
22864 #define THUMB_VARIANT & arm_ext_os
22865
22866 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22867 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22868
22869 #undef THUMB_VARIANT
22870 #define THUMB_VARIANT & arm_ext_v6
22871
22872 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22873
22874 /* V1 instructions with no Thumb analogue prior to V6T2. */
22875 #undef THUMB_VARIANT
22876 #define THUMB_VARIANT & arm_ext_v6t2
22877
22878 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22879 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22880 CL("teqp", 130f000, 2, (RR, SH), cmp),
22881
22882 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22883 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22884 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22885 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22886
22887 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22888 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22889
22890 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22891 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22892
22893 /* V1 instructions with no Thumb analogue at all. */
22894 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22895 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22896
22897 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22898 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22899 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22900 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22901 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22902 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22903 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22904 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22905
22906 #undef ARM_VARIANT
22907 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22908 #undef THUMB_VARIANT
22909 #define THUMB_VARIANT & arm_ext_v4t
22910
22911 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22912 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22913
22914 #undef THUMB_VARIANT
22915 #define THUMB_VARIANT & arm_ext_v6t2
22916
22917 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22918 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22919
22920 /* Generic coprocessor instructions. */
22921 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22922 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22923 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22924 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22925 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22926 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22927 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22928
22929 #undef ARM_VARIANT
22930 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22931
22932 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22933 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22934
22935 #undef ARM_VARIANT
22936 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22937 #undef THUMB_VARIANT
22938 #define THUMB_VARIANT & arm_ext_msr
22939
22940 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22941 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22942
22943 #undef ARM_VARIANT
22944 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22945 #undef THUMB_VARIANT
22946 #define THUMB_VARIANT & arm_ext_v6t2
22947
22948 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22949 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22950 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22951 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22952 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22953 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22954 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22955 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22956
22957 #undef ARM_VARIANT
22958 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22959 #undef THUMB_VARIANT
22960 #define THUMB_VARIANT & arm_ext_v4t
22961
22962 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22963 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22964 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22965 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22966 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22967 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22968
22969 #undef ARM_VARIANT
22970 #define ARM_VARIANT & arm_ext_v4t_5
22971
22972 /* ARM Architecture 4T. */
22973 /* Note: bx (and blx) are required on V5, even if the processor does
22974 not support Thumb. */
22975 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22976
22977 #undef ARM_VARIANT
22978 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22979 #undef THUMB_VARIANT
22980 #define THUMB_VARIANT & arm_ext_v5t
22981
22982 /* Note: blx has 2 variants; the .value coded here is for
22983 BLX(2). Only this variant has conditional execution. */
22984 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22985 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22986
22987 #undef THUMB_VARIANT
22988 #define THUMB_VARIANT & arm_ext_v6t2
22989
22990 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22991 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22992 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22993 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22994 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22995 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22996 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22997 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22998
22999 #undef ARM_VARIANT
23000 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23001 #undef THUMB_VARIANT
23002 #define THUMB_VARIANT & arm_ext_v5exp
23003
23004 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23005 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23006 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23007 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23008
23009 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23010 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23011
23012 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23013 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23014 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23015 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23016
23017 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23018 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23019 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23020 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23021
23022 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23023 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23024
23025 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23026 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23027 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23028 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23029
23030 #undef ARM_VARIANT
23031 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23032 #undef THUMB_VARIANT
23033 #define THUMB_VARIANT & arm_ext_v6t2
23034
23035 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23036 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23037 ldrd, t_ldstd),
23038 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23039 ADDRGLDRS), ldrd, t_ldstd),
23040
23041 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23042 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23043
23044 #undef ARM_VARIANT
23045 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23046
23047 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23048
23049 #undef ARM_VARIANT
23050 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23051 #undef THUMB_VARIANT
23052 #define THUMB_VARIANT & arm_ext_v6
23053
23054 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23055 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23056 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23057 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23058 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23059 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23060 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23061 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23062 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23063 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23064
23065 #undef THUMB_VARIANT
23066 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23067
23068 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23069 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23070 strex, t_strex),
23071 #undef THUMB_VARIANT
23072 #define THUMB_VARIANT & arm_ext_v6t2
23073
23074 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23075 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23076
23077 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23078 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23079
23080 /* ARM V6 not included in V7M. */
23081 #undef THUMB_VARIANT
23082 #define THUMB_VARIANT & arm_ext_v6_notm
23083 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23084 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23085 UF(rfeib, 9900a00, 1, (RRw), rfe),
23086 UF(rfeda, 8100a00, 1, (RRw), rfe),
23087 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23088 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23089 UF(rfefa, 8100a00, 1, (RRw), rfe),
23090 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23091 UF(rfeed, 9900a00, 1, (RRw), rfe),
23092 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23093 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23094 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23095 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23096 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23097 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23098 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23099 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23100 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23101 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23102
23103 /* ARM V6 not included in V7M (eg. integer SIMD). */
23104 #undef THUMB_VARIANT
23105 #define THUMB_VARIANT & arm_ext_v6_dsp
23106 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23107 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23108 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23109 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23110 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23111 /* Old name for QASX. */
23112 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23113 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23114 /* Old name for QSAX. */
23115 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23116 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23117 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23118 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23119 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23120 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23121 /* Old name for SASX. */
23122 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23123 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23124 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23125 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23126 /* Old name for SHASX. */
23127 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23128 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23129 /* Old name for SHSAX. */
23130 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23131 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23132 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23133 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23134 /* Old name for SSAX. */
23135 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23136 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23137 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23138 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23139 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23140 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23141 /* Old name for UASX. */
23142 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23143 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23144 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23145 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23146 /* Old name for UHASX. */
23147 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23148 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23149 /* Old name for UHSAX. */
23150 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23151 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23152 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23153 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23154 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23155 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23156 /* Old name for UQASX. */
23157 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23158 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23159 /* Old name for UQSAX. */
23160 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23161 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23162 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23163 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23164 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23165 /* Old name for USAX. */
23166 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23167 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23168 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23169 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23170 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23171 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23172 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23173 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23174 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23175 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23176 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23177 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23178 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23179 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23180 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23181 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23182 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23183 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23184 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23185 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23186 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23187 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23188 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23189 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23190 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23191 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23192 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23193 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23194 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23195 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23196 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23197 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23198 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23199 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23200
23201 #undef ARM_VARIANT
23202 #define ARM_VARIANT & arm_ext_v6k_v6t2
23203 #undef THUMB_VARIANT
23204 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23205
23206 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23207 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23208 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23209 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23210
23211 #undef THUMB_VARIANT
23212 #define THUMB_VARIANT & arm_ext_v6_notm
23213 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23214 ldrexd, t_ldrexd),
23215 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23216 RRnpcb), strexd, t_strexd),
23217
23218 #undef THUMB_VARIANT
23219 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23220 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23221 rd_rn, rd_rn),
23222 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23223 rd_rn, rd_rn),
23224 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23225 strex, t_strexbh),
23226 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23227 strex, t_strexbh),
23228 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23229
23230 #undef ARM_VARIANT
23231 #define ARM_VARIANT & arm_ext_sec
23232 #undef THUMB_VARIANT
23233 #define THUMB_VARIANT & arm_ext_sec
23234
23235 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23236
23237 #undef ARM_VARIANT
23238 #define ARM_VARIANT & arm_ext_virt
23239 #undef THUMB_VARIANT
23240 #define THUMB_VARIANT & arm_ext_virt
23241
23242 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23243 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23244
23245 #undef ARM_VARIANT
23246 #define ARM_VARIANT & arm_ext_pan
23247 #undef THUMB_VARIANT
23248 #define THUMB_VARIANT & arm_ext_pan
23249
23250 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23251
23252 #undef ARM_VARIANT
23253 #define ARM_VARIANT & arm_ext_v6t2
23254 #undef THUMB_VARIANT
23255 #define THUMB_VARIANT & arm_ext_v6t2
23256
23257 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23258 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23259 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23260 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23261
23262 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23263 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23264
23265 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23266 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23267 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23268 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23269
23270 #undef ARM_VARIANT
23271 #define ARM_VARIANT & arm_ext_v3
23272 #undef THUMB_VARIANT
23273 #define THUMB_VARIANT & arm_ext_v6t2
23274
23275 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23276 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23277 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23278
23279 #undef ARM_VARIANT
23280 #define ARM_VARIANT & arm_ext_v6t2
23281 #undef THUMB_VARIANT
23282 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23283 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23284 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23285
23286 /* Thumb-only instructions. */
23287 #undef ARM_VARIANT
23288 #define ARM_VARIANT NULL
23289 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23290 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23291
23292 /* ARM does not really have an IT instruction, so always allow it.
23293 The opcode is copied from Thumb in order to allow warnings in
23294 -mimplicit-it=[never | arm] modes. */
23295 #undef ARM_VARIANT
23296 #define ARM_VARIANT & arm_ext_v1
23297 #undef THUMB_VARIANT
23298 #define THUMB_VARIANT & arm_ext_v6t2
23299
23300 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23301 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23302 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23303 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23304 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23305 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23306 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23307 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23308 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23309 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23310 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23311 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23312 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23313 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23314 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23315 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23316 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23317 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23318
23319 /* Thumb2 only instructions. */
23320 #undef ARM_VARIANT
23321 #define ARM_VARIANT NULL
23322
23323 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23324 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23325 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23326 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23327 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23328 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23329
23330 /* Hardware division instructions. */
23331 #undef ARM_VARIANT
23332 #define ARM_VARIANT & arm_ext_adiv
23333 #undef THUMB_VARIANT
23334 #define THUMB_VARIANT & arm_ext_div
23335
23336 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23337 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23338
23339 /* ARM V6M/V7 instructions. */
23340 #undef ARM_VARIANT
23341 #define ARM_VARIANT & arm_ext_barrier
23342 #undef THUMB_VARIANT
23343 #define THUMB_VARIANT & arm_ext_barrier
23344
23345 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23346 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23347 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23348
23349 /* ARM V7 instructions. */
23350 #undef ARM_VARIANT
23351 #define ARM_VARIANT & arm_ext_v7
23352 #undef THUMB_VARIANT
23353 #define THUMB_VARIANT & arm_ext_v7
23354
23355 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23356 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23357
23358 #undef ARM_VARIANT
23359 #define ARM_VARIANT & arm_ext_mp
23360 #undef THUMB_VARIANT
23361 #define THUMB_VARIANT & arm_ext_mp
23362
23363 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23364
23365 /* AArchv8 instructions. */
23366 #undef ARM_VARIANT
23367 #define ARM_VARIANT & arm_ext_v8
23368
23369 /* Instructions shared between armv8-a and armv8-m. */
23370 #undef THUMB_VARIANT
23371 #define THUMB_VARIANT & arm_ext_atomics
23372
23373 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23374 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23375 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23376 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23377 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23378 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23379 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23380 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23381 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23382 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23383 stlex, t_stlex),
23384 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23385 stlex, t_stlex),
23386 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23387 stlex, t_stlex),
23388 #undef THUMB_VARIANT
23389 #define THUMB_VARIANT & arm_ext_v8
23390
23391 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23392 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23393 ldrexd, t_ldrexd),
23394 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23395 strexd, t_strexd),
23396
23397 /* Defined in V8 but is in undefined encoding space for earlier
23398 architectures. However earlier architectures are required to treat
23399 this instuction as a semihosting trap as well. Hence while not explicitly
23400 defined as such, it is in fact correct to define the instruction for all
23401 architectures. */
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & arm_ext_v1
23404 #undef ARM_VARIANT
23405 #define ARM_VARIANT & arm_ext_v1
23406 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23407
23408 /* ARMv8 T32 only. */
23409 #undef ARM_VARIANT
23410 #define ARM_VARIANT NULL
23411 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23412 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23413 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23414
23415 /* FP for ARMv8. */
23416 #undef ARM_VARIANT
23417 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23418 #undef THUMB_VARIANT
23419 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23420
23421 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23422 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23423 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23424 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23425 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23426 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23427 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23428 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23429 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23430 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23431 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23432
23433 /* Crypto v1 extensions. */
23434 #undef ARM_VARIANT
23435 #define ARM_VARIANT & fpu_crypto_ext_armv8
23436 #undef THUMB_VARIANT
23437 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23438
23439 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23440 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23441 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23442 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23443 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23444 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23445 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23446 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23447 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23448 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23449 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23450 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23451 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23452 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23453
23454 #undef ARM_VARIANT
23455 #define ARM_VARIANT & crc_ext_armv8
23456 #undef THUMB_VARIANT
23457 #define THUMB_VARIANT & crc_ext_armv8
23458 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23459 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23460 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23461 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23462 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23463 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23464
23465 /* ARMv8.2 RAS extension. */
23466 #undef ARM_VARIANT
23467 #define ARM_VARIANT & arm_ext_ras
23468 #undef THUMB_VARIANT
23469 #define THUMB_VARIANT & arm_ext_ras
23470 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23471
23472 #undef ARM_VARIANT
23473 #define ARM_VARIANT & arm_ext_v8_3
23474 #undef THUMB_VARIANT
23475 #define THUMB_VARIANT & arm_ext_v8_3
23476 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23477
23478 #undef ARM_VARIANT
23479 #define ARM_VARIANT & fpu_neon_ext_dotprod
23480 #undef THUMB_VARIANT
23481 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23482 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23483 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23484
23485 #undef ARM_VARIANT
23486 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23487 #undef THUMB_VARIANT
23488 #define THUMB_VARIANT NULL
23489
23490 cCE("wfs", e200110, 1, (RR), rd),
23491 cCE("rfs", e300110, 1, (RR), rd),
23492 cCE("wfc", e400110, 1, (RR), rd),
23493 cCE("rfc", e500110, 1, (RR), rd),
23494
23495 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23496 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23497 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23498 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23499
23500 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23501 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23502 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23503 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23504
23505 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23506 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23507 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23508 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23509 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23510 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23511 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23512 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23513 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23514 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23515 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23516 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23517
23518 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23519 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23520 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23521 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23522 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23523 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23524 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23525 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23526 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23527 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23528 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23529 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23530
23531 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23532 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23533 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23534 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23535 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23536 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23537 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23538 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23539 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23540 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23541 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23542 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23543
23544 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23545 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23546 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23547 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23548 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23549 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23550 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23551 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23552 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23553 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23554 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23555 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23556
23557 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23558 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23559 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23560 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23561 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23562 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23563 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23564 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23565 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23566 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23567 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23568 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23569
23570 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23571 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23572 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23573 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23574 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23575 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23576 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23577 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23578 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23579 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23580 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23581 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23582
23583 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23584 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23585 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23586 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23587 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23588 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23589 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23590 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23591 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23592 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23593 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23594 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23595
23596 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23597 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23598 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23599 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23600 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23601 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23602 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23603 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23604 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23605 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23606 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23607 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23608
23609 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23610 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23611 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23612 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23613 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23614 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23615 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23616 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23617 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23618 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23619 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23620 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23621
23622 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23623 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23624 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23625 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23626 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23627 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23628 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23629 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23630 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23631 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23632 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23633 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23634
23635 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23636 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23637 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23638 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23639 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23640 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23641 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23642 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23643 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23644 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23645 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23646 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23647
23648 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23649 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23650 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23651 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23652 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23653 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23654 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23655 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23656 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23657 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23658 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23659 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23660
23661 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23662 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23663 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23664 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23665 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23666 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23667 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23668 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23669 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23670 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23671 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23672 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23673
23674 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23675 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23676 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23677 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23678 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23679 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23680 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23681 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23682 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23683 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23684 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23685 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23686
23687 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23688 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23689 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23690 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23691 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23692 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23693 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23694 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23695 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23696 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23697 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23698 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23699
23700 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23701 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23702 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23703 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23704 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23705 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23706 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23707 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23708 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23709 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23710 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23711 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23712
23713 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23714 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23715 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23716 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23717 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23718 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23719 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23720 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23721 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23722 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23723 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23724 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23725
23726 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23727 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23728 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23729 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23730 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23731 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23732 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23733 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23734 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23735 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23736 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23737 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23738
23739 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23740 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23741 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23742 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23743 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23744 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23745 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23746 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23747 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23748 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23749 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23750 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23751
23752 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23753 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23754 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23755 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23756 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23757 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23758 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23759 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23760 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23761 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23762 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23763 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23764
23765 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23766 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23767 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23768 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23769 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23770 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23771 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23772 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23773 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23774 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23775 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23776 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23777
23778 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23779 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23780 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23781 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23782 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23783 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23784 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23785 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23786 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23787 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23788 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23789 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23790
23791 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23792 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23793 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23794 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23795 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23796 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23797 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23798 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23799 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23800 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23801 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23802 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23803
23804 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23805 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23806 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23807 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23808 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23809 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23810 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23811 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23812 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23813 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23814 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23815 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23816
23817 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23818 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23819 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23820 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23821 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23822 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23823 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23824 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23825 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23826 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23827 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23828 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23829
23830 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23831 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23832 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23833 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23834 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23835 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23836 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23837 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23838 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23839 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23840 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23841 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23842
23843 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23844 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23845 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23846 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23847 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23855
23856 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23857 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23858 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23859 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23860 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23868
23869 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23870 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23871 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23872 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23873 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23881
23882 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23883 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23884 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23885 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23886
23887 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23888 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23889 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23890 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23891 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23892 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23893 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23894 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23895 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23896 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23897 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23898 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23899
23900 /* The implementation of the FIX instruction is broken on some
23901 assemblers, in that it accepts a precision specifier as well as a
23902 rounding specifier, despite the fact that this is meaningless.
23903 To be more compatible, we accept it as well, though of course it
23904 does not set any bits. */
23905 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23906 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23907 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23908 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23909 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23910 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23911 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23912 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23913 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23914 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23915 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23916 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23917 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23918
23919 /* Instructions that were new with the real FPA, call them V2. */
23920 #undef ARM_VARIANT
23921 #define ARM_VARIANT & fpu_fpa_ext_v2
23922
23923 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23924 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23925 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23926 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23927 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23928 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23929
23930 #undef ARM_VARIANT
23931 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23932
23933 /* Moves and type conversions. */
23934 cCE("fmstat", ef1fa10, 0, (), noargs),
23935 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23936 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23937 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23938 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23939 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23940 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23941 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23942 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23943 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23944 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23945
23946 /* Memory operations. */
23947 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23948 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23949 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23950 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23951 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23952 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23953 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23954 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23955 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23956 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23957 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23958 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23959 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23960 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23961 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23962 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23963 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23964 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23965
23966 /* Monadic operations. */
23967 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23968 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23969 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23970
23971 /* Dyadic operations. */
23972 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23973 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23974 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23975 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23976 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23977 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23978 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23979 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23980 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23981
23982 /* Comparisons. */
23983 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23984 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23985 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23986 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23987
23988 /* Double precision load/store are still present on single precision
23989 implementations. */
23990 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23991 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23992 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23993 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23994 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23995 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23996 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23997 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23998 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23999 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24000
24001 #undef ARM_VARIANT
24002 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24003
24004 /* Moves and type conversions. */
24005 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24006 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24007 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24008 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24009 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24010 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24011 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24012 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24013 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24014 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24015 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24016 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24017
24018 /* Monadic operations. */
24019 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24020 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24021 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24022
24023 /* Dyadic operations. */
24024 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24025 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24026 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24027 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24028 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24029 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24030 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24031 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24032 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24033
24034 /* Comparisons. */
24035 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24036 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24037 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24038 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24039
24040 /* Instructions which may belong to either the Neon or VFP instruction sets.
24041 Individual encoder functions perform additional architecture checks. */
24042 #undef ARM_VARIANT
24043 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24044 #undef THUMB_VARIANT
24045 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24046
24047 /* These mnemonics are unique to VFP. */
24048 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24049 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24050 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24051 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24052 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24053 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24054 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24055 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24056
24057 /* Mnemonics shared by Neon and VFP. */
24058 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24059
24060 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24061 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24062 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24063 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24064 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24065 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24066
24067 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24068 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24069 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24070 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24071
24072
24073 /* NOTE: All VMOV encoding is special-cased! */
24074 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24075
24076 #undef THUMB_VARIANT
24077 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24078 by different feature bits. Since we are setting the Thumb guard, we can
24079 require Thumb-1 which makes it a nop guard and set the right feature bit in
24080 do_vldr_vstr (). */
24081 #define THUMB_VARIANT & arm_ext_v4t
24082 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24083 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24084
24085 #undef ARM_VARIANT
24086 #define ARM_VARIANT & arm_ext_fp16
24087 #undef THUMB_VARIANT
24088 #define THUMB_VARIANT & arm_ext_fp16
24089 /* New instructions added from v8.2, allowing the extraction and insertion of
24090 the upper 16 bits of a 32-bit vector register. */
24091 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24092 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24093
24094 /* New backported fma/fms instructions optional in v8.2. */
24095 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24096 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24097
24098 #undef THUMB_VARIANT
24099 #define THUMB_VARIANT & fpu_neon_ext_v1
24100 #undef ARM_VARIANT
24101 #define ARM_VARIANT & fpu_neon_ext_v1
24102
24103 /* Data processing with three registers of the same length. */
24104 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24105 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24106 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24107 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24108 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24109 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24110 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24111 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24112 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24113 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
24114 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24115 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
24116 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24117 /* If not immediate, fall back to neon_dyadic_i64_su.
24118 shl_imm should accept I8 I16 I32 I64,
24119 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24120 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24121 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24122 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24123 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
24124 /* Logic ops, types optional & ignored. */
24125 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24126 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24127 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24128 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24129 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24130 /* Bitfield ops, untyped. */
24131 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24132 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24133 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24134 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24135 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24136 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24137 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24138 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24139 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24140 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24141 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24142 back to neon_dyadic_if_su. */
24143 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24144 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24145 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24146 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24147 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24148 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24149 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24150 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24151 /* Comparison. Type I8 I16 I32 F32. */
24152 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24153 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24154 /* As above, D registers only. */
24155 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24156 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24157 /* Int and float variants, signedness unimportant. */
24158 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24159 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24160 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24161 /* Add/sub take types I8 I16 I32 I64 F32. */
24162 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24163 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24164 /* vtst takes sizes 8, 16, 32. */
24165 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24166 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24167 /* VMUL takes I8 I16 I32 F32 P8. */
24168 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24169 /* VQD{R}MULH takes S16 S32. */
24170 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24171 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24172 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24173 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24174 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24175 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24176 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24177 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24178 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24179 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24180 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24181 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24182 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24183 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24184 /* ARM v8.1 extension. */
24185 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24186 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24187 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24188
24189 /* Two address, int/float. Types S8 S16 S32 F32. */
24190 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24191 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24192
24193 /* Data processing with two registers and a shift amount. */
24194 /* Right shifts, and variants with rounding.
24195 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24196 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24197 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24198 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24199 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24200 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24201 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24202 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24203 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24204 /* Shift and insert. Sizes accepted 8 16 32 64. */
24205 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24206 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24207 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24208 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24209 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24210 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24211 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24212 /* Right shift immediate, saturating & narrowing, with rounding variants.
24213 Types accepted S16 S32 S64 U16 U32 U64. */
24214 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24215 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24216 /* As above, unsigned. Types accepted S16 S32 S64. */
24217 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24218 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24219 /* Right shift narrowing. Types accepted I16 I32 I64. */
24220 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24221 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24222 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24223 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24224 /* CVT with optional immediate for fixed-point variant. */
24225 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24226
24227 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24228
24229 /* Data processing, three registers of different lengths. */
24230 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24231 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24232 /* If not scalar, fall back to neon_dyadic_long.
24233 Vector types as above, scalar types S16 S32 U16 U32. */
24234 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24235 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24236 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24237 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24238 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24239 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24240 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24241 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24242 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24243 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24244 /* Saturating doubling multiplies. Types S16 S32. */
24245 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24246 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24247 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24248 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24249 S16 S32 U16 U32. */
24250 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24251
24252 /* Extract. Size 8. */
24253 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24254 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24255
24256 /* Two registers, miscellaneous. */
24257 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24258 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24259 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24260 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24261 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24262 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24263 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24264 /* Vector replicate. Sizes 8 16 32. */
24265 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24266 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24267 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24268 /* VMOVN. Types I16 I32 I64. */
24269 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24270 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24271 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24272 /* VQMOVUN. Types S16 S32 S64. */
24273 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24274 /* VZIP / VUZP. Sizes 8 16 32. */
24275 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24276 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24277 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24278 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24279 /* VQABS / VQNEG. Types S8 S16 S32. */
24280 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24281 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24282 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24283 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24284 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24285 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24286 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24287 /* Reciprocal estimates. Types U32 F16 F32. */
24288 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24289 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24290 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24291 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24292 /* VCLS. Types S8 S16 S32. */
24293 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24294 /* VCLZ. Types I8 I16 I32. */
24295 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24296 /* VCNT. Size 8. */
24297 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24298 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24299 /* Two address, untyped. */
24300 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24301 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24302 /* VTRN. Sizes 8 16 32. */
24303 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24304 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24305
24306 /* Table lookup. Size 8. */
24307 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24308 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24309
24310 #undef THUMB_VARIANT
24311 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24312 #undef ARM_VARIANT
24313 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24314
24315 /* Neon element/structure load/store. */
24316 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24317 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24318 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24319 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24320 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24321 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24322 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24323 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24324
24325 #undef THUMB_VARIANT
24326 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24327 #undef ARM_VARIANT
24328 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24329 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24330 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24331 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24332 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24333 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24334 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24335 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24336 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24337 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24338
24339 #undef THUMB_VARIANT
24340 #define THUMB_VARIANT & fpu_vfp_ext_v3
24341 #undef ARM_VARIANT
24342 #define ARM_VARIANT & fpu_vfp_ext_v3
24343
24344 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24345 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24346 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24347 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24348 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24349 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24350 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24351 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24352 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24353
24354 #undef ARM_VARIANT
24355 #define ARM_VARIANT & fpu_vfp_ext_fma
24356 #undef THUMB_VARIANT
24357 #define THUMB_VARIANT & fpu_vfp_ext_fma
24358 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24359 VFP FMA variant; NEON and VFP FMA always includes the NEON
24360 FMA instructions. */
24361 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24362 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24363
24364 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24365 the v form should always be used. */
24366 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24367 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24368 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24369 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24370 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24371 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24372
24373 #undef THUMB_VARIANT
24374 #undef ARM_VARIANT
24375 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24376
24377 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24378 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24379 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24380 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24381 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24382 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24383 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24384 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24385
24386 #undef ARM_VARIANT
24387 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24388
24389 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24390 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24391 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24392 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24393 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24394 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24395 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24396 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24397 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24398 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24399 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24400 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24401 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24402 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24403 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24404 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24405 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24406 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24407 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24408 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24409 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24410 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24411 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24412 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24413 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24414 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24415 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24416 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24417 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24418 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24419 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24420 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24421 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24422 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24423 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24424 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24425 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24426 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24427 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24428 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24429 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24430 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24431 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24432 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24433 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24434 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24435 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24436 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24437 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24438 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24439 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24440 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24441 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24442 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24443 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24444 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24445 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24446 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24447 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24448 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24449 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24450 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24451 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24452 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24453 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24454 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24455 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24456 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24457 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24458 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24459 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24460 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24461 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24462 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24463 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24464 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24465 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24466 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24467 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24468 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24469 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24470 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24471 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24472 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24473 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24474 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24475 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24476 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24477 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24478 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24479 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24480 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24481 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24482 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24483 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24484 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24485 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24486 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24487 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24488 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24489 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24490 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24491 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24492 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24493 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24494 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24495 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24496 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24497 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24498 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24499 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24500 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24501 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24502 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24503 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24504 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24505 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24506 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24507 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24508 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24509 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24510 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24511 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24512 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24513 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24514 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24515 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24516 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24517 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24518 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24519 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24520 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24521 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24522 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24523 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24524 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24525 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24526 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24527 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24528 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24529 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24530 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24531 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24532 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24533 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24534 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24535 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24536 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24537 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24538 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24539 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24540 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24541 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24542 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24543 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24544 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24545 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24546 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24547 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24548 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24549 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24550 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24551
24552 #undef ARM_VARIANT
24553 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24554
24555 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24556 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24557 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24558 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24559 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24560 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24561 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24562 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24566 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24567 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24568 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24569 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24570 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24571 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24572 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24573 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24574 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24575 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24576 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24577 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24578 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24579 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24580 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24581 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24582 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24583 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24584 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24585 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24586 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24587 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24588 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24589 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24599 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24600 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24601 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24602 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24603 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24604 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24608 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24609 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24610 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24611 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24612
24613 #undef ARM_VARIANT
24614 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24615
24616 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24617 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24618 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24619 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24620 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24621 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24622 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24623 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24624 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24625 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24626 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24627 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24628 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24629 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24630 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24631 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24632 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24633 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24634 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24635 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24636 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24637 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24638 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24639 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24640 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24641 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24642 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24643 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24644 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24645 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24646 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24647 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24648 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24649 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24650 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24651 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24652 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24653 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24654 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24655 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24656 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24657 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24658 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24659 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24660 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24661 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24662 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24663 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24664 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24665 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24666 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24667 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24668 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24669 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24670 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24671 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24672 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24673 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24674 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24675 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24676 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24677 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24678 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24679 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24680 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24681 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24682 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24683 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24684 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24685 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24686 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24687 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24688 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24689 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24690 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24691 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24692
24693 /* ARMv8.5-A instructions. */
24694 #undef ARM_VARIANT
24695 #define ARM_VARIANT & arm_ext_sb
24696 #undef THUMB_VARIANT
24697 #define THUMB_VARIANT & arm_ext_sb
24698 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24699
24700 #undef ARM_VARIANT
24701 #define ARM_VARIANT & arm_ext_predres
24702 #undef THUMB_VARIANT
24703 #define THUMB_VARIANT & arm_ext_predres
24704 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24705 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24706 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24707
24708 /* ARMv8-M instructions. */
24709 #undef ARM_VARIANT
24710 #define ARM_VARIANT NULL
24711 #undef THUMB_VARIANT
24712 #define THUMB_VARIANT & arm_ext_v8m
24713 ToU("sg", e97fe97f, 0, (), noargs),
24714 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24715 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24716 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24717 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24718 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24719 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24720
24721 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24722 instructions behave as nop if no VFP is present. */
24723 #undef THUMB_VARIANT
24724 #define THUMB_VARIANT & arm_ext_v8m_main
24725 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24726 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24727
24728 /* Armv8.1-M Mainline instructions. */
24729 #undef THUMB_VARIANT
24730 #define THUMB_VARIANT & arm_ext_v8_1m_main
24731 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24732 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24733 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24734 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24735 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24736
24737 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24738 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24739 toU("le", _le, 2, (oLR, EXP), t_loloop),
24740
24741 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24742 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24743
24744 #undef THUMB_VARIANT
24745 #define THUMB_VARIANT & mve_ext
24746
24747 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24748 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24749 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24750 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24751 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24752 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24753 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24754 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24755 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24756 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24757 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24758 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24759 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24760 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24761 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24762
24763 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24764 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24765 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24766 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24767 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24768 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24769 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24770 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24771 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24772 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24773 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24774 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24775 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24776 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24777 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24778
24779 /* MVE and MVE FP only. */
24780 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24781 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24782 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24783 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24784 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24785 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24786 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24787 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24788 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24789 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24790 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24791 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24792 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24793 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24794 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24795 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24796 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24797
24798 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24799 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24800 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24801 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24802 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24803 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24804 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24805 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24806 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24807 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24808 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24809 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24810 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24811 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24812 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24813 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24814 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24815 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24816 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24817 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24818
24819 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24820 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24821 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24822 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24823 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24824 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24825 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24826 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24827 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24828 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24829 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24830 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24831 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24832 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24833 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24834 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24835 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24836
24837 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24838 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24839 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24840 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24841 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24842 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24843 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24844 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24845 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24846 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24847 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24848 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24849 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24850 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24851 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24852 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24853 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24854 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24855 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24856 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24857
24858 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24859 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24860 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24861 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24862 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
24863
24864 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24865 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24866 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24867 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24868 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24869 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24870 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24871 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24872 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24873 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24874 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24875 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24876 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24877
24878 #undef THUMB_VARIANT
24879 #define THUMB_VARIANT & mve_fp_ext
24880 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24881 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24882 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24883 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24884 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24885 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24886 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24887 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24888
24889 #undef ARM_VARIANT
24890 #define ARM_VARIANT & fpu_vfp_ext_v1
24891 #undef THUMB_VARIANT
24892 #define THUMB_VARIANT & arm_ext_v6t2
24893 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24894 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
24895
24896 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24897
24898 #undef ARM_VARIANT
24899 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24900
24901 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24902 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24903 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24904 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24905
24906 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24907 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24908 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24909
24910 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24911 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24912
24913 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24914 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24915
24916 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24917 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24918
24919 #undef ARM_VARIANT
24920 #define ARM_VARIANT & fpu_vfp_ext_v2
24921
24922 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24923 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24924 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24925 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24926
24927 #undef ARM_VARIANT
24928 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24929 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24930 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24931 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24932 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24933 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24934 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24935
24936 #undef ARM_VARIANT
24937 #define ARM_VARIANT & fpu_neon_ext_v1
24938 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24939 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24940 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24941 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24942 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24943 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24944 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24945 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24946 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24947 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24948 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24949 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24950 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24951 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24952 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24953 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24954 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24955 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24956 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24957 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
24958 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
24959 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
24960 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
24961 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
24962 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
24963
24964 #undef ARM_VARIANT
24965 #define ARM_VARIANT & arm_ext_v8_3
24966 #undef THUMB_VARIANT
24967 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24968 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24969 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24970 };
24971 #undef ARM_VARIANT
24972 #undef THUMB_VARIANT
24973 #undef TCE
24974 #undef TUE
24975 #undef TUF
24976 #undef TCC
24977 #undef cCE
24978 #undef cCL
24979 #undef C3E
24980 #undef C3
24981 #undef CE
24982 #undef CM
24983 #undef CL
24984 #undef UE
24985 #undef UF
24986 #undef UT
24987 #undef NUF
24988 #undef nUF
24989 #undef NCE
24990 #undef nCE
24991 #undef OPS0
24992 #undef OPS1
24993 #undef OPS2
24994 #undef OPS3
24995 #undef OPS4
24996 #undef OPS5
24997 #undef OPS6
24998 #undef do_0
24999 #undef ToC
25000 #undef toC
25001 #undef ToU
25002 #undef toU
25003 \f
25004 /* MD interface: bits in the object file. */
25005
25006 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25007 for use in the a.out file, and stores them in the array pointed to by buf.
25008 This knows about the endian-ness of the target machine and does
25009 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25010 2 (short) and 4 (long) Floating numbers are put out as a series of
25011 LITTLENUMS (shorts, here at least). */
25012
25013 void
25014 md_number_to_chars (char * buf, valueT val, int n)
25015 {
25016 if (target_big_endian)
25017 number_to_chars_bigendian (buf, val, n);
25018 else
25019 number_to_chars_littleendian (buf, val, n);
25020 }
25021
25022 static valueT
25023 md_chars_to_number (char * buf, int n)
25024 {
25025 valueT result = 0;
25026 unsigned char * where = (unsigned char *) buf;
25027
25028 if (target_big_endian)
25029 {
25030 while (n--)
25031 {
25032 result <<= 8;
25033 result |= (*where++ & 255);
25034 }
25035 }
25036 else
25037 {
25038 while (n--)
25039 {
25040 result <<= 8;
25041 result |= (where[n] & 255);
25042 }
25043 }
25044
25045 return result;
25046 }
25047
25048 /* MD interface: Sections. */
25049
25050 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25051 that an rs_machine_dependent frag may reach. */
25052
25053 unsigned int
25054 arm_frag_max_var (fragS *fragp)
25055 {
25056 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25057 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25058
25059 Note that we generate relaxable instructions even for cases that don't
25060 really need it, like an immediate that's a trivial constant. So we're
25061 overestimating the instruction size for some of those cases. Rather
25062 than putting more intelligence here, it would probably be better to
25063 avoid generating a relaxation frag in the first place when it can be
25064 determined up front that a short instruction will suffice. */
25065
25066 gas_assert (fragp->fr_type == rs_machine_dependent);
25067 return INSN_SIZE;
25068 }
25069
25070 /* Estimate the size of a frag before relaxing. Assume everything fits in
25071 2 bytes. */
25072
25073 int
25074 md_estimate_size_before_relax (fragS * fragp,
25075 segT segtype ATTRIBUTE_UNUSED)
25076 {
25077 fragp->fr_var = 2;
25078 return 2;
25079 }
25080
25081 /* Convert a machine dependent frag. */
25082
25083 void
25084 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25085 {
25086 unsigned long insn;
25087 unsigned long old_op;
25088 char *buf;
25089 expressionS exp;
25090 fixS *fixp;
25091 int reloc_type;
25092 int pc_rel;
25093 int opcode;
25094
25095 buf = fragp->fr_literal + fragp->fr_fix;
25096
25097 old_op = bfd_get_16(abfd, buf);
25098 if (fragp->fr_symbol)
25099 {
25100 exp.X_op = O_symbol;
25101 exp.X_add_symbol = fragp->fr_symbol;
25102 }
25103 else
25104 {
25105 exp.X_op = O_constant;
25106 }
25107 exp.X_add_number = fragp->fr_offset;
25108 opcode = fragp->fr_subtype;
25109 switch (opcode)
25110 {
25111 case T_MNEM_ldr_pc:
25112 case T_MNEM_ldr_pc2:
25113 case T_MNEM_ldr_sp:
25114 case T_MNEM_str_sp:
25115 case T_MNEM_ldr:
25116 case T_MNEM_ldrb:
25117 case T_MNEM_ldrh:
25118 case T_MNEM_str:
25119 case T_MNEM_strb:
25120 case T_MNEM_strh:
25121 if (fragp->fr_var == 4)
25122 {
25123 insn = THUMB_OP32 (opcode);
25124 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25125 {
25126 insn |= (old_op & 0x700) << 4;
25127 }
25128 else
25129 {
25130 insn |= (old_op & 7) << 12;
25131 insn |= (old_op & 0x38) << 13;
25132 }
25133 insn |= 0x00000c00;
25134 put_thumb32_insn (buf, insn);
25135 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25136 }
25137 else
25138 {
25139 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25140 }
25141 pc_rel = (opcode == T_MNEM_ldr_pc2);
25142 break;
25143 case T_MNEM_adr:
25144 if (fragp->fr_var == 4)
25145 {
25146 insn = THUMB_OP32 (opcode);
25147 insn |= (old_op & 0xf0) << 4;
25148 put_thumb32_insn (buf, insn);
25149 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25150 }
25151 else
25152 {
25153 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25154 exp.X_add_number -= 4;
25155 }
25156 pc_rel = 1;
25157 break;
25158 case T_MNEM_mov:
25159 case T_MNEM_movs:
25160 case T_MNEM_cmp:
25161 case T_MNEM_cmn:
25162 if (fragp->fr_var == 4)
25163 {
25164 int r0off = (opcode == T_MNEM_mov
25165 || opcode == T_MNEM_movs) ? 0 : 8;
25166 insn = THUMB_OP32 (opcode);
25167 insn = (insn & 0xe1ffffff) | 0x10000000;
25168 insn |= (old_op & 0x700) << r0off;
25169 put_thumb32_insn (buf, insn);
25170 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25171 }
25172 else
25173 {
25174 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25175 }
25176 pc_rel = 0;
25177 break;
25178 case T_MNEM_b:
25179 if (fragp->fr_var == 4)
25180 {
25181 insn = THUMB_OP32(opcode);
25182 put_thumb32_insn (buf, insn);
25183 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25184 }
25185 else
25186 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25187 pc_rel = 1;
25188 break;
25189 case T_MNEM_bcond:
25190 if (fragp->fr_var == 4)
25191 {
25192 insn = THUMB_OP32(opcode);
25193 insn |= (old_op & 0xf00) << 14;
25194 put_thumb32_insn (buf, insn);
25195 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25196 }
25197 else
25198 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25199 pc_rel = 1;
25200 break;
25201 case T_MNEM_add_sp:
25202 case T_MNEM_add_pc:
25203 case T_MNEM_inc_sp:
25204 case T_MNEM_dec_sp:
25205 if (fragp->fr_var == 4)
25206 {
25207 /* ??? Choose between add and addw. */
25208 insn = THUMB_OP32 (opcode);
25209 insn |= (old_op & 0xf0) << 4;
25210 put_thumb32_insn (buf, insn);
25211 if (opcode == T_MNEM_add_pc)
25212 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25213 else
25214 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25215 }
25216 else
25217 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25218 pc_rel = 0;
25219 break;
25220
25221 case T_MNEM_addi:
25222 case T_MNEM_addis:
25223 case T_MNEM_subi:
25224 case T_MNEM_subis:
25225 if (fragp->fr_var == 4)
25226 {
25227 insn = THUMB_OP32 (opcode);
25228 insn |= (old_op & 0xf0) << 4;
25229 insn |= (old_op & 0xf) << 16;
25230 put_thumb32_insn (buf, insn);
25231 if (insn & (1 << 20))
25232 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25233 else
25234 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25235 }
25236 else
25237 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25238 pc_rel = 0;
25239 break;
25240 default:
25241 abort ();
25242 }
25243 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25244 (enum bfd_reloc_code_real) reloc_type);
25245 fixp->fx_file = fragp->fr_file;
25246 fixp->fx_line = fragp->fr_line;
25247 fragp->fr_fix += fragp->fr_var;
25248
25249 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25250 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25251 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25252 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25253 }
25254
25255 /* Return the size of a relaxable immediate operand instruction.
25256 SHIFT and SIZE specify the form of the allowable immediate. */
25257 static int
25258 relax_immediate (fragS *fragp, int size, int shift)
25259 {
25260 offsetT offset;
25261 offsetT mask;
25262 offsetT low;
25263
25264 /* ??? Should be able to do better than this. */
25265 if (fragp->fr_symbol)
25266 return 4;
25267
25268 low = (1 << shift) - 1;
25269 mask = (1 << (shift + size)) - (1 << shift);
25270 offset = fragp->fr_offset;
25271 /* Force misaligned offsets to 32-bit variant. */
25272 if (offset & low)
25273 return 4;
25274 if (offset & ~mask)
25275 return 4;
25276 return 2;
25277 }
25278
25279 /* Get the address of a symbol during relaxation. */
25280 static addressT
25281 relaxed_symbol_addr (fragS *fragp, long stretch)
25282 {
25283 fragS *sym_frag;
25284 addressT addr;
25285 symbolS *sym;
25286
25287 sym = fragp->fr_symbol;
25288 sym_frag = symbol_get_frag (sym);
25289 know (S_GET_SEGMENT (sym) != absolute_section
25290 || sym_frag == &zero_address_frag);
25291 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25292
25293 /* If frag has yet to be reached on this pass, assume it will
25294 move by STRETCH just as we did. If this is not so, it will
25295 be because some frag between grows, and that will force
25296 another pass. */
25297
25298 if (stretch != 0
25299 && sym_frag->relax_marker != fragp->relax_marker)
25300 {
25301 fragS *f;
25302
25303 /* Adjust stretch for any alignment frag. Note that if have
25304 been expanding the earlier code, the symbol may be
25305 defined in what appears to be an earlier frag. FIXME:
25306 This doesn't handle the fr_subtype field, which specifies
25307 a maximum number of bytes to skip when doing an
25308 alignment. */
25309 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25310 {
25311 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25312 {
25313 if (stretch < 0)
25314 stretch = - ((- stretch)
25315 & ~ ((1 << (int) f->fr_offset) - 1));
25316 else
25317 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25318 if (stretch == 0)
25319 break;
25320 }
25321 }
25322 if (f != NULL)
25323 addr += stretch;
25324 }
25325
25326 return addr;
25327 }
25328
25329 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25330 load. */
25331 static int
25332 relax_adr (fragS *fragp, asection *sec, long stretch)
25333 {
25334 addressT addr;
25335 offsetT val;
25336
25337 /* Assume worst case for symbols not known to be in the same section. */
25338 if (fragp->fr_symbol == NULL
25339 || !S_IS_DEFINED (fragp->fr_symbol)
25340 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25341 || S_IS_WEAK (fragp->fr_symbol))
25342 return 4;
25343
25344 val = relaxed_symbol_addr (fragp, stretch);
25345 addr = fragp->fr_address + fragp->fr_fix;
25346 addr = (addr + 4) & ~3;
25347 /* Force misaligned targets to 32-bit variant. */
25348 if (val & 3)
25349 return 4;
25350 val -= addr;
25351 if (val < 0 || val > 1020)
25352 return 4;
25353 return 2;
25354 }
25355
25356 /* Return the size of a relaxable add/sub immediate instruction. */
25357 static int
25358 relax_addsub (fragS *fragp, asection *sec)
25359 {
25360 char *buf;
25361 int op;
25362
25363 buf = fragp->fr_literal + fragp->fr_fix;
25364 op = bfd_get_16(sec->owner, buf);
25365 if ((op & 0xf) == ((op >> 4) & 0xf))
25366 return relax_immediate (fragp, 8, 0);
25367 else
25368 return relax_immediate (fragp, 3, 0);
25369 }
25370
25371 /* Return TRUE iff the definition of symbol S could be pre-empted
25372 (overridden) at link or load time. */
25373 static bfd_boolean
25374 symbol_preemptible (symbolS *s)
25375 {
25376 /* Weak symbols can always be pre-empted. */
25377 if (S_IS_WEAK (s))
25378 return TRUE;
25379
25380 /* Non-global symbols cannot be pre-empted. */
25381 if (! S_IS_EXTERNAL (s))
25382 return FALSE;
25383
25384 #ifdef OBJ_ELF
25385 /* In ELF, a global symbol can be marked protected, or private. In that
25386 case it can't be pre-empted (other definitions in the same link unit
25387 would violate the ODR). */
25388 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25389 return FALSE;
25390 #endif
25391
25392 /* Other global symbols might be pre-empted. */
25393 return TRUE;
25394 }
25395
25396 /* Return the size of a relaxable branch instruction. BITS is the
25397 size of the offset field in the narrow instruction. */
25398
25399 static int
25400 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25401 {
25402 addressT addr;
25403 offsetT val;
25404 offsetT limit;
25405
25406 /* Assume worst case for symbols not known to be in the same section. */
25407 if (!S_IS_DEFINED (fragp->fr_symbol)
25408 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25409 || S_IS_WEAK (fragp->fr_symbol))
25410 return 4;
25411
25412 #ifdef OBJ_ELF
25413 /* A branch to a function in ARM state will require interworking. */
25414 if (S_IS_DEFINED (fragp->fr_symbol)
25415 && ARM_IS_FUNC (fragp->fr_symbol))
25416 return 4;
25417 #endif
25418
25419 if (symbol_preemptible (fragp->fr_symbol))
25420 return 4;
25421
25422 val = relaxed_symbol_addr (fragp, stretch);
25423 addr = fragp->fr_address + fragp->fr_fix + 4;
25424 val -= addr;
25425
25426 /* Offset is a signed value *2 */
25427 limit = 1 << bits;
25428 if (val >= limit || val < -limit)
25429 return 4;
25430 return 2;
25431 }
25432
25433
25434 /* Relax a machine dependent frag. This returns the amount by which
25435 the current size of the frag should change. */
25436
25437 int
25438 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25439 {
25440 int oldsize;
25441 int newsize;
25442
25443 oldsize = fragp->fr_var;
25444 switch (fragp->fr_subtype)
25445 {
25446 case T_MNEM_ldr_pc2:
25447 newsize = relax_adr (fragp, sec, stretch);
25448 break;
25449 case T_MNEM_ldr_pc:
25450 case T_MNEM_ldr_sp:
25451 case T_MNEM_str_sp:
25452 newsize = relax_immediate (fragp, 8, 2);
25453 break;
25454 case T_MNEM_ldr:
25455 case T_MNEM_str:
25456 newsize = relax_immediate (fragp, 5, 2);
25457 break;
25458 case T_MNEM_ldrh:
25459 case T_MNEM_strh:
25460 newsize = relax_immediate (fragp, 5, 1);
25461 break;
25462 case T_MNEM_ldrb:
25463 case T_MNEM_strb:
25464 newsize = relax_immediate (fragp, 5, 0);
25465 break;
25466 case T_MNEM_adr:
25467 newsize = relax_adr (fragp, sec, stretch);
25468 break;
25469 case T_MNEM_mov:
25470 case T_MNEM_movs:
25471 case T_MNEM_cmp:
25472 case T_MNEM_cmn:
25473 newsize = relax_immediate (fragp, 8, 0);
25474 break;
25475 case T_MNEM_b:
25476 newsize = relax_branch (fragp, sec, 11, stretch);
25477 break;
25478 case T_MNEM_bcond:
25479 newsize = relax_branch (fragp, sec, 8, stretch);
25480 break;
25481 case T_MNEM_add_sp:
25482 case T_MNEM_add_pc:
25483 newsize = relax_immediate (fragp, 8, 2);
25484 break;
25485 case T_MNEM_inc_sp:
25486 case T_MNEM_dec_sp:
25487 newsize = relax_immediate (fragp, 7, 2);
25488 break;
25489 case T_MNEM_addi:
25490 case T_MNEM_addis:
25491 case T_MNEM_subi:
25492 case T_MNEM_subis:
25493 newsize = relax_addsub (fragp, sec);
25494 break;
25495 default:
25496 abort ();
25497 }
25498
25499 fragp->fr_var = newsize;
25500 /* Freeze wide instructions that are at or before the same location as
25501 in the previous pass. This avoids infinite loops.
25502 Don't freeze them unconditionally because targets may be artificially
25503 misaligned by the expansion of preceding frags. */
25504 if (stretch <= 0 && newsize > 2)
25505 {
25506 md_convert_frag (sec->owner, sec, fragp);
25507 frag_wane (fragp);
25508 }
25509
25510 return newsize - oldsize;
25511 }
25512
25513 /* Round up a section size to the appropriate boundary. */
25514
25515 valueT
25516 md_section_align (segT segment ATTRIBUTE_UNUSED,
25517 valueT size)
25518 {
25519 return size;
25520 }
25521
25522 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25523 of an rs_align_code fragment. */
25524
25525 void
25526 arm_handle_align (fragS * fragP)
25527 {
25528 static unsigned char const arm_noop[2][2][4] =
25529 {
25530 { /* ARMv1 */
25531 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25532 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25533 },
25534 { /* ARMv6k */
25535 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25536 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25537 },
25538 };
25539 static unsigned char const thumb_noop[2][2][2] =
25540 {
25541 { /* Thumb-1 */
25542 {0xc0, 0x46}, /* LE */
25543 {0x46, 0xc0}, /* BE */
25544 },
25545 { /* Thumb-2 */
25546 {0x00, 0xbf}, /* LE */
25547 {0xbf, 0x00} /* BE */
25548 }
25549 };
25550 static unsigned char const wide_thumb_noop[2][4] =
25551 { /* Wide Thumb-2 */
25552 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25553 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25554 };
25555
25556 unsigned bytes, fix, noop_size;
25557 char * p;
25558 const unsigned char * noop;
25559 const unsigned char *narrow_noop = NULL;
25560 #ifdef OBJ_ELF
25561 enum mstate state;
25562 #endif
25563
25564 if (fragP->fr_type != rs_align_code)
25565 return;
25566
25567 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25568 p = fragP->fr_literal + fragP->fr_fix;
25569 fix = 0;
25570
25571 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25572 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25573
25574 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25575
25576 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25577 {
25578 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25579 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25580 {
25581 narrow_noop = thumb_noop[1][target_big_endian];
25582 noop = wide_thumb_noop[target_big_endian];
25583 }
25584 else
25585 noop = thumb_noop[0][target_big_endian];
25586 noop_size = 2;
25587 #ifdef OBJ_ELF
25588 state = MAP_THUMB;
25589 #endif
25590 }
25591 else
25592 {
25593 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25594 ? selected_cpu : arm_arch_none,
25595 arm_ext_v6k) != 0]
25596 [target_big_endian];
25597 noop_size = 4;
25598 #ifdef OBJ_ELF
25599 state = MAP_ARM;
25600 #endif
25601 }
25602
25603 fragP->fr_var = noop_size;
25604
25605 if (bytes & (noop_size - 1))
25606 {
25607 fix = bytes & (noop_size - 1);
25608 #ifdef OBJ_ELF
25609 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25610 #endif
25611 memset (p, 0, fix);
25612 p += fix;
25613 bytes -= fix;
25614 }
25615
25616 if (narrow_noop)
25617 {
25618 if (bytes & noop_size)
25619 {
25620 /* Insert a narrow noop. */
25621 memcpy (p, narrow_noop, noop_size);
25622 p += noop_size;
25623 bytes -= noop_size;
25624 fix += noop_size;
25625 }
25626
25627 /* Use wide noops for the remainder */
25628 noop_size = 4;
25629 }
25630
25631 while (bytes >= noop_size)
25632 {
25633 memcpy (p, noop, noop_size);
25634 p += noop_size;
25635 bytes -= noop_size;
25636 fix += noop_size;
25637 }
25638
25639 fragP->fr_fix += fix;
25640 }
25641
25642 /* Called from md_do_align. Used to create an alignment
25643 frag in a code section. */
25644
25645 void
25646 arm_frag_align_code (int n, int max)
25647 {
25648 char * p;
25649
25650 /* We assume that there will never be a requirement
25651 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25652 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25653 {
25654 char err_msg[128];
25655
25656 sprintf (err_msg,
25657 _("alignments greater than %d bytes not supported in .text sections."),
25658 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25659 as_fatal ("%s", err_msg);
25660 }
25661
25662 p = frag_var (rs_align_code,
25663 MAX_MEM_FOR_RS_ALIGN_CODE,
25664 1,
25665 (relax_substateT) max,
25666 (symbolS *) NULL,
25667 (offsetT) n,
25668 (char *) NULL);
25669 *p = 0;
25670 }
25671
25672 /* Perform target specific initialisation of a frag.
25673 Note - despite the name this initialisation is not done when the frag
25674 is created, but only when its type is assigned. A frag can be created
25675 and used a long time before its type is set, so beware of assuming that
25676 this initialisation is performed first. */
25677
25678 #ifndef OBJ_ELF
25679 void
25680 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25681 {
25682 /* Record whether this frag is in an ARM or a THUMB area. */
25683 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25684 }
25685
25686 #else /* OBJ_ELF is defined. */
25687 void
25688 arm_init_frag (fragS * fragP, int max_chars)
25689 {
25690 bfd_boolean frag_thumb_mode;
25691
25692 /* If the current ARM vs THUMB mode has not already
25693 been recorded into this frag then do so now. */
25694 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25695 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25696
25697 /* PR 21809: Do not set a mapping state for debug sections
25698 - it just confuses other tools. */
25699 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25700 return;
25701
25702 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25703
25704 /* Record a mapping symbol for alignment frags. We will delete this
25705 later if the alignment ends up empty. */
25706 switch (fragP->fr_type)
25707 {
25708 case rs_align:
25709 case rs_align_test:
25710 case rs_fill:
25711 mapping_state_2 (MAP_DATA, max_chars);
25712 break;
25713 case rs_align_code:
25714 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25715 break;
25716 default:
25717 break;
25718 }
25719 }
25720
25721 /* When we change sections we need to issue a new mapping symbol. */
25722
25723 void
25724 arm_elf_change_section (void)
25725 {
25726 /* Link an unlinked unwind index table section to the .text section. */
25727 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25728 && elf_linked_to_section (now_seg) == NULL)
25729 elf_linked_to_section (now_seg) = text_section;
25730 }
25731
25732 int
25733 arm_elf_section_type (const char * str, size_t len)
25734 {
25735 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25736 return SHT_ARM_EXIDX;
25737
25738 return -1;
25739 }
25740 \f
25741 /* Code to deal with unwinding tables. */
25742
25743 static void add_unwind_adjustsp (offsetT);
25744
25745 /* Generate any deferred unwind frame offset. */
25746
25747 static void
25748 flush_pending_unwind (void)
25749 {
25750 offsetT offset;
25751
25752 offset = unwind.pending_offset;
25753 unwind.pending_offset = 0;
25754 if (offset != 0)
25755 add_unwind_adjustsp (offset);
25756 }
25757
25758 /* Add an opcode to this list for this function. Two-byte opcodes should
25759 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25760 order. */
25761
25762 static void
25763 add_unwind_opcode (valueT op, int length)
25764 {
25765 /* Add any deferred stack adjustment. */
25766 if (unwind.pending_offset)
25767 flush_pending_unwind ();
25768
25769 unwind.sp_restored = 0;
25770
25771 if (unwind.opcode_count + length > unwind.opcode_alloc)
25772 {
25773 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25774 if (unwind.opcodes)
25775 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25776 unwind.opcode_alloc);
25777 else
25778 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25779 }
25780 while (length > 0)
25781 {
25782 length--;
25783 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25784 op >>= 8;
25785 unwind.opcode_count++;
25786 }
25787 }
25788
25789 /* Add unwind opcodes to adjust the stack pointer. */
25790
25791 static void
25792 add_unwind_adjustsp (offsetT offset)
25793 {
25794 valueT op;
25795
25796 if (offset > 0x200)
25797 {
25798 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25799 char bytes[5];
25800 int n;
25801 valueT o;
25802
25803 /* Long form: 0xb2, uleb128. */
25804 /* This might not fit in a word so add the individual bytes,
25805 remembering the list is built in reverse order. */
25806 o = (valueT) ((offset - 0x204) >> 2);
25807 if (o == 0)
25808 add_unwind_opcode (0, 1);
25809
25810 /* Calculate the uleb128 encoding of the offset. */
25811 n = 0;
25812 while (o)
25813 {
25814 bytes[n] = o & 0x7f;
25815 o >>= 7;
25816 if (o)
25817 bytes[n] |= 0x80;
25818 n++;
25819 }
25820 /* Add the insn. */
25821 for (; n; n--)
25822 add_unwind_opcode (bytes[n - 1], 1);
25823 add_unwind_opcode (0xb2, 1);
25824 }
25825 else if (offset > 0x100)
25826 {
25827 /* Two short opcodes. */
25828 add_unwind_opcode (0x3f, 1);
25829 op = (offset - 0x104) >> 2;
25830 add_unwind_opcode (op, 1);
25831 }
25832 else if (offset > 0)
25833 {
25834 /* Short opcode. */
25835 op = (offset - 4) >> 2;
25836 add_unwind_opcode (op, 1);
25837 }
25838 else if (offset < 0)
25839 {
25840 offset = -offset;
25841 while (offset > 0x100)
25842 {
25843 add_unwind_opcode (0x7f, 1);
25844 offset -= 0x100;
25845 }
25846 op = ((offset - 4) >> 2) | 0x40;
25847 add_unwind_opcode (op, 1);
25848 }
25849 }
25850
25851 /* Finish the list of unwind opcodes for this function. */
25852
25853 static void
25854 finish_unwind_opcodes (void)
25855 {
25856 valueT op;
25857
25858 if (unwind.fp_used)
25859 {
25860 /* Adjust sp as necessary. */
25861 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25862 flush_pending_unwind ();
25863
25864 /* After restoring sp from the frame pointer. */
25865 op = 0x90 | unwind.fp_reg;
25866 add_unwind_opcode (op, 1);
25867 }
25868 else
25869 flush_pending_unwind ();
25870 }
25871
25872
25873 /* Start an exception table entry. If idx is nonzero this is an index table
25874 entry. */
25875
25876 static void
25877 start_unwind_section (const segT text_seg, int idx)
25878 {
25879 const char * text_name;
25880 const char * prefix;
25881 const char * prefix_once;
25882 const char * group_name;
25883 char * sec_name;
25884 int type;
25885 int flags;
25886 int linkonce;
25887
25888 if (idx)
25889 {
25890 prefix = ELF_STRING_ARM_unwind;
25891 prefix_once = ELF_STRING_ARM_unwind_once;
25892 type = SHT_ARM_EXIDX;
25893 }
25894 else
25895 {
25896 prefix = ELF_STRING_ARM_unwind_info;
25897 prefix_once = ELF_STRING_ARM_unwind_info_once;
25898 type = SHT_PROGBITS;
25899 }
25900
25901 text_name = segment_name (text_seg);
25902 if (streq (text_name, ".text"))
25903 text_name = "";
25904
25905 if (strncmp (text_name, ".gnu.linkonce.t.",
25906 strlen (".gnu.linkonce.t.")) == 0)
25907 {
25908 prefix = prefix_once;
25909 text_name += strlen (".gnu.linkonce.t.");
25910 }
25911
25912 sec_name = concat (prefix, text_name, (char *) NULL);
25913
25914 flags = SHF_ALLOC;
25915 linkonce = 0;
25916 group_name = 0;
25917
25918 /* Handle COMDAT group. */
25919 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25920 {
25921 group_name = elf_group_name (text_seg);
25922 if (group_name == NULL)
25923 {
25924 as_bad (_("Group section `%s' has no group signature"),
25925 segment_name (text_seg));
25926 ignore_rest_of_line ();
25927 return;
25928 }
25929 flags |= SHF_GROUP;
25930 linkonce = 1;
25931 }
25932
25933 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25934 linkonce, 0);
25935
25936 /* Set the section link for index tables. */
25937 if (idx)
25938 elf_linked_to_section (now_seg) = text_seg;
25939 }
25940
25941
25942 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25943 personality routine data. Returns zero, or the index table value for
25944 an inline entry. */
25945
25946 static valueT
25947 create_unwind_entry (int have_data)
25948 {
25949 int size;
25950 addressT where;
25951 char *ptr;
25952 /* The current word of data. */
25953 valueT data;
25954 /* The number of bytes left in this word. */
25955 int n;
25956
25957 finish_unwind_opcodes ();
25958
25959 /* Remember the current text section. */
25960 unwind.saved_seg = now_seg;
25961 unwind.saved_subseg = now_subseg;
25962
25963 start_unwind_section (now_seg, 0);
25964
25965 if (unwind.personality_routine == NULL)
25966 {
25967 if (unwind.personality_index == -2)
25968 {
25969 if (have_data)
25970 as_bad (_("handlerdata in cantunwind frame"));
25971 return 1; /* EXIDX_CANTUNWIND. */
25972 }
25973
25974 /* Use a default personality routine if none is specified. */
25975 if (unwind.personality_index == -1)
25976 {
25977 if (unwind.opcode_count > 3)
25978 unwind.personality_index = 1;
25979 else
25980 unwind.personality_index = 0;
25981 }
25982
25983 /* Space for the personality routine entry. */
25984 if (unwind.personality_index == 0)
25985 {
25986 if (unwind.opcode_count > 3)
25987 as_bad (_("too many unwind opcodes for personality routine 0"));
25988
25989 if (!have_data)
25990 {
25991 /* All the data is inline in the index table. */
25992 data = 0x80;
25993 n = 3;
25994 while (unwind.opcode_count > 0)
25995 {
25996 unwind.opcode_count--;
25997 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25998 n--;
25999 }
26000
26001 /* Pad with "finish" opcodes. */
26002 while (n--)
26003 data = (data << 8) | 0xb0;
26004
26005 return data;
26006 }
26007 size = 0;
26008 }
26009 else
26010 /* We get two opcodes "free" in the first word. */
26011 size = unwind.opcode_count - 2;
26012 }
26013 else
26014 {
26015 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26016 if (unwind.personality_index != -1)
26017 {
26018 as_bad (_("attempt to recreate an unwind entry"));
26019 return 1;
26020 }
26021
26022 /* An extra byte is required for the opcode count. */
26023 size = unwind.opcode_count + 1;
26024 }
26025
26026 size = (size + 3) >> 2;
26027 if (size > 0xff)
26028 as_bad (_("too many unwind opcodes"));
26029
26030 frag_align (2, 0, 0);
26031 record_alignment (now_seg, 2);
26032 unwind.table_entry = expr_build_dot ();
26033
26034 /* Allocate the table entry. */
26035 ptr = frag_more ((size << 2) + 4);
26036 /* PR 13449: Zero the table entries in case some of them are not used. */
26037 memset (ptr, 0, (size << 2) + 4);
26038 where = frag_now_fix () - ((size << 2) + 4);
26039
26040 switch (unwind.personality_index)
26041 {
26042 case -1:
26043 /* ??? Should this be a PLT generating relocation? */
26044 /* Custom personality routine. */
26045 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26046 BFD_RELOC_ARM_PREL31);
26047
26048 where += 4;
26049 ptr += 4;
26050
26051 /* Set the first byte to the number of additional words. */
26052 data = size > 0 ? size - 1 : 0;
26053 n = 3;
26054 break;
26055
26056 /* ABI defined personality routines. */
26057 case 0:
26058 /* Three opcodes bytes are packed into the first word. */
26059 data = 0x80;
26060 n = 3;
26061 break;
26062
26063 case 1:
26064 case 2:
26065 /* The size and first two opcode bytes go in the first word. */
26066 data = ((0x80 + unwind.personality_index) << 8) | size;
26067 n = 2;
26068 break;
26069
26070 default:
26071 /* Should never happen. */
26072 abort ();
26073 }
26074
26075 /* Pack the opcodes into words (MSB first), reversing the list at the same
26076 time. */
26077 while (unwind.opcode_count > 0)
26078 {
26079 if (n == 0)
26080 {
26081 md_number_to_chars (ptr, data, 4);
26082 ptr += 4;
26083 n = 4;
26084 data = 0;
26085 }
26086 unwind.opcode_count--;
26087 n--;
26088 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26089 }
26090
26091 /* Finish off the last word. */
26092 if (n < 4)
26093 {
26094 /* Pad with "finish" opcodes. */
26095 while (n--)
26096 data = (data << 8) | 0xb0;
26097
26098 md_number_to_chars (ptr, data, 4);
26099 }
26100
26101 if (!have_data)
26102 {
26103 /* Add an empty descriptor if there is no user-specified data. */
26104 ptr = frag_more (4);
26105 md_number_to_chars (ptr, 0, 4);
26106 }
26107
26108 return 0;
26109 }
26110
26111
26112 /* Initialize the DWARF-2 unwind information for this procedure. */
26113
26114 void
26115 tc_arm_frame_initial_instructions (void)
26116 {
26117 cfi_add_CFA_def_cfa (REG_SP, 0);
26118 }
26119 #endif /* OBJ_ELF */
26120
26121 /* Convert REGNAME to a DWARF-2 register number. */
26122
26123 int
26124 tc_arm_regname_to_dw2regnum (char *regname)
26125 {
26126 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26127 if (reg != FAIL)
26128 return reg;
26129
26130 /* PR 16694: Allow VFP registers as well. */
26131 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26132 if (reg != FAIL)
26133 return 64 + reg;
26134
26135 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26136 if (reg != FAIL)
26137 return reg + 256;
26138
26139 return FAIL;
26140 }
26141
26142 #ifdef TE_PE
26143 void
26144 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26145 {
26146 expressionS exp;
26147
26148 exp.X_op = O_secrel;
26149 exp.X_add_symbol = symbol;
26150 exp.X_add_number = 0;
26151 emit_expr (&exp, size);
26152 }
26153 #endif
26154
26155 /* MD interface: Symbol and relocation handling. */
26156
26157 /* Return the address within the segment that a PC-relative fixup is
26158 relative to. For ARM, PC-relative fixups applied to instructions
26159 are generally relative to the location of the fixup plus 8 bytes.
26160 Thumb branches are offset by 4, and Thumb loads relative to PC
26161 require special handling. */
26162
26163 long
26164 md_pcrel_from_section (fixS * fixP, segT seg)
26165 {
26166 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26167
26168 /* If this is pc-relative and we are going to emit a relocation
26169 then we just want to put out any pipeline compensation that the linker
26170 will need. Otherwise we want to use the calculated base.
26171 For WinCE we skip the bias for externals as well, since this
26172 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26173 if (fixP->fx_pcrel
26174 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26175 || (arm_force_relocation (fixP)
26176 #ifdef TE_WINCE
26177 && !S_IS_EXTERNAL (fixP->fx_addsy)
26178 #endif
26179 )))
26180 base = 0;
26181
26182
26183 switch (fixP->fx_r_type)
26184 {
26185 /* PC relative addressing on the Thumb is slightly odd as the
26186 bottom two bits of the PC are forced to zero for the
26187 calculation. This happens *after* application of the
26188 pipeline offset. However, Thumb adrl already adjusts for
26189 this, so we need not do it again. */
26190 case BFD_RELOC_ARM_THUMB_ADD:
26191 return base & ~3;
26192
26193 case BFD_RELOC_ARM_THUMB_OFFSET:
26194 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26195 case BFD_RELOC_ARM_T32_ADD_PC12:
26196 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26197 return (base + 4) & ~3;
26198
26199 /* Thumb branches are simply offset by +4. */
26200 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26201 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26202 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26203 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26204 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26205 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26206 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26207 case BFD_RELOC_ARM_THUMB_BF17:
26208 case BFD_RELOC_ARM_THUMB_BF19:
26209 case BFD_RELOC_ARM_THUMB_BF13:
26210 case BFD_RELOC_ARM_THUMB_LOOP12:
26211 return base + 4;
26212
26213 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26214 if (fixP->fx_addsy
26215 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26216 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26217 && ARM_IS_FUNC (fixP->fx_addsy)
26218 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26219 base = fixP->fx_where + fixP->fx_frag->fr_address;
26220 return base + 4;
26221
26222 /* BLX is like branches above, but forces the low two bits of PC to
26223 zero. */
26224 case BFD_RELOC_THUMB_PCREL_BLX:
26225 if (fixP->fx_addsy
26226 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26227 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26228 && THUMB_IS_FUNC (fixP->fx_addsy)
26229 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26230 base = fixP->fx_where + fixP->fx_frag->fr_address;
26231 return (base + 4) & ~3;
26232
26233 /* ARM mode branches are offset by +8. However, the Windows CE
26234 loader expects the relocation not to take this into account. */
26235 case BFD_RELOC_ARM_PCREL_BLX:
26236 if (fixP->fx_addsy
26237 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26238 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26239 && ARM_IS_FUNC (fixP->fx_addsy)
26240 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26241 base = fixP->fx_where + fixP->fx_frag->fr_address;
26242 return base + 8;
26243
26244 case BFD_RELOC_ARM_PCREL_CALL:
26245 if (fixP->fx_addsy
26246 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26247 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26248 && THUMB_IS_FUNC (fixP->fx_addsy)
26249 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26250 base = fixP->fx_where + fixP->fx_frag->fr_address;
26251 return base + 8;
26252
26253 case BFD_RELOC_ARM_PCREL_BRANCH:
26254 case BFD_RELOC_ARM_PCREL_JUMP:
26255 case BFD_RELOC_ARM_PLT32:
26256 #ifdef TE_WINCE
26257 /* When handling fixups immediately, because we have already
26258 discovered the value of a symbol, or the address of the frag involved
26259 we must account for the offset by +8, as the OS loader will never see the reloc.
26260 see fixup_segment() in write.c
26261 The S_IS_EXTERNAL test handles the case of global symbols.
26262 Those need the calculated base, not just the pipe compensation the linker will need. */
26263 if (fixP->fx_pcrel
26264 && fixP->fx_addsy != NULL
26265 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26266 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26267 return base + 8;
26268 return base;
26269 #else
26270 return base + 8;
26271 #endif
26272
26273
26274 /* ARM mode loads relative to PC are also offset by +8. Unlike
26275 branches, the Windows CE loader *does* expect the relocation
26276 to take this into account. */
26277 case BFD_RELOC_ARM_OFFSET_IMM:
26278 case BFD_RELOC_ARM_OFFSET_IMM8:
26279 case BFD_RELOC_ARM_HWLITERAL:
26280 case BFD_RELOC_ARM_LITERAL:
26281 case BFD_RELOC_ARM_CP_OFF_IMM:
26282 return base + 8;
26283
26284
26285 /* Other PC-relative relocations are un-offset. */
26286 default:
26287 return base;
26288 }
26289 }
26290
26291 static bfd_boolean flag_warn_syms = TRUE;
26292
26293 bfd_boolean
26294 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26295 {
26296 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26297 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26298 does mean that the resulting code might be very confusing to the reader.
26299 Also this warning can be triggered if the user omits an operand before
26300 an immediate address, eg:
26301
26302 LDR =foo
26303
26304 GAS treats this as an assignment of the value of the symbol foo to a
26305 symbol LDR, and so (without this code) it will not issue any kind of
26306 warning or error message.
26307
26308 Note - ARM instructions are case-insensitive but the strings in the hash
26309 table are all stored in lower case, so we must first ensure that name is
26310 lower case too. */
26311 if (flag_warn_syms && arm_ops_hsh)
26312 {
26313 char * nbuf = strdup (name);
26314 char * p;
26315
26316 for (p = nbuf; *p; p++)
26317 *p = TOLOWER (*p);
26318 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26319 {
26320 static struct hash_control * already_warned = NULL;
26321
26322 if (already_warned == NULL)
26323 already_warned = hash_new ();
26324 /* Only warn about the symbol once. To keep the code
26325 simple we let hash_insert do the lookup for us. */
26326 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26327 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26328 }
26329 else
26330 free (nbuf);
26331 }
26332
26333 return FALSE;
26334 }
26335
26336 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26337 Otherwise we have no need to default values of symbols. */
26338
26339 symbolS *
26340 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26341 {
26342 #ifdef OBJ_ELF
26343 if (name[0] == '_' && name[1] == 'G'
26344 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26345 {
26346 if (!GOT_symbol)
26347 {
26348 if (symbol_find (name))
26349 as_bad (_("GOT already in the symbol table"));
26350
26351 GOT_symbol = symbol_new (name, undefined_section,
26352 (valueT) 0, & zero_address_frag);
26353 }
26354
26355 return GOT_symbol;
26356 }
26357 #endif
26358
26359 return NULL;
26360 }
26361
26362 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26363 computed as two separate immediate values, added together. We
26364 already know that this value cannot be computed by just one ARM
26365 instruction. */
26366
26367 static unsigned int
26368 validate_immediate_twopart (unsigned int val,
26369 unsigned int * highpart)
26370 {
26371 unsigned int a;
26372 unsigned int i;
26373
26374 for (i = 0; i < 32; i += 2)
26375 if (((a = rotate_left (val, i)) & 0xff) != 0)
26376 {
26377 if (a & 0xff00)
26378 {
26379 if (a & ~ 0xffff)
26380 continue;
26381 * highpart = (a >> 8) | ((i + 24) << 7);
26382 }
26383 else if (a & 0xff0000)
26384 {
26385 if (a & 0xff000000)
26386 continue;
26387 * highpart = (a >> 16) | ((i + 16) << 7);
26388 }
26389 else
26390 {
26391 gas_assert (a & 0xff000000);
26392 * highpart = (a >> 24) | ((i + 8) << 7);
26393 }
26394
26395 return (a & 0xff) | (i << 7);
26396 }
26397
26398 return FAIL;
26399 }
26400
26401 static int
26402 validate_offset_imm (unsigned int val, int hwse)
26403 {
26404 if ((hwse && val > 255) || val > 4095)
26405 return FAIL;
26406 return val;
26407 }
26408
26409 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26410 negative immediate constant by altering the instruction. A bit of
26411 a hack really.
26412 MOV <-> MVN
26413 AND <-> BIC
26414 ADC <-> SBC
26415 by inverting the second operand, and
26416 ADD <-> SUB
26417 CMP <-> CMN
26418 by negating the second operand. */
26419
26420 static int
26421 negate_data_op (unsigned long * instruction,
26422 unsigned long value)
26423 {
26424 int op, new_inst;
26425 unsigned long negated, inverted;
26426
26427 negated = encode_arm_immediate (-value);
26428 inverted = encode_arm_immediate (~value);
26429
26430 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26431 switch (op)
26432 {
26433 /* First negates. */
26434 case OPCODE_SUB: /* ADD <-> SUB */
26435 new_inst = OPCODE_ADD;
26436 value = negated;
26437 break;
26438
26439 case OPCODE_ADD:
26440 new_inst = OPCODE_SUB;
26441 value = negated;
26442 break;
26443
26444 case OPCODE_CMP: /* CMP <-> CMN */
26445 new_inst = OPCODE_CMN;
26446 value = negated;
26447 break;
26448
26449 case OPCODE_CMN:
26450 new_inst = OPCODE_CMP;
26451 value = negated;
26452 break;
26453
26454 /* Now Inverted ops. */
26455 case OPCODE_MOV: /* MOV <-> MVN */
26456 new_inst = OPCODE_MVN;
26457 value = inverted;
26458 break;
26459
26460 case OPCODE_MVN:
26461 new_inst = OPCODE_MOV;
26462 value = inverted;
26463 break;
26464
26465 case OPCODE_AND: /* AND <-> BIC */
26466 new_inst = OPCODE_BIC;
26467 value = inverted;
26468 break;
26469
26470 case OPCODE_BIC:
26471 new_inst = OPCODE_AND;
26472 value = inverted;
26473 break;
26474
26475 case OPCODE_ADC: /* ADC <-> SBC */
26476 new_inst = OPCODE_SBC;
26477 value = inverted;
26478 break;
26479
26480 case OPCODE_SBC:
26481 new_inst = OPCODE_ADC;
26482 value = inverted;
26483 break;
26484
26485 /* We cannot do anything. */
26486 default:
26487 return FAIL;
26488 }
26489
26490 if (value == (unsigned) FAIL)
26491 return FAIL;
26492
26493 *instruction &= OPCODE_MASK;
26494 *instruction |= new_inst << DATA_OP_SHIFT;
26495 return value;
26496 }
26497
26498 /* Like negate_data_op, but for Thumb-2. */
26499
26500 static unsigned int
26501 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26502 {
26503 int op, new_inst;
26504 int rd;
26505 unsigned int negated, inverted;
26506
26507 negated = encode_thumb32_immediate (-value);
26508 inverted = encode_thumb32_immediate (~value);
26509
26510 rd = (*instruction >> 8) & 0xf;
26511 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26512 switch (op)
26513 {
26514 /* ADD <-> SUB. Includes CMP <-> CMN. */
26515 case T2_OPCODE_SUB:
26516 new_inst = T2_OPCODE_ADD;
26517 value = negated;
26518 break;
26519
26520 case T2_OPCODE_ADD:
26521 new_inst = T2_OPCODE_SUB;
26522 value = negated;
26523 break;
26524
26525 /* ORR <-> ORN. Includes MOV <-> MVN. */
26526 case T2_OPCODE_ORR:
26527 new_inst = T2_OPCODE_ORN;
26528 value = inverted;
26529 break;
26530
26531 case T2_OPCODE_ORN:
26532 new_inst = T2_OPCODE_ORR;
26533 value = inverted;
26534 break;
26535
26536 /* AND <-> BIC. TST has no inverted equivalent. */
26537 case T2_OPCODE_AND:
26538 new_inst = T2_OPCODE_BIC;
26539 if (rd == 15)
26540 value = FAIL;
26541 else
26542 value = inverted;
26543 break;
26544
26545 case T2_OPCODE_BIC:
26546 new_inst = T2_OPCODE_AND;
26547 value = inverted;
26548 break;
26549
26550 /* ADC <-> SBC */
26551 case T2_OPCODE_ADC:
26552 new_inst = T2_OPCODE_SBC;
26553 value = inverted;
26554 break;
26555
26556 case T2_OPCODE_SBC:
26557 new_inst = T2_OPCODE_ADC;
26558 value = inverted;
26559 break;
26560
26561 /* We cannot do anything. */
26562 default:
26563 return FAIL;
26564 }
26565
26566 if (value == (unsigned int)FAIL)
26567 return FAIL;
26568
26569 *instruction &= T2_OPCODE_MASK;
26570 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26571 return value;
26572 }
26573
26574 /* Read a 32-bit thumb instruction from buf. */
26575
26576 static unsigned long
26577 get_thumb32_insn (char * buf)
26578 {
26579 unsigned long insn;
26580 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26581 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26582
26583 return insn;
26584 }
26585
26586 /* We usually want to set the low bit on the address of thumb function
26587 symbols. In particular .word foo - . should have the low bit set.
26588 Generic code tries to fold the difference of two symbols to
26589 a constant. Prevent this and force a relocation when the first symbols
26590 is a thumb function. */
26591
26592 bfd_boolean
26593 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26594 {
26595 if (op == O_subtract
26596 && l->X_op == O_symbol
26597 && r->X_op == O_symbol
26598 && THUMB_IS_FUNC (l->X_add_symbol))
26599 {
26600 l->X_op = O_subtract;
26601 l->X_op_symbol = r->X_add_symbol;
26602 l->X_add_number -= r->X_add_number;
26603 return TRUE;
26604 }
26605
26606 /* Process as normal. */
26607 return FALSE;
26608 }
26609
26610 /* Encode Thumb2 unconditional branches and calls. The encoding
26611 for the 2 are identical for the immediate values. */
26612
26613 static void
26614 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26615 {
26616 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26617 offsetT newval;
26618 offsetT newval2;
26619 addressT S, I1, I2, lo, hi;
26620
26621 S = (value >> 24) & 0x01;
26622 I1 = (value >> 23) & 0x01;
26623 I2 = (value >> 22) & 0x01;
26624 hi = (value >> 12) & 0x3ff;
26625 lo = (value >> 1) & 0x7ff;
26626 newval = md_chars_to_number (buf, THUMB_SIZE);
26627 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26628 newval |= (S << 10) | hi;
26629 newval2 &= ~T2I1I2MASK;
26630 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26631 md_number_to_chars (buf, newval, THUMB_SIZE);
26632 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26633 }
26634
26635 void
26636 md_apply_fix (fixS * fixP,
26637 valueT * valP,
26638 segT seg)
26639 {
26640 offsetT value = * valP;
26641 offsetT newval;
26642 unsigned int newimm;
26643 unsigned long temp;
26644 int sign;
26645 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26646
26647 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26648
26649 /* Note whether this will delete the relocation. */
26650
26651 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26652 fixP->fx_done = 1;
26653
26654 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26655 consistency with the behaviour on 32-bit hosts. Remember value
26656 for emit_reloc. */
26657 value &= 0xffffffff;
26658 value ^= 0x80000000;
26659 value -= 0x80000000;
26660
26661 *valP = value;
26662 fixP->fx_addnumber = value;
26663
26664 /* Same treatment for fixP->fx_offset. */
26665 fixP->fx_offset &= 0xffffffff;
26666 fixP->fx_offset ^= 0x80000000;
26667 fixP->fx_offset -= 0x80000000;
26668
26669 switch (fixP->fx_r_type)
26670 {
26671 case BFD_RELOC_NONE:
26672 /* This will need to go in the object file. */
26673 fixP->fx_done = 0;
26674 break;
26675
26676 case BFD_RELOC_ARM_IMMEDIATE:
26677 /* We claim that this fixup has been processed here,
26678 even if in fact we generate an error because we do
26679 not have a reloc for it, so tc_gen_reloc will reject it. */
26680 fixP->fx_done = 1;
26681
26682 if (fixP->fx_addsy)
26683 {
26684 const char *msg = 0;
26685
26686 if (! S_IS_DEFINED (fixP->fx_addsy))
26687 msg = _("undefined symbol %s used as an immediate value");
26688 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26689 msg = _("symbol %s is in a different section");
26690 else if (S_IS_WEAK (fixP->fx_addsy))
26691 msg = _("symbol %s is weak and may be overridden later");
26692
26693 if (msg)
26694 {
26695 as_bad_where (fixP->fx_file, fixP->fx_line,
26696 msg, S_GET_NAME (fixP->fx_addsy));
26697 break;
26698 }
26699 }
26700
26701 temp = md_chars_to_number (buf, INSN_SIZE);
26702
26703 /* If the offset is negative, we should use encoding A2 for ADR. */
26704 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26705 newimm = negate_data_op (&temp, value);
26706 else
26707 {
26708 newimm = encode_arm_immediate (value);
26709
26710 /* If the instruction will fail, see if we can fix things up by
26711 changing the opcode. */
26712 if (newimm == (unsigned int) FAIL)
26713 newimm = negate_data_op (&temp, value);
26714 /* MOV accepts both ARM modified immediate (A1 encoding) and
26715 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26716 When disassembling, MOV is preferred when there is no encoding
26717 overlap. */
26718 if (newimm == (unsigned int) FAIL
26719 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26720 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26721 && !((temp >> SBIT_SHIFT) & 0x1)
26722 && value >= 0 && value <= 0xffff)
26723 {
26724 /* Clear bits[23:20] to change encoding from A1 to A2. */
26725 temp &= 0xff0fffff;
26726 /* Encoding high 4bits imm. Code below will encode the remaining
26727 low 12bits. */
26728 temp |= (value & 0x0000f000) << 4;
26729 newimm = value & 0x00000fff;
26730 }
26731 }
26732
26733 if (newimm == (unsigned int) FAIL)
26734 {
26735 as_bad_where (fixP->fx_file, fixP->fx_line,
26736 _("invalid constant (%lx) after fixup"),
26737 (unsigned long) value);
26738 break;
26739 }
26740
26741 newimm |= (temp & 0xfffff000);
26742 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26743 break;
26744
26745 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26746 {
26747 unsigned int highpart = 0;
26748 unsigned int newinsn = 0xe1a00000; /* nop. */
26749
26750 if (fixP->fx_addsy)
26751 {
26752 const char *msg = 0;
26753
26754 if (! S_IS_DEFINED (fixP->fx_addsy))
26755 msg = _("undefined symbol %s used as an immediate value");
26756 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26757 msg = _("symbol %s is in a different section");
26758 else if (S_IS_WEAK (fixP->fx_addsy))
26759 msg = _("symbol %s is weak and may be overridden later");
26760
26761 if (msg)
26762 {
26763 as_bad_where (fixP->fx_file, fixP->fx_line,
26764 msg, S_GET_NAME (fixP->fx_addsy));
26765 break;
26766 }
26767 }
26768
26769 newimm = encode_arm_immediate (value);
26770 temp = md_chars_to_number (buf, INSN_SIZE);
26771
26772 /* If the instruction will fail, see if we can fix things up by
26773 changing the opcode. */
26774 if (newimm == (unsigned int) FAIL
26775 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26776 {
26777 /* No ? OK - try using two ADD instructions to generate
26778 the value. */
26779 newimm = validate_immediate_twopart (value, & highpart);
26780
26781 /* Yes - then make sure that the second instruction is
26782 also an add. */
26783 if (newimm != (unsigned int) FAIL)
26784 newinsn = temp;
26785 /* Still No ? Try using a negated value. */
26786 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26787 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26788 /* Otherwise - give up. */
26789 else
26790 {
26791 as_bad_where (fixP->fx_file, fixP->fx_line,
26792 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26793 (long) value);
26794 break;
26795 }
26796
26797 /* Replace the first operand in the 2nd instruction (which
26798 is the PC) with the destination register. We have
26799 already added in the PC in the first instruction and we
26800 do not want to do it again. */
26801 newinsn &= ~ 0xf0000;
26802 newinsn |= ((newinsn & 0x0f000) << 4);
26803 }
26804
26805 newimm |= (temp & 0xfffff000);
26806 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26807
26808 highpart |= (newinsn & 0xfffff000);
26809 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26810 }
26811 break;
26812
26813 case BFD_RELOC_ARM_OFFSET_IMM:
26814 if (!fixP->fx_done && seg->use_rela_p)
26815 value = 0;
26816 /* Fall through. */
26817
26818 case BFD_RELOC_ARM_LITERAL:
26819 sign = value > 0;
26820
26821 if (value < 0)
26822 value = - value;
26823
26824 if (validate_offset_imm (value, 0) == FAIL)
26825 {
26826 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26827 as_bad_where (fixP->fx_file, fixP->fx_line,
26828 _("invalid literal constant: pool needs to be closer"));
26829 else
26830 as_bad_where (fixP->fx_file, fixP->fx_line,
26831 _("bad immediate value for offset (%ld)"),
26832 (long) value);
26833 break;
26834 }
26835
26836 newval = md_chars_to_number (buf, INSN_SIZE);
26837 if (value == 0)
26838 newval &= 0xfffff000;
26839 else
26840 {
26841 newval &= 0xff7ff000;
26842 newval |= value | (sign ? INDEX_UP : 0);
26843 }
26844 md_number_to_chars (buf, newval, INSN_SIZE);
26845 break;
26846
26847 case BFD_RELOC_ARM_OFFSET_IMM8:
26848 case BFD_RELOC_ARM_HWLITERAL:
26849 sign = value > 0;
26850
26851 if (value < 0)
26852 value = - value;
26853
26854 if (validate_offset_imm (value, 1) == FAIL)
26855 {
26856 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26857 as_bad_where (fixP->fx_file, fixP->fx_line,
26858 _("invalid literal constant: pool needs to be closer"));
26859 else
26860 as_bad_where (fixP->fx_file, fixP->fx_line,
26861 _("bad immediate value for 8-bit offset (%ld)"),
26862 (long) value);
26863 break;
26864 }
26865
26866 newval = md_chars_to_number (buf, INSN_SIZE);
26867 if (value == 0)
26868 newval &= 0xfffff0f0;
26869 else
26870 {
26871 newval &= 0xff7ff0f0;
26872 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26873 }
26874 md_number_to_chars (buf, newval, INSN_SIZE);
26875 break;
26876
26877 case BFD_RELOC_ARM_T32_OFFSET_U8:
26878 if (value < 0 || value > 1020 || value % 4 != 0)
26879 as_bad_where (fixP->fx_file, fixP->fx_line,
26880 _("bad immediate value for offset (%ld)"), (long) value);
26881 value /= 4;
26882
26883 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26884 newval |= value;
26885 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26886 break;
26887
26888 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26889 /* This is a complicated relocation used for all varieties of Thumb32
26890 load/store instruction with immediate offset:
26891
26892 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26893 *4, optional writeback(W)
26894 (doubleword load/store)
26895
26896 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26897 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26898 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26899 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26900 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26901
26902 Uppercase letters indicate bits that are already encoded at
26903 this point. Lowercase letters are our problem. For the
26904 second block of instructions, the secondary opcode nybble
26905 (bits 8..11) is present, and bit 23 is zero, even if this is
26906 a PC-relative operation. */
26907 newval = md_chars_to_number (buf, THUMB_SIZE);
26908 newval <<= 16;
26909 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26910
26911 if ((newval & 0xf0000000) == 0xe0000000)
26912 {
26913 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26914 if (value >= 0)
26915 newval |= (1 << 23);
26916 else
26917 value = -value;
26918 if (value % 4 != 0)
26919 {
26920 as_bad_where (fixP->fx_file, fixP->fx_line,
26921 _("offset not a multiple of 4"));
26922 break;
26923 }
26924 value /= 4;
26925 if (value > 0xff)
26926 {
26927 as_bad_where (fixP->fx_file, fixP->fx_line,
26928 _("offset out of range"));
26929 break;
26930 }
26931 newval &= ~0xff;
26932 }
26933 else if ((newval & 0x000f0000) == 0x000f0000)
26934 {
26935 /* PC-relative, 12-bit offset. */
26936 if (value >= 0)
26937 newval |= (1 << 23);
26938 else
26939 value = -value;
26940 if (value > 0xfff)
26941 {
26942 as_bad_where (fixP->fx_file, fixP->fx_line,
26943 _("offset out of range"));
26944 break;
26945 }
26946 newval &= ~0xfff;
26947 }
26948 else if ((newval & 0x00000100) == 0x00000100)
26949 {
26950 /* Writeback: 8-bit, +/- offset. */
26951 if (value >= 0)
26952 newval |= (1 << 9);
26953 else
26954 value = -value;
26955 if (value > 0xff)
26956 {
26957 as_bad_where (fixP->fx_file, fixP->fx_line,
26958 _("offset out of range"));
26959 break;
26960 }
26961 newval &= ~0xff;
26962 }
26963 else if ((newval & 0x00000f00) == 0x00000e00)
26964 {
26965 /* T-instruction: positive 8-bit offset. */
26966 if (value < 0 || value > 0xff)
26967 {
26968 as_bad_where (fixP->fx_file, fixP->fx_line,
26969 _("offset out of range"));
26970 break;
26971 }
26972 newval &= ~0xff;
26973 newval |= value;
26974 }
26975 else
26976 {
26977 /* Positive 12-bit or negative 8-bit offset. */
26978 int limit;
26979 if (value >= 0)
26980 {
26981 newval |= (1 << 23);
26982 limit = 0xfff;
26983 }
26984 else
26985 {
26986 value = -value;
26987 limit = 0xff;
26988 }
26989 if (value > limit)
26990 {
26991 as_bad_where (fixP->fx_file, fixP->fx_line,
26992 _("offset out of range"));
26993 break;
26994 }
26995 newval &= ~limit;
26996 }
26997
26998 newval |= value;
26999 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27000 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27001 break;
27002
27003 case BFD_RELOC_ARM_SHIFT_IMM:
27004 newval = md_chars_to_number (buf, INSN_SIZE);
27005 if (((unsigned long) value) > 32
27006 || (value == 32
27007 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27008 {
27009 as_bad_where (fixP->fx_file, fixP->fx_line,
27010 _("shift expression is too large"));
27011 break;
27012 }
27013
27014 if (value == 0)
27015 /* Shifts of zero must be done as lsl. */
27016 newval &= ~0x60;
27017 else if (value == 32)
27018 value = 0;
27019 newval &= 0xfffff07f;
27020 newval |= (value & 0x1f) << 7;
27021 md_number_to_chars (buf, newval, INSN_SIZE);
27022 break;
27023
27024 case BFD_RELOC_ARM_T32_IMMEDIATE:
27025 case BFD_RELOC_ARM_T32_ADD_IMM:
27026 case BFD_RELOC_ARM_T32_IMM12:
27027 case BFD_RELOC_ARM_T32_ADD_PC12:
27028 /* We claim that this fixup has been processed here,
27029 even if in fact we generate an error because we do
27030 not have a reloc for it, so tc_gen_reloc will reject it. */
27031 fixP->fx_done = 1;
27032
27033 if (fixP->fx_addsy
27034 && ! S_IS_DEFINED (fixP->fx_addsy))
27035 {
27036 as_bad_where (fixP->fx_file, fixP->fx_line,
27037 _("undefined symbol %s used as an immediate value"),
27038 S_GET_NAME (fixP->fx_addsy));
27039 break;
27040 }
27041
27042 newval = md_chars_to_number (buf, THUMB_SIZE);
27043 newval <<= 16;
27044 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27045
27046 newimm = FAIL;
27047 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27048 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27049 Thumb2 modified immediate encoding (T2). */
27050 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27051 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27052 {
27053 newimm = encode_thumb32_immediate (value);
27054 if (newimm == (unsigned int) FAIL)
27055 newimm = thumb32_negate_data_op (&newval, value);
27056 }
27057 if (newimm == (unsigned int) FAIL)
27058 {
27059 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27060 {
27061 /* Turn add/sum into addw/subw. */
27062 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27063 newval = (newval & 0xfeffffff) | 0x02000000;
27064 /* No flat 12-bit imm encoding for addsw/subsw. */
27065 if ((newval & 0x00100000) == 0)
27066 {
27067 /* 12 bit immediate for addw/subw. */
27068 if (value < 0)
27069 {
27070 value = -value;
27071 newval ^= 0x00a00000;
27072 }
27073 if (value > 0xfff)
27074 newimm = (unsigned int) FAIL;
27075 else
27076 newimm = value;
27077 }
27078 }
27079 else
27080 {
27081 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27082 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27083 disassembling, MOV is preferred when there is no encoding
27084 overlap. */
27085 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27086 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27087 but with the Rn field [19:16] set to 1111. */
27088 && (((newval >> 16) & 0xf) == 0xf)
27089 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27090 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27091 && value >= 0 && value <= 0xffff)
27092 {
27093 /* Toggle bit[25] to change encoding from T2 to T3. */
27094 newval ^= 1 << 25;
27095 /* Clear bits[19:16]. */
27096 newval &= 0xfff0ffff;
27097 /* Encoding high 4bits imm. Code below will encode the
27098 remaining low 12bits. */
27099 newval |= (value & 0x0000f000) << 4;
27100 newimm = value & 0x00000fff;
27101 }
27102 }
27103 }
27104
27105 if (newimm == (unsigned int)FAIL)
27106 {
27107 as_bad_where (fixP->fx_file, fixP->fx_line,
27108 _("invalid constant (%lx) after fixup"),
27109 (unsigned long) value);
27110 break;
27111 }
27112
27113 newval |= (newimm & 0x800) << 15;
27114 newval |= (newimm & 0x700) << 4;
27115 newval |= (newimm & 0x0ff);
27116
27117 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27118 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27119 break;
27120
27121 case BFD_RELOC_ARM_SMC:
27122 if (((unsigned long) value) > 0xffff)
27123 as_bad_where (fixP->fx_file, fixP->fx_line,
27124 _("invalid smc expression"));
27125 newval = md_chars_to_number (buf, INSN_SIZE);
27126 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27127 md_number_to_chars (buf, newval, INSN_SIZE);
27128 break;
27129
27130 case BFD_RELOC_ARM_HVC:
27131 if (((unsigned long) value) > 0xffff)
27132 as_bad_where (fixP->fx_file, fixP->fx_line,
27133 _("invalid hvc expression"));
27134 newval = md_chars_to_number (buf, INSN_SIZE);
27135 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27136 md_number_to_chars (buf, newval, INSN_SIZE);
27137 break;
27138
27139 case BFD_RELOC_ARM_SWI:
27140 if (fixP->tc_fix_data != 0)
27141 {
27142 if (((unsigned long) value) > 0xff)
27143 as_bad_where (fixP->fx_file, fixP->fx_line,
27144 _("invalid swi expression"));
27145 newval = md_chars_to_number (buf, THUMB_SIZE);
27146 newval |= value;
27147 md_number_to_chars (buf, newval, THUMB_SIZE);
27148 }
27149 else
27150 {
27151 if (((unsigned long) value) > 0x00ffffff)
27152 as_bad_where (fixP->fx_file, fixP->fx_line,
27153 _("invalid swi expression"));
27154 newval = md_chars_to_number (buf, INSN_SIZE);
27155 newval |= value;
27156 md_number_to_chars (buf, newval, INSN_SIZE);
27157 }
27158 break;
27159
27160 case BFD_RELOC_ARM_MULTI:
27161 if (((unsigned long) value) > 0xffff)
27162 as_bad_where (fixP->fx_file, fixP->fx_line,
27163 _("invalid expression in load/store multiple"));
27164 newval = value | md_chars_to_number (buf, INSN_SIZE);
27165 md_number_to_chars (buf, newval, INSN_SIZE);
27166 break;
27167
27168 #ifdef OBJ_ELF
27169 case BFD_RELOC_ARM_PCREL_CALL:
27170
27171 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27172 && fixP->fx_addsy
27173 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27174 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27175 && THUMB_IS_FUNC (fixP->fx_addsy))
27176 /* Flip the bl to blx. This is a simple flip
27177 bit here because we generate PCREL_CALL for
27178 unconditional bls. */
27179 {
27180 newval = md_chars_to_number (buf, INSN_SIZE);
27181 newval = newval | 0x10000000;
27182 md_number_to_chars (buf, newval, INSN_SIZE);
27183 temp = 1;
27184 fixP->fx_done = 1;
27185 }
27186 else
27187 temp = 3;
27188 goto arm_branch_common;
27189
27190 case BFD_RELOC_ARM_PCREL_JUMP:
27191 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27192 && fixP->fx_addsy
27193 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27194 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27195 && THUMB_IS_FUNC (fixP->fx_addsy))
27196 {
27197 /* This would map to a bl<cond>, b<cond>,
27198 b<always> to a Thumb function. We
27199 need to force a relocation for this particular
27200 case. */
27201 newval = md_chars_to_number (buf, INSN_SIZE);
27202 fixP->fx_done = 0;
27203 }
27204 /* Fall through. */
27205
27206 case BFD_RELOC_ARM_PLT32:
27207 #endif
27208 case BFD_RELOC_ARM_PCREL_BRANCH:
27209 temp = 3;
27210 goto arm_branch_common;
27211
27212 case BFD_RELOC_ARM_PCREL_BLX:
27213
27214 temp = 1;
27215 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27216 && fixP->fx_addsy
27217 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27218 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27219 && ARM_IS_FUNC (fixP->fx_addsy))
27220 {
27221 /* Flip the blx to a bl and warn. */
27222 const char *name = S_GET_NAME (fixP->fx_addsy);
27223 newval = 0xeb000000;
27224 as_warn_where (fixP->fx_file, fixP->fx_line,
27225 _("blx to '%s' an ARM ISA state function changed to bl"),
27226 name);
27227 md_number_to_chars (buf, newval, INSN_SIZE);
27228 temp = 3;
27229 fixP->fx_done = 1;
27230 }
27231
27232 #ifdef OBJ_ELF
27233 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27234 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27235 #endif
27236
27237 arm_branch_common:
27238 /* We are going to store value (shifted right by two) in the
27239 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27240 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27241 also be clear. */
27242 if (value & temp)
27243 as_bad_where (fixP->fx_file, fixP->fx_line,
27244 _("misaligned branch destination"));
27245 if ((value & (offsetT)0xfe000000) != (offsetT)0
27246 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27247 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27248
27249 if (fixP->fx_done || !seg->use_rela_p)
27250 {
27251 newval = md_chars_to_number (buf, INSN_SIZE);
27252 newval |= (value >> 2) & 0x00ffffff;
27253 /* Set the H bit on BLX instructions. */
27254 if (temp == 1)
27255 {
27256 if (value & 2)
27257 newval |= 0x01000000;
27258 else
27259 newval &= ~0x01000000;
27260 }
27261 md_number_to_chars (buf, newval, INSN_SIZE);
27262 }
27263 break;
27264
27265 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27266 /* CBZ can only branch forward. */
27267
27268 /* Attempts to use CBZ to branch to the next instruction
27269 (which, strictly speaking, are prohibited) will be turned into
27270 no-ops.
27271
27272 FIXME: It may be better to remove the instruction completely and
27273 perform relaxation. */
27274 if (value == -2)
27275 {
27276 newval = md_chars_to_number (buf, THUMB_SIZE);
27277 newval = 0xbf00; /* NOP encoding T1 */
27278 md_number_to_chars (buf, newval, THUMB_SIZE);
27279 }
27280 else
27281 {
27282 if (value & ~0x7e)
27283 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27284
27285 if (fixP->fx_done || !seg->use_rela_p)
27286 {
27287 newval = md_chars_to_number (buf, THUMB_SIZE);
27288 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27289 md_number_to_chars (buf, newval, THUMB_SIZE);
27290 }
27291 }
27292 break;
27293
27294 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27295 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27296 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27297
27298 if (fixP->fx_done || !seg->use_rela_p)
27299 {
27300 newval = md_chars_to_number (buf, THUMB_SIZE);
27301 newval |= (value & 0x1ff) >> 1;
27302 md_number_to_chars (buf, newval, THUMB_SIZE);
27303 }
27304 break;
27305
27306 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27307 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27308 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27309
27310 if (fixP->fx_done || !seg->use_rela_p)
27311 {
27312 newval = md_chars_to_number (buf, THUMB_SIZE);
27313 newval |= (value & 0xfff) >> 1;
27314 md_number_to_chars (buf, newval, THUMB_SIZE);
27315 }
27316 break;
27317
27318 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27319 if (fixP->fx_addsy
27320 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27321 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27322 && ARM_IS_FUNC (fixP->fx_addsy)
27323 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27324 {
27325 /* Force a relocation for a branch 20 bits wide. */
27326 fixP->fx_done = 0;
27327 }
27328 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27329 as_bad_where (fixP->fx_file, fixP->fx_line,
27330 _("conditional branch out of range"));
27331
27332 if (fixP->fx_done || !seg->use_rela_p)
27333 {
27334 offsetT newval2;
27335 addressT S, J1, J2, lo, hi;
27336
27337 S = (value & 0x00100000) >> 20;
27338 J2 = (value & 0x00080000) >> 19;
27339 J1 = (value & 0x00040000) >> 18;
27340 hi = (value & 0x0003f000) >> 12;
27341 lo = (value & 0x00000ffe) >> 1;
27342
27343 newval = md_chars_to_number (buf, THUMB_SIZE);
27344 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27345 newval |= (S << 10) | hi;
27346 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27347 md_number_to_chars (buf, newval, THUMB_SIZE);
27348 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27349 }
27350 break;
27351
27352 case BFD_RELOC_THUMB_PCREL_BLX:
27353 /* If there is a blx from a thumb state function to
27354 another thumb function flip this to a bl and warn
27355 about it. */
27356
27357 if (fixP->fx_addsy
27358 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27359 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27360 && THUMB_IS_FUNC (fixP->fx_addsy))
27361 {
27362 const char *name = S_GET_NAME (fixP->fx_addsy);
27363 as_warn_where (fixP->fx_file, fixP->fx_line,
27364 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27365 name);
27366 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27367 newval = newval | 0x1000;
27368 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27369 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27370 fixP->fx_done = 1;
27371 }
27372
27373
27374 goto thumb_bl_common;
27375
27376 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27377 /* A bl from Thumb state ISA to an internal ARM state function
27378 is converted to a blx. */
27379 if (fixP->fx_addsy
27380 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27381 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27382 && ARM_IS_FUNC (fixP->fx_addsy)
27383 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27384 {
27385 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27386 newval = newval & ~0x1000;
27387 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27388 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27389 fixP->fx_done = 1;
27390 }
27391
27392 thumb_bl_common:
27393
27394 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27395 /* For a BLX instruction, make sure that the relocation is rounded up
27396 to a word boundary. This follows the semantics of the instruction
27397 which specifies that bit 1 of the target address will come from bit
27398 1 of the base address. */
27399 value = (value + 3) & ~ 3;
27400
27401 #ifdef OBJ_ELF
27402 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27403 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27404 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27405 #endif
27406
27407 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27408 {
27409 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27410 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27411 else if ((value & ~0x1ffffff)
27412 && ((value & ~0x1ffffff) != ~0x1ffffff))
27413 as_bad_where (fixP->fx_file, fixP->fx_line,
27414 _("Thumb2 branch out of range"));
27415 }
27416
27417 if (fixP->fx_done || !seg->use_rela_p)
27418 encode_thumb2_b_bl_offset (buf, value);
27419
27420 break;
27421
27422 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27423 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27424 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27425
27426 if (fixP->fx_done || !seg->use_rela_p)
27427 encode_thumb2_b_bl_offset (buf, value);
27428
27429 break;
27430
27431 case BFD_RELOC_8:
27432 if (fixP->fx_done || !seg->use_rela_p)
27433 *buf = value;
27434 break;
27435
27436 case BFD_RELOC_16:
27437 if (fixP->fx_done || !seg->use_rela_p)
27438 md_number_to_chars (buf, value, 2);
27439 break;
27440
27441 #ifdef OBJ_ELF
27442 case BFD_RELOC_ARM_TLS_CALL:
27443 case BFD_RELOC_ARM_THM_TLS_CALL:
27444 case BFD_RELOC_ARM_TLS_DESCSEQ:
27445 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27446 case BFD_RELOC_ARM_TLS_GOTDESC:
27447 case BFD_RELOC_ARM_TLS_GD32:
27448 case BFD_RELOC_ARM_TLS_LE32:
27449 case BFD_RELOC_ARM_TLS_IE32:
27450 case BFD_RELOC_ARM_TLS_LDM32:
27451 case BFD_RELOC_ARM_TLS_LDO32:
27452 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27453 break;
27454
27455 /* Same handling as above, but with the arm_fdpic guard. */
27456 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27457 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27458 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27459 if (arm_fdpic)
27460 {
27461 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27462 }
27463 else
27464 {
27465 as_bad_where (fixP->fx_file, fixP->fx_line,
27466 _("Relocation supported only in FDPIC mode"));
27467 }
27468 break;
27469
27470 case BFD_RELOC_ARM_GOT32:
27471 case BFD_RELOC_ARM_GOTOFF:
27472 break;
27473
27474 case BFD_RELOC_ARM_GOT_PREL:
27475 if (fixP->fx_done || !seg->use_rela_p)
27476 md_number_to_chars (buf, value, 4);
27477 break;
27478
27479 case BFD_RELOC_ARM_TARGET2:
27480 /* TARGET2 is not partial-inplace, so we need to write the
27481 addend here for REL targets, because it won't be written out
27482 during reloc processing later. */
27483 if (fixP->fx_done || !seg->use_rela_p)
27484 md_number_to_chars (buf, fixP->fx_offset, 4);
27485 break;
27486
27487 /* Relocations for FDPIC. */
27488 case BFD_RELOC_ARM_GOTFUNCDESC:
27489 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27490 case BFD_RELOC_ARM_FUNCDESC:
27491 if (arm_fdpic)
27492 {
27493 if (fixP->fx_done || !seg->use_rela_p)
27494 md_number_to_chars (buf, 0, 4);
27495 }
27496 else
27497 {
27498 as_bad_where (fixP->fx_file, fixP->fx_line,
27499 _("Relocation supported only in FDPIC mode"));
27500 }
27501 break;
27502 #endif
27503
27504 case BFD_RELOC_RVA:
27505 case BFD_RELOC_32:
27506 case BFD_RELOC_ARM_TARGET1:
27507 case BFD_RELOC_ARM_ROSEGREL32:
27508 case BFD_RELOC_ARM_SBREL32:
27509 case BFD_RELOC_32_PCREL:
27510 #ifdef TE_PE
27511 case BFD_RELOC_32_SECREL:
27512 #endif
27513 if (fixP->fx_done || !seg->use_rela_p)
27514 #ifdef TE_WINCE
27515 /* For WinCE we only do this for pcrel fixups. */
27516 if (fixP->fx_done || fixP->fx_pcrel)
27517 #endif
27518 md_number_to_chars (buf, value, 4);
27519 break;
27520
27521 #ifdef OBJ_ELF
27522 case BFD_RELOC_ARM_PREL31:
27523 if (fixP->fx_done || !seg->use_rela_p)
27524 {
27525 newval = md_chars_to_number (buf, 4) & 0x80000000;
27526 if ((value ^ (value >> 1)) & 0x40000000)
27527 {
27528 as_bad_where (fixP->fx_file, fixP->fx_line,
27529 _("rel31 relocation overflow"));
27530 }
27531 newval |= value & 0x7fffffff;
27532 md_number_to_chars (buf, newval, 4);
27533 }
27534 break;
27535 #endif
27536
27537 case BFD_RELOC_ARM_CP_OFF_IMM:
27538 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27539 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27540 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27541 newval = md_chars_to_number (buf, INSN_SIZE);
27542 else
27543 newval = get_thumb32_insn (buf);
27544 if ((newval & 0x0f200f00) == 0x0d000900)
27545 {
27546 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27547 has permitted values that are multiples of 2, in the range 0
27548 to 510. */
27549 if (value < -510 || value > 510 || (value & 1))
27550 as_bad_where (fixP->fx_file, fixP->fx_line,
27551 _("co-processor offset out of range"));
27552 }
27553 else if ((newval & 0xfe001f80) == 0xec000f80)
27554 {
27555 if (value < -511 || value > 512 || (value & 3))
27556 as_bad_where (fixP->fx_file, fixP->fx_line,
27557 _("co-processor offset out of range"));
27558 }
27559 else if (value < -1023 || value > 1023 || (value & 3))
27560 as_bad_where (fixP->fx_file, fixP->fx_line,
27561 _("co-processor offset out of range"));
27562 cp_off_common:
27563 sign = value > 0;
27564 if (value < 0)
27565 value = -value;
27566 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27567 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27568 newval = md_chars_to_number (buf, INSN_SIZE);
27569 else
27570 newval = get_thumb32_insn (buf);
27571 if (value == 0)
27572 {
27573 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27574 newval &= 0xffffff80;
27575 else
27576 newval &= 0xffffff00;
27577 }
27578 else
27579 {
27580 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27581 newval &= 0xff7fff80;
27582 else
27583 newval &= 0xff7fff00;
27584 if ((newval & 0x0f200f00) == 0x0d000900)
27585 {
27586 /* This is a fp16 vstr/vldr.
27587
27588 It requires the immediate offset in the instruction is shifted
27589 left by 1 to be a half-word offset.
27590
27591 Here, left shift by 1 first, and later right shift by 2
27592 should get the right offset. */
27593 value <<= 1;
27594 }
27595 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27596 }
27597 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27598 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27599 md_number_to_chars (buf, newval, INSN_SIZE);
27600 else
27601 put_thumb32_insn (buf, newval);
27602 break;
27603
27604 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27605 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27606 if (value < -255 || value > 255)
27607 as_bad_where (fixP->fx_file, fixP->fx_line,
27608 _("co-processor offset out of range"));
27609 value *= 4;
27610 goto cp_off_common;
27611
27612 case BFD_RELOC_ARM_THUMB_OFFSET:
27613 newval = md_chars_to_number (buf, THUMB_SIZE);
27614 /* Exactly what ranges, and where the offset is inserted depends
27615 on the type of instruction, we can establish this from the
27616 top 4 bits. */
27617 switch (newval >> 12)
27618 {
27619 case 4: /* PC load. */
27620 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27621 forced to zero for these loads; md_pcrel_from has already
27622 compensated for this. */
27623 if (value & 3)
27624 as_bad_where (fixP->fx_file, fixP->fx_line,
27625 _("invalid offset, target not word aligned (0x%08lX)"),
27626 (((unsigned long) fixP->fx_frag->fr_address
27627 + (unsigned long) fixP->fx_where) & ~3)
27628 + (unsigned long) value);
27629
27630 if (value & ~0x3fc)
27631 as_bad_where (fixP->fx_file, fixP->fx_line,
27632 _("invalid offset, value too big (0x%08lX)"),
27633 (long) value);
27634
27635 newval |= value >> 2;
27636 break;
27637
27638 case 9: /* SP load/store. */
27639 if (value & ~0x3fc)
27640 as_bad_where (fixP->fx_file, fixP->fx_line,
27641 _("invalid offset, value too big (0x%08lX)"),
27642 (long) value);
27643 newval |= value >> 2;
27644 break;
27645
27646 case 6: /* Word load/store. */
27647 if (value & ~0x7c)
27648 as_bad_where (fixP->fx_file, fixP->fx_line,
27649 _("invalid offset, value too big (0x%08lX)"),
27650 (long) value);
27651 newval |= value << 4; /* 6 - 2. */
27652 break;
27653
27654 case 7: /* Byte load/store. */
27655 if (value & ~0x1f)
27656 as_bad_where (fixP->fx_file, fixP->fx_line,
27657 _("invalid offset, value too big (0x%08lX)"),
27658 (long) value);
27659 newval |= value << 6;
27660 break;
27661
27662 case 8: /* Halfword load/store. */
27663 if (value & ~0x3e)
27664 as_bad_where (fixP->fx_file, fixP->fx_line,
27665 _("invalid offset, value too big (0x%08lX)"),
27666 (long) value);
27667 newval |= value << 5; /* 6 - 1. */
27668 break;
27669
27670 default:
27671 as_bad_where (fixP->fx_file, fixP->fx_line,
27672 "Unable to process relocation for thumb opcode: %lx",
27673 (unsigned long) newval);
27674 break;
27675 }
27676 md_number_to_chars (buf, newval, THUMB_SIZE);
27677 break;
27678
27679 case BFD_RELOC_ARM_THUMB_ADD:
27680 /* This is a complicated relocation, since we use it for all of
27681 the following immediate relocations:
27682
27683 3bit ADD/SUB
27684 8bit ADD/SUB
27685 9bit ADD/SUB SP word-aligned
27686 10bit ADD PC/SP word-aligned
27687
27688 The type of instruction being processed is encoded in the
27689 instruction field:
27690
27691 0x8000 SUB
27692 0x00F0 Rd
27693 0x000F Rs
27694 */
27695 newval = md_chars_to_number (buf, THUMB_SIZE);
27696 {
27697 int rd = (newval >> 4) & 0xf;
27698 int rs = newval & 0xf;
27699 int subtract = !!(newval & 0x8000);
27700
27701 /* Check for HI regs, only very restricted cases allowed:
27702 Adjusting SP, and using PC or SP to get an address. */
27703 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27704 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27705 as_bad_where (fixP->fx_file, fixP->fx_line,
27706 _("invalid Hi register with immediate"));
27707
27708 /* If value is negative, choose the opposite instruction. */
27709 if (value < 0)
27710 {
27711 value = -value;
27712 subtract = !subtract;
27713 if (value < 0)
27714 as_bad_where (fixP->fx_file, fixP->fx_line,
27715 _("immediate value out of range"));
27716 }
27717
27718 if (rd == REG_SP)
27719 {
27720 if (value & ~0x1fc)
27721 as_bad_where (fixP->fx_file, fixP->fx_line,
27722 _("invalid immediate for stack address calculation"));
27723 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27724 newval |= value >> 2;
27725 }
27726 else if (rs == REG_PC || rs == REG_SP)
27727 {
27728 /* PR gas/18541. If the addition is for a defined symbol
27729 within range of an ADR instruction then accept it. */
27730 if (subtract
27731 && value == 4
27732 && fixP->fx_addsy != NULL)
27733 {
27734 subtract = 0;
27735
27736 if (! S_IS_DEFINED (fixP->fx_addsy)
27737 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27738 || S_IS_WEAK (fixP->fx_addsy))
27739 {
27740 as_bad_where (fixP->fx_file, fixP->fx_line,
27741 _("address calculation needs a strongly defined nearby symbol"));
27742 }
27743 else
27744 {
27745 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27746
27747 /* Round up to the next 4-byte boundary. */
27748 if (v & 3)
27749 v = (v + 3) & ~ 3;
27750 else
27751 v += 4;
27752 v = S_GET_VALUE (fixP->fx_addsy) - v;
27753
27754 if (v & ~0x3fc)
27755 {
27756 as_bad_where (fixP->fx_file, fixP->fx_line,
27757 _("symbol too far away"));
27758 }
27759 else
27760 {
27761 fixP->fx_done = 1;
27762 value = v;
27763 }
27764 }
27765 }
27766
27767 if (subtract || value & ~0x3fc)
27768 as_bad_where (fixP->fx_file, fixP->fx_line,
27769 _("invalid immediate for address calculation (value = 0x%08lX)"),
27770 (unsigned long) (subtract ? - value : value));
27771 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27772 newval |= rd << 8;
27773 newval |= value >> 2;
27774 }
27775 else if (rs == rd)
27776 {
27777 if (value & ~0xff)
27778 as_bad_where (fixP->fx_file, fixP->fx_line,
27779 _("immediate value out of range"));
27780 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27781 newval |= (rd << 8) | value;
27782 }
27783 else
27784 {
27785 if (value & ~0x7)
27786 as_bad_where (fixP->fx_file, fixP->fx_line,
27787 _("immediate value out of range"));
27788 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27789 newval |= rd | (rs << 3) | (value << 6);
27790 }
27791 }
27792 md_number_to_chars (buf, newval, THUMB_SIZE);
27793 break;
27794
27795 case BFD_RELOC_ARM_THUMB_IMM:
27796 newval = md_chars_to_number (buf, THUMB_SIZE);
27797 if (value < 0 || value > 255)
27798 as_bad_where (fixP->fx_file, fixP->fx_line,
27799 _("invalid immediate: %ld is out of range"),
27800 (long) value);
27801 newval |= value;
27802 md_number_to_chars (buf, newval, THUMB_SIZE);
27803 break;
27804
27805 case BFD_RELOC_ARM_THUMB_SHIFT:
27806 /* 5bit shift value (0..32). LSL cannot take 32. */
27807 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27808 temp = newval & 0xf800;
27809 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27810 as_bad_where (fixP->fx_file, fixP->fx_line,
27811 _("invalid shift value: %ld"), (long) value);
27812 /* Shifts of zero must be encoded as LSL. */
27813 if (value == 0)
27814 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27815 /* Shifts of 32 are encoded as zero. */
27816 else if (value == 32)
27817 value = 0;
27818 newval |= value << 6;
27819 md_number_to_chars (buf, newval, THUMB_SIZE);
27820 break;
27821
27822 case BFD_RELOC_VTABLE_INHERIT:
27823 case BFD_RELOC_VTABLE_ENTRY:
27824 fixP->fx_done = 0;
27825 return;
27826
27827 case BFD_RELOC_ARM_MOVW:
27828 case BFD_RELOC_ARM_MOVT:
27829 case BFD_RELOC_ARM_THUMB_MOVW:
27830 case BFD_RELOC_ARM_THUMB_MOVT:
27831 if (fixP->fx_done || !seg->use_rela_p)
27832 {
27833 /* REL format relocations are limited to a 16-bit addend. */
27834 if (!fixP->fx_done)
27835 {
27836 if (value < -0x8000 || value > 0x7fff)
27837 as_bad_where (fixP->fx_file, fixP->fx_line,
27838 _("offset out of range"));
27839 }
27840 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27841 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27842 {
27843 value >>= 16;
27844 }
27845
27846 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27847 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27848 {
27849 newval = get_thumb32_insn (buf);
27850 newval &= 0xfbf08f00;
27851 newval |= (value & 0xf000) << 4;
27852 newval |= (value & 0x0800) << 15;
27853 newval |= (value & 0x0700) << 4;
27854 newval |= (value & 0x00ff);
27855 put_thumb32_insn (buf, newval);
27856 }
27857 else
27858 {
27859 newval = md_chars_to_number (buf, 4);
27860 newval &= 0xfff0f000;
27861 newval |= value & 0x0fff;
27862 newval |= (value & 0xf000) << 4;
27863 md_number_to_chars (buf, newval, 4);
27864 }
27865 }
27866 return;
27867
27868 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27869 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27870 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27871 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27872 gas_assert (!fixP->fx_done);
27873 {
27874 bfd_vma insn;
27875 bfd_boolean is_mov;
27876 bfd_vma encoded_addend = value;
27877
27878 /* Check that addend can be encoded in instruction. */
27879 if (!seg->use_rela_p && (value < 0 || value > 255))
27880 as_bad_where (fixP->fx_file, fixP->fx_line,
27881 _("the offset 0x%08lX is not representable"),
27882 (unsigned long) encoded_addend);
27883
27884 /* Extract the instruction. */
27885 insn = md_chars_to_number (buf, THUMB_SIZE);
27886 is_mov = (insn & 0xf800) == 0x2000;
27887
27888 /* Encode insn. */
27889 if (is_mov)
27890 {
27891 if (!seg->use_rela_p)
27892 insn |= encoded_addend;
27893 }
27894 else
27895 {
27896 int rd, rs;
27897
27898 /* Extract the instruction. */
27899 /* Encoding is the following
27900 0x8000 SUB
27901 0x00F0 Rd
27902 0x000F Rs
27903 */
27904 /* The following conditions must be true :
27905 - ADD
27906 - Rd == Rs
27907 - Rd <= 7
27908 */
27909 rd = (insn >> 4) & 0xf;
27910 rs = insn & 0xf;
27911 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27912 as_bad_where (fixP->fx_file, fixP->fx_line,
27913 _("Unable to process relocation for thumb opcode: %lx"),
27914 (unsigned long) insn);
27915
27916 /* Encode as ADD immediate8 thumb 1 code. */
27917 insn = 0x3000 | (rd << 8);
27918
27919 /* Place the encoded addend into the first 8 bits of the
27920 instruction. */
27921 if (!seg->use_rela_p)
27922 insn |= encoded_addend;
27923 }
27924
27925 /* Update the instruction. */
27926 md_number_to_chars (buf, insn, THUMB_SIZE);
27927 }
27928 break;
27929
27930 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27931 case BFD_RELOC_ARM_ALU_PC_G0:
27932 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27933 case BFD_RELOC_ARM_ALU_PC_G1:
27934 case BFD_RELOC_ARM_ALU_PC_G2:
27935 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27936 case BFD_RELOC_ARM_ALU_SB_G0:
27937 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27938 case BFD_RELOC_ARM_ALU_SB_G1:
27939 case BFD_RELOC_ARM_ALU_SB_G2:
27940 gas_assert (!fixP->fx_done);
27941 if (!seg->use_rela_p)
27942 {
27943 bfd_vma insn;
27944 bfd_vma encoded_addend;
27945 bfd_vma addend_abs = llabs (value);
27946
27947 /* Check that the absolute value of the addend can be
27948 expressed as an 8-bit constant plus a rotation. */
27949 encoded_addend = encode_arm_immediate (addend_abs);
27950 if (encoded_addend == (unsigned int) FAIL)
27951 as_bad_where (fixP->fx_file, fixP->fx_line,
27952 _("the offset 0x%08lX is not representable"),
27953 (unsigned long) addend_abs);
27954
27955 /* Extract the instruction. */
27956 insn = md_chars_to_number (buf, INSN_SIZE);
27957
27958 /* If the addend is positive, use an ADD instruction.
27959 Otherwise use a SUB. Take care not to destroy the S bit. */
27960 insn &= 0xff1fffff;
27961 if (value < 0)
27962 insn |= 1 << 22;
27963 else
27964 insn |= 1 << 23;
27965
27966 /* Place the encoded addend into the first 12 bits of the
27967 instruction. */
27968 insn &= 0xfffff000;
27969 insn |= encoded_addend;
27970
27971 /* Update the instruction. */
27972 md_number_to_chars (buf, insn, INSN_SIZE);
27973 }
27974 break;
27975
27976 case BFD_RELOC_ARM_LDR_PC_G0:
27977 case BFD_RELOC_ARM_LDR_PC_G1:
27978 case BFD_RELOC_ARM_LDR_PC_G2:
27979 case BFD_RELOC_ARM_LDR_SB_G0:
27980 case BFD_RELOC_ARM_LDR_SB_G1:
27981 case BFD_RELOC_ARM_LDR_SB_G2:
27982 gas_assert (!fixP->fx_done);
27983 if (!seg->use_rela_p)
27984 {
27985 bfd_vma insn;
27986 bfd_vma addend_abs = llabs (value);
27987
27988 /* Check that the absolute value of the addend can be
27989 encoded in 12 bits. */
27990 if (addend_abs >= 0x1000)
27991 as_bad_where (fixP->fx_file, fixP->fx_line,
27992 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27993 (unsigned long) addend_abs);
27994
27995 /* Extract the instruction. */
27996 insn = md_chars_to_number (buf, INSN_SIZE);
27997
27998 /* If the addend is negative, clear bit 23 of the instruction.
27999 Otherwise set it. */
28000 if (value < 0)
28001 insn &= ~(1 << 23);
28002 else
28003 insn |= 1 << 23;
28004
28005 /* Place the absolute value of the addend into the first 12 bits
28006 of the instruction. */
28007 insn &= 0xfffff000;
28008 insn |= addend_abs;
28009
28010 /* Update the instruction. */
28011 md_number_to_chars (buf, insn, INSN_SIZE);
28012 }
28013 break;
28014
28015 case BFD_RELOC_ARM_LDRS_PC_G0:
28016 case BFD_RELOC_ARM_LDRS_PC_G1:
28017 case BFD_RELOC_ARM_LDRS_PC_G2:
28018 case BFD_RELOC_ARM_LDRS_SB_G0:
28019 case BFD_RELOC_ARM_LDRS_SB_G1:
28020 case BFD_RELOC_ARM_LDRS_SB_G2:
28021 gas_assert (!fixP->fx_done);
28022 if (!seg->use_rela_p)
28023 {
28024 bfd_vma insn;
28025 bfd_vma addend_abs = llabs (value);
28026
28027 /* Check that the absolute value of the addend can be
28028 encoded in 8 bits. */
28029 if (addend_abs >= 0x100)
28030 as_bad_where (fixP->fx_file, fixP->fx_line,
28031 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28032 (unsigned long) addend_abs);
28033
28034 /* Extract the instruction. */
28035 insn = md_chars_to_number (buf, INSN_SIZE);
28036
28037 /* If the addend is negative, clear bit 23 of the instruction.
28038 Otherwise set it. */
28039 if (value < 0)
28040 insn &= ~(1 << 23);
28041 else
28042 insn |= 1 << 23;
28043
28044 /* Place the first four bits of the absolute value of the addend
28045 into the first 4 bits of the instruction, and the remaining
28046 four into bits 8 .. 11. */
28047 insn &= 0xfffff0f0;
28048 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28049
28050 /* Update the instruction. */
28051 md_number_to_chars (buf, insn, INSN_SIZE);
28052 }
28053 break;
28054
28055 case BFD_RELOC_ARM_LDC_PC_G0:
28056 case BFD_RELOC_ARM_LDC_PC_G1:
28057 case BFD_RELOC_ARM_LDC_PC_G2:
28058 case BFD_RELOC_ARM_LDC_SB_G0:
28059 case BFD_RELOC_ARM_LDC_SB_G1:
28060 case BFD_RELOC_ARM_LDC_SB_G2:
28061 gas_assert (!fixP->fx_done);
28062 if (!seg->use_rela_p)
28063 {
28064 bfd_vma insn;
28065 bfd_vma addend_abs = llabs (value);
28066
28067 /* Check that the absolute value of the addend is a multiple of
28068 four and, when divided by four, fits in 8 bits. */
28069 if (addend_abs & 0x3)
28070 as_bad_where (fixP->fx_file, fixP->fx_line,
28071 _("bad offset 0x%08lX (must be word-aligned)"),
28072 (unsigned long) addend_abs);
28073
28074 if ((addend_abs >> 2) > 0xff)
28075 as_bad_where (fixP->fx_file, fixP->fx_line,
28076 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28077 (unsigned long) addend_abs);
28078
28079 /* Extract the instruction. */
28080 insn = md_chars_to_number (buf, INSN_SIZE);
28081
28082 /* If the addend is negative, clear bit 23 of the instruction.
28083 Otherwise set it. */
28084 if (value < 0)
28085 insn &= ~(1 << 23);
28086 else
28087 insn |= 1 << 23;
28088
28089 /* Place the addend (divided by four) into the first eight
28090 bits of the instruction. */
28091 insn &= 0xfffffff0;
28092 insn |= addend_abs >> 2;
28093
28094 /* Update the instruction. */
28095 md_number_to_chars (buf, insn, INSN_SIZE);
28096 }
28097 break;
28098
28099 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28100 if (fixP->fx_addsy
28101 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28102 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28103 && ARM_IS_FUNC (fixP->fx_addsy)
28104 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28105 {
28106 /* Force a relocation for a branch 5 bits wide. */
28107 fixP->fx_done = 0;
28108 }
28109 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28110 as_bad_where (fixP->fx_file, fixP->fx_line,
28111 BAD_BRANCH_OFF);
28112
28113 if (fixP->fx_done || !seg->use_rela_p)
28114 {
28115 addressT boff = value >> 1;
28116
28117 newval = md_chars_to_number (buf, THUMB_SIZE);
28118 newval |= (boff << 7);
28119 md_number_to_chars (buf, newval, THUMB_SIZE);
28120 }
28121 break;
28122
28123 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28124 if (fixP->fx_addsy
28125 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28126 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28127 && ARM_IS_FUNC (fixP->fx_addsy)
28128 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28129 {
28130 fixP->fx_done = 0;
28131 }
28132 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28133 as_bad_where (fixP->fx_file, fixP->fx_line,
28134 _("branch out of range"));
28135
28136 if (fixP->fx_done || !seg->use_rela_p)
28137 {
28138 newval = md_chars_to_number (buf, THUMB_SIZE);
28139
28140 addressT boff = ((newval & 0x0780) >> 7) << 1;
28141 addressT diff = value - boff;
28142
28143 if (diff == 4)
28144 {
28145 newval |= 1 << 1; /* T bit. */
28146 }
28147 else if (diff != 2)
28148 {
28149 as_bad_where (fixP->fx_file, fixP->fx_line,
28150 _("out of range label-relative fixup value"));
28151 }
28152 md_number_to_chars (buf, newval, THUMB_SIZE);
28153 }
28154 break;
28155
28156 case BFD_RELOC_ARM_THUMB_BF17:
28157 if (fixP->fx_addsy
28158 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28159 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28160 && ARM_IS_FUNC (fixP->fx_addsy)
28161 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28162 {
28163 /* Force a relocation for a branch 17 bits wide. */
28164 fixP->fx_done = 0;
28165 }
28166
28167 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28168 as_bad_where (fixP->fx_file, fixP->fx_line,
28169 BAD_BRANCH_OFF);
28170
28171 if (fixP->fx_done || !seg->use_rela_p)
28172 {
28173 offsetT newval2;
28174 addressT immA, immB, immC;
28175
28176 immA = (value & 0x0001f000) >> 12;
28177 immB = (value & 0x00000ffc) >> 2;
28178 immC = (value & 0x00000002) >> 1;
28179
28180 newval = md_chars_to_number (buf, THUMB_SIZE);
28181 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28182 newval |= immA;
28183 newval2 |= (immC << 11) | (immB << 1);
28184 md_number_to_chars (buf, newval, THUMB_SIZE);
28185 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28186 }
28187 break;
28188
28189 case BFD_RELOC_ARM_THUMB_BF19:
28190 if (fixP->fx_addsy
28191 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28192 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28193 && ARM_IS_FUNC (fixP->fx_addsy)
28194 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28195 {
28196 /* Force a relocation for a branch 19 bits wide. */
28197 fixP->fx_done = 0;
28198 }
28199
28200 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28201 as_bad_where (fixP->fx_file, fixP->fx_line,
28202 BAD_BRANCH_OFF);
28203
28204 if (fixP->fx_done || !seg->use_rela_p)
28205 {
28206 offsetT newval2;
28207 addressT immA, immB, immC;
28208
28209 immA = (value & 0x0007f000) >> 12;
28210 immB = (value & 0x00000ffc) >> 2;
28211 immC = (value & 0x00000002) >> 1;
28212
28213 newval = md_chars_to_number (buf, THUMB_SIZE);
28214 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28215 newval |= immA;
28216 newval2 |= (immC << 11) | (immB << 1);
28217 md_number_to_chars (buf, newval, THUMB_SIZE);
28218 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28219 }
28220 break;
28221
28222 case BFD_RELOC_ARM_THUMB_BF13:
28223 if (fixP->fx_addsy
28224 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28225 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28226 && ARM_IS_FUNC (fixP->fx_addsy)
28227 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28228 {
28229 /* Force a relocation for a branch 13 bits wide. */
28230 fixP->fx_done = 0;
28231 }
28232
28233 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28234 as_bad_where (fixP->fx_file, fixP->fx_line,
28235 BAD_BRANCH_OFF);
28236
28237 if (fixP->fx_done || !seg->use_rela_p)
28238 {
28239 offsetT newval2;
28240 addressT immA, immB, immC;
28241
28242 immA = (value & 0x00001000) >> 12;
28243 immB = (value & 0x00000ffc) >> 2;
28244 immC = (value & 0x00000002) >> 1;
28245
28246 newval = md_chars_to_number (buf, THUMB_SIZE);
28247 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28248 newval |= immA;
28249 newval2 |= (immC << 11) | (immB << 1);
28250 md_number_to_chars (buf, newval, THUMB_SIZE);
28251 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28252 }
28253 break;
28254
28255 case BFD_RELOC_ARM_THUMB_LOOP12:
28256 if (fixP->fx_addsy
28257 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28258 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28259 && ARM_IS_FUNC (fixP->fx_addsy)
28260 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28261 {
28262 /* Force a relocation for a branch 12 bits wide. */
28263 fixP->fx_done = 0;
28264 }
28265
28266 bfd_vma insn = get_thumb32_insn (buf);
28267 /* le lr, <label> or le <label> */
28268 if (((insn & 0xffffffff) == 0xf00fc001)
28269 || ((insn & 0xffffffff) == 0xf02fc001))
28270 value = -value;
28271
28272 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28273 as_bad_where (fixP->fx_file, fixP->fx_line,
28274 BAD_BRANCH_OFF);
28275 if (fixP->fx_done || !seg->use_rela_p)
28276 {
28277 addressT imml, immh;
28278
28279 immh = (value & 0x00000ffc) >> 2;
28280 imml = (value & 0x00000002) >> 1;
28281
28282 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28283 newval |= (imml << 11) | (immh << 1);
28284 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28285 }
28286 break;
28287
28288 case BFD_RELOC_ARM_V4BX:
28289 /* This will need to go in the object file. */
28290 fixP->fx_done = 0;
28291 break;
28292
28293 case BFD_RELOC_UNUSED:
28294 default:
28295 as_bad_where (fixP->fx_file, fixP->fx_line,
28296 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28297 }
28298 }
28299
28300 /* Translate internal representation of relocation info to BFD target
28301 format. */
28302
28303 arelent *
28304 tc_gen_reloc (asection *section, fixS *fixp)
28305 {
28306 arelent * reloc;
28307 bfd_reloc_code_real_type code;
28308
28309 reloc = XNEW (arelent);
28310
28311 reloc->sym_ptr_ptr = XNEW (asymbol *);
28312 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28313 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28314
28315 if (fixp->fx_pcrel)
28316 {
28317 if (section->use_rela_p)
28318 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28319 else
28320 fixp->fx_offset = reloc->address;
28321 }
28322 reloc->addend = fixp->fx_offset;
28323
28324 switch (fixp->fx_r_type)
28325 {
28326 case BFD_RELOC_8:
28327 if (fixp->fx_pcrel)
28328 {
28329 code = BFD_RELOC_8_PCREL;
28330 break;
28331 }
28332 /* Fall through. */
28333
28334 case BFD_RELOC_16:
28335 if (fixp->fx_pcrel)
28336 {
28337 code = BFD_RELOC_16_PCREL;
28338 break;
28339 }
28340 /* Fall through. */
28341
28342 case BFD_RELOC_32:
28343 if (fixp->fx_pcrel)
28344 {
28345 code = BFD_RELOC_32_PCREL;
28346 break;
28347 }
28348 /* Fall through. */
28349
28350 case BFD_RELOC_ARM_MOVW:
28351 if (fixp->fx_pcrel)
28352 {
28353 code = BFD_RELOC_ARM_MOVW_PCREL;
28354 break;
28355 }
28356 /* Fall through. */
28357
28358 case BFD_RELOC_ARM_MOVT:
28359 if (fixp->fx_pcrel)
28360 {
28361 code = BFD_RELOC_ARM_MOVT_PCREL;
28362 break;
28363 }
28364 /* Fall through. */
28365
28366 case BFD_RELOC_ARM_THUMB_MOVW:
28367 if (fixp->fx_pcrel)
28368 {
28369 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28370 break;
28371 }
28372 /* Fall through. */
28373
28374 case BFD_RELOC_ARM_THUMB_MOVT:
28375 if (fixp->fx_pcrel)
28376 {
28377 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28378 break;
28379 }
28380 /* Fall through. */
28381
28382 case BFD_RELOC_NONE:
28383 case BFD_RELOC_ARM_PCREL_BRANCH:
28384 case BFD_RELOC_ARM_PCREL_BLX:
28385 case BFD_RELOC_RVA:
28386 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28387 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28388 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28389 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28390 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28391 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28392 case BFD_RELOC_VTABLE_ENTRY:
28393 case BFD_RELOC_VTABLE_INHERIT:
28394 #ifdef TE_PE
28395 case BFD_RELOC_32_SECREL:
28396 #endif
28397 code = fixp->fx_r_type;
28398 break;
28399
28400 case BFD_RELOC_THUMB_PCREL_BLX:
28401 #ifdef OBJ_ELF
28402 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28403 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28404 else
28405 #endif
28406 code = BFD_RELOC_THUMB_PCREL_BLX;
28407 break;
28408
28409 case BFD_RELOC_ARM_LITERAL:
28410 case BFD_RELOC_ARM_HWLITERAL:
28411 /* If this is called then the a literal has
28412 been referenced across a section boundary. */
28413 as_bad_where (fixp->fx_file, fixp->fx_line,
28414 _("literal referenced across section boundary"));
28415 return NULL;
28416
28417 #ifdef OBJ_ELF
28418 case BFD_RELOC_ARM_TLS_CALL:
28419 case BFD_RELOC_ARM_THM_TLS_CALL:
28420 case BFD_RELOC_ARM_TLS_DESCSEQ:
28421 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28422 case BFD_RELOC_ARM_GOT32:
28423 case BFD_RELOC_ARM_GOTOFF:
28424 case BFD_RELOC_ARM_GOT_PREL:
28425 case BFD_RELOC_ARM_PLT32:
28426 case BFD_RELOC_ARM_TARGET1:
28427 case BFD_RELOC_ARM_ROSEGREL32:
28428 case BFD_RELOC_ARM_SBREL32:
28429 case BFD_RELOC_ARM_PREL31:
28430 case BFD_RELOC_ARM_TARGET2:
28431 case BFD_RELOC_ARM_TLS_LDO32:
28432 case BFD_RELOC_ARM_PCREL_CALL:
28433 case BFD_RELOC_ARM_PCREL_JUMP:
28434 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28435 case BFD_RELOC_ARM_ALU_PC_G0:
28436 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28437 case BFD_RELOC_ARM_ALU_PC_G1:
28438 case BFD_RELOC_ARM_ALU_PC_G2:
28439 case BFD_RELOC_ARM_LDR_PC_G0:
28440 case BFD_RELOC_ARM_LDR_PC_G1:
28441 case BFD_RELOC_ARM_LDR_PC_G2:
28442 case BFD_RELOC_ARM_LDRS_PC_G0:
28443 case BFD_RELOC_ARM_LDRS_PC_G1:
28444 case BFD_RELOC_ARM_LDRS_PC_G2:
28445 case BFD_RELOC_ARM_LDC_PC_G0:
28446 case BFD_RELOC_ARM_LDC_PC_G1:
28447 case BFD_RELOC_ARM_LDC_PC_G2:
28448 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28449 case BFD_RELOC_ARM_ALU_SB_G0:
28450 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28451 case BFD_RELOC_ARM_ALU_SB_G1:
28452 case BFD_RELOC_ARM_ALU_SB_G2:
28453 case BFD_RELOC_ARM_LDR_SB_G0:
28454 case BFD_RELOC_ARM_LDR_SB_G1:
28455 case BFD_RELOC_ARM_LDR_SB_G2:
28456 case BFD_RELOC_ARM_LDRS_SB_G0:
28457 case BFD_RELOC_ARM_LDRS_SB_G1:
28458 case BFD_RELOC_ARM_LDRS_SB_G2:
28459 case BFD_RELOC_ARM_LDC_SB_G0:
28460 case BFD_RELOC_ARM_LDC_SB_G1:
28461 case BFD_RELOC_ARM_LDC_SB_G2:
28462 case BFD_RELOC_ARM_V4BX:
28463 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28464 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28465 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28466 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28467 case BFD_RELOC_ARM_GOTFUNCDESC:
28468 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28469 case BFD_RELOC_ARM_FUNCDESC:
28470 case BFD_RELOC_ARM_THUMB_BF17:
28471 case BFD_RELOC_ARM_THUMB_BF19:
28472 case BFD_RELOC_ARM_THUMB_BF13:
28473 code = fixp->fx_r_type;
28474 break;
28475
28476 case BFD_RELOC_ARM_TLS_GOTDESC:
28477 case BFD_RELOC_ARM_TLS_GD32:
28478 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28479 case BFD_RELOC_ARM_TLS_LE32:
28480 case BFD_RELOC_ARM_TLS_IE32:
28481 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28482 case BFD_RELOC_ARM_TLS_LDM32:
28483 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28484 /* BFD will include the symbol's address in the addend.
28485 But we don't want that, so subtract it out again here. */
28486 if (!S_IS_COMMON (fixp->fx_addsy))
28487 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28488 code = fixp->fx_r_type;
28489 break;
28490 #endif
28491
28492 case BFD_RELOC_ARM_IMMEDIATE:
28493 as_bad_where (fixp->fx_file, fixp->fx_line,
28494 _("internal relocation (type: IMMEDIATE) not fixed up"));
28495 return NULL;
28496
28497 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28498 as_bad_where (fixp->fx_file, fixp->fx_line,
28499 _("ADRL used for a symbol not defined in the same file"));
28500 return NULL;
28501
28502 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28503 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28504 case BFD_RELOC_ARM_THUMB_LOOP12:
28505 as_bad_where (fixp->fx_file, fixp->fx_line,
28506 _("%s used for a symbol not defined in the same file"),
28507 bfd_get_reloc_code_name (fixp->fx_r_type));
28508 return NULL;
28509
28510 case BFD_RELOC_ARM_OFFSET_IMM:
28511 if (section->use_rela_p)
28512 {
28513 code = fixp->fx_r_type;
28514 break;
28515 }
28516
28517 if (fixp->fx_addsy != NULL
28518 && !S_IS_DEFINED (fixp->fx_addsy)
28519 && S_IS_LOCAL (fixp->fx_addsy))
28520 {
28521 as_bad_where (fixp->fx_file, fixp->fx_line,
28522 _("undefined local label `%s'"),
28523 S_GET_NAME (fixp->fx_addsy));
28524 return NULL;
28525 }
28526
28527 as_bad_where (fixp->fx_file, fixp->fx_line,
28528 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28529 return NULL;
28530
28531 default:
28532 {
28533 const char * type;
28534
28535 switch (fixp->fx_r_type)
28536 {
28537 case BFD_RELOC_NONE: type = "NONE"; break;
28538 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28539 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28540 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28541 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28542 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28543 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28544 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28545 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28546 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28547 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28548 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28549 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28550 default: type = _("<unknown>"); break;
28551 }
28552 as_bad_where (fixp->fx_file, fixp->fx_line,
28553 _("cannot represent %s relocation in this object file format"),
28554 type);
28555 return NULL;
28556 }
28557 }
28558
28559 #ifdef OBJ_ELF
28560 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28561 && GOT_symbol
28562 && fixp->fx_addsy == GOT_symbol)
28563 {
28564 code = BFD_RELOC_ARM_GOTPC;
28565 reloc->addend = fixp->fx_offset = reloc->address;
28566 }
28567 #endif
28568
28569 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28570
28571 if (reloc->howto == NULL)
28572 {
28573 as_bad_where (fixp->fx_file, fixp->fx_line,
28574 _("cannot represent %s relocation in this object file format"),
28575 bfd_get_reloc_code_name (code));
28576 return NULL;
28577 }
28578
28579 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28580 vtable entry to be used in the relocation's section offset. */
28581 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28582 reloc->address = fixp->fx_offset;
28583
28584 return reloc;
28585 }
28586
28587 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28588
28589 void
28590 cons_fix_new_arm (fragS * frag,
28591 int where,
28592 int size,
28593 expressionS * exp,
28594 bfd_reloc_code_real_type reloc)
28595 {
28596 int pcrel = 0;
28597
28598 /* Pick a reloc.
28599 FIXME: @@ Should look at CPU word size. */
28600 switch (size)
28601 {
28602 case 1:
28603 reloc = BFD_RELOC_8;
28604 break;
28605 case 2:
28606 reloc = BFD_RELOC_16;
28607 break;
28608 case 4:
28609 default:
28610 reloc = BFD_RELOC_32;
28611 break;
28612 case 8:
28613 reloc = BFD_RELOC_64;
28614 break;
28615 }
28616
28617 #ifdef TE_PE
28618 if (exp->X_op == O_secrel)
28619 {
28620 exp->X_op = O_symbol;
28621 reloc = BFD_RELOC_32_SECREL;
28622 }
28623 #endif
28624
28625 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28626 }
28627
28628 #if defined (OBJ_COFF)
28629 void
28630 arm_validate_fix (fixS * fixP)
28631 {
28632 /* If the destination of the branch is a defined symbol which does not have
28633 the THUMB_FUNC attribute, then we must be calling a function which has
28634 the (interfacearm) attribute. We look for the Thumb entry point to that
28635 function and change the branch to refer to that function instead. */
28636 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28637 && fixP->fx_addsy != NULL
28638 && S_IS_DEFINED (fixP->fx_addsy)
28639 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28640 {
28641 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28642 }
28643 }
28644 #endif
28645
28646
28647 int
28648 arm_force_relocation (struct fix * fixp)
28649 {
28650 #if defined (OBJ_COFF) && defined (TE_PE)
28651 if (fixp->fx_r_type == BFD_RELOC_RVA)
28652 return 1;
28653 #endif
28654
28655 /* In case we have a call or a branch to a function in ARM ISA mode from
28656 a thumb function or vice-versa force the relocation. These relocations
28657 are cleared off for some cores that might have blx and simple transformations
28658 are possible. */
28659
28660 #ifdef OBJ_ELF
28661 switch (fixp->fx_r_type)
28662 {
28663 case BFD_RELOC_ARM_PCREL_JUMP:
28664 case BFD_RELOC_ARM_PCREL_CALL:
28665 case BFD_RELOC_THUMB_PCREL_BLX:
28666 if (THUMB_IS_FUNC (fixp->fx_addsy))
28667 return 1;
28668 break;
28669
28670 case BFD_RELOC_ARM_PCREL_BLX:
28671 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28672 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28673 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28674 if (ARM_IS_FUNC (fixp->fx_addsy))
28675 return 1;
28676 break;
28677
28678 default:
28679 break;
28680 }
28681 #endif
28682
28683 /* Resolve these relocations even if the symbol is extern or weak.
28684 Technically this is probably wrong due to symbol preemption.
28685 In practice these relocations do not have enough range to be useful
28686 at dynamic link time, and some code (e.g. in the Linux kernel)
28687 expects these references to be resolved. */
28688 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28689 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28690 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28691 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28692 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28693 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28694 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28695 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28696 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28697 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28698 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28699 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28700 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28701 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28702 return 0;
28703
28704 /* Always leave these relocations for the linker. */
28705 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28706 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28707 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28708 return 1;
28709
28710 /* Always generate relocations against function symbols. */
28711 if (fixp->fx_r_type == BFD_RELOC_32
28712 && fixp->fx_addsy
28713 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28714 return 1;
28715
28716 return generic_force_reloc (fixp);
28717 }
28718
28719 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28720 /* Relocations against function names must be left unadjusted,
28721 so that the linker can use this information to generate interworking
28722 stubs. The MIPS version of this function
28723 also prevents relocations that are mips-16 specific, but I do not
28724 know why it does this.
28725
28726 FIXME:
28727 There is one other problem that ought to be addressed here, but
28728 which currently is not: Taking the address of a label (rather
28729 than a function) and then later jumping to that address. Such
28730 addresses also ought to have their bottom bit set (assuming that
28731 they reside in Thumb code), but at the moment they will not. */
28732
28733 bfd_boolean
28734 arm_fix_adjustable (fixS * fixP)
28735 {
28736 if (fixP->fx_addsy == NULL)
28737 return 1;
28738
28739 /* Preserve relocations against symbols with function type. */
28740 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28741 return FALSE;
28742
28743 if (THUMB_IS_FUNC (fixP->fx_addsy)
28744 && fixP->fx_subsy == NULL)
28745 return FALSE;
28746
28747 /* We need the symbol name for the VTABLE entries. */
28748 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28749 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28750 return FALSE;
28751
28752 /* Don't allow symbols to be discarded on GOT related relocs. */
28753 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28754 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28755 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28756 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28757 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28758 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28759 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28760 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28761 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28762 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28763 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28764 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28765 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28766 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28767 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28768 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28769 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28770 return FALSE;
28771
28772 /* Similarly for group relocations. */
28773 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28774 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28775 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28776 return FALSE;
28777
28778 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28779 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28780 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28781 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28782 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28783 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28784 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28785 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28786 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28787 return FALSE;
28788
28789 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28790 offsets, so keep these symbols. */
28791 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28792 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28793 return FALSE;
28794
28795 return TRUE;
28796 }
28797 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28798
28799 #ifdef OBJ_ELF
28800 const char *
28801 elf32_arm_target_format (void)
28802 {
28803 #ifdef TE_SYMBIAN
28804 return (target_big_endian
28805 ? "elf32-bigarm-symbian"
28806 : "elf32-littlearm-symbian");
28807 #elif defined (TE_VXWORKS)
28808 return (target_big_endian
28809 ? "elf32-bigarm-vxworks"
28810 : "elf32-littlearm-vxworks");
28811 #elif defined (TE_NACL)
28812 return (target_big_endian
28813 ? "elf32-bigarm-nacl"
28814 : "elf32-littlearm-nacl");
28815 #else
28816 if (arm_fdpic)
28817 {
28818 if (target_big_endian)
28819 return "elf32-bigarm-fdpic";
28820 else
28821 return "elf32-littlearm-fdpic";
28822 }
28823 else
28824 {
28825 if (target_big_endian)
28826 return "elf32-bigarm";
28827 else
28828 return "elf32-littlearm";
28829 }
28830 #endif
28831 }
28832
28833 void
28834 armelf_frob_symbol (symbolS * symp,
28835 int * puntp)
28836 {
28837 elf_frob_symbol (symp, puntp);
28838 }
28839 #endif
28840
28841 /* MD interface: Finalization. */
28842
28843 void
28844 arm_cleanup (void)
28845 {
28846 literal_pool * pool;
28847
28848 /* Ensure that all the predication blocks are properly closed. */
28849 check_pred_blocks_finished ();
28850
28851 for (pool = list_of_pools; pool; pool = pool->next)
28852 {
28853 /* Put it at the end of the relevant section. */
28854 subseg_set (pool->section, pool->sub_section);
28855 #ifdef OBJ_ELF
28856 arm_elf_change_section ();
28857 #endif
28858 s_ltorg (0);
28859 }
28860 }
28861
28862 #ifdef OBJ_ELF
28863 /* Remove any excess mapping symbols generated for alignment frags in
28864 SEC. We may have created a mapping symbol before a zero byte
28865 alignment; remove it if there's a mapping symbol after the
28866 alignment. */
28867 static void
28868 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28869 void *dummy ATTRIBUTE_UNUSED)
28870 {
28871 segment_info_type *seginfo = seg_info (sec);
28872 fragS *fragp;
28873
28874 if (seginfo == NULL || seginfo->frchainP == NULL)
28875 return;
28876
28877 for (fragp = seginfo->frchainP->frch_root;
28878 fragp != NULL;
28879 fragp = fragp->fr_next)
28880 {
28881 symbolS *sym = fragp->tc_frag_data.last_map;
28882 fragS *next = fragp->fr_next;
28883
28884 /* Variable-sized frags have been converted to fixed size by
28885 this point. But if this was variable-sized to start with,
28886 there will be a fixed-size frag after it. So don't handle
28887 next == NULL. */
28888 if (sym == NULL || next == NULL)
28889 continue;
28890
28891 if (S_GET_VALUE (sym) < next->fr_address)
28892 /* Not at the end of this frag. */
28893 continue;
28894 know (S_GET_VALUE (sym) == next->fr_address);
28895
28896 do
28897 {
28898 if (next->tc_frag_data.first_map != NULL)
28899 {
28900 /* Next frag starts with a mapping symbol. Discard this
28901 one. */
28902 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28903 break;
28904 }
28905
28906 if (next->fr_next == NULL)
28907 {
28908 /* This mapping symbol is at the end of the section. Discard
28909 it. */
28910 know (next->fr_fix == 0 && next->fr_var == 0);
28911 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28912 break;
28913 }
28914
28915 /* As long as we have empty frags without any mapping symbols,
28916 keep looking. */
28917 /* If the next frag is non-empty and does not start with a
28918 mapping symbol, then this mapping symbol is required. */
28919 if (next->fr_address != next->fr_next->fr_address)
28920 break;
28921
28922 next = next->fr_next;
28923 }
28924 while (next != NULL);
28925 }
28926 }
28927 #endif
28928
28929 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28930 ARM ones. */
28931
28932 void
28933 arm_adjust_symtab (void)
28934 {
28935 #ifdef OBJ_COFF
28936 symbolS * sym;
28937
28938 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28939 {
28940 if (ARM_IS_THUMB (sym))
28941 {
28942 if (THUMB_IS_FUNC (sym))
28943 {
28944 /* Mark the symbol as a Thumb function. */
28945 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28946 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28947 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28948
28949 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28950 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28951 else
28952 as_bad (_("%s: unexpected function type: %d"),
28953 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28954 }
28955 else switch (S_GET_STORAGE_CLASS (sym))
28956 {
28957 case C_EXT:
28958 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28959 break;
28960 case C_STAT:
28961 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28962 break;
28963 case C_LABEL:
28964 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28965 break;
28966 default:
28967 /* Do nothing. */
28968 break;
28969 }
28970 }
28971
28972 if (ARM_IS_INTERWORK (sym))
28973 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28974 }
28975 #endif
28976 #ifdef OBJ_ELF
28977 symbolS * sym;
28978 char bind;
28979
28980 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28981 {
28982 if (ARM_IS_THUMB (sym))
28983 {
28984 elf_symbol_type * elf_sym;
28985
28986 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28987 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28988
28989 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28990 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28991 {
28992 /* If it's a .thumb_func, declare it as so,
28993 otherwise tag label as .code 16. */
28994 if (THUMB_IS_FUNC (sym))
28995 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28996 ST_BRANCH_TO_THUMB);
28997 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28998 elf_sym->internal_elf_sym.st_info =
28999 ELF_ST_INFO (bind, STT_ARM_16BIT);
29000 }
29001 }
29002 }
29003
29004 /* Remove any overlapping mapping symbols generated by alignment frags. */
29005 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29006 /* Now do generic ELF adjustments. */
29007 elf_adjust_symtab ();
29008 #endif
29009 }
29010
29011 /* MD interface: Initialization. */
29012
29013 static void
29014 set_constant_flonums (void)
29015 {
29016 int i;
29017
29018 for (i = 0; i < NUM_FLOAT_VALS; i++)
29019 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29020 abort ();
29021 }
29022
29023 /* Auto-select Thumb mode if it's the only available instruction set for the
29024 given architecture. */
29025
29026 static void
29027 autoselect_thumb_from_cpu_variant (void)
29028 {
29029 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29030 opcode_select (16);
29031 }
29032
29033 void
29034 md_begin (void)
29035 {
29036 unsigned mach;
29037 unsigned int i;
29038
29039 if ( (arm_ops_hsh = hash_new ()) == NULL
29040 || (arm_cond_hsh = hash_new ()) == NULL
29041 || (arm_vcond_hsh = hash_new ()) == NULL
29042 || (arm_shift_hsh = hash_new ()) == NULL
29043 || (arm_psr_hsh = hash_new ()) == NULL
29044 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29045 || (arm_reg_hsh = hash_new ()) == NULL
29046 || (arm_reloc_hsh = hash_new ()) == NULL
29047 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29048 as_fatal (_("virtual memory exhausted"));
29049
29050 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29051 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29052 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29053 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29054 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29055 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29056 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29057 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29058 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29059 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29060 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29061 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29062 (void *) (v7m_psrs + i));
29063 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29064 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29065 for (i = 0;
29066 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29067 i++)
29068 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29069 (void *) (barrier_opt_names + i));
29070 #ifdef OBJ_ELF
29071 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29072 {
29073 struct reloc_entry * entry = reloc_names + i;
29074
29075 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29076 /* This makes encode_branch() use the EABI versions of this relocation. */
29077 entry->reloc = BFD_RELOC_UNUSED;
29078
29079 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29080 }
29081 #endif
29082
29083 set_constant_flonums ();
29084
29085 /* Set the cpu variant based on the command-line options. We prefer
29086 -mcpu= over -march= if both are set (as for GCC); and we prefer
29087 -mfpu= over any other way of setting the floating point unit.
29088 Use of legacy options with new options are faulted. */
29089 if (legacy_cpu)
29090 {
29091 if (mcpu_cpu_opt || march_cpu_opt)
29092 as_bad (_("use of old and new-style options to set CPU type"));
29093
29094 selected_arch = *legacy_cpu;
29095 }
29096 else if (mcpu_cpu_opt)
29097 {
29098 selected_arch = *mcpu_cpu_opt;
29099 selected_ext = *mcpu_ext_opt;
29100 }
29101 else if (march_cpu_opt)
29102 {
29103 selected_arch = *march_cpu_opt;
29104 selected_ext = *march_ext_opt;
29105 }
29106 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29107
29108 if (legacy_fpu)
29109 {
29110 if (mfpu_opt)
29111 as_bad (_("use of old and new-style options to set FPU type"));
29112
29113 selected_fpu = *legacy_fpu;
29114 }
29115 else if (mfpu_opt)
29116 selected_fpu = *mfpu_opt;
29117 else
29118 {
29119 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29120 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29121 /* Some environments specify a default FPU. If they don't, infer it
29122 from the processor. */
29123 if (mcpu_fpu_opt)
29124 selected_fpu = *mcpu_fpu_opt;
29125 else if (march_fpu_opt)
29126 selected_fpu = *march_fpu_opt;
29127 #else
29128 selected_fpu = fpu_default;
29129 #endif
29130 }
29131
29132 if (ARM_FEATURE_ZERO (selected_fpu))
29133 {
29134 if (!no_cpu_selected ())
29135 selected_fpu = fpu_default;
29136 else
29137 selected_fpu = fpu_arch_fpa;
29138 }
29139
29140 #ifdef CPU_DEFAULT
29141 if (ARM_FEATURE_ZERO (selected_arch))
29142 {
29143 selected_arch = cpu_default;
29144 selected_cpu = selected_arch;
29145 }
29146 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29147 #else
29148 /* Autodection of feature mode: allow all features in cpu_variant but leave
29149 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29150 after all instruction have been processed and we can decide what CPU
29151 should be selected. */
29152 if (ARM_FEATURE_ZERO (selected_arch))
29153 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29154 else
29155 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29156 #endif
29157
29158 autoselect_thumb_from_cpu_variant ();
29159
29160 arm_arch_used = thumb_arch_used = arm_arch_none;
29161
29162 #if defined OBJ_COFF || defined OBJ_ELF
29163 {
29164 unsigned int flags = 0;
29165
29166 #if defined OBJ_ELF
29167 flags = meabi_flags;
29168
29169 switch (meabi_flags)
29170 {
29171 case EF_ARM_EABI_UNKNOWN:
29172 #endif
29173 /* Set the flags in the private structure. */
29174 if (uses_apcs_26) flags |= F_APCS26;
29175 if (support_interwork) flags |= F_INTERWORK;
29176 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29177 if (pic_code) flags |= F_PIC;
29178 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29179 flags |= F_SOFT_FLOAT;
29180
29181 switch (mfloat_abi_opt)
29182 {
29183 case ARM_FLOAT_ABI_SOFT:
29184 case ARM_FLOAT_ABI_SOFTFP:
29185 flags |= F_SOFT_FLOAT;
29186 break;
29187
29188 case ARM_FLOAT_ABI_HARD:
29189 if (flags & F_SOFT_FLOAT)
29190 as_bad (_("hard-float conflicts with specified fpu"));
29191 break;
29192 }
29193
29194 /* Using pure-endian doubles (even if soft-float). */
29195 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29196 flags |= F_VFP_FLOAT;
29197
29198 #if defined OBJ_ELF
29199 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29200 flags |= EF_ARM_MAVERICK_FLOAT;
29201 break;
29202
29203 case EF_ARM_EABI_VER4:
29204 case EF_ARM_EABI_VER5:
29205 /* No additional flags to set. */
29206 break;
29207
29208 default:
29209 abort ();
29210 }
29211 #endif
29212 bfd_set_private_flags (stdoutput, flags);
29213
29214 /* We have run out flags in the COFF header to encode the
29215 status of ATPCS support, so instead we create a dummy,
29216 empty, debug section called .arm.atpcs. */
29217 if (atpcs)
29218 {
29219 asection * sec;
29220
29221 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29222
29223 if (sec != NULL)
29224 {
29225 bfd_set_section_flags
29226 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29227 bfd_set_section_size (stdoutput, sec, 0);
29228 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29229 }
29230 }
29231 }
29232 #endif
29233
29234 /* Record the CPU type as well. */
29235 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29236 mach = bfd_mach_arm_iWMMXt2;
29237 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29238 mach = bfd_mach_arm_iWMMXt;
29239 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29240 mach = bfd_mach_arm_XScale;
29241 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29242 mach = bfd_mach_arm_ep9312;
29243 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29244 mach = bfd_mach_arm_5TE;
29245 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29246 {
29247 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29248 mach = bfd_mach_arm_5T;
29249 else
29250 mach = bfd_mach_arm_5;
29251 }
29252 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29253 {
29254 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29255 mach = bfd_mach_arm_4T;
29256 else
29257 mach = bfd_mach_arm_4;
29258 }
29259 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29260 mach = bfd_mach_arm_3M;
29261 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29262 mach = bfd_mach_arm_3;
29263 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29264 mach = bfd_mach_arm_2a;
29265 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29266 mach = bfd_mach_arm_2;
29267 else
29268 mach = bfd_mach_arm_unknown;
29269
29270 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29271 }
29272
29273 /* Command line processing. */
29274
29275 /* md_parse_option
29276 Invocation line includes a switch not recognized by the base assembler.
29277 See if it's a processor-specific option.
29278
29279 This routine is somewhat complicated by the need for backwards
29280 compatibility (since older releases of gcc can't be changed).
29281 The new options try to make the interface as compatible as
29282 possible with GCC.
29283
29284 New options (supported) are:
29285
29286 -mcpu=<cpu name> Assemble for selected processor
29287 -march=<architecture name> Assemble for selected architecture
29288 -mfpu=<fpu architecture> Assemble for selected FPU.
29289 -EB/-mbig-endian Big-endian
29290 -EL/-mlittle-endian Little-endian
29291 -k Generate PIC code
29292 -mthumb Start in Thumb mode
29293 -mthumb-interwork Code supports ARM/Thumb interworking
29294
29295 -m[no-]warn-deprecated Warn about deprecated features
29296 -m[no-]warn-syms Warn when symbols match instructions
29297
29298 For now we will also provide support for:
29299
29300 -mapcs-32 32-bit Program counter
29301 -mapcs-26 26-bit Program counter
29302 -macps-float Floats passed in FP registers
29303 -mapcs-reentrant Reentrant code
29304 -matpcs
29305 (sometime these will probably be replaced with -mapcs=<list of options>
29306 and -matpcs=<list of options>)
29307
29308 The remaining options are only supported for back-wards compatibility.
29309 Cpu variants, the arm part is optional:
29310 -m[arm]1 Currently not supported.
29311 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29312 -m[arm]3 Arm 3 processor
29313 -m[arm]6[xx], Arm 6 processors
29314 -m[arm]7[xx][t][[d]m] Arm 7 processors
29315 -m[arm]8[10] Arm 8 processors
29316 -m[arm]9[20][tdmi] Arm 9 processors
29317 -mstrongarm[110[0]] StrongARM processors
29318 -mxscale XScale processors
29319 -m[arm]v[2345[t[e]]] Arm architectures
29320 -mall All (except the ARM1)
29321 FP variants:
29322 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29323 -mfpe-old (No float load/store multiples)
29324 -mvfpxd VFP Single precision
29325 -mvfp All VFP
29326 -mno-fpu Disable all floating point instructions
29327
29328 The following CPU names are recognized:
29329 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29330 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29331 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29332 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29333 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29334 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29335 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29336
29337 */
29338
29339 const char * md_shortopts = "m:k";
29340
29341 #ifdef ARM_BI_ENDIAN
29342 #define OPTION_EB (OPTION_MD_BASE + 0)
29343 #define OPTION_EL (OPTION_MD_BASE + 1)
29344 #else
29345 #if TARGET_BYTES_BIG_ENDIAN
29346 #define OPTION_EB (OPTION_MD_BASE + 0)
29347 #else
29348 #define OPTION_EL (OPTION_MD_BASE + 1)
29349 #endif
29350 #endif
29351 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29352 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29353
29354 struct option md_longopts[] =
29355 {
29356 #ifdef OPTION_EB
29357 {"EB", no_argument, NULL, OPTION_EB},
29358 #endif
29359 #ifdef OPTION_EL
29360 {"EL", no_argument, NULL, OPTION_EL},
29361 #endif
29362 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29363 #ifdef OBJ_ELF
29364 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29365 #endif
29366 {NULL, no_argument, NULL, 0}
29367 };
29368
29369 size_t md_longopts_size = sizeof (md_longopts);
29370
29371 struct arm_option_table
29372 {
29373 const char * option; /* Option name to match. */
29374 const char * help; /* Help information. */
29375 int * var; /* Variable to change. */
29376 int value; /* What to change it to. */
29377 const char * deprecated; /* If non-null, print this message. */
29378 };
29379
29380 struct arm_option_table arm_opts[] =
29381 {
29382 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29383 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29384 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29385 &support_interwork, 1, NULL},
29386 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29387 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29388 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29389 1, NULL},
29390 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29391 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29392 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29393 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29394 NULL},
29395
29396 /* These are recognized by the assembler, but have no affect on code. */
29397 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29398 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29399
29400 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29401 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29402 &warn_on_deprecated, 0, NULL},
29403 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29404 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29405 {NULL, NULL, NULL, 0, NULL}
29406 };
29407
29408 struct arm_legacy_option_table
29409 {
29410 const char * option; /* Option name to match. */
29411 const arm_feature_set ** var; /* Variable to change. */
29412 const arm_feature_set value; /* What to change it to. */
29413 const char * deprecated; /* If non-null, print this message. */
29414 };
29415
29416 const struct arm_legacy_option_table arm_legacy_opts[] =
29417 {
29418 /* DON'T add any new processors to this list -- we want the whole list
29419 to go away... Add them to the processors table instead. */
29420 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29421 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29422 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29423 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29424 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29425 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29426 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29427 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29428 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29429 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29430 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29431 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29432 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29433 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29434 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29435 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29436 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29437 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29438 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29439 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29440 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29441 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29442 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29443 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29444 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29445 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29446 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29447 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29448 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29449 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29450 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29451 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29452 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29453 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29454 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29455 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29456 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29457 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29458 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29459 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29460 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29461 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29462 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29463 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29464 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29465 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29466 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29467 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29468 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29469 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29470 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29471 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29472 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29473 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29474 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29475 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29476 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29477 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29478 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29479 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29480 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29481 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29482 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29483 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29484 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29485 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29486 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29487 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29488 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29489 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29490 N_("use -mcpu=strongarm110")},
29491 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29492 N_("use -mcpu=strongarm1100")},
29493 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29494 N_("use -mcpu=strongarm1110")},
29495 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29496 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29497 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29498
29499 /* Architecture variants -- don't add any more to this list either. */
29500 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29501 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29502 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29503 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29504 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29505 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29506 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29507 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29508 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29509 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29510 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29511 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29512 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29513 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29514 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29515 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29516 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29517 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29518
29519 /* Floating point variants -- don't add any more to this list either. */
29520 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29521 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29522 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29523 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29524 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29525
29526 {NULL, NULL, ARM_ARCH_NONE, NULL}
29527 };
29528
29529 struct arm_cpu_option_table
29530 {
29531 const char * name;
29532 size_t name_len;
29533 const arm_feature_set value;
29534 const arm_feature_set ext;
29535 /* For some CPUs we assume an FPU unless the user explicitly sets
29536 -mfpu=... */
29537 const arm_feature_set default_fpu;
29538 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29539 case. */
29540 const char * canonical_name;
29541 };
29542
29543 /* This list should, at a minimum, contain all the cpu names
29544 recognized by GCC. */
29545 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29546
29547 static const struct arm_cpu_option_table arm_cpus[] =
29548 {
29549 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29550 ARM_ARCH_NONE,
29551 FPU_ARCH_FPA),
29552 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29553 ARM_ARCH_NONE,
29554 FPU_ARCH_FPA),
29555 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29556 ARM_ARCH_NONE,
29557 FPU_ARCH_FPA),
29558 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29559 ARM_ARCH_NONE,
29560 FPU_ARCH_FPA),
29561 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29562 ARM_ARCH_NONE,
29563 FPU_ARCH_FPA),
29564 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29565 ARM_ARCH_NONE,
29566 FPU_ARCH_FPA),
29567 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29568 ARM_ARCH_NONE,
29569 FPU_ARCH_FPA),
29570 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29571 ARM_ARCH_NONE,
29572 FPU_ARCH_FPA),
29573 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29574 ARM_ARCH_NONE,
29575 FPU_ARCH_FPA),
29576 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29577 ARM_ARCH_NONE,
29578 FPU_ARCH_FPA),
29579 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29580 ARM_ARCH_NONE,
29581 FPU_ARCH_FPA),
29582 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29583 ARM_ARCH_NONE,
29584 FPU_ARCH_FPA),
29585 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29586 ARM_ARCH_NONE,
29587 FPU_ARCH_FPA),
29588 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29589 ARM_ARCH_NONE,
29590 FPU_ARCH_FPA),
29591 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29592 ARM_ARCH_NONE,
29593 FPU_ARCH_FPA),
29594 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29595 ARM_ARCH_NONE,
29596 FPU_ARCH_FPA),
29597 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29598 ARM_ARCH_NONE,
29599 FPU_ARCH_FPA),
29600 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29601 ARM_ARCH_NONE,
29602 FPU_ARCH_FPA),
29603 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29604 ARM_ARCH_NONE,
29605 FPU_ARCH_FPA),
29606 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29607 ARM_ARCH_NONE,
29608 FPU_ARCH_FPA),
29609 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29610 ARM_ARCH_NONE,
29611 FPU_ARCH_FPA),
29612 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29613 ARM_ARCH_NONE,
29614 FPU_ARCH_FPA),
29615 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29616 ARM_ARCH_NONE,
29617 FPU_ARCH_FPA),
29618 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29619 ARM_ARCH_NONE,
29620 FPU_ARCH_FPA),
29621 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29622 ARM_ARCH_NONE,
29623 FPU_ARCH_FPA),
29624 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29625 ARM_ARCH_NONE,
29626 FPU_ARCH_FPA),
29627 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29628 ARM_ARCH_NONE,
29629 FPU_ARCH_FPA),
29630 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29631 ARM_ARCH_NONE,
29632 FPU_ARCH_FPA),
29633 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29634 ARM_ARCH_NONE,
29635 FPU_ARCH_FPA),
29636 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29637 ARM_ARCH_NONE,
29638 FPU_ARCH_FPA),
29639 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29640 ARM_ARCH_NONE,
29641 FPU_ARCH_FPA),
29642 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29643 ARM_ARCH_NONE,
29644 FPU_ARCH_FPA),
29645 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29646 ARM_ARCH_NONE,
29647 FPU_ARCH_FPA),
29648 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29649 ARM_ARCH_NONE,
29650 FPU_ARCH_FPA),
29651 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29652 ARM_ARCH_NONE,
29653 FPU_ARCH_FPA),
29654 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29655 ARM_ARCH_NONE,
29656 FPU_ARCH_FPA),
29657 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29658 ARM_ARCH_NONE,
29659 FPU_ARCH_FPA),
29660 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29661 ARM_ARCH_NONE,
29662 FPU_ARCH_FPA),
29663 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29664 ARM_ARCH_NONE,
29665 FPU_ARCH_FPA),
29666 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29667 ARM_ARCH_NONE,
29668 FPU_ARCH_FPA),
29669 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29670 ARM_ARCH_NONE,
29671 FPU_ARCH_FPA),
29672 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29673 ARM_ARCH_NONE,
29674 FPU_ARCH_FPA),
29675 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29676 ARM_ARCH_NONE,
29677 FPU_ARCH_FPA),
29678 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29679 ARM_ARCH_NONE,
29680 FPU_ARCH_FPA),
29681 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29682 ARM_ARCH_NONE,
29683 FPU_ARCH_FPA),
29684 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29685 ARM_ARCH_NONE,
29686 FPU_ARCH_FPA),
29687
29688 /* For V5 or later processors we default to using VFP; but the user
29689 should really set the FPU type explicitly. */
29690 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29691 ARM_ARCH_NONE,
29692 FPU_ARCH_VFP_V2),
29693 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29694 ARM_ARCH_NONE,
29695 FPU_ARCH_VFP_V2),
29696 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29697 ARM_ARCH_NONE,
29698 FPU_ARCH_VFP_V2),
29699 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29700 ARM_ARCH_NONE,
29701 FPU_ARCH_VFP_V2),
29702 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29703 ARM_ARCH_NONE,
29704 FPU_ARCH_VFP_V2),
29705 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29706 ARM_ARCH_NONE,
29707 FPU_ARCH_VFP_V2),
29708 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29709 ARM_ARCH_NONE,
29710 FPU_ARCH_VFP_V2),
29711 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29712 ARM_ARCH_NONE,
29713 FPU_ARCH_VFP_V2),
29714 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29715 ARM_ARCH_NONE,
29716 FPU_ARCH_VFP_V2),
29717 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29718 ARM_ARCH_NONE,
29719 FPU_ARCH_VFP_V2),
29720 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29721 ARM_ARCH_NONE,
29722 FPU_ARCH_VFP_V2),
29723 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29724 ARM_ARCH_NONE,
29725 FPU_ARCH_VFP_V2),
29726 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29727 ARM_ARCH_NONE,
29728 FPU_ARCH_VFP_V1),
29729 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29730 ARM_ARCH_NONE,
29731 FPU_ARCH_VFP_V1),
29732 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29733 ARM_ARCH_NONE,
29734 FPU_ARCH_VFP_V2),
29735 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29736 ARM_ARCH_NONE,
29737 FPU_ARCH_VFP_V2),
29738 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29739 ARM_ARCH_NONE,
29740 FPU_ARCH_VFP_V1),
29741 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29742 ARM_ARCH_NONE,
29743 FPU_ARCH_VFP_V2),
29744 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29745 ARM_ARCH_NONE,
29746 FPU_ARCH_VFP_V2),
29747 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29748 ARM_ARCH_NONE,
29749 FPU_ARCH_VFP_V2),
29750 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29751 ARM_ARCH_NONE,
29752 FPU_ARCH_VFP_V2),
29753 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29754 ARM_ARCH_NONE,
29755 FPU_ARCH_VFP_V2),
29756 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29757 ARM_ARCH_NONE,
29758 FPU_ARCH_VFP_V2),
29759 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29760 ARM_ARCH_NONE,
29761 FPU_ARCH_VFP_V2),
29762 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29763 ARM_ARCH_NONE,
29764 FPU_ARCH_VFP_V2),
29765 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29766 ARM_ARCH_NONE,
29767 FPU_ARCH_VFP_V2),
29768 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29769 ARM_ARCH_NONE,
29770 FPU_NONE),
29771 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29772 ARM_ARCH_NONE,
29773 FPU_NONE),
29774 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29775 ARM_ARCH_NONE,
29776 FPU_ARCH_VFP_V2),
29777 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29778 ARM_ARCH_NONE,
29779 FPU_ARCH_VFP_V2),
29780 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29781 ARM_ARCH_NONE,
29782 FPU_ARCH_VFP_V2),
29783 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29784 ARM_ARCH_NONE,
29785 FPU_NONE),
29786 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29787 ARM_ARCH_NONE,
29788 FPU_NONE),
29789 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29790 ARM_ARCH_NONE,
29791 FPU_ARCH_VFP_V2),
29792 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29793 ARM_ARCH_NONE,
29794 FPU_NONE),
29795 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29796 ARM_ARCH_NONE,
29797 FPU_ARCH_VFP_V2),
29798 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29799 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29800 FPU_NONE),
29801 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29802 ARM_ARCH_NONE,
29803 FPU_ARCH_NEON_VFP_V4),
29804 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29805 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29806 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29807 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29808 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29809 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29810 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29811 ARM_ARCH_NONE,
29812 FPU_ARCH_NEON_VFP_V4),
29813 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29814 ARM_ARCH_NONE,
29815 FPU_ARCH_NEON_VFP_V4),
29816 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29817 ARM_ARCH_NONE,
29818 FPU_ARCH_NEON_VFP_V4),
29819 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29820 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29821 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29822 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29823 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29824 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29825 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29826 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29827 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29828 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29829 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29830 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29831 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29832 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29833 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29834 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29835 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29836 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29837 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29838 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29839 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29840 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29841 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29842 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29843 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29844 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29845 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29846 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29847 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29848 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29849 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29850 ARM_ARCH_NONE,
29851 FPU_NONE),
29852 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29853 ARM_ARCH_NONE,
29854 FPU_ARCH_VFP_V3D16),
29855 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29856 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29857 FPU_NONE),
29858 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29859 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29860 FPU_ARCH_VFP_V3D16),
29861 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29862 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29863 FPU_ARCH_VFP_V3D16),
29864 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29865 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29866 FPU_ARCH_NEON_VFP_ARMV8),
29867 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29868 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29869 FPU_NONE),
29870 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29871 ARM_ARCH_NONE,
29872 FPU_NONE),
29873 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29874 ARM_ARCH_NONE,
29875 FPU_NONE),
29876 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29877 ARM_ARCH_NONE,
29878 FPU_NONE),
29879 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29880 ARM_ARCH_NONE,
29881 FPU_NONE),
29882 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29883 ARM_ARCH_NONE,
29884 FPU_NONE),
29885 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29886 ARM_ARCH_NONE,
29887 FPU_NONE),
29888 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29889 ARM_ARCH_NONE,
29890 FPU_NONE),
29891 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29892 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29893 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29894 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29895 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29896 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29897 /* ??? XSCALE is really an architecture. */
29898 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29899 ARM_ARCH_NONE,
29900 FPU_ARCH_VFP_V2),
29901
29902 /* ??? iwmmxt is not a processor. */
29903 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29904 ARM_ARCH_NONE,
29905 FPU_ARCH_VFP_V2),
29906 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29907 ARM_ARCH_NONE,
29908 FPU_ARCH_VFP_V2),
29909 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29910 ARM_ARCH_NONE,
29911 FPU_ARCH_VFP_V2),
29912
29913 /* Maverick. */
29914 ARM_CPU_OPT ("ep9312", "ARM920T",
29915 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29916 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29917
29918 /* Marvell processors. */
29919 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29920 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29921 FPU_ARCH_VFP_V3D16),
29922 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29923 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29924 FPU_ARCH_NEON_VFP_V4),
29925
29926 /* APM X-Gene family. */
29927 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29928 ARM_ARCH_NONE,
29929 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29930 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29931 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29932 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29933
29934 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29935 };
29936 #undef ARM_CPU_OPT
29937
29938 struct arm_ext_table
29939 {
29940 const char * name;
29941 size_t name_len;
29942 const arm_feature_set merge;
29943 const arm_feature_set clear;
29944 };
29945
29946 struct arm_arch_option_table
29947 {
29948 const char * name;
29949 size_t name_len;
29950 const arm_feature_set value;
29951 const arm_feature_set default_fpu;
29952 const struct arm_ext_table * ext_table;
29953 };
29954
29955 /* Used to add support for +E and +noE extension. */
29956 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29957 /* Used to add support for a +E extension. */
29958 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29959 /* Used to add support for a +noE extension. */
29960 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29961
29962 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29963 ~0 & ~FPU_ENDIAN_PURE)
29964
29965 static const struct arm_ext_table armv5te_ext_table[] =
29966 {
29967 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29968 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29969 };
29970
29971 static const struct arm_ext_table armv7_ext_table[] =
29972 {
29973 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29974 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29975 };
29976
29977 static const struct arm_ext_table armv7ve_ext_table[] =
29978 {
29979 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29980 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29981 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29982 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29983 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29984 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29985 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29986
29987 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29988 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29989
29990 /* Aliases for +simd. */
29991 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29992
29993 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29994 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29995 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29996
29997 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29998 };
29999
30000 static const struct arm_ext_table armv7a_ext_table[] =
30001 {
30002 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30003 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30004 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30005 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30006 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30007 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30008 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30009
30010 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30011 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30012
30013 /* Aliases for +simd. */
30014 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30015 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30016
30017 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30018 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30019
30020 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30021 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30022 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30023 };
30024
30025 static const struct arm_ext_table armv7r_ext_table[] =
30026 {
30027 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30028 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30029 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30030 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30031 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30032 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30033 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30034 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30035 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30036 };
30037
30038 static const struct arm_ext_table armv7em_ext_table[] =
30039 {
30040 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30041 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30042 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30043 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30044 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30045 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30046 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30047 };
30048
30049 static const struct arm_ext_table armv8a_ext_table[] =
30050 {
30051 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30052 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30053 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30054 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30055
30056 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30057 should use the +simd option to turn on FP. */
30058 ARM_REMOVE ("fp", ALL_FP),
30059 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30060 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30061 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30062 };
30063
30064
30065 static const struct arm_ext_table armv81a_ext_table[] =
30066 {
30067 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30068 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30069 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30070
30071 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30072 should use the +simd option to turn on FP. */
30073 ARM_REMOVE ("fp", ALL_FP),
30074 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30075 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30076 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30077 };
30078
30079 static const struct arm_ext_table armv82a_ext_table[] =
30080 {
30081 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30082 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30083 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30084 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30085 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30086 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30087
30088 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30089 should use the +simd option to turn on FP. */
30090 ARM_REMOVE ("fp", ALL_FP),
30091 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30092 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30093 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30094 };
30095
30096 static const struct arm_ext_table armv84a_ext_table[] =
30097 {
30098 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30099 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30100 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30101 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30102
30103 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30104 should use the +simd option to turn on FP. */
30105 ARM_REMOVE ("fp", ALL_FP),
30106 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30107 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30108 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30109 };
30110
30111 static const struct arm_ext_table armv85a_ext_table[] =
30112 {
30113 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30114 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30115 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30116 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30117
30118 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30119 should use the +simd option to turn on FP. */
30120 ARM_REMOVE ("fp", ALL_FP),
30121 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30122 };
30123
30124 static const struct arm_ext_table armv8m_main_ext_table[] =
30125 {
30126 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30127 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30128 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30129 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30130 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30131 };
30132
30133 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30134 {
30135 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30136 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30137 ARM_EXT ("fp",
30138 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30139 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30140 ALL_FP),
30141 ARM_ADD ("fp.dp",
30142 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30143 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30144 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30145 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30146 ARM_ADD ("mve.fp",
30147 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30148 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30149 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30150 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30151 };
30152
30153 static const struct arm_ext_table armv8r_ext_table[] =
30154 {
30155 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30156 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30157 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30158 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30159 ARM_REMOVE ("fp", ALL_FP),
30160 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30161 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30162 };
30163
30164 /* This list should, at a minimum, contain all the architecture names
30165 recognized by GCC. */
30166 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30167 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30168 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30169
30170 static const struct arm_arch_option_table arm_archs[] =
30171 {
30172 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30173 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30174 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30175 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30176 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30177 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30178 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30179 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30180 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30181 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30182 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30183 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30184 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30185 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30186 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30187 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30188 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30189 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30190 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30191 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30192 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30193 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30194 kept to preserve existing behaviour. */
30195 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30196 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30197 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30198 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30199 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30200 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30201 kept to preserve existing behaviour. */
30202 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30203 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30204 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30205 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30206 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30207 /* The official spelling of the ARMv7 profile variants is the dashed form.
30208 Accept the non-dashed form for compatibility with old toolchains. */
30209 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30210 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30211 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30212 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30213 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30214 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30215 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30216 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30217 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30218 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30219 armv8m_main),
30220 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30221 armv8_1m_main),
30222 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30223 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30224 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30225 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30226 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30227 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30228 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30229 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30230 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30231 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30232 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30233 };
30234 #undef ARM_ARCH_OPT
30235
30236 /* ISA extensions in the co-processor and main instruction set space. */
30237
30238 struct arm_option_extension_value_table
30239 {
30240 const char * name;
30241 size_t name_len;
30242 const arm_feature_set merge_value;
30243 const arm_feature_set clear_value;
30244 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30245 indicates that an extension is available for all architectures while
30246 ARM_ANY marks an empty entry. */
30247 const arm_feature_set allowed_archs[2];
30248 };
30249
30250 /* The following table must be in alphabetical order with a NULL last entry. */
30251
30252 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30253 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30254
30255 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30256 use the context sensitive approach using arm_ext_table's. */
30257 static const struct arm_option_extension_value_table arm_extensions[] =
30258 {
30259 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30260 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30261 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30262 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30263 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30264 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30265 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30266 ARM_ARCH_V8_2A),
30267 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30268 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30269 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30270 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30271 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30272 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30274 ARM_ARCH_V8_2A),
30275 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30276 | ARM_EXT2_FP16_FML),
30277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30278 | ARM_EXT2_FP16_FML),
30279 ARM_ARCH_V8_2A),
30280 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30281 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30282 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30283 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30284 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30285 Thumb divide instruction. Due to this having the same name as the
30286 previous entry, this will be ignored when doing command-line parsing and
30287 only considered by build attribute selection code. */
30288 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30289 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30290 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30291 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30292 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30293 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30294 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30295 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30296 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30297 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30298 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30299 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30300 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30301 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30302 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30303 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30304 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30305 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30306 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30307 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30308 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30309 ARM_ARCH_V8A),
30310 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30311 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30312 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30313 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30314 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30315 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30316 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30317 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30318 ARM_ARCH_V8A),
30319 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30320 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30321 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30322 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30323 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30324 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30325 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30326 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30327 | ARM_EXT_DIV),
30328 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30329 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30330 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30331 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30332 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30333 };
30334 #undef ARM_EXT_OPT
30335
30336 /* ISA floating-point and Advanced SIMD extensions. */
30337 struct arm_option_fpu_value_table
30338 {
30339 const char * name;
30340 const arm_feature_set value;
30341 };
30342
30343 /* This list should, at a minimum, contain all the fpu names
30344 recognized by GCC. */
30345 static const struct arm_option_fpu_value_table arm_fpus[] =
30346 {
30347 {"softfpa", FPU_NONE},
30348 {"fpe", FPU_ARCH_FPE},
30349 {"fpe2", FPU_ARCH_FPE},
30350 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30351 {"fpa", FPU_ARCH_FPA},
30352 {"fpa10", FPU_ARCH_FPA},
30353 {"fpa11", FPU_ARCH_FPA},
30354 {"arm7500fe", FPU_ARCH_FPA},
30355 {"softvfp", FPU_ARCH_VFP},
30356 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30357 {"vfp", FPU_ARCH_VFP_V2},
30358 {"vfp9", FPU_ARCH_VFP_V2},
30359 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30360 {"vfp10", FPU_ARCH_VFP_V2},
30361 {"vfp10-r0", FPU_ARCH_VFP_V1},
30362 {"vfpxd", FPU_ARCH_VFP_V1xD},
30363 {"vfpv2", FPU_ARCH_VFP_V2},
30364 {"vfpv3", FPU_ARCH_VFP_V3},
30365 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30366 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30367 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30368 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30369 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30370 {"arm1020t", FPU_ARCH_VFP_V1},
30371 {"arm1020e", FPU_ARCH_VFP_V2},
30372 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30373 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30374 {"maverick", FPU_ARCH_MAVERICK},
30375 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30376 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30377 {"neon-fp16", FPU_ARCH_NEON_FP16},
30378 {"vfpv4", FPU_ARCH_VFP_V4},
30379 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30380 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30381 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30382 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30383 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30384 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30385 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30386 {"crypto-neon-fp-armv8",
30387 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30388 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30389 {"crypto-neon-fp-armv8.1",
30390 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30391 {NULL, ARM_ARCH_NONE}
30392 };
30393
30394 struct arm_option_value_table
30395 {
30396 const char *name;
30397 long value;
30398 };
30399
30400 static const struct arm_option_value_table arm_float_abis[] =
30401 {
30402 {"hard", ARM_FLOAT_ABI_HARD},
30403 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30404 {"soft", ARM_FLOAT_ABI_SOFT},
30405 {NULL, 0}
30406 };
30407
30408 #ifdef OBJ_ELF
30409 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30410 static const struct arm_option_value_table arm_eabis[] =
30411 {
30412 {"gnu", EF_ARM_EABI_UNKNOWN},
30413 {"4", EF_ARM_EABI_VER4},
30414 {"5", EF_ARM_EABI_VER5},
30415 {NULL, 0}
30416 };
30417 #endif
30418
30419 struct arm_long_option_table
30420 {
30421 const char * option; /* Substring to match. */
30422 const char * help; /* Help information. */
30423 int (* func) (const char * subopt); /* Function to decode sub-option. */
30424 const char * deprecated; /* If non-null, print this message. */
30425 };
30426
30427 static bfd_boolean
30428 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30429 arm_feature_set *ext_set,
30430 const struct arm_ext_table *ext_table)
30431 {
30432 /* We insist on extensions being specified in alphabetical order, and with
30433 extensions being added before being removed. We achieve this by having
30434 the global ARM_EXTENSIONS table in alphabetical order, and using the
30435 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30436 or removing it (0) and only allowing it to change in the order
30437 -1 -> 1 -> 0. */
30438 const struct arm_option_extension_value_table * opt = NULL;
30439 const arm_feature_set arm_any = ARM_ANY;
30440 int adding_value = -1;
30441
30442 while (str != NULL && *str != 0)
30443 {
30444 const char *ext;
30445 size_t len;
30446
30447 if (*str != '+')
30448 {
30449 as_bad (_("invalid architectural extension"));
30450 return FALSE;
30451 }
30452
30453 str++;
30454 ext = strchr (str, '+');
30455
30456 if (ext != NULL)
30457 len = ext - str;
30458 else
30459 len = strlen (str);
30460
30461 if (len >= 2 && strncmp (str, "no", 2) == 0)
30462 {
30463 if (adding_value != 0)
30464 {
30465 adding_value = 0;
30466 opt = arm_extensions;
30467 }
30468
30469 len -= 2;
30470 str += 2;
30471 }
30472 else if (len > 0)
30473 {
30474 if (adding_value == -1)
30475 {
30476 adding_value = 1;
30477 opt = arm_extensions;
30478 }
30479 else if (adding_value != 1)
30480 {
30481 as_bad (_("must specify extensions to add before specifying "
30482 "those to remove"));
30483 return FALSE;
30484 }
30485 }
30486
30487 if (len == 0)
30488 {
30489 as_bad (_("missing architectural extension"));
30490 return FALSE;
30491 }
30492
30493 gas_assert (adding_value != -1);
30494 gas_assert (opt != NULL);
30495
30496 if (ext_table != NULL)
30497 {
30498 const struct arm_ext_table * ext_opt = ext_table;
30499 bfd_boolean found = FALSE;
30500 for (; ext_opt->name != NULL; ext_opt++)
30501 if (ext_opt->name_len == len
30502 && strncmp (ext_opt->name, str, len) == 0)
30503 {
30504 if (adding_value)
30505 {
30506 if (ARM_FEATURE_ZERO (ext_opt->merge))
30507 /* TODO: Option not supported. When we remove the
30508 legacy table this case should error out. */
30509 continue;
30510
30511 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30512 }
30513 else
30514 {
30515 if (ARM_FEATURE_ZERO (ext_opt->clear))
30516 /* TODO: Option not supported. When we remove the
30517 legacy table this case should error out. */
30518 continue;
30519 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30520 }
30521 found = TRUE;
30522 break;
30523 }
30524 if (found)
30525 {
30526 str = ext;
30527 continue;
30528 }
30529 }
30530
30531 /* Scan over the options table trying to find an exact match. */
30532 for (; opt->name != NULL; opt++)
30533 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30534 {
30535 int i, nb_allowed_archs =
30536 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30537 /* Check we can apply the extension to this architecture. */
30538 for (i = 0; i < nb_allowed_archs; i++)
30539 {
30540 /* Empty entry. */
30541 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30542 continue;
30543 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30544 break;
30545 }
30546 if (i == nb_allowed_archs)
30547 {
30548 as_bad (_("extension does not apply to the base architecture"));
30549 return FALSE;
30550 }
30551
30552 /* Add or remove the extension. */
30553 if (adding_value)
30554 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30555 else
30556 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30557
30558 /* Allowing Thumb division instructions for ARMv7 in autodetection
30559 rely on this break so that duplicate extensions (extensions
30560 with the same name as a previous extension in the list) are not
30561 considered for command-line parsing. */
30562 break;
30563 }
30564
30565 if (opt->name == NULL)
30566 {
30567 /* Did we fail to find an extension because it wasn't specified in
30568 alphabetical order, or because it does not exist? */
30569
30570 for (opt = arm_extensions; opt->name != NULL; opt++)
30571 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30572 break;
30573
30574 if (opt->name == NULL)
30575 as_bad (_("unknown architectural extension `%s'"), str);
30576 else
30577 as_bad (_("architectural extensions must be specified in "
30578 "alphabetical order"));
30579
30580 return FALSE;
30581 }
30582 else
30583 {
30584 /* We should skip the extension we've just matched the next time
30585 round. */
30586 opt++;
30587 }
30588
30589 str = ext;
30590 };
30591
30592 return TRUE;
30593 }
30594
30595 static bfd_boolean
30596 arm_parse_cpu (const char *str)
30597 {
30598 const struct arm_cpu_option_table *opt;
30599 const char *ext = strchr (str, '+');
30600 size_t len;
30601
30602 if (ext != NULL)
30603 len = ext - str;
30604 else
30605 len = strlen (str);
30606
30607 if (len == 0)
30608 {
30609 as_bad (_("missing cpu name `%s'"), str);
30610 return FALSE;
30611 }
30612
30613 for (opt = arm_cpus; opt->name != NULL; opt++)
30614 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30615 {
30616 mcpu_cpu_opt = &opt->value;
30617 if (mcpu_ext_opt == NULL)
30618 mcpu_ext_opt = XNEW (arm_feature_set);
30619 *mcpu_ext_opt = opt->ext;
30620 mcpu_fpu_opt = &opt->default_fpu;
30621 if (opt->canonical_name)
30622 {
30623 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30624 strcpy (selected_cpu_name, opt->canonical_name);
30625 }
30626 else
30627 {
30628 size_t i;
30629
30630 if (len >= sizeof selected_cpu_name)
30631 len = (sizeof selected_cpu_name) - 1;
30632
30633 for (i = 0; i < len; i++)
30634 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30635 selected_cpu_name[i] = 0;
30636 }
30637
30638 if (ext != NULL)
30639 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30640
30641 return TRUE;
30642 }
30643
30644 as_bad (_("unknown cpu `%s'"), str);
30645 return FALSE;
30646 }
30647
30648 static bfd_boolean
30649 arm_parse_arch (const char *str)
30650 {
30651 const struct arm_arch_option_table *opt;
30652 const char *ext = strchr (str, '+');
30653 size_t len;
30654
30655 if (ext != NULL)
30656 len = ext - str;
30657 else
30658 len = strlen (str);
30659
30660 if (len == 0)
30661 {
30662 as_bad (_("missing architecture name `%s'"), str);
30663 return FALSE;
30664 }
30665
30666 for (opt = arm_archs; opt->name != NULL; opt++)
30667 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30668 {
30669 march_cpu_opt = &opt->value;
30670 if (march_ext_opt == NULL)
30671 march_ext_opt = XNEW (arm_feature_set);
30672 *march_ext_opt = arm_arch_none;
30673 march_fpu_opt = &opt->default_fpu;
30674 strcpy (selected_cpu_name, opt->name);
30675
30676 if (ext != NULL)
30677 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30678 opt->ext_table);
30679
30680 return TRUE;
30681 }
30682
30683 as_bad (_("unknown architecture `%s'\n"), str);
30684 return FALSE;
30685 }
30686
30687 static bfd_boolean
30688 arm_parse_fpu (const char * str)
30689 {
30690 const struct arm_option_fpu_value_table * opt;
30691
30692 for (opt = arm_fpus; opt->name != NULL; opt++)
30693 if (streq (opt->name, str))
30694 {
30695 mfpu_opt = &opt->value;
30696 return TRUE;
30697 }
30698
30699 as_bad (_("unknown floating point format `%s'\n"), str);
30700 return FALSE;
30701 }
30702
30703 static bfd_boolean
30704 arm_parse_float_abi (const char * str)
30705 {
30706 const struct arm_option_value_table * opt;
30707
30708 for (opt = arm_float_abis; opt->name != NULL; opt++)
30709 if (streq (opt->name, str))
30710 {
30711 mfloat_abi_opt = opt->value;
30712 return TRUE;
30713 }
30714
30715 as_bad (_("unknown floating point abi `%s'\n"), str);
30716 return FALSE;
30717 }
30718
30719 #ifdef OBJ_ELF
30720 static bfd_boolean
30721 arm_parse_eabi (const char * str)
30722 {
30723 const struct arm_option_value_table *opt;
30724
30725 for (opt = arm_eabis; opt->name != NULL; opt++)
30726 if (streq (opt->name, str))
30727 {
30728 meabi_flags = opt->value;
30729 return TRUE;
30730 }
30731 as_bad (_("unknown EABI `%s'\n"), str);
30732 return FALSE;
30733 }
30734 #endif
30735
30736 static bfd_boolean
30737 arm_parse_it_mode (const char * str)
30738 {
30739 bfd_boolean ret = TRUE;
30740
30741 if (streq ("arm", str))
30742 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30743 else if (streq ("thumb", str))
30744 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30745 else if (streq ("always", str))
30746 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30747 else if (streq ("never", str))
30748 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30749 else
30750 {
30751 as_bad (_("unknown implicit IT mode `%s', should be "\
30752 "arm, thumb, always, or never."), str);
30753 ret = FALSE;
30754 }
30755
30756 return ret;
30757 }
30758
30759 static bfd_boolean
30760 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30761 {
30762 codecomposer_syntax = TRUE;
30763 arm_comment_chars[0] = ';';
30764 arm_line_separator_chars[0] = 0;
30765 return TRUE;
30766 }
30767
30768 struct arm_long_option_table arm_long_opts[] =
30769 {
30770 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30771 arm_parse_cpu, NULL},
30772 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30773 arm_parse_arch, NULL},
30774 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30775 arm_parse_fpu, NULL},
30776 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30777 arm_parse_float_abi, NULL},
30778 #ifdef OBJ_ELF
30779 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30780 arm_parse_eabi, NULL},
30781 #endif
30782 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30783 arm_parse_it_mode, NULL},
30784 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30785 arm_ccs_mode, NULL},
30786 {NULL, NULL, 0, NULL}
30787 };
30788
30789 int
30790 md_parse_option (int c, const char * arg)
30791 {
30792 struct arm_option_table *opt;
30793 const struct arm_legacy_option_table *fopt;
30794 struct arm_long_option_table *lopt;
30795
30796 switch (c)
30797 {
30798 #ifdef OPTION_EB
30799 case OPTION_EB:
30800 target_big_endian = 1;
30801 break;
30802 #endif
30803
30804 #ifdef OPTION_EL
30805 case OPTION_EL:
30806 target_big_endian = 0;
30807 break;
30808 #endif
30809
30810 case OPTION_FIX_V4BX:
30811 fix_v4bx = TRUE;
30812 break;
30813
30814 #ifdef OBJ_ELF
30815 case OPTION_FDPIC:
30816 arm_fdpic = TRUE;
30817 break;
30818 #endif /* OBJ_ELF */
30819
30820 case 'a':
30821 /* Listing option. Just ignore these, we don't support additional
30822 ones. */
30823 return 0;
30824
30825 default:
30826 for (opt = arm_opts; opt->option != NULL; opt++)
30827 {
30828 if (c == opt->option[0]
30829 && ((arg == NULL && opt->option[1] == 0)
30830 || streq (arg, opt->option + 1)))
30831 {
30832 /* If the option is deprecated, tell the user. */
30833 if (warn_on_deprecated && opt->deprecated != NULL)
30834 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30835 arg ? arg : "", _(opt->deprecated));
30836
30837 if (opt->var != NULL)
30838 *opt->var = opt->value;
30839
30840 return 1;
30841 }
30842 }
30843
30844 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30845 {
30846 if (c == fopt->option[0]
30847 && ((arg == NULL && fopt->option[1] == 0)
30848 || streq (arg, fopt->option + 1)))
30849 {
30850 /* If the option is deprecated, tell the user. */
30851 if (warn_on_deprecated && fopt->deprecated != NULL)
30852 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30853 arg ? arg : "", _(fopt->deprecated));
30854
30855 if (fopt->var != NULL)
30856 *fopt->var = &fopt->value;
30857
30858 return 1;
30859 }
30860 }
30861
30862 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30863 {
30864 /* These options are expected to have an argument. */
30865 if (c == lopt->option[0]
30866 && arg != NULL
30867 && strncmp (arg, lopt->option + 1,
30868 strlen (lopt->option + 1)) == 0)
30869 {
30870 /* If the option is deprecated, tell the user. */
30871 if (warn_on_deprecated && lopt->deprecated != NULL)
30872 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30873 _(lopt->deprecated));
30874
30875 /* Call the sup-option parser. */
30876 return lopt->func (arg + strlen (lopt->option) - 1);
30877 }
30878 }
30879
30880 return 0;
30881 }
30882
30883 return 1;
30884 }
30885
30886 void
30887 md_show_usage (FILE * fp)
30888 {
30889 struct arm_option_table *opt;
30890 struct arm_long_option_table *lopt;
30891
30892 fprintf (fp, _(" ARM-specific assembler options:\n"));
30893
30894 for (opt = arm_opts; opt->option != NULL; opt++)
30895 if (opt->help != NULL)
30896 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30897
30898 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30899 if (lopt->help != NULL)
30900 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30901
30902 #ifdef OPTION_EB
30903 fprintf (fp, _("\
30904 -EB assemble code for a big-endian cpu\n"));
30905 #endif
30906
30907 #ifdef OPTION_EL
30908 fprintf (fp, _("\
30909 -EL assemble code for a little-endian cpu\n"));
30910 #endif
30911
30912 fprintf (fp, _("\
30913 --fix-v4bx Allow BX in ARMv4 code\n"));
30914
30915 #ifdef OBJ_ELF
30916 fprintf (fp, _("\
30917 --fdpic generate an FDPIC object file\n"));
30918 #endif /* OBJ_ELF */
30919 }
30920
30921 #ifdef OBJ_ELF
30922
30923 typedef struct
30924 {
30925 int val;
30926 arm_feature_set flags;
30927 } cpu_arch_ver_table;
30928
30929 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30930 chronologically for architectures, with an exception for ARMv6-M and
30931 ARMv6S-M due to legacy reasons. No new architecture should have a
30932 special case. This allows for build attribute selection results to be
30933 stable when new architectures are added. */
30934 static const cpu_arch_ver_table cpu_arch_ver[] =
30935 {
30936 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30937 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30938 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30939 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30940 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30941 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30942 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30943 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30944 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30945 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30946 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30947 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30948 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30949 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30950 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30951 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30952 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30953 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30954 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30955 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30956 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30957 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30958 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30959 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30960
30961 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30962 always selected build attributes to match those of ARMv6-M
30963 (resp. ARMv6S-M). However, due to these architectures being a strict
30964 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30965 would be selected when fully respecting chronology of architectures.
30966 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30967 move them before ARMv7 architectures. */
30968 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30969 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30970
30971 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30972 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30973 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30974 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30975 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30976 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30977 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30978 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30979 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30980 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30981 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30982 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30983 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30984 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30985 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30986 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30987 {-1, ARM_ARCH_NONE}
30988 };
30989
30990 /* Set an attribute if it has not already been set by the user. */
30991
30992 static void
30993 aeabi_set_attribute_int (int tag, int value)
30994 {
30995 if (tag < 1
30996 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30997 || !attributes_set_explicitly[tag])
30998 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30999 }
31000
31001 static void
31002 aeabi_set_attribute_string (int tag, const char *value)
31003 {
31004 if (tag < 1
31005 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31006 || !attributes_set_explicitly[tag])
31007 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31008 }
31009
31010 /* Return whether features in the *NEEDED feature set are available via
31011 extensions for the architecture whose feature set is *ARCH_FSET. */
31012
31013 static bfd_boolean
31014 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31015 const arm_feature_set *needed)
31016 {
31017 int i, nb_allowed_archs;
31018 arm_feature_set ext_fset;
31019 const struct arm_option_extension_value_table *opt;
31020
31021 ext_fset = arm_arch_none;
31022 for (opt = arm_extensions; opt->name != NULL; opt++)
31023 {
31024 /* Extension does not provide any feature we need. */
31025 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31026 continue;
31027
31028 nb_allowed_archs =
31029 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31030 for (i = 0; i < nb_allowed_archs; i++)
31031 {
31032 /* Empty entry. */
31033 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31034 break;
31035
31036 /* Extension is available, add it. */
31037 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31038 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31039 }
31040 }
31041
31042 /* Can we enable all features in *needed? */
31043 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31044 }
31045
31046 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31047 a given architecture feature set *ARCH_EXT_FSET including extension feature
31048 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31049 - if true, check for an exact match of the architecture modulo extensions;
31050 - otherwise, select build attribute value of the first superset
31051 architecture released so that results remains stable when new architectures
31052 are added.
31053 For -march/-mcpu=all the build attribute value of the most featureful
31054 architecture is returned. Tag_CPU_arch_profile result is returned in
31055 PROFILE. */
31056
31057 static int
31058 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31059 const arm_feature_set *ext_fset,
31060 char *profile, int exact_match)
31061 {
31062 arm_feature_set arch_fset;
31063 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31064
31065 /* Select most featureful architecture with all its extensions if building
31066 for -march=all as the feature sets used to set build attributes. */
31067 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31068 {
31069 /* Force revisiting of decision for each new architecture. */
31070 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31071 *profile = 'A';
31072 return TAG_CPU_ARCH_V8;
31073 }
31074
31075 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31076
31077 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31078 {
31079 arm_feature_set known_arch_fset;
31080
31081 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31082 if (exact_match)
31083 {
31084 /* Base architecture match user-specified architecture and
31085 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31086 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31087 {
31088 p_ver_ret = p_ver;
31089 goto found;
31090 }
31091 /* Base architecture match user-specified architecture only
31092 (eg. ARMv6-M in the same case as above). Record it in case we
31093 find a match with above condition. */
31094 else if (p_ver_ret == NULL
31095 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31096 p_ver_ret = p_ver;
31097 }
31098 else
31099 {
31100
31101 /* Architecture has all features wanted. */
31102 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31103 {
31104 arm_feature_set added_fset;
31105
31106 /* Compute features added by this architecture over the one
31107 recorded in p_ver_ret. */
31108 if (p_ver_ret != NULL)
31109 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31110 p_ver_ret->flags);
31111 /* First architecture that match incl. with extensions, or the
31112 only difference in features over the recorded match is
31113 features that were optional and are now mandatory. */
31114 if (p_ver_ret == NULL
31115 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31116 {
31117 p_ver_ret = p_ver;
31118 goto found;
31119 }
31120 }
31121 else if (p_ver_ret == NULL)
31122 {
31123 arm_feature_set needed_ext_fset;
31124
31125 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31126
31127 /* Architecture has all features needed when using some
31128 extensions. Record it and continue searching in case there
31129 exist an architecture providing all needed features without
31130 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31131 OS extension). */
31132 if (have_ext_for_needed_feat_p (&known_arch_fset,
31133 &needed_ext_fset))
31134 p_ver_ret = p_ver;
31135 }
31136 }
31137 }
31138
31139 if (p_ver_ret == NULL)
31140 return -1;
31141
31142 found:
31143 /* Tag_CPU_arch_profile. */
31144 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31145 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31146 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31147 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31148 *profile = 'A';
31149 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31150 *profile = 'R';
31151 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31152 *profile = 'M';
31153 else
31154 *profile = '\0';
31155 return p_ver_ret->val;
31156 }
31157
31158 /* Set the public EABI object attributes. */
31159
31160 static void
31161 aeabi_set_public_attributes (void)
31162 {
31163 char profile = '\0';
31164 int arch = -1;
31165 int virt_sec = 0;
31166 int fp16_optional = 0;
31167 int skip_exact_match = 0;
31168 arm_feature_set flags, flags_arch, flags_ext;
31169
31170 /* Autodetection mode, choose the architecture based the instructions
31171 actually used. */
31172 if (no_cpu_selected ())
31173 {
31174 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31175
31176 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31177 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31178
31179 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31180 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31181
31182 /* Code run during relaxation relies on selected_cpu being set. */
31183 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31184 flags_ext = arm_arch_none;
31185 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31186 selected_ext = flags_ext;
31187 selected_cpu = flags;
31188 }
31189 /* Otherwise, choose the architecture based on the capabilities of the
31190 requested cpu. */
31191 else
31192 {
31193 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31194 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31195 flags_ext = selected_ext;
31196 flags = selected_cpu;
31197 }
31198 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31199
31200 /* Allow the user to override the reported architecture. */
31201 if (!ARM_FEATURE_ZERO (selected_object_arch))
31202 {
31203 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31204 flags_ext = arm_arch_none;
31205 }
31206 else
31207 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31208
31209 /* When this function is run again after relaxation has happened there is no
31210 way to determine whether an architecture or CPU was specified by the user:
31211 - selected_cpu is set above for relaxation to work;
31212 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31213 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31214 Therefore, if not in -march=all case we first try an exact match and fall
31215 back to autodetection. */
31216 if (!skip_exact_match)
31217 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31218 if (arch == -1)
31219 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31220 if (arch == -1)
31221 as_bad (_("no architecture contains all the instructions used\n"));
31222
31223 /* Tag_CPU_name. */
31224 if (selected_cpu_name[0])
31225 {
31226 char *q;
31227
31228 q = selected_cpu_name;
31229 if (strncmp (q, "armv", 4) == 0)
31230 {
31231 int i;
31232
31233 q += 4;
31234 for (i = 0; q[i]; i++)
31235 q[i] = TOUPPER (q[i]);
31236 }
31237 aeabi_set_attribute_string (Tag_CPU_name, q);
31238 }
31239
31240 /* Tag_CPU_arch. */
31241 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31242
31243 /* Tag_CPU_arch_profile. */
31244 if (profile != '\0')
31245 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31246
31247 /* Tag_DSP_extension. */
31248 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31249 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31250
31251 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31252 /* Tag_ARM_ISA_use. */
31253 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31254 || ARM_FEATURE_ZERO (flags_arch))
31255 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31256
31257 /* Tag_THUMB_ISA_use. */
31258 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31259 || ARM_FEATURE_ZERO (flags_arch))
31260 {
31261 int thumb_isa_use;
31262
31263 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31264 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31265 thumb_isa_use = 3;
31266 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31267 thumb_isa_use = 2;
31268 else
31269 thumb_isa_use = 1;
31270 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31271 }
31272
31273 /* Tag_VFP_arch. */
31274 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31275 aeabi_set_attribute_int (Tag_VFP_arch,
31276 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31277 ? 7 : 8);
31278 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31279 aeabi_set_attribute_int (Tag_VFP_arch,
31280 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31281 ? 5 : 6);
31282 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31283 {
31284 fp16_optional = 1;
31285 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31286 }
31287 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31288 {
31289 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31290 fp16_optional = 1;
31291 }
31292 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31293 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31294 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31295 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31296 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31297
31298 /* Tag_ABI_HardFP_use. */
31299 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31300 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31301 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31302
31303 /* Tag_WMMX_arch. */
31304 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31305 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31306 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31307 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31308
31309 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31310 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31311 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31312 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31313 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31314 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31315 {
31316 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31317 {
31318 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31319 }
31320 else
31321 {
31322 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31323 fp16_optional = 1;
31324 }
31325 }
31326
31327 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31328 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31329 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31330 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31331
31332 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31333 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31334 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31335
31336 /* Tag_DIV_use.
31337
31338 We set Tag_DIV_use to two when integer divide instructions have been used
31339 in ARM state, or when Thumb integer divide instructions have been used,
31340 but we have no architecture profile set, nor have we any ARM instructions.
31341
31342 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31343 by the base architecture.
31344
31345 For new architectures we will have to check these tests. */
31346 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31347 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31348 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31349 aeabi_set_attribute_int (Tag_DIV_use, 0);
31350 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31351 || (profile == '\0'
31352 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31353 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31354 aeabi_set_attribute_int (Tag_DIV_use, 2);
31355
31356 /* Tag_MP_extension_use. */
31357 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31358 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31359
31360 /* Tag Virtualization_use. */
31361 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31362 virt_sec |= 1;
31363 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31364 virt_sec |= 2;
31365 if (virt_sec != 0)
31366 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31367 }
31368
31369 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31370 finished and free extension feature bits which will not be used anymore. */
31371
31372 void
31373 arm_md_post_relax (void)
31374 {
31375 aeabi_set_public_attributes ();
31376 XDELETE (mcpu_ext_opt);
31377 mcpu_ext_opt = NULL;
31378 XDELETE (march_ext_opt);
31379 march_ext_opt = NULL;
31380 }
31381
31382 /* Add the default contents for the .ARM.attributes section. */
31383
31384 void
31385 arm_md_end (void)
31386 {
31387 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31388 return;
31389
31390 aeabi_set_public_attributes ();
31391 }
31392 #endif /* OBJ_ELF */
31393
31394 /* Parse a .cpu directive. */
31395
31396 static void
31397 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31398 {
31399 const struct arm_cpu_option_table *opt;
31400 char *name;
31401 char saved_char;
31402
31403 name = input_line_pointer;
31404 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31405 input_line_pointer++;
31406 saved_char = *input_line_pointer;
31407 *input_line_pointer = 0;
31408
31409 /* Skip the first "all" entry. */
31410 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31411 if (streq (opt->name, name))
31412 {
31413 selected_arch = opt->value;
31414 selected_ext = opt->ext;
31415 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31416 if (opt->canonical_name)
31417 strcpy (selected_cpu_name, opt->canonical_name);
31418 else
31419 {
31420 int i;
31421 for (i = 0; opt->name[i]; i++)
31422 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31423
31424 selected_cpu_name[i] = 0;
31425 }
31426 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31427
31428 *input_line_pointer = saved_char;
31429 demand_empty_rest_of_line ();
31430 return;
31431 }
31432 as_bad (_("unknown cpu `%s'"), name);
31433 *input_line_pointer = saved_char;
31434 ignore_rest_of_line ();
31435 }
31436
31437 /* Parse a .arch directive. */
31438
31439 static void
31440 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31441 {
31442 const struct arm_arch_option_table *opt;
31443 char saved_char;
31444 char *name;
31445
31446 name = input_line_pointer;
31447 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31448 input_line_pointer++;
31449 saved_char = *input_line_pointer;
31450 *input_line_pointer = 0;
31451
31452 /* Skip the first "all" entry. */
31453 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31454 if (streq (opt->name, name))
31455 {
31456 selected_arch = opt->value;
31457 selected_ext = arm_arch_none;
31458 selected_cpu = selected_arch;
31459 strcpy (selected_cpu_name, opt->name);
31460 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31461 *input_line_pointer = saved_char;
31462 demand_empty_rest_of_line ();
31463 return;
31464 }
31465
31466 as_bad (_("unknown architecture `%s'\n"), name);
31467 *input_line_pointer = saved_char;
31468 ignore_rest_of_line ();
31469 }
31470
31471 /* Parse a .object_arch directive. */
31472
31473 static void
31474 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31475 {
31476 const struct arm_arch_option_table *opt;
31477 char saved_char;
31478 char *name;
31479
31480 name = input_line_pointer;
31481 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31482 input_line_pointer++;
31483 saved_char = *input_line_pointer;
31484 *input_line_pointer = 0;
31485
31486 /* Skip the first "all" entry. */
31487 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31488 if (streq (opt->name, name))
31489 {
31490 selected_object_arch = opt->value;
31491 *input_line_pointer = saved_char;
31492 demand_empty_rest_of_line ();
31493 return;
31494 }
31495
31496 as_bad (_("unknown architecture `%s'\n"), name);
31497 *input_line_pointer = saved_char;
31498 ignore_rest_of_line ();
31499 }
31500
31501 /* Parse a .arch_extension directive. */
31502
31503 static void
31504 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31505 {
31506 const struct arm_option_extension_value_table *opt;
31507 char saved_char;
31508 char *name;
31509 int adding_value = 1;
31510
31511 name = input_line_pointer;
31512 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31513 input_line_pointer++;
31514 saved_char = *input_line_pointer;
31515 *input_line_pointer = 0;
31516
31517 if (strlen (name) >= 2
31518 && strncmp (name, "no", 2) == 0)
31519 {
31520 adding_value = 0;
31521 name += 2;
31522 }
31523
31524 for (opt = arm_extensions; opt->name != NULL; opt++)
31525 if (streq (opt->name, name))
31526 {
31527 int i, nb_allowed_archs =
31528 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31529 for (i = 0; i < nb_allowed_archs; i++)
31530 {
31531 /* Empty entry. */
31532 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31533 continue;
31534 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31535 break;
31536 }
31537
31538 if (i == nb_allowed_archs)
31539 {
31540 as_bad (_("architectural extension `%s' is not allowed for the "
31541 "current base architecture"), name);
31542 break;
31543 }
31544
31545 if (adding_value)
31546 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31547 opt->merge_value);
31548 else
31549 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31550
31551 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31552 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31553 *input_line_pointer = saved_char;
31554 demand_empty_rest_of_line ();
31555 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31556 on this return so that duplicate extensions (extensions with the
31557 same name as a previous extension in the list) are not considered
31558 for command-line parsing. */
31559 return;
31560 }
31561
31562 if (opt->name == NULL)
31563 as_bad (_("unknown architecture extension `%s'\n"), name);
31564
31565 *input_line_pointer = saved_char;
31566 ignore_rest_of_line ();
31567 }
31568
31569 /* Parse a .fpu directive. */
31570
31571 static void
31572 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31573 {
31574 const struct arm_option_fpu_value_table *opt;
31575 char saved_char;
31576 char *name;
31577
31578 name = input_line_pointer;
31579 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31580 input_line_pointer++;
31581 saved_char = *input_line_pointer;
31582 *input_line_pointer = 0;
31583
31584 for (opt = arm_fpus; opt->name != NULL; opt++)
31585 if (streq (opt->name, name))
31586 {
31587 selected_fpu = opt->value;
31588 #ifndef CPU_DEFAULT
31589 if (no_cpu_selected ())
31590 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31591 else
31592 #endif
31593 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31594 *input_line_pointer = saved_char;
31595 demand_empty_rest_of_line ();
31596 return;
31597 }
31598
31599 as_bad (_("unknown floating point format `%s'\n"), name);
31600 *input_line_pointer = saved_char;
31601 ignore_rest_of_line ();
31602 }
31603
31604 /* Copy symbol information. */
31605
31606 void
31607 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31608 {
31609 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31610 }
31611
31612 #ifdef OBJ_ELF
31613 /* Given a symbolic attribute NAME, return the proper integer value.
31614 Returns -1 if the attribute is not known. */
31615
31616 int
31617 arm_convert_symbolic_attribute (const char *name)
31618 {
31619 static const struct
31620 {
31621 const char * name;
31622 const int tag;
31623 }
31624 attribute_table[] =
31625 {
31626 /* When you modify this table you should
31627 also modify the list in doc/c-arm.texi. */
31628 #define T(tag) {#tag, tag}
31629 T (Tag_CPU_raw_name),
31630 T (Tag_CPU_name),
31631 T (Tag_CPU_arch),
31632 T (Tag_CPU_arch_profile),
31633 T (Tag_ARM_ISA_use),
31634 T (Tag_THUMB_ISA_use),
31635 T (Tag_FP_arch),
31636 T (Tag_VFP_arch),
31637 T (Tag_WMMX_arch),
31638 T (Tag_Advanced_SIMD_arch),
31639 T (Tag_PCS_config),
31640 T (Tag_ABI_PCS_R9_use),
31641 T (Tag_ABI_PCS_RW_data),
31642 T (Tag_ABI_PCS_RO_data),
31643 T (Tag_ABI_PCS_GOT_use),
31644 T (Tag_ABI_PCS_wchar_t),
31645 T (Tag_ABI_FP_rounding),
31646 T (Tag_ABI_FP_denormal),
31647 T (Tag_ABI_FP_exceptions),
31648 T (Tag_ABI_FP_user_exceptions),
31649 T (Tag_ABI_FP_number_model),
31650 T (Tag_ABI_align_needed),
31651 T (Tag_ABI_align8_needed),
31652 T (Tag_ABI_align_preserved),
31653 T (Tag_ABI_align8_preserved),
31654 T (Tag_ABI_enum_size),
31655 T (Tag_ABI_HardFP_use),
31656 T (Tag_ABI_VFP_args),
31657 T (Tag_ABI_WMMX_args),
31658 T (Tag_ABI_optimization_goals),
31659 T (Tag_ABI_FP_optimization_goals),
31660 T (Tag_compatibility),
31661 T (Tag_CPU_unaligned_access),
31662 T (Tag_FP_HP_extension),
31663 T (Tag_VFP_HP_extension),
31664 T (Tag_ABI_FP_16bit_format),
31665 T (Tag_MPextension_use),
31666 T (Tag_DIV_use),
31667 T (Tag_nodefaults),
31668 T (Tag_also_compatible_with),
31669 T (Tag_conformance),
31670 T (Tag_T2EE_use),
31671 T (Tag_Virtualization_use),
31672 T (Tag_DSP_extension),
31673 T (Tag_MVE_arch),
31674 /* We deliberately do not include Tag_MPextension_use_legacy. */
31675 #undef T
31676 };
31677 unsigned int i;
31678
31679 if (name == NULL)
31680 return -1;
31681
31682 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31683 if (streq (name, attribute_table[i].name))
31684 return attribute_table[i].tag;
31685
31686 return -1;
31687 }
31688
31689 /* Apply sym value for relocations only in the case that they are for
31690 local symbols in the same segment as the fixup and you have the
31691 respective architectural feature for blx and simple switches. */
31692
31693 int
31694 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31695 {
31696 if (fixP->fx_addsy
31697 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31698 /* PR 17444: If the local symbol is in a different section then a reloc
31699 will always be generated for it, so applying the symbol value now
31700 will result in a double offset being stored in the relocation. */
31701 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31702 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31703 {
31704 switch (fixP->fx_r_type)
31705 {
31706 case BFD_RELOC_ARM_PCREL_BLX:
31707 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31708 if (ARM_IS_FUNC (fixP->fx_addsy))
31709 return 1;
31710 break;
31711
31712 case BFD_RELOC_ARM_PCREL_CALL:
31713 case BFD_RELOC_THUMB_PCREL_BLX:
31714 if (THUMB_IS_FUNC (fixP->fx_addsy))
31715 return 1;
31716 break;
31717
31718 default:
31719 break;
31720 }
31721
31722 }
31723 return 0;
31724 }
31725 #endif /* OBJ_ELF */
This page took 0.773723 seconds and 4 git commands to generate.