cc555f8a7a0bdc7e246d5f86685ac6e70d5c4679
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
6933 OP_REGLST, /* ARM register list */
6934 OP_CLRMLST, /* CLRM register list */
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
6943
6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
6954 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6955 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6956 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6957 OP_VMOV, /* Neon VMOV operands. */
6958 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6959 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6960 OP_RNDQMQ_Ibig,
6961 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6962 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6963 OP_VLDR, /* VLDR operand. */
6964
6965 OP_I0, /* immediate zero */
6966 OP_I7, /* immediate value 0 .. 7 */
6967 OP_I15, /* 0 .. 15 */
6968 OP_I16, /* 1 .. 16 */
6969 OP_I16z, /* 0 .. 16 */
6970 OP_I31, /* 0 .. 31 */
6971 OP_I31w, /* 0 .. 31, optional trailing ! */
6972 OP_I32, /* 1 .. 32 */
6973 OP_I32z, /* 0 .. 32 */
6974 OP_I63, /* 0 .. 63 */
6975 OP_I63s, /* -64 .. 63 */
6976 OP_I64, /* 1 .. 64 */
6977 OP_I64z, /* 0 .. 64 */
6978 OP_I255, /* 0 .. 255 */
6979
6980 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6981 OP_I7b, /* 0 .. 7 */
6982 OP_I15b, /* 0 .. 15 */
6983 OP_I31b, /* 0 .. 31 */
6984
6985 OP_SH, /* shifter operand */
6986 OP_SHG, /* shifter operand with possible group relocation */
6987 OP_ADDR, /* Memory address expression (any mode) */
6988 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6989 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6990 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6991 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6992 OP_EXP, /* arbitrary expression */
6993 OP_EXPi, /* same, with optional immediate prefix */
6994 OP_EXPr, /* same, with optional relocation suffix */
6995 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6996 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6997 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6998 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6999
7000 OP_CPSF, /* CPS flags */
7001 OP_ENDI, /* Endianness specifier */
7002 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7003 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7004 OP_COND, /* conditional code */
7005 OP_TB, /* Table branch. */
7006
7007 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7008
7009 OP_RRnpc_I0, /* ARM register or literal 0 */
7010 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7011 OP_RR_EXi, /* ARM register or expression with imm prefix */
7012 OP_RF_IF, /* FPA register or immediate */
7013 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7014 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7015
7016 /* Optional operands. */
7017 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7018 OP_oI31b, /* 0 .. 31 */
7019 OP_oI32b, /* 1 .. 32 */
7020 OP_oI32z, /* 0 .. 32 */
7021 OP_oIffffb, /* 0 .. 65535 */
7022 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7023
7024 OP_oRR, /* ARM register */
7025 OP_oLR, /* ARM LR register */
7026 OP_oRRnpc, /* ARM register, not the PC */
7027 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7028 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7029 OP_oRND, /* Optional Neon double precision register */
7030 OP_oRNQ, /* Optional Neon quad precision register */
7031 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7032 OP_oRNDQ, /* Optional Neon double or quad precision register */
7033 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7034 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7035 register. */
7036 OP_oSHll, /* LSL immediate */
7037 OP_oSHar, /* ASR immediate */
7038 OP_oSHllar, /* LSL or ASR immediate */
7039 OP_oROR, /* ROR 0/8/16/24 */
7040 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7041
7042 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7043
7044 /* Some pre-defined mixed (ARM/THUMB) operands. */
7045 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7046 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7047 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7048
7049 OP_FIRST_OPTIONAL = OP_oI7b
7050 };
7051
7052 /* Generic instruction operand parser. This does no encoding and no
7053 semantic validation; it merely squirrels values away in the inst
7054 structure. Returns SUCCESS or FAIL depending on whether the
7055 specified grammar matched. */
7056 static int
7057 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7058 {
7059 unsigned const int *upat = pattern;
7060 char *backtrack_pos = 0;
7061 const char *backtrack_error = 0;
7062 int i, val = 0, backtrack_index = 0;
7063 enum arm_reg_type rtype;
7064 parse_operand_result result;
7065 unsigned int op_parse_code;
7066 bfd_boolean partial_match;
7067
7068 #define po_char_or_fail(chr) \
7069 do \
7070 { \
7071 if (skip_past_char (&str, chr) == FAIL) \
7072 goto bad_args; \
7073 } \
7074 while (0)
7075
7076 #define po_reg_or_fail(regtype) \
7077 do \
7078 { \
7079 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7080 & inst.operands[i].vectype); \
7081 if (val == FAIL) \
7082 { \
7083 first_error (_(reg_expected_msgs[regtype])); \
7084 goto failure; \
7085 } \
7086 inst.operands[i].reg = val; \
7087 inst.operands[i].isreg = 1; \
7088 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7089 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7090 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7091 || rtype == REG_TYPE_VFD \
7092 || rtype == REG_TYPE_NQ); \
7093 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7094 } \
7095 while (0)
7096
7097 #define po_reg_or_goto(regtype, label) \
7098 do \
7099 { \
7100 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7101 & inst.operands[i].vectype); \
7102 if (val == FAIL) \
7103 goto label; \
7104 \
7105 inst.operands[i].reg = val; \
7106 inst.operands[i].isreg = 1; \
7107 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7108 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7109 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7110 || rtype == REG_TYPE_VFD \
7111 || rtype == REG_TYPE_NQ); \
7112 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7113 } \
7114 while (0)
7115
7116 #define po_imm_or_fail(min, max, popt) \
7117 do \
7118 { \
7119 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7120 goto failure; \
7121 inst.operands[i].imm = val; \
7122 } \
7123 while (0)
7124
7125 #define po_scalar_or_goto(elsz, label, reg_type) \
7126 do \
7127 { \
7128 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7129 reg_type); \
7130 if (val == FAIL) \
7131 goto label; \
7132 inst.operands[i].reg = val; \
7133 inst.operands[i].isscalar = 1; \
7134 } \
7135 while (0)
7136
7137 #define po_misc_or_fail(expr) \
7138 do \
7139 { \
7140 if (expr) \
7141 goto failure; \
7142 } \
7143 while (0)
7144
7145 #define po_misc_or_fail_no_backtrack(expr) \
7146 do \
7147 { \
7148 result = expr; \
7149 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7150 backtrack_pos = 0; \
7151 if (result != PARSE_OPERAND_SUCCESS) \
7152 goto failure; \
7153 } \
7154 while (0)
7155
7156 #define po_barrier_or_imm(str) \
7157 do \
7158 { \
7159 val = parse_barrier (&str); \
7160 if (val == FAIL && ! ISALPHA (*str)) \
7161 goto immediate; \
7162 if (val == FAIL \
7163 /* ISB can only take SY as an option. */ \
7164 || ((inst.instruction & 0xf0) == 0x60 \
7165 && val != 0xf)) \
7166 { \
7167 inst.error = _("invalid barrier type"); \
7168 backtrack_pos = 0; \
7169 goto failure; \
7170 } \
7171 } \
7172 while (0)
7173
7174 skip_whitespace (str);
7175
7176 for (i = 0; upat[i] != OP_stop; i++)
7177 {
7178 op_parse_code = upat[i];
7179 if (op_parse_code >= 1<<16)
7180 op_parse_code = thumb ? (op_parse_code >> 16)
7181 : (op_parse_code & ((1<<16)-1));
7182
7183 if (op_parse_code >= OP_FIRST_OPTIONAL)
7184 {
7185 /* Remember where we are in case we need to backtrack. */
7186 backtrack_pos = str;
7187 backtrack_error = inst.error;
7188 backtrack_index = i;
7189 }
7190
7191 if (i > 0 && (i > 1 || inst.operands[0].present))
7192 po_char_or_fail (',');
7193
7194 switch (op_parse_code)
7195 {
7196 /* Registers */
7197 case OP_oRRnpc:
7198 case OP_oRRnpcsp:
7199 case OP_RRnpc:
7200 case OP_RRnpcsp:
7201 case OP_oRR:
7202 case OP_RRe:
7203 case OP_RRo:
7204 case OP_LR:
7205 case OP_oLR:
7206 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7207 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7208 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7209 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7210 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7211 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7212 case OP_oRND:
7213 case OP_RNDMQR:
7214 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7215 break;
7216 try_rndmq:
7217 case OP_RNDMQ:
7218 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7219 break;
7220 try_rnd:
7221 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7222 case OP_RVC:
7223 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7224 break;
7225 /* Also accept generic coprocessor regs for unknown registers. */
7226 coproc_reg:
7227 po_reg_or_fail (REG_TYPE_CN);
7228 break;
7229 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7230 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7231 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7232 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7233 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7234 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7235 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7236 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7237 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7238 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7239 case OP_oRNQ:
7240 case OP_RNQMQ:
7241 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7242 break;
7243 try_nq:
7244 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7245 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7246 case OP_RNDQMQR:
7247 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7248 break;
7249 try_rndqmq:
7250 case OP_oRNDQMQ:
7251 case OP_RNDQMQ:
7252 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7253 break;
7254 try_rndq:
7255 case OP_oRNDQ:
7256 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7257 case OP_RVSDMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7259 break;
7260 try_rvsd:
7261 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7262 case OP_RVSD_COND:
7263 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7264 break;
7265 case OP_oRNSDQ:
7266 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7267 case OP_RNSDQMQR:
7268 po_reg_or_goto (REG_TYPE_RN, try_mq);
7269 break;
7270 try_mq:
7271 case OP_oRNSDQMQ:
7272 case OP_RNSDQMQ:
7273 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7274 break;
7275 try_nsdq2:
7276 po_reg_or_fail (REG_TYPE_NSDQ);
7277 inst.error = 0;
7278 break;
7279 case OP_RMQ:
7280 po_reg_or_fail (REG_TYPE_MQ);
7281 break;
7282 /* Neon scalar. Using an element size of 8 means that some invalid
7283 scalars are accepted here, so deal with those in later code. */
7284 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7285
7286 case OP_RNDQ_I0:
7287 {
7288 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7289 break;
7290 try_imm0:
7291 po_imm_or_fail (0, 0, TRUE);
7292 }
7293 break;
7294
7295 case OP_RVSD_I0:
7296 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7297 break;
7298
7299 case OP_RSVDMQ_FI0:
7300 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7301 break;
7302 try_rsvd_fi0:
7303 case OP_RSVD_FI0:
7304 {
7305 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7306 break;
7307 try_ifimm0:
7308 if (parse_ifimm_zero (&str))
7309 inst.operands[i].imm = 0;
7310 else
7311 {
7312 inst.error
7313 = _("only floating point zero is allowed as immediate value");
7314 goto failure;
7315 }
7316 }
7317 break;
7318
7319 case OP_RR_RNSC:
7320 {
7321 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7322 break;
7323 try_rr:
7324 po_reg_or_fail (REG_TYPE_RN);
7325 }
7326 break;
7327
7328 case OP_RNSDQ_RNSC_MQ:
7329 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7330 break;
7331 try_rnsdq_rnsc:
7332 case OP_RNSDQ_RNSC:
7333 {
7334 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7335 inst.error = 0;
7336 break;
7337 try_nsdq:
7338 po_reg_or_fail (REG_TYPE_NSDQ);
7339 inst.error = 0;
7340 }
7341 break;
7342
7343 case OP_RNSD_RNSC:
7344 {
7345 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7346 break;
7347 try_s_scalar:
7348 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7349 break;
7350 try_nsd:
7351 po_reg_or_fail (REG_TYPE_NSD);
7352 }
7353 break;
7354
7355 case OP_RNDQMQ_RNSC:
7356 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7357 break;
7358 try_rndq_rnsc:
7359 case OP_RNDQ_RNSC:
7360 {
7361 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7362 break;
7363 try_ndq:
7364 po_reg_or_fail (REG_TYPE_NDQ);
7365 }
7366 break;
7367
7368 case OP_RND_RNSC:
7369 {
7370 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7371 break;
7372 try_vfd:
7373 po_reg_or_fail (REG_TYPE_VFD);
7374 }
7375 break;
7376
7377 case OP_VMOV:
7378 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7379 not careful then bad things might happen. */
7380 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7381 break;
7382
7383 case OP_RNDQMQ_Ibig:
7384 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7385 break;
7386 try_rndq_ibig:
7387 case OP_RNDQ_Ibig:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7390 break;
7391 try_immbig:
7392 /* There's a possibility of getting a 64-bit immediate here, so
7393 we need special handling. */
7394 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7395 == FAIL)
7396 {
7397 inst.error = _("immediate value is out of range");
7398 goto failure;
7399 }
7400 }
7401 break;
7402
7403 case OP_RNDQ_I63b:
7404 {
7405 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7406 break;
7407 try_shimm:
7408 po_imm_or_fail (0, 63, TRUE);
7409 }
7410 break;
7411
7412 case OP_RRnpcb:
7413 po_char_or_fail ('[');
7414 po_reg_or_fail (REG_TYPE_RN);
7415 po_char_or_fail (']');
7416 break;
7417
7418 case OP_RRnpctw:
7419 case OP_RRw:
7420 case OP_oRRw:
7421 po_reg_or_fail (REG_TYPE_RN);
7422 if (skip_past_char (&str, '!') == SUCCESS)
7423 inst.operands[i].writeback = 1;
7424 break;
7425
7426 /* Immediates */
7427 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7428 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7429 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7430 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7431 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7432 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7433 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7434 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7435 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7436 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7437 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7438 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7439
7440 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7441 case OP_oI7b:
7442 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7443 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7444 case OP_oI31b:
7445 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7446 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7447 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7448 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7449
7450 /* Immediate variants */
7451 case OP_oI255c:
7452 po_char_or_fail ('{');
7453 po_imm_or_fail (0, 255, TRUE);
7454 po_char_or_fail ('}');
7455 break;
7456
7457 case OP_I31w:
7458 /* The expression parser chokes on a trailing !, so we have
7459 to find it first and zap it. */
7460 {
7461 char *s = str;
7462 while (*s && *s != ',')
7463 s++;
7464 if (s[-1] == '!')
7465 {
7466 s[-1] = '\0';
7467 inst.operands[i].writeback = 1;
7468 }
7469 po_imm_or_fail (0, 31, TRUE);
7470 if (str == s - 1)
7471 str = s;
7472 }
7473 break;
7474
7475 /* Expressions */
7476 case OP_EXPi: EXPi:
7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7478 GE_OPT_PREFIX));
7479 break;
7480
7481 case OP_EXP:
7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7483 GE_NO_PREFIX));
7484 break;
7485
7486 case OP_EXPr: EXPr:
7487 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7488 GE_NO_PREFIX));
7489 if (inst.relocs[0].exp.X_op == O_symbol)
7490 {
7491 val = parse_reloc (&str);
7492 if (val == -1)
7493 {
7494 inst.error = _("unrecognized relocation suffix");
7495 goto failure;
7496 }
7497 else if (val != BFD_RELOC_UNUSED)
7498 {
7499 inst.operands[i].imm = val;
7500 inst.operands[i].hasreloc = 1;
7501 }
7502 }
7503 break;
7504
7505 case OP_EXPs:
7506 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7507 GE_NO_PREFIX));
7508 if (inst.relocs[i].exp.X_op == O_symbol)
7509 {
7510 inst.operands[i].hasreloc = 1;
7511 }
7512 else if (inst.relocs[i].exp.X_op == O_constant)
7513 {
7514 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7515 inst.operands[i].hasreloc = 0;
7516 }
7517 break;
7518
7519 /* Operand for MOVW or MOVT. */
7520 case OP_HALF:
7521 po_misc_or_fail (parse_half (&str));
7522 break;
7523
7524 /* Register or expression. */
7525 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7526 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7527
7528 /* Register or immediate. */
7529 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7530 I0: po_imm_or_fail (0, 0, FALSE); break;
7531
7532 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7533 IF:
7534 if (!is_immediate_prefix (*str))
7535 goto bad_args;
7536 str++;
7537 val = parse_fpa_immediate (&str);
7538 if (val == FAIL)
7539 goto failure;
7540 /* FPA immediates are encoded as registers 8-15.
7541 parse_fpa_immediate has already applied the offset. */
7542 inst.operands[i].reg = val;
7543 inst.operands[i].isreg = 1;
7544 break;
7545
7546 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7547 I32z: po_imm_or_fail (0, 32, FALSE); break;
7548
7549 /* Two kinds of register. */
7550 case OP_RIWR_RIWC:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWR
7555 && rege->type != REG_TYPE_MMXWC
7556 && rege->type != REG_TYPE_MMXWCG))
7557 {
7558 inst.error = _("iWMMXt data or control register expected");
7559 goto failure;
7560 }
7561 inst.operands[i].reg = rege->number;
7562 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7563 }
7564 break;
7565
7566 case OP_RIWC_RIWG:
7567 {
7568 struct reg_entry *rege = arm_reg_parse_multi (&str);
7569 if (!rege
7570 || (rege->type != REG_TYPE_MMXWC
7571 && rege->type != REG_TYPE_MMXWCG))
7572 {
7573 inst.error = _("iWMMXt control register expected");
7574 goto failure;
7575 }
7576 inst.operands[i].reg = rege->number;
7577 inst.operands[i].isreg = 1;
7578 }
7579 break;
7580
7581 /* Misc */
7582 case OP_CPSF: val = parse_cps_flags (&str); break;
7583 case OP_ENDI: val = parse_endian_specifier (&str); break;
7584 case OP_oROR: val = parse_ror (&str); break;
7585 try_cond:
7586 case OP_COND: val = parse_cond (&str); break;
7587 case OP_oBARRIER_I15:
7588 po_barrier_or_imm (str); break;
7589 immediate:
7590 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7591 goto failure;
7592 break;
7593
7594 case OP_wPSR:
7595 case OP_rPSR:
7596 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7597 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7598 {
7599 inst.error = _("Banked registers are not available with this "
7600 "architecture.");
7601 goto failure;
7602 }
7603 break;
7604 try_psr:
7605 val = parse_psr (&str, op_parse_code == OP_wPSR);
7606 break;
7607
7608 case OP_VLDR:
7609 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7610 break;
7611 try_sysreg:
7612 val = parse_sys_vldr_vstr (&str);
7613 break;
7614
7615 case OP_APSR_RR:
7616 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7617 break;
7618 try_apsr:
7619 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7620 instruction). */
7621 if (strncasecmp (str, "APSR_", 5) == 0)
7622 {
7623 unsigned found = 0;
7624 str += 5;
7625 while (found < 15)
7626 switch (*str++)
7627 {
7628 case 'c': found = (found & 1) ? 16 : found | 1; break;
7629 case 'n': found = (found & 2) ? 16 : found | 2; break;
7630 case 'z': found = (found & 4) ? 16 : found | 4; break;
7631 case 'v': found = (found & 8) ? 16 : found | 8; break;
7632 default: found = 16;
7633 }
7634 if (found != 15)
7635 goto failure;
7636 inst.operands[i].isvec = 1;
7637 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7638 inst.operands[i].reg = REG_PC;
7639 }
7640 else
7641 goto failure;
7642 break;
7643
7644 case OP_TB:
7645 po_misc_or_fail (parse_tb (&str));
7646 break;
7647
7648 /* Register lists. */
7649 case OP_REGLST:
7650 val = parse_reg_list (&str, REGLIST_RN);
7651 if (*str == '^')
7652 {
7653 inst.operands[i].writeback = 1;
7654 str++;
7655 }
7656 break;
7657
7658 case OP_CLRMLST:
7659 val = parse_reg_list (&str, REGLIST_CLRM);
7660 break;
7661
7662 case OP_VRSLST:
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7664 &partial_match);
7665 break;
7666
7667 case OP_VRDLST:
7668 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7669 &partial_match);
7670 break;
7671
7672 case OP_VRSDLST:
7673 /* Allow Q registers too. */
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7675 REGLIST_NEON_D, &partial_match);
7676 if (val == FAIL)
7677 {
7678 inst.error = NULL;
7679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7680 REGLIST_VFP_S, &partial_match);
7681 inst.operands[i].issingle = 1;
7682 }
7683 break;
7684
7685 case OP_VRSDVLST:
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_D_VPR, &partial_match);
7688 if (val == FAIL && !partial_match)
7689 {
7690 inst.error = NULL;
7691 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7692 REGLIST_VFP_S_VPR, &partial_match);
7693 inst.operands[i].issingle = 1;
7694 }
7695 break;
7696
7697 case OP_NRDLST:
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7699 REGLIST_NEON_D, &partial_match);
7700 break;
7701
7702 case OP_MSTRLST4:
7703 case OP_MSTRLST2:
7704 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7705 1, &inst.operands[i].vectype);
7706 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7707 goto failure;
7708 break;
7709 case OP_NSTRLST:
7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7711 0, &inst.operands[i].vectype);
7712 break;
7713
7714 /* Addressing modes */
7715 case OP_ADDRMVE:
7716 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7717 break;
7718
7719 case OP_ADDR:
7720 po_misc_or_fail (parse_address (&str, i));
7721 break;
7722
7723 case OP_ADDRGLDR:
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str, i, GROUP_LDR));
7726 break;
7727
7728 case OP_ADDRGLDRS:
7729 po_misc_or_fail_no_backtrack (
7730 parse_address_group_reloc (&str, i, GROUP_LDRS));
7731 break;
7732
7733 case OP_ADDRGLDC:
7734 po_misc_or_fail_no_backtrack (
7735 parse_address_group_reloc (&str, i, GROUP_LDC));
7736 break;
7737
7738 case OP_SH:
7739 po_misc_or_fail (parse_shifter_operand (&str, i));
7740 break;
7741
7742 case OP_SHG:
7743 po_misc_or_fail_no_backtrack (
7744 parse_shifter_operand_group_reloc (&str, i));
7745 break;
7746
7747 case OP_oSHll:
7748 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7749 break;
7750
7751 case OP_oSHar:
7752 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7753 break;
7754
7755 case OP_oSHllar:
7756 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7757 break;
7758
7759 case OP_RMQRZ:
7760 case OP_oRMQRZ:
7761 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7762 break;
7763 try_rr_zr:
7764 po_reg_or_goto (REG_TYPE_RN, ZR);
7765 break;
7766 ZR:
7767 po_reg_or_fail (REG_TYPE_ZR);
7768 break;
7769
7770 default:
7771 as_fatal (_("unhandled operand code %d"), op_parse_code);
7772 }
7773
7774 /* Various value-based sanity checks and shared operations. We
7775 do not signal immediate failures for the register constraints;
7776 this allows a syntax error to take precedence. */
7777 switch (op_parse_code)
7778 {
7779 case OP_oRRnpc:
7780 case OP_RRnpc:
7781 case OP_RRnpcb:
7782 case OP_RRw:
7783 case OP_oRRw:
7784 case OP_RRnpc_I0:
7785 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7786 inst.error = BAD_PC;
7787 break;
7788
7789 case OP_oRRnpcsp:
7790 case OP_RRnpcsp:
7791 if (inst.operands[i].isreg)
7792 {
7793 if (inst.operands[i].reg == REG_PC)
7794 inst.error = BAD_PC;
7795 else if (inst.operands[i].reg == REG_SP
7796 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7797 relaxed since ARMv8-A. */
7798 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7799 {
7800 gas_assert (thumb);
7801 inst.error = BAD_SP;
7802 }
7803 }
7804 break;
7805
7806 case OP_RRnpctw:
7807 if (inst.operands[i].isreg
7808 && inst.operands[i].reg == REG_PC
7809 && (inst.operands[i].writeback || thumb))
7810 inst.error = BAD_PC;
7811 break;
7812
7813 case OP_RVSD_COND:
7814 case OP_VLDR:
7815 if (inst.operands[i].isreg)
7816 break;
7817 /* fall through. */
7818
7819 case OP_CPSF:
7820 case OP_ENDI:
7821 case OP_oROR:
7822 case OP_wPSR:
7823 case OP_rPSR:
7824 case OP_COND:
7825 case OP_oBARRIER_I15:
7826 case OP_REGLST:
7827 case OP_CLRMLST:
7828 case OP_VRSLST:
7829 case OP_VRDLST:
7830 case OP_VRSDLST:
7831 case OP_VRSDVLST:
7832 case OP_NRDLST:
7833 case OP_NSTRLST:
7834 case OP_MSTRLST2:
7835 case OP_MSTRLST4:
7836 if (val == FAIL)
7837 goto failure;
7838 inst.operands[i].imm = val;
7839 break;
7840
7841 case OP_LR:
7842 case OP_oLR:
7843 if (inst.operands[i].reg != REG_LR)
7844 inst.error = _("operand must be LR register");
7845 break;
7846
7847 case OP_RMQRZ:
7848 case OP_oRMQRZ:
7849 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7850 inst.error = BAD_PC;
7851 break;
7852
7853 case OP_RRe:
7854 if (inst.operands[i].isreg
7855 && (inst.operands[i].reg & 0x00000001) != 0)
7856 inst.error = BAD_ODD;
7857 break;
7858
7859 case OP_RRo:
7860 if (inst.operands[i].isreg)
7861 {
7862 if ((inst.operands[i].reg & 0x00000001) != 1)
7863 inst.error = BAD_EVEN;
7864 else if (inst.operands[i].reg == REG_SP)
7865 as_tsktsk (MVE_BAD_SP);
7866 else if (inst.operands[i].reg == REG_PC)
7867 inst.error = BAD_PC;
7868 }
7869 break;
7870
7871 default:
7872 break;
7873 }
7874
7875 /* If we get here, this operand was successfully parsed. */
7876 inst.operands[i].present = 1;
7877 continue;
7878
7879 bad_args:
7880 inst.error = BAD_ARGS;
7881
7882 failure:
7883 if (!backtrack_pos)
7884 {
7885 /* The parse routine should already have set inst.error, but set a
7886 default here just in case. */
7887 if (!inst.error)
7888 inst.error = BAD_SYNTAX;
7889 return FAIL;
7890 }
7891
7892 /* Do not backtrack over a trailing optional argument that
7893 absorbed some text. We will only fail again, with the
7894 'garbage following instruction' error message, which is
7895 probably less helpful than the current one. */
7896 if (backtrack_index == i && backtrack_pos != str
7897 && upat[i+1] == OP_stop)
7898 {
7899 if (!inst.error)
7900 inst.error = BAD_SYNTAX;
7901 return FAIL;
7902 }
7903
7904 /* Try again, skipping the optional argument at backtrack_pos. */
7905 str = backtrack_pos;
7906 inst.error = backtrack_error;
7907 inst.operands[backtrack_index].present = 0;
7908 i = backtrack_index;
7909 backtrack_pos = 0;
7910 }
7911
7912 /* Check that we have parsed all the arguments. */
7913 if (*str != '\0' && !inst.error)
7914 inst.error = _("garbage following instruction");
7915
7916 return inst.error ? FAIL : SUCCESS;
7917 }
7918
7919 #undef po_char_or_fail
7920 #undef po_reg_or_fail
7921 #undef po_reg_or_goto
7922 #undef po_imm_or_fail
7923 #undef po_scalar_or_fail
7924 #undef po_barrier_or_imm
7925
7926 /* Shorthand macro for instruction encoding functions issuing errors. */
7927 #define constraint(expr, err) \
7928 do \
7929 { \
7930 if (expr) \
7931 { \
7932 inst.error = err; \
7933 return; \
7934 } \
7935 } \
7936 while (0)
7937
7938 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7939 instructions are unpredictable if these registers are used. This
7940 is the BadReg predicate in ARM's Thumb-2 documentation.
7941
7942 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7943 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7944 #define reject_bad_reg(reg) \
7945 do \
7946 if (reg == REG_PC) \
7947 { \
7948 inst.error = BAD_PC; \
7949 return; \
7950 } \
7951 else if (reg == REG_SP \
7952 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7953 { \
7954 inst.error = BAD_SP; \
7955 return; \
7956 } \
7957 while (0)
7958
7959 /* If REG is R13 (the stack pointer), warn that its use is
7960 deprecated. */
7961 #define warn_deprecated_sp(reg) \
7962 do \
7963 if (warn_on_deprecated && reg == REG_SP) \
7964 as_tsktsk (_("use of r13 is deprecated")); \
7965 while (0)
7966
7967 /* Functions for operand encoding. ARM, then Thumb. */
7968
7969 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7970
7971 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7972
7973 The only binary encoding difference is the Coprocessor number. Coprocessor
7974 9 is used for half-precision calculations or conversions. The format of the
7975 instruction is the same as the equivalent Coprocessor 10 instruction that
7976 exists for Single-Precision operation. */
7977
7978 static void
7979 do_scalar_fp16_v82_encode (void)
7980 {
7981 if (inst.cond < COND_ALWAYS)
7982 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7983 " the behaviour is UNPREDICTABLE"));
7984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7985 _(BAD_FP16));
7986
7987 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7988 mark_feature_used (&arm_ext_fp16);
7989 }
7990
7991 /* If VAL can be encoded in the immediate field of an ARM instruction,
7992 return the encoded form. Otherwise, return FAIL. */
7993
7994 static unsigned int
7995 encode_arm_immediate (unsigned int val)
7996 {
7997 unsigned int a, i;
7998
7999 if (val <= 0xff)
8000 return val;
8001
8002 for (i = 2; i < 32; i += 2)
8003 if ((a = rotate_left (val, i)) <= 0xff)
8004 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8005
8006 return FAIL;
8007 }
8008
8009 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8010 return the encoded form. Otherwise, return FAIL. */
8011 static unsigned int
8012 encode_thumb32_immediate (unsigned int val)
8013 {
8014 unsigned int a, i;
8015
8016 if (val <= 0xff)
8017 return val;
8018
8019 for (i = 1; i <= 24; i++)
8020 {
8021 a = val >> i;
8022 if ((val & ~(0xff << i)) == 0)
8023 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8024 }
8025
8026 a = val & 0xff;
8027 if (val == ((a << 16) | a))
8028 return 0x100 | a;
8029 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8030 return 0x300 | a;
8031
8032 a = val & 0xff00;
8033 if (val == ((a << 16) | a))
8034 return 0x200 | (a >> 8);
8035
8036 return FAIL;
8037 }
8038 /* Encode a VFP SP or DP register number into inst.instruction. */
8039
8040 static void
8041 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8042 {
8043 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8044 && reg > 15)
8045 {
8046 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8047 {
8048 if (thumb_mode)
8049 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8050 fpu_vfp_ext_d32);
8051 else
8052 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8053 fpu_vfp_ext_d32);
8054 }
8055 else
8056 {
8057 first_error (_("D register out of range for selected VFP version"));
8058 return;
8059 }
8060 }
8061
8062 switch (pos)
8063 {
8064 case VFP_REG_Sd:
8065 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8066 break;
8067
8068 case VFP_REG_Sn:
8069 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8070 break;
8071
8072 case VFP_REG_Sm:
8073 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8074 break;
8075
8076 case VFP_REG_Dd:
8077 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8078 break;
8079
8080 case VFP_REG_Dn:
8081 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8082 break;
8083
8084 case VFP_REG_Dm:
8085 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8086 break;
8087
8088 default:
8089 abort ();
8090 }
8091 }
8092
8093 /* Encode a <shift> in an ARM-format instruction. The immediate,
8094 if any, is handled by md_apply_fix. */
8095 static void
8096 encode_arm_shift (int i)
8097 {
8098 /* register-shifted register. */
8099 if (inst.operands[i].immisreg)
8100 {
8101 int op_index;
8102 for (op_index = 0; op_index <= i; ++op_index)
8103 {
8104 /* Check the operand only when it's presented. In pre-UAL syntax,
8105 if the destination register is the same as the first operand, two
8106 register form of the instruction can be used. */
8107 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8108 && inst.operands[op_index].reg == REG_PC)
8109 as_warn (UNPRED_REG ("r15"));
8110 }
8111
8112 if (inst.operands[i].imm == REG_PC)
8113 as_warn (UNPRED_REG ("r15"));
8114 }
8115
8116 if (inst.operands[i].shift_kind == SHIFT_RRX)
8117 inst.instruction |= SHIFT_ROR << 5;
8118 else
8119 {
8120 inst.instruction |= inst.operands[i].shift_kind << 5;
8121 if (inst.operands[i].immisreg)
8122 {
8123 inst.instruction |= SHIFT_BY_REG;
8124 inst.instruction |= inst.operands[i].imm << 8;
8125 }
8126 else
8127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8128 }
8129 }
8130
8131 static void
8132 encode_arm_shifter_operand (int i)
8133 {
8134 if (inst.operands[i].isreg)
8135 {
8136 inst.instruction |= inst.operands[i].reg;
8137 encode_arm_shift (i);
8138 }
8139 else
8140 {
8141 inst.instruction |= INST_IMMEDIATE;
8142 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8143 inst.instruction |= inst.operands[i].imm;
8144 }
8145 }
8146
8147 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8148 static void
8149 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8150 {
8151 /* PR 14260:
8152 Generate an error if the operand is not a register. */
8153 constraint (!inst.operands[i].isreg,
8154 _("Instruction does not support =N addresses"));
8155
8156 inst.instruction |= inst.operands[i].reg << 16;
8157
8158 if (inst.operands[i].preind)
8159 {
8160 if (is_t)
8161 {
8162 inst.error = _("instruction does not accept preindexed addressing");
8163 return;
8164 }
8165 inst.instruction |= PRE_INDEX;
8166 if (inst.operands[i].writeback)
8167 inst.instruction |= WRITE_BACK;
8168
8169 }
8170 else if (inst.operands[i].postind)
8171 {
8172 gas_assert (inst.operands[i].writeback);
8173 if (is_t)
8174 inst.instruction |= WRITE_BACK;
8175 }
8176 else /* unindexed - only for coprocessor */
8177 {
8178 inst.error = _("instruction does not accept unindexed addressing");
8179 return;
8180 }
8181
8182 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8183 && (((inst.instruction & 0x000f0000) >> 16)
8184 == ((inst.instruction & 0x0000f000) >> 12)))
8185 as_warn ((inst.instruction & LOAD_BIT)
8186 ? _("destination register same as write-back base")
8187 : _("source register same as write-back base"));
8188 }
8189
8190 /* inst.operands[i] was set up by parse_address. Encode it into an
8191 ARM-format mode 2 load or store instruction. If is_t is true,
8192 reject forms that cannot be used with a T instruction (i.e. not
8193 post-indexed). */
8194 static void
8195 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8196 {
8197 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8198
8199 encode_arm_addr_mode_common (i, is_t);
8200
8201 if (inst.operands[i].immisreg)
8202 {
8203 constraint ((inst.operands[i].imm == REG_PC
8204 || (is_pc && inst.operands[i].writeback)),
8205 BAD_PC_ADDRESSING);
8206 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8207 inst.instruction |= inst.operands[i].imm;
8208 if (!inst.operands[i].negative)
8209 inst.instruction |= INDEX_UP;
8210 if (inst.operands[i].shifted)
8211 {
8212 if (inst.operands[i].shift_kind == SHIFT_RRX)
8213 inst.instruction |= SHIFT_ROR << 5;
8214 else
8215 {
8216 inst.instruction |= inst.operands[i].shift_kind << 5;
8217 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8218 }
8219 }
8220 }
8221 else /* immediate offset in inst.relocs[0] */
8222 {
8223 if (is_pc && !inst.relocs[0].pc_rel)
8224 {
8225 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8226
8227 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8228 cannot use PC in addressing.
8229 PC cannot be used in writeback addressing, either. */
8230 constraint ((is_t || inst.operands[i].writeback),
8231 BAD_PC_ADDRESSING);
8232
8233 /* Use of PC in str is deprecated for ARMv7. */
8234 if (warn_on_deprecated
8235 && !is_load
8236 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8237 as_tsktsk (_("use of PC in this instruction is deprecated"));
8238 }
8239
8240 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8241 {
8242 /* Prefer + for zero encoded value. */
8243 if (!inst.operands[i].negative)
8244 inst.instruction |= INDEX_UP;
8245 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8246 }
8247 }
8248 }
8249
8250 /* inst.operands[i] was set up by parse_address. Encode it into an
8251 ARM-format mode 3 load or store instruction. Reject forms that
8252 cannot be used with such instructions. If is_t is true, reject
8253 forms that cannot be used with a T instruction (i.e. not
8254 post-indexed). */
8255 static void
8256 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8257 {
8258 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8259 {
8260 inst.error = _("instruction does not accept scaled register index");
8261 return;
8262 }
8263
8264 encode_arm_addr_mode_common (i, is_t);
8265
8266 if (inst.operands[i].immisreg)
8267 {
8268 constraint ((inst.operands[i].imm == REG_PC
8269 || (is_t && inst.operands[i].reg == REG_PC)),
8270 BAD_PC_ADDRESSING);
8271 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8272 BAD_PC_WRITEBACK);
8273 inst.instruction |= inst.operands[i].imm;
8274 if (!inst.operands[i].negative)
8275 inst.instruction |= INDEX_UP;
8276 }
8277 else /* immediate offset in inst.relocs[0] */
8278 {
8279 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8280 && inst.operands[i].writeback),
8281 BAD_PC_WRITEBACK);
8282 inst.instruction |= HWOFFSET_IMM;
8283 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8284 {
8285 /* Prefer + for zero encoded value. */
8286 if (!inst.operands[i].negative)
8287 inst.instruction |= INDEX_UP;
8288
8289 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8290 }
8291 }
8292 }
8293
8294 /* Write immediate bits [7:0] to the following locations:
8295
8296 |28/24|23 19|18 16|15 4|3 0|
8297 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8298
8299 This function is used by VMOV/VMVN/VORR/VBIC. */
8300
8301 static void
8302 neon_write_immbits (unsigned immbits)
8303 {
8304 inst.instruction |= immbits & 0xf;
8305 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8306 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8307 }
8308
8309 /* Invert low-order SIZE bits of XHI:XLO. */
8310
8311 static void
8312 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8313 {
8314 unsigned immlo = xlo ? *xlo : 0;
8315 unsigned immhi = xhi ? *xhi : 0;
8316
8317 switch (size)
8318 {
8319 case 8:
8320 immlo = (~immlo) & 0xff;
8321 break;
8322
8323 case 16:
8324 immlo = (~immlo) & 0xffff;
8325 break;
8326
8327 case 64:
8328 immhi = (~immhi) & 0xffffffff;
8329 /* fall through. */
8330
8331 case 32:
8332 immlo = (~immlo) & 0xffffffff;
8333 break;
8334
8335 default:
8336 abort ();
8337 }
8338
8339 if (xlo)
8340 *xlo = immlo;
8341
8342 if (xhi)
8343 *xhi = immhi;
8344 }
8345
8346 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8347 A, B, C, D. */
8348
8349 static int
8350 neon_bits_same_in_bytes (unsigned imm)
8351 {
8352 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8353 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8354 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8355 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8356 }
8357
8358 /* For immediate of above form, return 0bABCD. */
8359
8360 static unsigned
8361 neon_squash_bits (unsigned imm)
8362 {
8363 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8364 | ((imm & 0x01000000) >> 21);
8365 }
8366
8367 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8368
8369 static unsigned
8370 neon_qfloat_bits (unsigned imm)
8371 {
8372 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8373 }
8374
8375 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8376 the instruction. *OP is passed as the initial value of the op field, and
8377 may be set to a different value depending on the constant (i.e.
8378 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8379 MVN). If the immediate looks like a repeated pattern then also
8380 try smaller element sizes. */
8381
8382 static int
8383 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8384 unsigned *immbits, int *op, int size,
8385 enum neon_el_type type)
8386 {
8387 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8388 float. */
8389 if (type == NT_float && !float_p)
8390 return FAIL;
8391
8392 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8393 {
8394 if (size != 32 || *op == 1)
8395 return FAIL;
8396 *immbits = neon_qfloat_bits (immlo);
8397 return 0xf;
8398 }
8399
8400 if (size == 64)
8401 {
8402 if (neon_bits_same_in_bytes (immhi)
8403 && neon_bits_same_in_bytes (immlo))
8404 {
8405 if (*op == 1)
8406 return FAIL;
8407 *immbits = (neon_squash_bits (immhi) << 4)
8408 | neon_squash_bits (immlo);
8409 *op = 1;
8410 return 0xe;
8411 }
8412
8413 if (immhi != immlo)
8414 return FAIL;
8415 }
8416
8417 if (size >= 32)
8418 {
8419 if (immlo == (immlo & 0x000000ff))
8420 {
8421 *immbits = immlo;
8422 return 0x0;
8423 }
8424 else if (immlo == (immlo & 0x0000ff00))
8425 {
8426 *immbits = immlo >> 8;
8427 return 0x2;
8428 }
8429 else if (immlo == (immlo & 0x00ff0000))
8430 {
8431 *immbits = immlo >> 16;
8432 return 0x4;
8433 }
8434 else if (immlo == (immlo & 0xff000000))
8435 {
8436 *immbits = immlo >> 24;
8437 return 0x6;
8438 }
8439 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8440 {
8441 *immbits = (immlo >> 8) & 0xff;
8442 return 0xc;
8443 }
8444 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8445 {
8446 *immbits = (immlo >> 16) & 0xff;
8447 return 0xd;
8448 }
8449
8450 if ((immlo & 0xffff) != (immlo >> 16))
8451 return FAIL;
8452 immlo &= 0xffff;
8453 }
8454
8455 if (size >= 16)
8456 {
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 *immbits = immlo;
8460 return 0x8;
8461 }
8462 else if (immlo == (immlo & 0x0000ff00))
8463 {
8464 *immbits = immlo >> 8;
8465 return 0xa;
8466 }
8467
8468 if ((immlo & 0xff) != (immlo >> 8))
8469 return FAIL;
8470 immlo &= 0xff;
8471 }
8472
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 /* Don't allow MVN with 8-bit immediate. */
8476 if (*op == 1)
8477 return FAIL;
8478 *immbits = immlo;
8479 return 0xe;
8480 }
8481
8482 return FAIL;
8483 }
8484
8485 #if defined BFD_HOST_64_BIT
8486 /* Returns TRUE if double precision value V may be cast
8487 to single precision without loss of accuracy. */
8488
8489 static bfd_boolean
8490 is_double_a_single (bfd_int64_t v)
8491 {
8492 int exp = (int)((v >> 52) & 0x7FF);
8493 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8494
8495 return (exp == 0 || exp == 0x7FF
8496 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8497 && (mantissa & 0x1FFFFFFFl) == 0;
8498 }
8499
8500 /* Returns a double precision value casted to single precision
8501 (ignoring the least significant bits in exponent and mantissa). */
8502
8503 static int
8504 double_to_single (bfd_int64_t v)
8505 {
8506 int sign = (int) ((v >> 63) & 1l);
8507 int exp = (int) ((v >> 52) & 0x7FF);
8508 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8509
8510 if (exp == 0x7FF)
8511 exp = 0xFF;
8512 else
8513 {
8514 exp = exp - 1023 + 127;
8515 if (exp >= 0xFF)
8516 {
8517 /* Infinity. */
8518 exp = 0x7F;
8519 mantissa = 0;
8520 }
8521 else if (exp < 0)
8522 {
8523 /* No denormalized numbers. */
8524 exp = 0;
8525 mantissa = 0;
8526 }
8527 }
8528 mantissa >>= 29;
8529 return (sign << 31) | (exp << 23) | mantissa;
8530 }
8531 #endif /* BFD_HOST_64_BIT */
8532
8533 enum lit_type
8534 {
8535 CONST_THUMB,
8536 CONST_ARM,
8537 CONST_VEC
8538 };
8539
8540 static void do_vfp_nsyn_opcode (const char *);
8541
8542 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8543 Determine whether it can be performed with a move instruction; if
8544 it can, convert inst.instruction to that move instruction and
8545 return TRUE; if it can't, convert inst.instruction to a literal-pool
8546 load and return FALSE. If this is not a valid thing to do in the
8547 current context, set inst.error and return TRUE.
8548
8549 inst.operands[i] describes the destination register. */
8550
8551 static bfd_boolean
8552 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8553 {
8554 unsigned long tbit;
8555 bfd_boolean thumb_p = (t == CONST_THUMB);
8556 bfd_boolean arm_p = (t == CONST_ARM);
8557
8558 if (thumb_p)
8559 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8560 else
8561 tbit = LOAD_BIT;
8562
8563 if ((inst.instruction & tbit) == 0)
8564 {
8565 inst.error = _("invalid pseudo operation");
8566 return TRUE;
8567 }
8568
8569 if (inst.relocs[0].exp.X_op != O_constant
8570 && inst.relocs[0].exp.X_op != O_symbol
8571 && inst.relocs[0].exp.X_op != O_big)
8572 {
8573 inst.error = _("constant expression expected");
8574 return TRUE;
8575 }
8576
8577 if (inst.relocs[0].exp.X_op == O_constant
8578 || inst.relocs[0].exp.X_op == O_big)
8579 {
8580 #if defined BFD_HOST_64_BIT
8581 bfd_int64_t v;
8582 #else
8583 offsetT v;
8584 #endif
8585 if (inst.relocs[0].exp.X_op == O_big)
8586 {
8587 LITTLENUM_TYPE w[X_PRECISION];
8588 LITTLENUM_TYPE * l;
8589
8590 if (inst.relocs[0].exp.X_add_number == -1)
8591 {
8592 gen_to_words (w, X_PRECISION, E_PRECISION);
8593 l = w;
8594 /* FIXME: Should we check words w[2..5] ? */
8595 }
8596 else
8597 l = generic_bignum;
8598
8599 #if defined BFD_HOST_64_BIT
8600 v =
8601 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8602 << LITTLENUM_NUMBER_OF_BITS)
8603 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8604 << LITTLENUM_NUMBER_OF_BITS)
8605 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8606 << LITTLENUM_NUMBER_OF_BITS)
8607 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8608 #else
8609 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8610 | (l[0] & LITTLENUM_MASK);
8611 #endif
8612 }
8613 else
8614 v = inst.relocs[0].exp.X_add_number;
8615
8616 if (!inst.operands[i].issingle)
8617 {
8618 if (thumb_p)
8619 {
8620 /* LDR should not use lead in a flag-setting instruction being
8621 chosen so we do not check whether movs can be used. */
8622
8623 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8624 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8625 && inst.operands[i].reg != 13
8626 && inst.operands[i].reg != 15)
8627 {
8628 /* Check if on thumb2 it can be done with a mov.w, mvn or
8629 movw instruction. */
8630 unsigned int newimm;
8631 bfd_boolean isNegated;
8632
8633 newimm = encode_thumb32_immediate (v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = FALSE;
8636 else
8637 {
8638 newimm = encode_thumb32_immediate (~v);
8639 if (newimm != (unsigned int) FAIL)
8640 isNegated = TRUE;
8641 }
8642
8643 /* The number can be loaded with a mov.w or mvn
8644 instruction. */
8645 if (newimm != (unsigned int) FAIL
8646 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8647 {
8648 inst.instruction = (0xf04f0000 /* MOV.W. */
8649 | (inst.operands[i].reg << 8));
8650 /* Change to MOVN. */
8651 inst.instruction |= (isNegated ? 0x200000 : 0);
8652 inst.instruction |= (newimm & 0x800) << 15;
8653 inst.instruction |= (newimm & 0x700) << 4;
8654 inst.instruction |= (newimm & 0x0ff);
8655 return TRUE;
8656 }
8657 /* The number can be loaded with a movw instruction. */
8658 else if ((v & ~0xFFFF) == 0
8659 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8660 {
8661 int imm = v & 0xFFFF;
8662
8663 inst.instruction = 0xf2400000; /* MOVW. */
8664 inst.instruction |= (inst.operands[i].reg << 8);
8665 inst.instruction |= (imm & 0xf000) << 4;
8666 inst.instruction |= (imm & 0x0800) << 15;
8667 inst.instruction |= (imm & 0x0700) << 4;
8668 inst.instruction |= (imm & 0x00ff);
8669 return TRUE;
8670 }
8671 }
8672 }
8673 else if (arm_p)
8674 {
8675 int value = encode_arm_immediate (v);
8676
8677 if (value != FAIL)
8678 {
8679 /* This can be done with a mov instruction. */
8680 inst.instruction &= LITERAL_MASK;
8681 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8682 inst.instruction |= value & 0xfff;
8683 return TRUE;
8684 }
8685
8686 value = encode_arm_immediate (~ v);
8687 if (value != FAIL)
8688 {
8689 /* This can be done with a mvn instruction. */
8690 inst.instruction &= LITERAL_MASK;
8691 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8692 inst.instruction |= value & 0xfff;
8693 return TRUE;
8694 }
8695 }
8696 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8697 {
8698 int op = 0;
8699 unsigned immbits = 0;
8700 unsigned immlo = inst.operands[1].imm;
8701 unsigned immhi = inst.operands[1].regisimm
8702 ? inst.operands[1].reg
8703 : inst.relocs[0].exp.X_unsigned
8704 ? 0
8705 : ((bfd_int64_t)((int) immlo)) >> 32;
8706 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8707 &op, 64, NT_invtype);
8708
8709 if (cmode == FAIL)
8710 {
8711 neon_invert_size (&immlo, &immhi, 64);
8712 op = !op;
8713 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8714 &op, 64, NT_invtype);
8715 }
8716
8717 if (cmode != FAIL)
8718 {
8719 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8720 | (1 << 23)
8721 | (cmode << 8)
8722 | (op << 5)
8723 | (1 << 4);
8724
8725 /* Fill other bits in vmov encoding for both thumb and arm. */
8726 if (thumb_mode)
8727 inst.instruction |= (0x7U << 29) | (0xF << 24);
8728 else
8729 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8730 neon_write_immbits (immbits);
8731 return TRUE;
8732 }
8733 }
8734 }
8735
8736 if (t == CONST_VEC)
8737 {
8738 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8739 if (inst.operands[i].issingle
8740 && is_quarter_float (inst.operands[1].imm)
8741 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8742 {
8743 inst.operands[1].imm =
8744 neon_qfloat_bits (v);
8745 do_vfp_nsyn_opcode ("fconsts");
8746 return TRUE;
8747 }
8748
8749 /* If our host does not support a 64-bit type then we cannot perform
8750 the following optimization. This mean that there will be a
8751 discrepancy between the output produced by an assembler built for
8752 a 32-bit-only host and the output produced from a 64-bit host, but
8753 this cannot be helped. */
8754 #if defined BFD_HOST_64_BIT
8755 else if (!inst.operands[1].issingle
8756 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8757 {
8758 if (is_double_a_single (v)
8759 && is_quarter_float (double_to_single (v)))
8760 {
8761 inst.operands[1].imm =
8762 neon_qfloat_bits (double_to_single (v));
8763 do_vfp_nsyn_opcode ("fconstd");
8764 return TRUE;
8765 }
8766 }
8767 #endif
8768 }
8769 }
8770
8771 if (add_to_lit_pool ((!inst.operands[i].isvec
8772 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8773 return TRUE;
8774
8775 inst.operands[1].reg = REG_PC;
8776 inst.operands[1].isreg = 1;
8777 inst.operands[1].preind = 1;
8778 inst.relocs[0].pc_rel = 1;
8779 inst.relocs[0].type = (thumb_p
8780 ? BFD_RELOC_ARM_THUMB_OFFSET
8781 : (mode_3
8782 ? BFD_RELOC_ARM_HWLITERAL
8783 : BFD_RELOC_ARM_LITERAL));
8784 return FALSE;
8785 }
8786
8787 /* inst.operands[i] was set up by parse_address. Encode it into an
8788 ARM-format instruction. Reject all forms which cannot be encoded
8789 into a coprocessor load/store instruction. If wb_ok is false,
8790 reject use of writeback; if unind_ok is false, reject use of
8791 unindexed addressing. If reloc_override is not 0, use it instead
8792 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8793 (in which case it is preserved). */
8794
8795 static int
8796 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8797 {
8798 if (!inst.operands[i].isreg)
8799 {
8800 /* PR 18256 */
8801 if (! inst.operands[0].isvec)
8802 {
8803 inst.error = _("invalid co-processor operand");
8804 return FAIL;
8805 }
8806 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8807 return SUCCESS;
8808 }
8809
8810 inst.instruction |= inst.operands[i].reg << 16;
8811
8812 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8813
8814 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8815 {
8816 gas_assert (!inst.operands[i].writeback);
8817 if (!unind_ok)
8818 {
8819 inst.error = _("instruction does not support unindexed addressing");
8820 return FAIL;
8821 }
8822 inst.instruction |= inst.operands[i].imm;
8823 inst.instruction |= INDEX_UP;
8824 return SUCCESS;
8825 }
8826
8827 if (inst.operands[i].preind)
8828 inst.instruction |= PRE_INDEX;
8829
8830 if (inst.operands[i].writeback)
8831 {
8832 if (inst.operands[i].reg == REG_PC)
8833 {
8834 inst.error = _("pc may not be used with write-back");
8835 return FAIL;
8836 }
8837 if (!wb_ok)
8838 {
8839 inst.error = _("instruction does not support writeback");
8840 return FAIL;
8841 }
8842 inst.instruction |= WRITE_BACK;
8843 }
8844
8845 if (reloc_override)
8846 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8847 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8848 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8849 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8850 {
8851 if (thumb_mode)
8852 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8853 else
8854 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8855 }
8856
8857 /* Prefer + for zero encoded value. */
8858 if (!inst.operands[i].negative)
8859 inst.instruction |= INDEX_UP;
8860
8861 return SUCCESS;
8862 }
8863
8864 /* Functions for instruction encoding, sorted by sub-architecture.
8865 First some generics; their names are taken from the conventional
8866 bit positions for register arguments in ARM format instructions. */
8867
8868 static void
8869 do_noargs (void)
8870 {
8871 }
8872
8873 static void
8874 do_rd (void)
8875 {
8876 inst.instruction |= inst.operands[0].reg << 12;
8877 }
8878
8879 static void
8880 do_rn (void)
8881 {
8882 inst.instruction |= inst.operands[0].reg << 16;
8883 }
8884
8885 static void
8886 do_rd_rm (void)
8887 {
8888 inst.instruction |= inst.operands[0].reg << 12;
8889 inst.instruction |= inst.operands[1].reg;
8890 }
8891
8892 static void
8893 do_rm_rn (void)
8894 {
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[1].reg << 16;
8897 }
8898
8899 static void
8900 do_rd_rn (void)
8901 {
8902 inst.instruction |= inst.operands[0].reg << 12;
8903 inst.instruction |= inst.operands[1].reg << 16;
8904 }
8905
8906 static void
8907 do_rn_rd (void)
8908 {
8909 inst.instruction |= inst.operands[0].reg << 16;
8910 inst.instruction |= inst.operands[1].reg << 12;
8911 }
8912
8913 static void
8914 do_tt (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg << 8;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918 }
8919
8920 static bfd_boolean
8921 check_obsolete (const arm_feature_set *feature, const char *msg)
8922 {
8923 if (ARM_CPU_IS_ANY (cpu_variant))
8924 {
8925 as_tsktsk ("%s", msg);
8926 return TRUE;
8927 }
8928 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8929 {
8930 as_bad ("%s", msg);
8931 return TRUE;
8932 }
8933
8934 return FALSE;
8935 }
8936
8937 static void
8938 do_rd_rm_rn (void)
8939 {
8940 unsigned Rn = inst.operands[2].reg;
8941 /* Enforce restrictions on SWP instruction. */
8942 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8943 {
8944 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8945 _("Rn must not overlap other operands"));
8946
8947 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8948 */
8949 if (!check_obsolete (&arm_ext_v8,
8950 _("swp{b} use is obsoleted for ARMv8 and later"))
8951 && warn_on_deprecated
8952 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8953 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8954 }
8955
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg;
8958 inst.instruction |= Rn << 16;
8959 }
8960
8961 static void
8962 do_rd_rn_rm (void)
8963 {
8964 inst.instruction |= inst.operands[0].reg << 12;
8965 inst.instruction |= inst.operands[1].reg << 16;
8966 inst.instruction |= inst.operands[2].reg;
8967 }
8968
8969 static void
8970 do_rm_rd_rn (void)
8971 {
8972 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8973 constraint (((inst.relocs[0].exp.X_op != O_constant
8974 && inst.relocs[0].exp.X_op != O_illegal)
8975 || inst.relocs[0].exp.X_add_number != 0),
8976 BAD_ADDR_MODE);
8977 inst.instruction |= inst.operands[0].reg;
8978 inst.instruction |= inst.operands[1].reg << 12;
8979 inst.instruction |= inst.operands[2].reg << 16;
8980 }
8981
8982 static void
8983 do_imm0 (void)
8984 {
8985 inst.instruction |= inst.operands[0].imm;
8986 }
8987
8988 static void
8989 do_rd_cpaddr (void)
8990 {
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 encode_arm_cp_address (1, TRUE, TRUE, 0);
8993 }
8994
8995 /* ARM instructions, in alphabetical order by function name (except
8996 that wrapper functions appear immediately after the function they
8997 wrap). */
8998
8999 /* This is a pseudo-op of the form "adr rd, label" to be converted
9000 into a relative address of the form "add rd, pc, #label-.-8". */
9001
9002 static void
9003 do_adr (void)
9004 {
9005 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9006
9007 /* Frag hacking will turn this into a sub instruction if the offset turns
9008 out to be negative. */
9009 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9010 inst.relocs[0].pc_rel = 1;
9011 inst.relocs[0].exp.X_add_number -= 8;
9012
9013 if (support_interwork
9014 && inst.relocs[0].exp.X_op == O_symbol
9015 && inst.relocs[0].exp.X_add_symbol != NULL
9016 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9017 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9018 inst.relocs[0].exp.X_add_number |= 1;
9019 }
9020
9021 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9022 into a relative address of the form:
9023 add rd, pc, #low(label-.-8)"
9024 add rd, rd, #high(label-.-8)" */
9025
9026 static void
9027 do_adrl (void)
9028 {
9029 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9030
9031 /* Frag hacking will turn this into a sub instruction if the offset turns
9032 out to be negative. */
9033 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9034 inst.relocs[0].pc_rel = 1;
9035 inst.size = INSN_SIZE * 2;
9036 inst.relocs[0].exp.X_add_number -= 8;
9037
9038 if (support_interwork
9039 && inst.relocs[0].exp.X_op == O_symbol
9040 && inst.relocs[0].exp.X_add_symbol != NULL
9041 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9042 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9043 inst.relocs[0].exp.X_add_number |= 1;
9044 }
9045
9046 static void
9047 do_arit (void)
9048 {
9049 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9050 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9051 THUMB1_RELOC_ONLY);
9052 if (!inst.operands[1].present)
9053 inst.operands[1].reg = inst.operands[0].reg;
9054 inst.instruction |= inst.operands[0].reg << 12;
9055 inst.instruction |= inst.operands[1].reg << 16;
9056 encode_arm_shifter_operand (2);
9057 }
9058
9059 static void
9060 do_barrier (void)
9061 {
9062 if (inst.operands[0].present)
9063 inst.instruction |= inst.operands[0].imm;
9064 else
9065 inst.instruction |= 0xf;
9066 }
9067
9068 static void
9069 do_bfc (void)
9070 {
9071 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9072 constraint (msb > 32, _("bit-field extends past end of register"));
9073 /* The instruction encoding stores the LSB and MSB,
9074 not the LSB and width. */
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].imm << 7;
9077 inst.instruction |= (msb - 1) << 16;
9078 }
9079
9080 static void
9081 do_bfi (void)
9082 {
9083 unsigned int msb;
9084
9085 /* #0 in second position is alternative syntax for bfc, which is
9086 the same instruction but with REG_PC in the Rm field. */
9087 if (!inst.operands[1].isreg)
9088 inst.operands[1].reg = REG_PC;
9089
9090 msb = inst.operands[2].imm + inst.operands[3].imm;
9091 constraint (msb > 32, _("bit-field extends past end of register"));
9092 /* The instruction encoding stores the LSB and MSB,
9093 not the LSB and width. */
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 inst.instruction |= inst.operands[1].reg;
9096 inst.instruction |= inst.operands[2].imm << 7;
9097 inst.instruction |= (msb - 1) << 16;
9098 }
9099
9100 static void
9101 do_bfx (void)
9102 {
9103 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9104 _("bit-field extends past end of register"));
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 inst.instruction |= inst.operands[1].reg;
9107 inst.instruction |= inst.operands[2].imm << 7;
9108 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9109 }
9110
9111 /* ARM V5 breakpoint instruction (argument parse)
9112 BKPT <16 bit unsigned immediate>
9113 Instruction is not conditional.
9114 The bit pattern given in insns[] has the COND_ALWAYS condition,
9115 and it is an error if the caller tried to override that. */
9116
9117 static void
9118 do_bkpt (void)
9119 {
9120 /* Top 12 of 16 bits to bits 19:8. */
9121 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9122
9123 /* Bottom 4 of 16 bits to bits 3:0. */
9124 inst.instruction |= inst.operands[0].imm & 0xf;
9125 }
9126
9127 static void
9128 encode_branch (int default_reloc)
9129 {
9130 if (inst.operands[0].hasreloc)
9131 {
9132 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9133 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9134 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9135 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9136 ? BFD_RELOC_ARM_PLT32
9137 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9138 }
9139 else
9140 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9141 inst.relocs[0].pc_rel = 1;
9142 }
9143
9144 static void
9145 do_branch (void)
9146 {
9147 #ifdef OBJ_ELF
9148 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9149 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9150 else
9151 #endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9153 }
9154
9155 static void
9156 do_bl (void)
9157 {
9158 #ifdef OBJ_ELF
9159 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9160 {
9161 if (inst.cond == COND_ALWAYS)
9162 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9163 else
9164 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9165 }
9166 else
9167 #endif
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9169 }
9170
9171 /* ARM V5 branch-link-exchange instruction (argument parse)
9172 BLX <target_addr> ie BLX(1)
9173 BLX{<condition>} <Rm> ie BLX(2)
9174 Unfortunately, there are two different opcodes for this mnemonic.
9175 So, the insns[].value is not used, and the code here zaps values
9176 into inst.instruction.
9177 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9178
9179 static void
9180 do_blx (void)
9181 {
9182 if (inst.operands[0].isreg)
9183 {
9184 /* Arg is a register; the opcode provided by insns[] is correct.
9185 It is not illegal to do "blx pc", just useless. */
9186 if (inst.operands[0].reg == REG_PC)
9187 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9188
9189 inst.instruction |= inst.operands[0].reg;
9190 }
9191 else
9192 {
9193 /* Arg is an address; this instruction cannot be executed
9194 conditionally, and the opcode must be adjusted.
9195 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9196 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9197 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9198 inst.instruction = 0xfa000000;
9199 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9200 }
9201 }
9202
9203 static void
9204 do_bx (void)
9205 {
9206 bfd_boolean want_reloc;
9207
9208 if (inst.operands[0].reg == REG_PC)
9209 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9210
9211 inst.instruction |= inst.operands[0].reg;
9212 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9213 it is for ARMv4t or earlier. */
9214 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9215 if (!ARM_FEATURE_ZERO (selected_object_arch)
9216 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9217 want_reloc = TRUE;
9218
9219 #ifdef OBJ_ELF
9220 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9221 #endif
9222 want_reloc = FALSE;
9223
9224 if (want_reloc)
9225 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9226 }
9227
9228
9229 /* ARM v5TEJ. Jump to Jazelle code. */
9230
9231 static void
9232 do_bxj (void)
9233 {
9234 if (inst.operands[0].reg == REG_PC)
9235 as_tsktsk (_("use of r15 in bxj is not really useful"));
9236
9237 inst.instruction |= inst.operands[0].reg;
9238 }
9239
9240 /* Co-processor data operation:
9241 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9242 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9243 static void
9244 do_cdp (void)
9245 {
9246 inst.instruction |= inst.operands[0].reg << 8;
9247 inst.instruction |= inst.operands[1].imm << 20;
9248 inst.instruction |= inst.operands[2].reg << 12;
9249 inst.instruction |= inst.operands[3].reg << 16;
9250 inst.instruction |= inst.operands[4].reg;
9251 inst.instruction |= inst.operands[5].imm << 5;
9252 }
9253
9254 static void
9255 do_cmp (void)
9256 {
9257 inst.instruction |= inst.operands[0].reg << 16;
9258 encode_arm_shifter_operand (1);
9259 }
9260
9261 /* Transfer between coprocessor and ARM registers.
9262 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9263 MRC2
9264 MCR{cond}
9265 MCR2
9266
9267 No special properties. */
9268
9269 struct deprecated_coproc_regs_s
9270 {
9271 unsigned cp;
9272 int opc1;
9273 unsigned crn;
9274 unsigned crm;
9275 int opc2;
9276 arm_feature_set deprecated;
9277 arm_feature_set obsoleted;
9278 const char *dep_msg;
9279 const char *obs_msg;
9280 };
9281
9282 #define DEPR_ACCESS_V8 \
9283 N_("This coprocessor register access is deprecated in ARMv8")
9284
9285 /* Table of all deprecated coprocessor registers. */
9286 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9287 {
9288 {15, 0, 7, 10, 5, /* CP15DMB. */
9289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9290 DEPR_ACCESS_V8, NULL},
9291 {15, 0, 7, 10, 4, /* CP15DSB. */
9292 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9293 DEPR_ACCESS_V8, NULL},
9294 {15, 0, 7, 5, 4, /* CP15ISB. */
9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9296 DEPR_ACCESS_V8, NULL},
9297 {14, 6, 1, 0, 0, /* TEEHBR. */
9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9299 DEPR_ACCESS_V8, NULL},
9300 {14, 6, 0, 0, 0, /* TEECR. */
9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9302 DEPR_ACCESS_V8, NULL},
9303 };
9304
9305 #undef DEPR_ACCESS_V8
9306
9307 static const size_t deprecated_coproc_reg_count =
9308 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9309
9310 static void
9311 do_co_reg (void)
9312 {
9313 unsigned Rd;
9314 size_t i;
9315
9316 Rd = inst.operands[2].reg;
9317 if (thumb_mode)
9318 {
9319 if (inst.instruction == 0xee000010
9320 || inst.instruction == 0xfe000010)
9321 /* MCR, MCR2 */
9322 reject_bad_reg (Rd);
9323 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9324 /* MRC, MRC2 */
9325 constraint (Rd == REG_SP, BAD_SP);
9326 }
9327 else
9328 {
9329 /* MCR */
9330 if (inst.instruction == 0xe000010)
9331 constraint (Rd == REG_PC, BAD_PC);
9332 }
9333
9334 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9335 {
9336 const struct deprecated_coproc_regs_s *r =
9337 deprecated_coproc_regs + i;
9338
9339 if (inst.operands[0].reg == r->cp
9340 && inst.operands[1].imm == r->opc1
9341 && inst.operands[3].reg == r->crn
9342 && inst.operands[4].reg == r->crm
9343 && inst.operands[5].imm == r->opc2)
9344 {
9345 if (! ARM_CPU_IS_ANY (cpu_variant)
9346 && warn_on_deprecated
9347 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9348 as_tsktsk ("%s", r->dep_msg);
9349 }
9350 }
9351
9352 inst.instruction |= inst.operands[0].reg << 8;
9353 inst.instruction |= inst.operands[1].imm << 21;
9354 inst.instruction |= Rd << 12;
9355 inst.instruction |= inst.operands[3].reg << 16;
9356 inst.instruction |= inst.operands[4].reg;
9357 inst.instruction |= inst.operands[5].imm << 5;
9358 }
9359
9360 /* Transfer between coprocessor register and pair of ARM registers.
9361 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9362 MCRR2
9363 MRRC{cond}
9364 MRRC2
9365
9366 Two XScale instructions are special cases of these:
9367
9368 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9369 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9370
9371 Result unpredictable if Rd or Rn is R15. */
9372
9373 static void
9374 do_co_reg2c (void)
9375 {
9376 unsigned Rd, Rn;
9377
9378 Rd = inst.operands[2].reg;
9379 Rn = inst.operands[3].reg;
9380
9381 if (thumb_mode)
9382 {
9383 reject_bad_reg (Rd);
9384 reject_bad_reg (Rn);
9385 }
9386 else
9387 {
9388 constraint (Rd == REG_PC, BAD_PC);
9389 constraint (Rn == REG_PC, BAD_PC);
9390 }
9391
9392 /* Only check the MRRC{2} variants. */
9393 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9394 {
9395 /* If Rd == Rn, error that the operation is
9396 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9397 constraint (Rd == Rn, BAD_OVERLAP);
9398 }
9399
9400 inst.instruction |= inst.operands[0].reg << 8;
9401 inst.instruction |= inst.operands[1].imm << 4;
9402 inst.instruction |= Rd << 12;
9403 inst.instruction |= Rn << 16;
9404 inst.instruction |= inst.operands[4].reg;
9405 }
9406
9407 static void
9408 do_cpsi (void)
9409 {
9410 inst.instruction |= inst.operands[0].imm << 6;
9411 if (inst.operands[1].present)
9412 {
9413 inst.instruction |= CPSI_MMOD;
9414 inst.instruction |= inst.operands[1].imm;
9415 }
9416 }
9417
9418 static void
9419 do_dbg (void)
9420 {
9421 inst.instruction |= inst.operands[0].imm;
9422 }
9423
9424 static void
9425 do_div (void)
9426 {
9427 unsigned Rd, Rn, Rm;
9428
9429 Rd = inst.operands[0].reg;
9430 Rn = (inst.operands[1].present
9431 ? inst.operands[1].reg : Rd);
9432 Rm = inst.operands[2].reg;
9433
9434 constraint ((Rd == REG_PC), BAD_PC);
9435 constraint ((Rn == REG_PC), BAD_PC);
9436 constraint ((Rm == REG_PC), BAD_PC);
9437
9438 inst.instruction |= Rd << 16;
9439 inst.instruction |= Rn << 0;
9440 inst.instruction |= Rm << 8;
9441 }
9442
9443 static void
9444 do_it (void)
9445 {
9446 /* There is no IT instruction in ARM mode. We
9447 process it to do the validation as if in
9448 thumb mode, just in case the code gets
9449 assembled for thumb using the unified syntax. */
9450
9451 inst.size = 0;
9452 if (unified_syntax)
9453 {
9454 set_pred_insn_type (IT_INSN);
9455 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9456 now_pred.cc = inst.operands[0].imm;
9457 }
9458 }
9459
9460 /* If there is only one register in the register list,
9461 then return its register number. Otherwise return -1. */
9462 static int
9463 only_one_reg_in_list (int range)
9464 {
9465 int i = ffs (range) - 1;
9466 return (i > 15 || range != (1 << i)) ? -1 : i;
9467 }
9468
9469 static void
9470 encode_ldmstm(int from_push_pop_mnem)
9471 {
9472 int base_reg = inst.operands[0].reg;
9473 int range = inst.operands[1].imm;
9474 int one_reg;
9475
9476 inst.instruction |= base_reg << 16;
9477 inst.instruction |= range;
9478
9479 if (inst.operands[1].writeback)
9480 inst.instruction |= LDM_TYPE_2_OR_3;
9481
9482 if (inst.operands[0].writeback)
9483 {
9484 inst.instruction |= WRITE_BACK;
9485 /* Check for unpredictable uses of writeback. */
9486 if (inst.instruction & LOAD_BIT)
9487 {
9488 /* Not allowed in LDM type 2. */
9489 if ((inst.instruction & LDM_TYPE_2_OR_3)
9490 && ((range & (1 << REG_PC)) == 0))
9491 as_warn (_("writeback of base register is UNPREDICTABLE"));
9492 /* Only allowed if base reg not in list for other types. */
9493 else if (range & (1 << base_reg))
9494 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9495 }
9496 else /* STM. */
9497 {
9498 /* Not allowed for type 2. */
9499 if (inst.instruction & LDM_TYPE_2_OR_3)
9500 as_warn (_("writeback of base register is UNPREDICTABLE"));
9501 /* Only allowed if base reg not in list, or first in list. */
9502 else if ((range & (1 << base_reg))
9503 && (range & ((1 << base_reg) - 1)))
9504 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9505 }
9506 }
9507
9508 /* If PUSH/POP has only one register, then use the A2 encoding. */
9509 one_reg = only_one_reg_in_list (range);
9510 if (from_push_pop_mnem && one_reg >= 0)
9511 {
9512 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9513
9514 if (is_push && one_reg == 13 /* SP */)
9515 /* PR 22483: The A2 encoding cannot be used when
9516 pushing the stack pointer as this is UNPREDICTABLE. */
9517 return;
9518
9519 inst.instruction &= A_COND_MASK;
9520 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9521 inst.instruction |= one_reg << 12;
9522 }
9523 }
9524
9525 static void
9526 do_ldmstm (void)
9527 {
9528 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9529 }
9530
9531 /* ARMv5TE load-consecutive (argument parse)
9532 Mode is like LDRH.
9533
9534 LDRccD R, mode
9535 STRccD R, mode. */
9536
9537 static void
9538 do_ldrd (void)
9539 {
9540 constraint (inst.operands[0].reg % 2 != 0,
9541 _("first transfer register must be even"));
9542 constraint (inst.operands[1].present
9543 && inst.operands[1].reg != inst.operands[0].reg + 1,
9544 _("can only transfer two consecutive registers"));
9545 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9546 constraint (!inst.operands[2].isreg, _("'[' expected"));
9547
9548 if (!inst.operands[1].present)
9549 inst.operands[1].reg = inst.operands[0].reg + 1;
9550
9551 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9552 register and the first register written; we have to diagnose
9553 overlap between the base and the second register written here. */
9554
9555 if (inst.operands[2].reg == inst.operands[1].reg
9556 && (inst.operands[2].writeback || inst.operands[2].postind))
9557 as_warn (_("base register written back, and overlaps "
9558 "second transfer register"));
9559
9560 if (!(inst.instruction & V4_STR_BIT))
9561 {
9562 /* For an index-register load, the index register must not overlap the
9563 destination (even if not write-back). */
9564 if (inst.operands[2].immisreg
9565 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9566 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9567 as_warn (_("index register overlaps transfer register"));
9568 }
9569 inst.instruction |= inst.operands[0].reg << 12;
9570 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9571 }
9572
9573 static void
9574 do_ldrex (void)
9575 {
9576 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9577 || inst.operands[1].postind || inst.operands[1].writeback
9578 || inst.operands[1].immisreg || inst.operands[1].shifted
9579 || inst.operands[1].negative
9580 /* This can arise if the programmer has written
9581 strex rN, rM, foo
9582 or if they have mistakenly used a register name as the last
9583 operand, eg:
9584 strex rN, rM, rX
9585 It is very difficult to distinguish between these two cases
9586 because "rX" might actually be a label. ie the register
9587 name has been occluded by a symbol of the same name. So we
9588 just generate a general 'bad addressing mode' type error
9589 message and leave it up to the programmer to discover the
9590 true cause and fix their mistake. */
9591 || (inst.operands[1].reg == REG_PC),
9592 BAD_ADDR_MODE);
9593
9594 constraint (inst.relocs[0].exp.X_op != O_constant
9595 || inst.relocs[0].exp.X_add_number != 0,
9596 _("offset must be zero in ARM encoding"));
9597
9598 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9599
9600 inst.instruction |= inst.operands[0].reg << 12;
9601 inst.instruction |= inst.operands[1].reg << 16;
9602 inst.relocs[0].type = BFD_RELOC_UNUSED;
9603 }
9604
9605 static void
9606 do_ldrexd (void)
9607 {
9608 constraint (inst.operands[0].reg % 2 != 0,
9609 _("even register required"));
9610 constraint (inst.operands[1].present
9611 && inst.operands[1].reg != inst.operands[0].reg + 1,
9612 _("can only load two consecutive registers"));
9613 /* If op 1 were present and equal to PC, this function wouldn't
9614 have been called in the first place. */
9615 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9616
9617 inst.instruction |= inst.operands[0].reg << 12;
9618 inst.instruction |= inst.operands[2].reg << 16;
9619 }
9620
9621 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9622 which is not a multiple of four is UNPREDICTABLE. */
9623 static void
9624 check_ldr_r15_aligned (void)
9625 {
9626 constraint (!(inst.operands[1].immisreg)
9627 && (inst.operands[0].reg == REG_PC
9628 && inst.operands[1].reg == REG_PC
9629 && (inst.relocs[0].exp.X_add_number & 0x3)),
9630 _("ldr to register 15 must be 4-byte aligned"));
9631 }
9632
9633 static void
9634 do_ldst (void)
9635 {
9636 inst.instruction |= inst.operands[0].reg << 12;
9637 if (!inst.operands[1].isreg)
9638 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9639 return;
9640 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9641 check_ldr_r15_aligned ();
9642 }
9643
9644 static void
9645 do_ldstt (void)
9646 {
9647 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9648 reject [Rn,...]. */
9649 if (inst.operands[1].preind)
9650 {
9651 constraint (inst.relocs[0].exp.X_op != O_constant
9652 || inst.relocs[0].exp.X_add_number != 0,
9653 _("this instruction requires a post-indexed address"));
9654
9655 inst.operands[1].preind = 0;
9656 inst.operands[1].postind = 1;
9657 inst.operands[1].writeback = 1;
9658 }
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9661 }
9662
9663 /* Halfword and signed-byte load/store operations. */
9664
9665 static void
9666 do_ldstv4 (void)
9667 {
9668 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9669 inst.instruction |= inst.operands[0].reg << 12;
9670 if (!inst.operands[1].isreg)
9671 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9672 return;
9673 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9674 }
9675
9676 static void
9677 do_ldsttv4 (void)
9678 {
9679 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9680 reject [Rn,...]. */
9681 if (inst.operands[1].preind)
9682 {
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
9685 _("this instruction requires a post-indexed address"));
9686
9687 inst.operands[1].preind = 0;
9688 inst.operands[1].postind = 1;
9689 inst.operands[1].writeback = 1;
9690 }
9691 inst.instruction |= inst.operands[0].reg << 12;
9692 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9693 }
9694
9695 /* Co-processor register load/store.
9696 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9697 static void
9698 do_lstc (void)
9699 {
9700 inst.instruction |= inst.operands[0].reg << 8;
9701 inst.instruction |= inst.operands[1].reg << 12;
9702 encode_arm_cp_address (2, TRUE, TRUE, 0);
9703 }
9704
9705 static void
9706 do_mlas (void)
9707 {
9708 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9709 if (inst.operands[0].reg == inst.operands[1].reg
9710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9711 && !(inst.instruction & 0x00400000))
9712 as_tsktsk (_("Rd and Rm should be different in mla"));
9713
9714 inst.instruction |= inst.operands[0].reg << 16;
9715 inst.instruction |= inst.operands[1].reg;
9716 inst.instruction |= inst.operands[2].reg << 8;
9717 inst.instruction |= inst.operands[3].reg << 12;
9718 }
9719
9720 static void
9721 do_mov (void)
9722 {
9723 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9724 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9725 THUMB1_RELOC_ONLY);
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 encode_arm_shifter_operand (1);
9728 }
9729
9730 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9731 static void
9732 do_mov16 (void)
9733 {
9734 bfd_vma imm;
9735 bfd_boolean top;
9736
9737 top = (inst.instruction & 0x00400000) != 0;
9738 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9739 _(":lower16: not allowed in this instruction"));
9740 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9741 _(":upper16: not allowed in this instruction"));
9742 inst.instruction |= inst.operands[0].reg << 12;
9743 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9744 {
9745 imm = inst.relocs[0].exp.X_add_number;
9746 /* The value is in two pieces: 0:11, 16:19. */
9747 inst.instruction |= (imm & 0x00000fff);
9748 inst.instruction |= (imm & 0x0000f000) << 4;
9749 }
9750 }
9751
9752 static int
9753 do_vfp_nsyn_mrs (void)
9754 {
9755 if (inst.operands[0].isvec)
9756 {
9757 if (inst.operands[1].reg != 1)
9758 first_error (_("operand 1 must be FPSCR"));
9759 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9760 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9761 do_vfp_nsyn_opcode ("fmstat");
9762 }
9763 else if (inst.operands[1].isvec)
9764 do_vfp_nsyn_opcode ("fmrx");
9765 else
9766 return FAIL;
9767
9768 return SUCCESS;
9769 }
9770
9771 static int
9772 do_vfp_nsyn_msr (void)
9773 {
9774 if (inst.operands[0].isvec)
9775 do_vfp_nsyn_opcode ("fmxr");
9776 else
9777 return FAIL;
9778
9779 return SUCCESS;
9780 }
9781
9782 static void
9783 do_vmrs (void)
9784 {
9785 unsigned Rt = inst.operands[0].reg;
9786
9787 if (thumb_mode && Rt == REG_SP)
9788 {
9789 inst.error = BAD_SP;
9790 return;
9791 }
9792
9793 /* MVFR2 is only valid at ARMv8-A. */
9794 if (inst.operands[1].reg == 5)
9795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9796 _(BAD_FPU));
9797
9798 /* APSR_ sets isvec. All other refs to PC are illegal. */
9799 if (!inst.operands[0].isvec && Rt == REG_PC)
9800 {
9801 inst.error = BAD_PC;
9802 return;
9803 }
9804
9805 /* If we get through parsing the register name, we just insert the number
9806 generated into the instruction without further validation. */
9807 inst.instruction |= (inst.operands[1].reg << 16);
9808 inst.instruction |= (Rt << 12);
9809 }
9810
9811 static void
9812 do_vmsr (void)
9813 {
9814 unsigned Rt = inst.operands[1].reg;
9815
9816 if (thumb_mode)
9817 reject_bad_reg (Rt);
9818 else if (Rt == REG_PC)
9819 {
9820 inst.error = BAD_PC;
9821 return;
9822 }
9823
9824 /* MVFR2 is only valid for ARMv8-A. */
9825 if (inst.operands[0].reg == 5)
9826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9827 _(BAD_FPU));
9828
9829 /* If we get through parsing the register name, we just insert the number
9830 generated into the instruction without further validation. */
9831 inst.instruction |= (inst.operands[0].reg << 16);
9832 inst.instruction |= (Rt << 12);
9833 }
9834
9835 static void
9836 do_mrs (void)
9837 {
9838 unsigned br;
9839
9840 if (do_vfp_nsyn_mrs () == SUCCESS)
9841 return;
9842
9843 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9844 inst.instruction |= inst.operands[0].reg << 12;
9845
9846 if (inst.operands[1].isreg)
9847 {
9848 br = inst.operands[1].reg;
9849 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9850 as_bad (_("bad register for mrs"));
9851 }
9852 else
9853 {
9854 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9855 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9856 != (PSR_c|PSR_f),
9857 _("'APSR', 'CPSR' or 'SPSR' expected"));
9858 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9859 }
9860
9861 inst.instruction |= br;
9862 }
9863
9864 /* Two possible forms:
9865 "{C|S}PSR_<field>, Rm",
9866 "{C|S}PSR_f, #expression". */
9867
9868 static void
9869 do_msr (void)
9870 {
9871 if (do_vfp_nsyn_msr () == SUCCESS)
9872 return;
9873
9874 inst.instruction |= inst.operands[0].imm;
9875 if (inst.operands[1].isreg)
9876 inst.instruction |= inst.operands[1].reg;
9877 else
9878 {
9879 inst.instruction |= INST_IMMEDIATE;
9880 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9881 inst.relocs[0].pc_rel = 0;
9882 }
9883 }
9884
9885 static void
9886 do_mul (void)
9887 {
9888 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9889
9890 if (!inst.operands[2].present)
9891 inst.operands[2].reg = inst.operands[0].reg;
9892 inst.instruction |= inst.operands[0].reg << 16;
9893 inst.instruction |= inst.operands[1].reg;
9894 inst.instruction |= inst.operands[2].reg << 8;
9895
9896 if (inst.operands[0].reg == inst.operands[1].reg
9897 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9898 as_tsktsk (_("Rd and Rm should be different in mul"));
9899 }
9900
9901 /* Long Multiply Parser
9902 UMULL RdLo, RdHi, Rm, Rs
9903 SMULL RdLo, RdHi, Rm, Rs
9904 UMLAL RdLo, RdHi, Rm, Rs
9905 SMLAL RdLo, RdHi, Rm, Rs. */
9906
9907 static void
9908 do_mull (void)
9909 {
9910 inst.instruction |= inst.operands[0].reg << 12;
9911 inst.instruction |= inst.operands[1].reg << 16;
9912 inst.instruction |= inst.operands[2].reg;
9913 inst.instruction |= inst.operands[3].reg << 8;
9914
9915 /* rdhi and rdlo must be different. */
9916 if (inst.operands[0].reg == inst.operands[1].reg)
9917 as_tsktsk (_("rdhi and rdlo must be different"));
9918
9919 /* rdhi, rdlo and rm must all be different before armv6. */
9920 if ((inst.operands[0].reg == inst.operands[2].reg
9921 || inst.operands[1].reg == inst.operands[2].reg)
9922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9923 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9924 }
9925
9926 static void
9927 do_nop (void)
9928 {
9929 if (inst.operands[0].present
9930 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9931 {
9932 /* Architectural NOP hints are CPSR sets with no bits selected. */
9933 inst.instruction &= 0xf0000000;
9934 inst.instruction |= 0x0320f000;
9935 if (inst.operands[0].present)
9936 inst.instruction |= inst.operands[0].imm;
9937 }
9938 }
9939
9940 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9941 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9942 Condition defaults to COND_ALWAYS.
9943 Error if Rd, Rn or Rm are R15. */
9944
9945 static void
9946 do_pkhbt (void)
9947 {
9948 inst.instruction |= inst.operands[0].reg << 12;
9949 inst.instruction |= inst.operands[1].reg << 16;
9950 inst.instruction |= inst.operands[2].reg;
9951 if (inst.operands[3].present)
9952 encode_arm_shift (3);
9953 }
9954
9955 /* ARM V6 PKHTB (Argument Parse). */
9956
9957 static void
9958 do_pkhtb (void)
9959 {
9960 if (!inst.operands[3].present)
9961 {
9962 /* If the shift specifier is omitted, turn the instruction
9963 into pkhbt rd, rm, rn. */
9964 inst.instruction &= 0xfff00010;
9965 inst.instruction |= inst.operands[0].reg << 12;
9966 inst.instruction |= inst.operands[1].reg;
9967 inst.instruction |= inst.operands[2].reg << 16;
9968 }
9969 else
9970 {
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg << 16;
9973 inst.instruction |= inst.operands[2].reg;
9974 encode_arm_shift (3);
9975 }
9976 }
9977
9978 /* ARMv5TE: Preload-Cache
9979 MP Extensions: Preload for write
9980
9981 PLD(W) <addr_mode>
9982
9983 Syntactically, like LDR with B=1, W=0, L=1. */
9984
9985 static void
9986 do_pld (void)
9987 {
9988 constraint (!inst.operands[0].isreg,
9989 _("'[' expected after PLD mnemonic"));
9990 constraint (inst.operands[0].postind,
9991 _("post-indexed expression used in preload instruction"));
9992 constraint (inst.operands[0].writeback,
9993 _("writeback used in preload instruction"));
9994 constraint (!inst.operands[0].preind,
9995 _("unindexed addressing used in preload instruction"));
9996 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9997 }
9998
9999 /* ARMv7: PLI <addr_mode> */
10000 static void
10001 do_pli (void)
10002 {
10003 constraint (!inst.operands[0].isreg,
10004 _("'[' expected after PLI mnemonic"));
10005 constraint (inst.operands[0].postind,
10006 _("post-indexed expression used in preload instruction"));
10007 constraint (inst.operands[0].writeback,
10008 _("writeback used in preload instruction"));
10009 constraint (!inst.operands[0].preind,
10010 _("unindexed addressing used in preload instruction"));
10011 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10012 inst.instruction &= ~PRE_INDEX;
10013 }
10014
10015 static void
10016 do_push_pop (void)
10017 {
10018 constraint (inst.operands[0].writeback,
10019 _("push/pop do not support {reglist}^"));
10020 inst.operands[1] = inst.operands[0];
10021 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10022 inst.operands[0].isreg = 1;
10023 inst.operands[0].writeback = 1;
10024 inst.operands[0].reg = REG_SP;
10025 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10026 }
10027
10028 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10029 word at the specified address and the following word
10030 respectively.
10031 Unconditionally executed.
10032 Error if Rn is R15. */
10033
10034 static void
10035 do_rfe (void)
10036 {
10037 inst.instruction |= inst.operands[0].reg << 16;
10038 if (inst.operands[0].writeback)
10039 inst.instruction |= WRITE_BACK;
10040 }
10041
10042 /* ARM V6 ssat (argument parse). */
10043
10044 static void
10045 do_ssat (void)
10046 {
10047 inst.instruction |= inst.operands[0].reg << 12;
10048 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10049 inst.instruction |= inst.operands[2].reg;
10050
10051 if (inst.operands[3].present)
10052 encode_arm_shift (3);
10053 }
10054
10055 /* ARM V6 usat (argument parse). */
10056
10057 static void
10058 do_usat (void)
10059 {
10060 inst.instruction |= inst.operands[0].reg << 12;
10061 inst.instruction |= inst.operands[1].imm << 16;
10062 inst.instruction |= inst.operands[2].reg;
10063
10064 if (inst.operands[3].present)
10065 encode_arm_shift (3);
10066 }
10067
10068 /* ARM V6 ssat16 (argument parse). */
10069
10070 static void
10071 do_ssat16 (void)
10072 {
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10075 inst.instruction |= inst.operands[2].reg;
10076 }
10077
10078 static void
10079 do_usat16 (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084 }
10085
10086 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10087 preserving the other bits.
10088
10089 setend <endian_specifier>, where <endian_specifier> is either
10090 BE or LE. */
10091
10092 static void
10093 do_setend (void)
10094 {
10095 if (warn_on_deprecated
10096 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10097 as_tsktsk (_("setend use is deprecated for ARMv8"));
10098
10099 if (inst.operands[0].imm)
10100 inst.instruction |= 0x200;
10101 }
10102
10103 static void
10104 do_shift (void)
10105 {
10106 unsigned int Rm = (inst.operands[1].present
10107 ? inst.operands[1].reg
10108 : inst.operands[0].reg);
10109
10110 inst.instruction |= inst.operands[0].reg << 12;
10111 inst.instruction |= Rm;
10112 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10113 {
10114 inst.instruction |= inst.operands[2].reg << 8;
10115 inst.instruction |= SHIFT_BY_REG;
10116 /* PR 12854: Error on extraneous shifts. */
10117 constraint (inst.operands[2].shifted,
10118 _("extraneous shift as part of operand to shift insn"));
10119 }
10120 else
10121 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10122 }
10123
10124 static void
10125 do_smc (void)
10126 {
10127 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10128 inst.relocs[0].pc_rel = 0;
10129 }
10130
10131 static void
10132 do_hvc (void)
10133 {
10134 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10135 inst.relocs[0].pc_rel = 0;
10136 }
10137
10138 static void
10139 do_swi (void)
10140 {
10141 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10142 inst.relocs[0].pc_rel = 0;
10143 }
10144
10145 static void
10146 do_setpan (void)
10147 {
10148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10149 _("selected processor does not support SETPAN instruction"));
10150
10151 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10152 }
10153
10154 static void
10155 do_t_setpan (void)
10156 {
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10158 _("selected processor does not support SETPAN instruction"));
10159
10160 inst.instruction |= (inst.operands[0].imm << 3);
10161 }
10162
10163 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10164 SMLAxy{cond} Rd,Rm,Rs,Rn
10165 SMLAWy{cond} Rd,Rm,Rs,Rn
10166 Error if any register is R15. */
10167
10168 static void
10169 do_smla (void)
10170 {
10171 inst.instruction |= inst.operands[0].reg << 16;
10172 inst.instruction |= inst.operands[1].reg;
10173 inst.instruction |= inst.operands[2].reg << 8;
10174 inst.instruction |= inst.operands[3].reg << 12;
10175 }
10176
10177 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10178 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10179 Error if any register is R15.
10180 Warning if Rdlo == Rdhi. */
10181
10182 static void
10183 do_smlal (void)
10184 {
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 inst.instruction |= inst.operands[1].reg << 16;
10187 inst.instruction |= inst.operands[2].reg;
10188 inst.instruction |= inst.operands[3].reg << 8;
10189
10190 if (inst.operands[0].reg == inst.operands[1].reg)
10191 as_tsktsk (_("rdhi and rdlo must be different"));
10192 }
10193
10194 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10195 SMULxy{cond} Rd,Rm,Rs
10196 Error if any register is R15. */
10197
10198 static void
10199 do_smul (void)
10200 {
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 8;
10204 }
10205
10206 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10207 the same for both ARM and Thumb-2. */
10208
10209 static void
10210 do_srs (void)
10211 {
10212 int reg;
10213
10214 if (inst.operands[0].present)
10215 {
10216 reg = inst.operands[0].reg;
10217 constraint (reg != REG_SP, _("SRS base register must be r13"));
10218 }
10219 else
10220 reg = REG_SP;
10221
10222 inst.instruction |= reg << 16;
10223 inst.instruction |= inst.operands[1].imm;
10224 if (inst.operands[0].writeback || inst.operands[1].writeback)
10225 inst.instruction |= WRITE_BACK;
10226 }
10227
10228 /* ARM V6 strex (argument parse). */
10229
10230 static void
10231 do_strex (void)
10232 {
10233 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10234 || inst.operands[2].postind || inst.operands[2].writeback
10235 || inst.operands[2].immisreg || inst.operands[2].shifted
10236 || inst.operands[2].negative
10237 /* See comment in do_ldrex(). */
10238 || (inst.operands[2].reg == REG_PC),
10239 BAD_ADDR_MODE);
10240
10241 constraint (inst.operands[0].reg == inst.operands[1].reg
10242 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10243
10244 constraint (inst.relocs[0].exp.X_op != O_constant
10245 || inst.relocs[0].exp.X_add_number != 0,
10246 _("offset must be zero in ARM encoding"));
10247
10248 inst.instruction |= inst.operands[0].reg << 12;
10249 inst.instruction |= inst.operands[1].reg;
10250 inst.instruction |= inst.operands[2].reg << 16;
10251 inst.relocs[0].type = BFD_RELOC_UNUSED;
10252 }
10253
10254 static void
10255 do_t_strexbh (void)
10256 {
10257 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10258 || inst.operands[2].postind || inst.operands[2].writeback
10259 || inst.operands[2].immisreg || inst.operands[2].shifted
10260 || inst.operands[2].negative,
10261 BAD_ADDR_MODE);
10262
10263 constraint (inst.operands[0].reg == inst.operands[1].reg
10264 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10265
10266 do_rm_rd_rn ();
10267 }
10268
10269 static void
10270 do_strexd (void)
10271 {
10272 constraint (inst.operands[1].reg % 2 != 0,
10273 _("even register required"));
10274 constraint (inst.operands[2].present
10275 && inst.operands[2].reg != inst.operands[1].reg + 1,
10276 _("can only store two consecutive registers"));
10277 /* If op 2 were present and equal to PC, this function wouldn't
10278 have been called in the first place. */
10279 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10280
10281 constraint (inst.operands[0].reg == inst.operands[1].reg
10282 || inst.operands[0].reg == inst.operands[1].reg + 1
10283 || inst.operands[0].reg == inst.operands[3].reg,
10284 BAD_OVERLAP);
10285
10286 inst.instruction |= inst.operands[0].reg << 12;
10287 inst.instruction |= inst.operands[1].reg;
10288 inst.instruction |= inst.operands[3].reg << 16;
10289 }
10290
10291 /* ARM V8 STRL. */
10292 static void
10293 do_stlex (void)
10294 {
10295 constraint (inst.operands[0].reg == inst.operands[1].reg
10296 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10297
10298 do_rd_rm_rn ();
10299 }
10300
10301 static void
10302 do_t_stlex (void)
10303 {
10304 constraint (inst.operands[0].reg == inst.operands[1].reg
10305 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10306
10307 do_rm_rd_rn ();
10308 }
10309
10310 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10311 extends it to 32-bits, and adds the result to a value in another
10312 register. You can specify a rotation by 0, 8, 16, or 24 bits
10313 before extracting the 16-bit value.
10314 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10315 Condition defaults to COND_ALWAYS.
10316 Error if any register uses R15. */
10317
10318 static void
10319 do_sxtah (void)
10320 {
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323 inst.instruction |= inst.operands[2].reg;
10324 inst.instruction |= inst.operands[3].imm << 10;
10325 }
10326
10327 /* ARM V6 SXTH.
10328
10329 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10330 Condition defaults to COND_ALWAYS.
10331 Error if any register uses R15. */
10332
10333 static void
10334 do_sxth (void)
10335 {
10336 inst.instruction |= inst.operands[0].reg << 12;
10337 inst.instruction |= inst.operands[1].reg;
10338 inst.instruction |= inst.operands[2].imm << 10;
10339 }
10340 \f
10341 /* VFP instructions. In a logical order: SP variant first, monad
10342 before dyad, arithmetic then move then load/store. */
10343
10344 static void
10345 do_vfp_sp_monadic (void)
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10348 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10349 _(BAD_FPU));
10350
10351 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10352 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10353 }
10354
10355 static void
10356 do_vfp_sp_dyadic (void)
10357 {
10358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10359 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10360 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10361 }
10362
10363 static void
10364 do_vfp_sp_compare_z (void)
10365 {
10366 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10367 }
10368
10369 static void
10370 do_vfp_dp_sp_cvt (void)
10371 {
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10374 }
10375
10376 static void
10377 do_vfp_sp_dp_cvt (void)
10378 {
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10381 }
10382
10383 static void
10384 do_vfp_reg_from_sp (void)
10385 {
10386 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10387 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10388 _(BAD_FPU));
10389
10390 inst.instruction |= inst.operands[0].reg << 12;
10391 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10392 }
10393
10394 static void
10395 do_vfp_reg2_from_sp2 (void)
10396 {
10397 constraint (inst.operands[2].imm != 2,
10398 _("only two consecutive VFP SP registers allowed here"));
10399 inst.instruction |= inst.operands[0].reg << 12;
10400 inst.instruction |= inst.operands[1].reg << 16;
10401 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10402 }
10403
10404 static void
10405 do_vfp_sp_from_reg (void)
10406 {
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
10411 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10412 inst.instruction |= inst.operands[1].reg << 12;
10413 }
10414
10415 static void
10416 do_vfp_sp2_from_reg2 (void)
10417 {
10418 constraint (inst.operands[0].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10421 inst.instruction |= inst.operands[1].reg << 12;
10422 inst.instruction |= inst.operands[2].reg << 16;
10423 }
10424
10425 static void
10426 do_vfp_sp_ldst (void)
10427 {
10428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10429 encode_arm_cp_address (1, FALSE, TRUE, 0);
10430 }
10431
10432 static void
10433 do_vfp_dp_ldst (void)
10434 {
10435 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10436 encode_arm_cp_address (1, FALSE, TRUE, 0);
10437 }
10438
10439
10440 static void
10441 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10442 {
10443 if (inst.operands[0].writeback)
10444 inst.instruction |= WRITE_BACK;
10445 else
10446 constraint (ldstm_type != VFP_LDSTMIA,
10447 _("this addressing mode requires base-register writeback"));
10448 inst.instruction |= inst.operands[0].reg << 16;
10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10450 inst.instruction |= inst.operands[1].imm;
10451 }
10452
10453 static void
10454 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10455 {
10456 int count;
10457
10458 if (inst.operands[0].writeback)
10459 inst.instruction |= WRITE_BACK;
10460 else
10461 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10462 _("this addressing mode requires base-register writeback"));
10463
10464 inst.instruction |= inst.operands[0].reg << 16;
10465 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10466
10467 count = inst.operands[1].imm << 1;
10468 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10469 count += 1;
10470
10471 inst.instruction |= count;
10472 }
10473
10474 static void
10475 do_vfp_sp_ldstmia (void)
10476 {
10477 vfp_sp_ldstm (VFP_LDSTMIA);
10478 }
10479
10480 static void
10481 do_vfp_sp_ldstmdb (void)
10482 {
10483 vfp_sp_ldstm (VFP_LDSTMDB);
10484 }
10485
10486 static void
10487 do_vfp_dp_ldstmia (void)
10488 {
10489 vfp_dp_ldstm (VFP_LDSTMIA);
10490 }
10491
10492 static void
10493 do_vfp_dp_ldstmdb (void)
10494 {
10495 vfp_dp_ldstm (VFP_LDSTMDB);
10496 }
10497
10498 static void
10499 do_vfp_xp_ldstmia (void)
10500 {
10501 vfp_dp_ldstm (VFP_LDSTMIAX);
10502 }
10503
10504 static void
10505 do_vfp_xp_ldstmdb (void)
10506 {
10507 vfp_dp_ldstm (VFP_LDSTMDBX);
10508 }
10509
10510 static void
10511 do_vfp_dp_rd_rm (void)
10512 {
10513 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10514 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10515 _(BAD_FPU));
10516
10517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10519 }
10520
10521 static void
10522 do_vfp_dp_rn_rd (void)
10523 {
10524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10525 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10526 }
10527
10528 static void
10529 do_vfp_dp_rd_rn (void)
10530 {
10531 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10532 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10533 }
10534
10535 static void
10536 do_vfp_dp_rd_rn_rm (void)
10537 {
10538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10539 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10540 _(BAD_FPU));
10541
10542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10543 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10544 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10545 }
10546
10547 static void
10548 do_vfp_dp_rd (void)
10549 {
10550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10551 }
10552
10553 static void
10554 do_vfp_dp_rm_rd_rn (void)
10555 {
10556 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10557 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10558 _(BAD_FPU));
10559
10560 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10561 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10562 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10563 }
10564
10565 /* VFPv3 instructions. */
10566 static void
10567 do_vfp_sp_const (void)
10568 {
10569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10570 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10571 inst.instruction |= (inst.operands[1].imm & 0x0f);
10572 }
10573
10574 static void
10575 do_vfp_dp_const (void)
10576 {
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10578 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10579 inst.instruction |= (inst.operands[1].imm & 0x0f);
10580 }
10581
10582 static void
10583 vfp_conv (int srcsize)
10584 {
10585 int immbits = srcsize - inst.operands[1].imm;
10586
10587 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10588 {
10589 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10590 i.e. immbits must be in range 0 - 16. */
10591 inst.error = _("immediate value out of range, expected range [0, 16]");
10592 return;
10593 }
10594 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10595 {
10596 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10597 i.e. immbits must be in range 0 - 31. */
10598 inst.error = _("immediate value out of range, expected range [1, 32]");
10599 return;
10600 }
10601
10602 inst.instruction |= (immbits & 1) << 5;
10603 inst.instruction |= (immbits >> 1);
10604 }
10605
10606 static void
10607 do_vfp_sp_conv_16 (void)
10608 {
10609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10610 vfp_conv (16);
10611 }
10612
10613 static void
10614 do_vfp_dp_conv_16 (void)
10615 {
10616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10617 vfp_conv (16);
10618 }
10619
10620 static void
10621 do_vfp_sp_conv_32 (void)
10622 {
10623 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10624 vfp_conv (32);
10625 }
10626
10627 static void
10628 do_vfp_dp_conv_32 (void)
10629 {
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10631 vfp_conv (32);
10632 }
10633 \f
10634 /* FPA instructions. Also in a logical order. */
10635
10636 static void
10637 do_fpa_cmp (void)
10638 {
10639 inst.instruction |= inst.operands[0].reg << 16;
10640 inst.instruction |= inst.operands[1].reg;
10641 }
10642
10643 static void
10644 do_fpa_ldmstm (void)
10645 {
10646 inst.instruction |= inst.operands[0].reg << 12;
10647 switch (inst.operands[1].imm)
10648 {
10649 case 1: inst.instruction |= CP_T_X; break;
10650 case 2: inst.instruction |= CP_T_Y; break;
10651 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10652 case 4: break;
10653 default: abort ();
10654 }
10655
10656 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10657 {
10658 /* The instruction specified "ea" or "fd", so we can only accept
10659 [Rn]{!}. The instruction does not really support stacking or
10660 unstacking, so we have to emulate these by setting appropriate
10661 bits and offsets. */
10662 constraint (inst.relocs[0].exp.X_op != O_constant
10663 || inst.relocs[0].exp.X_add_number != 0,
10664 _("this instruction does not support indexing"));
10665
10666 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10667 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10668
10669 if (!(inst.instruction & INDEX_UP))
10670 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10671
10672 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10673 {
10674 inst.operands[2].preind = 0;
10675 inst.operands[2].postind = 1;
10676 }
10677 }
10678
10679 encode_arm_cp_address (2, TRUE, TRUE, 0);
10680 }
10681 \f
10682 /* iWMMXt instructions: strictly in alphabetical order. */
10683
10684 static void
10685 do_iwmmxt_tandorc (void)
10686 {
10687 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10688 }
10689
10690 static void
10691 do_iwmmxt_textrc (void)
10692 {
10693 inst.instruction |= inst.operands[0].reg << 12;
10694 inst.instruction |= inst.operands[1].imm;
10695 }
10696
10697 static void
10698 do_iwmmxt_textrm (void)
10699 {
10700 inst.instruction |= inst.operands[0].reg << 12;
10701 inst.instruction |= inst.operands[1].reg << 16;
10702 inst.instruction |= inst.operands[2].imm;
10703 }
10704
10705 static void
10706 do_iwmmxt_tinsr (void)
10707 {
10708 inst.instruction |= inst.operands[0].reg << 16;
10709 inst.instruction |= inst.operands[1].reg << 12;
10710 inst.instruction |= inst.operands[2].imm;
10711 }
10712
10713 static void
10714 do_iwmmxt_tmia (void)
10715 {
10716 inst.instruction |= inst.operands[0].reg << 5;
10717 inst.instruction |= inst.operands[1].reg;
10718 inst.instruction |= inst.operands[2].reg << 12;
10719 }
10720
10721 static void
10722 do_iwmmxt_waligni (void)
10723 {
10724 inst.instruction |= inst.operands[0].reg << 12;
10725 inst.instruction |= inst.operands[1].reg << 16;
10726 inst.instruction |= inst.operands[2].reg;
10727 inst.instruction |= inst.operands[3].imm << 20;
10728 }
10729
10730 static void
10731 do_iwmmxt_wmerge (void)
10732 {
10733 inst.instruction |= inst.operands[0].reg << 12;
10734 inst.instruction |= inst.operands[1].reg << 16;
10735 inst.instruction |= inst.operands[2].reg;
10736 inst.instruction |= inst.operands[3].imm << 21;
10737 }
10738
10739 static void
10740 do_iwmmxt_wmov (void)
10741 {
10742 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10743 inst.instruction |= inst.operands[0].reg << 12;
10744 inst.instruction |= inst.operands[1].reg << 16;
10745 inst.instruction |= inst.operands[1].reg;
10746 }
10747
10748 static void
10749 do_iwmmxt_wldstbh (void)
10750 {
10751 int reloc;
10752 inst.instruction |= inst.operands[0].reg << 12;
10753 if (thumb_mode)
10754 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10755 else
10756 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10757 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10758 }
10759
10760 static void
10761 do_iwmmxt_wldstw (void)
10762 {
10763 /* RIWR_RIWC clears .isreg for a control register. */
10764 if (!inst.operands[0].isreg)
10765 {
10766 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10767 inst.instruction |= 0xf0000000;
10768 }
10769
10770 inst.instruction |= inst.operands[0].reg << 12;
10771 encode_arm_cp_address (1, TRUE, TRUE, 0);
10772 }
10773
10774 static void
10775 do_iwmmxt_wldstd (void)
10776 {
10777 inst.instruction |= inst.operands[0].reg << 12;
10778 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10779 && inst.operands[1].immisreg)
10780 {
10781 inst.instruction &= ~0x1a000ff;
10782 inst.instruction |= (0xfU << 28);
10783 if (inst.operands[1].preind)
10784 inst.instruction |= PRE_INDEX;
10785 if (!inst.operands[1].negative)
10786 inst.instruction |= INDEX_UP;
10787 if (inst.operands[1].writeback)
10788 inst.instruction |= WRITE_BACK;
10789 inst.instruction |= inst.operands[1].reg << 16;
10790 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10791 inst.instruction |= inst.operands[1].imm;
10792 }
10793 else
10794 encode_arm_cp_address (1, TRUE, FALSE, 0);
10795 }
10796
10797 static void
10798 do_iwmmxt_wshufh (void)
10799 {
10800 inst.instruction |= inst.operands[0].reg << 12;
10801 inst.instruction |= inst.operands[1].reg << 16;
10802 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10803 inst.instruction |= (inst.operands[2].imm & 0x0f);
10804 }
10805
10806 static void
10807 do_iwmmxt_wzero (void)
10808 {
10809 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10810 inst.instruction |= inst.operands[0].reg;
10811 inst.instruction |= inst.operands[0].reg << 12;
10812 inst.instruction |= inst.operands[0].reg << 16;
10813 }
10814
10815 static void
10816 do_iwmmxt_wrwrwr_or_imm5 (void)
10817 {
10818 if (inst.operands[2].isreg)
10819 do_rd_rn_rm ();
10820 else {
10821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10822 _("immediate operand requires iWMMXt2"));
10823 do_rd_rn ();
10824 if (inst.operands[2].imm == 0)
10825 {
10826 switch ((inst.instruction >> 20) & 0xf)
10827 {
10828 case 4:
10829 case 5:
10830 case 6:
10831 case 7:
10832 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10833 inst.operands[2].imm = 16;
10834 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10835 break;
10836 case 8:
10837 case 9:
10838 case 10:
10839 case 11:
10840 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10841 inst.operands[2].imm = 32;
10842 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10843 break;
10844 case 12:
10845 case 13:
10846 case 14:
10847 case 15:
10848 {
10849 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10850 unsigned long wrn;
10851 wrn = (inst.instruction >> 16) & 0xf;
10852 inst.instruction &= 0xff0fff0f;
10853 inst.instruction |= wrn;
10854 /* Bail out here; the instruction is now assembled. */
10855 return;
10856 }
10857 }
10858 }
10859 /* Map 32 -> 0, etc. */
10860 inst.operands[2].imm &= 0x1f;
10861 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10862 }
10863 }
10864 \f
10865 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10866 operations first, then control, shift, and load/store. */
10867
10868 /* Insns like "foo X,Y,Z". */
10869
10870 static void
10871 do_mav_triple (void)
10872 {
10873 inst.instruction |= inst.operands[0].reg << 16;
10874 inst.instruction |= inst.operands[1].reg;
10875 inst.instruction |= inst.operands[2].reg << 12;
10876 }
10877
10878 /* Insns like "foo W,X,Y,Z".
10879 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10880
10881 static void
10882 do_mav_quad (void)
10883 {
10884 inst.instruction |= inst.operands[0].reg << 5;
10885 inst.instruction |= inst.operands[1].reg << 12;
10886 inst.instruction |= inst.operands[2].reg << 16;
10887 inst.instruction |= inst.operands[3].reg;
10888 }
10889
10890 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10891 static void
10892 do_mav_dspsc (void)
10893 {
10894 inst.instruction |= inst.operands[1].reg << 12;
10895 }
10896
10897 /* Maverick shift immediate instructions.
10898 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10899 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10900
10901 static void
10902 do_mav_shift (void)
10903 {
10904 int imm = inst.operands[2].imm;
10905
10906 inst.instruction |= inst.operands[0].reg << 12;
10907 inst.instruction |= inst.operands[1].reg << 16;
10908
10909 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10910 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10911 Bit 4 should be 0. */
10912 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10913
10914 inst.instruction |= imm;
10915 }
10916 \f
10917 /* XScale instructions. Also sorted arithmetic before move. */
10918
10919 /* Xscale multiply-accumulate (argument parse)
10920 MIAcc acc0,Rm,Rs
10921 MIAPHcc acc0,Rm,Rs
10922 MIAxycc acc0,Rm,Rs. */
10923
10924 static void
10925 do_xsc_mia (void)
10926 {
10927 inst.instruction |= inst.operands[1].reg;
10928 inst.instruction |= inst.operands[2].reg << 12;
10929 }
10930
10931 /* Xscale move-accumulator-register (argument parse)
10932
10933 MARcc acc0,RdLo,RdHi. */
10934
10935 static void
10936 do_xsc_mar (void)
10937 {
10938 inst.instruction |= inst.operands[1].reg << 12;
10939 inst.instruction |= inst.operands[2].reg << 16;
10940 }
10941
10942 /* Xscale move-register-accumulator (argument parse)
10943
10944 MRAcc RdLo,RdHi,acc0. */
10945
10946 static void
10947 do_xsc_mra (void)
10948 {
10949 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10950 inst.instruction |= inst.operands[0].reg << 12;
10951 inst.instruction |= inst.operands[1].reg << 16;
10952 }
10953 \f
10954 /* Encoding functions relevant only to Thumb. */
10955
10956 /* inst.operands[i] is a shifted-register operand; encode
10957 it into inst.instruction in the format used by Thumb32. */
10958
10959 static void
10960 encode_thumb32_shifted_operand (int i)
10961 {
10962 unsigned int value = inst.relocs[0].exp.X_add_number;
10963 unsigned int shift = inst.operands[i].shift_kind;
10964
10965 constraint (inst.operands[i].immisreg,
10966 _("shift by register not allowed in thumb mode"));
10967 inst.instruction |= inst.operands[i].reg;
10968 if (shift == SHIFT_RRX)
10969 inst.instruction |= SHIFT_ROR << 4;
10970 else
10971 {
10972 constraint (inst.relocs[0].exp.X_op != O_constant,
10973 _("expression too complex"));
10974
10975 constraint (value > 32
10976 || (value == 32 && (shift == SHIFT_LSL
10977 || shift == SHIFT_ROR)),
10978 _("shift expression is too large"));
10979
10980 if (value == 0)
10981 shift = SHIFT_LSL;
10982 else if (value == 32)
10983 value = 0;
10984
10985 inst.instruction |= shift << 4;
10986 inst.instruction |= (value & 0x1c) << 10;
10987 inst.instruction |= (value & 0x03) << 6;
10988 }
10989 }
10990
10991
10992 /* inst.operands[i] was set up by parse_address. Encode it into a
10993 Thumb32 format load or store instruction. Reject forms that cannot
10994 be used with such instructions. If is_t is true, reject forms that
10995 cannot be used with a T instruction; if is_d is true, reject forms
10996 that cannot be used with a D instruction. If it is a store insn,
10997 reject PC in Rn. */
10998
10999 static void
11000 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11001 {
11002 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11003
11004 constraint (!inst.operands[i].isreg,
11005 _("Instruction does not support =N addresses"));
11006
11007 inst.instruction |= inst.operands[i].reg << 16;
11008 if (inst.operands[i].immisreg)
11009 {
11010 constraint (is_pc, BAD_PC_ADDRESSING);
11011 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11012 constraint (inst.operands[i].negative,
11013 _("Thumb does not support negative register indexing"));
11014 constraint (inst.operands[i].postind,
11015 _("Thumb does not support register post-indexing"));
11016 constraint (inst.operands[i].writeback,
11017 _("Thumb does not support register indexing with writeback"));
11018 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11019 _("Thumb supports only LSL in shifted register indexing"));
11020
11021 inst.instruction |= inst.operands[i].imm;
11022 if (inst.operands[i].shifted)
11023 {
11024 constraint (inst.relocs[0].exp.X_op != O_constant,
11025 _("expression too complex"));
11026 constraint (inst.relocs[0].exp.X_add_number < 0
11027 || inst.relocs[0].exp.X_add_number > 3,
11028 _("shift out of range"));
11029 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11030 }
11031 inst.relocs[0].type = BFD_RELOC_UNUSED;
11032 }
11033 else if (inst.operands[i].preind)
11034 {
11035 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11036 constraint (is_t && inst.operands[i].writeback,
11037 _("cannot use writeback with this instruction"));
11038 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11039 BAD_PC_ADDRESSING);
11040
11041 if (is_d)
11042 {
11043 inst.instruction |= 0x01000000;
11044 if (inst.operands[i].writeback)
11045 inst.instruction |= 0x00200000;
11046 }
11047 else
11048 {
11049 inst.instruction |= 0x00000c00;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00000100;
11052 }
11053 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11054 }
11055 else if (inst.operands[i].postind)
11056 {
11057 gas_assert (inst.operands[i].writeback);
11058 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11059 constraint (is_t, _("cannot use post-indexing with this instruction"));
11060
11061 if (is_d)
11062 inst.instruction |= 0x00200000;
11063 else
11064 inst.instruction |= 0x00000900;
11065 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11066 }
11067 else /* unindexed - only for coprocessor */
11068 inst.error = _("instruction does not accept unindexed addressing");
11069 }
11070
11071 /* Table of Thumb instructions which exist in both 16- and 32-bit
11072 encodings (the latter only in post-V6T2 cores). The index is the
11073 value used in the insns table below. When there is more than one
11074 possible 16-bit encoding for the instruction, this table always
11075 holds variant (1).
11076 Also contains several pseudo-instructions used during relaxation. */
11077 #define T16_32_TAB \
11078 X(_adc, 4140, eb400000), \
11079 X(_adcs, 4140, eb500000), \
11080 X(_add, 1c00, eb000000), \
11081 X(_adds, 1c00, eb100000), \
11082 X(_addi, 0000, f1000000), \
11083 X(_addis, 0000, f1100000), \
11084 X(_add_pc,000f, f20f0000), \
11085 X(_add_sp,000d, f10d0000), \
11086 X(_adr, 000f, f20f0000), \
11087 X(_and, 4000, ea000000), \
11088 X(_ands, 4000, ea100000), \
11089 X(_asr, 1000, fa40f000), \
11090 X(_asrs, 1000, fa50f000), \
11091 X(_b, e000, f000b000), \
11092 X(_bcond, d000, f0008000), \
11093 X(_bf, 0000, f040e001), \
11094 X(_bfcsel,0000, f000e001), \
11095 X(_bfx, 0000, f060e001), \
11096 X(_bfl, 0000, f000c001), \
11097 X(_bflx, 0000, f070e001), \
11098 X(_bic, 4380, ea200000), \
11099 X(_bics, 4380, ea300000), \
11100 X(_cmn, 42c0, eb100f00), \
11101 X(_cmp, 2800, ebb00f00), \
11102 X(_cpsie, b660, f3af8400), \
11103 X(_cpsid, b670, f3af8600), \
11104 X(_cpy, 4600, ea4f0000), \
11105 X(_dec_sp,80dd, f1ad0d00), \
11106 X(_dls, 0000, f040e001), \
11107 X(_eor, 4040, ea800000), \
11108 X(_eors, 4040, ea900000), \
11109 X(_inc_sp,00dd, f10d0d00), \
11110 X(_ldmia, c800, e8900000), \
11111 X(_ldr, 6800, f8500000), \
11112 X(_ldrb, 7800, f8100000), \
11113 X(_ldrh, 8800, f8300000), \
11114 X(_ldrsb, 5600, f9100000), \
11115 X(_ldrsh, 5e00, f9300000), \
11116 X(_ldr_pc,4800, f85f0000), \
11117 X(_ldr_pc2,4800, f85f0000), \
11118 X(_ldr_sp,9800, f85d0000), \
11119 X(_le, 0000, f00fc001), \
11120 X(_lsl, 0000, fa00f000), \
11121 X(_lsls, 0000, fa10f000), \
11122 X(_lsr, 0800, fa20f000), \
11123 X(_lsrs, 0800, fa30f000), \
11124 X(_mov, 2000, ea4f0000), \
11125 X(_movs, 2000, ea5f0000), \
11126 X(_mul, 4340, fb00f000), \
11127 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11128 X(_mvn, 43c0, ea6f0000), \
11129 X(_mvns, 43c0, ea7f0000), \
11130 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11131 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11132 X(_orr, 4300, ea400000), \
11133 X(_orrs, 4300, ea500000), \
11134 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11135 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11136 X(_rev, ba00, fa90f080), \
11137 X(_rev16, ba40, fa90f090), \
11138 X(_revsh, bac0, fa90f0b0), \
11139 X(_ror, 41c0, fa60f000), \
11140 X(_rors, 41c0, fa70f000), \
11141 X(_sbc, 4180, eb600000), \
11142 X(_sbcs, 4180, eb700000), \
11143 X(_stmia, c000, e8800000), \
11144 X(_str, 6000, f8400000), \
11145 X(_strb, 7000, f8000000), \
11146 X(_strh, 8000, f8200000), \
11147 X(_str_sp,9000, f84d0000), \
11148 X(_sub, 1e00, eba00000), \
11149 X(_subs, 1e00, ebb00000), \
11150 X(_subi, 8000, f1a00000), \
11151 X(_subis, 8000, f1b00000), \
11152 X(_sxtb, b240, fa4ff080), \
11153 X(_sxth, b200, fa0ff080), \
11154 X(_tst, 4200, ea100f00), \
11155 X(_uxtb, b2c0, fa5ff080), \
11156 X(_uxth, b280, fa1ff080), \
11157 X(_nop, bf00, f3af8000), \
11158 X(_yield, bf10, f3af8001), \
11159 X(_wfe, bf20, f3af8002), \
11160 X(_wfi, bf30, f3af8003), \
11161 X(_wls, 0000, f040c001), \
11162 X(_sev, bf40, f3af8004), \
11163 X(_sevl, bf50, f3af8005), \
11164 X(_udf, de00, f7f0a000)
11165
11166 /* To catch errors in encoding functions, the codes are all offset by
11167 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11168 as 16-bit instructions. */
11169 #define X(a,b,c) T_MNEM##a
11170 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11171 #undef X
11172
11173 #define X(a,b,c) 0x##b
11174 static const unsigned short thumb_op16[] = { T16_32_TAB };
11175 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11176 #undef X
11177
11178 #define X(a,b,c) 0x##c
11179 static const unsigned int thumb_op32[] = { T16_32_TAB };
11180 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11181 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11182 #undef X
11183 #undef T16_32_TAB
11184
11185 /* Thumb instruction encoders, in alphabetical order. */
11186
11187 /* ADDW or SUBW. */
11188
11189 static void
11190 do_t_add_sub_w (void)
11191 {
11192 int Rd, Rn;
11193
11194 Rd = inst.operands[0].reg;
11195 Rn = inst.operands[1].reg;
11196
11197 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11198 is the SP-{plus,minus}-immediate form of the instruction. */
11199 if (Rn == REG_SP)
11200 constraint (Rd == REG_PC, BAD_PC);
11201 else
11202 reject_bad_reg (Rd);
11203
11204 inst.instruction |= (Rn << 16) | (Rd << 8);
11205 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11206 }
11207
11208 /* Parse an add or subtract instruction. We get here with inst.instruction
11209 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11210
11211 static void
11212 do_t_add_sub (void)
11213 {
11214 int Rd, Rs, Rn;
11215
11216 Rd = inst.operands[0].reg;
11217 Rs = (inst.operands[1].present
11218 ? inst.operands[1].reg /* Rd, Rs, foo */
11219 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11220
11221 if (Rd == REG_PC)
11222 set_pred_insn_type_last ();
11223
11224 if (unified_syntax)
11225 {
11226 bfd_boolean flags;
11227 bfd_boolean narrow;
11228 int opcode;
11229
11230 flags = (inst.instruction == T_MNEM_adds
11231 || inst.instruction == T_MNEM_subs);
11232 if (flags)
11233 narrow = !in_pred_block ();
11234 else
11235 narrow = in_pred_block ();
11236 if (!inst.operands[2].isreg)
11237 {
11238 int add;
11239
11240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11241 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11242
11243 add = (inst.instruction == T_MNEM_add
11244 || inst.instruction == T_MNEM_adds);
11245 opcode = 0;
11246 if (inst.size_req != 4)
11247 {
11248 /* Attempt to use a narrow opcode, with relaxation if
11249 appropriate. */
11250 if (Rd == REG_SP && Rs == REG_SP && !flags)
11251 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11252 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11253 opcode = T_MNEM_add_sp;
11254 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11255 opcode = T_MNEM_add_pc;
11256 else if (Rd <= 7 && Rs <= 7 && narrow)
11257 {
11258 if (flags)
11259 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11260 else
11261 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11262 }
11263 if (opcode)
11264 {
11265 inst.instruction = THUMB_OP16(opcode);
11266 inst.instruction |= (Rd << 4) | Rs;
11267 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11268 || (inst.relocs[0].type
11269 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11270 {
11271 if (inst.size_req == 2)
11272 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11273 else
11274 inst.relax = opcode;
11275 }
11276 }
11277 else
11278 constraint (inst.size_req == 2, BAD_HIREG);
11279 }
11280 if (inst.size_req == 4
11281 || (inst.size_req != 2 && !opcode))
11282 {
11283 constraint ((inst.relocs[0].type
11284 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11285 && (inst.relocs[0].type
11286 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11287 THUMB1_RELOC_ONLY);
11288 if (Rd == REG_PC)
11289 {
11290 constraint (add, BAD_PC);
11291 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11292 _("only SUBS PC, LR, #const allowed"));
11293 constraint (inst.relocs[0].exp.X_op != O_constant,
11294 _("expression too complex"));
11295 constraint (inst.relocs[0].exp.X_add_number < 0
11296 || inst.relocs[0].exp.X_add_number > 0xff,
11297 _("immediate value out of range"));
11298 inst.instruction = T2_SUBS_PC_LR
11299 | inst.relocs[0].exp.X_add_number;
11300 inst.relocs[0].type = BFD_RELOC_UNUSED;
11301 return;
11302 }
11303 else if (Rs == REG_PC)
11304 {
11305 /* Always use addw/subw. */
11306 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11307 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11308 }
11309 else
11310 {
11311 inst.instruction = THUMB_OP32 (inst.instruction);
11312 inst.instruction = (inst.instruction & 0xe1ffffff)
11313 | 0x10000000;
11314 if (flags)
11315 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11316 else
11317 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11318 }
11319 inst.instruction |= Rd << 8;
11320 inst.instruction |= Rs << 16;
11321 }
11322 }
11323 else
11324 {
11325 unsigned int value = inst.relocs[0].exp.X_add_number;
11326 unsigned int shift = inst.operands[2].shift_kind;
11327
11328 Rn = inst.operands[2].reg;
11329 /* See if we can do this with a 16-bit instruction. */
11330 if (!inst.operands[2].shifted && inst.size_req != 4)
11331 {
11332 if (Rd > 7 || Rs > 7 || Rn > 7)
11333 narrow = FALSE;
11334
11335 if (narrow)
11336 {
11337 inst.instruction = ((inst.instruction == T_MNEM_adds
11338 || inst.instruction == T_MNEM_add)
11339 ? T_OPCODE_ADD_R3
11340 : T_OPCODE_SUB_R3);
11341 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11342 return;
11343 }
11344
11345 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11346 {
11347 /* Thumb-1 cores (except v6-M) require at least one high
11348 register in a narrow non flag setting add. */
11349 if (Rd > 7 || Rn > 7
11350 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11351 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11352 {
11353 if (Rd == Rn)
11354 {
11355 Rn = Rs;
11356 Rs = Rd;
11357 }
11358 inst.instruction = T_OPCODE_ADD_HI;
11359 inst.instruction |= (Rd & 8) << 4;
11360 inst.instruction |= (Rd & 7);
11361 inst.instruction |= Rn << 3;
11362 return;
11363 }
11364 }
11365 }
11366
11367 constraint (Rd == REG_PC, BAD_PC);
11368 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11369 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11370 constraint (Rs == REG_PC, BAD_PC);
11371 reject_bad_reg (Rn);
11372
11373 /* If we get here, it can't be done in 16 bits. */
11374 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11375 _("shift must be constant"));
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 inst.instruction |= Rd << 8;
11378 inst.instruction |= Rs << 16;
11379 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11380 _("shift value over 3 not allowed in thumb mode"));
11381 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11382 _("only LSL shift allowed in thumb mode"));
11383 encode_thumb32_shifted_operand (2);
11384 }
11385 }
11386 else
11387 {
11388 constraint (inst.instruction == T_MNEM_adds
11389 || inst.instruction == T_MNEM_subs,
11390 BAD_THUMB32);
11391
11392 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11393 {
11394 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11395 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11396 BAD_HIREG);
11397
11398 inst.instruction = (inst.instruction == T_MNEM_add
11399 ? 0x0000 : 0x8000);
11400 inst.instruction |= (Rd << 4) | Rs;
11401 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11402 return;
11403 }
11404
11405 Rn = inst.operands[2].reg;
11406 constraint (inst.operands[2].shifted, _("unshifted register required"));
11407
11408 /* We now have Rd, Rs, and Rn set to registers. */
11409 if (Rd > 7 || Rs > 7 || Rn > 7)
11410 {
11411 /* Can't do this for SUB. */
11412 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11413 inst.instruction = T_OPCODE_ADD_HI;
11414 inst.instruction |= (Rd & 8) << 4;
11415 inst.instruction |= (Rd & 7);
11416 if (Rs == Rd)
11417 inst.instruction |= Rn << 3;
11418 else if (Rn == Rd)
11419 inst.instruction |= Rs << 3;
11420 else
11421 constraint (1, _("dest must overlap one source register"));
11422 }
11423 else
11424 {
11425 inst.instruction = (inst.instruction == T_MNEM_add
11426 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11427 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11428 }
11429 }
11430 }
11431
11432 static void
11433 do_t_adr (void)
11434 {
11435 unsigned Rd;
11436
11437 Rd = inst.operands[0].reg;
11438 reject_bad_reg (Rd);
11439
11440 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11441 {
11442 /* Defer to section relaxation. */
11443 inst.relax = inst.instruction;
11444 inst.instruction = THUMB_OP16 (inst.instruction);
11445 inst.instruction |= Rd << 4;
11446 }
11447 else if (unified_syntax && inst.size_req != 2)
11448 {
11449 /* Generate a 32-bit opcode. */
11450 inst.instruction = THUMB_OP32 (inst.instruction);
11451 inst.instruction |= Rd << 8;
11452 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11453 inst.relocs[0].pc_rel = 1;
11454 }
11455 else
11456 {
11457 /* Generate a 16-bit opcode. */
11458 inst.instruction = THUMB_OP16 (inst.instruction);
11459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11460 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11461 inst.relocs[0].pc_rel = 1;
11462 inst.instruction |= Rd << 4;
11463 }
11464
11465 if (inst.relocs[0].exp.X_op == O_symbol
11466 && inst.relocs[0].exp.X_add_symbol != NULL
11467 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11468 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11469 inst.relocs[0].exp.X_add_number += 1;
11470 }
11471
11472 /* Arithmetic instructions for which there is just one 16-bit
11473 instruction encoding, and it allows only two low registers.
11474 For maximal compatibility with ARM syntax, we allow three register
11475 operands even when Thumb-32 instructions are not available, as long
11476 as the first two are identical. For instance, both "sbc r0,r1" and
11477 "sbc r0,r0,r1" are allowed. */
11478 static void
11479 do_t_arit3 (void)
11480 {
11481 int Rd, Rs, Rn;
11482
11483 Rd = inst.operands[0].reg;
11484 Rs = (inst.operands[1].present
11485 ? inst.operands[1].reg /* Rd, Rs, foo */
11486 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11487 Rn = inst.operands[2].reg;
11488
11489 reject_bad_reg (Rd);
11490 reject_bad_reg (Rs);
11491 if (inst.operands[2].isreg)
11492 reject_bad_reg (Rn);
11493
11494 if (unified_syntax)
11495 {
11496 if (!inst.operands[2].isreg)
11497 {
11498 /* For an immediate, we always generate a 32-bit opcode;
11499 section relaxation will shrink it later if possible. */
11500 inst.instruction = THUMB_OP32 (inst.instruction);
11501 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11502 inst.instruction |= Rd << 8;
11503 inst.instruction |= Rs << 16;
11504 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11505 }
11506 else
11507 {
11508 bfd_boolean narrow;
11509
11510 /* See if we can do this with a 16-bit instruction. */
11511 if (THUMB_SETS_FLAGS (inst.instruction))
11512 narrow = !in_pred_block ();
11513 else
11514 narrow = in_pred_block ();
11515
11516 if (Rd > 7 || Rn > 7 || Rs > 7)
11517 narrow = FALSE;
11518 if (inst.operands[2].shifted)
11519 narrow = FALSE;
11520 if (inst.size_req == 4)
11521 narrow = FALSE;
11522
11523 if (narrow
11524 && Rd == Rs)
11525 {
11526 inst.instruction = THUMB_OP16 (inst.instruction);
11527 inst.instruction |= Rd;
11528 inst.instruction |= Rn << 3;
11529 return;
11530 }
11531
11532 /* If we get here, it can't be done in 16 bits. */
11533 constraint (inst.operands[2].shifted
11534 && inst.operands[2].immisreg,
11535 _("shift must be constant"));
11536 inst.instruction = THUMB_OP32 (inst.instruction);
11537 inst.instruction |= Rd << 8;
11538 inst.instruction |= Rs << 16;
11539 encode_thumb32_shifted_operand (2);
11540 }
11541 }
11542 else
11543 {
11544 /* On its face this is a lie - the instruction does set the
11545 flags. However, the only supported mnemonic in this mode
11546 says it doesn't. */
11547 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11548
11549 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11550 _("unshifted register required"));
11551 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11552 constraint (Rd != Rs,
11553 _("dest and source1 must be the same register"));
11554
11555 inst.instruction = THUMB_OP16 (inst.instruction);
11556 inst.instruction |= Rd;
11557 inst.instruction |= Rn << 3;
11558 }
11559 }
11560
11561 /* Similarly, but for instructions where the arithmetic operation is
11562 commutative, so we can allow either of them to be different from
11563 the destination operand in a 16-bit instruction. For instance, all
11564 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11565 accepted. */
11566 static void
11567 do_t_arit3c (void)
11568 {
11569 int Rd, Rs, Rn;
11570
11571 Rd = inst.operands[0].reg;
11572 Rs = (inst.operands[1].present
11573 ? inst.operands[1].reg /* Rd, Rs, foo */
11574 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11575 Rn = inst.operands[2].reg;
11576
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rs);
11579 if (inst.operands[2].isreg)
11580 reject_bad_reg (Rn);
11581
11582 if (unified_syntax)
11583 {
11584 if (!inst.operands[2].isreg)
11585 {
11586 /* For an immediate, we always generate a 32-bit opcode;
11587 section relaxation will shrink it later if possible. */
11588 inst.instruction = THUMB_OP32 (inst.instruction);
11589 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rs << 16;
11592 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11593 }
11594 else
11595 {
11596 bfd_boolean narrow;
11597
11598 /* See if we can do this with a 16-bit instruction. */
11599 if (THUMB_SETS_FLAGS (inst.instruction))
11600 narrow = !in_pred_block ();
11601 else
11602 narrow = in_pred_block ();
11603
11604 if (Rd > 7 || Rn > 7 || Rs > 7)
11605 narrow = FALSE;
11606 if (inst.operands[2].shifted)
11607 narrow = FALSE;
11608 if (inst.size_req == 4)
11609 narrow = FALSE;
11610
11611 if (narrow)
11612 {
11613 if (Rd == Rs)
11614 {
11615 inst.instruction = THUMB_OP16 (inst.instruction);
11616 inst.instruction |= Rd;
11617 inst.instruction |= Rn << 3;
11618 return;
11619 }
11620 if (Rd == Rn)
11621 {
11622 inst.instruction = THUMB_OP16 (inst.instruction);
11623 inst.instruction |= Rd;
11624 inst.instruction |= Rs << 3;
11625 return;
11626 }
11627 }
11628
11629 /* If we get here, it can't be done in 16 bits. */
11630 constraint (inst.operands[2].shifted
11631 && inst.operands[2].immisreg,
11632 _("shift must be constant"));
11633 inst.instruction = THUMB_OP32 (inst.instruction);
11634 inst.instruction |= Rd << 8;
11635 inst.instruction |= Rs << 16;
11636 encode_thumb32_shifted_operand (2);
11637 }
11638 }
11639 else
11640 {
11641 /* On its face this is a lie - the instruction does set the
11642 flags. However, the only supported mnemonic in this mode
11643 says it doesn't. */
11644 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11645
11646 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11647 _("unshifted register required"));
11648 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11649
11650 inst.instruction = THUMB_OP16 (inst.instruction);
11651 inst.instruction |= Rd;
11652
11653 if (Rd == Rs)
11654 inst.instruction |= Rn << 3;
11655 else if (Rd == Rn)
11656 inst.instruction |= Rs << 3;
11657 else
11658 constraint (1, _("dest must overlap one source register"));
11659 }
11660 }
11661
11662 static void
11663 do_t_bfc (void)
11664 {
11665 unsigned Rd;
11666 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11667 constraint (msb > 32, _("bit-field extends past end of register"));
11668 /* The instruction encoding stores the LSB and MSB,
11669 not the LSB and width. */
11670 Rd = inst.operands[0].reg;
11671 reject_bad_reg (Rd);
11672 inst.instruction |= Rd << 8;
11673 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11674 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11675 inst.instruction |= msb - 1;
11676 }
11677
11678 static void
11679 do_t_bfi (void)
11680 {
11681 int Rd, Rn;
11682 unsigned int msb;
11683
11684 Rd = inst.operands[0].reg;
11685 reject_bad_reg (Rd);
11686
11687 /* #0 in second position is alternative syntax for bfc, which is
11688 the same instruction but with REG_PC in the Rm field. */
11689 if (!inst.operands[1].isreg)
11690 Rn = REG_PC;
11691 else
11692 {
11693 Rn = inst.operands[1].reg;
11694 reject_bad_reg (Rn);
11695 }
11696
11697 msb = inst.operands[2].imm + inst.operands[3].imm;
11698 constraint (msb > 32, _("bit-field extends past end of register"));
11699 /* The instruction encoding stores the LSB and MSB,
11700 not the LSB and width. */
11701 inst.instruction |= Rd << 8;
11702 inst.instruction |= Rn << 16;
11703 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11704 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11705 inst.instruction |= msb - 1;
11706 }
11707
11708 static void
11709 do_t_bfx (void)
11710 {
11711 unsigned Rd, Rn;
11712
11713 Rd = inst.operands[0].reg;
11714 Rn = inst.operands[1].reg;
11715
11716 reject_bad_reg (Rd);
11717 reject_bad_reg (Rn);
11718
11719 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11720 _("bit-field extends past end of register"));
11721 inst.instruction |= Rd << 8;
11722 inst.instruction |= Rn << 16;
11723 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11724 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11725 inst.instruction |= inst.operands[3].imm - 1;
11726 }
11727
11728 /* ARM V5 Thumb BLX (argument parse)
11729 BLX <target_addr> which is BLX(1)
11730 BLX <Rm> which is BLX(2)
11731 Unfortunately, there are two different opcodes for this mnemonic.
11732 So, the insns[].value is not used, and the code here zaps values
11733 into inst.instruction.
11734
11735 ??? How to take advantage of the additional two bits of displacement
11736 available in Thumb32 mode? Need new relocation? */
11737
11738 static void
11739 do_t_blx (void)
11740 {
11741 set_pred_insn_type_last ();
11742
11743 if (inst.operands[0].isreg)
11744 {
11745 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11746 /* We have a register, so this is BLX(2). */
11747 inst.instruction |= inst.operands[0].reg << 3;
11748 }
11749 else
11750 {
11751 /* No register. This must be BLX(1). */
11752 inst.instruction = 0xf000e800;
11753 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11754 }
11755 }
11756
11757 static void
11758 do_t_branch (void)
11759 {
11760 int opcode;
11761 int cond;
11762 bfd_reloc_code_real_type reloc;
11763
11764 cond = inst.cond;
11765 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11766
11767 if (in_pred_block ())
11768 {
11769 /* Conditional branches inside IT blocks are encoded as unconditional
11770 branches. */
11771 cond = COND_ALWAYS;
11772 }
11773 else
11774 cond = inst.cond;
11775
11776 if (cond != COND_ALWAYS)
11777 opcode = T_MNEM_bcond;
11778 else
11779 opcode = inst.instruction;
11780
11781 if (unified_syntax
11782 && (inst.size_req == 4
11783 || (inst.size_req != 2
11784 && (inst.operands[0].hasreloc
11785 || inst.relocs[0].exp.X_op == O_constant))))
11786 {
11787 inst.instruction = THUMB_OP32(opcode);
11788 if (cond == COND_ALWAYS)
11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11790 else
11791 {
11792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11793 _("selected architecture does not support "
11794 "wide conditional branch instruction"));
11795
11796 gas_assert (cond != 0xF);
11797 inst.instruction |= cond << 22;
11798 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11799 }
11800 }
11801 else
11802 {
11803 inst.instruction = THUMB_OP16(opcode);
11804 if (cond == COND_ALWAYS)
11805 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11806 else
11807 {
11808 inst.instruction |= cond << 8;
11809 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11810 }
11811 /* Allow section relaxation. */
11812 if (unified_syntax && inst.size_req != 2)
11813 inst.relax = opcode;
11814 }
11815 inst.relocs[0].type = reloc;
11816 inst.relocs[0].pc_rel = 1;
11817 }
11818
11819 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11820 between the two is the maximum immediate allowed - which is passed in
11821 RANGE. */
11822 static void
11823 do_t_bkpt_hlt1 (int range)
11824 {
11825 constraint (inst.cond != COND_ALWAYS,
11826 _("instruction is always unconditional"));
11827 if (inst.operands[0].present)
11828 {
11829 constraint (inst.operands[0].imm > range,
11830 _("immediate value out of range"));
11831 inst.instruction |= inst.operands[0].imm;
11832 }
11833
11834 set_pred_insn_type (NEUTRAL_IT_INSN);
11835 }
11836
11837 static void
11838 do_t_hlt (void)
11839 {
11840 do_t_bkpt_hlt1 (63);
11841 }
11842
11843 static void
11844 do_t_bkpt (void)
11845 {
11846 do_t_bkpt_hlt1 (255);
11847 }
11848
11849 static void
11850 do_t_branch23 (void)
11851 {
11852 set_pred_insn_type_last ();
11853 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11854
11855 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11856 this file. We used to simply ignore the PLT reloc type here --
11857 the branch encoding is now needed to deal with TLSCALL relocs.
11858 So if we see a PLT reloc now, put it back to how it used to be to
11859 keep the preexisting behaviour. */
11860 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11861 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11862
11863 #if defined(OBJ_COFF)
11864 /* If the destination of the branch is a defined symbol which does not have
11865 the THUMB_FUNC attribute, then we must be calling a function which has
11866 the (interfacearm) attribute. We look for the Thumb entry point to that
11867 function and change the branch to refer to that function instead. */
11868 if ( inst.relocs[0].exp.X_op == O_symbol
11869 && inst.relocs[0].exp.X_add_symbol != NULL
11870 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11871 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11872 inst.relocs[0].exp.X_add_symbol
11873 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11874 #endif
11875 }
11876
11877 static void
11878 do_t_bx (void)
11879 {
11880 set_pred_insn_type_last ();
11881 inst.instruction |= inst.operands[0].reg << 3;
11882 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11883 should cause the alignment to be checked once it is known. This is
11884 because BX PC only works if the instruction is word aligned. */
11885 }
11886
11887 static void
11888 do_t_bxj (void)
11889 {
11890 int Rm;
11891
11892 set_pred_insn_type_last ();
11893 Rm = inst.operands[0].reg;
11894 reject_bad_reg (Rm);
11895 inst.instruction |= Rm << 16;
11896 }
11897
11898 static void
11899 do_t_clz (void)
11900 {
11901 unsigned Rd;
11902 unsigned Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rm = inst.operands[1].reg;
11906
11907 reject_bad_reg (Rd);
11908 reject_bad_reg (Rm);
11909
11910 inst.instruction |= Rd << 8;
11911 inst.instruction |= Rm << 16;
11912 inst.instruction |= Rm;
11913 }
11914
11915 static void
11916 do_t_csdb (void)
11917 {
11918 set_pred_insn_type (OUTSIDE_PRED_INSN);
11919 }
11920
11921 static void
11922 do_t_cps (void)
11923 {
11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
11925 inst.instruction |= inst.operands[0].imm;
11926 }
11927
11928 static void
11929 do_t_cpsi (void)
11930 {
11931 set_pred_insn_type (OUTSIDE_PRED_INSN);
11932 if (unified_syntax
11933 && (inst.operands[1].present || inst.size_req == 4)
11934 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11935 {
11936 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11937 inst.instruction = 0xf3af8000;
11938 inst.instruction |= imod << 9;
11939 inst.instruction |= inst.operands[0].imm << 5;
11940 if (inst.operands[1].present)
11941 inst.instruction |= 0x100 | inst.operands[1].imm;
11942 }
11943 else
11944 {
11945 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11946 && (inst.operands[0].imm & 4),
11947 _("selected processor does not support 'A' form "
11948 "of this instruction"));
11949 constraint (inst.operands[1].present || inst.size_req == 4,
11950 _("Thumb does not support the 2-argument "
11951 "form of this instruction"));
11952 inst.instruction |= inst.operands[0].imm;
11953 }
11954 }
11955
11956 /* THUMB CPY instruction (argument parse). */
11957
11958 static void
11959 do_t_cpy (void)
11960 {
11961 if (inst.size_req == 4)
11962 {
11963 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11964 inst.instruction |= inst.operands[0].reg << 8;
11965 inst.instruction |= inst.operands[1].reg;
11966 }
11967 else
11968 {
11969 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11970 inst.instruction |= (inst.operands[0].reg & 0x7);
11971 inst.instruction |= inst.operands[1].reg << 3;
11972 }
11973 }
11974
11975 static void
11976 do_t_cbz (void)
11977 {
11978 set_pred_insn_type (OUTSIDE_PRED_INSN);
11979 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11980 inst.instruction |= inst.operands[0].reg;
11981 inst.relocs[0].pc_rel = 1;
11982 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11983 }
11984
11985 static void
11986 do_t_dbg (void)
11987 {
11988 inst.instruction |= inst.operands[0].imm;
11989 }
11990
11991 static void
11992 do_t_div (void)
11993 {
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rn = (inst.operands[1].present
11998 ? inst.operands[1].reg : Rd);
11999 Rm = inst.operands[2].reg;
12000
12001 reject_bad_reg (Rd);
12002 reject_bad_reg (Rn);
12003 reject_bad_reg (Rm);
12004
12005 inst.instruction |= Rd << 8;
12006 inst.instruction |= Rn << 16;
12007 inst.instruction |= Rm;
12008 }
12009
12010 static void
12011 do_t_hint (void)
12012 {
12013 if (unified_syntax && inst.size_req == 4)
12014 inst.instruction = THUMB_OP32 (inst.instruction);
12015 else
12016 inst.instruction = THUMB_OP16 (inst.instruction);
12017 }
12018
12019 static void
12020 do_t_it (void)
12021 {
12022 unsigned int cond = inst.operands[0].imm;
12023
12024 set_pred_insn_type (IT_INSN);
12025 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12026 now_pred.cc = cond;
12027 now_pred.warn_deprecated = FALSE;
12028 now_pred.type = SCALAR_PRED;
12029
12030 /* If the condition is a negative condition, invert the mask. */
12031 if ((cond & 0x1) == 0x0)
12032 {
12033 unsigned int mask = inst.instruction & 0x000f;
12034
12035 if ((mask & 0x7) == 0)
12036 {
12037 /* No conversion needed. */
12038 now_pred.block_length = 1;
12039 }
12040 else if ((mask & 0x3) == 0)
12041 {
12042 mask ^= 0x8;
12043 now_pred.block_length = 2;
12044 }
12045 else if ((mask & 0x1) == 0)
12046 {
12047 mask ^= 0xC;
12048 now_pred.block_length = 3;
12049 }
12050 else
12051 {
12052 mask ^= 0xE;
12053 now_pred.block_length = 4;
12054 }
12055
12056 inst.instruction &= 0xfff0;
12057 inst.instruction |= mask;
12058 }
12059
12060 inst.instruction |= cond << 4;
12061 }
12062
12063 /* Helper function used for both push/pop and ldm/stm. */
12064 static void
12065 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12066 bfd_boolean writeback)
12067 {
12068 bfd_boolean load, store;
12069
12070 gas_assert (base != -1 || !do_io);
12071 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12072 store = do_io && !load;
12073
12074 if (mask & (1 << 13))
12075 inst.error = _("SP not allowed in register list");
12076
12077 if (do_io && (mask & (1 << base)) != 0
12078 && writeback)
12079 inst.error = _("having the base register in the register list when "
12080 "using write back is UNPREDICTABLE");
12081
12082 if (load)
12083 {
12084 if (mask & (1 << 15))
12085 {
12086 if (mask & (1 << 14))
12087 inst.error = _("LR and PC should not both be in register list");
12088 else
12089 set_pred_insn_type_last ();
12090 }
12091 }
12092 else if (store)
12093 {
12094 if (mask & (1 << 15))
12095 inst.error = _("PC not allowed in register list");
12096 }
12097
12098 if (do_io && ((mask & (mask - 1)) == 0))
12099 {
12100 /* Single register transfers implemented as str/ldr. */
12101 if (writeback)
12102 {
12103 if (inst.instruction & (1 << 23))
12104 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12105 else
12106 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12107 }
12108 else
12109 {
12110 if (inst.instruction & (1 << 23))
12111 inst.instruction = 0x00800000; /* ia -> [base] */
12112 else
12113 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12114 }
12115
12116 inst.instruction |= 0xf8400000;
12117 if (load)
12118 inst.instruction |= 0x00100000;
12119
12120 mask = ffs (mask) - 1;
12121 mask <<= 12;
12122 }
12123 else if (writeback)
12124 inst.instruction |= WRITE_BACK;
12125
12126 inst.instruction |= mask;
12127 if (do_io)
12128 inst.instruction |= base << 16;
12129 }
12130
12131 static void
12132 do_t_ldmstm (void)
12133 {
12134 /* This really doesn't seem worth it. */
12135 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12136 _("expression too complex"));
12137 constraint (inst.operands[1].writeback,
12138 _("Thumb load/store multiple does not support {reglist}^"));
12139
12140 if (unified_syntax)
12141 {
12142 bfd_boolean narrow;
12143 unsigned mask;
12144
12145 narrow = FALSE;
12146 /* See if we can use a 16-bit instruction. */
12147 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12148 && inst.size_req != 4
12149 && !(inst.operands[1].imm & ~0xff))
12150 {
12151 mask = 1 << inst.operands[0].reg;
12152
12153 if (inst.operands[0].reg <= 7)
12154 {
12155 if (inst.instruction == T_MNEM_stmia
12156 ? inst.operands[0].writeback
12157 : (inst.operands[0].writeback
12158 == !(inst.operands[1].imm & mask)))
12159 {
12160 if (inst.instruction == T_MNEM_stmia
12161 && (inst.operands[1].imm & mask)
12162 && (inst.operands[1].imm & (mask - 1)))
12163 as_warn (_("value stored for r%d is UNKNOWN"),
12164 inst.operands[0].reg);
12165
12166 inst.instruction = THUMB_OP16 (inst.instruction);
12167 inst.instruction |= inst.operands[0].reg << 8;
12168 inst.instruction |= inst.operands[1].imm;
12169 narrow = TRUE;
12170 }
12171 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12172 {
12173 /* This means 1 register in reg list one of 3 situations:
12174 1. Instruction is stmia, but without writeback.
12175 2. lmdia without writeback, but with Rn not in
12176 reglist.
12177 3. ldmia with writeback, but with Rn in reglist.
12178 Case 3 is UNPREDICTABLE behaviour, so we handle
12179 case 1 and 2 which can be converted into a 16-bit
12180 str or ldr. The SP cases are handled below. */
12181 unsigned long opcode;
12182 /* First, record an error for Case 3. */
12183 if (inst.operands[1].imm & mask
12184 && inst.operands[0].writeback)
12185 inst.error =
12186 _("having the base register in the register list when "
12187 "using write back is UNPREDICTABLE");
12188
12189 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12190 : T_MNEM_ldr);
12191 inst.instruction = THUMB_OP16 (opcode);
12192 inst.instruction |= inst.operands[0].reg << 3;
12193 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12194 narrow = TRUE;
12195 }
12196 }
12197 else if (inst.operands[0] .reg == REG_SP)
12198 {
12199 if (inst.operands[0].writeback)
12200 {
12201 inst.instruction =
12202 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12203 ? T_MNEM_push : T_MNEM_pop);
12204 inst.instruction |= inst.operands[1].imm;
12205 narrow = TRUE;
12206 }
12207 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12208 {
12209 inst.instruction =
12210 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12211 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12212 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12213 narrow = TRUE;
12214 }
12215 }
12216 }
12217
12218 if (!narrow)
12219 {
12220 if (inst.instruction < 0xffff)
12221 inst.instruction = THUMB_OP32 (inst.instruction);
12222
12223 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12224 inst.operands[1].imm,
12225 inst.operands[0].writeback);
12226 }
12227 }
12228 else
12229 {
12230 constraint (inst.operands[0].reg > 7
12231 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12232 constraint (inst.instruction != T_MNEM_ldmia
12233 && inst.instruction != T_MNEM_stmia,
12234 _("Thumb-2 instruction only valid in unified syntax"));
12235 if (inst.instruction == T_MNEM_stmia)
12236 {
12237 if (!inst.operands[0].writeback)
12238 as_warn (_("this instruction will write back the base register"));
12239 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12240 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12241 as_warn (_("value stored for r%d is UNKNOWN"),
12242 inst.operands[0].reg);
12243 }
12244 else
12245 {
12246 if (!inst.operands[0].writeback
12247 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12248 as_warn (_("this instruction will write back the base register"));
12249 else if (inst.operands[0].writeback
12250 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12251 as_warn (_("this instruction will not write back the base register"));
12252 }
12253
12254 inst.instruction = THUMB_OP16 (inst.instruction);
12255 inst.instruction |= inst.operands[0].reg << 8;
12256 inst.instruction |= inst.operands[1].imm;
12257 }
12258 }
12259
12260 static void
12261 do_t_ldrex (void)
12262 {
12263 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12264 || inst.operands[1].postind || inst.operands[1].writeback
12265 || inst.operands[1].immisreg || inst.operands[1].shifted
12266 || inst.operands[1].negative,
12267 BAD_ADDR_MODE);
12268
12269 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12270
12271 inst.instruction |= inst.operands[0].reg << 12;
12272 inst.instruction |= inst.operands[1].reg << 16;
12273 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12274 }
12275
12276 static void
12277 do_t_ldrexd (void)
12278 {
12279 if (!inst.operands[1].present)
12280 {
12281 constraint (inst.operands[0].reg == REG_LR,
12282 _("r14 not allowed as first register "
12283 "when second register is omitted"));
12284 inst.operands[1].reg = inst.operands[0].reg + 1;
12285 }
12286 constraint (inst.operands[0].reg == inst.operands[1].reg,
12287 BAD_OVERLAP);
12288
12289 inst.instruction |= inst.operands[0].reg << 12;
12290 inst.instruction |= inst.operands[1].reg << 8;
12291 inst.instruction |= inst.operands[2].reg << 16;
12292 }
12293
12294 static void
12295 do_t_ldst (void)
12296 {
12297 unsigned long opcode;
12298 int Rn;
12299
12300 if (inst.operands[0].isreg
12301 && !inst.operands[0].preind
12302 && inst.operands[0].reg == REG_PC)
12303 set_pred_insn_type_last ();
12304
12305 opcode = inst.instruction;
12306 if (unified_syntax)
12307 {
12308 if (!inst.operands[1].isreg)
12309 {
12310 if (opcode <= 0xffff)
12311 inst.instruction = THUMB_OP32 (opcode);
12312 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12313 return;
12314 }
12315 if (inst.operands[1].isreg
12316 && !inst.operands[1].writeback
12317 && !inst.operands[1].shifted && !inst.operands[1].postind
12318 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12319 && opcode <= 0xffff
12320 && inst.size_req != 4)
12321 {
12322 /* Insn may have a 16-bit form. */
12323 Rn = inst.operands[1].reg;
12324 if (inst.operands[1].immisreg)
12325 {
12326 inst.instruction = THUMB_OP16 (opcode);
12327 /* [Rn, Rik] */
12328 if (Rn <= 7 && inst.operands[1].imm <= 7)
12329 goto op16;
12330 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12331 reject_bad_reg (inst.operands[1].imm);
12332 }
12333 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12334 && opcode != T_MNEM_ldrsb)
12335 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12336 || (Rn == REG_SP && opcode == T_MNEM_str))
12337 {
12338 /* [Rn, #const] */
12339 if (Rn > 7)
12340 {
12341 if (Rn == REG_PC)
12342 {
12343 if (inst.relocs[0].pc_rel)
12344 opcode = T_MNEM_ldr_pc2;
12345 else
12346 opcode = T_MNEM_ldr_pc;
12347 }
12348 else
12349 {
12350 if (opcode == T_MNEM_ldr)
12351 opcode = T_MNEM_ldr_sp;
12352 else
12353 opcode = T_MNEM_str_sp;
12354 }
12355 inst.instruction = inst.operands[0].reg << 8;
12356 }
12357 else
12358 {
12359 inst.instruction = inst.operands[0].reg;
12360 inst.instruction |= inst.operands[1].reg << 3;
12361 }
12362 inst.instruction |= THUMB_OP16 (opcode);
12363 if (inst.size_req == 2)
12364 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12365 else
12366 inst.relax = opcode;
12367 return;
12368 }
12369 }
12370 /* Definitely a 32-bit variant. */
12371
12372 /* Warning for Erratum 752419. */
12373 if (opcode == T_MNEM_ldr
12374 && inst.operands[0].reg == REG_SP
12375 && inst.operands[1].writeback == 1
12376 && !inst.operands[1].immisreg)
12377 {
12378 if (no_cpu_selected ()
12379 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12380 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12381 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12382 as_warn (_("This instruction may be unpredictable "
12383 "if executed on M-profile cores "
12384 "with interrupts enabled."));
12385 }
12386
12387 /* Do some validations regarding addressing modes. */
12388 if (inst.operands[1].immisreg)
12389 reject_bad_reg (inst.operands[1].imm);
12390
12391 constraint (inst.operands[1].writeback == 1
12392 && inst.operands[0].reg == inst.operands[1].reg,
12393 BAD_OVERLAP);
12394
12395 inst.instruction = THUMB_OP32 (opcode);
12396 inst.instruction |= inst.operands[0].reg << 12;
12397 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12398 check_ldr_r15_aligned ();
12399 return;
12400 }
12401
12402 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12403
12404 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12405 {
12406 /* Only [Rn,Rm] is acceptable. */
12407 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12408 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12409 || inst.operands[1].postind || inst.operands[1].shifted
12410 || inst.operands[1].negative,
12411 _("Thumb does not support this addressing mode"));
12412 inst.instruction = THUMB_OP16 (inst.instruction);
12413 goto op16;
12414 }
12415
12416 inst.instruction = THUMB_OP16 (inst.instruction);
12417 if (!inst.operands[1].isreg)
12418 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12419 return;
12420
12421 constraint (!inst.operands[1].preind
12422 || inst.operands[1].shifted
12423 || inst.operands[1].writeback,
12424 _("Thumb does not support this addressing mode"));
12425 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12426 {
12427 constraint (inst.instruction & 0x0600,
12428 _("byte or halfword not valid for base register"));
12429 constraint (inst.operands[1].reg == REG_PC
12430 && !(inst.instruction & THUMB_LOAD_BIT),
12431 _("r15 based store not allowed"));
12432 constraint (inst.operands[1].immisreg,
12433 _("invalid base register for register offset"));
12434
12435 if (inst.operands[1].reg == REG_PC)
12436 inst.instruction = T_OPCODE_LDR_PC;
12437 else if (inst.instruction & THUMB_LOAD_BIT)
12438 inst.instruction = T_OPCODE_LDR_SP;
12439 else
12440 inst.instruction = T_OPCODE_STR_SP;
12441
12442 inst.instruction |= inst.operands[0].reg << 8;
12443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12444 return;
12445 }
12446
12447 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12448 if (!inst.operands[1].immisreg)
12449 {
12450 /* Immediate offset. */
12451 inst.instruction |= inst.operands[0].reg;
12452 inst.instruction |= inst.operands[1].reg << 3;
12453 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12454 return;
12455 }
12456
12457 /* Register offset. */
12458 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12459 constraint (inst.operands[1].negative,
12460 _("Thumb does not support this addressing mode"));
12461
12462 op16:
12463 switch (inst.instruction)
12464 {
12465 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12466 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12467 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12468 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12469 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12470 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12471 case 0x5600 /* ldrsb */:
12472 case 0x5e00 /* ldrsh */: break;
12473 default: abort ();
12474 }
12475
12476 inst.instruction |= inst.operands[0].reg;
12477 inst.instruction |= inst.operands[1].reg << 3;
12478 inst.instruction |= inst.operands[1].imm << 6;
12479 }
12480
12481 static void
12482 do_t_ldstd (void)
12483 {
12484 if (!inst.operands[1].present)
12485 {
12486 inst.operands[1].reg = inst.operands[0].reg + 1;
12487 constraint (inst.operands[0].reg == REG_LR,
12488 _("r14 not allowed here"));
12489 constraint (inst.operands[0].reg == REG_R12,
12490 _("r12 not allowed here"));
12491 }
12492
12493 if (inst.operands[2].writeback
12494 && (inst.operands[0].reg == inst.operands[2].reg
12495 || inst.operands[1].reg == inst.operands[2].reg))
12496 as_warn (_("base register written back, and overlaps "
12497 "one of transfer registers"));
12498
12499 inst.instruction |= inst.operands[0].reg << 12;
12500 inst.instruction |= inst.operands[1].reg << 8;
12501 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12502 }
12503
12504 static void
12505 do_t_ldstt (void)
12506 {
12507 inst.instruction |= inst.operands[0].reg << 12;
12508 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12509 }
12510
12511 static void
12512 do_t_mla (void)
12513 {
12514 unsigned Rd, Rn, Rm, Ra;
12515
12516 Rd = inst.operands[0].reg;
12517 Rn = inst.operands[1].reg;
12518 Rm = inst.operands[2].reg;
12519 Ra = inst.operands[3].reg;
12520
12521 reject_bad_reg (Rd);
12522 reject_bad_reg (Rn);
12523 reject_bad_reg (Rm);
12524 reject_bad_reg (Ra);
12525
12526 inst.instruction |= Rd << 8;
12527 inst.instruction |= Rn << 16;
12528 inst.instruction |= Rm;
12529 inst.instruction |= Ra << 12;
12530 }
12531
12532 static void
12533 do_t_mlal (void)
12534 {
12535 unsigned RdLo, RdHi, Rn, Rm;
12536
12537 RdLo = inst.operands[0].reg;
12538 RdHi = inst.operands[1].reg;
12539 Rn = inst.operands[2].reg;
12540 Rm = inst.operands[3].reg;
12541
12542 reject_bad_reg (RdLo);
12543 reject_bad_reg (RdHi);
12544 reject_bad_reg (Rn);
12545 reject_bad_reg (Rm);
12546
12547 inst.instruction |= RdLo << 12;
12548 inst.instruction |= RdHi << 8;
12549 inst.instruction |= Rn << 16;
12550 inst.instruction |= Rm;
12551 }
12552
12553 static void
12554 do_t_mov_cmp (void)
12555 {
12556 unsigned Rn, Rm;
12557
12558 Rn = inst.operands[0].reg;
12559 Rm = inst.operands[1].reg;
12560
12561 if (Rn == REG_PC)
12562 set_pred_insn_type_last ();
12563
12564 if (unified_syntax)
12565 {
12566 int r0off = (inst.instruction == T_MNEM_mov
12567 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12568 unsigned long opcode;
12569 bfd_boolean narrow;
12570 bfd_boolean low_regs;
12571
12572 low_regs = (Rn <= 7 && Rm <= 7);
12573 opcode = inst.instruction;
12574 if (in_pred_block ())
12575 narrow = opcode != T_MNEM_movs;
12576 else
12577 narrow = opcode != T_MNEM_movs || low_regs;
12578 if (inst.size_req == 4
12579 || inst.operands[1].shifted)
12580 narrow = FALSE;
12581
12582 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12583 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12584 && !inst.operands[1].shifted
12585 && Rn == REG_PC
12586 && Rm == REG_LR)
12587 {
12588 inst.instruction = T2_SUBS_PC_LR;
12589 return;
12590 }
12591
12592 if (opcode == T_MNEM_cmp)
12593 {
12594 constraint (Rn == REG_PC, BAD_PC);
12595 if (narrow)
12596 {
12597 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12598 but valid. */
12599 warn_deprecated_sp (Rm);
12600 /* R15 was documented as a valid choice for Rm in ARMv6,
12601 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12602 tools reject R15, so we do too. */
12603 constraint (Rm == REG_PC, BAD_PC);
12604 }
12605 else
12606 reject_bad_reg (Rm);
12607 }
12608 else if (opcode == T_MNEM_mov
12609 || opcode == T_MNEM_movs)
12610 {
12611 if (inst.operands[1].isreg)
12612 {
12613 if (opcode == T_MNEM_movs)
12614 {
12615 reject_bad_reg (Rn);
12616 reject_bad_reg (Rm);
12617 }
12618 else if (narrow)
12619 {
12620 /* This is mov.n. */
12621 if ((Rn == REG_SP || Rn == REG_PC)
12622 && (Rm == REG_SP || Rm == REG_PC))
12623 {
12624 as_tsktsk (_("Use of r%u as a source register is "
12625 "deprecated when r%u is the destination "
12626 "register."), Rm, Rn);
12627 }
12628 }
12629 else
12630 {
12631 /* This is mov.w. */
12632 constraint (Rn == REG_PC, BAD_PC);
12633 constraint (Rm == REG_PC, BAD_PC);
12634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12635 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12636 }
12637 }
12638 else
12639 reject_bad_reg (Rn);
12640 }
12641
12642 if (!inst.operands[1].isreg)
12643 {
12644 /* Immediate operand. */
12645 if (!in_pred_block () && opcode == T_MNEM_mov)
12646 narrow = 0;
12647 if (low_regs && narrow)
12648 {
12649 inst.instruction = THUMB_OP16 (opcode);
12650 inst.instruction |= Rn << 8;
12651 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12652 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12653 {
12654 if (inst.size_req == 2)
12655 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12656 else
12657 inst.relax = opcode;
12658 }
12659 }
12660 else
12661 {
12662 constraint ((inst.relocs[0].type
12663 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12664 && (inst.relocs[0].type
12665 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12666 THUMB1_RELOC_ONLY);
12667
12668 inst.instruction = THUMB_OP32 (inst.instruction);
12669 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12670 inst.instruction |= Rn << r0off;
12671 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12672 }
12673 }
12674 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12675 && (inst.instruction == T_MNEM_mov
12676 || inst.instruction == T_MNEM_movs))
12677 {
12678 /* Register shifts are encoded as separate shift instructions. */
12679 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12680
12681 if (in_pred_block ())
12682 narrow = !flags;
12683 else
12684 narrow = flags;
12685
12686 if (inst.size_req == 4)
12687 narrow = FALSE;
12688
12689 if (!low_regs || inst.operands[1].imm > 7)
12690 narrow = FALSE;
12691
12692 if (Rn != Rm)
12693 narrow = FALSE;
12694
12695 switch (inst.operands[1].shift_kind)
12696 {
12697 case SHIFT_LSL:
12698 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12699 break;
12700 case SHIFT_ASR:
12701 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12702 break;
12703 case SHIFT_LSR:
12704 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12705 break;
12706 case SHIFT_ROR:
12707 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12708 break;
12709 default:
12710 abort ();
12711 }
12712
12713 inst.instruction = opcode;
12714 if (narrow)
12715 {
12716 inst.instruction |= Rn;
12717 inst.instruction |= inst.operands[1].imm << 3;
12718 }
12719 else
12720 {
12721 if (flags)
12722 inst.instruction |= CONDS_BIT;
12723
12724 inst.instruction |= Rn << 8;
12725 inst.instruction |= Rm << 16;
12726 inst.instruction |= inst.operands[1].imm;
12727 }
12728 }
12729 else if (!narrow)
12730 {
12731 /* Some mov with immediate shift have narrow variants.
12732 Register shifts are handled above. */
12733 if (low_regs && inst.operands[1].shifted
12734 && (inst.instruction == T_MNEM_mov
12735 || inst.instruction == T_MNEM_movs))
12736 {
12737 if (in_pred_block ())
12738 narrow = (inst.instruction == T_MNEM_mov);
12739 else
12740 narrow = (inst.instruction == T_MNEM_movs);
12741 }
12742
12743 if (narrow)
12744 {
12745 switch (inst.operands[1].shift_kind)
12746 {
12747 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12748 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12749 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12750 default: narrow = FALSE; break;
12751 }
12752 }
12753
12754 if (narrow)
12755 {
12756 inst.instruction |= Rn;
12757 inst.instruction |= Rm << 3;
12758 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12759 }
12760 else
12761 {
12762 inst.instruction = THUMB_OP32 (inst.instruction);
12763 inst.instruction |= Rn << r0off;
12764 encode_thumb32_shifted_operand (1);
12765 }
12766 }
12767 else
12768 switch (inst.instruction)
12769 {
12770 case T_MNEM_mov:
12771 /* In v4t or v5t a move of two lowregs produces unpredictable
12772 results. Don't allow this. */
12773 if (low_regs)
12774 {
12775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12776 "MOV Rd, Rs with two low registers is not "
12777 "permitted on this architecture");
12778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12779 arm_ext_v6);
12780 }
12781
12782 inst.instruction = T_OPCODE_MOV_HR;
12783 inst.instruction |= (Rn & 0x8) << 4;
12784 inst.instruction |= (Rn & 0x7);
12785 inst.instruction |= Rm << 3;
12786 break;
12787
12788 case T_MNEM_movs:
12789 /* We know we have low registers at this point.
12790 Generate LSLS Rd, Rs, #0. */
12791 inst.instruction = T_OPCODE_LSL_I;
12792 inst.instruction |= Rn;
12793 inst.instruction |= Rm << 3;
12794 break;
12795
12796 case T_MNEM_cmp:
12797 if (low_regs)
12798 {
12799 inst.instruction = T_OPCODE_CMP_LR;
12800 inst.instruction |= Rn;
12801 inst.instruction |= Rm << 3;
12802 }
12803 else
12804 {
12805 inst.instruction = T_OPCODE_CMP_HR;
12806 inst.instruction |= (Rn & 0x8) << 4;
12807 inst.instruction |= (Rn & 0x7);
12808 inst.instruction |= Rm << 3;
12809 }
12810 break;
12811 }
12812 return;
12813 }
12814
12815 inst.instruction = THUMB_OP16 (inst.instruction);
12816
12817 /* PR 10443: Do not silently ignore shifted operands. */
12818 constraint (inst.operands[1].shifted,
12819 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12820
12821 if (inst.operands[1].isreg)
12822 {
12823 if (Rn < 8 && Rm < 8)
12824 {
12825 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12826 since a MOV instruction produces unpredictable results. */
12827 if (inst.instruction == T_OPCODE_MOV_I8)
12828 inst.instruction = T_OPCODE_ADD_I3;
12829 else
12830 inst.instruction = T_OPCODE_CMP_LR;
12831
12832 inst.instruction |= Rn;
12833 inst.instruction |= Rm << 3;
12834 }
12835 else
12836 {
12837 if (inst.instruction == T_OPCODE_MOV_I8)
12838 inst.instruction = T_OPCODE_MOV_HR;
12839 else
12840 inst.instruction = T_OPCODE_CMP_HR;
12841 do_t_cpy ();
12842 }
12843 }
12844 else
12845 {
12846 constraint (Rn > 7,
12847 _("only lo regs allowed with immediate"));
12848 inst.instruction |= Rn << 8;
12849 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12850 }
12851 }
12852
12853 static void
12854 do_t_mov16 (void)
12855 {
12856 unsigned Rd;
12857 bfd_vma imm;
12858 bfd_boolean top;
12859
12860 top = (inst.instruction & 0x00800000) != 0;
12861 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12862 {
12863 constraint (top, _(":lower16: not allowed in this instruction"));
12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12865 }
12866 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12867 {
12868 constraint (!top, _(":upper16: not allowed in this instruction"));
12869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12870 }
12871
12872 Rd = inst.operands[0].reg;
12873 reject_bad_reg (Rd);
12874
12875 inst.instruction |= Rd << 8;
12876 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12877 {
12878 imm = inst.relocs[0].exp.X_add_number;
12879 inst.instruction |= (imm & 0xf000) << 4;
12880 inst.instruction |= (imm & 0x0800) << 15;
12881 inst.instruction |= (imm & 0x0700) << 4;
12882 inst.instruction |= (imm & 0x00ff);
12883 }
12884 }
12885
12886 static void
12887 do_t_mvn_tst (void)
12888 {
12889 unsigned Rn, Rm;
12890
12891 Rn = inst.operands[0].reg;
12892 Rm = inst.operands[1].reg;
12893
12894 if (inst.instruction == T_MNEM_cmp
12895 || inst.instruction == T_MNEM_cmn)
12896 constraint (Rn == REG_PC, BAD_PC);
12897 else
12898 reject_bad_reg (Rn);
12899 reject_bad_reg (Rm);
12900
12901 if (unified_syntax)
12902 {
12903 int r0off = (inst.instruction == T_MNEM_mvn
12904 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12905 bfd_boolean narrow;
12906
12907 if (inst.size_req == 4
12908 || inst.instruction > 0xffff
12909 || inst.operands[1].shifted
12910 || Rn > 7 || Rm > 7)
12911 narrow = FALSE;
12912 else if (inst.instruction == T_MNEM_cmn
12913 || inst.instruction == T_MNEM_tst)
12914 narrow = TRUE;
12915 else if (THUMB_SETS_FLAGS (inst.instruction))
12916 narrow = !in_pred_block ();
12917 else
12918 narrow = in_pred_block ();
12919
12920 if (!inst.operands[1].isreg)
12921 {
12922 /* For an immediate, we always generate a 32-bit opcode;
12923 section relaxation will shrink it later if possible. */
12924 if (inst.instruction < 0xffff)
12925 inst.instruction = THUMB_OP32 (inst.instruction);
12926 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12927 inst.instruction |= Rn << r0off;
12928 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12929 }
12930 else
12931 {
12932 /* See if we can do this with a 16-bit instruction. */
12933 if (narrow)
12934 {
12935 inst.instruction = THUMB_OP16 (inst.instruction);
12936 inst.instruction |= Rn;
12937 inst.instruction |= Rm << 3;
12938 }
12939 else
12940 {
12941 constraint (inst.operands[1].shifted
12942 && inst.operands[1].immisreg,
12943 _("shift must be constant"));
12944 if (inst.instruction < 0xffff)
12945 inst.instruction = THUMB_OP32 (inst.instruction);
12946 inst.instruction |= Rn << r0off;
12947 encode_thumb32_shifted_operand (1);
12948 }
12949 }
12950 }
12951 else
12952 {
12953 constraint (inst.instruction > 0xffff
12954 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12955 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12956 _("unshifted register required"));
12957 constraint (Rn > 7 || Rm > 7,
12958 BAD_HIREG);
12959
12960 inst.instruction = THUMB_OP16 (inst.instruction);
12961 inst.instruction |= Rn;
12962 inst.instruction |= Rm << 3;
12963 }
12964 }
12965
12966 static void
12967 do_t_mrs (void)
12968 {
12969 unsigned Rd;
12970
12971 if (do_vfp_nsyn_mrs () == SUCCESS)
12972 return;
12973
12974 Rd = inst.operands[0].reg;
12975 reject_bad_reg (Rd);
12976 inst.instruction |= Rd << 8;
12977
12978 if (inst.operands[1].isreg)
12979 {
12980 unsigned br = inst.operands[1].reg;
12981 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12982 as_bad (_("bad register for mrs"));
12983
12984 inst.instruction |= br & (0xf << 16);
12985 inst.instruction |= (br & 0x300) >> 4;
12986 inst.instruction |= (br & SPSR_BIT) >> 2;
12987 }
12988 else
12989 {
12990 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12991
12992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12993 {
12994 /* PR gas/12698: The constraint is only applied for m_profile.
12995 If the user has specified -march=all, we want to ignore it as
12996 we are building for any CPU type, including non-m variants. */
12997 bfd_boolean m_profile =
12998 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12999 constraint ((flags != 0) && m_profile, _("selected processor does "
13000 "not support requested special purpose register"));
13001 }
13002 else
13003 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13004 devices). */
13005 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13006 _("'APSR', 'CPSR' or 'SPSR' expected"));
13007
13008 inst.instruction |= (flags & SPSR_BIT) >> 2;
13009 inst.instruction |= inst.operands[1].imm & 0xff;
13010 inst.instruction |= 0xf0000;
13011 }
13012 }
13013
13014 static void
13015 do_t_msr (void)
13016 {
13017 int flags;
13018 unsigned Rn;
13019
13020 if (do_vfp_nsyn_msr () == SUCCESS)
13021 return;
13022
13023 constraint (!inst.operands[1].isreg,
13024 _("Thumb encoding does not support an immediate here"));
13025
13026 if (inst.operands[0].isreg)
13027 flags = (int)(inst.operands[0].reg);
13028 else
13029 flags = inst.operands[0].imm;
13030
13031 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13032 {
13033 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13034
13035 /* PR gas/12698: The constraint is only applied for m_profile.
13036 If the user has specified -march=all, we want to ignore it as
13037 we are building for any CPU type, including non-m variants. */
13038 bfd_boolean m_profile =
13039 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13040 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13041 && (bits & ~(PSR_s | PSR_f)) != 0)
13042 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13043 && bits != PSR_f)) && m_profile,
13044 _("selected processor does not support requested special "
13045 "purpose register"));
13046 }
13047 else
13048 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13049 "requested special purpose register"));
13050
13051 Rn = inst.operands[1].reg;
13052 reject_bad_reg (Rn);
13053
13054 inst.instruction |= (flags & SPSR_BIT) >> 2;
13055 inst.instruction |= (flags & 0xf0000) >> 8;
13056 inst.instruction |= (flags & 0x300) >> 4;
13057 inst.instruction |= (flags & 0xff);
13058 inst.instruction |= Rn << 16;
13059 }
13060
13061 static void
13062 do_t_mul (void)
13063 {
13064 bfd_boolean narrow;
13065 unsigned Rd, Rn, Rm;
13066
13067 if (!inst.operands[2].present)
13068 inst.operands[2].reg = inst.operands[0].reg;
13069
13070 Rd = inst.operands[0].reg;
13071 Rn = inst.operands[1].reg;
13072 Rm = inst.operands[2].reg;
13073
13074 if (unified_syntax)
13075 {
13076 if (inst.size_req == 4
13077 || (Rd != Rn
13078 && Rd != Rm)
13079 || Rn > 7
13080 || Rm > 7)
13081 narrow = FALSE;
13082 else if (inst.instruction == T_MNEM_muls)
13083 narrow = !in_pred_block ();
13084 else
13085 narrow = in_pred_block ();
13086 }
13087 else
13088 {
13089 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13090 constraint (Rn > 7 || Rm > 7,
13091 BAD_HIREG);
13092 narrow = TRUE;
13093 }
13094
13095 if (narrow)
13096 {
13097 /* 16-bit MULS/Conditional MUL. */
13098 inst.instruction = THUMB_OP16 (inst.instruction);
13099 inst.instruction |= Rd;
13100
13101 if (Rd == Rn)
13102 inst.instruction |= Rm << 3;
13103 else if (Rd == Rm)
13104 inst.instruction |= Rn << 3;
13105 else
13106 constraint (1, _("dest must overlap one source register"));
13107 }
13108 else
13109 {
13110 constraint (inst.instruction != T_MNEM_mul,
13111 _("Thumb-2 MUL must not set flags"));
13112 /* 32-bit MUL. */
13113 inst.instruction = THUMB_OP32 (inst.instruction);
13114 inst.instruction |= Rd << 8;
13115 inst.instruction |= Rn << 16;
13116 inst.instruction |= Rm << 0;
13117
13118 reject_bad_reg (Rd);
13119 reject_bad_reg (Rn);
13120 reject_bad_reg (Rm);
13121 }
13122 }
13123
13124 static void
13125 do_t_mull (void)
13126 {
13127 unsigned RdLo, RdHi, Rn, Rm;
13128
13129 RdLo = inst.operands[0].reg;
13130 RdHi = inst.operands[1].reg;
13131 Rn = inst.operands[2].reg;
13132 Rm = inst.operands[3].reg;
13133
13134 reject_bad_reg (RdLo);
13135 reject_bad_reg (RdHi);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= RdLo << 12;
13140 inst.instruction |= RdHi << 8;
13141 inst.instruction |= Rn << 16;
13142 inst.instruction |= Rm;
13143
13144 if (RdLo == RdHi)
13145 as_tsktsk (_("rdhi and rdlo must be different"));
13146 }
13147
13148 static void
13149 do_t_nop (void)
13150 {
13151 set_pred_insn_type (NEUTRAL_IT_INSN);
13152
13153 if (unified_syntax)
13154 {
13155 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13156 {
13157 inst.instruction = THUMB_OP32 (inst.instruction);
13158 inst.instruction |= inst.operands[0].imm;
13159 }
13160 else
13161 {
13162 /* PR9722: Check for Thumb2 availability before
13163 generating a thumb2 nop instruction. */
13164 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13165 {
13166 inst.instruction = THUMB_OP16 (inst.instruction);
13167 inst.instruction |= inst.operands[0].imm << 4;
13168 }
13169 else
13170 inst.instruction = 0x46c0;
13171 }
13172 }
13173 else
13174 {
13175 constraint (inst.operands[0].present,
13176 _("Thumb does not support NOP with hints"));
13177 inst.instruction = 0x46c0;
13178 }
13179 }
13180
13181 static void
13182 do_t_neg (void)
13183 {
13184 if (unified_syntax)
13185 {
13186 bfd_boolean narrow;
13187
13188 if (THUMB_SETS_FLAGS (inst.instruction))
13189 narrow = !in_pred_block ();
13190 else
13191 narrow = in_pred_block ();
13192 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13193 narrow = FALSE;
13194 if (inst.size_req == 4)
13195 narrow = FALSE;
13196
13197 if (!narrow)
13198 {
13199 inst.instruction = THUMB_OP32 (inst.instruction);
13200 inst.instruction |= inst.operands[0].reg << 8;
13201 inst.instruction |= inst.operands[1].reg << 16;
13202 }
13203 else
13204 {
13205 inst.instruction = THUMB_OP16 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg;
13207 inst.instruction |= inst.operands[1].reg << 3;
13208 }
13209 }
13210 else
13211 {
13212 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13213 BAD_HIREG);
13214 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13215
13216 inst.instruction = THUMB_OP16 (inst.instruction);
13217 inst.instruction |= inst.operands[0].reg;
13218 inst.instruction |= inst.operands[1].reg << 3;
13219 }
13220 }
13221
13222 static void
13223 do_t_orn (void)
13224 {
13225 unsigned Rd, Rn;
13226
13227 Rd = inst.operands[0].reg;
13228 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13229
13230 reject_bad_reg (Rd);
13231 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13232 reject_bad_reg (Rn);
13233
13234 inst.instruction |= Rd << 8;
13235 inst.instruction |= Rn << 16;
13236
13237 if (!inst.operands[2].isreg)
13238 {
13239 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13240 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13241 }
13242 else
13243 {
13244 unsigned Rm;
13245
13246 Rm = inst.operands[2].reg;
13247 reject_bad_reg (Rm);
13248
13249 constraint (inst.operands[2].shifted
13250 && inst.operands[2].immisreg,
13251 _("shift must be constant"));
13252 encode_thumb32_shifted_operand (2);
13253 }
13254 }
13255
13256 static void
13257 do_t_pkhbt (void)
13258 {
13259 unsigned Rd, Rn, Rm;
13260
13261 Rd = inst.operands[0].reg;
13262 Rn = inst.operands[1].reg;
13263 Rm = inst.operands[2].reg;
13264
13265 reject_bad_reg (Rd);
13266 reject_bad_reg (Rn);
13267 reject_bad_reg (Rm);
13268
13269 inst.instruction |= Rd << 8;
13270 inst.instruction |= Rn << 16;
13271 inst.instruction |= Rm;
13272 if (inst.operands[3].present)
13273 {
13274 unsigned int val = inst.relocs[0].exp.X_add_number;
13275 constraint (inst.relocs[0].exp.X_op != O_constant,
13276 _("expression too complex"));
13277 inst.instruction |= (val & 0x1c) << 10;
13278 inst.instruction |= (val & 0x03) << 6;
13279 }
13280 }
13281
13282 static void
13283 do_t_pkhtb (void)
13284 {
13285 if (!inst.operands[3].present)
13286 {
13287 unsigned Rtmp;
13288
13289 inst.instruction &= ~0x00000020;
13290
13291 /* PR 10168. Swap the Rm and Rn registers. */
13292 Rtmp = inst.operands[1].reg;
13293 inst.operands[1].reg = inst.operands[2].reg;
13294 inst.operands[2].reg = Rtmp;
13295 }
13296 do_t_pkhbt ();
13297 }
13298
13299 static void
13300 do_t_pld (void)
13301 {
13302 if (inst.operands[0].immisreg)
13303 reject_bad_reg (inst.operands[0].imm);
13304
13305 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13306 }
13307
13308 static void
13309 do_t_push_pop (void)
13310 {
13311 unsigned mask;
13312
13313 constraint (inst.operands[0].writeback,
13314 _("push/pop do not support {reglist}^"));
13315 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13316 _("expression too complex"));
13317
13318 mask = inst.operands[0].imm;
13319 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13320 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13321 else if (inst.size_req != 4
13322 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13323 ? REG_LR : REG_PC)))
13324 {
13325 inst.instruction = THUMB_OP16 (inst.instruction);
13326 inst.instruction |= THUMB_PP_PC_LR;
13327 inst.instruction |= mask & 0xff;
13328 }
13329 else if (unified_syntax)
13330 {
13331 inst.instruction = THUMB_OP32 (inst.instruction);
13332 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13333 }
13334 else
13335 {
13336 inst.error = _("invalid register list to push/pop instruction");
13337 return;
13338 }
13339 }
13340
13341 static void
13342 do_t_clrm (void)
13343 {
13344 if (unified_syntax)
13345 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13346 else
13347 {
13348 inst.error = _("invalid register list to push/pop instruction");
13349 return;
13350 }
13351 }
13352
13353 static void
13354 do_t_vscclrm (void)
13355 {
13356 if (inst.operands[0].issingle)
13357 {
13358 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13359 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13360 inst.instruction |= inst.operands[0].imm;
13361 }
13362 else
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13365 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13366 inst.instruction |= 1 << 8;
13367 inst.instruction |= inst.operands[0].imm << 1;
13368 }
13369 }
13370
13371 static void
13372 do_t_rbit (void)
13373 {
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 inst.instruction |= Rd << 8;
13383 inst.instruction |= Rm << 16;
13384 inst.instruction |= Rm;
13385 }
13386
13387 static void
13388 do_t_rev (void)
13389 {
13390 unsigned Rd, Rm;
13391
13392 Rd = inst.operands[0].reg;
13393 Rm = inst.operands[1].reg;
13394
13395 reject_bad_reg (Rd);
13396 reject_bad_reg (Rm);
13397
13398 if (Rd <= 7 && Rm <= 7
13399 && inst.size_req != 4)
13400 {
13401 inst.instruction = THUMB_OP16 (inst.instruction);
13402 inst.instruction |= Rd;
13403 inst.instruction |= Rm << 3;
13404 }
13405 else if (unified_syntax)
13406 {
13407 inst.instruction = THUMB_OP32 (inst.instruction);
13408 inst.instruction |= Rd << 8;
13409 inst.instruction |= Rm << 16;
13410 inst.instruction |= Rm;
13411 }
13412 else
13413 inst.error = BAD_HIREG;
13414 }
13415
13416 static void
13417 do_t_rrx (void)
13418 {
13419 unsigned Rd, Rm;
13420
13421 Rd = inst.operands[0].reg;
13422 Rm = inst.operands[1].reg;
13423
13424 reject_bad_reg (Rd);
13425 reject_bad_reg (Rm);
13426
13427 inst.instruction |= Rd << 8;
13428 inst.instruction |= Rm;
13429 }
13430
13431 static void
13432 do_t_rsb (void)
13433 {
13434 unsigned Rd, Rs;
13435
13436 Rd = inst.operands[0].reg;
13437 Rs = (inst.operands[1].present
13438 ? inst.operands[1].reg /* Rd, Rs, foo */
13439 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13440
13441 reject_bad_reg (Rd);
13442 reject_bad_reg (Rs);
13443 if (inst.operands[2].isreg)
13444 reject_bad_reg (inst.operands[2].reg);
13445
13446 inst.instruction |= Rd << 8;
13447 inst.instruction |= Rs << 16;
13448 if (!inst.operands[2].isreg)
13449 {
13450 bfd_boolean narrow;
13451
13452 if ((inst.instruction & 0x00100000) != 0)
13453 narrow = !in_pred_block ();
13454 else
13455 narrow = in_pred_block ();
13456
13457 if (Rd > 7 || Rs > 7)
13458 narrow = FALSE;
13459
13460 if (inst.size_req == 4 || !unified_syntax)
13461 narrow = FALSE;
13462
13463 if (inst.relocs[0].exp.X_op != O_constant
13464 || inst.relocs[0].exp.X_add_number != 0)
13465 narrow = FALSE;
13466
13467 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13468 relaxation, but it doesn't seem worth the hassle. */
13469 if (narrow)
13470 {
13471 inst.relocs[0].type = BFD_RELOC_UNUSED;
13472 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13473 inst.instruction |= Rs << 3;
13474 inst.instruction |= Rd;
13475 }
13476 else
13477 {
13478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13479 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13480 }
13481 }
13482 else
13483 encode_thumb32_shifted_operand (2);
13484 }
13485
13486 static void
13487 do_t_setend (void)
13488 {
13489 if (warn_on_deprecated
13490 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13491 as_tsktsk (_("setend use is deprecated for ARMv8"));
13492
13493 set_pred_insn_type (OUTSIDE_PRED_INSN);
13494 if (inst.operands[0].imm)
13495 inst.instruction |= 0x8;
13496 }
13497
13498 static void
13499 do_t_shift (void)
13500 {
13501 if (!inst.operands[1].present)
13502 inst.operands[1].reg = inst.operands[0].reg;
13503
13504 if (unified_syntax)
13505 {
13506 bfd_boolean narrow;
13507 int shift_kind;
13508
13509 switch (inst.instruction)
13510 {
13511 case T_MNEM_asr:
13512 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13513 case T_MNEM_lsl:
13514 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13515 case T_MNEM_lsr:
13516 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13517 case T_MNEM_ror:
13518 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13519 default: abort ();
13520 }
13521
13522 if (THUMB_SETS_FLAGS (inst.instruction))
13523 narrow = !in_pred_block ();
13524 else
13525 narrow = in_pred_block ();
13526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13527 narrow = FALSE;
13528 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13529 narrow = FALSE;
13530 if (inst.operands[2].isreg
13531 && (inst.operands[1].reg != inst.operands[0].reg
13532 || inst.operands[2].reg > 7))
13533 narrow = FALSE;
13534 if (inst.size_req == 4)
13535 narrow = FALSE;
13536
13537 reject_bad_reg (inst.operands[0].reg);
13538 reject_bad_reg (inst.operands[1].reg);
13539
13540 if (!narrow)
13541 {
13542 if (inst.operands[2].isreg)
13543 {
13544 reject_bad_reg (inst.operands[2].reg);
13545 inst.instruction = THUMB_OP32 (inst.instruction);
13546 inst.instruction |= inst.operands[0].reg << 8;
13547 inst.instruction |= inst.operands[1].reg << 16;
13548 inst.instruction |= inst.operands[2].reg;
13549
13550 /* PR 12854: Error on extraneous shifts. */
13551 constraint (inst.operands[2].shifted,
13552 _("extraneous shift as part of operand to shift insn"));
13553 }
13554 else
13555 {
13556 inst.operands[1].shifted = 1;
13557 inst.operands[1].shift_kind = shift_kind;
13558 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13559 ? T_MNEM_movs : T_MNEM_mov);
13560 inst.instruction |= inst.operands[0].reg << 8;
13561 encode_thumb32_shifted_operand (1);
13562 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13563 inst.relocs[0].type = BFD_RELOC_UNUSED;
13564 }
13565 }
13566 else
13567 {
13568 if (inst.operands[2].isreg)
13569 {
13570 switch (shift_kind)
13571 {
13572 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13573 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13574 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13575 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13576 default: abort ();
13577 }
13578
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[2].reg << 3;
13581
13582 /* PR 12854: Error on extraneous shifts. */
13583 constraint (inst.operands[2].shifted,
13584 _("extraneous shift as part of operand to shift insn"));
13585 }
13586 else
13587 {
13588 switch (shift_kind)
13589 {
13590 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13591 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13592 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13593 default: abort ();
13594 }
13595 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13596 inst.instruction |= inst.operands[0].reg;
13597 inst.instruction |= inst.operands[1].reg << 3;
13598 }
13599 }
13600 }
13601 else
13602 {
13603 constraint (inst.operands[0].reg > 7
13604 || inst.operands[1].reg > 7, BAD_HIREG);
13605 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13606
13607 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13608 {
13609 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13610 constraint (inst.operands[0].reg != inst.operands[1].reg,
13611 _("source1 and dest must be same register"));
13612
13613 switch (inst.instruction)
13614 {
13615 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13616 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13617 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13618 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13619 default: abort ();
13620 }
13621
13622 inst.instruction |= inst.operands[0].reg;
13623 inst.instruction |= inst.operands[2].reg << 3;
13624
13625 /* PR 12854: Error on extraneous shifts. */
13626 constraint (inst.operands[2].shifted,
13627 _("extraneous shift as part of operand to shift insn"));
13628 }
13629 else
13630 {
13631 switch (inst.instruction)
13632 {
13633 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13634 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13635 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13636 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13637 default: abort ();
13638 }
13639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13640 inst.instruction |= inst.operands[0].reg;
13641 inst.instruction |= inst.operands[1].reg << 3;
13642 }
13643 }
13644 }
13645
13646 static void
13647 do_t_simd (void)
13648 {
13649 unsigned Rd, Rn, Rm;
13650
13651 Rd = inst.operands[0].reg;
13652 Rn = inst.operands[1].reg;
13653 Rm = inst.operands[2].reg;
13654
13655 reject_bad_reg (Rd);
13656 reject_bad_reg (Rn);
13657 reject_bad_reg (Rm);
13658
13659 inst.instruction |= Rd << 8;
13660 inst.instruction |= Rn << 16;
13661 inst.instruction |= Rm;
13662 }
13663
13664 static void
13665 do_t_simd2 (void)
13666 {
13667 unsigned Rd, Rn, Rm;
13668
13669 Rd = inst.operands[0].reg;
13670 Rm = inst.operands[1].reg;
13671 Rn = inst.operands[2].reg;
13672
13673 reject_bad_reg (Rd);
13674 reject_bad_reg (Rn);
13675 reject_bad_reg (Rm);
13676
13677 inst.instruction |= Rd << 8;
13678 inst.instruction |= Rn << 16;
13679 inst.instruction |= Rm;
13680 }
13681
13682 static void
13683 do_t_smc (void)
13684 {
13685 unsigned int value = inst.relocs[0].exp.X_add_number;
13686 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13687 _("SMC is not permitted on this architecture"));
13688 constraint (inst.relocs[0].exp.X_op != O_constant,
13689 _("expression too complex"));
13690 inst.relocs[0].type = BFD_RELOC_UNUSED;
13691 inst.instruction |= (value & 0xf000) >> 12;
13692 inst.instruction |= (value & 0x0ff0);
13693 inst.instruction |= (value & 0x000f) << 16;
13694 /* PR gas/15623: SMC instructions must be last in an IT block. */
13695 set_pred_insn_type_last ();
13696 }
13697
13698 static void
13699 do_t_hvc (void)
13700 {
13701 unsigned int value = inst.relocs[0].exp.X_add_number;
13702
13703 inst.relocs[0].type = BFD_RELOC_UNUSED;
13704 inst.instruction |= (value & 0x0fff);
13705 inst.instruction |= (value & 0xf000) << 4;
13706 }
13707
13708 static void
13709 do_t_ssat_usat (int bias)
13710 {
13711 unsigned Rd, Rn;
13712
13713 Rd = inst.operands[0].reg;
13714 Rn = inst.operands[2].reg;
13715
13716 reject_bad_reg (Rd);
13717 reject_bad_reg (Rn);
13718
13719 inst.instruction |= Rd << 8;
13720 inst.instruction |= inst.operands[1].imm - bias;
13721 inst.instruction |= Rn << 16;
13722
13723 if (inst.operands[3].present)
13724 {
13725 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13726
13727 inst.relocs[0].type = BFD_RELOC_UNUSED;
13728
13729 constraint (inst.relocs[0].exp.X_op != O_constant,
13730 _("expression too complex"));
13731
13732 if (shift_amount != 0)
13733 {
13734 constraint (shift_amount > 31,
13735 _("shift expression is too large"));
13736
13737 if (inst.operands[3].shift_kind == SHIFT_ASR)
13738 inst.instruction |= 0x00200000; /* sh bit. */
13739
13740 inst.instruction |= (shift_amount & 0x1c) << 10;
13741 inst.instruction |= (shift_amount & 0x03) << 6;
13742 }
13743 }
13744 }
13745
13746 static void
13747 do_t_ssat (void)
13748 {
13749 do_t_ssat_usat (1);
13750 }
13751
13752 static void
13753 do_t_ssat16 (void)
13754 {
13755 unsigned Rd, Rn;
13756
13757 Rd = inst.operands[0].reg;
13758 Rn = inst.operands[2].reg;
13759
13760 reject_bad_reg (Rd);
13761 reject_bad_reg (Rn);
13762
13763 inst.instruction |= Rd << 8;
13764 inst.instruction |= inst.operands[1].imm - 1;
13765 inst.instruction |= Rn << 16;
13766 }
13767
13768 static void
13769 do_t_strex (void)
13770 {
13771 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13772 || inst.operands[2].postind || inst.operands[2].writeback
13773 || inst.operands[2].immisreg || inst.operands[2].shifted
13774 || inst.operands[2].negative,
13775 BAD_ADDR_MODE);
13776
13777 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13778
13779 inst.instruction |= inst.operands[0].reg << 8;
13780 inst.instruction |= inst.operands[1].reg << 12;
13781 inst.instruction |= inst.operands[2].reg << 16;
13782 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13783 }
13784
13785 static void
13786 do_t_strexd (void)
13787 {
13788 if (!inst.operands[2].present)
13789 inst.operands[2].reg = inst.operands[1].reg + 1;
13790
13791 constraint (inst.operands[0].reg == inst.operands[1].reg
13792 || inst.operands[0].reg == inst.operands[2].reg
13793 || inst.operands[0].reg == inst.operands[3].reg,
13794 BAD_OVERLAP);
13795
13796 inst.instruction |= inst.operands[0].reg;
13797 inst.instruction |= inst.operands[1].reg << 12;
13798 inst.instruction |= inst.operands[2].reg << 8;
13799 inst.instruction |= inst.operands[3].reg << 16;
13800 }
13801
13802 static void
13803 do_t_sxtah (void)
13804 {
13805 unsigned Rd, Rn, Rm;
13806
13807 Rd = inst.operands[0].reg;
13808 Rn = inst.operands[1].reg;
13809 Rm = inst.operands[2].reg;
13810
13811 reject_bad_reg (Rd);
13812 reject_bad_reg (Rn);
13813 reject_bad_reg (Rm);
13814
13815 inst.instruction |= Rd << 8;
13816 inst.instruction |= Rn << 16;
13817 inst.instruction |= Rm;
13818 inst.instruction |= inst.operands[3].imm << 4;
13819 }
13820
13821 static void
13822 do_t_sxth (void)
13823 {
13824 unsigned Rd, Rm;
13825
13826 Rd = inst.operands[0].reg;
13827 Rm = inst.operands[1].reg;
13828
13829 reject_bad_reg (Rd);
13830 reject_bad_reg (Rm);
13831
13832 if (inst.instruction <= 0xffff
13833 && inst.size_req != 4
13834 && Rd <= 7 && Rm <= 7
13835 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13836 {
13837 inst.instruction = THUMB_OP16 (inst.instruction);
13838 inst.instruction |= Rd;
13839 inst.instruction |= Rm << 3;
13840 }
13841 else if (unified_syntax)
13842 {
13843 if (inst.instruction <= 0xffff)
13844 inst.instruction = THUMB_OP32 (inst.instruction);
13845 inst.instruction |= Rd << 8;
13846 inst.instruction |= Rm;
13847 inst.instruction |= inst.operands[2].imm << 4;
13848 }
13849 else
13850 {
13851 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13852 _("Thumb encoding does not support rotation"));
13853 constraint (1, BAD_HIREG);
13854 }
13855 }
13856
13857 static void
13858 do_t_swi (void)
13859 {
13860 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13861 }
13862
13863 static void
13864 do_t_tb (void)
13865 {
13866 unsigned Rn, Rm;
13867 int half;
13868
13869 half = (inst.instruction & 0x10) != 0;
13870 set_pred_insn_type_last ();
13871 constraint (inst.operands[0].immisreg,
13872 _("instruction requires register index"));
13873
13874 Rn = inst.operands[0].reg;
13875 Rm = inst.operands[0].imm;
13876
13877 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13878 constraint (Rn == REG_SP, BAD_SP);
13879 reject_bad_reg (Rm);
13880
13881 constraint (!half && inst.operands[0].shifted,
13882 _("instruction does not allow shifted index"));
13883 inst.instruction |= (Rn << 16) | Rm;
13884 }
13885
13886 static void
13887 do_t_udf (void)
13888 {
13889 if (!inst.operands[0].present)
13890 inst.operands[0].imm = 0;
13891
13892 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13893 {
13894 constraint (inst.size_req == 2,
13895 _("immediate value out of range"));
13896 inst.instruction = THUMB_OP32 (inst.instruction);
13897 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13898 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13899 }
13900 else
13901 {
13902 inst.instruction = THUMB_OP16 (inst.instruction);
13903 inst.instruction |= inst.operands[0].imm;
13904 }
13905
13906 set_pred_insn_type (NEUTRAL_IT_INSN);
13907 }
13908
13909
13910 static void
13911 do_t_usat (void)
13912 {
13913 do_t_ssat_usat (0);
13914 }
13915
13916 static void
13917 do_t_usat16 (void)
13918 {
13919 unsigned Rd, Rn;
13920
13921 Rd = inst.operands[0].reg;
13922 Rn = inst.operands[2].reg;
13923
13924 reject_bad_reg (Rd);
13925 reject_bad_reg (Rn);
13926
13927 inst.instruction |= Rd << 8;
13928 inst.instruction |= inst.operands[1].imm;
13929 inst.instruction |= Rn << 16;
13930 }
13931
13932 /* Checking the range of the branch offset (VAL) with NBITS bits
13933 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13934 static int
13935 v8_1_branch_value_check (int val, int nbits, int is_signed)
13936 {
13937 gas_assert (nbits > 0 && nbits <= 32);
13938 if (is_signed)
13939 {
13940 int cmp = (1 << (nbits - 1));
13941 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13942 return FAIL;
13943 }
13944 else
13945 {
13946 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13947 return FAIL;
13948 }
13949 return SUCCESS;
13950 }
13951
13952 /* For branches in Armv8.1-M Mainline. */
13953 static void
13954 do_t_branch_future (void)
13955 {
13956 unsigned long insn = inst.instruction;
13957
13958 inst.instruction = THUMB_OP32 (inst.instruction);
13959 if (inst.operands[0].hasreloc == 0)
13960 {
13961 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13962 as_bad (BAD_BRANCH_OFF);
13963
13964 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13965 }
13966 else
13967 {
13968 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13969 inst.relocs[0].pc_rel = 1;
13970 }
13971
13972 switch (insn)
13973 {
13974 case T_MNEM_bf:
13975 if (inst.operands[1].hasreloc == 0)
13976 {
13977 int val = inst.operands[1].imm;
13978 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13979 as_bad (BAD_BRANCH_OFF);
13980
13981 int immA = (val & 0x0001f000) >> 12;
13982 int immB = (val & 0x00000ffc) >> 2;
13983 int immC = (val & 0x00000002) >> 1;
13984 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13985 }
13986 else
13987 {
13988 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13989 inst.relocs[1].pc_rel = 1;
13990 }
13991 break;
13992
13993 case T_MNEM_bfl:
13994 if (inst.operands[1].hasreloc == 0)
13995 {
13996 int val = inst.operands[1].imm;
13997 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13998 as_bad (BAD_BRANCH_OFF);
13999
14000 int immA = (val & 0x0007f000) >> 12;
14001 int immB = (val & 0x00000ffc) >> 2;
14002 int immC = (val & 0x00000002) >> 1;
14003 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14004 }
14005 else
14006 {
14007 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14008 inst.relocs[1].pc_rel = 1;
14009 }
14010 break;
14011
14012 case T_MNEM_bfcsel:
14013 /* Operand 1. */
14014 if (inst.operands[1].hasreloc == 0)
14015 {
14016 int val = inst.operands[1].imm;
14017 int immA = (val & 0x00001000) >> 12;
14018 int immB = (val & 0x00000ffc) >> 2;
14019 int immC = (val & 0x00000002) >> 1;
14020 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14021 }
14022 else
14023 {
14024 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14025 inst.relocs[1].pc_rel = 1;
14026 }
14027
14028 /* Operand 2. */
14029 if (inst.operands[2].hasreloc == 0)
14030 {
14031 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14032 int val2 = inst.operands[2].imm;
14033 int val0 = inst.operands[0].imm & 0x1f;
14034 int diff = val2 - val0;
14035 if (diff == 4)
14036 inst.instruction |= 1 << 17; /* T bit. */
14037 else if (diff != 2)
14038 as_bad (_("out of range label-relative fixup value"));
14039 }
14040 else
14041 {
14042 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14043 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14044 inst.relocs[2].pc_rel = 1;
14045 }
14046
14047 /* Operand 3. */
14048 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14049 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14050 break;
14051
14052 case T_MNEM_bfx:
14053 case T_MNEM_bflx:
14054 inst.instruction |= inst.operands[1].reg << 16;
14055 break;
14056
14057 default: abort ();
14058 }
14059 }
14060
14061 /* Helper function for do_t_loloop to handle relocations. */
14062 static void
14063 v8_1_loop_reloc (int is_le)
14064 {
14065 if (inst.relocs[0].exp.X_op == O_constant)
14066 {
14067 int value = inst.relocs[0].exp.X_add_number;
14068 value = (is_le) ? -value : value;
14069
14070 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14071 as_bad (BAD_BRANCH_OFF);
14072
14073 int imml, immh;
14074
14075 immh = (value & 0x00000ffc) >> 2;
14076 imml = (value & 0x00000002) >> 1;
14077
14078 inst.instruction |= (imml << 11) | (immh << 1);
14079 }
14080 else
14081 {
14082 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14083 inst.relocs[0].pc_rel = 1;
14084 }
14085 }
14086
14087 /* To handle the Scalar Low Overhead Loop instructions
14088 in Armv8.1-M Mainline. */
14089 static void
14090 do_t_loloop (void)
14091 {
14092 unsigned long insn = inst.instruction;
14093
14094 set_pred_insn_type (OUTSIDE_PRED_INSN);
14095 inst.instruction = THUMB_OP32 (inst.instruction);
14096
14097 switch (insn)
14098 {
14099 case T_MNEM_le:
14100 /* le <label>. */
14101 if (!inst.operands[0].present)
14102 inst.instruction |= 1 << 21;
14103
14104 v8_1_loop_reloc (TRUE);
14105 break;
14106
14107 case T_MNEM_wls:
14108 v8_1_loop_reloc (FALSE);
14109 /* Fall through. */
14110 case T_MNEM_dls:
14111 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14112 inst.instruction |= (inst.operands[1].reg << 16);
14113 break;
14114
14115 default: abort();
14116 }
14117 }
14118
14119 /* MVE instruction encoder helpers. */
14120 #define M_MNEM_vabav 0xee800f01
14121 #define M_MNEM_vmladav 0xeef00e00
14122 #define M_MNEM_vmladava 0xeef00e20
14123 #define M_MNEM_vmladavx 0xeef01e00
14124 #define M_MNEM_vmladavax 0xeef01e20
14125 #define M_MNEM_vmlsdav 0xeef00e01
14126 #define M_MNEM_vmlsdava 0xeef00e21
14127 #define M_MNEM_vmlsdavx 0xeef01e01
14128 #define M_MNEM_vmlsdavax 0xeef01e21
14129 #define M_MNEM_vmullt 0xee011e00
14130 #define M_MNEM_vmullb 0xee010e00
14131 #define M_MNEM_vst20 0xfc801e00
14132 #define M_MNEM_vst21 0xfc801e20
14133 #define M_MNEM_vst40 0xfc801e01
14134 #define M_MNEM_vst41 0xfc801e21
14135 #define M_MNEM_vst42 0xfc801e41
14136 #define M_MNEM_vst43 0xfc801e61
14137 #define M_MNEM_vld20 0xfc901e00
14138 #define M_MNEM_vld21 0xfc901e20
14139 #define M_MNEM_vld40 0xfc901e01
14140 #define M_MNEM_vld41 0xfc901e21
14141 #define M_MNEM_vld42 0xfc901e41
14142 #define M_MNEM_vld43 0xfc901e61
14143 #define M_MNEM_vstrb 0xec000e00
14144 #define M_MNEM_vstrh 0xec000e10
14145 #define M_MNEM_vstrw 0xec000e40
14146 #define M_MNEM_vstrd 0xec000e50
14147 #define M_MNEM_vldrb 0xec100e00
14148 #define M_MNEM_vldrh 0xec100e10
14149 #define M_MNEM_vldrw 0xec100e40
14150 #define M_MNEM_vldrd 0xec100e50
14151 #define M_MNEM_vmovlt 0xeea01f40
14152 #define M_MNEM_vmovlb 0xeea00f40
14153 #define M_MNEM_vmovnt 0xfe311e81
14154 #define M_MNEM_vmovnb 0xfe310e81
14155 #define M_MNEM_vadc 0xee300f00
14156 #define M_MNEM_vadci 0xee301f00
14157 #define M_MNEM_vbrsr 0xfe011e60
14158 #define M_MNEM_vaddlv 0xee890f00
14159 #define M_MNEM_vaddlva 0xee890f20
14160 #define M_MNEM_vaddv 0xeef10f00
14161 #define M_MNEM_vaddva 0xeef10f20
14162 #define M_MNEM_vddup 0xee011f6e
14163 #define M_MNEM_vdwdup 0xee011f60
14164 #define M_MNEM_vidup 0xee010f6e
14165 #define M_MNEM_viwdup 0xee010f60
14166
14167 /* Neon instruction encoder helpers. */
14168
14169 /* Encodings for the different types for various Neon opcodes. */
14170
14171 /* An "invalid" code for the following tables. */
14172 #define N_INV -1u
14173
14174 struct neon_tab_entry
14175 {
14176 unsigned integer;
14177 unsigned float_or_poly;
14178 unsigned scalar_or_imm;
14179 };
14180
14181 /* Map overloaded Neon opcodes to their respective encodings. */
14182 #define NEON_ENC_TAB \
14183 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14184 X(vabdl, 0x0800700, N_INV, N_INV), \
14185 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14186 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14187 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14188 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14189 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14190 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14191 X(vaddl, 0x0800000, N_INV, N_INV), \
14192 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14193 X(vsubl, 0x0800200, N_INV, N_INV), \
14194 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14195 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14196 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14197 /* Register variants of the following two instructions are encoded as
14198 vcge / vcgt with the operands reversed. */ \
14199 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14200 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14201 X(vfma, N_INV, 0x0000c10, N_INV), \
14202 X(vfms, N_INV, 0x0200c10, N_INV), \
14203 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14204 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14205 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14206 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14207 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14208 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14209 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14210 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14211 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14212 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14213 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14214 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14215 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14216 X(vshl, 0x0000400, N_INV, 0x0800510), \
14217 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14218 X(vand, 0x0000110, N_INV, 0x0800030), \
14219 X(vbic, 0x0100110, N_INV, 0x0800030), \
14220 X(veor, 0x1000110, N_INV, N_INV), \
14221 X(vorn, 0x0300110, N_INV, 0x0800010), \
14222 X(vorr, 0x0200110, N_INV, 0x0800010), \
14223 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14224 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14225 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14226 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14227 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14228 X(vst1, 0x0000000, 0x0800000, N_INV), \
14229 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14230 X(vst2, 0x0000100, 0x0800100, N_INV), \
14231 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14232 X(vst3, 0x0000200, 0x0800200, N_INV), \
14233 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14234 X(vst4, 0x0000300, 0x0800300, N_INV), \
14235 X(vmovn, 0x1b20200, N_INV, N_INV), \
14236 X(vtrn, 0x1b20080, N_INV, N_INV), \
14237 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14238 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14239 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14240 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14241 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14242 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14243 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14244 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14245 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14246 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14247 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14248 X(vseleq, 0xe000a00, N_INV, N_INV), \
14249 X(vselvs, 0xe100a00, N_INV, N_INV), \
14250 X(vselge, 0xe200a00, N_INV, N_INV), \
14251 X(vselgt, 0xe300a00, N_INV, N_INV), \
14252 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14253 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14254 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14255 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14256 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14257 X(aes, 0x3b00300, N_INV, N_INV), \
14258 X(sha3op, 0x2000c00, N_INV, N_INV), \
14259 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14260 X(sha2op, 0x3ba0380, N_INV, N_INV)
14261
14262 enum neon_opc
14263 {
14264 #define X(OPC,I,F,S) N_MNEM_##OPC
14265 NEON_ENC_TAB
14266 #undef X
14267 };
14268
14269 static const struct neon_tab_entry neon_enc_tab[] =
14270 {
14271 #define X(OPC,I,F,S) { (I), (F), (S) }
14272 NEON_ENC_TAB
14273 #undef X
14274 };
14275
14276 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14277 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14278 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14279 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14280 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14281 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14282 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14283 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14284 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14285 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14286 #define NEON_ENC_SINGLE_(X) \
14287 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14288 #define NEON_ENC_DOUBLE_(X) \
14289 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14290 #define NEON_ENC_FPV8_(X) \
14291 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14292
14293 #define NEON_ENCODE(type, inst) \
14294 do \
14295 { \
14296 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14297 inst.is_neon = 1; \
14298 } \
14299 while (0)
14300
14301 #define check_neon_suffixes \
14302 do \
14303 { \
14304 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14305 { \
14306 as_bad (_("invalid neon suffix for non neon instruction")); \
14307 return; \
14308 } \
14309 } \
14310 while (0)
14311
14312 /* Define shapes for instruction operands. The following mnemonic characters
14313 are used in this table:
14314
14315 F - VFP S<n> register
14316 D - Neon D<n> register
14317 Q - Neon Q<n> register
14318 I - Immediate
14319 S - Scalar
14320 R - ARM register
14321 L - D<n> register list
14322
14323 This table is used to generate various data:
14324 - enumerations of the form NS_DDR to be used as arguments to
14325 neon_select_shape.
14326 - a table classifying shapes into single, double, quad, mixed.
14327 - a table used to drive neon_select_shape. */
14328
14329 #define NEON_SHAPE_DEF \
14330 X(4, (Q, R, R, I), QUAD), \
14331 X(4, (R, R, S, S), QUAD), \
14332 X(4, (S, S, R, R), QUAD), \
14333 X(3, (Q, R, I), QUAD), \
14334 X(3, (I, Q, Q), QUAD), \
14335 X(3, (I, Q, R), QUAD), \
14336 X(3, (R, Q, Q), QUAD), \
14337 X(3, (D, D, D), DOUBLE), \
14338 X(3, (Q, Q, Q), QUAD), \
14339 X(3, (D, D, I), DOUBLE), \
14340 X(3, (Q, Q, I), QUAD), \
14341 X(3, (D, D, S), DOUBLE), \
14342 X(3, (Q, Q, S), QUAD), \
14343 X(3, (Q, Q, R), QUAD), \
14344 X(3, (R, R, Q), QUAD), \
14345 X(2, (R, Q), QUAD), \
14346 X(2, (D, D), DOUBLE), \
14347 X(2, (Q, Q), QUAD), \
14348 X(2, (D, S), DOUBLE), \
14349 X(2, (Q, S), QUAD), \
14350 X(2, (D, R), DOUBLE), \
14351 X(2, (Q, R), QUAD), \
14352 X(2, (D, I), DOUBLE), \
14353 X(2, (Q, I), QUAD), \
14354 X(3, (D, L, D), DOUBLE), \
14355 X(2, (D, Q), MIXED), \
14356 X(2, (Q, D), MIXED), \
14357 X(3, (D, Q, I), MIXED), \
14358 X(3, (Q, D, I), MIXED), \
14359 X(3, (Q, D, D), MIXED), \
14360 X(3, (D, Q, Q), MIXED), \
14361 X(3, (Q, Q, D), MIXED), \
14362 X(3, (Q, D, S), MIXED), \
14363 X(3, (D, Q, S), MIXED), \
14364 X(4, (D, D, D, I), DOUBLE), \
14365 X(4, (Q, Q, Q, I), QUAD), \
14366 X(4, (D, D, S, I), DOUBLE), \
14367 X(4, (Q, Q, S, I), QUAD), \
14368 X(2, (F, F), SINGLE), \
14369 X(3, (F, F, F), SINGLE), \
14370 X(2, (F, I), SINGLE), \
14371 X(2, (F, D), MIXED), \
14372 X(2, (D, F), MIXED), \
14373 X(3, (F, F, I), MIXED), \
14374 X(4, (R, R, F, F), SINGLE), \
14375 X(4, (F, F, R, R), SINGLE), \
14376 X(3, (D, R, R), DOUBLE), \
14377 X(3, (R, R, D), DOUBLE), \
14378 X(2, (S, R), SINGLE), \
14379 X(2, (R, S), SINGLE), \
14380 X(2, (F, R), SINGLE), \
14381 X(2, (R, F), SINGLE), \
14382 /* Half float shape supported so far. */\
14383 X (2, (H, D), MIXED), \
14384 X (2, (D, H), MIXED), \
14385 X (2, (H, F), MIXED), \
14386 X (2, (F, H), MIXED), \
14387 X (2, (H, H), HALF), \
14388 X (2, (H, R), HALF), \
14389 X (2, (R, H), HALF), \
14390 X (2, (H, I), HALF), \
14391 X (3, (H, H, H), HALF), \
14392 X (3, (H, F, I), MIXED), \
14393 X (3, (F, H, I), MIXED), \
14394 X (3, (D, H, H), MIXED), \
14395 X (3, (D, H, S), MIXED)
14396
14397 #define S2(A,B) NS_##A##B
14398 #define S3(A,B,C) NS_##A##B##C
14399 #define S4(A,B,C,D) NS_##A##B##C##D
14400
14401 #define X(N, L, C) S##N L
14402
14403 enum neon_shape
14404 {
14405 NEON_SHAPE_DEF,
14406 NS_NULL
14407 };
14408
14409 #undef X
14410 #undef S2
14411 #undef S3
14412 #undef S4
14413
14414 enum neon_shape_class
14415 {
14416 SC_HALF,
14417 SC_SINGLE,
14418 SC_DOUBLE,
14419 SC_QUAD,
14420 SC_MIXED
14421 };
14422
14423 #define X(N, L, C) SC_##C
14424
14425 static enum neon_shape_class neon_shape_class[] =
14426 {
14427 NEON_SHAPE_DEF
14428 };
14429
14430 #undef X
14431
14432 enum neon_shape_el
14433 {
14434 SE_H,
14435 SE_F,
14436 SE_D,
14437 SE_Q,
14438 SE_I,
14439 SE_S,
14440 SE_R,
14441 SE_L
14442 };
14443
14444 /* Register widths of above. */
14445 static unsigned neon_shape_el_size[] =
14446 {
14447 16,
14448 32,
14449 64,
14450 128,
14451 0,
14452 32,
14453 32,
14454 0
14455 };
14456
14457 struct neon_shape_info
14458 {
14459 unsigned els;
14460 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14461 };
14462
14463 #define S2(A,B) { SE_##A, SE_##B }
14464 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14465 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14466
14467 #define X(N, L, C) { N, S##N L }
14468
14469 static struct neon_shape_info neon_shape_tab[] =
14470 {
14471 NEON_SHAPE_DEF
14472 };
14473
14474 #undef X
14475 #undef S2
14476 #undef S3
14477 #undef S4
14478
14479 /* Bit masks used in type checking given instructions.
14480 'N_EQK' means the type must be the same as (or based on in some way) the key
14481 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14482 set, various other bits can be set as well in order to modify the meaning of
14483 the type constraint. */
14484
14485 enum neon_type_mask
14486 {
14487 N_S8 = 0x0000001,
14488 N_S16 = 0x0000002,
14489 N_S32 = 0x0000004,
14490 N_S64 = 0x0000008,
14491 N_U8 = 0x0000010,
14492 N_U16 = 0x0000020,
14493 N_U32 = 0x0000040,
14494 N_U64 = 0x0000080,
14495 N_I8 = 0x0000100,
14496 N_I16 = 0x0000200,
14497 N_I32 = 0x0000400,
14498 N_I64 = 0x0000800,
14499 N_8 = 0x0001000,
14500 N_16 = 0x0002000,
14501 N_32 = 0x0004000,
14502 N_64 = 0x0008000,
14503 N_P8 = 0x0010000,
14504 N_P16 = 0x0020000,
14505 N_F16 = 0x0040000,
14506 N_F32 = 0x0080000,
14507 N_F64 = 0x0100000,
14508 N_P64 = 0x0200000,
14509 N_KEY = 0x1000000, /* Key element (main type specifier). */
14510 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14511 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14512 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14513 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14514 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14515 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14516 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14517 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14518 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14519 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14520 N_UTYP = 0,
14521 N_MAX_NONSPECIAL = N_P64
14522 };
14523
14524 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14525
14526 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14527 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14528 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14529 #define N_S_32 (N_S8 | N_S16 | N_S32)
14530 #define N_F_16_32 (N_F16 | N_F32)
14531 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14532 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14533 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14534 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14535 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14536 #define N_F_MVE (N_F16 | N_F32)
14537 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14538
14539 /* Pass this as the first type argument to neon_check_type to ignore types
14540 altogether. */
14541 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14542
14543 /* Select a "shape" for the current instruction (describing register types or
14544 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14545 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14546 function of operand parsing, so this function doesn't need to be called.
14547 Shapes should be listed in order of decreasing length. */
14548
14549 static enum neon_shape
14550 neon_select_shape (enum neon_shape shape, ...)
14551 {
14552 va_list ap;
14553 enum neon_shape first_shape = shape;
14554
14555 /* Fix missing optional operands. FIXME: we don't know at this point how
14556 many arguments we should have, so this makes the assumption that we have
14557 > 1. This is true of all current Neon opcodes, I think, but may not be
14558 true in the future. */
14559 if (!inst.operands[1].present)
14560 inst.operands[1] = inst.operands[0];
14561
14562 va_start (ap, shape);
14563
14564 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14565 {
14566 unsigned j;
14567 int matches = 1;
14568
14569 for (j = 0; j < neon_shape_tab[shape].els; j++)
14570 {
14571 if (!inst.operands[j].present)
14572 {
14573 matches = 0;
14574 break;
14575 }
14576
14577 switch (neon_shape_tab[shape].el[j])
14578 {
14579 /* If a .f16, .16, .u16, .s16 type specifier is given over
14580 a VFP single precision register operand, it's essentially
14581 means only half of the register is used.
14582
14583 If the type specifier is given after the mnemonics, the
14584 information is stored in inst.vectype. If the type specifier
14585 is given after register operand, the information is stored
14586 in inst.operands[].vectype.
14587
14588 When there is only one type specifier, and all the register
14589 operands are the same type of hardware register, the type
14590 specifier applies to all register operands.
14591
14592 If no type specifier is given, the shape is inferred from
14593 operand information.
14594
14595 for example:
14596 vadd.f16 s0, s1, s2: NS_HHH
14597 vabs.f16 s0, s1: NS_HH
14598 vmov.f16 s0, r1: NS_HR
14599 vmov.f16 r0, s1: NS_RH
14600 vcvt.f16 r0, s1: NS_RH
14601 vcvt.f16.s32 s2, s2, #29: NS_HFI
14602 vcvt.f16.s32 s2, s2: NS_HF
14603 */
14604 case SE_H:
14605 if (!(inst.operands[j].isreg
14606 && inst.operands[j].isvec
14607 && inst.operands[j].issingle
14608 && !inst.operands[j].isquad
14609 && ((inst.vectype.elems == 1
14610 && inst.vectype.el[0].size == 16)
14611 || (inst.vectype.elems > 1
14612 && inst.vectype.el[j].size == 16)
14613 || (inst.vectype.elems == 0
14614 && inst.operands[j].vectype.type != NT_invtype
14615 && inst.operands[j].vectype.size == 16))))
14616 matches = 0;
14617 break;
14618
14619 case SE_F:
14620 if (!(inst.operands[j].isreg
14621 && inst.operands[j].isvec
14622 && inst.operands[j].issingle
14623 && !inst.operands[j].isquad
14624 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14625 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14626 || (inst.vectype.elems == 0
14627 && (inst.operands[j].vectype.size == 32
14628 || inst.operands[j].vectype.type == NT_invtype)))))
14629 matches = 0;
14630 break;
14631
14632 case SE_D:
14633 if (!(inst.operands[j].isreg
14634 && inst.operands[j].isvec
14635 && !inst.operands[j].isquad
14636 && !inst.operands[j].issingle))
14637 matches = 0;
14638 break;
14639
14640 case SE_R:
14641 if (!(inst.operands[j].isreg
14642 && !inst.operands[j].isvec))
14643 matches = 0;
14644 break;
14645
14646 case SE_Q:
14647 if (!(inst.operands[j].isreg
14648 && inst.operands[j].isvec
14649 && inst.operands[j].isquad
14650 && !inst.operands[j].issingle))
14651 matches = 0;
14652 break;
14653
14654 case SE_I:
14655 if (!(!inst.operands[j].isreg
14656 && !inst.operands[j].isscalar))
14657 matches = 0;
14658 break;
14659
14660 case SE_S:
14661 if (!(!inst.operands[j].isreg
14662 && inst.operands[j].isscalar))
14663 matches = 0;
14664 break;
14665
14666 case SE_L:
14667 break;
14668 }
14669 if (!matches)
14670 break;
14671 }
14672 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14673 /* We've matched all the entries in the shape table, and we don't
14674 have any left over operands which have not been matched. */
14675 break;
14676 }
14677
14678 va_end (ap);
14679
14680 if (shape == NS_NULL && first_shape != NS_NULL)
14681 first_error (_("invalid instruction shape"));
14682
14683 return shape;
14684 }
14685
14686 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14687 means the Q bit should be set). */
14688
14689 static int
14690 neon_quad (enum neon_shape shape)
14691 {
14692 return neon_shape_class[shape] == SC_QUAD;
14693 }
14694
14695 static void
14696 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14697 unsigned *g_size)
14698 {
14699 /* Allow modification to be made to types which are constrained to be
14700 based on the key element, based on bits set alongside N_EQK. */
14701 if ((typebits & N_EQK) != 0)
14702 {
14703 if ((typebits & N_HLF) != 0)
14704 *g_size /= 2;
14705 else if ((typebits & N_DBL) != 0)
14706 *g_size *= 2;
14707 if ((typebits & N_SGN) != 0)
14708 *g_type = NT_signed;
14709 else if ((typebits & N_UNS) != 0)
14710 *g_type = NT_unsigned;
14711 else if ((typebits & N_INT) != 0)
14712 *g_type = NT_integer;
14713 else if ((typebits & N_FLT) != 0)
14714 *g_type = NT_float;
14715 else if ((typebits & N_SIZ) != 0)
14716 *g_type = NT_untyped;
14717 }
14718 }
14719
14720 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14721 operand type, i.e. the single type specified in a Neon instruction when it
14722 is the only one given. */
14723
14724 static struct neon_type_el
14725 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14726 {
14727 struct neon_type_el dest = *key;
14728
14729 gas_assert ((thisarg & N_EQK) != 0);
14730
14731 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14732
14733 return dest;
14734 }
14735
14736 /* Convert Neon type and size into compact bitmask representation. */
14737
14738 static enum neon_type_mask
14739 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14740 {
14741 switch (type)
14742 {
14743 case NT_untyped:
14744 switch (size)
14745 {
14746 case 8: return N_8;
14747 case 16: return N_16;
14748 case 32: return N_32;
14749 case 64: return N_64;
14750 default: ;
14751 }
14752 break;
14753
14754 case NT_integer:
14755 switch (size)
14756 {
14757 case 8: return N_I8;
14758 case 16: return N_I16;
14759 case 32: return N_I32;
14760 case 64: return N_I64;
14761 default: ;
14762 }
14763 break;
14764
14765 case NT_float:
14766 switch (size)
14767 {
14768 case 16: return N_F16;
14769 case 32: return N_F32;
14770 case 64: return N_F64;
14771 default: ;
14772 }
14773 break;
14774
14775 case NT_poly:
14776 switch (size)
14777 {
14778 case 8: return N_P8;
14779 case 16: return N_P16;
14780 case 64: return N_P64;
14781 default: ;
14782 }
14783 break;
14784
14785 case NT_signed:
14786 switch (size)
14787 {
14788 case 8: return N_S8;
14789 case 16: return N_S16;
14790 case 32: return N_S32;
14791 case 64: return N_S64;
14792 default: ;
14793 }
14794 break;
14795
14796 case NT_unsigned:
14797 switch (size)
14798 {
14799 case 8: return N_U8;
14800 case 16: return N_U16;
14801 case 32: return N_U32;
14802 case 64: return N_U64;
14803 default: ;
14804 }
14805 break;
14806
14807 default: ;
14808 }
14809
14810 return N_UTYP;
14811 }
14812
14813 /* Convert compact Neon bitmask type representation to a type and size. Only
14814 handles the case where a single bit is set in the mask. */
14815
14816 static int
14817 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14818 enum neon_type_mask mask)
14819 {
14820 if ((mask & N_EQK) != 0)
14821 return FAIL;
14822
14823 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14824 *size = 8;
14825 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14826 *size = 16;
14827 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14828 *size = 32;
14829 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14830 *size = 64;
14831 else
14832 return FAIL;
14833
14834 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14835 *type = NT_signed;
14836 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14837 *type = NT_unsigned;
14838 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14839 *type = NT_integer;
14840 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14841 *type = NT_untyped;
14842 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14843 *type = NT_poly;
14844 else if ((mask & (N_F_ALL)) != 0)
14845 *type = NT_float;
14846 else
14847 return FAIL;
14848
14849 return SUCCESS;
14850 }
14851
14852 /* Modify a bitmask of allowed types. This is only needed for type
14853 relaxation. */
14854
14855 static unsigned
14856 modify_types_allowed (unsigned allowed, unsigned mods)
14857 {
14858 unsigned size;
14859 enum neon_el_type type;
14860 unsigned destmask;
14861 int i;
14862
14863 destmask = 0;
14864
14865 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14866 {
14867 if (el_type_of_type_chk (&type, &size,
14868 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14869 {
14870 neon_modify_type_size (mods, &type, &size);
14871 destmask |= type_chk_of_el_type (type, size);
14872 }
14873 }
14874
14875 return destmask;
14876 }
14877
14878 /* Check type and return type classification.
14879 The manual states (paraphrase): If one datatype is given, it indicates the
14880 type given in:
14881 - the second operand, if there is one
14882 - the operand, if there is no second operand
14883 - the result, if there are no operands.
14884 This isn't quite good enough though, so we use a concept of a "key" datatype
14885 which is set on a per-instruction basis, which is the one which matters when
14886 only one data type is written.
14887 Note: this function has side-effects (e.g. filling in missing operands). All
14888 Neon instructions should call it before performing bit encoding. */
14889
14890 static struct neon_type_el
14891 neon_check_type (unsigned els, enum neon_shape ns, ...)
14892 {
14893 va_list ap;
14894 unsigned i, pass, key_el = 0;
14895 unsigned types[NEON_MAX_TYPE_ELS];
14896 enum neon_el_type k_type = NT_invtype;
14897 unsigned k_size = -1u;
14898 struct neon_type_el badtype = {NT_invtype, -1};
14899 unsigned key_allowed = 0;
14900
14901 /* Optional registers in Neon instructions are always (not) in operand 1.
14902 Fill in the missing operand here, if it was omitted. */
14903 if (els > 1 && !inst.operands[1].present)
14904 inst.operands[1] = inst.operands[0];
14905
14906 /* Suck up all the varargs. */
14907 va_start (ap, ns);
14908 for (i = 0; i < els; i++)
14909 {
14910 unsigned thisarg = va_arg (ap, unsigned);
14911 if (thisarg == N_IGNORE_TYPE)
14912 {
14913 va_end (ap);
14914 return badtype;
14915 }
14916 types[i] = thisarg;
14917 if ((thisarg & N_KEY) != 0)
14918 key_el = i;
14919 }
14920 va_end (ap);
14921
14922 if (inst.vectype.elems > 0)
14923 for (i = 0; i < els; i++)
14924 if (inst.operands[i].vectype.type != NT_invtype)
14925 {
14926 first_error (_("types specified in both the mnemonic and operands"));
14927 return badtype;
14928 }
14929
14930 /* Duplicate inst.vectype elements here as necessary.
14931 FIXME: No idea if this is exactly the same as the ARM assembler,
14932 particularly when an insn takes one register and one non-register
14933 operand. */
14934 if (inst.vectype.elems == 1 && els > 1)
14935 {
14936 unsigned j;
14937 inst.vectype.elems = els;
14938 inst.vectype.el[key_el] = inst.vectype.el[0];
14939 for (j = 0; j < els; j++)
14940 if (j != key_el)
14941 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14942 types[j]);
14943 }
14944 else if (inst.vectype.elems == 0 && els > 0)
14945 {
14946 unsigned j;
14947 /* No types were given after the mnemonic, so look for types specified
14948 after each operand. We allow some flexibility here; as long as the
14949 "key" operand has a type, we can infer the others. */
14950 for (j = 0; j < els; j++)
14951 if (inst.operands[j].vectype.type != NT_invtype)
14952 inst.vectype.el[j] = inst.operands[j].vectype;
14953
14954 if (inst.operands[key_el].vectype.type != NT_invtype)
14955 {
14956 for (j = 0; j < els; j++)
14957 if (inst.operands[j].vectype.type == NT_invtype)
14958 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14959 types[j]);
14960 }
14961 else
14962 {
14963 first_error (_("operand types can't be inferred"));
14964 return badtype;
14965 }
14966 }
14967 else if (inst.vectype.elems != els)
14968 {
14969 first_error (_("type specifier has the wrong number of parts"));
14970 return badtype;
14971 }
14972
14973 for (pass = 0; pass < 2; pass++)
14974 {
14975 for (i = 0; i < els; i++)
14976 {
14977 unsigned thisarg = types[i];
14978 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14979 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14980 enum neon_el_type g_type = inst.vectype.el[i].type;
14981 unsigned g_size = inst.vectype.el[i].size;
14982
14983 /* Decay more-specific signed & unsigned types to sign-insensitive
14984 integer types if sign-specific variants are unavailable. */
14985 if ((g_type == NT_signed || g_type == NT_unsigned)
14986 && (types_allowed & N_SU_ALL) == 0)
14987 g_type = NT_integer;
14988
14989 /* If only untyped args are allowed, decay any more specific types to
14990 them. Some instructions only care about signs for some element
14991 sizes, so handle that properly. */
14992 if (((types_allowed & N_UNT) == 0)
14993 && ((g_size == 8 && (types_allowed & N_8) != 0)
14994 || (g_size == 16 && (types_allowed & N_16) != 0)
14995 || (g_size == 32 && (types_allowed & N_32) != 0)
14996 || (g_size == 64 && (types_allowed & N_64) != 0)))
14997 g_type = NT_untyped;
14998
14999 if (pass == 0)
15000 {
15001 if ((thisarg & N_KEY) != 0)
15002 {
15003 k_type = g_type;
15004 k_size = g_size;
15005 key_allowed = thisarg & ~N_KEY;
15006
15007 /* Check architecture constraint on FP16 extension. */
15008 if (k_size == 16
15009 && k_type == NT_float
15010 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15011 {
15012 inst.error = _(BAD_FP16);
15013 return badtype;
15014 }
15015 }
15016 }
15017 else
15018 {
15019 if ((thisarg & N_VFP) != 0)
15020 {
15021 enum neon_shape_el regshape;
15022 unsigned regwidth, match;
15023
15024 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15025 if (ns == NS_NULL)
15026 {
15027 first_error (_("invalid instruction shape"));
15028 return badtype;
15029 }
15030 regshape = neon_shape_tab[ns].el[i];
15031 regwidth = neon_shape_el_size[regshape];
15032
15033 /* In VFP mode, operands must match register widths. If we
15034 have a key operand, use its width, else use the width of
15035 the current operand. */
15036 if (k_size != -1u)
15037 match = k_size;
15038 else
15039 match = g_size;
15040
15041 /* FP16 will use a single precision register. */
15042 if (regwidth == 32 && match == 16)
15043 {
15044 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15045 match = regwidth;
15046 else
15047 {
15048 inst.error = _(BAD_FP16);
15049 return badtype;
15050 }
15051 }
15052
15053 if (regwidth != match)
15054 {
15055 first_error (_("operand size must match register width"));
15056 return badtype;
15057 }
15058 }
15059
15060 if ((thisarg & N_EQK) == 0)
15061 {
15062 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15063
15064 if ((given_type & types_allowed) == 0)
15065 {
15066 first_error (BAD_SIMD_TYPE);
15067 return badtype;
15068 }
15069 }
15070 else
15071 {
15072 enum neon_el_type mod_k_type = k_type;
15073 unsigned mod_k_size = k_size;
15074 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15075 if (g_type != mod_k_type || g_size != mod_k_size)
15076 {
15077 first_error (_("inconsistent types in Neon instruction"));
15078 return badtype;
15079 }
15080 }
15081 }
15082 }
15083 }
15084
15085 return inst.vectype.el[key_el];
15086 }
15087
15088 /* Neon-style VFP instruction forwarding. */
15089
15090 /* Thumb VFP instructions have 0xE in the condition field. */
15091
15092 static void
15093 do_vfp_cond_or_thumb (void)
15094 {
15095 inst.is_neon = 1;
15096
15097 if (thumb_mode)
15098 inst.instruction |= 0xe0000000;
15099 else
15100 inst.instruction |= inst.cond << 28;
15101 }
15102
15103 /* Look up and encode a simple mnemonic, for use as a helper function for the
15104 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15105 etc. It is assumed that operand parsing has already been done, and that the
15106 operands are in the form expected by the given opcode (this isn't necessarily
15107 the same as the form in which they were parsed, hence some massaging must
15108 take place before this function is called).
15109 Checks current arch version against that in the looked-up opcode. */
15110
15111 static void
15112 do_vfp_nsyn_opcode (const char *opname)
15113 {
15114 const struct asm_opcode *opcode;
15115
15116 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15117
15118 if (!opcode)
15119 abort ();
15120
15121 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15122 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15123 _(BAD_FPU));
15124
15125 inst.is_neon = 1;
15126
15127 if (thumb_mode)
15128 {
15129 inst.instruction = opcode->tvalue;
15130 opcode->tencode ();
15131 }
15132 else
15133 {
15134 inst.instruction = (inst.cond << 28) | opcode->avalue;
15135 opcode->aencode ();
15136 }
15137 }
15138
15139 static void
15140 do_vfp_nsyn_add_sub (enum neon_shape rs)
15141 {
15142 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15143
15144 if (rs == NS_FFF || rs == NS_HHH)
15145 {
15146 if (is_add)
15147 do_vfp_nsyn_opcode ("fadds");
15148 else
15149 do_vfp_nsyn_opcode ("fsubs");
15150
15151 /* ARMv8.2 fp16 instruction. */
15152 if (rs == NS_HHH)
15153 do_scalar_fp16_v82_encode ();
15154 }
15155 else
15156 {
15157 if (is_add)
15158 do_vfp_nsyn_opcode ("faddd");
15159 else
15160 do_vfp_nsyn_opcode ("fsubd");
15161 }
15162 }
15163
15164 /* Check operand types to see if this is a VFP instruction, and if so call
15165 PFN (). */
15166
15167 static int
15168 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15169 {
15170 enum neon_shape rs;
15171 struct neon_type_el et;
15172
15173 switch (args)
15174 {
15175 case 2:
15176 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15177 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15178 break;
15179
15180 case 3:
15181 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15182 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15183 N_F_ALL | N_KEY | N_VFP);
15184 break;
15185
15186 default:
15187 abort ();
15188 }
15189
15190 if (et.type != NT_invtype)
15191 {
15192 pfn (rs);
15193 return SUCCESS;
15194 }
15195
15196 inst.error = NULL;
15197 return FAIL;
15198 }
15199
15200 static void
15201 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15202 {
15203 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15204
15205 if (rs == NS_FFF || rs == NS_HHH)
15206 {
15207 if (is_mla)
15208 do_vfp_nsyn_opcode ("fmacs");
15209 else
15210 do_vfp_nsyn_opcode ("fnmacs");
15211
15212 /* ARMv8.2 fp16 instruction. */
15213 if (rs == NS_HHH)
15214 do_scalar_fp16_v82_encode ();
15215 }
15216 else
15217 {
15218 if (is_mla)
15219 do_vfp_nsyn_opcode ("fmacd");
15220 else
15221 do_vfp_nsyn_opcode ("fnmacd");
15222 }
15223 }
15224
15225 static void
15226 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15227 {
15228 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15229
15230 if (rs == NS_FFF || rs == NS_HHH)
15231 {
15232 if (is_fma)
15233 do_vfp_nsyn_opcode ("ffmas");
15234 else
15235 do_vfp_nsyn_opcode ("ffnmas");
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
15240 }
15241 else
15242 {
15243 if (is_fma)
15244 do_vfp_nsyn_opcode ("ffmad");
15245 else
15246 do_vfp_nsyn_opcode ("ffnmad");
15247 }
15248 }
15249
15250 static void
15251 do_vfp_nsyn_mul (enum neon_shape rs)
15252 {
15253 if (rs == NS_FFF || rs == NS_HHH)
15254 {
15255 do_vfp_nsyn_opcode ("fmuls");
15256
15257 /* ARMv8.2 fp16 instruction. */
15258 if (rs == NS_HHH)
15259 do_scalar_fp16_v82_encode ();
15260 }
15261 else
15262 do_vfp_nsyn_opcode ("fmuld");
15263 }
15264
15265 static void
15266 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15267 {
15268 int is_neg = (inst.instruction & 0x80) != 0;
15269 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15270
15271 if (rs == NS_FF || rs == NS_HH)
15272 {
15273 if (is_neg)
15274 do_vfp_nsyn_opcode ("fnegs");
15275 else
15276 do_vfp_nsyn_opcode ("fabss");
15277
15278 /* ARMv8.2 fp16 instruction. */
15279 if (rs == NS_HH)
15280 do_scalar_fp16_v82_encode ();
15281 }
15282 else
15283 {
15284 if (is_neg)
15285 do_vfp_nsyn_opcode ("fnegd");
15286 else
15287 do_vfp_nsyn_opcode ("fabsd");
15288 }
15289 }
15290
15291 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15292 insns belong to Neon, and are handled elsewhere. */
15293
15294 static void
15295 do_vfp_nsyn_ldm_stm (int is_dbmode)
15296 {
15297 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15298 if (is_ldm)
15299 {
15300 if (is_dbmode)
15301 do_vfp_nsyn_opcode ("fldmdbs");
15302 else
15303 do_vfp_nsyn_opcode ("fldmias");
15304 }
15305 else
15306 {
15307 if (is_dbmode)
15308 do_vfp_nsyn_opcode ("fstmdbs");
15309 else
15310 do_vfp_nsyn_opcode ("fstmias");
15311 }
15312 }
15313
15314 static void
15315 do_vfp_nsyn_sqrt (void)
15316 {
15317 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15318 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15319
15320 if (rs == NS_FF || rs == NS_HH)
15321 {
15322 do_vfp_nsyn_opcode ("fsqrts");
15323
15324 /* ARMv8.2 fp16 instruction. */
15325 if (rs == NS_HH)
15326 do_scalar_fp16_v82_encode ();
15327 }
15328 else
15329 do_vfp_nsyn_opcode ("fsqrtd");
15330 }
15331
15332 static void
15333 do_vfp_nsyn_div (void)
15334 {
15335 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15336 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15337 N_F_ALL | N_KEY | N_VFP);
15338
15339 if (rs == NS_FFF || rs == NS_HHH)
15340 {
15341 do_vfp_nsyn_opcode ("fdivs");
15342
15343 /* ARMv8.2 fp16 instruction. */
15344 if (rs == NS_HHH)
15345 do_scalar_fp16_v82_encode ();
15346 }
15347 else
15348 do_vfp_nsyn_opcode ("fdivd");
15349 }
15350
15351 static void
15352 do_vfp_nsyn_nmul (void)
15353 {
15354 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15355 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15356 N_F_ALL | N_KEY | N_VFP);
15357
15358 if (rs == NS_FFF || rs == NS_HHH)
15359 {
15360 NEON_ENCODE (SINGLE, inst);
15361 do_vfp_sp_dyadic ();
15362
15363 /* ARMv8.2 fp16 instruction. */
15364 if (rs == NS_HHH)
15365 do_scalar_fp16_v82_encode ();
15366 }
15367 else
15368 {
15369 NEON_ENCODE (DOUBLE, inst);
15370 do_vfp_dp_rd_rn_rm ();
15371 }
15372 do_vfp_cond_or_thumb ();
15373
15374 }
15375
15376 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15377 (0, 1, 2, 3). */
15378
15379 static unsigned
15380 neon_logbits (unsigned x)
15381 {
15382 return ffs (x) - 4;
15383 }
15384
15385 #define LOW4(R) ((R) & 0xf)
15386 #define HI1(R) (((R) >> 4) & 1)
15387
15388 static unsigned
15389 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15390 {
15391 switch (et.type)
15392 {
15393 default:
15394 first_error (BAD_EL_TYPE);
15395 return 0;
15396 case NT_float:
15397 switch (inst.operands[0].imm)
15398 {
15399 default:
15400 first_error (_("invalid condition"));
15401 return 0;
15402 case 0x0:
15403 /* eq. */
15404 return 0;
15405 case 0x1:
15406 /* ne. */
15407 return 1;
15408 case 0xa:
15409 /* ge/ */
15410 return 4;
15411 case 0xb:
15412 /* lt. */
15413 return 5;
15414 case 0xc:
15415 /* gt. */
15416 return 6;
15417 case 0xd:
15418 /* le. */
15419 return 7;
15420 }
15421 case NT_integer:
15422 /* only accept eq and ne. */
15423 if (inst.operands[0].imm > 1)
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 return inst.operands[0].imm;
15429 case NT_unsigned:
15430 if (inst.operands[0].imm == 0x2)
15431 return 2;
15432 else if (inst.operands[0].imm == 0x8)
15433 return 3;
15434 else
15435 {
15436 first_error (_("invalid condition"));
15437 return 0;
15438 }
15439 case NT_signed:
15440 switch (inst.operands[0].imm)
15441 {
15442 default:
15443 first_error (_("invalid condition"));
15444 return 0;
15445 case 0xa:
15446 /* ge. */
15447 return 4;
15448 case 0xb:
15449 /* lt. */
15450 return 5;
15451 case 0xc:
15452 /* gt. */
15453 return 6;
15454 case 0xd:
15455 /* le. */
15456 return 7;
15457 }
15458 }
15459 /* Should be unreachable. */
15460 abort ();
15461 }
15462
15463 static void
15464 do_mve_vpt (void)
15465 {
15466 /* We are dealing with a vector predicated block. */
15467 if (inst.operands[0].present)
15468 {
15469 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15470 struct neon_type_el et
15471 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15472 N_EQK);
15473
15474 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15475
15476 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15477
15478 if (et.type == NT_invtype)
15479 return;
15480
15481 if (et.type == NT_float)
15482 {
15483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15484 BAD_FPU);
15485 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15486 inst.instruction |= (et.size == 16) << 28;
15487 inst.instruction |= 0x3 << 20;
15488 }
15489 else
15490 {
15491 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15492 BAD_EL_TYPE);
15493 inst.instruction |= 1 << 28;
15494 inst.instruction |= neon_logbits (et.size) << 20;
15495 }
15496
15497 if (inst.operands[2].isquad)
15498 {
15499 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15500 inst.instruction |= LOW4 (inst.operands[2].reg);
15501 inst.instruction |= (fcond & 0x2) >> 1;
15502 }
15503 else
15504 {
15505 if (inst.operands[2].reg == REG_SP)
15506 as_tsktsk (MVE_BAD_SP);
15507 inst.instruction |= 1 << 6;
15508 inst.instruction |= (fcond & 0x2) << 4;
15509 inst.instruction |= inst.operands[2].reg;
15510 }
15511 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15512 inst.instruction |= (fcond & 0x4) << 10;
15513 inst.instruction |= (fcond & 0x1) << 7;
15514
15515 }
15516 set_pred_insn_type (VPT_INSN);
15517 now_pred.cc = 0;
15518 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15519 | ((inst.instruction & 0xe000) >> 13);
15520 now_pred.warn_deprecated = FALSE;
15521 now_pred.type = VECTOR_PRED;
15522 inst.is_neon = 1;
15523 }
15524
15525 static void
15526 do_mve_vcmp (void)
15527 {
15528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15529 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15530 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15531 if (!inst.operands[2].present)
15532 first_error (_("MVE vector or ARM register expected"));
15533 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15534
15535 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15536 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15537 && inst.operands[1].isquad)
15538 {
15539 inst.instruction = N_MNEM_vcmp;
15540 inst.cond = 0x10;
15541 }
15542
15543 if (inst.cond > COND_ALWAYS)
15544 inst.pred_insn_type = INSIDE_VPT_INSN;
15545 else
15546 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15547
15548 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15549 struct neon_type_el et
15550 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15551 N_EQK);
15552
15553 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15554 && !inst.operands[2].iszr, BAD_PC);
15555
15556 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15557
15558 inst.instruction = 0xee010f00;
15559 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15560 inst.instruction |= (fcond & 0x4) << 10;
15561 inst.instruction |= (fcond & 0x1) << 7;
15562 if (et.type == NT_float)
15563 {
15564 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15565 BAD_FPU);
15566 inst.instruction |= (et.size == 16) << 28;
15567 inst.instruction |= 0x3 << 20;
15568 }
15569 else
15570 {
15571 inst.instruction |= 1 << 28;
15572 inst.instruction |= neon_logbits (et.size) << 20;
15573 }
15574 if (inst.operands[2].isquad)
15575 {
15576 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15577 inst.instruction |= (fcond & 0x2) >> 1;
15578 inst.instruction |= LOW4 (inst.operands[2].reg);
15579 }
15580 else
15581 {
15582 if (inst.operands[2].reg == REG_SP)
15583 as_tsktsk (MVE_BAD_SP);
15584 inst.instruction |= 1 << 6;
15585 inst.instruction |= (fcond & 0x2) << 4;
15586 inst.instruction |= inst.operands[2].reg;
15587 }
15588
15589 inst.is_neon = 1;
15590 return;
15591 }
15592
15593 static void
15594 do_mve_vfmas (void)
15595 {
15596 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15597 struct neon_type_el et
15598 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15599
15600 if (inst.cond > COND_ALWAYS)
15601 inst.pred_insn_type = INSIDE_VPT_INSN;
15602 else
15603 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15604
15605 if (inst.operands[2].reg == REG_SP)
15606 as_tsktsk (MVE_BAD_SP);
15607 else if (inst.operands[2].reg == REG_PC)
15608 as_tsktsk (MVE_BAD_PC);
15609
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15612 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15613 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15614 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15615 inst.instruction |= inst.operands[2].reg;
15616 inst.is_neon = 1;
15617 }
15618
15619 static void
15620 do_mve_viddup (void)
15621 {
15622 if (inst.cond > COND_ALWAYS)
15623 inst.pred_insn_type = INSIDE_VPT_INSN;
15624 else
15625 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15626
15627 unsigned imm = inst.relocs[0].exp.X_add_number;
15628 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15629 _("immediate must be either 1, 2, 4 or 8"));
15630
15631 enum neon_shape rs;
15632 struct neon_type_el et;
15633 unsigned Rm;
15634 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15635 {
15636 rs = neon_select_shape (NS_QRI, NS_NULL);
15637 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15638 Rm = 7;
15639 }
15640 else
15641 {
15642 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15643 if (inst.operands[2].reg == REG_SP)
15644 as_tsktsk (MVE_BAD_SP);
15645 else if (inst.operands[2].reg == REG_PC)
15646 first_error (BAD_PC);
15647
15648 rs = neon_select_shape (NS_QRRI, NS_NULL);
15649 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15650 Rm = inst.operands[2].reg >> 1;
15651 }
15652 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15653 inst.instruction |= neon_logbits (et.size) << 20;
15654 inst.instruction |= inst.operands[1].reg << 16;
15655 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15656 inst.instruction |= (imm > 2) << 7;
15657 inst.instruction |= Rm << 1;
15658 inst.instruction |= (imm == 2 || imm == 8);
15659 inst.is_neon = 1;
15660 }
15661
15662 static void
15663 do_mve_vcmul (void)
15664 {
15665 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15666 struct neon_type_el et
15667 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15668
15669 if (inst.cond > COND_ALWAYS)
15670 inst.pred_insn_type = INSIDE_VPT_INSN;
15671 else
15672 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15673
15674 unsigned rot = inst.relocs[0].exp.X_add_number;
15675 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15676 _("immediate out of range"));
15677
15678 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15679 || inst.operands[0].reg == inst.operands[2].reg))
15680 as_tsktsk (BAD_MVE_SRCDEST);
15681
15682 inst.instruction |= (et.size == 32) << 28;
15683 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15684 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15685 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15686 inst.instruction |= (rot > 90) << 12;
15687 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15688 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15689 inst.instruction |= LOW4 (inst.operands[2].reg);
15690 inst.instruction |= (rot == 90 || rot == 270);
15691 inst.is_neon = 1;
15692 }
15693
15694 static void
15695 do_vfp_nsyn_cmp (void)
15696 {
15697 enum neon_shape rs;
15698 if (!inst.operands[0].isreg)
15699 {
15700 do_mve_vcmp ();
15701 return;
15702 }
15703 else
15704 {
15705 constraint (inst.operands[2].present, BAD_SYNTAX);
15706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15707 BAD_FPU);
15708 }
15709
15710 if (inst.operands[1].isreg)
15711 {
15712 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15713 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15714
15715 if (rs == NS_FF || rs == NS_HH)
15716 {
15717 NEON_ENCODE (SINGLE, inst);
15718 do_vfp_sp_monadic ();
15719 }
15720 else
15721 {
15722 NEON_ENCODE (DOUBLE, inst);
15723 do_vfp_dp_rd_rm ();
15724 }
15725 }
15726 else
15727 {
15728 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15729 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15730
15731 switch (inst.instruction & 0x0fffffff)
15732 {
15733 case N_MNEM_vcmp:
15734 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15735 break;
15736 case N_MNEM_vcmpe:
15737 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15738 break;
15739 default:
15740 abort ();
15741 }
15742
15743 if (rs == NS_FI || rs == NS_HI)
15744 {
15745 NEON_ENCODE (SINGLE, inst);
15746 do_vfp_sp_compare_z ();
15747 }
15748 else
15749 {
15750 NEON_ENCODE (DOUBLE, inst);
15751 do_vfp_dp_rd ();
15752 }
15753 }
15754 do_vfp_cond_or_thumb ();
15755
15756 /* ARMv8.2 fp16 instruction. */
15757 if (rs == NS_HI || rs == NS_HH)
15758 do_scalar_fp16_v82_encode ();
15759 }
15760
15761 static void
15762 nsyn_insert_sp (void)
15763 {
15764 inst.operands[1] = inst.operands[0];
15765 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15766 inst.operands[0].reg = REG_SP;
15767 inst.operands[0].isreg = 1;
15768 inst.operands[0].writeback = 1;
15769 inst.operands[0].present = 1;
15770 }
15771
15772 static void
15773 do_vfp_nsyn_push (void)
15774 {
15775 nsyn_insert_sp ();
15776
15777 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15778 _("register list must contain at least 1 and at most 16 "
15779 "registers"));
15780
15781 if (inst.operands[1].issingle)
15782 do_vfp_nsyn_opcode ("fstmdbs");
15783 else
15784 do_vfp_nsyn_opcode ("fstmdbd");
15785 }
15786
15787 static void
15788 do_vfp_nsyn_pop (void)
15789 {
15790 nsyn_insert_sp ();
15791
15792 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15793 _("register list must contain at least 1 and at most 16 "
15794 "registers"));
15795
15796 if (inst.operands[1].issingle)
15797 do_vfp_nsyn_opcode ("fldmias");
15798 else
15799 do_vfp_nsyn_opcode ("fldmiad");
15800 }
15801
15802 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15803 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15804
15805 static void
15806 neon_dp_fixup (struct arm_it* insn)
15807 {
15808 unsigned int i = insn->instruction;
15809 insn->is_neon = 1;
15810
15811 if (thumb_mode)
15812 {
15813 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15814 if (i & (1 << 24))
15815 i |= 1 << 28;
15816
15817 i &= ~(1 << 24);
15818
15819 i |= 0xef000000;
15820 }
15821 else
15822 i |= 0xf2000000;
15823
15824 insn->instruction = i;
15825 }
15826
15827 static void
15828 mve_encode_qqr (int size, int U, int fp)
15829 {
15830 if (inst.operands[2].reg == REG_SP)
15831 as_tsktsk (MVE_BAD_SP);
15832 else if (inst.operands[2].reg == REG_PC)
15833 as_tsktsk (MVE_BAD_PC);
15834
15835 if (fp)
15836 {
15837 /* vadd. */
15838 if (((unsigned)inst.instruction) == 0xd00)
15839 inst.instruction = 0xee300f40;
15840 /* vsub. */
15841 else if (((unsigned)inst.instruction) == 0x200d00)
15842 inst.instruction = 0xee301f40;
15843
15844 /* Setting size which is 1 for F16 and 0 for F32. */
15845 inst.instruction |= (size == 16) << 28;
15846 }
15847 else
15848 {
15849 /* vadd. */
15850 if (((unsigned)inst.instruction) == 0x800)
15851 inst.instruction = 0xee010f40;
15852 /* vsub. */
15853 else if (((unsigned)inst.instruction) == 0x1000800)
15854 inst.instruction = 0xee011f40;
15855 /* vhadd. */
15856 else if (((unsigned)inst.instruction) == 0)
15857 inst.instruction = 0xee000f40;
15858 /* vhsub. */
15859 else if (((unsigned)inst.instruction) == 0x200)
15860 inst.instruction = 0xee001f40;
15861
15862 /* Set U-bit. */
15863 inst.instruction |= U << 28;
15864
15865 /* Setting bits for size. */
15866 inst.instruction |= neon_logbits (size) << 20;
15867 }
15868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15870 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15871 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15872 inst.instruction |= inst.operands[2].reg;
15873 inst.is_neon = 1;
15874 }
15875
15876 static void
15877 mve_encode_rqq (unsigned bit28, unsigned size)
15878 {
15879 inst.instruction |= bit28 << 28;
15880 inst.instruction |= neon_logbits (size) << 20;
15881 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15882 inst.instruction |= inst.operands[0].reg << 12;
15883 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15884 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15885 inst.instruction |= LOW4 (inst.operands[2].reg);
15886 inst.is_neon = 1;
15887 }
15888
15889 static void
15890 mve_encode_qqq (int ubit, int size)
15891 {
15892
15893 inst.instruction |= (ubit != 0) << 28;
15894 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15895 inst.instruction |= neon_logbits (size) << 20;
15896 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15898 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15899 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15900 inst.instruction |= LOW4 (inst.operands[2].reg);
15901
15902 inst.is_neon = 1;
15903 }
15904
15905 static void
15906 mve_encode_rq (unsigned bit28, unsigned size)
15907 {
15908 inst.instruction |= bit28 << 28;
15909 inst.instruction |= neon_logbits (size) << 18;
15910 inst.instruction |= inst.operands[0].reg << 12;
15911 inst.instruction |= LOW4 (inst.operands[1].reg);
15912 inst.is_neon = 1;
15913 }
15914
15915 /* Encode insns with bit pattern:
15916
15917 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15918 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15919
15920 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15921 different meaning for some instruction. */
15922
15923 static void
15924 neon_three_same (int isquad, int ubit, int size)
15925 {
15926 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15927 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15928 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15929 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15930 inst.instruction |= LOW4 (inst.operands[2].reg);
15931 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15932 inst.instruction |= (isquad != 0) << 6;
15933 inst.instruction |= (ubit != 0) << 24;
15934 if (size != -1)
15935 inst.instruction |= neon_logbits (size) << 20;
15936
15937 neon_dp_fixup (&inst);
15938 }
15939
15940 /* Encode instructions of the form:
15941
15942 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15943 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15944
15945 Don't write size if SIZE == -1. */
15946
15947 static void
15948 neon_two_same (int qbit, int ubit, int size)
15949 {
15950 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15951 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15952 inst.instruction |= LOW4 (inst.operands[1].reg);
15953 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15954 inst.instruction |= (qbit != 0) << 6;
15955 inst.instruction |= (ubit != 0) << 24;
15956
15957 if (size != -1)
15958 inst.instruction |= neon_logbits (size) << 18;
15959
15960 neon_dp_fixup (&inst);
15961 }
15962
15963 enum vfp_or_neon_is_neon_bits
15964 {
15965 NEON_CHECK_CC = 1,
15966 NEON_CHECK_ARCH = 2,
15967 NEON_CHECK_ARCH8 = 4
15968 };
15969
15970 /* Call this function if an instruction which may have belonged to the VFP or
15971 Neon instruction sets, but turned out to be a Neon instruction (due to the
15972 operand types involved, etc.). We have to check and/or fix-up a couple of
15973 things:
15974
15975 - Make sure the user hasn't attempted to make a Neon instruction
15976 conditional.
15977 - Alter the value in the condition code field if necessary.
15978 - Make sure that the arch supports Neon instructions.
15979
15980 Which of these operations take place depends on bits from enum
15981 vfp_or_neon_is_neon_bits.
15982
15983 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15984 current instruction's condition is COND_ALWAYS, the condition field is
15985 changed to inst.uncond_value. This is necessary because instructions shared
15986 between VFP and Neon may be conditional for the VFP variants only, and the
15987 unconditional Neon version must have, e.g., 0xF in the condition field. */
15988
15989 static int
15990 vfp_or_neon_is_neon (unsigned check)
15991 {
15992 /* Conditions are always legal in Thumb mode (IT blocks). */
15993 if (!thumb_mode && (check & NEON_CHECK_CC))
15994 {
15995 if (inst.cond != COND_ALWAYS)
15996 {
15997 first_error (_(BAD_COND));
15998 return FAIL;
15999 }
16000 if (inst.uncond_value != -1)
16001 inst.instruction |= inst.uncond_value << 28;
16002 }
16003
16004
16005 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16006 || ((check & NEON_CHECK_ARCH8)
16007 && !mark_feature_used (&fpu_neon_ext_armv8)))
16008 {
16009 first_error (_(BAD_FPU));
16010 return FAIL;
16011 }
16012
16013 return SUCCESS;
16014 }
16015
16016 static int
16017 check_simd_pred_availability (int fp, unsigned check)
16018 {
16019 if (inst.cond > COND_ALWAYS)
16020 {
16021 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16022 {
16023 inst.error = BAD_FPU;
16024 return 1;
16025 }
16026 inst.pred_insn_type = INSIDE_VPT_INSN;
16027 }
16028 else if (inst.cond < COND_ALWAYS)
16029 {
16030 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16031 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16032 else if (vfp_or_neon_is_neon (check) == FAIL)
16033 return 2;
16034 }
16035 else
16036 {
16037 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16038 && vfp_or_neon_is_neon (check) == FAIL)
16039 return 3;
16040
16041 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16042 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16043 }
16044 return 0;
16045 }
16046
16047 /* Neon instruction encoders, in approximate order of appearance. */
16048
16049 static void
16050 do_neon_dyadic_i_su (void)
16051 {
16052 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16053 return;
16054
16055 enum neon_shape rs;
16056 struct neon_type_el et;
16057 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16058 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16059 else
16060 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16061
16062 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16063
16064
16065 if (rs != NS_QQR)
16066 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16067 else
16068 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16069 }
16070
16071 static void
16072 do_neon_dyadic_i64_su (void)
16073 {
16074 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16075 struct neon_type_el et = neon_check_type (3, rs,
16076 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16077 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16078 }
16079
16080 static void
16081 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16082 unsigned immbits)
16083 {
16084 unsigned size = et.size >> 3;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16087 inst.instruction |= LOW4 (inst.operands[1].reg);
16088 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16089 inst.instruction |= (isquad != 0) << 6;
16090 inst.instruction |= immbits << 16;
16091 inst.instruction |= (size >> 3) << 7;
16092 inst.instruction |= (size & 0x7) << 19;
16093 if (write_ubit)
16094 inst.instruction |= (uval != 0) << 24;
16095
16096 neon_dp_fixup (&inst);
16097 }
16098
16099 static void
16100 do_neon_shl_imm (void)
16101 {
16102 if (!inst.operands[2].isreg)
16103 {
16104 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16105 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16106 int imm = inst.operands[2].imm;
16107
16108 constraint (imm < 0 || (unsigned)imm >= et.size,
16109 _("immediate out of range for shift"));
16110 NEON_ENCODE (IMMED, inst);
16111 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16112 }
16113 else
16114 {
16115 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16116 struct neon_type_el et = neon_check_type (3, rs,
16117 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16118 unsigned int tmp;
16119
16120 /* VSHL/VQSHL 3-register variants have syntax such as:
16121 vshl.xx Dd, Dm, Dn
16122 whereas other 3-register operations encoded by neon_three_same have
16123 syntax like:
16124 vadd.xx Dd, Dn, Dm
16125 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16126 here. */
16127 tmp = inst.operands[2].reg;
16128 inst.operands[2].reg = inst.operands[1].reg;
16129 inst.operands[1].reg = tmp;
16130 NEON_ENCODE (INTEGER, inst);
16131 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16132 }
16133 }
16134
16135 static void
16136 do_neon_qshl_imm (void)
16137 {
16138 if (!inst.operands[2].isreg)
16139 {
16140 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16141 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16142 int imm = inst.operands[2].imm;
16143
16144 constraint (imm < 0 || (unsigned)imm >= et.size,
16145 _("immediate out of range for shift"));
16146 NEON_ENCODE (IMMED, inst);
16147 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16148 }
16149 else
16150 {
16151 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16152 struct neon_type_el et = neon_check_type (3, rs,
16153 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16154 unsigned int tmp;
16155
16156 /* See note in do_neon_shl_imm. */
16157 tmp = inst.operands[2].reg;
16158 inst.operands[2].reg = inst.operands[1].reg;
16159 inst.operands[1].reg = tmp;
16160 NEON_ENCODE (INTEGER, inst);
16161 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16162 }
16163 }
16164
16165 static void
16166 do_neon_rshl (void)
16167 {
16168 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16169 struct neon_type_el et = neon_check_type (3, rs,
16170 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16171 unsigned int tmp;
16172
16173 tmp = inst.operands[2].reg;
16174 inst.operands[2].reg = inst.operands[1].reg;
16175 inst.operands[1].reg = tmp;
16176 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16177 }
16178
16179 static int
16180 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16181 {
16182 /* Handle .I8 pseudo-instructions. */
16183 if (size == 8)
16184 {
16185 /* Unfortunately, this will make everything apart from zero out-of-range.
16186 FIXME is this the intended semantics? There doesn't seem much point in
16187 accepting .I8 if so. */
16188 immediate |= immediate << 8;
16189 size = 16;
16190 }
16191
16192 if (size >= 32)
16193 {
16194 if (immediate == (immediate & 0x000000ff))
16195 {
16196 *immbits = immediate;
16197 return 0x1;
16198 }
16199 else if (immediate == (immediate & 0x0000ff00))
16200 {
16201 *immbits = immediate >> 8;
16202 return 0x3;
16203 }
16204 else if (immediate == (immediate & 0x00ff0000))
16205 {
16206 *immbits = immediate >> 16;
16207 return 0x5;
16208 }
16209 else if (immediate == (immediate & 0xff000000))
16210 {
16211 *immbits = immediate >> 24;
16212 return 0x7;
16213 }
16214 if ((immediate & 0xffff) != (immediate >> 16))
16215 goto bad_immediate;
16216 immediate &= 0xffff;
16217 }
16218
16219 if (immediate == (immediate & 0x000000ff))
16220 {
16221 *immbits = immediate;
16222 return 0x9;
16223 }
16224 else if (immediate == (immediate & 0x0000ff00))
16225 {
16226 *immbits = immediate >> 8;
16227 return 0xb;
16228 }
16229
16230 bad_immediate:
16231 first_error (_("immediate value out of range"));
16232 return FAIL;
16233 }
16234
16235 static void
16236 do_neon_logic (void)
16237 {
16238 if (inst.operands[2].present && inst.operands[2].isreg)
16239 {
16240 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16241 if (rs == NS_QQQ
16242 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16243 == FAIL)
16244 return;
16245 else if (rs != NS_QQQ
16246 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16247 first_error (BAD_FPU);
16248
16249 neon_check_type (3, rs, N_IGNORE_TYPE);
16250 /* U bit and size field were set as part of the bitmask. */
16251 NEON_ENCODE (INTEGER, inst);
16252 neon_three_same (neon_quad (rs), 0, -1);
16253 }
16254 else
16255 {
16256 const int three_ops_form = (inst.operands[2].present
16257 && !inst.operands[2].isreg);
16258 const int immoperand = (three_ops_form ? 2 : 1);
16259 enum neon_shape rs = (three_ops_form
16260 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16261 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16262 /* Because neon_select_shape makes the second operand a copy of the first
16263 if the second operand is not present. */
16264 if (rs == NS_QQI
16265 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16266 == FAIL)
16267 return;
16268 else if (rs != NS_QQI
16269 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16270 first_error (BAD_FPU);
16271
16272 struct neon_type_el et;
16273 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16274 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16275 else
16276 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16277 | N_KEY, N_EQK);
16278
16279 if (et.type == NT_invtype)
16280 return;
16281 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16282 unsigned immbits;
16283 int cmode;
16284
16285
16286 if (three_ops_form)
16287 constraint (inst.operands[0].reg != inst.operands[1].reg,
16288 _("first and second operands shall be the same register"));
16289
16290 NEON_ENCODE (IMMED, inst);
16291
16292 immbits = inst.operands[immoperand].imm;
16293 if (et.size == 64)
16294 {
16295 /* .i64 is a pseudo-op, so the immediate must be a repeating
16296 pattern. */
16297 if (immbits != (inst.operands[immoperand].regisimm ?
16298 inst.operands[immoperand].reg : 0))
16299 {
16300 /* Set immbits to an invalid constant. */
16301 immbits = 0xdeadbeef;
16302 }
16303 }
16304
16305 switch (opcode)
16306 {
16307 case N_MNEM_vbic:
16308 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16309 break;
16310
16311 case N_MNEM_vorr:
16312 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16313 break;
16314
16315 case N_MNEM_vand:
16316 /* Pseudo-instruction for VBIC. */
16317 neon_invert_size (&immbits, 0, et.size);
16318 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16319 break;
16320
16321 case N_MNEM_vorn:
16322 /* Pseudo-instruction for VORR. */
16323 neon_invert_size (&immbits, 0, et.size);
16324 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16325 break;
16326
16327 default:
16328 abort ();
16329 }
16330
16331 if (cmode == FAIL)
16332 return;
16333
16334 inst.instruction |= neon_quad (rs) << 6;
16335 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16336 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16337 inst.instruction |= cmode << 8;
16338 neon_write_immbits (immbits);
16339
16340 neon_dp_fixup (&inst);
16341 }
16342 }
16343
16344 static void
16345 do_neon_bitfield (void)
16346 {
16347 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16348 neon_check_type (3, rs, N_IGNORE_TYPE);
16349 neon_three_same (neon_quad (rs), 0, -1);
16350 }
16351
16352 static void
16353 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16354 unsigned destbits)
16355 {
16356 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16357 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16358 types | N_KEY);
16359 if (et.type == NT_float)
16360 {
16361 NEON_ENCODE (FLOAT, inst);
16362 if (rs == NS_QQR)
16363 mve_encode_qqr (et.size, 0, 1);
16364 else
16365 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16366 }
16367 else
16368 {
16369 NEON_ENCODE (INTEGER, inst);
16370 if (rs == NS_QQR)
16371 mve_encode_qqr (et.size, 0, 0);
16372 else
16373 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16374 }
16375 }
16376
16377
16378 static void
16379 do_neon_dyadic_if_su_d (void)
16380 {
16381 /* This version only allow D registers, but that constraint is enforced during
16382 operand parsing so we don't need to do anything extra here. */
16383 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16384 }
16385
16386 static void
16387 do_neon_dyadic_if_i_d (void)
16388 {
16389 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16390 affected if we specify unsigned args. */
16391 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16392 }
16393
16394 static void
16395 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16396 {
16397 constraint (size < 32, BAD_ADDR_MODE);
16398 constraint (size != elsize, BAD_EL_TYPE);
16399 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16400 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16401 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16402 _("destination register and offset register may not be the"
16403 " same"));
16404
16405 int imm = inst.relocs[0].exp.X_add_number;
16406 int add = 1;
16407 if (imm < 0)
16408 {
16409 add = 0;
16410 imm = -imm;
16411 }
16412 constraint ((imm % (size / 8) != 0)
16413 || imm > (0x7f << neon_logbits (size)),
16414 (size == 32) ? _("immediate must be a multiple of 4 in the"
16415 " range of +/-[0,508]")
16416 : _("immediate must be a multiple of 8 in the"
16417 " range of +/-[0,1016]"));
16418 inst.instruction |= 0x11 << 24;
16419 inst.instruction |= add << 23;
16420 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16421 inst.instruction |= inst.operands[1].writeback << 21;
16422 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16424 inst.instruction |= 1 << 12;
16425 inst.instruction |= (size == 64) << 8;
16426 inst.instruction &= 0xffffff00;
16427 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16428 inst.instruction |= imm >> neon_logbits (size);
16429 }
16430
16431 static void
16432 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16433 {
16434 unsigned os = inst.operands[1].imm >> 5;
16435 constraint (os != 0 && size == 8,
16436 _("can not shift offsets when accessing less than half-word"));
16437 constraint (os && os != neon_logbits (size),
16438 _("shift immediate must be 1, 2 or 3 for half-word, word"
16439 " or double-word accesses respectively"));
16440 if (inst.operands[1].reg == REG_PC)
16441 as_tsktsk (MVE_BAD_PC);
16442
16443 switch (size)
16444 {
16445 case 8:
16446 constraint (elsize >= 64, BAD_EL_TYPE);
16447 break;
16448 case 16:
16449 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16450 break;
16451 case 32:
16452 case 64:
16453 constraint (elsize != size, BAD_EL_TYPE);
16454 break;
16455 default:
16456 break;
16457 }
16458 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16459 BAD_ADDR_MODE);
16460 if (load)
16461 {
16462 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16463 _("destination register and offset register may not be"
16464 " the same"));
16465 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16466 BAD_EL_TYPE);
16467 constraint (inst.vectype.el[0].type != NT_unsigned
16468 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16469 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16470 }
16471 else
16472 {
16473 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16474 }
16475
16476 inst.instruction |= 1 << 23;
16477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16478 inst.instruction |= inst.operands[1].reg << 16;
16479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16480 inst.instruction |= neon_logbits (elsize) << 7;
16481 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16482 inst.instruction |= LOW4 (inst.operands[1].imm);
16483 inst.instruction |= !!os;
16484 }
16485
16486 static void
16487 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16488 {
16489 enum neon_el_type type = inst.vectype.el[0].type;
16490
16491 constraint (size >= 64, BAD_ADDR_MODE);
16492 switch (size)
16493 {
16494 case 16:
16495 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16496 break;
16497 case 32:
16498 constraint (elsize != size, BAD_EL_TYPE);
16499 break;
16500 default:
16501 break;
16502 }
16503 if (load)
16504 {
16505 constraint (elsize != size && type != NT_unsigned
16506 && type != NT_signed, BAD_EL_TYPE);
16507 }
16508 else
16509 {
16510 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16511 }
16512
16513 int imm = inst.relocs[0].exp.X_add_number;
16514 int add = 1;
16515 if (imm < 0)
16516 {
16517 add = 0;
16518 imm = -imm;
16519 }
16520
16521 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16522 {
16523 switch (size)
16524 {
16525 case 8:
16526 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16527 break;
16528 case 16:
16529 constraint (1, _("immediate must be a multiple of 2 in the"
16530 " range of +/-[0,254]"));
16531 break;
16532 case 32:
16533 constraint (1, _("immediate must be a multiple of 4 in the"
16534 " range of +/-[0,508]"));
16535 break;
16536 }
16537 }
16538
16539 if (size != elsize)
16540 {
16541 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16542 constraint (inst.operands[0].reg > 14,
16543 _("MVE vector register in the range [Q0..Q7] expected"));
16544 inst.instruction |= (load && type == NT_unsigned) << 28;
16545 inst.instruction |= (size == 16) << 19;
16546 inst.instruction |= neon_logbits (elsize) << 7;
16547 }
16548 else
16549 {
16550 if (inst.operands[1].reg == REG_PC)
16551 as_tsktsk (MVE_BAD_PC);
16552 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16553 as_tsktsk (MVE_BAD_SP);
16554 inst.instruction |= 1 << 12;
16555 inst.instruction |= neon_logbits (size) << 7;
16556 }
16557 inst.instruction |= inst.operands[1].preind << 24;
16558 inst.instruction |= add << 23;
16559 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16560 inst.instruction |= inst.operands[1].writeback << 21;
16561 inst.instruction |= inst.operands[1].reg << 16;
16562 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16563 inst.instruction &= 0xffffff80;
16564 inst.instruction |= imm >> neon_logbits (size);
16565
16566 }
16567
16568 static void
16569 do_mve_vstr_vldr (void)
16570 {
16571 unsigned size;
16572 int load = 0;
16573
16574 if (inst.cond > COND_ALWAYS)
16575 inst.pred_insn_type = INSIDE_VPT_INSN;
16576 else
16577 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16578
16579 switch (inst.instruction)
16580 {
16581 default:
16582 gas_assert (0);
16583 break;
16584 case M_MNEM_vldrb:
16585 load = 1;
16586 /* fall through. */
16587 case M_MNEM_vstrb:
16588 size = 8;
16589 break;
16590 case M_MNEM_vldrh:
16591 load = 1;
16592 /* fall through. */
16593 case M_MNEM_vstrh:
16594 size = 16;
16595 break;
16596 case M_MNEM_vldrw:
16597 load = 1;
16598 /* fall through. */
16599 case M_MNEM_vstrw:
16600 size = 32;
16601 break;
16602 case M_MNEM_vldrd:
16603 load = 1;
16604 /* fall through. */
16605 case M_MNEM_vstrd:
16606 size = 64;
16607 break;
16608 }
16609 unsigned elsize = inst.vectype.el[0].size;
16610
16611 if (inst.operands[1].isquad)
16612 {
16613 /* We are dealing with [Q, imm]{!} cases. */
16614 do_mve_vstr_vldr_QI (size, elsize, load);
16615 }
16616 else
16617 {
16618 if (inst.operands[1].immisreg == 2)
16619 {
16620 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16621 do_mve_vstr_vldr_RQ (size, elsize, load);
16622 }
16623 else if (!inst.operands[1].immisreg)
16624 {
16625 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16626 do_mve_vstr_vldr_RI (size, elsize, load);
16627 }
16628 else
16629 constraint (1, BAD_ADDR_MODE);
16630 }
16631
16632 inst.is_neon = 1;
16633 }
16634
16635 static void
16636 do_mve_vst_vld (void)
16637 {
16638 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16639 return;
16640
16641 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16642 || inst.relocs[0].exp.X_add_number != 0
16643 || inst.operands[1].immisreg != 0,
16644 BAD_ADDR_MODE);
16645 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16646 if (inst.operands[1].reg == REG_PC)
16647 as_tsktsk (MVE_BAD_PC);
16648 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16649 as_tsktsk (MVE_BAD_SP);
16650
16651
16652 /* These instructions are one of the "exceptions" mentioned in
16653 handle_pred_state. They are MVE instructions that are not VPT compatible
16654 and do not accept a VPT code, thus appending such a code is a syntax
16655 error. */
16656 if (inst.cond > COND_ALWAYS)
16657 first_error (BAD_SYNTAX);
16658 /* If we append a scalar condition code we can set this to
16659 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16660 else if (inst.cond < COND_ALWAYS)
16661 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16662 else
16663 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16664
16665 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16666 inst.instruction |= inst.operands[1].writeback << 21;
16667 inst.instruction |= inst.operands[1].reg << 16;
16668 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16669 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16670 inst.is_neon = 1;
16671 }
16672
16673 static void
16674 do_mve_vaddlv (void)
16675 {
16676 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16677 struct neon_type_el et
16678 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16679
16680 if (et.type == NT_invtype)
16681 first_error (BAD_EL_TYPE);
16682
16683 if (inst.cond > COND_ALWAYS)
16684 inst.pred_insn_type = INSIDE_VPT_INSN;
16685 else
16686 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16687
16688 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16689
16690 inst.instruction |= (et.type == NT_unsigned) << 28;
16691 inst.instruction |= inst.operands[1].reg << 19;
16692 inst.instruction |= inst.operands[0].reg << 12;
16693 inst.instruction |= inst.operands[2].reg;
16694 inst.is_neon = 1;
16695 }
16696
16697 static void
16698 do_neon_dyadic_if_su (void)
16699 {
16700 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16701 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16702 N_SUF_32 | N_KEY);
16703
16704 if (check_simd_pred_availability (et.type == NT_float,
16705 NEON_CHECK_ARCH | NEON_CHECK_CC))
16706 return;
16707
16708 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16709 }
16710
16711 static void
16712 do_neon_addsub_if_i (void)
16713 {
16714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16715 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16716 return;
16717
16718 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16719 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16720 N_EQK, N_IF_32 | N_I64 | N_KEY);
16721
16722 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16723 /* If we are parsing Q registers and the element types match MVE, which NEON
16724 also supports, then we must check whether this is an instruction that can
16725 be used by both MVE/NEON. This distinction can be made based on whether
16726 they are predicated or not. */
16727 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16728 {
16729 if (check_simd_pred_availability (et.type == NT_float,
16730 NEON_CHECK_ARCH | NEON_CHECK_CC))
16731 return;
16732 }
16733 else
16734 {
16735 /* If they are either in a D register or are using an unsupported. */
16736 if (rs != NS_QQR
16737 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16738 return;
16739 }
16740
16741 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16742 affected if we specify unsigned args. */
16743 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16744 }
16745
16746 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16747 result to be:
16748 V<op> A,B (A is operand 0, B is operand 2)
16749 to mean:
16750 V<op> A,B,A
16751 not:
16752 V<op> A,B,B
16753 so handle that case specially. */
16754
16755 static void
16756 neon_exchange_operands (void)
16757 {
16758 if (inst.operands[1].present)
16759 {
16760 void *scratch = xmalloc (sizeof (inst.operands[0]));
16761
16762 /* Swap operands[1] and operands[2]. */
16763 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16764 inst.operands[1] = inst.operands[2];
16765 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16766 free (scratch);
16767 }
16768 else
16769 {
16770 inst.operands[1] = inst.operands[2];
16771 inst.operands[2] = inst.operands[0];
16772 }
16773 }
16774
16775 static void
16776 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16777 {
16778 if (inst.operands[2].isreg)
16779 {
16780 if (invert)
16781 neon_exchange_operands ();
16782 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16783 }
16784 else
16785 {
16786 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16787 struct neon_type_el et = neon_check_type (2, rs,
16788 N_EQK | N_SIZ, immtypes | N_KEY);
16789
16790 NEON_ENCODE (IMMED, inst);
16791 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16792 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16793 inst.instruction |= LOW4 (inst.operands[1].reg);
16794 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16795 inst.instruction |= neon_quad (rs) << 6;
16796 inst.instruction |= (et.type == NT_float) << 10;
16797 inst.instruction |= neon_logbits (et.size) << 18;
16798
16799 neon_dp_fixup (&inst);
16800 }
16801 }
16802
16803 static void
16804 do_neon_cmp (void)
16805 {
16806 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16807 }
16808
16809 static void
16810 do_neon_cmp_inv (void)
16811 {
16812 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16813 }
16814
16815 static void
16816 do_neon_ceq (void)
16817 {
16818 neon_compare (N_IF_32, N_IF_32, FALSE);
16819 }
16820
16821 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16822 scalars, which are encoded in 5 bits, M : Rm.
16823 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16824 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16825 index in M.
16826
16827 Dot Product instructions are similar to multiply instructions except elsize
16828 should always be 32.
16829
16830 This function translates SCALAR, which is GAS's internal encoding of indexed
16831 scalar register, to raw encoding. There is also register and index range
16832 check based on ELSIZE. */
16833
16834 static unsigned
16835 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16836 {
16837 unsigned regno = NEON_SCALAR_REG (scalar);
16838 unsigned elno = NEON_SCALAR_INDEX (scalar);
16839
16840 switch (elsize)
16841 {
16842 case 16:
16843 if (regno > 7 || elno > 3)
16844 goto bad_scalar;
16845 return regno | (elno << 3);
16846
16847 case 32:
16848 if (regno > 15 || elno > 1)
16849 goto bad_scalar;
16850 return regno | (elno << 4);
16851
16852 default:
16853 bad_scalar:
16854 first_error (_("scalar out of range for multiply instruction"));
16855 }
16856
16857 return 0;
16858 }
16859
16860 /* Encode multiply / multiply-accumulate scalar instructions. */
16861
16862 static void
16863 neon_mul_mac (struct neon_type_el et, int ubit)
16864 {
16865 unsigned scalar;
16866
16867 /* Give a more helpful error message if we have an invalid type. */
16868 if (et.type == NT_invtype)
16869 return;
16870
16871 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16872 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16873 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16874 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16875 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16876 inst.instruction |= LOW4 (scalar);
16877 inst.instruction |= HI1 (scalar) << 5;
16878 inst.instruction |= (et.type == NT_float) << 8;
16879 inst.instruction |= neon_logbits (et.size) << 20;
16880 inst.instruction |= (ubit != 0) << 24;
16881
16882 neon_dp_fixup (&inst);
16883 }
16884
16885 static void
16886 do_neon_mac_maybe_scalar (void)
16887 {
16888 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16889 return;
16890
16891 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16892 return;
16893
16894 if (inst.operands[2].isscalar)
16895 {
16896 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16897 struct neon_type_el et = neon_check_type (3, rs,
16898 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16899 NEON_ENCODE (SCALAR, inst);
16900 neon_mul_mac (et, neon_quad (rs));
16901 }
16902 else
16903 {
16904 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16905 affected if we specify unsigned args. */
16906 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16907 }
16908 }
16909
16910 static void
16911 do_neon_fmac (void)
16912 {
16913 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
16914 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16915 return;
16916
16917 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
16918 return;
16919
16920 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
16921 {
16922 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16923 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
16924 N_EQK);
16925
16926 if (rs == NS_QQR)
16927 {
16928 if (inst.operands[2].reg == REG_SP)
16929 as_tsktsk (MVE_BAD_SP);
16930 else if (inst.operands[2].reg == REG_PC)
16931 as_tsktsk (MVE_BAD_PC);
16932
16933 inst.instruction = 0xee310e40;
16934 inst.instruction |= (et.size == 16) << 28;
16935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16936 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16938 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
16939 inst.instruction |= inst.operands[2].reg;
16940 inst.is_neon = 1;
16941 return;
16942 }
16943 }
16944 else
16945 {
16946 constraint (!inst.operands[2].isvec, BAD_FPU);
16947 }
16948
16949 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16950 }
16951
16952 static void
16953 do_neon_tst (void)
16954 {
16955 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16956 struct neon_type_el et = neon_check_type (3, rs,
16957 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16958 neon_three_same (neon_quad (rs), 0, et.size);
16959 }
16960
16961 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16962 same types as the MAC equivalents. The polynomial type for this instruction
16963 is encoded the same as the integer type. */
16964
16965 static void
16966 do_neon_mul (void)
16967 {
16968 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16969 return;
16970
16971 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16972 return;
16973
16974 if (inst.operands[2].isscalar)
16975 do_neon_mac_maybe_scalar ();
16976 else
16977 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
16978 }
16979
16980 static void
16981 do_neon_qdmulh (void)
16982 {
16983 if (inst.operands[2].isscalar)
16984 {
16985 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16986 struct neon_type_el et = neon_check_type (3, rs,
16987 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16988 NEON_ENCODE (SCALAR, inst);
16989 neon_mul_mac (et, neon_quad (rs));
16990 }
16991 else
16992 {
16993 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16994 struct neon_type_el et = neon_check_type (3, rs,
16995 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16996 NEON_ENCODE (INTEGER, inst);
16997 /* The U bit (rounding) comes from bit mask. */
16998 neon_three_same (neon_quad (rs), 0, et.size);
16999 }
17000 }
17001
17002 static void
17003 do_mve_vaddv (void)
17004 {
17005 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17006 struct neon_type_el et
17007 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17008
17009 if (et.type == NT_invtype)
17010 first_error (BAD_EL_TYPE);
17011
17012 if (inst.cond > COND_ALWAYS)
17013 inst.pred_insn_type = INSIDE_VPT_INSN;
17014 else
17015 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17016
17017 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17018
17019 mve_encode_rq (et.type == NT_unsigned, et.size);
17020 }
17021
17022 static void
17023 do_mve_vhcadd (void)
17024 {
17025 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17026 struct neon_type_el et
17027 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17028
17029 if (inst.cond > COND_ALWAYS)
17030 inst.pred_insn_type = INSIDE_VPT_INSN;
17031 else
17032 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17033
17034 unsigned rot = inst.relocs[0].exp.X_add_number;
17035 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17036
17037 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17038 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17039 "operand makes instruction UNPREDICTABLE"));
17040
17041 mve_encode_qqq (0, et.size);
17042 inst.instruction |= (rot == 270) << 12;
17043 inst.is_neon = 1;
17044 }
17045
17046 static void
17047 do_mve_vadc (void)
17048 {
17049 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17050 struct neon_type_el et
17051 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17052
17053 if (et.type == NT_invtype)
17054 first_error (BAD_EL_TYPE);
17055
17056 if (inst.cond > COND_ALWAYS)
17057 inst.pred_insn_type = INSIDE_VPT_INSN;
17058 else
17059 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17060
17061 mve_encode_qqq (0, 64);
17062 }
17063
17064 static void
17065 do_mve_vbrsr (void)
17066 {
17067 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17068 struct neon_type_el et
17069 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17070
17071 if (inst.cond > COND_ALWAYS)
17072 inst.pred_insn_type = INSIDE_VPT_INSN;
17073 else
17074 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17075
17076 mve_encode_qqr (et.size, 0, 0);
17077 }
17078
17079 static void
17080 do_mve_vsbc (void)
17081 {
17082 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17083
17084 if (inst.cond > COND_ALWAYS)
17085 inst.pred_insn_type = INSIDE_VPT_INSN;
17086 else
17087 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17088
17089 mve_encode_qqq (1, 64);
17090 }
17091
17092 static void
17093 do_mve_vmull (void)
17094 {
17095
17096 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17097 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17098 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17099 && inst.cond == COND_ALWAYS
17100 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17101 {
17102 if (rs == NS_QQQ)
17103 {
17104
17105 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17106 N_SUF_32 | N_F64 | N_P8
17107 | N_P16 | N_I_MVE | N_KEY);
17108 if (((et.type == NT_poly) && et.size == 8
17109 && ARM_CPU_IS_ANY (cpu_variant))
17110 || (et.type == NT_integer) || (et.type == NT_float))
17111 goto neon_vmul;
17112 }
17113 else
17114 goto neon_vmul;
17115 }
17116
17117 constraint (rs != NS_QQQ, BAD_FPU);
17118 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17119 N_SU_32 | N_P8 | N_P16 | N_KEY);
17120
17121 /* We are dealing with MVE's vmullt. */
17122 if (et.size == 32
17123 && (inst.operands[0].reg == inst.operands[1].reg
17124 || inst.operands[0].reg == inst.operands[2].reg))
17125 as_tsktsk (BAD_MVE_SRCDEST);
17126
17127 if (inst.cond > COND_ALWAYS)
17128 inst.pred_insn_type = INSIDE_VPT_INSN;
17129 else
17130 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17131
17132 if (et.type == NT_poly)
17133 mve_encode_qqq (neon_logbits (et.size), 64);
17134 else
17135 mve_encode_qqq (et.type == NT_unsigned, et.size);
17136
17137 return;
17138
17139 neon_vmul:
17140 inst.instruction = N_MNEM_vmul;
17141 inst.cond = 0xb;
17142 if (thumb_mode)
17143 inst.pred_insn_type = INSIDE_IT_INSN;
17144 do_neon_mul ();
17145 }
17146
17147 static void
17148 do_mve_vabav (void)
17149 {
17150 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17151
17152 if (rs == NS_NULL)
17153 return;
17154
17155 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17156 return;
17157
17158 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17159 | N_S16 | N_S32 | N_U8 | N_U16
17160 | N_U32);
17161
17162 if (inst.cond > COND_ALWAYS)
17163 inst.pred_insn_type = INSIDE_VPT_INSN;
17164 else
17165 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17166
17167 mve_encode_rqq (et.type == NT_unsigned, et.size);
17168 }
17169
17170 static void
17171 do_mve_vmladav (void)
17172 {
17173 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17174 struct neon_type_el et = neon_check_type (3, rs,
17175 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17176
17177 if (et.type == NT_unsigned
17178 && (inst.instruction == M_MNEM_vmladavx
17179 || inst.instruction == M_MNEM_vmladavax
17180 || inst.instruction == M_MNEM_vmlsdav
17181 || inst.instruction == M_MNEM_vmlsdava
17182 || inst.instruction == M_MNEM_vmlsdavx
17183 || inst.instruction == M_MNEM_vmlsdavax))
17184 first_error (BAD_SIMD_TYPE);
17185
17186 constraint (inst.operands[2].reg > 14,
17187 _("MVE vector register in the range [Q0..Q7] expected"));
17188
17189 if (inst.cond > COND_ALWAYS)
17190 inst.pred_insn_type = INSIDE_VPT_INSN;
17191 else
17192 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17193
17194 if (inst.instruction == M_MNEM_vmlsdav
17195 || inst.instruction == M_MNEM_vmlsdava
17196 || inst.instruction == M_MNEM_vmlsdavx
17197 || inst.instruction == M_MNEM_vmlsdavax)
17198 inst.instruction |= (et.size == 8) << 28;
17199 else
17200 inst.instruction |= (et.size == 8) << 8;
17201
17202 mve_encode_rqq (et.type == NT_unsigned, 64);
17203 inst.instruction |= (et.size == 32) << 16;
17204 }
17205
17206 static void
17207 do_neon_qrdmlah (void)
17208 {
17209 /* Check we're on the correct architecture. */
17210 if (!mark_feature_used (&fpu_neon_ext_armv8))
17211 inst.error =
17212 _("instruction form not available on this architecture.");
17213 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17214 {
17215 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17216 record_feature_use (&fpu_neon_ext_v8_1);
17217 }
17218
17219 if (inst.operands[2].isscalar)
17220 {
17221 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17222 struct neon_type_el et = neon_check_type (3, rs,
17223 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17224 NEON_ENCODE (SCALAR, inst);
17225 neon_mul_mac (et, neon_quad (rs));
17226 }
17227 else
17228 {
17229 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17230 struct neon_type_el et = neon_check_type (3, rs,
17231 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17232 NEON_ENCODE (INTEGER, inst);
17233 /* The U bit (rounding) comes from bit mask. */
17234 neon_three_same (neon_quad (rs), 0, et.size);
17235 }
17236 }
17237
17238 static void
17239 do_neon_fcmp_absolute (void)
17240 {
17241 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17242 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17243 N_F_16_32 | N_KEY);
17244 /* Size field comes from bit mask. */
17245 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17246 }
17247
17248 static void
17249 do_neon_fcmp_absolute_inv (void)
17250 {
17251 neon_exchange_operands ();
17252 do_neon_fcmp_absolute ();
17253 }
17254
17255 static void
17256 do_neon_step (void)
17257 {
17258 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17259 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17260 N_F_16_32 | N_KEY);
17261 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17262 }
17263
17264 static void
17265 do_neon_abs_neg (void)
17266 {
17267 enum neon_shape rs;
17268 struct neon_type_el et;
17269
17270 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17271 return;
17272
17273 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17274 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17275
17276 if (check_simd_pred_availability (et.type == NT_float,
17277 NEON_CHECK_ARCH | NEON_CHECK_CC))
17278 return;
17279
17280 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17281 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17282 inst.instruction |= LOW4 (inst.operands[1].reg);
17283 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17284 inst.instruction |= neon_quad (rs) << 6;
17285 inst.instruction |= (et.type == NT_float) << 10;
17286 inst.instruction |= neon_logbits (et.size) << 18;
17287
17288 neon_dp_fixup (&inst);
17289 }
17290
17291 static void
17292 do_neon_sli (void)
17293 {
17294 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17295 struct neon_type_el et = neon_check_type (2, rs,
17296 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17297 int imm = inst.operands[2].imm;
17298 constraint (imm < 0 || (unsigned)imm >= et.size,
17299 _("immediate out of range for insert"));
17300 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17301 }
17302
17303 static void
17304 do_neon_sri (void)
17305 {
17306 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17307 struct neon_type_el et = neon_check_type (2, rs,
17308 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17309 int imm = inst.operands[2].imm;
17310 constraint (imm < 1 || (unsigned)imm > et.size,
17311 _("immediate out of range for insert"));
17312 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17313 }
17314
17315 static void
17316 do_neon_qshlu_imm (void)
17317 {
17318 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17319 struct neon_type_el et = neon_check_type (2, rs,
17320 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17321 int imm = inst.operands[2].imm;
17322 constraint (imm < 0 || (unsigned)imm >= et.size,
17323 _("immediate out of range for shift"));
17324 /* Only encodes the 'U present' variant of the instruction.
17325 In this case, signed types have OP (bit 8) set to 0.
17326 Unsigned types have OP set to 1. */
17327 inst.instruction |= (et.type == NT_unsigned) << 8;
17328 /* The rest of the bits are the same as other immediate shifts. */
17329 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17330 }
17331
17332 static void
17333 do_neon_qmovn (void)
17334 {
17335 struct neon_type_el et = neon_check_type (2, NS_DQ,
17336 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17337 /* Saturating move where operands can be signed or unsigned, and the
17338 destination has the same signedness. */
17339 NEON_ENCODE (INTEGER, inst);
17340 if (et.type == NT_unsigned)
17341 inst.instruction |= 0xc0;
17342 else
17343 inst.instruction |= 0x80;
17344 neon_two_same (0, 1, et.size / 2);
17345 }
17346
17347 static void
17348 do_neon_qmovun (void)
17349 {
17350 struct neon_type_el et = neon_check_type (2, NS_DQ,
17351 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17352 /* Saturating move with unsigned results. Operands must be signed. */
17353 NEON_ENCODE (INTEGER, inst);
17354 neon_two_same (0, 1, et.size / 2);
17355 }
17356
17357 static void
17358 do_neon_rshift_sat_narrow (void)
17359 {
17360 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17361 or unsigned. If operands are unsigned, results must also be unsigned. */
17362 struct neon_type_el et = neon_check_type (2, NS_DQI,
17363 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17364 int imm = inst.operands[2].imm;
17365 /* This gets the bounds check, size encoding and immediate bits calculation
17366 right. */
17367 et.size /= 2;
17368
17369 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17370 VQMOVN.I<size> <Dd>, <Qm>. */
17371 if (imm == 0)
17372 {
17373 inst.operands[2].present = 0;
17374 inst.instruction = N_MNEM_vqmovn;
17375 do_neon_qmovn ();
17376 return;
17377 }
17378
17379 constraint (imm < 1 || (unsigned)imm > et.size,
17380 _("immediate out of range"));
17381 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17382 }
17383
17384 static void
17385 do_neon_rshift_sat_narrow_u (void)
17386 {
17387 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17388 or unsigned. If operands are unsigned, results must also be unsigned. */
17389 struct neon_type_el et = neon_check_type (2, NS_DQI,
17390 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17391 int imm = inst.operands[2].imm;
17392 /* This gets the bounds check, size encoding and immediate bits calculation
17393 right. */
17394 et.size /= 2;
17395
17396 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17397 VQMOVUN.I<size> <Dd>, <Qm>. */
17398 if (imm == 0)
17399 {
17400 inst.operands[2].present = 0;
17401 inst.instruction = N_MNEM_vqmovun;
17402 do_neon_qmovun ();
17403 return;
17404 }
17405
17406 constraint (imm < 1 || (unsigned)imm > et.size,
17407 _("immediate out of range"));
17408 /* FIXME: The manual is kind of unclear about what value U should have in
17409 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17410 must be 1. */
17411 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17412 }
17413
17414 static void
17415 do_neon_movn (void)
17416 {
17417 struct neon_type_el et = neon_check_type (2, NS_DQ,
17418 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17419 NEON_ENCODE (INTEGER, inst);
17420 neon_two_same (0, 1, et.size / 2);
17421 }
17422
17423 static void
17424 do_neon_rshift_narrow (void)
17425 {
17426 struct neon_type_el et = neon_check_type (2, NS_DQI,
17427 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17428 int imm = inst.operands[2].imm;
17429 /* This gets the bounds check, size encoding and immediate bits calculation
17430 right. */
17431 et.size /= 2;
17432
17433 /* If immediate is zero then we are a pseudo-instruction for
17434 VMOVN.I<size> <Dd>, <Qm> */
17435 if (imm == 0)
17436 {
17437 inst.operands[2].present = 0;
17438 inst.instruction = N_MNEM_vmovn;
17439 do_neon_movn ();
17440 return;
17441 }
17442
17443 constraint (imm < 1 || (unsigned)imm > et.size,
17444 _("immediate out of range for narrowing operation"));
17445 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17446 }
17447
17448 static void
17449 do_neon_shll (void)
17450 {
17451 /* FIXME: Type checking when lengthening. */
17452 struct neon_type_el et = neon_check_type (2, NS_QDI,
17453 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17454 unsigned imm = inst.operands[2].imm;
17455
17456 if (imm == et.size)
17457 {
17458 /* Maximum shift variant. */
17459 NEON_ENCODE (INTEGER, inst);
17460 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17461 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17462 inst.instruction |= LOW4 (inst.operands[1].reg);
17463 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17464 inst.instruction |= neon_logbits (et.size) << 18;
17465
17466 neon_dp_fixup (&inst);
17467 }
17468 else
17469 {
17470 /* A more-specific type check for non-max versions. */
17471 et = neon_check_type (2, NS_QDI,
17472 N_EQK | N_DBL, N_SU_32 | N_KEY);
17473 NEON_ENCODE (IMMED, inst);
17474 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17475 }
17476 }
17477
17478 /* Check the various types for the VCVT instruction, and return which version
17479 the current instruction is. */
17480
17481 #define CVT_FLAVOUR_VAR \
17482 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17483 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17484 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17485 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17486 /* Half-precision conversions. */ \
17487 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17488 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17489 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17490 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17491 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17492 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17493 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17494 Compared with single/double precision variants, only the co-processor \
17495 field is different, so the encoding flow is reused here. */ \
17496 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17497 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17498 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17499 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17500 /* VFP instructions. */ \
17501 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17502 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17503 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17504 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17505 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17506 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17507 /* VFP instructions with bitshift. */ \
17508 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17509 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17510 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17511 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17512 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17513 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17514 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17515 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17516
17517 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17518 neon_cvt_flavour_##C,
17519
17520 /* The different types of conversions we can do. */
17521 enum neon_cvt_flavour
17522 {
17523 CVT_FLAVOUR_VAR
17524 neon_cvt_flavour_invalid,
17525 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17526 };
17527
17528 #undef CVT_VAR
17529
17530 static enum neon_cvt_flavour
17531 get_neon_cvt_flavour (enum neon_shape rs)
17532 {
17533 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17534 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17535 if (et.type != NT_invtype) \
17536 { \
17537 inst.error = NULL; \
17538 return (neon_cvt_flavour_##C); \
17539 }
17540
17541 struct neon_type_el et;
17542 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17543 || rs == NS_FF) ? N_VFP : 0;
17544 /* The instruction versions which take an immediate take one register
17545 argument, which is extended to the width of the full register. Thus the
17546 "source" and "destination" registers must have the same width. Hack that
17547 here by making the size equal to the key (wider, in this case) operand. */
17548 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17549
17550 CVT_FLAVOUR_VAR;
17551
17552 return neon_cvt_flavour_invalid;
17553 #undef CVT_VAR
17554 }
17555
17556 enum neon_cvt_mode
17557 {
17558 neon_cvt_mode_a,
17559 neon_cvt_mode_n,
17560 neon_cvt_mode_p,
17561 neon_cvt_mode_m,
17562 neon_cvt_mode_z,
17563 neon_cvt_mode_x,
17564 neon_cvt_mode_r
17565 };
17566
17567 /* Neon-syntax VFP conversions. */
17568
17569 static void
17570 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17571 {
17572 const char *opname = 0;
17573
17574 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17575 || rs == NS_FHI || rs == NS_HFI)
17576 {
17577 /* Conversions with immediate bitshift. */
17578 const char *enc[] =
17579 {
17580 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17581 CVT_FLAVOUR_VAR
17582 NULL
17583 #undef CVT_VAR
17584 };
17585
17586 if (flavour < (int) ARRAY_SIZE (enc))
17587 {
17588 opname = enc[flavour];
17589 constraint (inst.operands[0].reg != inst.operands[1].reg,
17590 _("operands 0 and 1 must be the same register"));
17591 inst.operands[1] = inst.operands[2];
17592 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17593 }
17594 }
17595 else
17596 {
17597 /* Conversions without bitshift. */
17598 const char *enc[] =
17599 {
17600 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17601 CVT_FLAVOUR_VAR
17602 NULL
17603 #undef CVT_VAR
17604 };
17605
17606 if (flavour < (int) ARRAY_SIZE (enc))
17607 opname = enc[flavour];
17608 }
17609
17610 if (opname)
17611 do_vfp_nsyn_opcode (opname);
17612
17613 /* ARMv8.2 fp16 VCVT instruction. */
17614 if (flavour == neon_cvt_flavour_s32_f16
17615 || flavour == neon_cvt_flavour_u32_f16
17616 || flavour == neon_cvt_flavour_f16_u32
17617 || flavour == neon_cvt_flavour_f16_s32)
17618 do_scalar_fp16_v82_encode ();
17619 }
17620
17621 static void
17622 do_vfp_nsyn_cvtz (void)
17623 {
17624 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17625 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17626 const char *enc[] =
17627 {
17628 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17629 CVT_FLAVOUR_VAR
17630 NULL
17631 #undef CVT_VAR
17632 };
17633
17634 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17635 do_vfp_nsyn_opcode (enc[flavour]);
17636 }
17637
17638 static void
17639 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17640 enum neon_cvt_mode mode)
17641 {
17642 int sz, op;
17643 int rm;
17644
17645 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17646 D register operands. */
17647 if (flavour == neon_cvt_flavour_s32_f64
17648 || flavour == neon_cvt_flavour_u32_f64)
17649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17650 _(BAD_FPU));
17651
17652 if (flavour == neon_cvt_flavour_s32_f16
17653 || flavour == neon_cvt_flavour_u32_f16)
17654 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17655 _(BAD_FP16));
17656
17657 set_pred_insn_type (OUTSIDE_PRED_INSN);
17658
17659 switch (flavour)
17660 {
17661 case neon_cvt_flavour_s32_f64:
17662 sz = 1;
17663 op = 1;
17664 break;
17665 case neon_cvt_flavour_s32_f32:
17666 sz = 0;
17667 op = 1;
17668 break;
17669 case neon_cvt_flavour_s32_f16:
17670 sz = 0;
17671 op = 1;
17672 break;
17673 case neon_cvt_flavour_u32_f64:
17674 sz = 1;
17675 op = 0;
17676 break;
17677 case neon_cvt_flavour_u32_f32:
17678 sz = 0;
17679 op = 0;
17680 break;
17681 case neon_cvt_flavour_u32_f16:
17682 sz = 0;
17683 op = 0;
17684 break;
17685 default:
17686 first_error (_("invalid instruction shape"));
17687 return;
17688 }
17689
17690 switch (mode)
17691 {
17692 case neon_cvt_mode_a: rm = 0; break;
17693 case neon_cvt_mode_n: rm = 1; break;
17694 case neon_cvt_mode_p: rm = 2; break;
17695 case neon_cvt_mode_m: rm = 3; break;
17696 default: first_error (_("invalid rounding mode")); return;
17697 }
17698
17699 NEON_ENCODE (FPV8, inst);
17700 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17701 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17702 inst.instruction |= sz << 8;
17703
17704 /* ARMv8.2 fp16 VCVT instruction. */
17705 if (flavour == neon_cvt_flavour_s32_f16
17706 ||flavour == neon_cvt_flavour_u32_f16)
17707 do_scalar_fp16_v82_encode ();
17708 inst.instruction |= op << 7;
17709 inst.instruction |= rm << 16;
17710 inst.instruction |= 0xf0000000;
17711 inst.is_neon = TRUE;
17712 }
17713
17714 static void
17715 do_neon_cvt_1 (enum neon_cvt_mode mode)
17716 {
17717 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17718 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17719 NS_FH, NS_HF, NS_FHI, NS_HFI,
17720 NS_NULL);
17721 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17722
17723 if (flavour == neon_cvt_flavour_invalid)
17724 return;
17725
17726 /* PR11109: Handle round-to-zero for VCVT conversions. */
17727 if (mode == neon_cvt_mode_z
17728 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17729 && (flavour == neon_cvt_flavour_s16_f16
17730 || flavour == neon_cvt_flavour_u16_f16
17731 || flavour == neon_cvt_flavour_s32_f32
17732 || flavour == neon_cvt_flavour_u32_f32
17733 || flavour == neon_cvt_flavour_s32_f64
17734 || flavour == neon_cvt_flavour_u32_f64)
17735 && (rs == NS_FD || rs == NS_FF))
17736 {
17737 do_vfp_nsyn_cvtz ();
17738 return;
17739 }
17740
17741 /* ARMv8.2 fp16 VCVT conversions. */
17742 if (mode == neon_cvt_mode_z
17743 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17744 && (flavour == neon_cvt_flavour_s32_f16
17745 || flavour == neon_cvt_flavour_u32_f16)
17746 && (rs == NS_FH))
17747 {
17748 do_vfp_nsyn_cvtz ();
17749 do_scalar_fp16_v82_encode ();
17750 return;
17751 }
17752
17753 /* VFP rather than Neon conversions. */
17754 if (flavour >= neon_cvt_flavour_first_fp)
17755 {
17756 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17757 do_vfp_nsyn_cvt (rs, flavour);
17758 else
17759 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17760
17761 return;
17762 }
17763
17764 switch (rs)
17765 {
17766 case NS_QQI:
17767 if (mode == neon_cvt_mode_z
17768 && (flavour == neon_cvt_flavour_f16_s16
17769 || flavour == neon_cvt_flavour_f16_u16
17770 || flavour == neon_cvt_flavour_s16_f16
17771 || flavour == neon_cvt_flavour_u16_f16
17772 || flavour == neon_cvt_flavour_f32_u32
17773 || flavour == neon_cvt_flavour_f32_s32
17774 || flavour == neon_cvt_flavour_s32_f32
17775 || flavour == neon_cvt_flavour_u32_f32))
17776 {
17777 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17778 return;
17779 }
17780 else if (mode == neon_cvt_mode_n)
17781 {
17782 /* We are dealing with vcvt with the 'ne' condition. */
17783 inst.cond = 0x1;
17784 inst.instruction = N_MNEM_vcvt;
17785 do_neon_cvt_1 (neon_cvt_mode_z);
17786 return;
17787 }
17788 /* fall through. */
17789 case NS_DDI:
17790 {
17791 unsigned immbits;
17792 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17793 0x0000100, 0x1000100, 0x0, 0x1000000};
17794
17795 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17796 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17797 return;
17798
17799 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17800 {
17801 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17802 _("immediate value out of range"));
17803 switch (flavour)
17804 {
17805 case neon_cvt_flavour_f16_s16:
17806 case neon_cvt_flavour_f16_u16:
17807 case neon_cvt_flavour_s16_f16:
17808 case neon_cvt_flavour_u16_f16:
17809 constraint (inst.operands[2].imm > 16,
17810 _("immediate value out of range"));
17811 break;
17812 case neon_cvt_flavour_f32_u32:
17813 case neon_cvt_flavour_f32_s32:
17814 case neon_cvt_flavour_s32_f32:
17815 case neon_cvt_flavour_u32_f32:
17816 constraint (inst.operands[2].imm > 32,
17817 _("immediate value out of range"));
17818 break;
17819 default:
17820 inst.error = BAD_FPU;
17821 return;
17822 }
17823 }
17824
17825 /* Fixed-point conversion with #0 immediate is encoded as an
17826 integer conversion. */
17827 if (inst.operands[2].present && inst.operands[2].imm == 0)
17828 goto int_encode;
17829 NEON_ENCODE (IMMED, inst);
17830 if (flavour != neon_cvt_flavour_invalid)
17831 inst.instruction |= enctab[flavour];
17832 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17833 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17834 inst.instruction |= LOW4 (inst.operands[1].reg);
17835 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17836 inst.instruction |= neon_quad (rs) << 6;
17837 inst.instruction |= 1 << 21;
17838 if (flavour < neon_cvt_flavour_s16_f16)
17839 {
17840 inst.instruction |= 1 << 21;
17841 immbits = 32 - inst.operands[2].imm;
17842 inst.instruction |= immbits << 16;
17843 }
17844 else
17845 {
17846 inst.instruction |= 3 << 20;
17847 immbits = 16 - inst.operands[2].imm;
17848 inst.instruction |= immbits << 16;
17849 inst.instruction &= ~(1 << 9);
17850 }
17851
17852 neon_dp_fixup (&inst);
17853 }
17854 break;
17855
17856 case NS_QQ:
17857 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17858 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17859 && (flavour == neon_cvt_flavour_s16_f16
17860 || flavour == neon_cvt_flavour_u16_f16
17861 || flavour == neon_cvt_flavour_s32_f32
17862 || flavour == neon_cvt_flavour_u32_f32))
17863 {
17864 if (check_simd_pred_availability (1,
17865 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17866 return;
17867 }
17868 else if (mode == neon_cvt_mode_z
17869 && (flavour == neon_cvt_flavour_f16_s16
17870 || flavour == neon_cvt_flavour_f16_u16
17871 || flavour == neon_cvt_flavour_s16_f16
17872 || flavour == neon_cvt_flavour_u16_f16
17873 || flavour == neon_cvt_flavour_f32_u32
17874 || flavour == neon_cvt_flavour_f32_s32
17875 || flavour == neon_cvt_flavour_s32_f32
17876 || flavour == neon_cvt_flavour_u32_f32))
17877 {
17878 if (check_simd_pred_availability (1,
17879 NEON_CHECK_CC | NEON_CHECK_ARCH))
17880 return;
17881 }
17882 /* fall through. */
17883 case NS_DD:
17884 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17885 {
17886
17887 NEON_ENCODE (FLOAT, inst);
17888 if (check_simd_pred_availability (1,
17889 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17890 return;
17891
17892 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17893 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17894 inst.instruction |= LOW4 (inst.operands[1].reg);
17895 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17896 inst.instruction |= neon_quad (rs) << 6;
17897 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17898 || flavour == neon_cvt_flavour_u32_f32) << 7;
17899 inst.instruction |= mode << 8;
17900 if (flavour == neon_cvt_flavour_u16_f16
17901 || flavour == neon_cvt_flavour_s16_f16)
17902 /* Mask off the original size bits and reencode them. */
17903 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17904
17905 if (thumb_mode)
17906 inst.instruction |= 0xfc000000;
17907 else
17908 inst.instruction |= 0xf0000000;
17909 }
17910 else
17911 {
17912 int_encode:
17913 {
17914 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17915 0x100, 0x180, 0x0, 0x080};
17916
17917 NEON_ENCODE (INTEGER, inst);
17918
17919 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17920 {
17921 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17922 return;
17923 }
17924
17925 if (flavour != neon_cvt_flavour_invalid)
17926 inst.instruction |= enctab[flavour];
17927
17928 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17929 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17930 inst.instruction |= LOW4 (inst.operands[1].reg);
17931 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17932 inst.instruction |= neon_quad (rs) << 6;
17933 if (flavour >= neon_cvt_flavour_s16_f16
17934 && flavour <= neon_cvt_flavour_f16_u16)
17935 /* Half precision. */
17936 inst.instruction |= 1 << 18;
17937 else
17938 inst.instruction |= 2 << 18;
17939
17940 neon_dp_fixup (&inst);
17941 }
17942 }
17943 break;
17944
17945 /* Half-precision conversions for Advanced SIMD -- neon. */
17946 case NS_QD:
17947 case NS_DQ:
17948 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17949 return;
17950
17951 if ((rs == NS_DQ)
17952 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17953 {
17954 as_bad (_("operand size must match register width"));
17955 break;
17956 }
17957
17958 if ((rs == NS_QD)
17959 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17960 {
17961 as_bad (_("operand size must match register width"));
17962 break;
17963 }
17964
17965 if (rs == NS_DQ)
17966 inst.instruction = 0x3b60600;
17967 else
17968 inst.instruction = 0x3b60700;
17969
17970 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17971 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17972 inst.instruction |= LOW4 (inst.operands[1].reg);
17973 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17974 neon_dp_fixup (&inst);
17975 break;
17976
17977 default:
17978 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17979 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17980 do_vfp_nsyn_cvt (rs, flavour);
17981 else
17982 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17983 }
17984 }
17985
17986 static void
17987 do_neon_cvtr (void)
17988 {
17989 do_neon_cvt_1 (neon_cvt_mode_x);
17990 }
17991
17992 static void
17993 do_neon_cvt (void)
17994 {
17995 do_neon_cvt_1 (neon_cvt_mode_z);
17996 }
17997
17998 static void
17999 do_neon_cvta (void)
18000 {
18001 do_neon_cvt_1 (neon_cvt_mode_a);
18002 }
18003
18004 static void
18005 do_neon_cvtn (void)
18006 {
18007 do_neon_cvt_1 (neon_cvt_mode_n);
18008 }
18009
18010 static void
18011 do_neon_cvtp (void)
18012 {
18013 do_neon_cvt_1 (neon_cvt_mode_p);
18014 }
18015
18016 static void
18017 do_neon_cvtm (void)
18018 {
18019 do_neon_cvt_1 (neon_cvt_mode_m);
18020 }
18021
18022 static void
18023 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18024 {
18025 if (is_double)
18026 mark_feature_used (&fpu_vfp_ext_armv8);
18027
18028 encode_arm_vfp_reg (inst.operands[0].reg,
18029 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18030 encode_arm_vfp_reg (inst.operands[1].reg,
18031 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18032 inst.instruction |= to ? 0x10000 : 0;
18033 inst.instruction |= t ? 0x80 : 0;
18034 inst.instruction |= is_double ? 0x100 : 0;
18035 do_vfp_cond_or_thumb ();
18036 }
18037
18038 static void
18039 do_neon_cvttb_1 (bfd_boolean t)
18040 {
18041 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18042 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18043
18044 if (rs == NS_NULL)
18045 return;
18046 else if (rs == NS_QQ || rs == NS_QQI)
18047 {
18048 int single_to_half = 0;
18049 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18050 return;
18051
18052 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18053
18054 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18055 && (flavour == neon_cvt_flavour_u16_f16
18056 || flavour == neon_cvt_flavour_s16_f16
18057 || flavour == neon_cvt_flavour_f16_s16
18058 || flavour == neon_cvt_flavour_f16_u16
18059 || flavour == neon_cvt_flavour_u32_f32
18060 || flavour == neon_cvt_flavour_s32_f32
18061 || flavour == neon_cvt_flavour_f32_s32
18062 || flavour == neon_cvt_flavour_f32_u32))
18063 {
18064 inst.cond = 0xf;
18065 inst.instruction = N_MNEM_vcvt;
18066 set_pred_insn_type (INSIDE_VPT_INSN);
18067 do_neon_cvt_1 (neon_cvt_mode_z);
18068 return;
18069 }
18070 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18071 single_to_half = 1;
18072 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18073 {
18074 first_error (BAD_FPU);
18075 return;
18076 }
18077
18078 inst.instruction = 0xee3f0e01;
18079 inst.instruction |= single_to_half << 28;
18080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18081 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18082 inst.instruction |= t << 12;
18083 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18084 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18085 inst.is_neon = 1;
18086 }
18087 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18088 {
18089 inst.error = NULL;
18090 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18091 }
18092 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18093 {
18094 inst.error = NULL;
18095 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18096 }
18097 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18098 {
18099 /* The VCVTB and VCVTT instructions with D-register operands
18100 don't work for SP only targets. */
18101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18102 _(BAD_FPU));
18103
18104 inst.error = NULL;
18105 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18106 }
18107 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18108 {
18109 /* The VCVTB and VCVTT instructions with D-register operands
18110 don't work for SP only targets. */
18111 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18112 _(BAD_FPU));
18113
18114 inst.error = NULL;
18115 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18116 }
18117 else
18118 return;
18119 }
18120
18121 static void
18122 do_neon_cvtb (void)
18123 {
18124 do_neon_cvttb_1 (FALSE);
18125 }
18126
18127
18128 static void
18129 do_neon_cvtt (void)
18130 {
18131 do_neon_cvttb_1 (TRUE);
18132 }
18133
18134 static void
18135 neon_move_immediate (void)
18136 {
18137 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18138 struct neon_type_el et = neon_check_type (2, rs,
18139 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18140 unsigned immlo, immhi = 0, immbits;
18141 int op, cmode, float_p;
18142
18143 constraint (et.type == NT_invtype,
18144 _("operand size must be specified for immediate VMOV"));
18145
18146 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18147 op = (inst.instruction & (1 << 5)) != 0;
18148
18149 immlo = inst.operands[1].imm;
18150 if (inst.operands[1].regisimm)
18151 immhi = inst.operands[1].reg;
18152
18153 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18154 _("immediate has bits set outside the operand size"));
18155
18156 float_p = inst.operands[1].immisfloat;
18157
18158 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18159 et.size, et.type)) == FAIL)
18160 {
18161 /* Invert relevant bits only. */
18162 neon_invert_size (&immlo, &immhi, et.size);
18163 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18164 with one or the other; those cases are caught by
18165 neon_cmode_for_move_imm. */
18166 op = !op;
18167 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18168 &op, et.size, et.type)) == FAIL)
18169 {
18170 first_error (_("immediate out of range"));
18171 return;
18172 }
18173 }
18174
18175 inst.instruction &= ~(1 << 5);
18176 inst.instruction |= op << 5;
18177
18178 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18179 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18180 inst.instruction |= neon_quad (rs) << 6;
18181 inst.instruction |= cmode << 8;
18182
18183 neon_write_immbits (immbits);
18184 }
18185
18186 static void
18187 do_neon_mvn (void)
18188 {
18189 if (inst.operands[1].isreg)
18190 {
18191 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18192
18193 NEON_ENCODE (INTEGER, inst);
18194 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18195 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18196 inst.instruction |= LOW4 (inst.operands[1].reg);
18197 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18198 inst.instruction |= neon_quad (rs) << 6;
18199 }
18200 else
18201 {
18202 NEON_ENCODE (IMMED, inst);
18203 neon_move_immediate ();
18204 }
18205
18206 neon_dp_fixup (&inst);
18207 }
18208
18209 /* Encode instructions of form:
18210
18211 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18212 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18213
18214 static void
18215 neon_mixed_length (struct neon_type_el et, unsigned size)
18216 {
18217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18219 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18220 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18221 inst.instruction |= LOW4 (inst.operands[2].reg);
18222 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18223 inst.instruction |= (et.type == NT_unsigned) << 24;
18224 inst.instruction |= neon_logbits (size) << 20;
18225
18226 neon_dp_fixup (&inst);
18227 }
18228
18229 static void
18230 do_neon_dyadic_long (void)
18231 {
18232 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18233 if (rs == NS_QDD)
18234 {
18235 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18236 return;
18237
18238 NEON_ENCODE (INTEGER, inst);
18239 /* FIXME: Type checking for lengthening op. */
18240 struct neon_type_el et = neon_check_type (3, NS_QDD,
18241 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18242 neon_mixed_length (et, et.size);
18243 }
18244 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18245 && (inst.cond == 0xf || inst.cond == 0x10))
18246 {
18247 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18248 in an IT block with le/lt conditions. */
18249
18250 if (inst.cond == 0xf)
18251 inst.cond = 0xb;
18252 else if (inst.cond == 0x10)
18253 inst.cond = 0xd;
18254
18255 inst.pred_insn_type = INSIDE_IT_INSN;
18256
18257 if (inst.instruction == N_MNEM_vaddl)
18258 {
18259 inst.instruction = N_MNEM_vadd;
18260 do_neon_addsub_if_i ();
18261 }
18262 else if (inst.instruction == N_MNEM_vsubl)
18263 {
18264 inst.instruction = N_MNEM_vsub;
18265 do_neon_addsub_if_i ();
18266 }
18267 else if (inst.instruction == N_MNEM_vabdl)
18268 {
18269 inst.instruction = N_MNEM_vabd;
18270 do_neon_dyadic_if_su ();
18271 }
18272 }
18273 else
18274 first_error (BAD_FPU);
18275 }
18276
18277 static void
18278 do_neon_abal (void)
18279 {
18280 struct neon_type_el et = neon_check_type (3, NS_QDD,
18281 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18282 neon_mixed_length (et, et.size);
18283 }
18284
18285 static void
18286 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18287 {
18288 if (inst.operands[2].isscalar)
18289 {
18290 struct neon_type_el et = neon_check_type (3, NS_QDS,
18291 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18292 NEON_ENCODE (SCALAR, inst);
18293 neon_mul_mac (et, et.type == NT_unsigned);
18294 }
18295 else
18296 {
18297 struct neon_type_el et = neon_check_type (3, NS_QDD,
18298 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18299 NEON_ENCODE (INTEGER, inst);
18300 neon_mixed_length (et, et.size);
18301 }
18302 }
18303
18304 static void
18305 do_neon_mac_maybe_scalar_long (void)
18306 {
18307 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18308 }
18309
18310 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18311 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18312
18313 static unsigned
18314 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18315 {
18316 unsigned regno = NEON_SCALAR_REG (scalar);
18317 unsigned elno = NEON_SCALAR_INDEX (scalar);
18318
18319 if (quad_p)
18320 {
18321 if (regno > 7 || elno > 3)
18322 goto bad_scalar;
18323
18324 return ((regno & 0x7)
18325 | ((elno & 0x1) << 3)
18326 | (((elno >> 1) & 0x1) << 5));
18327 }
18328 else
18329 {
18330 if (regno > 15 || elno > 1)
18331 goto bad_scalar;
18332
18333 return (((regno & 0x1) << 5)
18334 | ((regno >> 1) & 0x7)
18335 | ((elno & 0x1) << 3));
18336 }
18337
18338 bad_scalar:
18339 first_error (_("scalar out of range for multiply instruction"));
18340 return 0;
18341 }
18342
18343 static void
18344 do_neon_fmac_maybe_scalar_long (int subtype)
18345 {
18346 enum neon_shape rs;
18347 int high8;
18348 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18349 field (bits[21:20]) has different meaning. For scalar index variant, it's
18350 used to differentiate add and subtract, otherwise it's with fixed value
18351 0x2. */
18352 int size = -1;
18353
18354 if (inst.cond != COND_ALWAYS)
18355 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18356 "behaviour is UNPREDICTABLE"));
18357
18358 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18359 _(BAD_FP16));
18360
18361 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18362 _(BAD_FPU));
18363
18364 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18365 be a scalar index register. */
18366 if (inst.operands[2].isscalar)
18367 {
18368 high8 = 0xfe000000;
18369 if (subtype)
18370 size = 16;
18371 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18372 }
18373 else
18374 {
18375 high8 = 0xfc000000;
18376 size = 32;
18377 if (subtype)
18378 inst.instruction |= (0x1 << 23);
18379 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18380 }
18381
18382 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18383
18384 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18385 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18386 so we simply pass -1 as size. */
18387 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18388 neon_three_same (quad_p, 0, size);
18389
18390 /* Undo neon_dp_fixup. Redo the high eight bits. */
18391 inst.instruction &= 0x00ffffff;
18392 inst.instruction |= high8;
18393
18394 #define LOW1(R) ((R) & 0x1)
18395 #define HI4(R) (((R) >> 1) & 0xf)
18396 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18397 whether the instruction is in Q form and whether Vm is a scalar indexed
18398 operand. */
18399 if (inst.operands[2].isscalar)
18400 {
18401 unsigned rm
18402 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18403 inst.instruction &= 0xffffffd0;
18404 inst.instruction |= rm;
18405
18406 if (!quad_p)
18407 {
18408 /* Redo Rn as well. */
18409 inst.instruction &= 0xfff0ff7f;
18410 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18411 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18412 }
18413 }
18414 else if (!quad_p)
18415 {
18416 /* Redo Rn and Rm. */
18417 inst.instruction &= 0xfff0ff50;
18418 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18419 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18420 inst.instruction |= HI4 (inst.operands[2].reg);
18421 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18422 }
18423 }
18424
18425 static void
18426 do_neon_vfmal (void)
18427 {
18428 return do_neon_fmac_maybe_scalar_long (0);
18429 }
18430
18431 static void
18432 do_neon_vfmsl (void)
18433 {
18434 return do_neon_fmac_maybe_scalar_long (1);
18435 }
18436
18437 static void
18438 do_neon_dyadic_wide (void)
18439 {
18440 struct neon_type_el et = neon_check_type (3, NS_QQD,
18441 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18442 neon_mixed_length (et, et.size);
18443 }
18444
18445 static void
18446 do_neon_dyadic_narrow (void)
18447 {
18448 struct neon_type_el et = neon_check_type (3, NS_QDD,
18449 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18450 /* Operand sign is unimportant, and the U bit is part of the opcode,
18451 so force the operand type to integer. */
18452 et.type = NT_integer;
18453 neon_mixed_length (et, et.size / 2);
18454 }
18455
18456 static void
18457 do_neon_mul_sat_scalar_long (void)
18458 {
18459 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18460 }
18461
18462 static void
18463 do_neon_vmull (void)
18464 {
18465 if (inst.operands[2].isscalar)
18466 do_neon_mac_maybe_scalar_long ();
18467 else
18468 {
18469 struct neon_type_el et = neon_check_type (3, NS_QDD,
18470 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18471
18472 if (et.type == NT_poly)
18473 NEON_ENCODE (POLY, inst);
18474 else
18475 NEON_ENCODE (INTEGER, inst);
18476
18477 /* For polynomial encoding the U bit must be zero, and the size must
18478 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18479 obviously, as 0b10). */
18480 if (et.size == 64)
18481 {
18482 /* Check we're on the correct architecture. */
18483 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18484 inst.error =
18485 _("Instruction form not available on this architecture.");
18486
18487 et.size = 32;
18488 }
18489
18490 neon_mixed_length (et, et.size);
18491 }
18492 }
18493
18494 static void
18495 do_neon_ext (void)
18496 {
18497 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18498 struct neon_type_el et = neon_check_type (3, rs,
18499 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18500 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18501
18502 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18503 _("shift out of range"));
18504 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18505 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18506 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18507 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18508 inst.instruction |= LOW4 (inst.operands[2].reg);
18509 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18510 inst.instruction |= neon_quad (rs) << 6;
18511 inst.instruction |= imm << 8;
18512
18513 neon_dp_fixup (&inst);
18514 }
18515
18516 static void
18517 do_neon_rev (void)
18518 {
18519 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18520 struct neon_type_el et = neon_check_type (2, rs,
18521 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18522 unsigned op = (inst.instruction >> 7) & 3;
18523 /* N (width of reversed regions) is encoded as part of the bitmask. We
18524 extract it here to check the elements to be reversed are smaller.
18525 Otherwise we'd get a reserved instruction. */
18526 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18527 gas_assert (elsize != 0);
18528 constraint (et.size >= elsize,
18529 _("elements must be smaller than reversal region"));
18530 neon_two_same (neon_quad (rs), 1, et.size);
18531 }
18532
18533 static void
18534 do_neon_dup (void)
18535 {
18536 if (inst.operands[1].isscalar)
18537 {
18538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18539 BAD_FPU);
18540 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18541 struct neon_type_el et = neon_check_type (2, rs,
18542 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18543 unsigned sizebits = et.size >> 3;
18544 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18545 int logsize = neon_logbits (et.size);
18546 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18547
18548 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18549 return;
18550
18551 NEON_ENCODE (SCALAR, inst);
18552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18554 inst.instruction |= LOW4 (dm);
18555 inst.instruction |= HI1 (dm) << 5;
18556 inst.instruction |= neon_quad (rs) << 6;
18557 inst.instruction |= x << 17;
18558 inst.instruction |= sizebits << 16;
18559
18560 neon_dp_fixup (&inst);
18561 }
18562 else
18563 {
18564 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18565 struct neon_type_el et = neon_check_type (2, rs,
18566 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18567 if (rs == NS_QR)
18568 {
18569 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18570 return;
18571 }
18572 else
18573 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18574 BAD_FPU);
18575
18576 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18577 {
18578 if (inst.operands[1].reg == REG_SP)
18579 as_tsktsk (MVE_BAD_SP);
18580 else if (inst.operands[1].reg == REG_PC)
18581 as_tsktsk (MVE_BAD_PC);
18582 }
18583
18584 /* Duplicate ARM register to lanes of vector. */
18585 NEON_ENCODE (ARMREG, inst);
18586 switch (et.size)
18587 {
18588 case 8: inst.instruction |= 0x400000; break;
18589 case 16: inst.instruction |= 0x000020; break;
18590 case 32: inst.instruction |= 0x000000; break;
18591 default: break;
18592 }
18593 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18594 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18595 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18596 inst.instruction |= neon_quad (rs) << 21;
18597 /* The encoding for this instruction is identical for the ARM and Thumb
18598 variants, except for the condition field. */
18599 do_vfp_cond_or_thumb ();
18600 }
18601 }
18602
18603 static void
18604 do_mve_mov (int toQ)
18605 {
18606 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18607 return;
18608 if (inst.cond > COND_ALWAYS)
18609 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18610
18611 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18612 if (toQ)
18613 {
18614 Q0 = 0;
18615 Q1 = 1;
18616 Rt = 2;
18617 Rt2 = 3;
18618 }
18619
18620 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18621 _("Index one must be [2,3] and index two must be two less than"
18622 " index one."));
18623 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18624 _("General purpose registers may not be the same"));
18625 constraint (inst.operands[Rt].reg == REG_SP
18626 || inst.operands[Rt2].reg == REG_SP,
18627 BAD_SP);
18628 constraint (inst.operands[Rt].reg == REG_PC
18629 || inst.operands[Rt2].reg == REG_PC,
18630 BAD_PC);
18631
18632 inst.instruction = 0xec000f00;
18633 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18634 inst.instruction |= !!toQ << 20;
18635 inst.instruction |= inst.operands[Rt2].reg << 16;
18636 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18637 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18638 inst.instruction |= inst.operands[Rt].reg;
18639 }
18640
18641 static void
18642 do_mve_movn (void)
18643 {
18644 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18645 return;
18646
18647 if (inst.cond > COND_ALWAYS)
18648 inst.pred_insn_type = INSIDE_VPT_INSN;
18649 else
18650 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18651
18652 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18653 | N_KEY);
18654
18655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18656 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18659 inst.instruction |= LOW4 (inst.operands[1].reg);
18660 inst.is_neon = 1;
18661
18662 }
18663
18664 /* VMOV has particularly many variations. It can be one of:
18665 0. VMOV<c><q> <Qd>, <Qm>
18666 1. VMOV<c><q> <Dd>, <Dm>
18667 (Register operations, which are VORR with Rm = Rn.)
18668 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18669 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18670 (Immediate loads.)
18671 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18672 (ARM register to scalar.)
18673 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18674 (Two ARM registers to vector.)
18675 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18676 (Scalar to ARM register.)
18677 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18678 (Vector to two ARM registers.)
18679 8. VMOV.F32 <Sd>, <Sm>
18680 9. VMOV.F64 <Dd>, <Dm>
18681 (VFP register moves.)
18682 10. VMOV.F32 <Sd>, #imm
18683 11. VMOV.F64 <Dd>, #imm
18684 (VFP float immediate load.)
18685 12. VMOV <Rd>, <Sm>
18686 (VFP single to ARM reg.)
18687 13. VMOV <Sd>, <Rm>
18688 (ARM reg to VFP single.)
18689 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18690 (Two ARM regs to two VFP singles.)
18691 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18692 (Two VFP singles to two ARM regs.)
18693 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18694 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18695 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18696 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18697
18698 These cases can be disambiguated using neon_select_shape, except cases 1/9
18699 and 3/11 which depend on the operand type too.
18700
18701 All the encoded bits are hardcoded by this function.
18702
18703 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18704 Cases 5, 7 may be used with VFPv2 and above.
18705
18706 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18707 can specify a type where it doesn't make sense to, and is ignored). */
18708
18709 static void
18710 do_neon_mov (void)
18711 {
18712 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18713 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18714 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18715 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18716 NS_NULL);
18717 struct neon_type_el et;
18718 const char *ldconst = 0;
18719
18720 switch (rs)
18721 {
18722 case NS_DD: /* case 1/9. */
18723 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18724 /* It is not an error here if no type is given. */
18725 inst.error = NULL;
18726 if (et.type == NT_float && et.size == 64)
18727 {
18728 do_vfp_nsyn_opcode ("fcpyd");
18729 break;
18730 }
18731 /* fall through. */
18732
18733 case NS_QQ: /* case 0/1. */
18734 {
18735 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18736 return;
18737 /* The architecture manual I have doesn't explicitly state which
18738 value the U bit should have for register->register moves, but
18739 the equivalent VORR instruction has U = 0, so do that. */
18740 inst.instruction = 0x0200110;
18741 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18742 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18743 inst.instruction |= LOW4 (inst.operands[1].reg);
18744 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18745 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18746 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18747 inst.instruction |= neon_quad (rs) << 6;
18748
18749 neon_dp_fixup (&inst);
18750 }
18751 break;
18752
18753 case NS_DI: /* case 3/11. */
18754 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18755 inst.error = NULL;
18756 if (et.type == NT_float && et.size == 64)
18757 {
18758 /* case 11 (fconstd). */
18759 ldconst = "fconstd";
18760 goto encode_fconstd;
18761 }
18762 /* fall through. */
18763
18764 case NS_QI: /* case 2/3. */
18765 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18766 return;
18767 inst.instruction = 0x0800010;
18768 neon_move_immediate ();
18769 neon_dp_fixup (&inst);
18770 break;
18771
18772 case NS_SR: /* case 4. */
18773 {
18774 unsigned bcdebits = 0;
18775 int logsize;
18776 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18777 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18778
18779 /* .<size> is optional here, defaulting to .32. */
18780 if (inst.vectype.elems == 0
18781 && inst.operands[0].vectype.type == NT_invtype
18782 && inst.operands[1].vectype.type == NT_invtype)
18783 {
18784 inst.vectype.el[0].type = NT_untyped;
18785 inst.vectype.el[0].size = 32;
18786 inst.vectype.elems = 1;
18787 }
18788
18789 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18790 logsize = neon_logbits (et.size);
18791
18792 if (et.size != 32)
18793 {
18794 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18795 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18796 return;
18797 }
18798 else
18799 {
18800 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18801 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18802 _(BAD_FPU));
18803 }
18804
18805 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18806 {
18807 if (inst.operands[1].reg == REG_SP)
18808 as_tsktsk (MVE_BAD_SP);
18809 else if (inst.operands[1].reg == REG_PC)
18810 as_tsktsk (MVE_BAD_PC);
18811 }
18812 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18813
18814 constraint (et.type == NT_invtype, _("bad type for scalar"));
18815 constraint (x >= size / et.size, _("scalar index out of range"));
18816
18817
18818 switch (et.size)
18819 {
18820 case 8: bcdebits = 0x8; break;
18821 case 16: bcdebits = 0x1; break;
18822 case 32: bcdebits = 0x0; break;
18823 default: ;
18824 }
18825
18826 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18827
18828 inst.instruction = 0xe000b10;
18829 do_vfp_cond_or_thumb ();
18830 inst.instruction |= LOW4 (dn) << 16;
18831 inst.instruction |= HI1 (dn) << 7;
18832 inst.instruction |= inst.operands[1].reg << 12;
18833 inst.instruction |= (bcdebits & 3) << 5;
18834 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18835 inst.instruction |= (x >> (3-logsize)) << 16;
18836 }
18837 break;
18838
18839 case NS_DRR: /* case 5 (fmdrr). */
18840 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18841 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18842 _(BAD_FPU));
18843
18844 inst.instruction = 0xc400b10;
18845 do_vfp_cond_or_thumb ();
18846 inst.instruction |= LOW4 (inst.operands[0].reg);
18847 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18848 inst.instruction |= inst.operands[1].reg << 12;
18849 inst.instruction |= inst.operands[2].reg << 16;
18850 break;
18851
18852 case NS_RS: /* case 6. */
18853 {
18854 unsigned logsize;
18855 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18856 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18857 unsigned abcdebits = 0;
18858
18859 /* .<dt> is optional here, defaulting to .32. */
18860 if (inst.vectype.elems == 0
18861 && inst.operands[0].vectype.type == NT_invtype
18862 && inst.operands[1].vectype.type == NT_invtype)
18863 {
18864 inst.vectype.el[0].type = NT_untyped;
18865 inst.vectype.el[0].size = 32;
18866 inst.vectype.elems = 1;
18867 }
18868
18869 et = neon_check_type (2, NS_NULL,
18870 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18871 logsize = neon_logbits (et.size);
18872
18873 if (et.size != 32)
18874 {
18875 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18876 && vfp_or_neon_is_neon (NEON_CHECK_CC
18877 | NEON_CHECK_ARCH) == FAIL)
18878 return;
18879 }
18880 else
18881 {
18882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18883 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18884 _(BAD_FPU));
18885 }
18886
18887 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18888 {
18889 if (inst.operands[0].reg == REG_SP)
18890 as_tsktsk (MVE_BAD_SP);
18891 else if (inst.operands[0].reg == REG_PC)
18892 as_tsktsk (MVE_BAD_PC);
18893 }
18894
18895 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18896
18897 constraint (et.type == NT_invtype, _("bad type for scalar"));
18898 constraint (x >= size / et.size, _("scalar index out of range"));
18899
18900 switch (et.size)
18901 {
18902 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18903 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18904 case 32: abcdebits = 0x00; break;
18905 default: ;
18906 }
18907
18908 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18909 inst.instruction = 0xe100b10;
18910 do_vfp_cond_or_thumb ();
18911 inst.instruction |= LOW4 (dn) << 16;
18912 inst.instruction |= HI1 (dn) << 7;
18913 inst.instruction |= inst.operands[0].reg << 12;
18914 inst.instruction |= (abcdebits & 3) << 5;
18915 inst.instruction |= (abcdebits >> 2) << 21;
18916 inst.instruction |= (x >> (3-logsize)) << 16;
18917 }
18918 break;
18919
18920 case NS_RRD: /* case 7 (fmrrd). */
18921 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18922 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18923 _(BAD_FPU));
18924
18925 inst.instruction = 0xc500b10;
18926 do_vfp_cond_or_thumb ();
18927 inst.instruction |= inst.operands[0].reg << 12;
18928 inst.instruction |= inst.operands[1].reg << 16;
18929 inst.instruction |= LOW4 (inst.operands[2].reg);
18930 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18931 break;
18932
18933 case NS_FF: /* case 8 (fcpys). */
18934 do_vfp_nsyn_opcode ("fcpys");
18935 break;
18936
18937 case NS_HI:
18938 case NS_FI: /* case 10 (fconsts). */
18939 ldconst = "fconsts";
18940 encode_fconstd:
18941 if (!inst.operands[1].immisfloat)
18942 {
18943 unsigned new_imm;
18944 /* Immediate has to fit in 8 bits so float is enough. */
18945 float imm = (float) inst.operands[1].imm;
18946 memcpy (&new_imm, &imm, sizeof (float));
18947 /* But the assembly may have been written to provide an integer
18948 bit pattern that equates to a float, so check that the
18949 conversion has worked. */
18950 if (is_quarter_float (new_imm))
18951 {
18952 if (is_quarter_float (inst.operands[1].imm))
18953 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18954
18955 inst.operands[1].imm = new_imm;
18956 inst.operands[1].immisfloat = 1;
18957 }
18958 }
18959
18960 if (is_quarter_float (inst.operands[1].imm))
18961 {
18962 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18963 do_vfp_nsyn_opcode (ldconst);
18964
18965 /* ARMv8.2 fp16 vmov.f16 instruction. */
18966 if (rs == NS_HI)
18967 do_scalar_fp16_v82_encode ();
18968 }
18969 else
18970 first_error (_("immediate out of range"));
18971 break;
18972
18973 case NS_RH:
18974 case NS_RF: /* case 12 (fmrs). */
18975 do_vfp_nsyn_opcode ("fmrs");
18976 /* ARMv8.2 fp16 vmov.f16 instruction. */
18977 if (rs == NS_RH)
18978 do_scalar_fp16_v82_encode ();
18979 break;
18980
18981 case NS_HR:
18982 case NS_FR: /* case 13 (fmsr). */
18983 do_vfp_nsyn_opcode ("fmsr");
18984 /* ARMv8.2 fp16 vmov.f16 instruction. */
18985 if (rs == NS_HR)
18986 do_scalar_fp16_v82_encode ();
18987 break;
18988
18989 case NS_RRSS:
18990 do_mve_mov (0);
18991 break;
18992 case NS_SSRR:
18993 do_mve_mov (1);
18994 break;
18995
18996 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18997 (one of which is a list), but we have parsed four. Do some fiddling to
18998 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18999 expect. */
19000 case NS_RRFF: /* case 14 (fmrrs). */
19001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19002 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19003 _(BAD_FPU));
19004 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19005 _("VFP registers must be adjacent"));
19006 inst.operands[2].imm = 2;
19007 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19008 do_vfp_nsyn_opcode ("fmrrs");
19009 break;
19010
19011 case NS_FFRR: /* case 15 (fmsrr). */
19012 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19013 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19014 _(BAD_FPU));
19015 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19016 _("VFP registers must be adjacent"));
19017 inst.operands[1] = inst.operands[2];
19018 inst.operands[2] = inst.operands[3];
19019 inst.operands[0].imm = 2;
19020 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19021 do_vfp_nsyn_opcode ("fmsrr");
19022 break;
19023
19024 case NS_NULL:
19025 /* neon_select_shape has determined that the instruction
19026 shape is wrong and has already set the error message. */
19027 break;
19028
19029 default:
19030 abort ();
19031 }
19032 }
19033
19034 static void
19035 do_mve_movl (void)
19036 {
19037 if (!(inst.operands[0].present && inst.operands[0].isquad
19038 && inst.operands[1].present && inst.operands[1].isquad
19039 && !inst.operands[2].present))
19040 {
19041 inst.instruction = 0;
19042 inst.cond = 0xb;
19043 if (thumb_mode)
19044 set_pred_insn_type (INSIDE_IT_INSN);
19045 do_neon_mov ();
19046 return;
19047 }
19048
19049 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19050 return;
19051
19052 if (inst.cond != COND_ALWAYS)
19053 inst.pred_insn_type = INSIDE_VPT_INSN;
19054
19055 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19056 | N_S16 | N_U16 | N_KEY);
19057
19058 inst.instruction |= (et.type == NT_unsigned) << 28;
19059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19060 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19062 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19063 inst.instruction |= LOW4 (inst.operands[1].reg);
19064 inst.is_neon = 1;
19065 }
19066
19067 static void
19068 do_neon_rshift_round_imm (void)
19069 {
19070 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19071 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19072 int imm = inst.operands[2].imm;
19073
19074 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19075 if (imm == 0)
19076 {
19077 inst.operands[2].present = 0;
19078 do_neon_mov ();
19079 return;
19080 }
19081
19082 constraint (imm < 1 || (unsigned)imm > et.size,
19083 _("immediate out of range for shift"));
19084 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19085 et.size - imm);
19086 }
19087
19088 static void
19089 do_neon_movhf (void)
19090 {
19091 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19092 constraint (rs != NS_HH, _("invalid suffix"));
19093
19094 if (inst.cond != COND_ALWAYS)
19095 {
19096 if (thumb_mode)
19097 {
19098 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19099 " the behaviour is UNPREDICTABLE"));
19100 }
19101 else
19102 {
19103 inst.error = BAD_COND;
19104 return;
19105 }
19106 }
19107
19108 do_vfp_sp_monadic ();
19109
19110 inst.is_neon = 1;
19111 inst.instruction |= 0xf0000000;
19112 }
19113
19114 static void
19115 do_neon_movl (void)
19116 {
19117 struct neon_type_el et = neon_check_type (2, NS_QD,
19118 N_EQK | N_DBL, N_SU_32 | N_KEY);
19119 unsigned sizebits = et.size >> 3;
19120 inst.instruction |= sizebits << 19;
19121 neon_two_same (0, et.type == NT_unsigned, -1);
19122 }
19123
19124 static void
19125 do_neon_trn (void)
19126 {
19127 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19128 struct neon_type_el et = neon_check_type (2, rs,
19129 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19130 NEON_ENCODE (INTEGER, inst);
19131 neon_two_same (neon_quad (rs), 1, et.size);
19132 }
19133
19134 static void
19135 do_neon_zip_uzp (void)
19136 {
19137 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19138 struct neon_type_el et = neon_check_type (2, rs,
19139 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19140 if (rs == NS_DD && et.size == 32)
19141 {
19142 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19143 inst.instruction = N_MNEM_vtrn;
19144 do_neon_trn ();
19145 return;
19146 }
19147 neon_two_same (neon_quad (rs), 1, et.size);
19148 }
19149
19150 static void
19151 do_neon_sat_abs_neg (void)
19152 {
19153 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19154 struct neon_type_el et = neon_check_type (2, rs,
19155 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19156 neon_two_same (neon_quad (rs), 1, et.size);
19157 }
19158
19159 static void
19160 do_neon_pair_long (void)
19161 {
19162 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19163 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19164 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19165 inst.instruction |= (et.type == NT_unsigned) << 7;
19166 neon_two_same (neon_quad (rs), 1, et.size);
19167 }
19168
19169 static void
19170 do_neon_recip_est (void)
19171 {
19172 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19173 struct neon_type_el et = neon_check_type (2, rs,
19174 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19175 inst.instruction |= (et.type == NT_float) << 8;
19176 neon_two_same (neon_quad (rs), 1, et.size);
19177 }
19178
19179 static void
19180 do_neon_cls (void)
19181 {
19182 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19183 return;
19184
19185 enum neon_shape rs;
19186 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19187 rs = neon_select_shape (NS_QQ, NS_NULL);
19188 else
19189 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19190
19191 struct neon_type_el et = neon_check_type (2, rs,
19192 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19193 neon_two_same (neon_quad (rs), 1, et.size);
19194 }
19195
19196 static void
19197 do_neon_clz (void)
19198 {
19199 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19200 return;
19201
19202 enum neon_shape rs;
19203 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19204 rs = neon_select_shape (NS_QQ, NS_NULL);
19205 else
19206 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19207
19208 struct neon_type_el et = neon_check_type (2, rs,
19209 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19210 neon_two_same (neon_quad (rs), 1, et.size);
19211 }
19212
19213 static void
19214 do_neon_cnt (void)
19215 {
19216 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19217 struct neon_type_el et = neon_check_type (2, rs,
19218 N_EQK | N_INT, N_8 | N_KEY);
19219 neon_two_same (neon_quad (rs), 1, et.size);
19220 }
19221
19222 static void
19223 do_neon_swp (void)
19224 {
19225 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19226 neon_two_same (neon_quad (rs), 1, -1);
19227 }
19228
19229 static void
19230 do_neon_tbl_tbx (void)
19231 {
19232 unsigned listlenbits;
19233 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19234
19235 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19236 {
19237 first_error (_("bad list length for table lookup"));
19238 return;
19239 }
19240
19241 listlenbits = inst.operands[1].imm - 1;
19242 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19243 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19244 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19245 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19246 inst.instruction |= LOW4 (inst.operands[2].reg);
19247 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19248 inst.instruction |= listlenbits << 8;
19249
19250 neon_dp_fixup (&inst);
19251 }
19252
19253 static void
19254 do_neon_ldm_stm (void)
19255 {
19256 /* P, U and L bits are part of bitmask. */
19257 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19258 unsigned offsetbits = inst.operands[1].imm * 2;
19259
19260 if (inst.operands[1].issingle)
19261 {
19262 do_vfp_nsyn_ldm_stm (is_dbmode);
19263 return;
19264 }
19265
19266 constraint (is_dbmode && !inst.operands[0].writeback,
19267 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19268
19269 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19270 _("register list must contain at least 1 and at most 16 "
19271 "registers"));
19272
19273 inst.instruction |= inst.operands[0].reg << 16;
19274 inst.instruction |= inst.operands[0].writeback << 21;
19275 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19276 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19277
19278 inst.instruction |= offsetbits;
19279
19280 do_vfp_cond_or_thumb ();
19281 }
19282
19283 static void
19284 do_neon_ldr_str (void)
19285 {
19286 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19287
19288 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19289 And is UNPREDICTABLE in thumb mode. */
19290 if (!is_ldr
19291 && inst.operands[1].reg == REG_PC
19292 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19293 {
19294 if (thumb_mode)
19295 inst.error = _("Use of PC here is UNPREDICTABLE");
19296 else if (warn_on_deprecated)
19297 as_tsktsk (_("Use of PC here is deprecated"));
19298 }
19299
19300 if (inst.operands[0].issingle)
19301 {
19302 if (is_ldr)
19303 do_vfp_nsyn_opcode ("flds");
19304 else
19305 do_vfp_nsyn_opcode ("fsts");
19306
19307 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19308 if (inst.vectype.el[0].size == 16)
19309 do_scalar_fp16_v82_encode ();
19310 }
19311 else
19312 {
19313 if (is_ldr)
19314 do_vfp_nsyn_opcode ("fldd");
19315 else
19316 do_vfp_nsyn_opcode ("fstd");
19317 }
19318 }
19319
19320 static void
19321 do_t_vldr_vstr_sysreg (void)
19322 {
19323 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19324 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19325
19326 /* Use of PC is UNPREDICTABLE. */
19327 if (inst.operands[1].reg == REG_PC)
19328 inst.error = _("Use of PC here is UNPREDICTABLE");
19329
19330 if (inst.operands[1].immisreg)
19331 inst.error = _("instruction does not accept register index");
19332
19333 if (!inst.operands[1].isreg)
19334 inst.error = _("instruction does not accept PC-relative addressing");
19335
19336 if (abs (inst.operands[1].imm) >= (1 << 7))
19337 inst.error = _("immediate value out of range");
19338
19339 inst.instruction = 0xec000f80;
19340 if (is_vldr)
19341 inst.instruction |= 1 << sysreg_vldr_bitno;
19342 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19343 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19344 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19345 }
19346
19347 static void
19348 do_vldr_vstr (void)
19349 {
19350 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19351
19352 /* VLDR/VSTR (System Register). */
19353 if (sysreg_op)
19354 {
19355 if (!mark_feature_used (&arm_ext_v8_1m_main))
19356 as_bad (_("Instruction not permitted on this architecture"));
19357
19358 do_t_vldr_vstr_sysreg ();
19359 }
19360 /* VLDR/VSTR. */
19361 else
19362 {
19363 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19364 as_bad (_("Instruction not permitted on this architecture"));
19365 do_neon_ldr_str ();
19366 }
19367 }
19368
19369 /* "interleave" version also handles non-interleaving register VLD1/VST1
19370 instructions. */
19371
19372 static void
19373 do_neon_ld_st_interleave (void)
19374 {
19375 struct neon_type_el et = neon_check_type (1, NS_NULL,
19376 N_8 | N_16 | N_32 | N_64);
19377 unsigned alignbits = 0;
19378 unsigned idx;
19379 /* The bits in this table go:
19380 0: register stride of one (0) or two (1)
19381 1,2: register list length, minus one (1, 2, 3, 4).
19382 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19383 We use -1 for invalid entries. */
19384 const int typetable[] =
19385 {
19386 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19387 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19388 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19389 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19390 };
19391 int typebits;
19392
19393 if (et.type == NT_invtype)
19394 return;
19395
19396 if (inst.operands[1].immisalign)
19397 switch (inst.operands[1].imm >> 8)
19398 {
19399 case 64: alignbits = 1; break;
19400 case 128:
19401 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19402 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19403 goto bad_alignment;
19404 alignbits = 2;
19405 break;
19406 case 256:
19407 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19408 goto bad_alignment;
19409 alignbits = 3;
19410 break;
19411 default:
19412 bad_alignment:
19413 first_error (_("bad alignment"));
19414 return;
19415 }
19416
19417 inst.instruction |= alignbits << 4;
19418 inst.instruction |= neon_logbits (et.size) << 6;
19419
19420 /* Bits [4:6] of the immediate in a list specifier encode register stride
19421 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19422 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19423 up the right value for "type" in a table based on this value and the given
19424 list style, then stick it back. */
19425 idx = ((inst.operands[0].imm >> 4) & 7)
19426 | (((inst.instruction >> 8) & 3) << 3);
19427
19428 typebits = typetable[idx];
19429
19430 constraint (typebits == -1, _("bad list type for instruction"));
19431 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19432 BAD_EL_TYPE);
19433
19434 inst.instruction &= ~0xf00;
19435 inst.instruction |= typebits << 8;
19436 }
19437
19438 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19439 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19440 otherwise. The variable arguments are a list of pairs of legal (size, align)
19441 values, terminated with -1. */
19442
19443 static int
19444 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19445 {
19446 va_list ap;
19447 int result = FAIL, thissize, thisalign;
19448
19449 if (!inst.operands[1].immisalign)
19450 {
19451 *do_alignment = 0;
19452 return SUCCESS;
19453 }
19454
19455 va_start (ap, do_alignment);
19456
19457 do
19458 {
19459 thissize = va_arg (ap, int);
19460 if (thissize == -1)
19461 break;
19462 thisalign = va_arg (ap, int);
19463
19464 if (size == thissize && align == thisalign)
19465 result = SUCCESS;
19466 }
19467 while (result != SUCCESS);
19468
19469 va_end (ap);
19470
19471 if (result == SUCCESS)
19472 *do_alignment = 1;
19473 else
19474 first_error (_("unsupported alignment for instruction"));
19475
19476 return result;
19477 }
19478
19479 static void
19480 do_neon_ld_st_lane (void)
19481 {
19482 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19483 int align_good, do_alignment = 0;
19484 int logsize = neon_logbits (et.size);
19485 int align = inst.operands[1].imm >> 8;
19486 int n = (inst.instruction >> 8) & 3;
19487 int max_el = 64 / et.size;
19488
19489 if (et.type == NT_invtype)
19490 return;
19491
19492 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19493 _("bad list length"));
19494 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19495 _("scalar index out of range"));
19496 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19497 && et.size == 8,
19498 _("stride of 2 unavailable when element size is 8"));
19499
19500 switch (n)
19501 {
19502 case 0: /* VLD1 / VST1. */
19503 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19504 32, 32, -1);
19505 if (align_good == FAIL)
19506 return;
19507 if (do_alignment)
19508 {
19509 unsigned alignbits = 0;
19510 switch (et.size)
19511 {
19512 case 16: alignbits = 0x1; break;
19513 case 32: alignbits = 0x3; break;
19514 default: ;
19515 }
19516 inst.instruction |= alignbits << 4;
19517 }
19518 break;
19519
19520 case 1: /* VLD2 / VST2. */
19521 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19522 16, 32, 32, 64, -1);
19523 if (align_good == FAIL)
19524 return;
19525 if (do_alignment)
19526 inst.instruction |= 1 << 4;
19527 break;
19528
19529 case 2: /* VLD3 / VST3. */
19530 constraint (inst.operands[1].immisalign,
19531 _("can't use alignment with this instruction"));
19532 break;
19533
19534 case 3: /* VLD4 / VST4. */
19535 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19536 16, 64, 32, 64, 32, 128, -1);
19537 if (align_good == FAIL)
19538 return;
19539 if (do_alignment)
19540 {
19541 unsigned alignbits = 0;
19542 switch (et.size)
19543 {
19544 case 8: alignbits = 0x1; break;
19545 case 16: alignbits = 0x1; break;
19546 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19547 default: ;
19548 }
19549 inst.instruction |= alignbits << 4;
19550 }
19551 break;
19552
19553 default: ;
19554 }
19555
19556 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19557 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19558 inst.instruction |= 1 << (4 + logsize);
19559
19560 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19561 inst.instruction |= logsize << 10;
19562 }
19563
19564 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19565
19566 static void
19567 do_neon_ld_dup (void)
19568 {
19569 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19570 int align_good, do_alignment = 0;
19571
19572 if (et.type == NT_invtype)
19573 return;
19574
19575 switch ((inst.instruction >> 8) & 3)
19576 {
19577 case 0: /* VLD1. */
19578 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19579 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19580 &do_alignment, 16, 16, 32, 32, -1);
19581 if (align_good == FAIL)
19582 return;
19583 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19584 {
19585 case 1: break;
19586 case 2: inst.instruction |= 1 << 5; break;
19587 default: first_error (_("bad list length")); return;
19588 }
19589 inst.instruction |= neon_logbits (et.size) << 6;
19590 break;
19591
19592 case 1: /* VLD2. */
19593 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19594 &do_alignment, 8, 16, 16, 32, 32, 64,
19595 -1);
19596 if (align_good == FAIL)
19597 return;
19598 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19599 _("bad list length"));
19600 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19601 inst.instruction |= 1 << 5;
19602 inst.instruction |= neon_logbits (et.size) << 6;
19603 break;
19604
19605 case 2: /* VLD3. */
19606 constraint (inst.operands[1].immisalign,
19607 _("can't use alignment with this instruction"));
19608 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19609 _("bad list length"));
19610 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19611 inst.instruction |= 1 << 5;
19612 inst.instruction |= neon_logbits (et.size) << 6;
19613 break;
19614
19615 case 3: /* VLD4. */
19616 {
19617 int align = inst.operands[1].imm >> 8;
19618 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19619 16, 64, 32, 64, 32, 128, -1);
19620 if (align_good == FAIL)
19621 return;
19622 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19623 _("bad list length"));
19624 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19625 inst.instruction |= 1 << 5;
19626 if (et.size == 32 && align == 128)
19627 inst.instruction |= 0x3 << 6;
19628 else
19629 inst.instruction |= neon_logbits (et.size) << 6;
19630 }
19631 break;
19632
19633 default: ;
19634 }
19635
19636 inst.instruction |= do_alignment << 4;
19637 }
19638
19639 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19640 apart from bits [11:4]. */
19641
19642 static void
19643 do_neon_ldx_stx (void)
19644 {
19645 if (inst.operands[1].isreg)
19646 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19647
19648 switch (NEON_LANE (inst.operands[0].imm))
19649 {
19650 case NEON_INTERLEAVE_LANES:
19651 NEON_ENCODE (INTERLV, inst);
19652 do_neon_ld_st_interleave ();
19653 break;
19654
19655 case NEON_ALL_LANES:
19656 NEON_ENCODE (DUP, inst);
19657 if (inst.instruction == N_INV)
19658 {
19659 first_error ("only loads support such operands");
19660 break;
19661 }
19662 do_neon_ld_dup ();
19663 break;
19664
19665 default:
19666 NEON_ENCODE (LANE, inst);
19667 do_neon_ld_st_lane ();
19668 }
19669
19670 /* L bit comes from bit mask. */
19671 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19672 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19673 inst.instruction |= inst.operands[1].reg << 16;
19674
19675 if (inst.operands[1].postind)
19676 {
19677 int postreg = inst.operands[1].imm & 0xf;
19678 constraint (!inst.operands[1].immisreg,
19679 _("post-index must be a register"));
19680 constraint (postreg == 0xd || postreg == 0xf,
19681 _("bad register for post-index"));
19682 inst.instruction |= postreg;
19683 }
19684 else
19685 {
19686 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19687 constraint (inst.relocs[0].exp.X_op != O_constant
19688 || inst.relocs[0].exp.X_add_number != 0,
19689 BAD_ADDR_MODE);
19690
19691 if (inst.operands[1].writeback)
19692 {
19693 inst.instruction |= 0xd;
19694 }
19695 else
19696 inst.instruction |= 0xf;
19697 }
19698
19699 if (thumb_mode)
19700 inst.instruction |= 0xf9000000;
19701 else
19702 inst.instruction |= 0xf4000000;
19703 }
19704
19705 /* FP v8. */
19706 static void
19707 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19708 {
19709 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19710 D register operands. */
19711 if (neon_shape_class[rs] == SC_DOUBLE)
19712 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19713 _(BAD_FPU));
19714
19715 NEON_ENCODE (FPV8, inst);
19716
19717 if (rs == NS_FFF || rs == NS_HHH)
19718 {
19719 do_vfp_sp_dyadic ();
19720
19721 /* ARMv8.2 fp16 instruction. */
19722 if (rs == NS_HHH)
19723 do_scalar_fp16_v82_encode ();
19724 }
19725 else
19726 do_vfp_dp_rd_rn_rm ();
19727
19728 if (rs == NS_DDD)
19729 inst.instruction |= 0x100;
19730
19731 inst.instruction |= 0xf0000000;
19732 }
19733
19734 static void
19735 do_vsel (void)
19736 {
19737 set_pred_insn_type (OUTSIDE_PRED_INSN);
19738
19739 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19740 first_error (_("invalid instruction shape"));
19741 }
19742
19743 static void
19744 do_vmaxnm (void)
19745 {
19746 set_pred_insn_type (OUTSIDE_PRED_INSN);
19747
19748 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19749 return;
19750
19751 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19752 return;
19753
19754 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19755 }
19756
19757 static void
19758 do_vrint_1 (enum neon_cvt_mode mode)
19759 {
19760 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19761 struct neon_type_el et;
19762
19763 if (rs == NS_NULL)
19764 return;
19765
19766 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19767 D register operands. */
19768 if (neon_shape_class[rs] == SC_DOUBLE)
19769 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19770 _(BAD_FPU));
19771
19772 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19773 | N_VFP);
19774 if (et.type != NT_invtype)
19775 {
19776 /* VFP encodings. */
19777 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19778 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19779 set_pred_insn_type (OUTSIDE_PRED_INSN);
19780
19781 NEON_ENCODE (FPV8, inst);
19782 if (rs == NS_FF || rs == NS_HH)
19783 do_vfp_sp_monadic ();
19784 else
19785 do_vfp_dp_rd_rm ();
19786
19787 switch (mode)
19788 {
19789 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19790 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19791 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19792 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19793 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19794 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19795 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19796 default: abort ();
19797 }
19798
19799 inst.instruction |= (rs == NS_DD) << 8;
19800 do_vfp_cond_or_thumb ();
19801
19802 /* ARMv8.2 fp16 vrint instruction. */
19803 if (rs == NS_HH)
19804 do_scalar_fp16_v82_encode ();
19805 }
19806 else
19807 {
19808 /* Neon encodings (or something broken...). */
19809 inst.error = NULL;
19810 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19811
19812 if (et.type == NT_invtype)
19813 return;
19814
19815 set_pred_insn_type (OUTSIDE_PRED_INSN);
19816 NEON_ENCODE (FLOAT, inst);
19817
19818 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19819 return;
19820
19821 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19822 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19823 inst.instruction |= LOW4 (inst.operands[1].reg);
19824 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19825 inst.instruction |= neon_quad (rs) << 6;
19826 /* Mask off the original size bits and reencode them. */
19827 inst.instruction = ((inst.instruction & 0xfff3ffff)
19828 | neon_logbits (et.size) << 18);
19829
19830 switch (mode)
19831 {
19832 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19833 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19834 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19835 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19836 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19837 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19838 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19839 default: abort ();
19840 }
19841
19842 if (thumb_mode)
19843 inst.instruction |= 0xfc000000;
19844 else
19845 inst.instruction |= 0xf0000000;
19846 }
19847 }
19848
19849 static void
19850 do_vrintx (void)
19851 {
19852 do_vrint_1 (neon_cvt_mode_x);
19853 }
19854
19855 static void
19856 do_vrintz (void)
19857 {
19858 do_vrint_1 (neon_cvt_mode_z);
19859 }
19860
19861 static void
19862 do_vrintr (void)
19863 {
19864 do_vrint_1 (neon_cvt_mode_r);
19865 }
19866
19867 static void
19868 do_vrinta (void)
19869 {
19870 do_vrint_1 (neon_cvt_mode_a);
19871 }
19872
19873 static void
19874 do_vrintn (void)
19875 {
19876 do_vrint_1 (neon_cvt_mode_n);
19877 }
19878
19879 static void
19880 do_vrintp (void)
19881 {
19882 do_vrint_1 (neon_cvt_mode_p);
19883 }
19884
19885 static void
19886 do_vrintm (void)
19887 {
19888 do_vrint_1 (neon_cvt_mode_m);
19889 }
19890
19891 static unsigned
19892 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19893 {
19894 unsigned regno = NEON_SCALAR_REG (opnd);
19895 unsigned elno = NEON_SCALAR_INDEX (opnd);
19896
19897 if (elsize == 16 && elno < 2 && regno < 16)
19898 return regno | (elno << 4);
19899 else if (elsize == 32 && elno == 0)
19900 return regno;
19901
19902 first_error (_("scalar out of range"));
19903 return 0;
19904 }
19905
19906 static void
19907 do_vcmla (void)
19908 {
19909 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19910 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19911 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19912 constraint (inst.relocs[0].exp.X_op != O_constant,
19913 _("expression too complex"));
19914 unsigned rot = inst.relocs[0].exp.X_add_number;
19915 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19916 _("immediate out of range"));
19917 rot /= 90;
19918
19919 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19920 return;
19921
19922 if (inst.operands[2].isscalar)
19923 {
19924 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19925 first_error (_("invalid instruction shape"));
19926 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19927 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19928 N_KEY | N_F16 | N_F32).size;
19929 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19930 inst.is_neon = 1;
19931 inst.instruction = 0xfe000800;
19932 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19933 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19934 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19935 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19936 inst.instruction |= LOW4 (m);
19937 inst.instruction |= HI1 (m) << 5;
19938 inst.instruction |= neon_quad (rs) << 6;
19939 inst.instruction |= rot << 20;
19940 inst.instruction |= (size == 32) << 23;
19941 }
19942 else
19943 {
19944 enum neon_shape rs;
19945 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19946 rs = neon_select_shape (NS_QQQI, NS_NULL);
19947 else
19948 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19949
19950 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19951 N_KEY | N_F16 | N_F32).size;
19952 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19953 && (inst.operands[0].reg == inst.operands[1].reg
19954 || inst.operands[0].reg == inst.operands[2].reg))
19955 as_tsktsk (BAD_MVE_SRCDEST);
19956
19957 neon_three_same (neon_quad (rs), 0, -1);
19958 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19959 inst.instruction |= 0xfc200800;
19960 inst.instruction |= rot << 23;
19961 inst.instruction |= (size == 32) << 20;
19962 }
19963 }
19964
19965 static void
19966 do_vcadd (void)
19967 {
19968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19969 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19970 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19971 constraint (inst.relocs[0].exp.X_op != O_constant,
19972 _("expression too complex"));
19973
19974 unsigned rot = inst.relocs[0].exp.X_add_number;
19975 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19976 enum neon_shape rs;
19977 struct neon_type_el et;
19978 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19979 {
19980 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19981 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19982 }
19983 else
19984 {
19985 rs = neon_select_shape (NS_QQQI, NS_NULL);
19986 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19987 | N_I16 | N_I32);
19988 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19989 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19990 "operand makes instruction UNPREDICTABLE"));
19991 }
19992
19993 if (et.type == NT_invtype)
19994 return;
19995
19996 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19997 | NEON_CHECK_CC))
19998 return;
19999
20000 if (et.type == NT_float)
20001 {
20002 neon_three_same (neon_quad (rs), 0, -1);
20003 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20004 inst.instruction |= 0xfc800800;
20005 inst.instruction |= (rot == 270) << 24;
20006 inst.instruction |= (et.size == 32) << 20;
20007 }
20008 else
20009 {
20010 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20011 inst.instruction = 0xfe000f00;
20012 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20013 inst.instruction |= neon_logbits (et.size) << 20;
20014 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20016 inst.instruction |= (rot == 270) << 12;
20017 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20018 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20019 inst.instruction |= LOW4 (inst.operands[2].reg);
20020 inst.is_neon = 1;
20021 }
20022 }
20023
20024 /* Dot Product instructions encoding support. */
20025
20026 static void
20027 do_neon_dotproduct (int unsigned_p)
20028 {
20029 enum neon_shape rs;
20030 unsigned scalar_oprd2 = 0;
20031 int high8;
20032
20033 if (inst.cond != COND_ALWAYS)
20034 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20035 "is UNPREDICTABLE"));
20036
20037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20038 _(BAD_FPU));
20039
20040 /* Dot Product instructions are in three-same D/Q register format or the third
20041 operand can be a scalar index register. */
20042 if (inst.operands[2].isscalar)
20043 {
20044 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20045 high8 = 0xfe000000;
20046 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20047 }
20048 else
20049 {
20050 high8 = 0xfc000000;
20051 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20052 }
20053
20054 if (unsigned_p)
20055 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20056 else
20057 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20058
20059 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20060 Product instruction, so we pass 0 as the "ubit" parameter. And the
20061 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20062 neon_three_same (neon_quad (rs), 0, 32);
20063
20064 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20065 different NEON three-same encoding. */
20066 inst.instruction &= 0x00ffffff;
20067 inst.instruction |= high8;
20068 /* Encode 'U' bit which indicates signedness. */
20069 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20070 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20071 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20072 the instruction encoding. */
20073 if (inst.operands[2].isscalar)
20074 {
20075 inst.instruction &= 0xffffffd0;
20076 inst.instruction |= LOW4 (scalar_oprd2);
20077 inst.instruction |= HI1 (scalar_oprd2) << 5;
20078 }
20079 }
20080
20081 /* Dot Product instructions for signed integer. */
20082
20083 static void
20084 do_neon_dotproduct_s (void)
20085 {
20086 return do_neon_dotproduct (0);
20087 }
20088
20089 /* Dot Product instructions for unsigned integer. */
20090
20091 static void
20092 do_neon_dotproduct_u (void)
20093 {
20094 return do_neon_dotproduct (1);
20095 }
20096
20097 /* Crypto v1 instructions. */
20098 static void
20099 do_crypto_2op_1 (unsigned elttype, int op)
20100 {
20101 set_pred_insn_type (OUTSIDE_PRED_INSN);
20102
20103 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20104 == NT_invtype)
20105 return;
20106
20107 inst.error = NULL;
20108
20109 NEON_ENCODE (INTEGER, inst);
20110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20112 inst.instruction |= LOW4 (inst.operands[1].reg);
20113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20114 if (op != -1)
20115 inst.instruction |= op << 6;
20116
20117 if (thumb_mode)
20118 inst.instruction |= 0xfc000000;
20119 else
20120 inst.instruction |= 0xf0000000;
20121 }
20122
20123 static void
20124 do_crypto_3op_1 (int u, int op)
20125 {
20126 set_pred_insn_type (OUTSIDE_PRED_INSN);
20127
20128 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20129 N_32 | N_UNT | N_KEY).type == NT_invtype)
20130 return;
20131
20132 inst.error = NULL;
20133
20134 NEON_ENCODE (INTEGER, inst);
20135 neon_three_same (1, u, 8 << op);
20136 }
20137
20138 static void
20139 do_aese (void)
20140 {
20141 do_crypto_2op_1 (N_8, 0);
20142 }
20143
20144 static void
20145 do_aesd (void)
20146 {
20147 do_crypto_2op_1 (N_8, 1);
20148 }
20149
20150 static void
20151 do_aesmc (void)
20152 {
20153 do_crypto_2op_1 (N_8, 2);
20154 }
20155
20156 static void
20157 do_aesimc (void)
20158 {
20159 do_crypto_2op_1 (N_8, 3);
20160 }
20161
20162 static void
20163 do_sha1c (void)
20164 {
20165 do_crypto_3op_1 (0, 0);
20166 }
20167
20168 static void
20169 do_sha1p (void)
20170 {
20171 do_crypto_3op_1 (0, 1);
20172 }
20173
20174 static void
20175 do_sha1m (void)
20176 {
20177 do_crypto_3op_1 (0, 2);
20178 }
20179
20180 static void
20181 do_sha1su0 (void)
20182 {
20183 do_crypto_3op_1 (0, 3);
20184 }
20185
20186 static void
20187 do_sha256h (void)
20188 {
20189 do_crypto_3op_1 (1, 0);
20190 }
20191
20192 static void
20193 do_sha256h2 (void)
20194 {
20195 do_crypto_3op_1 (1, 1);
20196 }
20197
20198 static void
20199 do_sha256su1 (void)
20200 {
20201 do_crypto_3op_1 (1, 2);
20202 }
20203
20204 static void
20205 do_sha1h (void)
20206 {
20207 do_crypto_2op_1 (N_32, -1);
20208 }
20209
20210 static void
20211 do_sha1su1 (void)
20212 {
20213 do_crypto_2op_1 (N_32, 0);
20214 }
20215
20216 static void
20217 do_sha256su0 (void)
20218 {
20219 do_crypto_2op_1 (N_32, 1);
20220 }
20221
20222 static void
20223 do_crc32_1 (unsigned int poly, unsigned int sz)
20224 {
20225 unsigned int Rd = inst.operands[0].reg;
20226 unsigned int Rn = inst.operands[1].reg;
20227 unsigned int Rm = inst.operands[2].reg;
20228
20229 set_pred_insn_type (OUTSIDE_PRED_INSN);
20230 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20231 inst.instruction |= LOW4 (Rn) << 16;
20232 inst.instruction |= LOW4 (Rm);
20233 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20234 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20235
20236 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20237 as_warn (UNPRED_REG ("r15"));
20238 }
20239
20240 static void
20241 do_crc32b (void)
20242 {
20243 do_crc32_1 (0, 0);
20244 }
20245
20246 static void
20247 do_crc32h (void)
20248 {
20249 do_crc32_1 (0, 1);
20250 }
20251
20252 static void
20253 do_crc32w (void)
20254 {
20255 do_crc32_1 (0, 2);
20256 }
20257
20258 static void
20259 do_crc32cb (void)
20260 {
20261 do_crc32_1 (1, 0);
20262 }
20263
20264 static void
20265 do_crc32ch (void)
20266 {
20267 do_crc32_1 (1, 1);
20268 }
20269
20270 static void
20271 do_crc32cw (void)
20272 {
20273 do_crc32_1 (1, 2);
20274 }
20275
20276 static void
20277 do_vjcvt (void)
20278 {
20279 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20280 _(BAD_FPU));
20281 neon_check_type (2, NS_FD, N_S32, N_F64);
20282 do_vfp_sp_dp_cvt ();
20283 do_vfp_cond_or_thumb ();
20284 }
20285
20286 \f
20287 /* Overall per-instruction processing. */
20288
20289 /* We need to be able to fix up arbitrary expressions in some statements.
20290 This is so that we can handle symbols that are an arbitrary distance from
20291 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20292 which returns part of an address in a form which will be valid for
20293 a data instruction. We do this by pushing the expression into a symbol
20294 in the expr_section, and creating a fix for that. */
20295
20296 static void
20297 fix_new_arm (fragS * frag,
20298 int where,
20299 short int size,
20300 expressionS * exp,
20301 int pc_rel,
20302 int reloc)
20303 {
20304 fixS * new_fix;
20305
20306 switch (exp->X_op)
20307 {
20308 case O_constant:
20309 if (pc_rel)
20310 {
20311 /* Create an absolute valued symbol, so we have something to
20312 refer to in the object file. Unfortunately for us, gas's
20313 generic expression parsing will already have folded out
20314 any use of .set foo/.type foo %function that may have
20315 been used to set type information of the target location,
20316 that's being specified symbolically. We have to presume
20317 the user knows what they are doing. */
20318 char name[16 + 8];
20319 symbolS *symbol;
20320
20321 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20322
20323 symbol = symbol_find_or_make (name);
20324 S_SET_SEGMENT (symbol, absolute_section);
20325 symbol_set_frag (symbol, &zero_address_frag);
20326 S_SET_VALUE (symbol, exp->X_add_number);
20327 exp->X_op = O_symbol;
20328 exp->X_add_symbol = symbol;
20329 exp->X_add_number = 0;
20330 }
20331 /* FALLTHROUGH */
20332 case O_symbol:
20333 case O_add:
20334 case O_subtract:
20335 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20336 (enum bfd_reloc_code_real) reloc);
20337 break;
20338
20339 default:
20340 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20341 pc_rel, (enum bfd_reloc_code_real) reloc);
20342 break;
20343 }
20344
20345 /* Mark whether the fix is to a THUMB instruction, or an ARM
20346 instruction. */
20347 new_fix->tc_fix_data = thumb_mode;
20348 }
20349
20350 /* Create a frg for an instruction requiring relaxation. */
20351 static void
20352 output_relax_insn (void)
20353 {
20354 char * to;
20355 symbolS *sym;
20356 int offset;
20357
20358 /* The size of the instruction is unknown, so tie the debug info to the
20359 start of the instruction. */
20360 dwarf2_emit_insn (0);
20361
20362 switch (inst.relocs[0].exp.X_op)
20363 {
20364 case O_symbol:
20365 sym = inst.relocs[0].exp.X_add_symbol;
20366 offset = inst.relocs[0].exp.X_add_number;
20367 break;
20368 case O_constant:
20369 sym = NULL;
20370 offset = inst.relocs[0].exp.X_add_number;
20371 break;
20372 default:
20373 sym = make_expr_symbol (&inst.relocs[0].exp);
20374 offset = 0;
20375 break;
20376 }
20377 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20378 inst.relax, sym, offset, NULL/*offset, opcode*/);
20379 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20380 }
20381
20382 /* Write a 32-bit thumb instruction to buf. */
20383 static void
20384 put_thumb32_insn (char * buf, unsigned long insn)
20385 {
20386 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20387 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20388 }
20389
20390 static void
20391 output_inst (const char * str)
20392 {
20393 char * to = NULL;
20394
20395 if (inst.error)
20396 {
20397 as_bad ("%s -- `%s'", inst.error, str);
20398 return;
20399 }
20400 if (inst.relax)
20401 {
20402 output_relax_insn ();
20403 return;
20404 }
20405 if (inst.size == 0)
20406 return;
20407
20408 to = frag_more (inst.size);
20409 /* PR 9814: Record the thumb mode into the current frag so that we know
20410 what type of NOP padding to use, if necessary. We override any previous
20411 setting so that if the mode has changed then the NOPS that we use will
20412 match the encoding of the last instruction in the frag. */
20413 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20414
20415 if (thumb_mode && (inst.size > THUMB_SIZE))
20416 {
20417 gas_assert (inst.size == (2 * THUMB_SIZE));
20418 put_thumb32_insn (to, inst.instruction);
20419 }
20420 else if (inst.size > INSN_SIZE)
20421 {
20422 gas_assert (inst.size == (2 * INSN_SIZE));
20423 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20424 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20425 }
20426 else
20427 md_number_to_chars (to, inst.instruction, inst.size);
20428
20429 int r;
20430 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20431 {
20432 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20433 fix_new_arm (frag_now, to - frag_now->fr_literal,
20434 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20435 inst.relocs[r].type);
20436 }
20437
20438 dwarf2_emit_insn (inst.size);
20439 }
20440
20441 static char *
20442 output_it_inst (int cond, int mask, char * to)
20443 {
20444 unsigned long instruction = 0xbf00;
20445
20446 mask &= 0xf;
20447 instruction |= mask;
20448 instruction |= cond << 4;
20449
20450 if (to == NULL)
20451 {
20452 to = frag_more (2);
20453 #ifdef OBJ_ELF
20454 dwarf2_emit_insn (2);
20455 #endif
20456 }
20457
20458 md_number_to_chars (to, instruction, 2);
20459
20460 return to;
20461 }
20462
20463 /* Tag values used in struct asm_opcode's tag field. */
20464 enum opcode_tag
20465 {
20466 OT_unconditional, /* Instruction cannot be conditionalized.
20467 The ARM condition field is still 0xE. */
20468 OT_unconditionalF, /* Instruction cannot be conditionalized
20469 and carries 0xF in its ARM condition field. */
20470 OT_csuffix, /* Instruction takes a conditional suffix. */
20471 OT_csuffixF, /* Some forms of the instruction take a scalar
20472 conditional suffix, others place 0xF where the
20473 condition field would be, others take a vector
20474 conditional suffix. */
20475 OT_cinfix3, /* Instruction takes a conditional infix,
20476 beginning at character index 3. (In
20477 unified mode, it becomes a suffix.) */
20478 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20479 tsts, cmps, cmns, and teqs. */
20480 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20481 character index 3, even in unified mode. Used for
20482 legacy instructions where suffix and infix forms
20483 may be ambiguous. */
20484 OT_csuf_or_in3, /* Instruction takes either a conditional
20485 suffix or an infix at character index 3. */
20486 OT_odd_infix_unc, /* This is the unconditional variant of an
20487 instruction that takes a conditional infix
20488 at an unusual position. In unified mode,
20489 this variant will accept a suffix. */
20490 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20491 are the conditional variants of instructions that
20492 take conditional infixes in unusual positions.
20493 The infix appears at character index
20494 (tag - OT_odd_infix_0). These are not accepted
20495 in unified mode. */
20496 };
20497
20498 /* Subroutine of md_assemble, responsible for looking up the primary
20499 opcode from the mnemonic the user wrote. STR points to the
20500 beginning of the mnemonic.
20501
20502 This is not simply a hash table lookup, because of conditional
20503 variants. Most instructions have conditional variants, which are
20504 expressed with a _conditional affix_ to the mnemonic. If we were
20505 to encode each conditional variant as a literal string in the opcode
20506 table, it would have approximately 20,000 entries.
20507
20508 Most mnemonics take this affix as a suffix, and in unified syntax,
20509 'most' is upgraded to 'all'. However, in the divided syntax, some
20510 instructions take the affix as an infix, notably the s-variants of
20511 the arithmetic instructions. Of those instructions, all but six
20512 have the infix appear after the third character of the mnemonic.
20513
20514 Accordingly, the algorithm for looking up primary opcodes given
20515 an identifier is:
20516
20517 1. Look up the identifier in the opcode table.
20518 If we find a match, go to step U.
20519
20520 2. Look up the last two characters of the identifier in the
20521 conditions table. If we find a match, look up the first N-2
20522 characters of the identifier in the opcode table. If we
20523 find a match, go to step CE.
20524
20525 3. Look up the fourth and fifth characters of the identifier in
20526 the conditions table. If we find a match, extract those
20527 characters from the identifier, and look up the remaining
20528 characters in the opcode table. If we find a match, go
20529 to step CM.
20530
20531 4. Fail.
20532
20533 U. Examine the tag field of the opcode structure, in case this is
20534 one of the six instructions with its conditional infix in an
20535 unusual place. If it is, the tag tells us where to find the
20536 infix; look it up in the conditions table and set inst.cond
20537 accordingly. Otherwise, this is an unconditional instruction.
20538 Again set inst.cond accordingly. Return the opcode structure.
20539
20540 CE. Examine the tag field to make sure this is an instruction that
20541 should receive a conditional suffix. If it is not, fail.
20542 Otherwise, set inst.cond from the suffix we already looked up,
20543 and return the opcode structure.
20544
20545 CM. Examine the tag field to make sure this is an instruction that
20546 should receive a conditional infix after the third character.
20547 If it is not, fail. Otherwise, undo the edits to the current
20548 line of input and proceed as for case CE. */
20549
20550 static const struct asm_opcode *
20551 opcode_lookup (char **str)
20552 {
20553 char *end, *base;
20554 char *affix;
20555 const struct asm_opcode *opcode;
20556 const struct asm_cond *cond;
20557 char save[2];
20558
20559 /* Scan up to the end of the mnemonic, which must end in white space,
20560 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20561 for (base = end = *str; *end != '\0'; end++)
20562 if (*end == ' ' || *end == '.')
20563 break;
20564
20565 if (end == base)
20566 return NULL;
20567
20568 /* Handle a possible width suffix and/or Neon type suffix. */
20569 if (end[0] == '.')
20570 {
20571 int offset = 2;
20572
20573 /* The .w and .n suffixes are only valid if the unified syntax is in
20574 use. */
20575 if (unified_syntax && end[1] == 'w')
20576 inst.size_req = 4;
20577 else if (unified_syntax && end[1] == 'n')
20578 inst.size_req = 2;
20579 else
20580 offset = 0;
20581
20582 inst.vectype.elems = 0;
20583
20584 *str = end + offset;
20585
20586 if (end[offset] == '.')
20587 {
20588 /* See if we have a Neon type suffix (possible in either unified or
20589 non-unified ARM syntax mode). */
20590 if (parse_neon_type (&inst.vectype, str) == FAIL)
20591 return NULL;
20592 }
20593 else if (end[offset] != '\0' && end[offset] != ' ')
20594 return NULL;
20595 }
20596 else
20597 *str = end;
20598
20599 /* Look for unaffixed or special-case affixed mnemonic. */
20600 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20601 end - base);
20602 if (opcode)
20603 {
20604 /* step U */
20605 if (opcode->tag < OT_odd_infix_0)
20606 {
20607 inst.cond = COND_ALWAYS;
20608 return opcode;
20609 }
20610
20611 if (warn_on_deprecated && unified_syntax)
20612 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20613 affix = base + (opcode->tag - OT_odd_infix_0);
20614 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20615 gas_assert (cond);
20616
20617 inst.cond = cond->value;
20618 return opcode;
20619 }
20620 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20621 {
20622 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20623 */
20624 if (end - base < 2)
20625 return NULL;
20626 affix = end - 1;
20627 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20628 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20629 affix - base);
20630 /* If this opcode can not be vector predicated then don't accept it with a
20631 vector predication code. */
20632 if (opcode && !opcode->mayBeVecPred)
20633 opcode = NULL;
20634 }
20635 if (!opcode || !cond)
20636 {
20637 /* Cannot have a conditional suffix on a mnemonic of less than two
20638 characters. */
20639 if (end - base < 3)
20640 return NULL;
20641
20642 /* Look for suffixed mnemonic. */
20643 affix = end - 2;
20644 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20645 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20646 affix - base);
20647 }
20648
20649 if (opcode && cond)
20650 {
20651 /* step CE */
20652 switch (opcode->tag)
20653 {
20654 case OT_cinfix3_legacy:
20655 /* Ignore conditional suffixes matched on infix only mnemonics. */
20656 break;
20657
20658 case OT_cinfix3:
20659 case OT_cinfix3_deprecated:
20660 case OT_odd_infix_unc:
20661 if (!unified_syntax)
20662 return NULL;
20663 /* Fall through. */
20664
20665 case OT_csuffix:
20666 case OT_csuffixF:
20667 case OT_csuf_or_in3:
20668 inst.cond = cond->value;
20669 return opcode;
20670
20671 case OT_unconditional:
20672 case OT_unconditionalF:
20673 if (thumb_mode)
20674 inst.cond = cond->value;
20675 else
20676 {
20677 /* Delayed diagnostic. */
20678 inst.error = BAD_COND;
20679 inst.cond = COND_ALWAYS;
20680 }
20681 return opcode;
20682
20683 default:
20684 return NULL;
20685 }
20686 }
20687
20688 /* Cannot have a usual-position infix on a mnemonic of less than
20689 six characters (five would be a suffix). */
20690 if (end - base < 6)
20691 return NULL;
20692
20693 /* Look for infixed mnemonic in the usual position. */
20694 affix = base + 3;
20695 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20696 if (!cond)
20697 return NULL;
20698
20699 memcpy (save, affix, 2);
20700 memmove (affix, affix + 2, (end - affix) - 2);
20701 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20702 (end - base) - 2);
20703 memmove (affix + 2, affix, (end - affix) - 2);
20704 memcpy (affix, save, 2);
20705
20706 if (opcode
20707 && (opcode->tag == OT_cinfix3
20708 || opcode->tag == OT_cinfix3_deprecated
20709 || opcode->tag == OT_csuf_or_in3
20710 || opcode->tag == OT_cinfix3_legacy))
20711 {
20712 /* Step CM. */
20713 if (warn_on_deprecated && unified_syntax
20714 && (opcode->tag == OT_cinfix3
20715 || opcode->tag == OT_cinfix3_deprecated))
20716 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20717
20718 inst.cond = cond->value;
20719 return opcode;
20720 }
20721
20722 return NULL;
20723 }
20724
20725 /* This function generates an initial IT instruction, leaving its block
20726 virtually open for the new instructions. Eventually,
20727 the mask will be updated by now_pred_add_mask () each time
20728 a new instruction needs to be included in the IT block.
20729 Finally, the block is closed with close_automatic_it_block ().
20730 The block closure can be requested either from md_assemble (),
20731 a tencode (), or due to a label hook. */
20732
20733 static void
20734 new_automatic_it_block (int cond)
20735 {
20736 now_pred.state = AUTOMATIC_PRED_BLOCK;
20737 now_pred.mask = 0x18;
20738 now_pred.cc = cond;
20739 now_pred.block_length = 1;
20740 mapping_state (MAP_THUMB);
20741 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20742 now_pred.warn_deprecated = FALSE;
20743 now_pred.insn_cond = TRUE;
20744 }
20745
20746 /* Close an automatic IT block.
20747 See comments in new_automatic_it_block (). */
20748
20749 static void
20750 close_automatic_it_block (void)
20751 {
20752 now_pred.mask = 0x10;
20753 now_pred.block_length = 0;
20754 }
20755
20756 /* Update the mask of the current automatically-generated IT
20757 instruction. See comments in new_automatic_it_block (). */
20758
20759 static void
20760 now_pred_add_mask (int cond)
20761 {
20762 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20763 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20764 | ((bitvalue) << (nbit)))
20765 const int resulting_bit = (cond & 1);
20766
20767 now_pred.mask &= 0xf;
20768 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20769 resulting_bit,
20770 (5 - now_pred.block_length));
20771 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20772 1,
20773 ((5 - now_pred.block_length) - 1));
20774 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20775
20776 #undef CLEAR_BIT
20777 #undef SET_BIT_VALUE
20778 }
20779
20780 /* The IT blocks handling machinery is accessed through the these functions:
20781 it_fsm_pre_encode () from md_assemble ()
20782 set_pred_insn_type () optional, from the tencode functions
20783 set_pred_insn_type_last () ditto
20784 in_pred_block () ditto
20785 it_fsm_post_encode () from md_assemble ()
20786 force_automatic_it_block_close () from label handling functions
20787
20788 Rationale:
20789 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20790 initializing the IT insn type with a generic initial value depending
20791 on the inst.condition.
20792 2) During the tencode function, two things may happen:
20793 a) The tencode function overrides the IT insn type by
20794 calling either set_pred_insn_type (type) or
20795 set_pred_insn_type_last ().
20796 b) The tencode function queries the IT block state by
20797 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20798
20799 Both set_pred_insn_type and in_pred_block run the internal FSM state
20800 handling function (handle_pred_state), because: a) setting the IT insn
20801 type may incur in an invalid state (exiting the function),
20802 and b) querying the state requires the FSM to be updated.
20803 Specifically we want to avoid creating an IT block for conditional
20804 branches, so it_fsm_pre_encode is actually a guess and we can't
20805 determine whether an IT block is required until the tencode () routine
20806 has decided what type of instruction this actually it.
20807 Because of this, if set_pred_insn_type and in_pred_block have to be
20808 used, set_pred_insn_type has to be called first.
20809
20810 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20811 that determines the insn IT type depending on the inst.cond code.
20812 When a tencode () routine encodes an instruction that can be
20813 either outside an IT block, or, in the case of being inside, has to be
20814 the last one, set_pred_insn_type_last () will determine the proper
20815 IT instruction type based on the inst.cond code. Otherwise,
20816 set_pred_insn_type can be called for overriding that logic or
20817 for covering other cases.
20818
20819 Calling handle_pred_state () may not transition the IT block state to
20820 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20821 still queried. Instead, if the FSM determines that the state should
20822 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20823 after the tencode () function: that's what it_fsm_post_encode () does.
20824
20825 Since in_pred_block () calls the state handling function to get an
20826 updated state, an error may occur (due to invalid insns combination).
20827 In that case, inst.error is set.
20828 Therefore, inst.error has to be checked after the execution of
20829 the tencode () routine.
20830
20831 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20832 any pending state change (if any) that didn't take place in
20833 handle_pred_state () as explained above. */
20834
20835 static void
20836 it_fsm_pre_encode (void)
20837 {
20838 if (inst.cond != COND_ALWAYS)
20839 inst.pred_insn_type = INSIDE_IT_INSN;
20840 else
20841 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20842
20843 now_pred.state_handled = 0;
20844 }
20845
20846 /* IT state FSM handling function. */
20847 /* MVE instructions and non-MVE instructions are handled differently because of
20848 the introduction of VPT blocks.
20849 Specifications say that any non-MVE instruction inside a VPT block is
20850 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20851 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20852 few exceptions we have MVE_UNPREDICABLE_INSN.
20853 The error messages provided depending on the different combinations possible
20854 are described in the cases below:
20855 For 'most' MVE instructions:
20856 1) In an IT block, with an IT code: syntax error
20857 2) In an IT block, with a VPT code: error: must be in a VPT block
20858 3) In an IT block, with no code: warning: UNPREDICTABLE
20859 4) In a VPT block, with an IT code: syntax error
20860 5) In a VPT block, with a VPT code: OK!
20861 6) In a VPT block, with no code: error: missing code
20862 7) Outside a pred block, with an IT code: error: syntax error
20863 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20864 9) Outside a pred block, with no code: OK!
20865 For non-MVE instructions:
20866 10) In an IT block, with an IT code: OK!
20867 11) In an IT block, with a VPT code: syntax error
20868 12) In an IT block, with no code: error: missing code
20869 13) In a VPT block, with an IT code: error: should be in an IT block
20870 14) In a VPT block, with a VPT code: syntax error
20871 15) In a VPT block, with no code: UNPREDICTABLE
20872 16) Outside a pred block, with an IT code: error: should be in an IT block
20873 17) Outside a pred block, with a VPT code: syntax error
20874 18) Outside a pred block, with no code: OK!
20875 */
20876
20877
20878 static int
20879 handle_pred_state (void)
20880 {
20881 now_pred.state_handled = 1;
20882 now_pred.insn_cond = FALSE;
20883
20884 switch (now_pred.state)
20885 {
20886 case OUTSIDE_PRED_BLOCK:
20887 switch (inst.pred_insn_type)
20888 {
20889 case MVE_UNPREDICABLE_INSN:
20890 case MVE_OUTSIDE_PRED_INSN:
20891 if (inst.cond < COND_ALWAYS)
20892 {
20893 /* Case 7: Outside a pred block, with an IT code: error: syntax
20894 error. */
20895 inst.error = BAD_SYNTAX;
20896 return FAIL;
20897 }
20898 /* Case 9: Outside a pred block, with no code: OK! */
20899 break;
20900 case OUTSIDE_PRED_INSN:
20901 if (inst.cond > COND_ALWAYS)
20902 {
20903 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20904 */
20905 inst.error = BAD_SYNTAX;
20906 return FAIL;
20907 }
20908 /* Case 18: Outside a pred block, with no code: OK! */
20909 break;
20910
20911 case INSIDE_VPT_INSN:
20912 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20913 a VPT block. */
20914 inst.error = BAD_OUT_VPT;
20915 return FAIL;
20916
20917 case INSIDE_IT_INSN:
20918 case INSIDE_IT_LAST_INSN:
20919 if (inst.cond < COND_ALWAYS)
20920 {
20921 /* Case 16: Outside a pred block, with an IT code: error: should
20922 be in an IT block. */
20923 if (thumb_mode == 0)
20924 {
20925 if (unified_syntax
20926 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20927 as_tsktsk (_("Warning: conditional outside an IT block"\
20928 " for Thumb."));
20929 }
20930 else
20931 {
20932 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20933 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20934 {
20935 /* Automatically generate the IT instruction. */
20936 new_automatic_it_block (inst.cond);
20937 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20938 close_automatic_it_block ();
20939 }
20940 else
20941 {
20942 inst.error = BAD_OUT_IT;
20943 return FAIL;
20944 }
20945 }
20946 break;
20947 }
20948 else if (inst.cond > COND_ALWAYS)
20949 {
20950 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20951 */
20952 inst.error = BAD_SYNTAX;
20953 return FAIL;
20954 }
20955 else
20956 gas_assert (0);
20957 case IF_INSIDE_IT_LAST_INSN:
20958 case NEUTRAL_IT_INSN:
20959 break;
20960
20961 case VPT_INSN:
20962 if (inst.cond != COND_ALWAYS)
20963 first_error (BAD_SYNTAX);
20964 now_pred.state = MANUAL_PRED_BLOCK;
20965 now_pred.block_length = 0;
20966 now_pred.type = VECTOR_PRED;
20967 now_pred.cc = 0;
20968 break;
20969 case IT_INSN:
20970 now_pred.state = MANUAL_PRED_BLOCK;
20971 now_pred.block_length = 0;
20972 now_pred.type = SCALAR_PRED;
20973 break;
20974 }
20975 break;
20976
20977 case AUTOMATIC_PRED_BLOCK:
20978 /* Three things may happen now:
20979 a) We should increment current it block size;
20980 b) We should close current it block (closing insn or 4 insns);
20981 c) We should close current it block and start a new one (due
20982 to incompatible conditions or
20983 4 insns-length block reached). */
20984
20985 switch (inst.pred_insn_type)
20986 {
20987 case INSIDE_VPT_INSN:
20988 case VPT_INSN:
20989 case MVE_UNPREDICABLE_INSN:
20990 case MVE_OUTSIDE_PRED_INSN:
20991 gas_assert (0);
20992 case OUTSIDE_PRED_INSN:
20993 /* The closure of the block shall happen immediately,
20994 so any in_pred_block () call reports the block as closed. */
20995 force_automatic_it_block_close ();
20996 break;
20997
20998 case INSIDE_IT_INSN:
20999 case INSIDE_IT_LAST_INSN:
21000 case IF_INSIDE_IT_LAST_INSN:
21001 now_pred.block_length++;
21002
21003 if (now_pred.block_length > 4
21004 || !now_pred_compatible (inst.cond))
21005 {
21006 force_automatic_it_block_close ();
21007 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21008 new_automatic_it_block (inst.cond);
21009 }
21010 else
21011 {
21012 now_pred.insn_cond = TRUE;
21013 now_pred_add_mask (inst.cond);
21014 }
21015
21016 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21017 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21018 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21019 close_automatic_it_block ();
21020 break;
21021
21022 case NEUTRAL_IT_INSN:
21023 now_pred.block_length++;
21024 now_pred.insn_cond = TRUE;
21025
21026 if (now_pred.block_length > 4)
21027 force_automatic_it_block_close ();
21028 else
21029 now_pred_add_mask (now_pred.cc & 1);
21030 break;
21031
21032 case IT_INSN:
21033 close_automatic_it_block ();
21034 now_pred.state = MANUAL_PRED_BLOCK;
21035 break;
21036 }
21037 break;
21038
21039 case MANUAL_PRED_BLOCK:
21040 {
21041 int cond, is_last;
21042 if (now_pred.type == SCALAR_PRED)
21043 {
21044 /* Check conditional suffixes. */
21045 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21046 now_pred.mask <<= 1;
21047 now_pred.mask &= 0x1f;
21048 is_last = (now_pred.mask == 0x10);
21049 }
21050 else
21051 {
21052 now_pred.cc ^= (now_pred.mask >> 4);
21053 cond = now_pred.cc + 0xf;
21054 now_pred.mask <<= 1;
21055 now_pred.mask &= 0x1f;
21056 is_last = now_pred.mask == 0x10;
21057 }
21058 now_pred.insn_cond = TRUE;
21059
21060 switch (inst.pred_insn_type)
21061 {
21062 case OUTSIDE_PRED_INSN:
21063 if (now_pred.type == SCALAR_PRED)
21064 {
21065 if (inst.cond == COND_ALWAYS)
21066 {
21067 /* Case 12: In an IT block, with no code: error: missing
21068 code. */
21069 inst.error = BAD_NOT_IT;
21070 return FAIL;
21071 }
21072 else if (inst.cond > COND_ALWAYS)
21073 {
21074 /* Case 11: In an IT block, with a VPT code: syntax error.
21075 */
21076 inst.error = BAD_SYNTAX;
21077 return FAIL;
21078 }
21079 else if (thumb_mode)
21080 {
21081 /* This is for some special cases where a non-MVE
21082 instruction is not allowed in an IT block, such as cbz,
21083 but are put into one with a condition code.
21084 You could argue this should be a syntax error, but we
21085 gave the 'not allowed in IT block' diagnostic in the
21086 past so we will keep doing so. */
21087 inst.error = BAD_NOT_IT;
21088 return FAIL;
21089 }
21090 break;
21091 }
21092 else
21093 {
21094 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21095 as_tsktsk (MVE_NOT_VPT);
21096 return SUCCESS;
21097 }
21098 case MVE_OUTSIDE_PRED_INSN:
21099 if (now_pred.type == SCALAR_PRED)
21100 {
21101 if (inst.cond == COND_ALWAYS)
21102 {
21103 /* Case 3: In an IT block, with no code: warning:
21104 UNPREDICTABLE. */
21105 as_tsktsk (MVE_NOT_IT);
21106 return SUCCESS;
21107 }
21108 else if (inst.cond < COND_ALWAYS)
21109 {
21110 /* Case 1: In an IT block, with an IT code: syntax error.
21111 */
21112 inst.error = BAD_SYNTAX;
21113 return FAIL;
21114 }
21115 else
21116 gas_assert (0);
21117 }
21118 else
21119 {
21120 if (inst.cond < COND_ALWAYS)
21121 {
21122 /* Case 4: In a VPT block, with an IT code: syntax error.
21123 */
21124 inst.error = BAD_SYNTAX;
21125 return FAIL;
21126 }
21127 else if (inst.cond == COND_ALWAYS)
21128 {
21129 /* Case 6: In a VPT block, with no code: error: missing
21130 code. */
21131 inst.error = BAD_NOT_VPT;
21132 return FAIL;
21133 }
21134 else
21135 {
21136 gas_assert (0);
21137 }
21138 }
21139 case MVE_UNPREDICABLE_INSN:
21140 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21141 return SUCCESS;
21142 case INSIDE_IT_INSN:
21143 if (inst.cond > COND_ALWAYS)
21144 {
21145 /* Case 11: In an IT block, with a VPT code: syntax error. */
21146 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21147 inst.error = BAD_SYNTAX;
21148 return FAIL;
21149 }
21150 else if (now_pred.type == SCALAR_PRED)
21151 {
21152 /* Case 10: In an IT block, with an IT code: OK! */
21153 if (cond != inst.cond)
21154 {
21155 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21156 BAD_VPT_COND;
21157 return FAIL;
21158 }
21159 }
21160 else
21161 {
21162 /* Case 13: In a VPT block, with an IT code: error: should be
21163 in an IT block. */
21164 inst.error = BAD_OUT_IT;
21165 return FAIL;
21166 }
21167 break;
21168
21169 case INSIDE_VPT_INSN:
21170 if (now_pred.type == SCALAR_PRED)
21171 {
21172 /* Case 2: In an IT block, with a VPT code: error: must be in a
21173 VPT block. */
21174 inst.error = BAD_OUT_VPT;
21175 return FAIL;
21176 }
21177 /* Case 5: In a VPT block, with a VPT code: OK! */
21178 else if (cond != inst.cond)
21179 {
21180 inst.error = BAD_VPT_COND;
21181 return FAIL;
21182 }
21183 break;
21184 case INSIDE_IT_LAST_INSN:
21185 case IF_INSIDE_IT_LAST_INSN:
21186 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21187 {
21188 /* Case 4: In a VPT block, with an IT code: syntax error. */
21189 /* Case 11: In an IT block, with a VPT code: syntax error. */
21190 inst.error = BAD_SYNTAX;
21191 return FAIL;
21192 }
21193 else if (cond != inst.cond)
21194 {
21195 inst.error = BAD_IT_COND;
21196 return FAIL;
21197 }
21198 if (!is_last)
21199 {
21200 inst.error = BAD_BRANCH;
21201 return FAIL;
21202 }
21203 break;
21204
21205 case NEUTRAL_IT_INSN:
21206 /* The BKPT instruction is unconditional even in a IT or VPT
21207 block. */
21208 break;
21209
21210 case IT_INSN:
21211 if (now_pred.type == SCALAR_PRED)
21212 {
21213 inst.error = BAD_IT_IT;
21214 return FAIL;
21215 }
21216 /* fall through. */
21217 case VPT_INSN:
21218 if (inst.cond == COND_ALWAYS)
21219 {
21220 /* Executing a VPT/VPST instruction inside an IT block or a
21221 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21222 */
21223 if (now_pred.type == SCALAR_PRED)
21224 as_tsktsk (MVE_NOT_IT);
21225 else
21226 as_tsktsk (MVE_NOT_VPT);
21227 return SUCCESS;
21228 }
21229 else
21230 {
21231 /* VPT/VPST do not accept condition codes. */
21232 inst.error = BAD_SYNTAX;
21233 return FAIL;
21234 }
21235 }
21236 }
21237 break;
21238 }
21239
21240 return SUCCESS;
21241 }
21242
21243 struct depr_insn_mask
21244 {
21245 unsigned long pattern;
21246 unsigned long mask;
21247 const char* description;
21248 };
21249
21250 /* List of 16-bit instruction patterns deprecated in an IT block in
21251 ARMv8. */
21252 static const struct depr_insn_mask depr_it_insns[] = {
21253 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21254 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21255 { 0xa000, 0xb800, N_("ADR") },
21256 { 0x4800, 0xf800, N_("Literal loads") },
21257 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21258 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21259 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21260 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21261 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21262 { 0, 0, NULL }
21263 };
21264
21265 static void
21266 it_fsm_post_encode (void)
21267 {
21268 int is_last;
21269
21270 if (!now_pred.state_handled)
21271 handle_pred_state ();
21272
21273 if (now_pred.insn_cond
21274 && !now_pred.warn_deprecated
21275 && warn_on_deprecated
21276 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21278 {
21279 if (inst.instruction >= 0x10000)
21280 {
21281 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21282 "performance deprecated in ARMv8-A and ARMv8-R"));
21283 now_pred.warn_deprecated = TRUE;
21284 }
21285 else
21286 {
21287 const struct depr_insn_mask *p = depr_it_insns;
21288
21289 while (p->mask != 0)
21290 {
21291 if ((inst.instruction & p->mask) == p->pattern)
21292 {
21293 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21294 "instructions of the following class are "
21295 "performance deprecated in ARMv8-A and "
21296 "ARMv8-R: %s"), p->description);
21297 now_pred.warn_deprecated = TRUE;
21298 break;
21299 }
21300
21301 ++p;
21302 }
21303 }
21304
21305 if (now_pred.block_length > 1)
21306 {
21307 as_tsktsk (_("IT blocks containing more than one conditional "
21308 "instruction are performance deprecated in ARMv8-A and "
21309 "ARMv8-R"));
21310 now_pred.warn_deprecated = TRUE;
21311 }
21312 }
21313
21314 is_last = (now_pred.mask == 0x10);
21315 if (is_last)
21316 {
21317 now_pred.state = OUTSIDE_PRED_BLOCK;
21318 now_pred.mask = 0;
21319 }
21320 }
21321
21322 static void
21323 force_automatic_it_block_close (void)
21324 {
21325 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21326 {
21327 close_automatic_it_block ();
21328 now_pred.state = OUTSIDE_PRED_BLOCK;
21329 now_pred.mask = 0;
21330 }
21331 }
21332
21333 static int
21334 in_pred_block (void)
21335 {
21336 if (!now_pred.state_handled)
21337 handle_pred_state ();
21338
21339 return now_pred.state != OUTSIDE_PRED_BLOCK;
21340 }
21341
21342 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21343 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21344 here, hence the "known" in the function name. */
21345
21346 static bfd_boolean
21347 known_t32_only_insn (const struct asm_opcode *opcode)
21348 {
21349 /* Original Thumb-1 wide instruction. */
21350 if (opcode->tencode == do_t_blx
21351 || opcode->tencode == do_t_branch23
21352 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21353 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21354 return TRUE;
21355
21356 /* Wide-only instruction added to ARMv8-M Baseline. */
21357 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21358 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21359 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21360 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21361 return TRUE;
21362
21363 return FALSE;
21364 }
21365
21366 /* Whether wide instruction variant can be used if available for a valid OPCODE
21367 in ARCH. */
21368
21369 static bfd_boolean
21370 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21371 {
21372 if (known_t32_only_insn (opcode))
21373 return TRUE;
21374
21375 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21376 of variant T3 of B.W is checked in do_t_branch. */
21377 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21378 && opcode->tencode == do_t_branch)
21379 return TRUE;
21380
21381 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21382 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21383 && opcode->tencode == do_t_mov_cmp
21384 /* Make sure CMP instruction is not affected. */
21385 && opcode->aencode == do_mov)
21386 return TRUE;
21387
21388 /* Wide instruction variants of all instructions with narrow *and* wide
21389 variants become available with ARMv6t2. Other opcodes are either
21390 narrow-only or wide-only and are thus available if OPCODE is valid. */
21391 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21392 return TRUE;
21393
21394 /* OPCODE with narrow only instruction variant or wide variant not
21395 available. */
21396 return FALSE;
21397 }
21398
21399 void
21400 md_assemble (char *str)
21401 {
21402 char *p = str;
21403 const struct asm_opcode * opcode;
21404
21405 /* Align the previous label if needed. */
21406 if (last_label_seen != NULL)
21407 {
21408 symbol_set_frag (last_label_seen, frag_now);
21409 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21410 S_SET_SEGMENT (last_label_seen, now_seg);
21411 }
21412
21413 memset (&inst, '\0', sizeof (inst));
21414 int r;
21415 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21416 inst.relocs[r].type = BFD_RELOC_UNUSED;
21417
21418 opcode = opcode_lookup (&p);
21419 if (!opcode)
21420 {
21421 /* It wasn't an instruction, but it might be a register alias of
21422 the form alias .req reg, or a Neon .dn/.qn directive. */
21423 if (! create_register_alias (str, p)
21424 && ! create_neon_reg_alias (str, p))
21425 as_bad (_("bad instruction `%s'"), str);
21426
21427 return;
21428 }
21429
21430 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21431 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21432
21433 /* The value which unconditional instructions should have in place of the
21434 condition field. */
21435 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21436
21437 if (thumb_mode)
21438 {
21439 arm_feature_set variant;
21440
21441 variant = cpu_variant;
21442 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21443 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21444 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21445 /* Check that this instruction is supported for this CPU. */
21446 if (!opcode->tvariant
21447 || (thumb_mode == 1
21448 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21449 {
21450 if (opcode->tencode == do_t_swi)
21451 as_bad (_("SVC is not permitted on this architecture"));
21452 else
21453 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21454 return;
21455 }
21456 if (inst.cond != COND_ALWAYS && !unified_syntax
21457 && opcode->tencode != do_t_branch)
21458 {
21459 as_bad (_("Thumb does not support conditional execution"));
21460 return;
21461 }
21462
21463 /* Two things are addressed here:
21464 1) Implicit require narrow instructions on Thumb-1.
21465 This avoids relaxation accidentally introducing Thumb-2
21466 instructions.
21467 2) Reject wide instructions in non Thumb-2 cores.
21468
21469 Only instructions with narrow and wide variants need to be handled
21470 but selecting all non wide-only instructions is easier. */
21471 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21472 && !t32_insn_ok (variant, opcode))
21473 {
21474 if (inst.size_req == 0)
21475 inst.size_req = 2;
21476 else if (inst.size_req == 4)
21477 {
21478 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21479 as_bad (_("selected processor does not support 32bit wide "
21480 "variant of instruction `%s'"), str);
21481 else
21482 as_bad (_("selected processor does not support `%s' in "
21483 "Thumb-2 mode"), str);
21484 return;
21485 }
21486 }
21487
21488 inst.instruction = opcode->tvalue;
21489
21490 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21491 {
21492 /* Prepare the pred_insn_type for those encodings that don't set
21493 it. */
21494 it_fsm_pre_encode ();
21495
21496 opcode->tencode ();
21497
21498 it_fsm_post_encode ();
21499 }
21500
21501 if (!(inst.error || inst.relax))
21502 {
21503 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21504 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21505 if (inst.size_req && inst.size_req != inst.size)
21506 {
21507 as_bad (_("cannot honor width suffix -- `%s'"), str);
21508 return;
21509 }
21510 }
21511
21512 /* Something has gone badly wrong if we try to relax a fixed size
21513 instruction. */
21514 gas_assert (inst.size_req == 0 || !inst.relax);
21515
21516 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21517 *opcode->tvariant);
21518 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21519 set those bits when Thumb-2 32-bit instructions are seen. The impact
21520 of relaxable instructions will be considered later after we finish all
21521 relaxation. */
21522 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21523 variant = arm_arch_none;
21524 else
21525 variant = cpu_variant;
21526 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21527 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21528 arm_ext_v6t2);
21529
21530 check_neon_suffixes;
21531
21532 if (!inst.error)
21533 {
21534 mapping_state (MAP_THUMB);
21535 }
21536 }
21537 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21538 {
21539 bfd_boolean is_bx;
21540
21541 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21542 is_bx = (opcode->aencode == do_bx);
21543
21544 /* Check that this instruction is supported for this CPU. */
21545 if (!(is_bx && fix_v4bx)
21546 && !(opcode->avariant &&
21547 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21548 {
21549 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21550 return;
21551 }
21552 if (inst.size_req)
21553 {
21554 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21555 return;
21556 }
21557
21558 inst.instruction = opcode->avalue;
21559 if (opcode->tag == OT_unconditionalF)
21560 inst.instruction |= 0xFU << 28;
21561 else
21562 inst.instruction |= inst.cond << 28;
21563 inst.size = INSN_SIZE;
21564 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21565 {
21566 it_fsm_pre_encode ();
21567 opcode->aencode ();
21568 it_fsm_post_encode ();
21569 }
21570 /* Arm mode bx is marked as both v4T and v5 because it's still required
21571 on a hypothetical non-thumb v5 core. */
21572 if (is_bx)
21573 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21574 else
21575 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21576 *opcode->avariant);
21577
21578 check_neon_suffixes;
21579
21580 if (!inst.error)
21581 {
21582 mapping_state (MAP_ARM);
21583 }
21584 }
21585 else
21586 {
21587 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21588 "-- `%s'"), str);
21589 return;
21590 }
21591 output_inst (str);
21592 }
21593
21594 static void
21595 check_pred_blocks_finished (void)
21596 {
21597 #ifdef OBJ_ELF
21598 asection *sect;
21599
21600 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21601 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21602 == MANUAL_PRED_BLOCK)
21603 {
21604 if (now_pred.type == SCALAR_PRED)
21605 as_warn (_("section '%s' finished with an open IT block."),
21606 sect->name);
21607 else
21608 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21609 sect->name);
21610 }
21611 #else
21612 if (now_pred.state == MANUAL_PRED_BLOCK)
21613 {
21614 if (now_pred.type == SCALAR_PRED)
21615 as_warn (_("file finished with an open IT block."));
21616 else
21617 as_warn (_("file finished with an open VPT/VPST block."));
21618 }
21619 #endif
21620 }
21621
21622 /* Various frobbings of labels and their addresses. */
21623
21624 void
21625 arm_start_line_hook (void)
21626 {
21627 last_label_seen = NULL;
21628 }
21629
21630 void
21631 arm_frob_label (symbolS * sym)
21632 {
21633 last_label_seen = sym;
21634
21635 ARM_SET_THUMB (sym, thumb_mode);
21636
21637 #if defined OBJ_COFF || defined OBJ_ELF
21638 ARM_SET_INTERWORK (sym, support_interwork);
21639 #endif
21640
21641 force_automatic_it_block_close ();
21642
21643 /* Note - do not allow local symbols (.Lxxx) to be labelled
21644 as Thumb functions. This is because these labels, whilst
21645 they exist inside Thumb code, are not the entry points for
21646 possible ARM->Thumb calls. Also, these labels can be used
21647 as part of a computed goto or switch statement. eg gcc
21648 can generate code that looks like this:
21649
21650 ldr r2, [pc, .Laaa]
21651 lsl r3, r3, #2
21652 ldr r2, [r3, r2]
21653 mov pc, r2
21654
21655 .Lbbb: .word .Lxxx
21656 .Lccc: .word .Lyyy
21657 ..etc...
21658 .Laaa: .word Lbbb
21659
21660 The first instruction loads the address of the jump table.
21661 The second instruction converts a table index into a byte offset.
21662 The third instruction gets the jump address out of the table.
21663 The fourth instruction performs the jump.
21664
21665 If the address stored at .Laaa is that of a symbol which has the
21666 Thumb_Func bit set, then the linker will arrange for this address
21667 to have the bottom bit set, which in turn would mean that the
21668 address computation performed by the third instruction would end
21669 up with the bottom bit set. Since the ARM is capable of unaligned
21670 word loads, the instruction would then load the incorrect address
21671 out of the jump table, and chaos would ensue. */
21672 if (label_is_thumb_function_name
21673 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21674 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21675 {
21676 /* When the address of a Thumb function is taken the bottom
21677 bit of that address should be set. This will allow
21678 interworking between Arm and Thumb functions to work
21679 correctly. */
21680
21681 THUMB_SET_FUNC (sym, 1);
21682
21683 label_is_thumb_function_name = FALSE;
21684 }
21685
21686 dwarf2_emit_label (sym);
21687 }
21688
21689 bfd_boolean
21690 arm_data_in_code (void)
21691 {
21692 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21693 {
21694 *input_line_pointer = '/';
21695 input_line_pointer += 5;
21696 *input_line_pointer = 0;
21697 return TRUE;
21698 }
21699
21700 return FALSE;
21701 }
21702
21703 char *
21704 arm_canonicalize_symbol_name (char * name)
21705 {
21706 int len;
21707
21708 if (thumb_mode && (len = strlen (name)) > 5
21709 && streq (name + len - 5, "/data"))
21710 *(name + len - 5) = 0;
21711
21712 return name;
21713 }
21714 \f
21715 /* Table of all register names defined by default. The user can
21716 define additional names with .req. Note that all register names
21717 should appear in both upper and lowercase variants. Some registers
21718 also have mixed-case names. */
21719
21720 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21721 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21722 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21723 #define REGSET(p,t) \
21724 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21725 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21726 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21727 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21728 #define REGSETH(p,t) \
21729 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21730 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21731 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21732 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21733 #define REGSET2(p,t) \
21734 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21735 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21736 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21737 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21738 #define SPLRBANK(base,bank,t) \
21739 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21740 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21741 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21742 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21743 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21744 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21745
21746 static const struct reg_entry reg_names[] =
21747 {
21748 /* ARM integer registers. */
21749 REGSET(r, RN), REGSET(R, RN),
21750
21751 /* ATPCS synonyms. */
21752 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21753 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21754 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21755
21756 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21757 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21758 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21759
21760 /* Well-known aliases. */
21761 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21762 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21763
21764 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21765 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21766
21767 /* Defining the new Zero register from ARMv8.1-M. */
21768 REGDEF(zr,15,ZR),
21769 REGDEF(ZR,15,ZR),
21770
21771 /* Coprocessor numbers. */
21772 REGSET(p, CP), REGSET(P, CP),
21773
21774 /* Coprocessor register numbers. The "cr" variants are for backward
21775 compatibility. */
21776 REGSET(c, CN), REGSET(C, CN),
21777 REGSET(cr, CN), REGSET(CR, CN),
21778
21779 /* ARM banked registers. */
21780 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21781 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21782 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21783 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21784 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21785 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21786 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21787
21788 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21789 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21790 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21791 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21792 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21793 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21794 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21795 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21796
21797 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21798 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21799 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21800 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21801 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21802 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21803 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21804 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21805 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21806
21807 /* FPA registers. */
21808 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21809 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21810
21811 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21812 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21813
21814 /* VFP SP registers. */
21815 REGSET(s,VFS), REGSET(S,VFS),
21816 REGSETH(s,VFS), REGSETH(S,VFS),
21817
21818 /* VFP DP Registers. */
21819 REGSET(d,VFD), REGSET(D,VFD),
21820 /* Extra Neon DP registers. */
21821 REGSETH(d,VFD), REGSETH(D,VFD),
21822
21823 /* Neon QP registers. */
21824 REGSET2(q,NQ), REGSET2(Q,NQ),
21825
21826 /* VFP control registers. */
21827 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21828 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21829 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21830 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21831 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21832 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21833 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21834
21835 /* Maverick DSP coprocessor registers. */
21836 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21837 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21838
21839 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21840 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21841 REGDEF(dspsc,0,DSPSC),
21842
21843 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21844 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21845 REGDEF(DSPSC,0,DSPSC),
21846
21847 /* iWMMXt data registers - p0, c0-15. */
21848 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21849
21850 /* iWMMXt control registers - p1, c0-3. */
21851 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21852 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21853 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21854 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21855
21856 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21857 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21858 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21859 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21860 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21861
21862 /* XScale accumulator registers. */
21863 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21864 };
21865 #undef REGDEF
21866 #undef REGNUM
21867 #undef REGSET
21868
21869 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21870 within psr_required_here. */
21871 static const struct asm_psr psrs[] =
21872 {
21873 /* Backward compatibility notation. Note that "all" is no longer
21874 truly all possible PSR bits. */
21875 {"all", PSR_c | PSR_f},
21876 {"flg", PSR_f},
21877 {"ctl", PSR_c},
21878
21879 /* Individual flags. */
21880 {"f", PSR_f},
21881 {"c", PSR_c},
21882 {"x", PSR_x},
21883 {"s", PSR_s},
21884
21885 /* Combinations of flags. */
21886 {"fs", PSR_f | PSR_s},
21887 {"fx", PSR_f | PSR_x},
21888 {"fc", PSR_f | PSR_c},
21889 {"sf", PSR_s | PSR_f},
21890 {"sx", PSR_s | PSR_x},
21891 {"sc", PSR_s | PSR_c},
21892 {"xf", PSR_x | PSR_f},
21893 {"xs", PSR_x | PSR_s},
21894 {"xc", PSR_x | PSR_c},
21895 {"cf", PSR_c | PSR_f},
21896 {"cs", PSR_c | PSR_s},
21897 {"cx", PSR_c | PSR_x},
21898 {"fsx", PSR_f | PSR_s | PSR_x},
21899 {"fsc", PSR_f | PSR_s | PSR_c},
21900 {"fxs", PSR_f | PSR_x | PSR_s},
21901 {"fxc", PSR_f | PSR_x | PSR_c},
21902 {"fcs", PSR_f | PSR_c | PSR_s},
21903 {"fcx", PSR_f | PSR_c | PSR_x},
21904 {"sfx", PSR_s | PSR_f | PSR_x},
21905 {"sfc", PSR_s | PSR_f | PSR_c},
21906 {"sxf", PSR_s | PSR_x | PSR_f},
21907 {"sxc", PSR_s | PSR_x | PSR_c},
21908 {"scf", PSR_s | PSR_c | PSR_f},
21909 {"scx", PSR_s | PSR_c | PSR_x},
21910 {"xfs", PSR_x | PSR_f | PSR_s},
21911 {"xfc", PSR_x | PSR_f | PSR_c},
21912 {"xsf", PSR_x | PSR_s | PSR_f},
21913 {"xsc", PSR_x | PSR_s | PSR_c},
21914 {"xcf", PSR_x | PSR_c | PSR_f},
21915 {"xcs", PSR_x | PSR_c | PSR_s},
21916 {"cfs", PSR_c | PSR_f | PSR_s},
21917 {"cfx", PSR_c | PSR_f | PSR_x},
21918 {"csf", PSR_c | PSR_s | PSR_f},
21919 {"csx", PSR_c | PSR_s | PSR_x},
21920 {"cxf", PSR_c | PSR_x | PSR_f},
21921 {"cxs", PSR_c | PSR_x | PSR_s},
21922 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21923 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21924 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21925 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21926 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21927 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21928 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21929 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21930 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21931 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21932 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21933 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21934 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21935 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21936 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21937 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21938 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21939 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21940 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21941 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21942 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21943 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21944 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21945 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21946 };
21947
21948 /* Table of V7M psr names. */
21949 static const struct asm_psr v7m_psrs[] =
21950 {
21951 {"apsr", 0x0 }, {"APSR", 0x0 },
21952 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21953 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21954 {"psr", 0x3 }, {"PSR", 0x3 },
21955 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21956 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21957 {"epsr", 0x6 }, {"EPSR", 0x6 },
21958 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21959 {"msp", 0x8 }, {"MSP", 0x8 },
21960 {"psp", 0x9 }, {"PSP", 0x9 },
21961 {"msplim", 0xa }, {"MSPLIM", 0xa },
21962 {"psplim", 0xb }, {"PSPLIM", 0xb },
21963 {"primask", 0x10}, {"PRIMASK", 0x10},
21964 {"basepri", 0x11}, {"BASEPRI", 0x11},
21965 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21966 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21967 {"control", 0x14}, {"CONTROL", 0x14},
21968 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21969 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21970 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21971 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21972 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21973 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21974 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21975 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21976 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21977 };
21978
21979 /* Table of all shift-in-operand names. */
21980 static const struct asm_shift_name shift_names [] =
21981 {
21982 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21983 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21984 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21985 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21986 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
21987 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21988 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
21989 };
21990
21991 /* Table of all explicit relocation names. */
21992 #ifdef OBJ_ELF
21993 static struct reloc_entry reloc_names[] =
21994 {
21995 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21996 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21997 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21998 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21999 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22000 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22001 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22002 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22003 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22004 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22005 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22006 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22007 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22008 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22009 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22010 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22011 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22012 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22013 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22014 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22015 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22016 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22017 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22018 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22019 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22020 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22021 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22022 };
22023 #endif
22024
22025 /* Table of all conditional affixes. */
22026 static const struct asm_cond conds[] =
22027 {
22028 {"eq", 0x0},
22029 {"ne", 0x1},
22030 {"cs", 0x2}, {"hs", 0x2},
22031 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22032 {"mi", 0x4},
22033 {"pl", 0x5},
22034 {"vs", 0x6},
22035 {"vc", 0x7},
22036 {"hi", 0x8},
22037 {"ls", 0x9},
22038 {"ge", 0xa},
22039 {"lt", 0xb},
22040 {"gt", 0xc},
22041 {"le", 0xd},
22042 {"al", 0xe}
22043 };
22044 static const struct asm_cond vconds[] =
22045 {
22046 {"t", 0xf},
22047 {"e", 0x10}
22048 };
22049
22050 #define UL_BARRIER(L,U,CODE,FEAT) \
22051 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22052 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22053
22054 static struct asm_barrier_opt barrier_opt_names[] =
22055 {
22056 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22057 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22058 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22059 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22060 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22061 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22062 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22063 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22064 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22065 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22066 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22067 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22068 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22069 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22070 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22071 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22072 };
22073
22074 #undef UL_BARRIER
22075
22076 /* Table of ARM-format instructions. */
22077
22078 /* Macros for gluing together operand strings. N.B. In all cases
22079 other than OPS0, the trailing OP_stop comes from default
22080 zero-initialization of the unspecified elements of the array. */
22081 #define OPS0() { OP_stop, }
22082 #define OPS1(a) { OP_##a, }
22083 #define OPS2(a,b) { OP_##a,OP_##b, }
22084 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22085 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22086 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22087 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22088
22089 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22090 This is useful when mixing operands for ARM and THUMB, i.e. using the
22091 MIX_ARM_THUMB_OPERANDS macro.
22092 In order to use these macros, prefix the number of operands with _
22093 e.g. _3. */
22094 #define OPS_1(a) { a, }
22095 #define OPS_2(a,b) { a,b, }
22096 #define OPS_3(a,b,c) { a,b,c, }
22097 #define OPS_4(a,b,c,d) { a,b,c,d, }
22098 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22099 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22100
22101 /* These macros abstract out the exact format of the mnemonic table and
22102 save some repeated characters. */
22103
22104 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22105 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22106 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22107 THUMB_VARIANT, do_##ae, do_##te, 0 }
22108
22109 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22110 a T_MNEM_xyz enumerator. */
22111 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22112 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22113 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22114 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22115
22116 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22117 infix after the third character. */
22118 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22119 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22120 THUMB_VARIANT, do_##ae, do_##te, 0 }
22121 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22122 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22123 THUMB_VARIANT, do_##ae, do_##te, 0 }
22124 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22125 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22126 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22127 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22128 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22129 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22130 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22131 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22132
22133 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22134 field is still 0xE. Many of the Thumb variants can be executed
22135 conditionally, so this is checked separately. */
22136 #define TUE(mnem, op, top, nops, ops, ae, te) \
22137 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22138 THUMB_VARIANT, do_##ae, do_##te, 0 }
22139
22140 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22141 Used by mnemonics that have very minimal differences in the encoding for
22142 ARM and Thumb variants and can be handled in a common function. */
22143 #define TUEc(mnem, op, top, nops, ops, en) \
22144 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22145 THUMB_VARIANT, do_##en, do_##en, 0 }
22146
22147 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22148 condition code field. */
22149 #define TUF(mnem, op, top, nops, ops, ae, te) \
22150 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22151 THUMB_VARIANT, do_##ae, do_##te, 0 }
22152
22153 /* ARM-only variants of all the above. */
22154 #define CE(mnem, op, nops, ops, ae) \
22155 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22156
22157 #define C3(mnem, op, nops, ops, ae) \
22158 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22159
22160 /* Thumb-only variants of TCE and TUE. */
22161 #define ToC(mnem, top, nops, ops, te) \
22162 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22163 do_##te, 0 }
22164
22165 #define ToU(mnem, top, nops, ops, te) \
22166 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22167 NULL, do_##te, 0 }
22168
22169 /* T_MNEM_xyz enumerator variants of ToC. */
22170 #define toC(mnem, top, nops, ops, te) \
22171 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22172 do_##te, 0 }
22173
22174 /* T_MNEM_xyz enumerator variants of ToU. */
22175 #define toU(mnem, top, nops, ops, te) \
22176 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22177 NULL, do_##te, 0 }
22178
22179 /* Legacy mnemonics that always have conditional infix after the third
22180 character. */
22181 #define CL(mnem, op, nops, ops, ae) \
22182 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22183 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22184
22185 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22186 #define cCE(mnem, op, nops, ops, ae) \
22187 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22188
22189 /* mov instructions that are shared between coprocessor and MVE. */
22190 #define mcCE(mnem, op, nops, ops, ae) \
22191 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22192
22193 /* Legacy coprocessor instructions where conditional infix and conditional
22194 suffix are ambiguous. For consistency this includes all FPA instructions,
22195 not just the potentially ambiguous ones. */
22196 #define cCL(mnem, op, nops, ops, ae) \
22197 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22198 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22199
22200 /* Coprocessor, takes either a suffix or a position-3 infix
22201 (for an FPA corner case). */
22202 #define C3E(mnem, op, nops, ops, ae) \
22203 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22204 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22205
22206 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22207 { m1 #m2 m3, OPS##nops ops, \
22208 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22209 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22210
22211 #define CM(m1, m2, op, nops, ops, ae) \
22212 xCM_ (m1, , m2, op, nops, ops, ae), \
22213 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22214 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22215 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22216 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22217 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22218 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22219 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22220 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22221 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22222 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22223 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22224 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22225 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22226 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22227 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22228 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22229 xCM_ (m1, le, m2, op, nops, ops, ae), \
22230 xCM_ (m1, al, m2, op, nops, ops, ae)
22231
22232 #define UE(mnem, op, nops, ops, ae) \
22233 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22234
22235 #define UF(mnem, op, nops, ops, ae) \
22236 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22237
22238 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22239 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22240 use the same encoding function for each. */
22241 #define NUF(mnem, op, nops, ops, enc) \
22242 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22243 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22244
22245 /* Neon data processing, version which indirects through neon_enc_tab for
22246 the various overloaded versions of opcodes. */
22247 #define nUF(mnem, op, nops, ops, enc) \
22248 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22249 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22250
22251 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22252 version. */
22253 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22254 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22255 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22256
22257 #define NCE(mnem, op, nops, ops, enc) \
22258 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22259
22260 #define NCEF(mnem, op, nops, ops, enc) \
22261 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22262
22263 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22264 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22265 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22266 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22267
22268 #define nCE(mnem, op, nops, ops, enc) \
22269 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22270
22271 #define nCEF(mnem, op, nops, ops, enc) \
22272 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22273
22274 /* */
22275 #define mCEF(mnem, op, nops, ops, enc) \
22276 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22277 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22278
22279
22280 /* nCEF but for MVE predicated instructions. */
22281 #define mnCEF(mnem, op, nops, ops, enc) \
22282 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22283
22284 /* nCE but for MVE predicated instructions. */
22285 #define mnCE(mnem, op, nops, ops, enc) \
22286 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22287
22288 /* NUF but for potentially MVE predicated instructions. */
22289 #define MNUF(mnem, op, nops, ops, enc) \
22290 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22291 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22292
22293 /* nUF but for potentially MVE predicated instructions. */
22294 #define mnUF(mnem, op, nops, ops, enc) \
22295 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22296 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22297
22298 /* ToC but for potentially MVE predicated instructions. */
22299 #define mToC(mnem, top, nops, ops, te) \
22300 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22301 do_##te, 1 }
22302
22303 /* NCE but for MVE predicated instructions. */
22304 #define MNCE(mnem, op, nops, ops, enc) \
22305 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22306
22307 /* NCEF but for MVE predicated instructions. */
22308 #define MNCEF(mnem, op, nops, ops, enc) \
22309 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22310 #define do_0 0
22311
22312 static const struct asm_opcode insns[] =
22313 {
22314 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22315 #define THUMB_VARIANT & arm_ext_v4t
22316 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22317 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22318 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22319 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22320 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22321 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22322 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22323 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22324 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22325 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22326 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22327 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22328 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22329 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22330 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22331 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22332
22333 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22334 for setting PSR flag bits. They are obsolete in V6 and do not
22335 have Thumb equivalents. */
22336 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22337 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22338 CL("tstp", 110f000, 2, (RR, SH), cmp),
22339 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22340 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22341 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22342 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22343 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22344 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22345
22346 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22347 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22348 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22349 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22350
22351 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22352 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22353 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22354 OP_RRnpc),
22355 OP_ADDRGLDR),ldst, t_ldst),
22356 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22357
22358 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22359 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22360 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22361 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22362 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22363 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22364
22365 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22366 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22367
22368 /* Pseudo ops. */
22369 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22370 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22371 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22372 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22373
22374 /* Thumb-compatibility pseudo ops. */
22375 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22376 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22377 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22378 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22379 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22380 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22381 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22382 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22383 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22384 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22385 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22386 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22387
22388 /* These may simplify to neg. */
22389 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22390 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22391
22392 #undef THUMB_VARIANT
22393 #define THUMB_VARIANT & arm_ext_os
22394
22395 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22396 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22397
22398 #undef THUMB_VARIANT
22399 #define THUMB_VARIANT & arm_ext_v6
22400
22401 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22402
22403 /* V1 instructions with no Thumb analogue prior to V6T2. */
22404 #undef THUMB_VARIANT
22405 #define THUMB_VARIANT & arm_ext_v6t2
22406
22407 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22408 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22409 CL("teqp", 130f000, 2, (RR, SH), cmp),
22410
22411 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22412 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22413 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22414 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22415
22416 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22417 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22418
22419 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22420 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22421
22422 /* V1 instructions with no Thumb analogue at all. */
22423 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22424 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22425
22426 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22427 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22428 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22429 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22430 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22431 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22432 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22433 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22434
22435 #undef ARM_VARIANT
22436 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22437 #undef THUMB_VARIANT
22438 #define THUMB_VARIANT & arm_ext_v4t
22439
22440 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22441 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22442
22443 #undef THUMB_VARIANT
22444 #define THUMB_VARIANT & arm_ext_v6t2
22445
22446 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22447 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22448
22449 /* Generic coprocessor instructions. */
22450 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22451 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22452 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22453 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22454 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22455 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22456 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22457
22458 #undef ARM_VARIANT
22459 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22460
22461 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22462 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22463
22464 #undef ARM_VARIANT
22465 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22466 #undef THUMB_VARIANT
22467 #define THUMB_VARIANT & arm_ext_msr
22468
22469 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22470 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22471
22472 #undef ARM_VARIANT
22473 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22474 #undef THUMB_VARIANT
22475 #define THUMB_VARIANT & arm_ext_v6t2
22476
22477 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22478 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22479 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22480 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22481 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22482 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22483 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22484 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22485
22486 #undef ARM_VARIANT
22487 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22488 #undef THUMB_VARIANT
22489 #define THUMB_VARIANT & arm_ext_v4t
22490
22491 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22492 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22493 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22494 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22495 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22496 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22497
22498 #undef ARM_VARIANT
22499 #define ARM_VARIANT & arm_ext_v4t_5
22500
22501 /* ARM Architecture 4T. */
22502 /* Note: bx (and blx) are required on V5, even if the processor does
22503 not support Thumb. */
22504 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22505
22506 #undef ARM_VARIANT
22507 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22508 #undef THUMB_VARIANT
22509 #define THUMB_VARIANT & arm_ext_v5t
22510
22511 /* Note: blx has 2 variants; the .value coded here is for
22512 BLX(2). Only this variant has conditional execution. */
22513 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22514 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22515
22516 #undef THUMB_VARIANT
22517 #define THUMB_VARIANT & arm_ext_v6t2
22518
22519 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22520 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22521 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22522 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22523 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22524 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22525 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22526 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22527
22528 #undef ARM_VARIANT
22529 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22530 #undef THUMB_VARIANT
22531 #define THUMB_VARIANT & arm_ext_v5exp
22532
22533 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22534 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22535 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22536 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22537
22538 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22539 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22540
22541 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22542 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22543 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22544 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22545
22546 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22547 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22548 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22549 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22550
22551 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22552 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22553
22554 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22555 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22556 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22557 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22558
22559 #undef ARM_VARIANT
22560 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22561 #undef THUMB_VARIANT
22562 #define THUMB_VARIANT & arm_ext_v6t2
22563
22564 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22565 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22566 ldrd, t_ldstd),
22567 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22568 ADDRGLDRS), ldrd, t_ldstd),
22569
22570 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22571 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22572
22573 #undef ARM_VARIANT
22574 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22575
22576 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22577
22578 #undef ARM_VARIANT
22579 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22580 #undef THUMB_VARIANT
22581 #define THUMB_VARIANT & arm_ext_v6
22582
22583 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22584 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22585 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22586 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22587 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22588 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22589 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22590 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22591 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22592 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22593
22594 #undef THUMB_VARIANT
22595 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22596
22597 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22598 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22599 strex, t_strex),
22600 #undef THUMB_VARIANT
22601 #define THUMB_VARIANT & arm_ext_v6t2
22602
22603 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22604 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22605
22606 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22607 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22608
22609 /* ARM V6 not included in V7M. */
22610 #undef THUMB_VARIANT
22611 #define THUMB_VARIANT & arm_ext_v6_notm
22612 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22613 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22614 UF(rfeib, 9900a00, 1, (RRw), rfe),
22615 UF(rfeda, 8100a00, 1, (RRw), rfe),
22616 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22617 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22618 UF(rfefa, 8100a00, 1, (RRw), rfe),
22619 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22620 UF(rfeed, 9900a00, 1, (RRw), rfe),
22621 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22622 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22623 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22624 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22625 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22626 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22627 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22628 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22629 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22630 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22631
22632 /* ARM V6 not included in V7M (eg. integer SIMD). */
22633 #undef THUMB_VARIANT
22634 #define THUMB_VARIANT & arm_ext_v6_dsp
22635 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22636 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22637 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22638 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22639 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22640 /* Old name for QASX. */
22641 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22642 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22643 /* Old name for QSAX. */
22644 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22645 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22646 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22647 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22648 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22649 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22650 /* Old name for SASX. */
22651 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22652 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22653 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22654 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22655 /* Old name for SHASX. */
22656 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22657 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22658 /* Old name for SHSAX. */
22659 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22660 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22661 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22662 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22663 /* Old name for SSAX. */
22664 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22665 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22666 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22667 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22668 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22669 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22670 /* Old name for UASX. */
22671 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22672 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22673 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22674 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22675 /* Old name for UHASX. */
22676 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22677 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22678 /* Old name for UHSAX. */
22679 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22680 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22681 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22682 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22683 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22684 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22685 /* Old name for UQASX. */
22686 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22687 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22688 /* Old name for UQSAX. */
22689 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22690 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22691 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22692 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22693 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22694 /* Old name for USAX. */
22695 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22696 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22697 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22698 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22699 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22700 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22701 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22702 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22703 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22704 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22705 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22706 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22707 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22708 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22709 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22710 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22711 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22712 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22713 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22714 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22715 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22716 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22717 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22718 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22719 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22720 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22721 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22722 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22723 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22724 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22725 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22726 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22727 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22728 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22729
22730 #undef ARM_VARIANT
22731 #define ARM_VARIANT & arm_ext_v6k_v6t2
22732 #undef THUMB_VARIANT
22733 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22734
22735 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22736 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22737 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22738 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22739
22740 #undef THUMB_VARIANT
22741 #define THUMB_VARIANT & arm_ext_v6_notm
22742 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22743 ldrexd, t_ldrexd),
22744 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22745 RRnpcb), strexd, t_strexd),
22746
22747 #undef THUMB_VARIANT
22748 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22749 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22750 rd_rn, rd_rn),
22751 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22752 rd_rn, rd_rn),
22753 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22754 strex, t_strexbh),
22755 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22756 strex, t_strexbh),
22757 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22758
22759 #undef ARM_VARIANT
22760 #define ARM_VARIANT & arm_ext_sec
22761 #undef THUMB_VARIANT
22762 #define THUMB_VARIANT & arm_ext_sec
22763
22764 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22765
22766 #undef ARM_VARIANT
22767 #define ARM_VARIANT & arm_ext_virt
22768 #undef THUMB_VARIANT
22769 #define THUMB_VARIANT & arm_ext_virt
22770
22771 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22772 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22773
22774 #undef ARM_VARIANT
22775 #define ARM_VARIANT & arm_ext_pan
22776 #undef THUMB_VARIANT
22777 #define THUMB_VARIANT & arm_ext_pan
22778
22779 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22780
22781 #undef ARM_VARIANT
22782 #define ARM_VARIANT & arm_ext_v6t2
22783 #undef THUMB_VARIANT
22784 #define THUMB_VARIANT & arm_ext_v6t2
22785
22786 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22787 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22788 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22789 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22790
22791 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22792 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22793
22794 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22795 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22796 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22797 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22798
22799 #undef ARM_VARIANT
22800 #define ARM_VARIANT & arm_ext_v3
22801 #undef THUMB_VARIANT
22802 #define THUMB_VARIANT & arm_ext_v6t2
22803
22804 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22805 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22806 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22807
22808 #undef ARM_VARIANT
22809 #define ARM_VARIANT & arm_ext_v6t2
22810 #undef THUMB_VARIANT
22811 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22812 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22813 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22814
22815 /* Thumb-only instructions. */
22816 #undef ARM_VARIANT
22817 #define ARM_VARIANT NULL
22818 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22819 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22820
22821 /* ARM does not really have an IT instruction, so always allow it.
22822 The opcode is copied from Thumb in order to allow warnings in
22823 -mimplicit-it=[never | arm] modes. */
22824 #undef ARM_VARIANT
22825 #define ARM_VARIANT & arm_ext_v1
22826 #undef THUMB_VARIANT
22827 #define THUMB_VARIANT & arm_ext_v6t2
22828
22829 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22830 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22831 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22832 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22833 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22834 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22835 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22836 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22837 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22838 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22839 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22840 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22841 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22842 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22843 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22844 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22845 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22846 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22847
22848 /* Thumb2 only instructions. */
22849 #undef ARM_VARIANT
22850 #define ARM_VARIANT NULL
22851
22852 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22853 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22854 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22855 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22856 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22857 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22858
22859 /* Hardware division instructions. */
22860 #undef ARM_VARIANT
22861 #define ARM_VARIANT & arm_ext_adiv
22862 #undef THUMB_VARIANT
22863 #define THUMB_VARIANT & arm_ext_div
22864
22865 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22866 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22867
22868 /* ARM V6M/V7 instructions. */
22869 #undef ARM_VARIANT
22870 #define ARM_VARIANT & arm_ext_barrier
22871 #undef THUMB_VARIANT
22872 #define THUMB_VARIANT & arm_ext_barrier
22873
22874 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22875 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22876 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22877
22878 /* ARM V7 instructions. */
22879 #undef ARM_VARIANT
22880 #define ARM_VARIANT & arm_ext_v7
22881 #undef THUMB_VARIANT
22882 #define THUMB_VARIANT & arm_ext_v7
22883
22884 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22885 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22886
22887 #undef ARM_VARIANT
22888 #define ARM_VARIANT & arm_ext_mp
22889 #undef THUMB_VARIANT
22890 #define THUMB_VARIANT & arm_ext_mp
22891
22892 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22893
22894 /* AArchv8 instructions. */
22895 #undef ARM_VARIANT
22896 #define ARM_VARIANT & arm_ext_v8
22897
22898 /* Instructions shared between armv8-a and armv8-m. */
22899 #undef THUMB_VARIANT
22900 #define THUMB_VARIANT & arm_ext_atomics
22901
22902 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22903 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22904 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22905 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22906 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22907 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22908 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22909 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22910 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22911 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22912 stlex, t_stlex),
22913 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22914 stlex, t_stlex),
22915 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22916 stlex, t_stlex),
22917 #undef THUMB_VARIANT
22918 #define THUMB_VARIANT & arm_ext_v8
22919
22920 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22921 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22922 ldrexd, t_ldrexd),
22923 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22924 strexd, t_strexd),
22925
22926 /* Defined in V8 but is in undefined encoding space for earlier
22927 architectures. However earlier architectures are required to treat
22928 this instuction as a semihosting trap as well. Hence while not explicitly
22929 defined as such, it is in fact correct to define the instruction for all
22930 architectures. */
22931 #undef THUMB_VARIANT
22932 #define THUMB_VARIANT & arm_ext_v1
22933 #undef ARM_VARIANT
22934 #define ARM_VARIANT & arm_ext_v1
22935 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22936
22937 /* ARMv8 T32 only. */
22938 #undef ARM_VARIANT
22939 #define ARM_VARIANT NULL
22940 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22941 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22942 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22943
22944 /* FP for ARMv8. */
22945 #undef ARM_VARIANT
22946 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22947 #undef THUMB_VARIANT
22948 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22949
22950 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22951 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22952 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22953 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
22954 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22955 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22956 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22957 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22958 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22959 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22960 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22961 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22962 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
22963
22964 /* Crypto v1 extensions. */
22965 #undef ARM_VARIANT
22966 #define ARM_VARIANT & fpu_crypto_ext_armv8
22967 #undef THUMB_VARIANT
22968 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22969
22970 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22971 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22972 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22973 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
22974 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22975 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22976 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22977 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22978 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22979 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22980 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
22981 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22982 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22983 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
22984
22985 #undef ARM_VARIANT
22986 #define ARM_VARIANT & crc_ext_armv8
22987 #undef THUMB_VARIANT
22988 #define THUMB_VARIANT & crc_ext_armv8
22989 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22990 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22991 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22992 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22993 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22994 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22995
22996 /* ARMv8.2 RAS extension. */
22997 #undef ARM_VARIANT
22998 #define ARM_VARIANT & arm_ext_ras
22999 #undef THUMB_VARIANT
23000 #define THUMB_VARIANT & arm_ext_ras
23001 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23002
23003 #undef ARM_VARIANT
23004 #define ARM_VARIANT & arm_ext_v8_3
23005 #undef THUMB_VARIANT
23006 #define THUMB_VARIANT & arm_ext_v8_3
23007 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23008
23009 #undef ARM_VARIANT
23010 #define ARM_VARIANT & fpu_neon_ext_dotprod
23011 #undef THUMB_VARIANT
23012 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23013 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23014 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23015
23016 #undef ARM_VARIANT
23017 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23018 #undef THUMB_VARIANT
23019 #define THUMB_VARIANT NULL
23020
23021 cCE("wfs", e200110, 1, (RR), rd),
23022 cCE("rfs", e300110, 1, (RR), rd),
23023 cCE("wfc", e400110, 1, (RR), rd),
23024 cCE("rfc", e500110, 1, (RR), rd),
23025
23026 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23027 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23028 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23029 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23030
23031 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23032 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23033 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23034 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23035
23036 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23037 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23038 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23039 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23040 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23041 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23042 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23043 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23044 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23045 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23046 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23047 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23048
23049 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23050 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23051 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23052 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23053 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23054 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23055 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23056 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23057 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23058 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23059 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23060 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23061
23062 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23063 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23064 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23065 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23066 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23067 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23068 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23069 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23070 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23071 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23072 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23073 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23074
23075 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23076 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23077 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23078 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23079 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23080 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23081 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23082 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23083 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23084 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23085 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23086 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23087
23088 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23089 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23090 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23091 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23092 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23093 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23094 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23095 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23096 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23097 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23098 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23099 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23100
23101 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23102 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23103 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23104 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23105 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23106 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23107 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23108 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23109 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23110 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23111 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23112 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23113
23114 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23115 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23116 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23117 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23118 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23119 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23120 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23121 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23122 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23123 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23124 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23125 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23126
23127 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23128 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23129 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23130 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23131 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23132 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23133 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23134 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23135 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23136 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23137 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23138 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23139
23140 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23141 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23142 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23143 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23144 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23145 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23146 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23147 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23148 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23149 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23150 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23151 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23152
23153 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23154 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23155 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23156 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23157 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23158 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23159 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23160 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23161 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23162 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23163 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23164 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23165
23166 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23167 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23168 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23169 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23170 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23171 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23172 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23173 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23174 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23175 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23176 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23177 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23178
23179 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23180 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23181 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23182 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23183 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23184 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23185 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23186 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23187 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23188 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23189 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23190 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23191
23192 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23193 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23194 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23195 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23196 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23197 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23198 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23199 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23200 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23201 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23202 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23203 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23204
23205 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23206 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23207 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23208 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23209 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23210 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23211 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23212 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23213 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23214 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23215 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23216 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23217
23218 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23219 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23220 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23221 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23222 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23223 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23224 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23225 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23226 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23227 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23228 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23229 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23230
23231 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23232 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23233 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23234 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23235 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23236 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23237 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23238 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23239 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23240 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23241 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23242 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23243
23244 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23245 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23246 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23247 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23248 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23249 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23250 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23251 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23252 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23253 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23254 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23255 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23256
23257 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23258 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23259 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23260 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23261 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23262 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23263 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23264 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23265 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23266 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23267 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23268 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23269
23270 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23271 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23272 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23273 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23274 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23275 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23276 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23277 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23278 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23279 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23280 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23281 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23282
23283 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23284 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23285 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23286 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23287 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23288 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23289 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23290 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23291 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23292 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23293 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23294 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23295
23296 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23297 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23298 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23299 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23300 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23301 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23302 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23303 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23304 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23305 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23306 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23307 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23308
23309 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23310 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23311 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23312 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23313 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23314 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23315 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23316 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23317 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23318 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23319 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23320 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23321
23322 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23323 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23324 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23325 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23326 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23327 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23328 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23329 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23330 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23331 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23332 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23333 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23334
23335 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23336 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23337 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23338 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23339 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23340 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23341 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23342 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23343 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23344 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23345 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23346 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23347
23348 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23349 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23350 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23351 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23352 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23353 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23354 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23355 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23356 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23357 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23358 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23359 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23360
23361 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23362 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23363 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23364 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23365 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23366 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23367 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23368 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23369 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23370 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23371 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23372 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23373
23374 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23375 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23376 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23377 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23378 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23379 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23380 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23381 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23382 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23383 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23384 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23385 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23386
23387 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23388 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23389 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23390 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23391 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23392 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23393 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23394 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23395 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23396 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23397 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23398 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23399
23400 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23401 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23402 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23403 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23404 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23405 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23406 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23407 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23408 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23409 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23410 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23411 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23412
23413 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23414 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23415 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23416 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23417
23418 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23419 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23420 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23421 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23422 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23423 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23424 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23425 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23426 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23427 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23428 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23429 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23430
23431 /* The implementation of the FIX instruction is broken on some
23432 assemblers, in that it accepts a precision specifier as well as a
23433 rounding specifier, despite the fact that this is meaningless.
23434 To be more compatible, we accept it as well, though of course it
23435 does not set any bits. */
23436 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23437 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23438 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23439 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23440 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23441 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23442 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23443 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23444 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23445 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23446 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23447 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23448 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23449
23450 /* Instructions that were new with the real FPA, call them V2. */
23451 #undef ARM_VARIANT
23452 #define ARM_VARIANT & fpu_fpa_ext_v2
23453
23454 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23455 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23456 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23457 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23458 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23459 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23460
23461 #undef ARM_VARIANT
23462 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23463
23464 /* Moves and type conversions. */
23465 cCE("fmstat", ef1fa10, 0, (), noargs),
23466 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23467 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23468 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23469 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23470 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23471 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23472 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23473 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23474 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23475 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23476
23477 /* Memory operations. */
23478 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23479 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23480 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23481 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23482 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23483 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23484 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23485 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23486 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23487 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23488 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23489 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23490 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23491 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23492 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23493 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23494 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23495 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23496
23497 /* Monadic operations. */
23498 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23499 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23500 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23501
23502 /* Dyadic operations. */
23503 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23504 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23505 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23506 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23507 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23508 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23509 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23510 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23511 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23512
23513 /* Comparisons. */
23514 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23515 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23516 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23517 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23518
23519 /* Double precision load/store are still present on single precision
23520 implementations. */
23521 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23522 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23523 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23524 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23525 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23526 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23527 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23528 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23529 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23530 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23531
23532 #undef ARM_VARIANT
23533 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23534
23535 /* Moves and type conversions. */
23536 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23537 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23538 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23539 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23540 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23541 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23542 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23543 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23544 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23545 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23546 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23547 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23548
23549 /* Monadic operations. */
23550 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23551 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23552 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23553
23554 /* Dyadic operations. */
23555 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23556 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23557 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23558 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23559 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23560 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23561 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23562 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23563 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23564
23565 /* Comparisons. */
23566 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23567 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23568 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23569 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23570
23571 /* Instructions which may belong to either the Neon or VFP instruction sets.
23572 Individual encoder functions perform additional architecture checks. */
23573 #undef ARM_VARIANT
23574 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23575 #undef THUMB_VARIANT
23576 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23577
23578 /* These mnemonics are unique to VFP. */
23579 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23580 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23581 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23582 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23583 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23584 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23585 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23586 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23587
23588 /* Mnemonics shared by Neon and VFP. */
23589 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23590 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23591 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23592
23593 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23594 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23595 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23596 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23597 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23598 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23599
23600 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23601 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23602 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23603 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23604
23605
23606 /* NOTE: All VMOV encoding is special-cased! */
23607 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23608
23609 #undef THUMB_VARIANT
23610 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23611 by different feature bits. Since we are setting the Thumb guard, we can
23612 require Thumb-1 which makes it a nop guard and set the right feature bit in
23613 do_vldr_vstr (). */
23614 #define THUMB_VARIANT & arm_ext_v4t
23615 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23616 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23617
23618 #undef ARM_VARIANT
23619 #define ARM_VARIANT & arm_ext_fp16
23620 #undef THUMB_VARIANT
23621 #define THUMB_VARIANT & arm_ext_fp16
23622 /* New instructions added from v8.2, allowing the extraction and insertion of
23623 the upper 16 bits of a 32-bit vector register. */
23624 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23625 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23626
23627 /* New backported fma/fms instructions optional in v8.2. */
23628 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23629 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23630
23631 #undef THUMB_VARIANT
23632 #define THUMB_VARIANT & fpu_neon_ext_v1
23633 #undef ARM_VARIANT
23634 #define ARM_VARIANT & fpu_neon_ext_v1
23635
23636 /* Data processing with three registers of the same length. */
23637 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23638 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23639 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23640 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23641 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23642 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23643 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23644 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23645 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23646 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23647 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23648 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23649 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23650 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23651 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23652 /* If not immediate, fall back to neon_dyadic_i64_su.
23653 shl_imm should accept I8 I16 I32 I64,
23654 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23655 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23656 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23657 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23658 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23659 /* Logic ops, types optional & ignored. */
23660 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23661 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23662 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23663 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23664 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23665 /* Bitfield ops, untyped. */
23666 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23667 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23668 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23669 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23670 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23671 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23672 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23673 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23674 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23675 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23676 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23677 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23678 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23679 back to neon_dyadic_if_su. */
23680 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23681 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23682 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23683 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23684 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23685 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23686 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23687 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23688 /* Comparison. Type I8 I16 I32 F32. */
23689 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23690 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23691 /* As above, D registers only. */
23692 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23693 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23694 /* Int and float variants, signedness unimportant. */
23695 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23696 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23697 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23698 /* Add/sub take types I8 I16 I32 I64 F32. */
23699 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23700 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23701 /* vtst takes sizes 8, 16, 32. */
23702 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23703 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23704 /* VMUL takes I8 I16 I32 F32 P8. */
23705 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23706 /* VQD{R}MULH takes S16 S32. */
23707 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23708 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23709 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23710 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23711 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23712 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23713 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23714 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23715 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23716 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23717 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23718 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23719 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23720 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23721 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23722 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23723 /* ARM v8.1 extension. */
23724 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23725 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23726 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23727 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23728
23729 /* Two address, int/float. Types S8 S16 S32 F32. */
23730 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23731 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23732
23733 /* Data processing with two registers and a shift amount. */
23734 /* Right shifts, and variants with rounding.
23735 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23736 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23737 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23738 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23739 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23740 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23741 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23742 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23743 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23744 /* Shift and insert. Sizes accepted 8 16 32 64. */
23745 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23746 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23747 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23748 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23749 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23750 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23751 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23752 /* Right shift immediate, saturating & narrowing, with rounding variants.
23753 Types accepted S16 S32 S64 U16 U32 U64. */
23754 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23755 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23756 /* As above, unsigned. Types accepted S16 S32 S64. */
23757 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23758 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23759 /* Right shift narrowing. Types accepted I16 I32 I64. */
23760 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23761 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23762 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23763 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23764 /* CVT with optional immediate for fixed-point variant. */
23765 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23766
23767 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23768 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23769
23770 /* Data processing, three registers of different lengths. */
23771 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23772 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23773 /* If not scalar, fall back to neon_dyadic_long.
23774 Vector types as above, scalar types S16 S32 U16 U32. */
23775 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23776 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23777 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23778 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23779 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23780 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23781 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23782 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23783 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23784 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23785 /* Saturating doubling multiplies. Types S16 S32. */
23786 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23787 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23788 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23789 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23790 S16 S32 U16 U32. */
23791 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23792
23793 /* Extract. Size 8. */
23794 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23795 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23796
23797 /* Two registers, miscellaneous. */
23798 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23799 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23800 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23801 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23802 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23803 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23804 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23805 /* Vector replicate. Sizes 8 16 32. */
23806 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23807 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23808 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23809 /* VMOVN. Types I16 I32 I64. */
23810 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23811 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23812 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23813 /* VQMOVUN. Types S16 S32 S64. */
23814 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23815 /* VZIP / VUZP. Sizes 8 16 32. */
23816 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23817 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23818 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23819 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23820 /* VQABS / VQNEG. Types S8 S16 S32. */
23821 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23822 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23823 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23824 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23825 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23826 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23827 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23828 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23829 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23830 /* Reciprocal estimates. Types U32 F16 F32. */
23831 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23832 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23833 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23834 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23835 /* VCLS. Types S8 S16 S32. */
23836 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23837 /* VCLZ. Types I8 I16 I32. */
23838 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23839 /* VCNT. Size 8. */
23840 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23841 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23842 /* Two address, untyped. */
23843 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23844 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23845 /* VTRN. Sizes 8 16 32. */
23846 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23847 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23848
23849 /* Table lookup. Size 8. */
23850 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23851 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23852
23853 #undef THUMB_VARIANT
23854 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23855 #undef ARM_VARIANT
23856 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23857
23858 /* Neon element/structure load/store. */
23859 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23860 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23861 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23862 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23863 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23864 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23865 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23866 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23867
23868 #undef THUMB_VARIANT
23869 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23870 #undef ARM_VARIANT
23871 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23872 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23873 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23874 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23875 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23876 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23877 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23878 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23879 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23880 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23881
23882 #undef THUMB_VARIANT
23883 #define THUMB_VARIANT & fpu_vfp_ext_v3
23884 #undef ARM_VARIANT
23885 #define ARM_VARIANT & fpu_vfp_ext_v3
23886
23887 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23888 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23889 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23890 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23891 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23892 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23893 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23894 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23895 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23896
23897 #undef ARM_VARIANT
23898 #define ARM_VARIANT & fpu_vfp_ext_fma
23899 #undef THUMB_VARIANT
23900 #define THUMB_VARIANT & fpu_vfp_ext_fma
23901 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
23902 VFP FMA variant; NEON and VFP FMA always includes the NEON
23903 FMA instructions. */
23904 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
23905 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
23906
23907 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23908 the v form should always be used. */
23909 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23910 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23911 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23912 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23913 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23914 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23915
23916 #undef THUMB_VARIANT
23917 #undef ARM_VARIANT
23918 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23919
23920 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23921 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23922 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23923 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23924 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23925 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23926 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23927 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23928
23929 #undef ARM_VARIANT
23930 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23931
23932 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23933 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23934 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23935 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23936 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23937 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23938 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23939 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23940 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
23941 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23942 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23943 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23944 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23945 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23946 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23947 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23948 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23949 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23950 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23951 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23952 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23953 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23954 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23955 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23956 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23957 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23958 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23959 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23960 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
23961 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23962 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23963 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23964 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23965 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23966 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23967 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23968 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23969 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23970 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23971 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23972 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23973 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23974 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23975 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23976 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23977 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23978 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
23979 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23980 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23981 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23982 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23983 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23984 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23985 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23986 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23987 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23988 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23989 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23990 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23991 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23992 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23993 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23994 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23995 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23996 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23997 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23998 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23999 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24000 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24001 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24002 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24003 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24004 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24005 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24006 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24007 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24008 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24009 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24010 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24011 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24012 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24013 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24014 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24015 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24016 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24017 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24018 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24019 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24020 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24021 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24022 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24023 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24024 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24025 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24026 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24027 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24028 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24029 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24030 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24031 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24032 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24033 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24034 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24035 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24036 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24037 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24038 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24039 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24040 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24041 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24042 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24043 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24044 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24045 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24046 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24047 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24048 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24049 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24050 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24051 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24052 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24053 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24054 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24055 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24056 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24057 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24058 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24059 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24060 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24061 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24062 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24063 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24064 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24065 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24066 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24067 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24068 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24069 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24070 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24071 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24072 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24073 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24074 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24075 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24076 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24077 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24078 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24079 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24080 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24081 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24082 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24083 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24084 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24085 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24086 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24087 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24088 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24089 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24090 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24091 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24092 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24093 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24094
24095 #undef ARM_VARIANT
24096 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24097
24098 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24099 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24100 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24101 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24102 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24103 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24104 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24105 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24106 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24107 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24108 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24109 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24110 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24111 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24112 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24113 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24114 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24115 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24116 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24117 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24118 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24119 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24120 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24121 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24122 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24123 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24124 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24125 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24126 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24127 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24128 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24129 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24130 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24131 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24132 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24133 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24134 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24135 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24136 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24137 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24138 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24139 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24140 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24141 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24142 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24143 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24144 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24145 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24146 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24147 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24148 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24149 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24150 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24151 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24152 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24153 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24154 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24155
24156 #undef ARM_VARIANT
24157 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24158
24159 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24160 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24161 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24162 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24163 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24164 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24165 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24166 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24167 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24168 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24169 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24170 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24171 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24172 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24173 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24174 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24175 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24176 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24177 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24178 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24179 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24180 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24181 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24182 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24183 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24184 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24185 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24186 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24187 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24188 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24189 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24190 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24191 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24192 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24193 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24194 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24195 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24196 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24197 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24198 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24199 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24200 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24201 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24202 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24203 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24204 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24205 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24206 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24207 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24208 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24209 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24210 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24211 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24212 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24213 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24214 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24215 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24216 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24217 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24218 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24219 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24220 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24221 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24222 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24223 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24224 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24225 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24226 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24227 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24228 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24229 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24230 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24231 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24232 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24233 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24234 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24235
24236 /* ARMv8.5-A instructions. */
24237 #undef ARM_VARIANT
24238 #define ARM_VARIANT & arm_ext_sb
24239 #undef THUMB_VARIANT
24240 #define THUMB_VARIANT & arm_ext_sb
24241 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24242
24243 #undef ARM_VARIANT
24244 #define ARM_VARIANT & arm_ext_predres
24245 #undef THUMB_VARIANT
24246 #define THUMB_VARIANT & arm_ext_predres
24247 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24248 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24249 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24250
24251 /* ARMv8-M instructions. */
24252 #undef ARM_VARIANT
24253 #define ARM_VARIANT NULL
24254 #undef THUMB_VARIANT
24255 #define THUMB_VARIANT & arm_ext_v8m
24256 ToU("sg", e97fe97f, 0, (), noargs),
24257 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24258 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24259 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24260 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24261 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24262 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24263
24264 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24265 instructions behave as nop if no VFP is present. */
24266 #undef THUMB_VARIANT
24267 #define THUMB_VARIANT & arm_ext_v8m_main
24268 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24269 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24270
24271 /* Armv8.1-M Mainline instructions. */
24272 #undef THUMB_VARIANT
24273 #define THUMB_VARIANT & arm_ext_v8_1m_main
24274 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24275 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24276 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24277 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24278 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24279
24280 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24281 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24282 toU("le", _le, 2, (oLR, EXP), t_loloop),
24283
24284 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24285 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24286
24287 #undef THUMB_VARIANT
24288 #define THUMB_VARIANT & mve_ext
24289
24290 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24291 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24292 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24293 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24294 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24295 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24296 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24297 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24298 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24299 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24300 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24301 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24302 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24303 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24304 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24305
24306 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24307 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24308 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24309 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24310 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24311 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24312 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24313 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24314 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24315 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24316 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24317 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24318 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24319 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24320 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24321
24322 /* MVE and MVE FP only. */
24323 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24324 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24325 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24326 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24327 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24328 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24329 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24330 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24331 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24332 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24333 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24334 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24335 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24336 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24337 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24338 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24339 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24340
24341 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24342 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24343 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24344 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24345 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24346 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24347 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24348 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24349 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24350 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24351 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24352 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24353 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24354 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24355 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24356 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24357 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24358 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24359 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24360 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24361
24362 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24363 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24364 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24365 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24366 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24367 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24368 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24369 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24370 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24371 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24372 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24373
24374 #undef THUMB_VARIANT
24375 #define THUMB_VARIANT & mve_fp_ext
24376 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24377 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24378
24379 #undef ARM_VARIANT
24380 #define ARM_VARIANT & fpu_vfp_ext_v1
24381 #undef THUMB_VARIANT
24382 #define THUMB_VARIANT & arm_ext_v6t2
24383
24384 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24385
24386 #undef ARM_VARIANT
24387 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24388
24389 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24390 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24391 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24392 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24393
24394 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24395 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24396 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24397
24398 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24399 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24400
24401 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24402 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24403
24404 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24405 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24406
24407 #undef ARM_VARIANT
24408 #define ARM_VARIANT & fpu_vfp_ext_v2
24409
24410 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24411 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24412 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24413 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24414
24415 #undef ARM_VARIANT
24416 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24417 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24418 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24419 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24420 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24421
24422 #undef ARM_VARIANT
24423 #define ARM_VARIANT & fpu_neon_ext_v1
24424 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24425 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24426 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24427 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24428 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24429 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24430 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24431 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24432 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24433 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24434 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24435 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24436 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24437 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24438 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24439
24440 #undef ARM_VARIANT
24441 #define ARM_VARIANT & arm_ext_v8_3
24442 #undef THUMB_VARIANT
24443 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24444 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24445 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24446 };
24447 #undef ARM_VARIANT
24448 #undef THUMB_VARIANT
24449 #undef TCE
24450 #undef TUE
24451 #undef TUF
24452 #undef TCC
24453 #undef cCE
24454 #undef cCL
24455 #undef C3E
24456 #undef C3
24457 #undef CE
24458 #undef CM
24459 #undef CL
24460 #undef UE
24461 #undef UF
24462 #undef UT
24463 #undef NUF
24464 #undef nUF
24465 #undef NCE
24466 #undef nCE
24467 #undef OPS0
24468 #undef OPS1
24469 #undef OPS2
24470 #undef OPS3
24471 #undef OPS4
24472 #undef OPS5
24473 #undef OPS6
24474 #undef do_0
24475 #undef ToC
24476 #undef toC
24477 #undef ToU
24478 #undef toU
24479 \f
24480 /* MD interface: bits in the object file. */
24481
24482 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24483 for use in the a.out file, and stores them in the array pointed to by buf.
24484 This knows about the endian-ness of the target machine and does
24485 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24486 2 (short) and 4 (long) Floating numbers are put out as a series of
24487 LITTLENUMS (shorts, here at least). */
24488
24489 void
24490 md_number_to_chars (char * buf, valueT val, int n)
24491 {
24492 if (target_big_endian)
24493 number_to_chars_bigendian (buf, val, n);
24494 else
24495 number_to_chars_littleendian (buf, val, n);
24496 }
24497
24498 static valueT
24499 md_chars_to_number (char * buf, int n)
24500 {
24501 valueT result = 0;
24502 unsigned char * where = (unsigned char *) buf;
24503
24504 if (target_big_endian)
24505 {
24506 while (n--)
24507 {
24508 result <<= 8;
24509 result |= (*where++ & 255);
24510 }
24511 }
24512 else
24513 {
24514 while (n--)
24515 {
24516 result <<= 8;
24517 result |= (where[n] & 255);
24518 }
24519 }
24520
24521 return result;
24522 }
24523
24524 /* MD interface: Sections. */
24525
24526 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24527 that an rs_machine_dependent frag may reach. */
24528
24529 unsigned int
24530 arm_frag_max_var (fragS *fragp)
24531 {
24532 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24533 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24534
24535 Note that we generate relaxable instructions even for cases that don't
24536 really need it, like an immediate that's a trivial constant. So we're
24537 overestimating the instruction size for some of those cases. Rather
24538 than putting more intelligence here, it would probably be better to
24539 avoid generating a relaxation frag in the first place when it can be
24540 determined up front that a short instruction will suffice. */
24541
24542 gas_assert (fragp->fr_type == rs_machine_dependent);
24543 return INSN_SIZE;
24544 }
24545
24546 /* Estimate the size of a frag before relaxing. Assume everything fits in
24547 2 bytes. */
24548
24549 int
24550 md_estimate_size_before_relax (fragS * fragp,
24551 segT segtype ATTRIBUTE_UNUSED)
24552 {
24553 fragp->fr_var = 2;
24554 return 2;
24555 }
24556
24557 /* Convert a machine dependent frag. */
24558
24559 void
24560 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24561 {
24562 unsigned long insn;
24563 unsigned long old_op;
24564 char *buf;
24565 expressionS exp;
24566 fixS *fixp;
24567 int reloc_type;
24568 int pc_rel;
24569 int opcode;
24570
24571 buf = fragp->fr_literal + fragp->fr_fix;
24572
24573 old_op = bfd_get_16(abfd, buf);
24574 if (fragp->fr_symbol)
24575 {
24576 exp.X_op = O_symbol;
24577 exp.X_add_symbol = fragp->fr_symbol;
24578 }
24579 else
24580 {
24581 exp.X_op = O_constant;
24582 }
24583 exp.X_add_number = fragp->fr_offset;
24584 opcode = fragp->fr_subtype;
24585 switch (opcode)
24586 {
24587 case T_MNEM_ldr_pc:
24588 case T_MNEM_ldr_pc2:
24589 case T_MNEM_ldr_sp:
24590 case T_MNEM_str_sp:
24591 case T_MNEM_ldr:
24592 case T_MNEM_ldrb:
24593 case T_MNEM_ldrh:
24594 case T_MNEM_str:
24595 case T_MNEM_strb:
24596 case T_MNEM_strh:
24597 if (fragp->fr_var == 4)
24598 {
24599 insn = THUMB_OP32 (opcode);
24600 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24601 {
24602 insn |= (old_op & 0x700) << 4;
24603 }
24604 else
24605 {
24606 insn |= (old_op & 7) << 12;
24607 insn |= (old_op & 0x38) << 13;
24608 }
24609 insn |= 0x00000c00;
24610 put_thumb32_insn (buf, insn);
24611 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24612 }
24613 else
24614 {
24615 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24616 }
24617 pc_rel = (opcode == T_MNEM_ldr_pc2);
24618 break;
24619 case T_MNEM_adr:
24620 if (fragp->fr_var == 4)
24621 {
24622 insn = THUMB_OP32 (opcode);
24623 insn |= (old_op & 0xf0) << 4;
24624 put_thumb32_insn (buf, insn);
24625 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24626 }
24627 else
24628 {
24629 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24630 exp.X_add_number -= 4;
24631 }
24632 pc_rel = 1;
24633 break;
24634 case T_MNEM_mov:
24635 case T_MNEM_movs:
24636 case T_MNEM_cmp:
24637 case T_MNEM_cmn:
24638 if (fragp->fr_var == 4)
24639 {
24640 int r0off = (opcode == T_MNEM_mov
24641 || opcode == T_MNEM_movs) ? 0 : 8;
24642 insn = THUMB_OP32 (opcode);
24643 insn = (insn & 0xe1ffffff) | 0x10000000;
24644 insn |= (old_op & 0x700) << r0off;
24645 put_thumb32_insn (buf, insn);
24646 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24647 }
24648 else
24649 {
24650 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24651 }
24652 pc_rel = 0;
24653 break;
24654 case T_MNEM_b:
24655 if (fragp->fr_var == 4)
24656 {
24657 insn = THUMB_OP32(opcode);
24658 put_thumb32_insn (buf, insn);
24659 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24660 }
24661 else
24662 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24663 pc_rel = 1;
24664 break;
24665 case T_MNEM_bcond:
24666 if (fragp->fr_var == 4)
24667 {
24668 insn = THUMB_OP32(opcode);
24669 insn |= (old_op & 0xf00) << 14;
24670 put_thumb32_insn (buf, insn);
24671 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24672 }
24673 else
24674 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24675 pc_rel = 1;
24676 break;
24677 case T_MNEM_add_sp:
24678 case T_MNEM_add_pc:
24679 case T_MNEM_inc_sp:
24680 case T_MNEM_dec_sp:
24681 if (fragp->fr_var == 4)
24682 {
24683 /* ??? Choose between add and addw. */
24684 insn = THUMB_OP32 (opcode);
24685 insn |= (old_op & 0xf0) << 4;
24686 put_thumb32_insn (buf, insn);
24687 if (opcode == T_MNEM_add_pc)
24688 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24689 else
24690 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24691 }
24692 else
24693 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24694 pc_rel = 0;
24695 break;
24696
24697 case T_MNEM_addi:
24698 case T_MNEM_addis:
24699 case T_MNEM_subi:
24700 case T_MNEM_subis:
24701 if (fragp->fr_var == 4)
24702 {
24703 insn = THUMB_OP32 (opcode);
24704 insn |= (old_op & 0xf0) << 4;
24705 insn |= (old_op & 0xf) << 16;
24706 put_thumb32_insn (buf, insn);
24707 if (insn & (1 << 20))
24708 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24709 else
24710 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24711 }
24712 else
24713 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24714 pc_rel = 0;
24715 break;
24716 default:
24717 abort ();
24718 }
24719 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24720 (enum bfd_reloc_code_real) reloc_type);
24721 fixp->fx_file = fragp->fr_file;
24722 fixp->fx_line = fragp->fr_line;
24723 fragp->fr_fix += fragp->fr_var;
24724
24725 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24726 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24727 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24728 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24729 }
24730
24731 /* Return the size of a relaxable immediate operand instruction.
24732 SHIFT and SIZE specify the form of the allowable immediate. */
24733 static int
24734 relax_immediate (fragS *fragp, int size, int shift)
24735 {
24736 offsetT offset;
24737 offsetT mask;
24738 offsetT low;
24739
24740 /* ??? Should be able to do better than this. */
24741 if (fragp->fr_symbol)
24742 return 4;
24743
24744 low = (1 << shift) - 1;
24745 mask = (1 << (shift + size)) - (1 << shift);
24746 offset = fragp->fr_offset;
24747 /* Force misaligned offsets to 32-bit variant. */
24748 if (offset & low)
24749 return 4;
24750 if (offset & ~mask)
24751 return 4;
24752 return 2;
24753 }
24754
24755 /* Get the address of a symbol during relaxation. */
24756 static addressT
24757 relaxed_symbol_addr (fragS *fragp, long stretch)
24758 {
24759 fragS *sym_frag;
24760 addressT addr;
24761 symbolS *sym;
24762
24763 sym = fragp->fr_symbol;
24764 sym_frag = symbol_get_frag (sym);
24765 know (S_GET_SEGMENT (sym) != absolute_section
24766 || sym_frag == &zero_address_frag);
24767 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24768
24769 /* If frag has yet to be reached on this pass, assume it will
24770 move by STRETCH just as we did. If this is not so, it will
24771 be because some frag between grows, and that will force
24772 another pass. */
24773
24774 if (stretch != 0
24775 && sym_frag->relax_marker != fragp->relax_marker)
24776 {
24777 fragS *f;
24778
24779 /* Adjust stretch for any alignment frag. Note that if have
24780 been expanding the earlier code, the symbol may be
24781 defined in what appears to be an earlier frag. FIXME:
24782 This doesn't handle the fr_subtype field, which specifies
24783 a maximum number of bytes to skip when doing an
24784 alignment. */
24785 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24786 {
24787 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24788 {
24789 if (stretch < 0)
24790 stretch = - ((- stretch)
24791 & ~ ((1 << (int) f->fr_offset) - 1));
24792 else
24793 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24794 if (stretch == 0)
24795 break;
24796 }
24797 }
24798 if (f != NULL)
24799 addr += stretch;
24800 }
24801
24802 return addr;
24803 }
24804
24805 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24806 load. */
24807 static int
24808 relax_adr (fragS *fragp, asection *sec, long stretch)
24809 {
24810 addressT addr;
24811 offsetT val;
24812
24813 /* Assume worst case for symbols not known to be in the same section. */
24814 if (fragp->fr_symbol == NULL
24815 || !S_IS_DEFINED (fragp->fr_symbol)
24816 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24817 || S_IS_WEAK (fragp->fr_symbol))
24818 return 4;
24819
24820 val = relaxed_symbol_addr (fragp, stretch);
24821 addr = fragp->fr_address + fragp->fr_fix;
24822 addr = (addr + 4) & ~3;
24823 /* Force misaligned targets to 32-bit variant. */
24824 if (val & 3)
24825 return 4;
24826 val -= addr;
24827 if (val < 0 || val > 1020)
24828 return 4;
24829 return 2;
24830 }
24831
24832 /* Return the size of a relaxable add/sub immediate instruction. */
24833 static int
24834 relax_addsub (fragS *fragp, asection *sec)
24835 {
24836 char *buf;
24837 int op;
24838
24839 buf = fragp->fr_literal + fragp->fr_fix;
24840 op = bfd_get_16(sec->owner, buf);
24841 if ((op & 0xf) == ((op >> 4) & 0xf))
24842 return relax_immediate (fragp, 8, 0);
24843 else
24844 return relax_immediate (fragp, 3, 0);
24845 }
24846
24847 /* Return TRUE iff the definition of symbol S could be pre-empted
24848 (overridden) at link or load time. */
24849 static bfd_boolean
24850 symbol_preemptible (symbolS *s)
24851 {
24852 /* Weak symbols can always be pre-empted. */
24853 if (S_IS_WEAK (s))
24854 return TRUE;
24855
24856 /* Non-global symbols cannot be pre-empted. */
24857 if (! S_IS_EXTERNAL (s))
24858 return FALSE;
24859
24860 #ifdef OBJ_ELF
24861 /* In ELF, a global symbol can be marked protected, or private. In that
24862 case it can't be pre-empted (other definitions in the same link unit
24863 would violate the ODR). */
24864 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24865 return FALSE;
24866 #endif
24867
24868 /* Other global symbols might be pre-empted. */
24869 return TRUE;
24870 }
24871
24872 /* Return the size of a relaxable branch instruction. BITS is the
24873 size of the offset field in the narrow instruction. */
24874
24875 static int
24876 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24877 {
24878 addressT addr;
24879 offsetT val;
24880 offsetT limit;
24881
24882 /* Assume worst case for symbols not known to be in the same section. */
24883 if (!S_IS_DEFINED (fragp->fr_symbol)
24884 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24885 || S_IS_WEAK (fragp->fr_symbol))
24886 return 4;
24887
24888 #ifdef OBJ_ELF
24889 /* A branch to a function in ARM state will require interworking. */
24890 if (S_IS_DEFINED (fragp->fr_symbol)
24891 && ARM_IS_FUNC (fragp->fr_symbol))
24892 return 4;
24893 #endif
24894
24895 if (symbol_preemptible (fragp->fr_symbol))
24896 return 4;
24897
24898 val = relaxed_symbol_addr (fragp, stretch);
24899 addr = fragp->fr_address + fragp->fr_fix + 4;
24900 val -= addr;
24901
24902 /* Offset is a signed value *2 */
24903 limit = 1 << bits;
24904 if (val >= limit || val < -limit)
24905 return 4;
24906 return 2;
24907 }
24908
24909
24910 /* Relax a machine dependent frag. This returns the amount by which
24911 the current size of the frag should change. */
24912
24913 int
24914 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24915 {
24916 int oldsize;
24917 int newsize;
24918
24919 oldsize = fragp->fr_var;
24920 switch (fragp->fr_subtype)
24921 {
24922 case T_MNEM_ldr_pc2:
24923 newsize = relax_adr (fragp, sec, stretch);
24924 break;
24925 case T_MNEM_ldr_pc:
24926 case T_MNEM_ldr_sp:
24927 case T_MNEM_str_sp:
24928 newsize = relax_immediate (fragp, 8, 2);
24929 break;
24930 case T_MNEM_ldr:
24931 case T_MNEM_str:
24932 newsize = relax_immediate (fragp, 5, 2);
24933 break;
24934 case T_MNEM_ldrh:
24935 case T_MNEM_strh:
24936 newsize = relax_immediate (fragp, 5, 1);
24937 break;
24938 case T_MNEM_ldrb:
24939 case T_MNEM_strb:
24940 newsize = relax_immediate (fragp, 5, 0);
24941 break;
24942 case T_MNEM_adr:
24943 newsize = relax_adr (fragp, sec, stretch);
24944 break;
24945 case T_MNEM_mov:
24946 case T_MNEM_movs:
24947 case T_MNEM_cmp:
24948 case T_MNEM_cmn:
24949 newsize = relax_immediate (fragp, 8, 0);
24950 break;
24951 case T_MNEM_b:
24952 newsize = relax_branch (fragp, sec, 11, stretch);
24953 break;
24954 case T_MNEM_bcond:
24955 newsize = relax_branch (fragp, sec, 8, stretch);
24956 break;
24957 case T_MNEM_add_sp:
24958 case T_MNEM_add_pc:
24959 newsize = relax_immediate (fragp, 8, 2);
24960 break;
24961 case T_MNEM_inc_sp:
24962 case T_MNEM_dec_sp:
24963 newsize = relax_immediate (fragp, 7, 2);
24964 break;
24965 case T_MNEM_addi:
24966 case T_MNEM_addis:
24967 case T_MNEM_subi:
24968 case T_MNEM_subis:
24969 newsize = relax_addsub (fragp, sec);
24970 break;
24971 default:
24972 abort ();
24973 }
24974
24975 fragp->fr_var = newsize;
24976 /* Freeze wide instructions that are at or before the same location as
24977 in the previous pass. This avoids infinite loops.
24978 Don't freeze them unconditionally because targets may be artificially
24979 misaligned by the expansion of preceding frags. */
24980 if (stretch <= 0 && newsize > 2)
24981 {
24982 md_convert_frag (sec->owner, sec, fragp);
24983 frag_wane (fragp);
24984 }
24985
24986 return newsize - oldsize;
24987 }
24988
24989 /* Round up a section size to the appropriate boundary. */
24990
24991 valueT
24992 md_section_align (segT segment ATTRIBUTE_UNUSED,
24993 valueT size)
24994 {
24995 return size;
24996 }
24997
24998 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24999 of an rs_align_code fragment. */
25000
25001 void
25002 arm_handle_align (fragS * fragP)
25003 {
25004 static unsigned char const arm_noop[2][2][4] =
25005 {
25006 { /* ARMv1 */
25007 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25008 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25009 },
25010 { /* ARMv6k */
25011 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25012 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25013 },
25014 };
25015 static unsigned char const thumb_noop[2][2][2] =
25016 {
25017 { /* Thumb-1 */
25018 {0xc0, 0x46}, /* LE */
25019 {0x46, 0xc0}, /* BE */
25020 },
25021 { /* Thumb-2 */
25022 {0x00, 0xbf}, /* LE */
25023 {0xbf, 0x00} /* BE */
25024 }
25025 };
25026 static unsigned char const wide_thumb_noop[2][4] =
25027 { /* Wide Thumb-2 */
25028 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25029 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25030 };
25031
25032 unsigned bytes, fix, noop_size;
25033 char * p;
25034 const unsigned char * noop;
25035 const unsigned char *narrow_noop = NULL;
25036 #ifdef OBJ_ELF
25037 enum mstate state;
25038 #endif
25039
25040 if (fragP->fr_type != rs_align_code)
25041 return;
25042
25043 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25044 p = fragP->fr_literal + fragP->fr_fix;
25045 fix = 0;
25046
25047 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25048 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25049
25050 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25051
25052 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25053 {
25054 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25055 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25056 {
25057 narrow_noop = thumb_noop[1][target_big_endian];
25058 noop = wide_thumb_noop[target_big_endian];
25059 }
25060 else
25061 noop = thumb_noop[0][target_big_endian];
25062 noop_size = 2;
25063 #ifdef OBJ_ELF
25064 state = MAP_THUMB;
25065 #endif
25066 }
25067 else
25068 {
25069 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25070 ? selected_cpu : arm_arch_none,
25071 arm_ext_v6k) != 0]
25072 [target_big_endian];
25073 noop_size = 4;
25074 #ifdef OBJ_ELF
25075 state = MAP_ARM;
25076 #endif
25077 }
25078
25079 fragP->fr_var = noop_size;
25080
25081 if (bytes & (noop_size - 1))
25082 {
25083 fix = bytes & (noop_size - 1);
25084 #ifdef OBJ_ELF
25085 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25086 #endif
25087 memset (p, 0, fix);
25088 p += fix;
25089 bytes -= fix;
25090 }
25091
25092 if (narrow_noop)
25093 {
25094 if (bytes & noop_size)
25095 {
25096 /* Insert a narrow noop. */
25097 memcpy (p, narrow_noop, noop_size);
25098 p += noop_size;
25099 bytes -= noop_size;
25100 fix += noop_size;
25101 }
25102
25103 /* Use wide noops for the remainder */
25104 noop_size = 4;
25105 }
25106
25107 while (bytes >= noop_size)
25108 {
25109 memcpy (p, noop, noop_size);
25110 p += noop_size;
25111 bytes -= noop_size;
25112 fix += noop_size;
25113 }
25114
25115 fragP->fr_fix += fix;
25116 }
25117
25118 /* Called from md_do_align. Used to create an alignment
25119 frag in a code section. */
25120
25121 void
25122 arm_frag_align_code (int n, int max)
25123 {
25124 char * p;
25125
25126 /* We assume that there will never be a requirement
25127 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25128 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25129 {
25130 char err_msg[128];
25131
25132 sprintf (err_msg,
25133 _("alignments greater than %d bytes not supported in .text sections."),
25134 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25135 as_fatal ("%s", err_msg);
25136 }
25137
25138 p = frag_var (rs_align_code,
25139 MAX_MEM_FOR_RS_ALIGN_CODE,
25140 1,
25141 (relax_substateT) max,
25142 (symbolS *) NULL,
25143 (offsetT) n,
25144 (char *) NULL);
25145 *p = 0;
25146 }
25147
25148 /* Perform target specific initialisation of a frag.
25149 Note - despite the name this initialisation is not done when the frag
25150 is created, but only when its type is assigned. A frag can be created
25151 and used a long time before its type is set, so beware of assuming that
25152 this initialisation is performed first. */
25153
25154 #ifndef OBJ_ELF
25155 void
25156 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25157 {
25158 /* Record whether this frag is in an ARM or a THUMB area. */
25159 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25160 }
25161
25162 #else /* OBJ_ELF is defined. */
25163 void
25164 arm_init_frag (fragS * fragP, int max_chars)
25165 {
25166 bfd_boolean frag_thumb_mode;
25167
25168 /* If the current ARM vs THUMB mode has not already
25169 been recorded into this frag then do so now. */
25170 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25171 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25172
25173 /* PR 21809: Do not set a mapping state for debug sections
25174 - it just confuses other tools. */
25175 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25176 return;
25177
25178 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25179
25180 /* Record a mapping symbol for alignment frags. We will delete this
25181 later if the alignment ends up empty. */
25182 switch (fragP->fr_type)
25183 {
25184 case rs_align:
25185 case rs_align_test:
25186 case rs_fill:
25187 mapping_state_2 (MAP_DATA, max_chars);
25188 break;
25189 case rs_align_code:
25190 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25191 break;
25192 default:
25193 break;
25194 }
25195 }
25196
25197 /* When we change sections we need to issue a new mapping symbol. */
25198
25199 void
25200 arm_elf_change_section (void)
25201 {
25202 /* Link an unlinked unwind index table section to the .text section. */
25203 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25204 && elf_linked_to_section (now_seg) == NULL)
25205 elf_linked_to_section (now_seg) = text_section;
25206 }
25207
25208 int
25209 arm_elf_section_type (const char * str, size_t len)
25210 {
25211 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25212 return SHT_ARM_EXIDX;
25213
25214 return -1;
25215 }
25216 \f
25217 /* Code to deal with unwinding tables. */
25218
25219 static void add_unwind_adjustsp (offsetT);
25220
25221 /* Generate any deferred unwind frame offset. */
25222
25223 static void
25224 flush_pending_unwind (void)
25225 {
25226 offsetT offset;
25227
25228 offset = unwind.pending_offset;
25229 unwind.pending_offset = 0;
25230 if (offset != 0)
25231 add_unwind_adjustsp (offset);
25232 }
25233
25234 /* Add an opcode to this list for this function. Two-byte opcodes should
25235 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25236 order. */
25237
25238 static void
25239 add_unwind_opcode (valueT op, int length)
25240 {
25241 /* Add any deferred stack adjustment. */
25242 if (unwind.pending_offset)
25243 flush_pending_unwind ();
25244
25245 unwind.sp_restored = 0;
25246
25247 if (unwind.opcode_count + length > unwind.opcode_alloc)
25248 {
25249 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25250 if (unwind.opcodes)
25251 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25252 unwind.opcode_alloc);
25253 else
25254 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25255 }
25256 while (length > 0)
25257 {
25258 length--;
25259 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25260 op >>= 8;
25261 unwind.opcode_count++;
25262 }
25263 }
25264
25265 /* Add unwind opcodes to adjust the stack pointer. */
25266
25267 static void
25268 add_unwind_adjustsp (offsetT offset)
25269 {
25270 valueT op;
25271
25272 if (offset > 0x200)
25273 {
25274 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25275 char bytes[5];
25276 int n;
25277 valueT o;
25278
25279 /* Long form: 0xb2, uleb128. */
25280 /* This might not fit in a word so add the individual bytes,
25281 remembering the list is built in reverse order. */
25282 o = (valueT) ((offset - 0x204) >> 2);
25283 if (o == 0)
25284 add_unwind_opcode (0, 1);
25285
25286 /* Calculate the uleb128 encoding of the offset. */
25287 n = 0;
25288 while (o)
25289 {
25290 bytes[n] = o & 0x7f;
25291 o >>= 7;
25292 if (o)
25293 bytes[n] |= 0x80;
25294 n++;
25295 }
25296 /* Add the insn. */
25297 for (; n; n--)
25298 add_unwind_opcode (bytes[n - 1], 1);
25299 add_unwind_opcode (0xb2, 1);
25300 }
25301 else if (offset > 0x100)
25302 {
25303 /* Two short opcodes. */
25304 add_unwind_opcode (0x3f, 1);
25305 op = (offset - 0x104) >> 2;
25306 add_unwind_opcode (op, 1);
25307 }
25308 else if (offset > 0)
25309 {
25310 /* Short opcode. */
25311 op = (offset - 4) >> 2;
25312 add_unwind_opcode (op, 1);
25313 }
25314 else if (offset < 0)
25315 {
25316 offset = -offset;
25317 while (offset > 0x100)
25318 {
25319 add_unwind_opcode (0x7f, 1);
25320 offset -= 0x100;
25321 }
25322 op = ((offset - 4) >> 2) | 0x40;
25323 add_unwind_opcode (op, 1);
25324 }
25325 }
25326
25327 /* Finish the list of unwind opcodes for this function. */
25328
25329 static void
25330 finish_unwind_opcodes (void)
25331 {
25332 valueT op;
25333
25334 if (unwind.fp_used)
25335 {
25336 /* Adjust sp as necessary. */
25337 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25338 flush_pending_unwind ();
25339
25340 /* After restoring sp from the frame pointer. */
25341 op = 0x90 | unwind.fp_reg;
25342 add_unwind_opcode (op, 1);
25343 }
25344 else
25345 flush_pending_unwind ();
25346 }
25347
25348
25349 /* Start an exception table entry. If idx is nonzero this is an index table
25350 entry. */
25351
25352 static void
25353 start_unwind_section (const segT text_seg, int idx)
25354 {
25355 const char * text_name;
25356 const char * prefix;
25357 const char * prefix_once;
25358 const char * group_name;
25359 char * sec_name;
25360 int type;
25361 int flags;
25362 int linkonce;
25363
25364 if (idx)
25365 {
25366 prefix = ELF_STRING_ARM_unwind;
25367 prefix_once = ELF_STRING_ARM_unwind_once;
25368 type = SHT_ARM_EXIDX;
25369 }
25370 else
25371 {
25372 prefix = ELF_STRING_ARM_unwind_info;
25373 prefix_once = ELF_STRING_ARM_unwind_info_once;
25374 type = SHT_PROGBITS;
25375 }
25376
25377 text_name = segment_name (text_seg);
25378 if (streq (text_name, ".text"))
25379 text_name = "";
25380
25381 if (strncmp (text_name, ".gnu.linkonce.t.",
25382 strlen (".gnu.linkonce.t.")) == 0)
25383 {
25384 prefix = prefix_once;
25385 text_name += strlen (".gnu.linkonce.t.");
25386 }
25387
25388 sec_name = concat (prefix, text_name, (char *) NULL);
25389
25390 flags = SHF_ALLOC;
25391 linkonce = 0;
25392 group_name = 0;
25393
25394 /* Handle COMDAT group. */
25395 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25396 {
25397 group_name = elf_group_name (text_seg);
25398 if (group_name == NULL)
25399 {
25400 as_bad (_("Group section `%s' has no group signature"),
25401 segment_name (text_seg));
25402 ignore_rest_of_line ();
25403 return;
25404 }
25405 flags |= SHF_GROUP;
25406 linkonce = 1;
25407 }
25408
25409 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25410 linkonce, 0);
25411
25412 /* Set the section link for index tables. */
25413 if (idx)
25414 elf_linked_to_section (now_seg) = text_seg;
25415 }
25416
25417
25418 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25419 personality routine data. Returns zero, or the index table value for
25420 an inline entry. */
25421
25422 static valueT
25423 create_unwind_entry (int have_data)
25424 {
25425 int size;
25426 addressT where;
25427 char *ptr;
25428 /* The current word of data. */
25429 valueT data;
25430 /* The number of bytes left in this word. */
25431 int n;
25432
25433 finish_unwind_opcodes ();
25434
25435 /* Remember the current text section. */
25436 unwind.saved_seg = now_seg;
25437 unwind.saved_subseg = now_subseg;
25438
25439 start_unwind_section (now_seg, 0);
25440
25441 if (unwind.personality_routine == NULL)
25442 {
25443 if (unwind.personality_index == -2)
25444 {
25445 if (have_data)
25446 as_bad (_("handlerdata in cantunwind frame"));
25447 return 1; /* EXIDX_CANTUNWIND. */
25448 }
25449
25450 /* Use a default personality routine if none is specified. */
25451 if (unwind.personality_index == -1)
25452 {
25453 if (unwind.opcode_count > 3)
25454 unwind.personality_index = 1;
25455 else
25456 unwind.personality_index = 0;
25457 }
25458
25459 /* Space for the personality routine entry. */
25460 if (unwind.personality_index == 0)
25461 {
25462 if (unwind.opcode_count > 3)
25463 as_bad (_("too many unwind opcodes for personality routine 0"));
25464
25465 if (!have_data)
25466 {
25467 /* All the data is inline in the index table. */
25468 data = 0x80;
25469 n = 3;
25470 while (unwind.opcode_count > 0)
25471 {
25472 unwind.opcode_count--;
25473 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25474 n--;
25475 }
25476
25477 /* Pad with "finish" opcodes. */
25478 while (n--)
25479 data = (data << 8) | 0xb0;
25480
25481 return data;
25482 }
25483 size = 0;
25484 }
25485 else
25486 /* We get two opcodes "free" in the first word. */
25487 size = unwind.opcode_count - 2;
25488 }
25489 else
25490 {
25491 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25492 if (unwind.personality_index != -1)
25493 {
25494 as_bad (_("attempt to recreate an unwind entry"));
25495 return 1;
25496 }
25497
25498 /* An extra byte is required for the opcode count. */
25499 size = unwind.opcode_count + 1;
25500 }
25501
25502 size = (size + 3) >> 2;
25503 if (size > 0xff)
25504 as_bad (_("too many unwind opcodes"));
25505
25506 frag_align (2, 0, 0);
25507 record_alignment (now_seg, 2);
25508 unwind.table_entry = expr_build_dot ();
25509
25510 /* Allocate the table entry. */
25511 ptr = frag_more ((size << 2) + 4);
25512 /* PR 13449: Zero the table entries in case some of them are not used. */
25513 memset (ptr, 0, (size << 2) + 4);
25514 where = frag_now_fix () - ((size << 2) + 4);
25515
25516 switch (unwind.personality_index)
25517 {
25518 case -1:
25519 /* ??? Should this be a PLT generating relocation? */
25520 /* Custom personality routine. */
25521 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25522 BFD_RELOC_ARM_PREL31);
25523
25524 where += 4;
25525 ptr += 4;
25526
25527 /* Set the first byte to the number of additional words. */
25528 data = size > 0 ? size - 1 : 0;
25529 n = 3;
25530 break;
25531
25532 /* ABI defined personality routines. */
25533 case 0:
25534 /* Three opcodes bytes are packed into the first word. */
25535 data = 0x80;
25536 n = 3;
25537 break;
25538
25539 case 1:
25540 case 2:
25541 /* The size and first two opcode bytes go in the first word. */
25542 data = ((0x80 + unwind.personality_index) << 8) | size;
25543 n = 2;
25544 break;
25545
25546 default:
25547 /* Should never happen. */
25548 abort ();
25549 }
25550
25551 /* Pack the opcodes into words (MSB first), reversing the list at the same
25552 time. */
25553 while (unwind.opcode_count > 0)
25554 {
25555 if (n == 0)
25556 {
25557 md_number_to_chars (ptr, data, 4);
25558 ptr += 4;
25559 n = 4;
25560 data = 0;
25561 }
25562 unwind.opcode_count--;
25563 n--;
25564 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25565 }
25566
25567 /* Finish off the last word. */
25568 if (n < 4)
25569 {
25570 /* Pad with "finish" opcodes. */
25571 while (n--)
25572 data = (data << 8) | 0xb0;
25573
25574 md_number_to_chars (ptr, data, 4);
25575 }
25576
25577 if (!have_data)
25578 {
25579 /* Add an empty descriptor if there is no user-specified data. */
25580 ptr = frag_more (4);
25581 md_number_to_chars (ptr, 0, 4);
25582 }
25583
25584 return 0;
25585 }
25586
25587
25588 /* Initialize the DWARF-2 unwind information for this procedure. */
25589
25590 void
25591 tc_arm_frame_initial_instructions (void)
25592 {
25593 cfi_add_CFA_def_cfa (REG_SP, 0);
25594 }
25595 #endif /* OBJ_ELF */
25596
25597 /* Convert REGNAME to a DWARF-2 register number. */
25598
25599 int
25600 tc_arm_regname_to_dw2regnum (char *regname)
25601 {
25602 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25603 if (reg != FAIL)
25604 return reg;
25605
25606 /* PR 16694: Allow VFP registers as well. */
25607 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25608 if (reg != FAIL)
25609 return 64 + reg;
25610
25611 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25612 if (reg != FAIL)
25613 return reg + 256;
25614
25615 return FAIL;
25616 }
25617
25618 #ifdef TE_PE
25619 void
25620 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25621 {
25622 expressionS exp;
25623
25624 exp.X_op = O_secrel;
25625 exp.X_add_symbol = symbol;
25626 exp.X_add_number = 0;
25627 emit_expr (&exp, size);
25628 }
25629 #endif
25630
25631 /* MD interface: Symbol and relocation handling. */
25632
25633 /* Return the address within the segment that a PC-relative fixup is
25634 relative to. For ARM, PC-relative fixups applied to instructions
25635 are generally relative to the location of the fixup plus 8 bytes.
25636 Thumb branches are offset by 4, and Thumb loads relative to PC
25637 require special handling. */
25638
25639 long
25640 md_pcrel_from_section (fixS * fixP, segT seg)
25641 {
25642 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25643
25644 /* If this is pc-relative and we are going to emit a relocation
25645 then we just want to put out any pipeline compensation that the linker
25646 will need. Otherwise we want to use the calculated base.
25647 For WinCE we skip the bias for externals as well, since this
25648 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25649 if (fixP->fx_pcrel
25650 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25651 || (arm_force_relocation (fixP)
25652 #ifdef TE_WINCE
25653 && !S_IS_EXTERNAL (fixP->fx_addsy)
25654 #endif
25655 )))
25656 base = 0;
25657
25658
25659 switch (fixP->fx_r_type)
25660 {
25661 /* PC relative addressing on the Thumb is slightly odd as the
25662 bottom two bits of the PC are forced to zero for the
25663 calculation. This happens *after* application of the
25664 pipeline offset. However, Thumb adrl already adjusts for
25665 this, so we need not do it again. */
25666 case BFD_RELOC_ARM_THUMB_ADD:
25667 return base & ~3;
25668
25669 case BFD_RELOC_ARM_THUMB_OFFSET:
25670 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25671 case BFD_RELOC_ARM_T32_ADD_PC12:
25672 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25673 return (base + 4) & ~3;
25674
25675 /* Thumb branches are simply offset by +4. */
25676 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25677 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25678 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25679 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25680 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25681 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25682 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25683 case BFD_RELOC_ARM_THUMB_BF17:
25684 case BFD_RELOC_ARM_THUMB_BF19:
25685 case BFD_RELOC_ARM_THUMB_BF13:
25686 case BFD_RELOC_ARM_THUMB_LOOP12:
25687 return base + 4;
25688
25689 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25690 if (fixP->fx_addsy
25691 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25692 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25693 && ARM_IS_FUNC (fixP->fx_addsy)
25694 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25695 base = fixP->fx_where + fixP->fx_frag->fr_address;
25696 return base + 4;
25697
25698 /* BLX is like branches above, but forces the low two bits of PC to
25699 zero. */
25700 case BFD_RELOC_THUMB_PCREL_BLX:
25701 if (fixP->fx_addsy
25702 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25703 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25704 && THUMB_IS_FUNC (fixP->fx_addsy)
25705 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25706 base = fixP->fx_where + fixP->fx_frag->fr_address;
25707 return (base + 4) & ~3;
25708
25709 /* ARM mode branches are offset by +8. However, the Windows CE
25710 loader expects the relocation not to take this into account. */
25711 case BFD_RELOC_ARM_PCREL_BLX:
25712 if (fixP->fx_addsy
25713 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25714 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25715 && ARM_IS_FUNC (fixP->fx_addsy)
25716 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25717 base = fixP->fx_where + fixP->fx_frag->fr_address;
25718 return base + 8;
25719
25720 case BFD_RELOC_ARM_PCREL_CALL:
25721 if (fixP->fx_addsy
25722 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25723 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25724 && THUMB_IS_FUNC (fixP->fx_addsy)
25725 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25726 base = fixP->fx_where + fixP->fx_frag->fr_address;
25727 return base + 8;
25728
25729 case BFD_RELOC_ARM_PCREL_BRANCH:
25730 case BFD_RELOC_ARM_PCREL_JUMP:
25731 case BFD_RELOC_ARM_PLT32:
25732 #ifdef TE_WINCE
25733 /* When handling fixups immediately, because we have already
25734 discovered the value of a symbol, or the address of the frag involved
25735 we must account for the offset by +8, as the OS loader will never see the reloc.
25736 see fixup_segment() in write.c
25737 The S_IS_EXTERNAL test handles the case of global symbols.
25738 Those need the calculated base, not just the pipe compensation the linker will need. */
25739 if (fixP->fx_pcrel
25740 && fixP->fx_addsy != NULL
25741 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25742 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25743 return base + 8;
25744 return base;
25745 #else
25746 return base + 8;
25747 #endif
25748
25749
25750 /* ARM mode loads relative to PC are also offset by +8. Unlike
25751 branches, the Windows CE loader *does* expect the relocation
25752 to take this into account. */
25753 case BFD_RELOC_ARM_OFFSET_IMM:
25754 case BFD_RELOC_ARM_OFFSET_IMM8:
25755 case BFD_RELOC_ARM_HWLITERAL:
25756 case BFD_RELOC_ARM_LITERAL:
25757 case BFD_RELOC_ARM_CP_OFF_IMM:
25758 return base + 8;
25759
25760
25761 /* Other PC-relative relocations are un-offset. */
25762 default:
25763 return base;
25764 }
25765 }
25766
25767 static bfd_boolean flag_warn_syms = TRUE;
25768
25769 bfd_boolean
25770 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25771 {
25772 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25773 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25774 does mean that the resulting code might be very confusing to the reader.
25775 Also this warning can be triggered if the user omits an operand before
25776 an immediate address, eg:
25777
25778 LDR =foo
25779
25780 GAS treats this as an assignment of the value of the symbol foo to a
25781 symbol LDR, and so (without this code) it will not issue any kind of
25782 warning or error message.
25783
25784 Note - ARM instructions are case-insensitive but the strings in the hash
25785 table are all stored in lower case, so we must first ensure that name is
25786 lower case too. */
25787 if (flag_warn_syms && arm_ops_hsh)
25788 {
25789 char * nbuf = strdup (name);
25790 char * p;
25791
25792 for (p = nbuf; *p; p++)
25793 *p = TOLOWER (*p);
25794 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25795 {
25796 static struct hash_control * already_warned = NULL;
25797
25798 if (already_warned == NULL)
25799 already_warned = hash_new ();
25800 /* Only warn about the symbol once. To keep the code
25801 simple we let hash_insert do the lookup for us. */
25802 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25803 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25804 }
25805 else
25806 free (nbuf);
25807 }
25808
25809 return FALSE;
25810 }
25811
25812 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25813 Otherwise we have no need to default values of symbols. */
25814
25815 symbolS *
25816 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25817 {
25818 #ifdef OBJ_ELF
25819 if (name[0] == '_' && name[1] == 'G'
25820 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25821 {
25822 if (!GOT_symbol)
25823 {
25824 if (symbol_find (name))
25825 as_bad (_("GOT already in the symbol table"));
25826
25827 GOT_symbol = symbol_new (name, undefined_section,
25828 (valueT) 0, & zero_address_frag);
25829 }
25830
25831 return GOT_symbol;
25832 }
25833 #endif
25834
25835 return NULL;
25836 }
25837
25838 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25839 computed as two separate immediate values, added together. We
25840 already know that this value cannot be computed by just one ARM
25841 instruction. */
25842
25843 static unsigned int
25844 validate_immediate_twopart (unsigned int val,
25845 unsigned int * highpart)
25846 {
25847 unsigned int a;
25848 unsigned int i;
25849
25850 for (i = 0; i < 32; i += 2)
25851 if (((a = rotate_left (val, i)) & 0xff) != 0)
25852 {
25853 if (a & 0xff00)
25854 {
25855 if (a & ~ 0xffff)
25856 continue;
25857 * highpart = (a >> 8) | ((i + 24) << 7);
25858 }
25859 else if (a & 0xff0000)
25860 {
25861 if (a & 0xff000000)
25862 continue;
25863 * highpart = (a >> 16) | ((i + 16) << 7);
25864 }
25865 else
25866 {
25867 gas_assert (a & 0xff000000);
25868 * highpart = (a >> 24) | ((i + 8) << 7);
25869 }
25870
25871 return (a & 0xff) | (i << 7);
25872 }
25873
25874 return FAIL;
25875 }
25876
25877 static int
25878 validate_offset_imm (unsigned int val, int hwse)
25879 {
25880 if ((hwse && val > 255) || val > 4095)
25881 return FAIL;
25882 return val;
25883 }
25884
25885 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25886 negative immediate constant by altering the instruction. A bit of
25887 a hack really.
25888 MOV <-> MVN
25889 AND <-> BIC
25890 ADC <-> SBC
25891 by inverting the second operand, and
25892 ADD <-> SUB
25893 CMP <-> CMN
25894 by negating the second operand. */
25895
25896 static int
25897 negate_data_op (unsigned long * instruction,
25898 unsigned long value)
25899 {
25900 int op, new_inst;
25901 unsigned long negated, inverted;
25902
25903 negated = encode_arm_immediate (-value);
25904 inverted = encode_arm_immediate (~value);
25905
25906 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25907 switch (op)
25908 {
25909 /* First negates. */
25910 case OPCODE_SUB: /* ADD <-> SUB */
25911 new_inst = OPCODE_ADD;
25912 value = negated;
25913 break;
25914
25915 case OPCODE_ADD:
25916 new_inst = OPCODE_SUB;
25917 value = negated;
25918 break;
25919
25920 case OPCODE_CMP: /* CMP <-> CMN */
25921 new_inst = OPCODE_CMN;
25922 value = negated;
25923 break;
25924
25925 case OPCODE_CMN:
25926 new_inst = OPCODE_CMP;
25927 value = negated;
25928 break;
25929
25930 /* Now Inverted ops. */
25931 case OPCODE_MOV: /* MOV <-> MVN */
25932 new_inst = OPCODE_MVN;
25933 value = inverted;
25934 break;
25935
25936 case OPCODE_MVN:
25937 new_inst = OPCODE_MOV;
25938 value = inverted;
25939 break;
25940
25941 case OPCODE_AND: /* AND <-> BIC */
25942 new_inst = OPCODE_BIC;
25943 value = inverted;
25944 break;
25945
25946 case OPCODE_BIC:
25947 new_inst = OPCODE_AND;
25948 value = inverted;
25949 break;
25950
25951 case OPCODE_ADC: /* ADC <-> SBC */
25952 new_inst = OPCODE_SBC;
25953 value = inverted;
25954 break;
25955
25956 case OPCODE_SBC:
25957 new_inst = OPCODE_ADC;
25958 value = inverted;
25959 break;
25960
25961 /* We cannot do anything. */
25962 default:
25963 return FAIL;
25964 }
25965
25966 if (value == (unsigned) FAIL)
25967 return FAIL;
25968
25969 *instruction &= OPCODE_MASK;
25970 *instruction |= new_inst << DATA_OP_SHIFT;
25971 return value;
25972 }
25973
25974 /* Like negate_data_op, but for Thumb-2. */
25975
25976 static unsigned int
25977 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
25978 {
25979 int op, new_inst;
25980 int rd;
25981 unsigned int negated, inverted;
25982
25983 negated = encode_thumb32_immediate (-value);
25984 inverted = encode_thumb32_immediate (~value);
25985
25986 rd = (*instruction >> 8) & 0xf;
25987 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25988 switch (op)
25989 {
25990 /* ADD <-> SUB. Includes CMP <-> CMN. */
25991 case T2_OPCODE_SUB:
25992 new_inst = T2_OPCODE_ADD;
25993 value = negated;
25994 break;
25995
25996 case T2_OPCODE_ADD:
25997 new_inst = T2_OPCODE_SUB;
25998 value = negated;
25999 break;
26000
26001 /* ORR <-> ORN. Includes MOV <-> MVN. */
26002 case T2_OPCODE_ORR:
26003 new_inst = T2_OPCODE_ORN;
26004 value = inverted;
26005 break;
26006
26007 case T2_OPCODE_ORN:
26008 new_inst = T2_OPCODE_ORR;
26009 value = inverted;
26010 break;
26011
26012 /* AND <-> BIC. TST has no inverted equivalent. */
26013 case T2_OPCODE_AND:
26014 new_inst = T2_OPCODE_BIC;
26015 if (rd == 15)
26016 value = FAIL;
26017 else
26018 value = inverted;
26019 break;
26020
26021 case T2_OPCODE_BIC:
26022 new_inst = T2_OPCODE_AND;
26023 value = inverted;
26024 break;
26025
26026 /* ADC <-> SBC */
26027 case T2_OPCODE_ADC:
26028 new_inst = T2_OPCODE_SBC;
26029 value = inverted;
26030 break;
26031
26032 case T2_OPCODE_SBC:
26033 new_inst = T2_OPCODE_ADC;
26034 value = inverted;
26035 break;
26036
26037 /* We cannot do anything. */
26038 default:
26039 return FAIL;
26040 }
26041
26042 if (value == (unsigned int)FAIL)
26043 return FAIL;
26044
26045 *instruction &= T2_OPCODE_MASK;
26046 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26047 return value;
26048 }
26049
26050 /* Read a 32-bit thumb instruction from buf. */
26051
26052 static unsigned long
26053 get_thumb32_insn (char * buf)
26054 {
26055 unsigned long insn;
26056 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26057 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26058
26059 return insn;
26060 }
26061
26062 /* We usually want to set the low bit on the address of thumb function
26063 symbols. In particular .word foo - . should have the low bit set.
26064 Generic code tries to fold the difference of two symbols to
26065 a constant. Prevent this and force a relocation when the first symbols
26066 is a thumb function. */
26067
26068 bfd_boolean
26069 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26070 {
26071 if (op == O_subtract
26072 && l->X_op == O_symbol
26073 && r->X_op == O_symbol
26074 && THUMB_IS_FUNC (l->X_add_symbol))
26075 {
26076 l->X_op = O_subtract;
26077 l->X_op_symbol = r->X_add_symbol;
26078 l->X_add_number -= r->X_add_number;
26079 return TRUE;
26080 }
26081
26082 /* Process as normal. */
26083 return FALSE;
26084 }
26085
26086 /* Encode Thumb2 unconditional branches and calls. The encoding
26087 for the 2 are identical for the immediate values. */
26088
26089 static void
26090 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26091 {
26092 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26093 offsetT newval;
26094 offsetT newval2;
26095 addressT S, I1, I2, lo, hi;
26096
26097 S = (value >> 24) & 0x01;
26098 I1 = (value >> 23) & 0x01;
26099 I2 = (value >> 22) & 0x01;
26100 hi = (value >> 12) & 0x3ff;
26101 lo = (value >> 1) & 0x7ff;
26102 newval = md_chars_to_number (buf, THUMB_SIZE);
26103 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26104 newval |= (S << 10) | hi;
26105 newval2 &= ~T2I1I2MASK;
26106 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26107 md_number_to_chars (buf, newval, THUMB_SIZE);
26108 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26109 }
26110
26111 void
26112 md_apply_fix (fixS * fixP,
26113 valueT * valP,
26114 segT seg)
26115 {
26116 offsetT value = * valP;
26117 offsetT newval;
26118 unsigned int newimm;
26119 unsigned long temp;
26120 int sign;
26121 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26122
26123 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26124
26125 /* Note whether this will delete the relocation. */
26126
26127 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26128 fixP->fx_done = 1;
26129
26130 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26131 consistency with the behaviour on 32-bit hosts. Remember value
26132 for emit_reloc. */
26133 value &= 0xffffffff;
26134 value ^= 0x80000000;
26135 value -= 0x80000000;
26136
26137 *valP = value;
26138 fixP->fx_addnumber = value;
26139
26140 /* Same treatment for fixP->fx_offset. */
26141 fixP->fx_offset &= 0xffffffff;
26142 fixP->fx_offset ^= 0x80000000;
26143 fixP->fx_offset -= 0x80000000;
26144
26145 switch (fixP->fx_r_type)
26146 {
26147 case BFD_RELOC_NONE:
26148 /* This will need to go in the object file. */
26149 fixP->fx_done = 0;
26150 break;
26151
26152 case BFD_RELOC_ARM_IMMEDIATE:
26153 /* We claim that this fixup has been processed here,
26154 even if in fact we generate an error because we do
26155 not have a reloc for it, so tc_gen_reloc will reject it. */
26156 fixP->fx_done = 1;
26157
26158 if (fixP->fx_addsy)
26159 {
26160 const char *msg = 0;
26161
26162 if (! S_IS_DEFINED (fixP->fx_addsy))
26163 msg = _("undefined symbol %s used as an immediate value");
26164 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26165 msg = _("symbol %s is in a different section");
26166 else if (S_IS_WEAK (fixP->fx_addsy))
26167 msg = _("symbol %s is weak and may be overridden later");
26168
26169 if (msg)
26170 {
26171 as_bad_where (fixP->fx_file, fixP->fx_line,
26172 msg, S_GET_NAME (fixP->fx_addsy));
26173 break;
26174 }
26175 }
26176
26177 temp = md_chars_to_number (buf, INSN_SIZE);
26178
26179 /* If the offset is negative, we should use encoding A2 for ADR. */
26180 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26181 newimm = negate_data_op (&temp, value);
26182 else
26183 {
26184 newimm = encode_arm_immediate (value);
26185
26186 /* If the instruction will fail, see if we can fix things up by
26187 changing the opcode. */
26188 if (newimm == (unsigned int) FAIL)
26189 newimm = negate_data_op (&temp, value);
26190 /* MOV accepts both ARM modified immediate (A1 encoding) and
26191 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26192 When disassembling, MOV is preferred when there is no encoding
26193 overlap. */
26194 if (newimm == (unsigned int) FAIL
26195 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26196 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26197 && !((temp >> SBIT_SHIFT) & 0x1)
26198 && value >= 0 && value <= 0xffff)
26199 {
26200 /* Clear bits[23:20] to change encoding from A1 to A2. */
26201 temp &= 0xff0fffff;
26202 /* Encoding high 4bits imm. Code below will encode the remaining
26203 low 12bits. */
26204 temp |= (value & 0x0000f000) << 4;
26205 newimm = value & 0x00000fff;
26206 }
26207 }
26208
26209 if (newimm == (unsigned int) FAIL)
26210 {
26211 as_bad_where (fixP->fx_file, fixP->fx_line,
26212 _("invalid constant (%lx) after fixup"),
26213 (unsigned long) value);
26214 break;
26215 }
26216
26217 newimm |= (temp & 0xfffff000);
26218 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26219 break;
26220
26221 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26222 {
26223 unsigned int highpart = 0;
26224 unsigned int newinsn = 0xe1a00000; /* nop. */
26225
26226 if (fixP->fx_addsy)
26227 {
26228 const char *msg = 0;
26229
26230 if (! S_IS_DEFINED (fixP->fx_addsy))
26231 msg = _("undefined symbol %s used as an immediate value");
26232 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26233 msg = _("symbol %s is in a different section");
26234 else if (S_IS_WEAK (fixP->fx_addsy))
26235 msg = _("symbol %s is weak and may be overridden later");
26236
26237 if (msg)
26238 {
26239 as_bad_where (fixP->fx_file, fixP->fx_line,
26240 msg, S_GET_NAME (fixP->fx_addsy));
26241 break;
26242 }
26243 }
26244
26245 newimm = encode_arm_immediate (value);
26246 temp = md_chars_to_number (buf, INSN_SIZE);
26247
26248 /* If the instruction will fail, see if we can fix things up by
26249 changing the opcode. */
26250 if (newimm == (unsigned int) FAIL
26251 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26252 {
26253 /* No ? OK - try using two ADD instructions to generate
26254 the value. */
26255 newimm = validate_immediate_twopart (value, & highpart);
26256
26257 /* Yes - then make sure that the second instruction is
26258 also an add. */
26259 if (newimm != (unsigned int) FAIL)
26260 newinsn = temp;
26261 /* Still No ? Try using a negated value. */
26262 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26263 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26264 /* Otherwise - give up. */
26265 else
26266 {
26267 as_bad_where (fixP->fx_file, fixP->fx_line,
26268 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26269 (long) value);
26270 break;
26271 }
26272
26273 /* Replace the first operand in the 2nd instruction (which
26274 is the PC) with the destination register. We have
26275 already added in the PC in the first instruction and we
26276 do not want to do it again. */
26277 newinsn &= ~ 0xf0000;
26278 newinsn |= ((newinsn & 0x0f000) << 4);
26279 }
26280
26281 newimm |= (temp & 0xfffff000);
26282 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26283
26284 highpart |= (newinsn & 0xfffff000);
26285 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26286 }
26287 break;
26288
26289 case BFD_RELOC_ARM_OFFSET_IMM:
26290 if (!fixP->fx_done && seg->use_rela_p)
26291 value = 0;
26292 /* Fall through. */
26293
26294 case BFD_RELOC_ARM_LITERAL:
26295 sign = value > 0;
26296
26297 if (value < 0)
26298 value = - value;
26299
26300 if (validate_offset_imm (value, 0) == FAIL)
26301 {
26302 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26303 as_bad_where (fixP->fx_file, fixP->fx_line,
26304 _("invalid literal constant: pool needs to be closer"));
26305 else
26306 as_bad_where (fixP->fx_file, fixP->fx_line,
26307 _("bad immediate value for offset (%ld)"),
26308 (long) value);
26309 break;
26310 }
26311
26312 newval = md_chars_to_number (buf, INSN_SIZE);
26313 if (value == 0)
26314 newval &= 0xfffff000;
26315 else
26316 {
26317 newval &= 0xff7ff000;
26318 newval |= value | (sign ? INDEX_UP : 0);
26319 }
26320 md_number_to_chars (buf, newval, INSN_SIZE);
26321 break;
26322
26323 case BFD_RELOC_ARM_OFFSET_IMM8:
26324 case BFD_RELOC_ARM_HWLITERAL:
26325 sign = value > 0;
26326
26327 if (value < 0)
26328 value = - value;
26329
26330 if (validate_offset_imm (value, 1) == FAIL)
26331 {
26332 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26333 as_bad_where (fixP->fx_file, fixP->fx_line,
26334 _("invalid literal constant: pool needs to be closer"));
26335 else
26336 as_bad_where (fixP->fx_file, fixP->fx_line,
26337 _("bad immediate value for 8-bit offset (%ld)"),
26338 (long) value);
26339 break;
26340 }
26341
26342 newval = md_chars_to_number (buf, INSN_SIZE);
26343 if (value == 0)
26344 newval &= 0xfffff0f0;
26345 else
26346 {
26347 newval &= 0xff7ff0f0;
26348 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26349 }
26350 md_number_to_chars (buf, newval, INSN_SIZE);
26351 break;
26352
26353 case BFD_RELOC_ARM_T32_OFFSET_U8:
26354 if (value < 0 || value > 1020 || value % 4 != 0)
26355 as_bad_where (fixP->fx_file, fixP->fx_line,
26356 _("bad immediate value for offset (%ld)"), (long) value);
26357 value /= 4;
26358
26359 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26360 newval |= value;
26361 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26362 break;
26363
26364 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26365 /* This is a complicated relocation used for all varieties of Thumb32
26366 load/store instruction with immediate offset:
26367
26368 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26369 *4, optional writeback(W)
26370 (doubleword load/store)
26371
26372 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26373 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26374 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26375 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26376 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26377
26378 Uppercase letters indicate bits that are already encoded at
26379 this point. Lowercase letters are our problem. For the
26380 second block of instructions, the secondary opcode nybble
26381 (bits 8..11) is present, and bit 23 is zero, even if this is
26382 a PC-relative operation. */
26383 newval = md_chars_to_number (buf, THUMB_SIZE);
26384 newval <<= 16;
26385 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26386
26387 if ((newval & 0xf0000000) == 0xe0000000)
26388 {
26389 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26390 if (value >= 0)
26391 newval |= (1 << 23);
26392 else
26393 value = -value;
26394 if (value % 4 != 0)
26395 {
26396 as_bad_where (fixP->fx_file, fixP->fx_line,
26397 _("offset not a multiple of 4"));
26398 break;
26399 }
26400 value /= 4;
26401 if (value > 0xff)
26402 {
26403 as_bad_where (fixP->fx_file, fixP->fx_line,
26404 _("offset out of range"));
26405 break;
26406 }
26407 newval &= ~0xff;
26408 }
26409 else if ((newval & 0x000f0000) == 0x000f0000)
26410 {
26411 /* PC-relative, 12-bit offset. */
26412 if (value >= 0)
26413 newval |= (1 << 23);
26414 else
26415 value = -value;
26416 if (value > 0xfff)
26417 {
26418 as_bad_where (fixP->fx_file, fixP->fx_line,
26419 _("offset out of range"));
26420 break;
26421 }
26422 newval &= ~0xfff;
26423 }
26424 else if ((newval & 0x00000100) == 0x00000100)
26425 {
26426 /* Writeback: 8-bit, +/- offset. */
26427 if (value >= 0)
26428 newval |= (1 << 9);
26429 else
26430 value = -value;
26431 if (value > 0xff)
26432 {
26433 as_bad_where (fixP->fx_file, fixP->fx_line,
26434 _("offset out of range"));
26435 break;
26436 }
26437 newval &= ~0xff;
26438 }
26439 else if ((newval & 0x00000f00) == 0x00000e00)
26440 {
26441 /* T-instruction: positive 8-bit offset. */
26442 if (value < 0 || value > 0xff)
26443 {
26444 as_bad_where (fixP->fx_file, fixP->fx_line,
26445 _("offset out of range"));
26446 break;
26447 }
26448 newval &= ~0xff;
26449 newval |= value;
26450 }
26451 else
26452 {
26453 /* Positive 12-bit or negative 8-bit offset. */
26454 int limit;
26455 if (value >= 0)
26456 {
26457 newval |= (1 << 23);
26458 limit = 0xfff;
26459 }
26460 else
26461 {
26462 value = -value;
26463 limit = 0xff;
26464 }
26465 if (value > limit)
26466 {
26467 as_bad_where (fixP->fx_file, fixP->fx_line,
26468 _("offset out of range"));
26469 break;
26470 }
26471 newval &= ~limit;
26472 }
26473
26474 newval |= value;
26475 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26476 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26477 break;
26478
26479 case BFD_RELOC_ARM_SHIFT_IMM:
26480 newval = md_chars_to_number (buf, INSN_SIZE);
26481 if (((unsigned long) value) > 32
26482 || (value == 32
26483 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26484 {
26485 as_bad_where (fixP->fx_file, fixP->fx_line,
26486 _("shift expression is too large"));
26487 break;
26488 }
26489
26490 if (value == 0)
26491 /* Shifts of zero must be done as lsl. */
26492 newval &= ~0x60;
26493 else if (value == 32)
26494 value = 0;
26495 newval &= 0xfffff07f;
26496 newval |= (value & 0x1f) << 7;
26497 md_number_to_chars (buf, newval, INSN_SIZE);
26498 break;
26499
26500 case BFD_RELOC_ARM_T32_IMMEDIATE:
26501 case BFD_RELOC_ARM_T32_ADD_IMM:
26502 case BFD_RELOC_ARM_T32_IMM12:
26503 case BFD_RELOC_ARM_T32_ADD_PC12:
26504 /* We claim that this fixup has been processed here,
26505 even if in fact we generate an error because we do
26506 not have a reloc for it, so tc_gen_reloc will reject it. */
26507 fixP->fx_done = 1;
26508
26509 if (fixP->fx_addsy
26510 && ! S_IS_DEFINED (fixP->fx_addsy))
26511 {
26512 as_bad_where (fixP->fx_file, fixP->fx_line,
26513 _("undefined symbol %s used as an immediate value"),
26514 S_GET_NAME (fixP->fx_addsy));
26515 break;
26516 }
26517
26518 newval = md_chars_to_number (buf, THUMB_SIZE);
26519 newval <<= 16;
26520 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26521
26522 newimm = FAIL;
26523 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26524 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26525 Thumb2 modified immediate encoding (T2). */
26526 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26527 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26528 {
26529 newimm = encode_thumb32_immediate (value);
26530 if (newimm == (unsigned int) FAIL)
26531 newimm = thumb32_negate_data_op (&newval, value);
26532 }
26533 if (newimm == (unsigned int) FAIL)
26534 {
26535 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26536 {
26537 /* Turn add/sum into addw/subw. */
26538 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26539 newval = (newval & 0xfeffffff) | 0x02000000;
26540 /* No flat 12-bit imm encoding for addsw/subsw. */
26541 if ((newval & 0x00100000) == 0)
26542 {
26543 /* 12 bit immediate for addw/subw. */
26544 if (value < 0)
26545 {
26546 value = -value;
26547 newval ^= 0x00a00000;
26548 }
26549 if (value > 0xfff)
26550 newimm = (unsigned int) FAIL;
26551 else
26552 newimm = value;
26553 }
26554 }
26555 else
26556 {
26557 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26558 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26559 disassembling, MOV is preferred when there is no encoding
26560 overlap. */
26561 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26562 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26563 but with the Rn field [19:16] set to 1111. */
26564 && (((newval >> 16) & 0xf) == 0xf)
26565 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26566 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26567 && value >= 0 && value <= 0xffff)
26568 {
26569 /* Toggle bit[25] to change encoding from T2 to T3. */
26570 newval ^= 1 << 25;
26571 /* Clear bits[19:16]. */
26572 newval &= 0xfff0ffff;
26573 /* Encoding high 4bits imm. Code below will encode the
26574 remaining low 12bits. */
26575 newval |= (value & 0x0000f000) << 4;
26576 newimm = value & 0x00000fff;
26577 }
26578 }
26579 }
26580
26581 if (newimm == (unsigned int)FAIL)
26582 {
26583 as_bad_where (fixP->fx_file, fixP->fx_line,
26584 _("invalid constant (%lx) after fixup"),
26585 (unsigned long) value);
26586 break;
26587 }
26588
26589 newval |= (newimm & 0x800) << 15;
26590 newval |= (newimm & 0x700) << 4;
26591 newval |= (newimm & 0x0ff);
26592
26593 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26594 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26595 break;
26596
26597 case BFD_RELOC_ARM_SMC:
26598 if (((unsigned long) value) > 0xffff)
26599 as_bad_where (fixP->fx_file, fixP->fx_line,
26600 _("invalid smc expression"));
26601 newval = md_chars_to_number (buf, INSN_SIZE);
26602 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26603 md_number_to_chars (buf, newval, INSN_SIZE);
26604 break;
26605
26606 case BFD_RELOC_ARM_HVC:
26607 if (((unsigned long) value) > 0xffff)
26608 as_bad_where (fixP->fx_file, fixP->fx_line,
26609 _("invalid hvc expression"));
26610 newval = md_chars_to_number (buf, INSN_SIZE);
26611 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26612 md_number_to_chars (buf, newval, INSN_SIZE);
26613 break;
26614
26615 case BFD_RELOC_ARM_SWI:
26616 if (fixP->tc_fix_data != 0)
26617 {
26618 if (((unsigned long) value) > 0xff)
26619 as_bad_where (fixP->fx_file, fixP->fx_line,
26620 _("invalid swi expression"));
26621 newval = md_chars_to_number (buf, THUMB_SIZE);
26622 newval |= value;
26623 md_number_to_chars (buf, newval, THUMB_SIZE);
26624 }
26625 else
26626 {
26627 if (((unsigned long) value) > 0x00ffffff)
26628 as_bad_where (fixP->fx_file, fixP->fx_line,
26629 _("invalid swi expression"));
26630 newval = md_chars_to_number (buf, INSN_SIZE);
26631 newval |= value;
26632 md_number_to_chars (buf, newval, INSN_SIZE);
26633 }
26634 break;
26635
26636 case BFD_RELOC_ARM_MULTI:
26637 if (((unsigned long) value) > 0xffff)
26638 as_bad_where (fixP->fx_file, fixP->fx_line,
26639 _("invalid expression in load/store multiple"));
26640 newval = value | md_chars_to_number (buf, INSN_SIZE);
26641 md_number_to_chars (buf, newval, INSN_SIZE);
26642 break;
26643
26644 #ifdef OBJ_ELF
26645 case BFD_RELOC_ARM_PCREL_CALL:
26646
26647 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26648 && fixP->fx_addsy
26649 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26650 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26651 && THUMB_IS_FUNC (fixP->fx_addsy))
26652 /* Flip the bl to blx. This is a simple flip
26653 bit here because we generate PCREL_CALL for
26654 unconditional bls. */
26655 {
26656 newval = md_chars_to_number (buf, INSN_SIZE);
26657 newval = newval | 0x10000000;
26658 md_number_to_chars (buf, newval, INSN_SIZE);
26659 temp = 1;
26660 fixP->fx_done = 1;
26661 }
26662 else
26663 temp = 3;
26664 goto arm_branch_common;
26665
26666 case BFD_RELOC_ARM_PCREL_JUMP:
26667 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26668 && fixP->fx_addsy
26669 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26670 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26671 && THUMB_IS_FUNC (fixP->fx_addsy))
26672 {
26673 /* This would map to a bl<cond>, b<cond>,
26674 b<always> to a Thumb function. We
26675 need to force a relocation for this particular
26676 case. */
26677 newval = md_chars_to_number (buf, INSN_SIZE);
26678 fixP->fx_done = 0;
26679 }
26680 /* Fall through. */
26681
26682 case BFD_RELOC_ARM_PLT32:
26683 #endif
26684 case BFD_RELOC_ARM_PCREL_BRANCH:
26685 temp = 3;
26686 goto arm_branch_common;
26687
26688 case BFD_RELOC_ARM_PCREL_BLX:
26689
26690 temp = 1;
26691 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26692 && fixP->fx_addsy
26693 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26694 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26695 && ARM_IS_FUNC (fixP->fx_addsy))
26696 {
26697 /* Flip the blx to a bl and warn. */
26698 const char *name = S_GET_NAME (fixP->fx_addsy);
26699 newval = 0xeb000000;
26700 as_warn_where (fixP->fx_file, fixP->fx_line,
26701 _("blx to '%s' an ARM ISA state function changed to bl"),
26702 name);
26703 md_number_to_chars (buf, newval, INSN_SIZE);
26704 temp = 3;
26705 fixP->fx_done = 1;
26706 }
26707
26708 #ifdef OBJ_ELF
26709 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26710 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26711 #endif
26712
26713 arm_branch_common:
26714 /* We are going to store value (shifted right by two) in the
26715 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26716 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26717 also be clear. */
26718 if (value & temp)
26719 as_bad_where (fixP->fx_file, fixP->fx_line,
26720 _("misaligned branch destination"));
26721 if ((value & (offsetT)0xfe000000) != (offsetT)0
26722 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26723 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26724
26725 if (fixP->fx_done || !seg->use_rela_p)
26726 {
26727 newval = md_chars_to_number (buf, INSN_SIZE);
26728 newval |= (value >> 2) & 0x00ffffff;
26729 /* Set the H bit on BLX instructions. */
26730 if (temp == 1)
26731 {
26732 if (value & 2)
26733 newval |= 0x01000000;
26734 else
26735 newval &= ~0x01000000;
26736 }
26737 md_number_to_chars (buf, newval, INSN_SIZE);
26738 }
26739 break;
26740
26741 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26742 /* CBZ can only branch forward. */
26743
26744 /* Attempts to use CBZ to branch to the next instruction
26745 (which, strictly speaking, are prohibited) will be turned into
26746 no-ops.
26747
26748 FIXME: It may be better to remove the instruction completely and
26749 perform relaxation. */
26750 if (value == -2)
26751 {
26752 newval = md_chars_to_number (buf, THUMB_SIZE);
26753 newval = 0xbf00; /* NOP encoding T1 */
26754 md_number_to_chars (buf, newval, THUMB_SIZE);
26755 }
26756 else
26757 {
26758 if (value & ~0x7e)
26759 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26760
26761 if (fixP->fx_done || !seg->use_rela_p)
26762 {
26763 newval = md_chars_to_number (buf, THUMB_SIZE);
26764 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26765 md_number_to_chars (buf, newval, THUMB_SIZE);
26766 }
26767 }
26768 break;
26769
26770 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26771 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26772 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26773
26774 if (fixP->fx_done || !seg->use_rela_p)
26775 {
26776 newval = md_chars_to_number (buf, THUMB_SIZE);
26777 newval |= (value & 0x1ff) >> 1;
26778 md_number_to_chars (buf, newval, THUMB_SIZE);
26779 }
26780 break;
26781
26782 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26783 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26784 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26785
26786 if (fixP->fx_done || !seg->use_rela_p)
26787 {
26788 newval = md_chars_to_number (buf, THUMB_SIZE);
26789 newval |= (value & 0xfff) >> 1;
26790 md_number_to_chars (buf, newval, THUMB_SIZE);
26791 }
26792 break;
26793
26794 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26795 if (fixP->fx_addsy
26796 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26797 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26798 && ARM_IS_FUNC (fixP->fx_addsy)
26799 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26800 {
26801 /* Force a relocation for a branch 20 bits wide. */
26802 fixP->fx_done = 0;
26803 }
26804 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("conditional branch out of range"));
26807
26808 if (fixP->fx_done || !seg->use_rela_p)
26809 {
26810 offsetT newval2;
26811 addressT S, J1, J2, lo, hi;
26812
26813 S = (value & 0x00100000) >> 20;
26814 J2 = (value & 0x00080000) >> 19;
26815 J1 = (value & 0x00040000) >> 18;
26816 hi = (value & 0x0003f000) >> 12;
26817 lo = (value & 0x00000ffe) >> 1;
26818
26819 newval = md_chars_to_number (buf, THUMB_SIZE);
26820 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26821 newval |= (S << 10) | hi;
26822 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26823 md_number_to_chars (buf, newval, THUMB_SIZE);
26824 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26825 }
26826 break;
26827
26828 case BFD_RELOC_THUMB_PCREL_BLX:
26829 /* If there is a blx from a thumb state function to
26830 another thumb function flip this to a bl and warn
26831 about it. */
26832
26833 if (fixP->fx_addsy
26834 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26835 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26836 && THUMB_IS_FUNC (fixP->fx_addsy))
26837 {
26838 const char *name = S_GET_NAME (fixP->fx_addsy);
26839 as_warn_where (fixP->fx_file, fixP->fx_line,
26840 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26841 name);
26842 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26843 newval = newval | 0x1000;
26844 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26845 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26846 fixP->fx_done = 1;
26847 }
26848
26849
26850 goto thumb_bl_common;
26851
26852 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26853 /* A bl from Thumb state ISA to an internal ARM state function
26854 is converted to a blx. */
26855 if (fixP->fx_addsy
26856 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26857 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26858 && ARM_IS_FUNC (fixP->fx_addsy)
26859 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26860 {
26861 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26862 newval = newval & ~0x1000;
26863 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26864 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26865 fixP->fx_done = 1;
26866 }
26867
26868 thumb_bl_common:
26869
26870 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26871 /* For a BLX instruction, make sure that the relocation is rounded up
26872 to a word boundary. This follows the semantics of the instruction
26873 which specifies that bit 1 of the target address will come from bit
26874 1 of the base address. */
26875 value = (value + 3) & ~ 3;
26876
26877 #ifdef OBJ_ELF
26878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26879 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26880 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26881 #endif
26882
26883 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26884 {
26885 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26886 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26887 else if ((value & ~0x1ffffff)
26888 && ((value & ~0x1ffffff) != ~0x1ffffff))
26889 as_bad_where (fixP->fx_file, fixP->fx_line,
26890 _("Thumb2 branch out of range"));
26891 }
26892
26893 if (fixP->fx_done || !seg->use_rela_p)
26894 encode_thumb2_b_bl_offset (buf, value);
26895
26896 break;
26897
26898 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26899 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26900 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26901
26902 if (fixP->fx_done || !seg->use_rela_p)
26903 encode_thumb2_b_bl_offset (buf, value);
26904
26905 break;
26906
26907 case BFD_RELOC_8:
26908 if (fixP->fx_done || !seg->use_rela_p)
26909 *buf = value;
26910 break;
26911
26912 case BFD_RELOC_16:
26913 if (fixP->fx_done || !seg->use_rela_p)
26914 md_number_to_chars (buf, value, 2);
26915 break;
26916
26917 #ifdef OBJ_ELF
26918 case BFD_RELOC_ARM_TLS_CALL:
26919 case BFD_RELOC_ARM_THM_TLS_CALL:
26920 case BFD_RELOC_ARM_TLS_DESCSEQ:
26921 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26922 case BFD_RELOC_ARM_TLS_GOTDESC:
26923 case BFD_RELOC_ARM_TLS_GD32:
26924 case BFD_RELOC_ARM_TLS_LE32:
26925 case BFD_RELOC_ARM_TLS_IE32:
26926 case BFD_RELOC_ARM_TLS_LDM32:
26927 case BFD_RELOC_ARM_TLS_LDO32:
26928 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26929 break;
26930
26931 /* Same handling as above, but with the arm_fdpic guard. */
26932 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26933 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26934 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26935 if (arm_fdpic)
26936 {
26937 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26938 }
26939 else
26940 {
26941 as_bad_where (fixP->fx_file, fixP->fx_line,
26942 _("Relocation supported only in FDPIC mode"));
26943 }
26944 break;
26945
26946 case BFD_RELOC_ARM_GOT32:
26947 case BFD_RELOC_ARM_GOTOFF:
26948 break;
26949
26950 case BFD_RELOC_ARM_GOT_PREL:
26951 if (fixP->fx_done || !seg->use_rela_p)
26952 md_number_to_chars (buf, value, 4);
26953 break;
26954
26955 case BFD_RELOC_ARM_TARGET2:
26956 /* TARGET2 is not partial-inplace, so we need to write the
26957 addend here for REL targets, because it won't be written out
26958 during reloc processing later. */
26959 if (fixP->fx_done || !seg->use_rela_p)
26960 md_number_to_chars (buf, fixP->fx_offset, 4);
26961 break;
26962
26963 /* Relocations for FDPIC. */
26964 case BFD_RELOC_ARM_GOTFUNCDESC:
26965 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26966 case BFD_RELOC_ARM_FUNCDESC:
26967 if (arm_fdpic)
26968 {
26969 if (fixP->fx_done || !seg->use_rela_p)
26970 md_number_to_chars (buf, 0, 4);
26971 }
26972 else
26973 {
26974 as_bad_where (fixP->fx_file, fixP->fx_line,
26975 _("Relocation supported only in FDPIC mode"));
26976 }
26977 break;
26978 #endif
26979
26980 case BFD_RELOC_RVA:
26981 case BFD_RELOC_32:
26982 case BFD_RELOC_ARM_TARGET1:
26983 case BFD_RELOC_ARM_ROSEGREL32:
26984 case BFD_RELOC_ARM_SBREL32:
26985 case BFD_RELOC_32_PCREL:
26986 #ifdef TE_PE
26987 case BFD_RELOC_32_SECREL:
26988 #endif
26989 if (fixP->fx_done || !seg->use_rela_p)
26990 #ifdef TE_WINCE
26991 /* For WinCE we only do this for pcrel fixups. */
26992 if (fixP->fx_done || fixP->fx_pcrel)
26993 #endif
26994 md_number_to_chars (buf, value, 4);
26995 break;
26996
26997 #ifdef OBJ_ELF
26998 case BFD_RELOC_ARM_PREL31:
26999 if (fixP->fx_done || !seg->use_rela_p)
27000 {
27001 newval = md_chars_to_number (buf, 4) & 0x80000000;
27002 if ((value ^ (value >> 1)) & 0x40000000)
27003 {
27004 as_bad_where (fixP->fx_file, fixP->fx_line,
27005 _("rel31 relocation overflow"));
27006 }
27007 newval |= value & 0x7fffffff;
27008 md_number_to_chars (buf, newval, 4);
27009 }
27010 break;
27011 #endif
27012
27013 case BFD_RELOC_ARM_CP_OFF_IMM:
27014 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27015 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27016 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27017 newval = md_chars_to_number (buf, INSN_SIZE);
27018 else
27019 newval = get_thumb32_insn (buf);
27020 if ((newval & 0x0f200f00) == 0x0d000900)
27021 {
27022 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27023 has permitted values that are multiples of 2, in the range 0
27024 to 510. */
27025 if (value < -510 || value > 510 || (value & 1))
27026 as_bad_where (fixP->fx_file, fixP->fx_line,
27027 _("co-processor offset out of range"));
27028 }
27029 else if ((newval & 0xfe001f80) == 0xec000f80)
27030 {
27031 if (value < -511 || value > 512 || (value & 3))
27032 as_bad_where (fixP->fx_file, fixP->fx_line,
27033 _("co-processor offset out of range"));
27034 }
27035 else if (value < -1023 || value > 1023 || (value & 3))
27036 as_bad_where (fixP->fx_file, fixP->fx_line,
27037 _("co-processor offset out of range"));
27038 cp_off_common:
27039 sign = value > 0;
27040 if (value < 0)
27041 value = -value;
27042 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27043 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27044 newval = md_chars_to_number (buf, INSN_SIZE);
27045 else
27046 newval = get_thumb32_insn (buf);
27047 if (value == 0)
27048 {
27049 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27050 newval &= 0xffffff80;
27051 else
27052 newval &= 0xffffff00;
27053 }
27054 else
27055 {
27056 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27057 newval &= 0xff7fff80;
27058 else
27059 newval &= 0xff7fff00;
27060 if ((newval & 0x0f200f00) == 0x0d000900)
27061 {
27062 /* This is a fp16 vstr/vldr.
27063
27064 It requires the immediate offset in the instruction is shifted
27065 left by 1 to be a half-word offset.
27066
27067 Here, left shift by 1 first, and later right shift by 2
27068 should get the right offset. */
27069 value <<= 1;
27070 }
27071 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27072 }
27073 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27074 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27075 md_number_to_chars (buf, newval, INSN_SIZE);
27076 else
27077 put_thumb32_insn (buf, newval);
27078 break;
27079
27080 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27081 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27082 if (value < -255 || value > 255)
27083 as_bad_where (fixP->fx_file, fixP->fx_line,
27084 _("co-processor offset out of range"));
27085 value *= 4;
27086 goto cp_off_common;
27087
27088 case BFD_RELOC_ARM_THUMB_OFFSET:
27089 newval = md_chars_to_number (buf, THUMB_SIZE);
27090 /* Exactly what ranges, and where the offset is inserted depends
27091 on the type of instruction, we can establish this from the
27092 top 4 bits. */
27093 switch (newval >> 12)
27094 {
27095 case 4: /* PC load. */
27096 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27097 forced to zero for these loads; md_pcrel_from has already
27098 compensated for this. */
27099 if (value & 3)
27100 as_bad_where (fixP->fx_file, fixP->fx_line,
27101 _("invalid offset, target not word aligned (0x%08lX)"),
27102 (((unsigned long) fixP->fx_frag->fr_address
27103 + (unsigned long) fixP->fx_where) & ~3)
27104 + (unsigned long) value);
27105
27106 if (value & ~0x3fc)
27107 as_bad_where (fixP->fx_file, fixP->fx_line,
27108 _("invalid offset, value too big (0x%08lX)"),
27109 (long) value);
27110
27111 newval |= value >> 2;
27112 break;
27113
27114 case 9: /* SP load/store. */
27115 if (value & ~0x3fc)
27116 as_bad_where (fixP->fx_file, fixP->fx_line,
27117 _("invalid offset, value too big (0x%08lX)"),
27118 (long) value);
27119 newval |= value >> 2;
27120 break;
27121
27122 case 6: /* Word load/store. */
27123 if (value & ~0x7c)
27124 as_bad_where (fixP->fx_file, fixP->fx_line,
27125 _("invalid offset, value too big (0x%08lX)"),
27126 (long) value);
27127 newval |= value << 4; /* 6 - 2. */
27128 break;
27129
27130 case 7: /* Byte load/store. */
27131 if (value & ~0x1f)
27132 as_bad_where (fixP->fx_file, fixP->fx_line,
27133 _("invalid offset, value too big (0x%08lX)"),
27134 (long) value);
27135 newval |= value << 6;
27136 break;
27137
27138 case 8: /* Halfword load/store. */
27139 if (value & ~0x3e)
27140 as_bad_where (fixP->fx_file, fixP->fx_line,
27141 _("invalid offset, value too big (0x%08lX)"),
27142 (long) value);
27143 newval |= value << 5; /* 6 - 1. */
27144 break;
27145
27146 default:
27147 as_bad_where (fixP->fx_file, fixP->fx_line,
27148 "Unable to process relocation for thumb opcode: %lx",
27149 (unsigned long) newval);
27150 break;
27151 }
27152 md_number_to_chars (buf, newval, THUMB_SIZE);
27153 break;
27154
27155 case BFD_RELOC_ARM_THUMB_ADD:
27156 /* This is a complicated relocation, since we use it for all of
27157 the following immediate relocations:
27158
27159 3bit ADD/SUB
27160 8bit ADD/SUB
27161 9bit ADD/SUB SP word-aligned
27162 10bit ADD PC/SP word-aligned
27163
27164 The type of instruction being processed is encoded in the
27165 instruction field:
27166
27167 0x8000 SUB
27168 0x00F0 Rd
27169 0x000F Rs
27170 */
27171 newval = md_chars_to_number (buf, THUMB_SIZE);
27172 {
27173 int rd = (newval >> 4) & 0xf;
27174 int rs = newval & 0xf;
27175 int subtract = !!(newval & 0x8000);
27176
27177 /* Check for HI regs, only very restricted cases allowed:
27178 Adjusting SP, and using PC or SP to get an address. */
27179 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27180 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27181 as_bad_where (fixP->fx_file, fixP->fx_line,
27182 _("invalid Hi register with immediate"));
27183
27184 /* If value is negative, choose the opposite instruction. */
27185 if (value < 0)
27186 {
27187 value = -value;
27188 subtract = !subtract;
27189 if (value < 0)
27190 as_bad_where (fixP->fx_file, fixP->fx_line,
27191 _("immediate value out of range"));
27192 }
27193
27194 if (rd == REG_SP)
27195 {
27196 if (value & ~0x1fc)
27197 as_bad_where (fixP->fx_file, fixP->fx_line,
27198 _("invalid immediate for stack address calculation"));
27199 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27200 newval |= value >> 2;
27201 }
27202 else if (rs == REG_PC || rs == REG_SP)
27203 {
27204 /* PR gas/18541. If the addition is for a defined symbol
27205 within range of an ADR instruction then accept it. */
27206 if (subtract
27207 && value == 4
27208 && fixP->fx_addsy != NULL)
27209 {
27210 subtract = 0;
27211
27212 if (! S_IS_DEFINED (fixP->fx_addsy)
27213 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27214 || S_IS_WEAK (fixP->fx_addsy))
27215 {
27216 as_bad_where (fixP->fx_file, fixP->fx_line,
27217 _("address calculation needs a strongly defined nearby symbol"));
27218 }
27219 else
27220 {
27221 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27222
27223 /* Round up to the next 4-byte boundary. */
27224 if (v & 3)
27225 v = (v + 3) & ~ 3;
27226 else
27227 v += 4;
27228 v = S_GET_VALUE (fixP->fx_addsy) - v;
27229
27230 if (v & ~0x3fc)
27231 {
27232 as_bad_where (fixP->fx_file, fixP->fx_line,
27233 _("symbol too far away"));
27234 }
27235 else
27236 {
27237 fixP->fx_done = 1;
27238 value = v;
27239 }
27240 }
27241 }
27242
27243 if (subtract || value & ~0x3fc)
27244 as_bad_where (fixP->fx_file, fixP->fx_line,
27245 _("invalid immediate for address calculation (value = 0x%08lX)"),
27246 (unsigned long) (subtract ? - value : value));
27247 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27248 newval |= rd << 8;
27249 newval |= value >> 2;
27250 }
27251 else if (rs == rd)
27252 {
27253 if (value & ~0xff)
27254 as_bad_where (fixP->fx_file, fixP->fx_line,
27255 _("immediate value out of range"));
27256 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27257 newval |= (rd << 8) | value;
27258 }
27259 else
27260 {
27261 if (value & ~0x7)
27262 as_bad_where (fixP->fx_file, fixP->fx_line,
27263 _("immediate value out of range"));
27264 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27265 newval |= rd | (rs << 3) | (value << 6);
27266 }
27267 }
27268 md_number_to_chars (buf, newval, THUMB_SIZE);
27269 break;
27270
27271 case BFD_RELOC_ARM_THUMB_IMM:
27272 newval = md_chars_to_number (buf, THUMB_SIZE);
27273 if (value < 0 || value > 255)
27274 as_bad_where (fixP->fx_file, fixP->fx_line,
27275 _("invalid immediate: %ld is out of range"),
27276 (long) value);
27277 newval |= value;
27278 md_number_to_chars (buf, newval, THUMB_SIZE);
27279 break;
27280
27281 case BFD_RELOC_ARM_THUMB_SHIFT:
27282 /* 5bit shift value (0..32). LSL cannot take 32. */
27283 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27284 temp = newval & 0xf800;
27285 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27286 as_bad_where (fixP->fx_file, fixP->fx_line,
27287 _("invalid shift value: %ld"), (long) value);
27288 /* Shifts of zero must be encoded as LSL. */
27289 if (value == 0)
27290 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27291 /* Shifts of 32 are encoded as zero. */
27292 else if (value == 32)
27293 value = 0;
27294 newval |= value << 6;
27295 md_number_to_chars (buf, newval, THUMB_SIZE);
27296 break;
27297
27298 case BFD_RELOC_VTABLE_INHERIT:
27299 case BFD_RELOC_VTABLE_ENTRY:
27300 fixP->fx_done = 0;
27301 return;
27302
27303 case BFD_RELOC_ARM_MOVW:
27304 case BFD_RELOC_ARM_MOVT:
27305 case BFD_RELOC_ARM_THUMB_MOVW:
27306 case BFD_RELOC_ARM_THUMB_MOVT:
27307 if (fixP->fx_done || !seg->use_rela_p)
27308 {
27309 /* REL format relocations are limited to a 16-bit addend. */
27310 if (!fixP->fx_done)
27311 {
27312 if (value < -0x8000 || value > 0x7fff)
27313 as_bad_where (fixP->fx_file, fixP->fx_line,
27314 _("offset out of range"));
27315 }
27316 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27317 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27318 {
27319 value >>= 16;
27320 }
27321
27322 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27323 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27324 {
27325 newval = get_thumb32_insn (buf);
27326 newval &= 0xfbf08f00;
27327 newval |= (value & 0xf000) << 4;
27328 newval |= (value & 0x0800) << 15;
27329 newval |= (value & 0x0700) << 4;
27330 newval |= (value & 0x00ff);
27331 put_thumb32_insn (buf, newval);
27332 }
27333 else
27334 {
27335 newval = md_chars_to_number (buf, 4);
27336 newval &= 0xfff0f000;
27337 newval |= value & 0x0fff;
27338 newval |= (value & 0xf000) << 4;
27339 md_number_to_chars (buf, newval, 4);
27340 }
27341 }
27342 return;
27343
27344 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27345 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27346 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27347 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27348 gas_assert (!fixP->fx_done);
27349 {
27350 bfd_vma insn;
27351 bfd_boolean is_mov;
27352 bfd_vma encoded_addend = value;
27353
27354 /* Check that addend can be encoded in instruction. */
27355 if (!seg->use_rela_p && (value < 0 || value > 255))
27356 as_bad_where (fixP->fx_file, fixP->fx_line,
27357 _("the offset 0x%08lX is not representable"),
27358 (unsigned long) encoded_addend);
27359
27360 /* Extract the instruction. */
27361 insn = md_chars_to_number (buf, THUMB_SIZE);
27362 is_mov = (insn & 0xf800) == 0x2000;
27363
27364 /* Encode insn. */
27365 if (is_mov)
27366 {
27367 if (!seg->use_rela_p)
27368 insn |= encoded_addend;
27369 }
27370 else
27371 {
27372 int rd, rs;
27373
27374 /* Extract the instruction. */
27375 /* Encoding is the following
27376 0x8000 SUB
27377 0x00F0 Rd
27378 0x000F Rs
27379 */
27380 /* The following conditions must be true :
27381 - ADD
27382 - Rd == Rs
27383 - Rd <= 7
27384 */
27385 rd = (insn >> 4) & 0xf;
27386 rs = insn & 0xf;
27387 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27388 as_bad_where (fixP->fx_file, fixP->fx_line,
27389 _("Unable to process relocation for thumb opcode: %lx"),
27390 (unsigned long) insn);
27391
27392 /* Encode as ADD immediate8 thumb 1 code. */
27393 insn = 0x3000 | (rd << 8);
27394
27395 /* Place the encoded addend into the first 8 bits of the
27396 instruction. */
27397 if (!seg->use_rela_p)
27398 insn |= encoded_addend;
27399 }
27400
27401 /* Update the instruction. */
27402 md_number_to_chars (buf, insn, THUMB_SIZE);
27403 }
27404 break;
27405
27406 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27407 case BFD_RELOC_ARM_ALU_PC_G0:
27408 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27409 case BFD_RELOC_ARM_ALU_PC_G1:
27410 case BFD_RELOC_ARM_ALU_PC_G2:
27411 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27412 case BFD_RELOC_ARM_ALU_SB_G0:
27413 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27414 case BFD_RELOC_ARM_ALU_SB_G1:
27415 case BFD_RELOC_ARM_ALU_SB_G2:
27416 gas_assert (!fixP->fx_done);
27417 if (!seg->use_rela_p)
27418 {
27419 bfd_vma insn;
27420 bfd_vma encoded_addend;
27421 bfd_vma addend_abs = llabs (value);
27422
27423 /* Check that the absolute value of the addend can be
27424 expressed as an 8-bit constant plus a rotation. */
27425 encoded_addend = encode_arm_immediate (addend_abs);
27426 if (encoded_addend == (unsigned int) FAIL)
27427 as_bad_where (fixP->fx_file, fixP->fx_line,
27428 _("the offset 0x%08lX is not representable"),
27429 (unsigned long) addend_abs);
27430
27431 /* Extract the instruction. */
27432 insn = md_chars_to_number (buf, INSN_SIZE);
27433
27434 /* If the addend is positive, use an ADD instruction.
27435 Otherwise use a SUB. Take care not to destroy the S bit. */
27436 insn &= 0xff1fffff;
27437 if (value < 0)
27438 insn |= 1 << 22;
27439 else
27440 insn |= 1 << 23;
27441
27442 /* Place the encoded addend into the first 12 bits of the
27443 instruction. */
27444 insn &= 0xfffff000;
27445 insn |= encoded_addend;
27446
27447 /* Update the instruction. */
27448 md_number_to_chars (buf, insn, INSN_SIZE);
27449 }
27450 break;
27451
27452 case BFD_RELOC_ARM_LDR_PC_G0:
27453 case BFD_RELOC_ARM_LDR_PC_G1:
27454 case BFD_RELOC_ARM_LDR_PC_G2:
27455 case BFD_RELOC_ARM_LDR_SB_G0:
27456 case BFD_RELOC_ARM_LDR_SB_G1:
27457 case BFD_RELOC_ARM_LDR_SB_G2:
27458 gas_assert (!fixP->fx_done);
27459 if (!seg->use_rela_p)
27460 {
27461 bfd_vma insn;
27462 bfd_vma addend_abs = llabs (value);
27463
27464 /* Check that the absolute value of the addend can be
27465 encoded in 12 bits. */
27466 if (addend_abs >= 0x1000)
27467 as_bad_where (fixP->fx_file, fixP->fx_line,
27468 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27469 (unsigned long) addend_abs);
27470
27471 /* Extract the instruction. */
27472 insn = md_chars_to_number (buf, INSN_SIZE);
27473
27474 /* If the addend is negative, clear bit 23 of the instruction.
27475 Otherwise set it. */
27476 if (value < 0)
27477 insn &= ~(1 << 23);
27478 else
27479 insn |= 1 << 23;
27480
27481 /* Place the absolute value of the addend into the first 12 bits
27482 of the instruction. */
27483 insn &= 0xfffff000;
27484 insn |= addend_abs;
27485
27486 /* Update the instruction. */
27487 md_number_to_chars (buf, insn, INSN_SIZE);
27488 }
27489 break;
27490
27491 case BFD_RELOC_ARM_LDRS_PC_G0:
27492 case BFD_RELOC_ARM_LDRS_PC_G1:
27493 case BFD_RELOC_ARM_LDRS_PC_G2:
27494 case BFD_RELOC_ARM_LDRS_SB_G0:
27495 case BFD_RELOC_ARM_LDRS_SB_G1:
27496 case BFD_RELOC_ARM_LDRS_SB_G2:
27497 gas_assert (!fixP->fx_done);
27498 if (!seg->use_rela_p)
27499 {
27500 bfd_vma insn;
27501 bfd_vma addend_abs = llabs (value);
27502
27503 /* Check that the absolute value of the addend can be
27504 encoded in 8 bits. */
27505 if (addend_abs >= 0x100)
27506 as_bad_where (fixP->fx_file, fixP->fx_line,
27507 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27508 (unsigned long) addend_abs);
27509
27510 /* Extract the instruction. */
27511 insn = md_chars_to_number (buf, INSN_SIZE);
27512
27513 /* If the addend is negative, clear bit 23 of the instruction.
27514 Otherwise set it. */
27515 if (value < 0)
27516 insn &= ~(1 << 23);
27517 else
27518 insn |= 1 << 23;
27519
27520 /* Place the first four bits of the absolute value of the addend
27521 into the first 4 bits of the instruction, and the remaining
27522 four into bits 8 .. 11. */
27523 insn &= 0xfffff0f0;
27524 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27525
27526 /* Update the instruction. */
27527 md_number_to_chars (buf, insn, INSN_SIZE);
27528 }
27529 break;
27530
27531 case BFD_RELOC_ARM_LDC_PC_G0:
27532 case BFD_RELOC_ARM_LDC_PC_G1:
27533 case BFD_RELOC_ARM_LDC_PC_G2:
27534 case BFD_RELOC_ARM_LDC_SB_G0:
27535 case BFD_RELOC_ARM_LDC_SB_G1:
27536 case BFD_RELOC_ARM_LDC_SB_G2:
27537 gas_assert (!fixP->fx_done);
27538 if (!seg->use_rela_p)
27539 {
27540 bfd_vma insn;
27541 bfd_vma addend_abs = llabs (value);
27542
27543 /* Check that the absolute value of the addend is a multiple of
27544 four and, when divided by four, fits in 8 bits. */
27545 if (addend_abs & 0x3)
27546 as_bad_where (fixP->fx_file, fixP->fx_line,
27547 _("bad offset 0x%08lX (must be word-aligned)"),
27548 (unsigned long) addend_abs);
27549
27550 if ((addend_abs >> 2) > 0xff)
27551 as_bad_where (fixP->fx_file, fixP->fx_line,
27552 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27553 (unsigned long) addend_abs);
27554
27555 /* Extract the instruction. */
27556 insn = md_chars_to_number (buf, INSN_SIZE);
27557
27558 /* If the addend is negative, clear bit 23 of the instruction.
27559 Otherwise set it. */
27560 if (value < 0)
27561 insn &= ~(1 << 23);
27562 else
27563 insn |= 1 << 23;
27564
27565 /* Place the addend (divided by four) into the first eight
27566 bits of the instruction. */
27567 insn &= 0xfffffff0;
27568 insn |= addend_abs >> 2;
27569
27570 /* Update the instruction. */
27571 md_number_to_chars (buf, insn, INSN_SIZE);
27572 }
27573 break;
27574
27575 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27576 if (fixP->fx_addsy
27577 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27578 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27579 && ARM_IS_FUNC (fixP->fx_addsy)
27580 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27581 {
27582 /* Force a relocation for a branch 5 bits wide. */
27583 fixP->fx_done = 0;
27584 }
27585 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27586 as_bad_where (fixP->fx_file, fixP->fx_line,
27587 BAD_BRANCH_OFF);
27588
27589 if (fixP->fx_done || !seg->use_rela_p)
27590 {
27591 addressT boff = value >> 1;
27592
27593 newval = md_chars_to_number (buf, THUMB_SIZE);
27594 newval |= (boff << 7);
27595 md_number_to_chars (buf, newval, THUMB_SIZE);
27596 }
27597 break;
27598
27599 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27600 if (fixP->fx_addsy
27601 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27602 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27603 && ARM_IS_FUNC (fixP->fx_addsy)
27604 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27605 {
27606 fixP->fx_done = 0;
27607 }
27608 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27609 as_bad_where (fixP->fx_file, fixP->fx_line,
27610 _("branch out of range"));
27611
27612 if (fixP->fx_done || !seg->use_rela_p)
27613 {
27614 newval = md_chars_to_number (buf, THUMB_SIZE);
27615
27616 addressT boff = ((newval & 0x0780) >> 7) << 1;
27617 addressT diff = value - boff;
27618
27619 if (diff == 4)
27620 {
27621 newval |= 1 << 1; /* T bit. */
27622 }
27623 else if (diff != 2)
27624 {
27625 as_bad_where (fixP->fx_file, fixP->fx_line,
27626 _("out of range label-relative fixup value"));
27627 }
27628 md_number_to_chars (buf, newval, THUMB_SIZE);
27629 }
27630 break;
27631
27632 case BFD_RELOC_ARM_THUMB_BF17:
27633 if (fixP->fx_addsy
27634 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27635 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27636 && ARM_IS_FUNC (fixP->fx_addsy)
27637 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27638 {
27639 /* Force a relocation for a branch 17 bits wide. */
27640 fixP->fx_done = 0;
27641 }
27642
27643 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27644 as_bad_where (fixP->fx_file, fixP->fx_line,
27645 BAD_BRANCH_OFF);
27646
27647 if (fixP->fx_done || !seg->use_rela_p)
27648 {
27649 offsetT newval2;
27650 addressT immA, immB, immC;
27651
27652 immA = (value & 0x0001f000) >> 12;
27653 immB = (value & 0x00000ffc) >> 2;
27654 immC = (value & 0x00000002) >> 1;
27655
27656 newval = md_chars_to_number (buf, THUMB_SIZE);
27657 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27658 newval |= immA;
27659 newval2 |= (immC << 11) | (immB << 1);
27660 md_number_to_chars (buf, newval, THUMB_SIZE);
27661 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27662 }
27663 break;
27664
27665 case BFD_RELOC_ARM_THUMB_BF19:
27666 if (fixP->fx_addsy
27667 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27668 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27669 && ARM_IS_FUNC (fixP->fx_addsy)
27670 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27671 {
27672 /* Force a relocation for a branch 19 bits wide. */
27673 fixP->fx_done = 0;
27674 }
27675
27676 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27677 as_bad_where (fixP->fx_file, fixP->fx_line,
27678 BAD_BRANCH_OFF);
27679
27680 if (fixP->fx_done || !seg->use_rela_p)
27681 {
27682 offsetT newval2;
27683 addressT immA, immB, immC;
27684
27685 immA = (value & 0x0007f000) >> 12;
27686 immB = (value & 0x00000ffc) >> 2;
27687 immC = (value & 0x00000002) >> 1;
27688
27689 newval = md_chars_to_number (buf, THUMB_SIZE);
27690 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27691 newval |= immA;
27692 newval2 |= (immC << 11) | (immB << 1);
27693 md_number_to_chars (buf, newval, THUMB_SIZE);
27694 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27695 }
27696 break;
27697
27698 case BFD_RELOC_ARM_THUMB_BF13:
27699 if (fixP->fx_addsy
27700 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27701 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27702 && ARM_IS_FUNC (fixP->fx_addsy)
27703 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27704 {
27705 /* Force a relocation for a branch 13 bits wide. */
27706 fixP->fx_done = 0;
27707 }
27708
27709 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27710 as_bad_where (fixP->fx_file, fixP->fx_line,
27711 BAD_BRANCH_OFF);
27712
27713 if (fixP->fx_done || !seg->use_rela_p)
27714 {
27715 offsetT newval2;
27716 addressT immA, immB, immC;
27717
27718 immA = (value & 0x00001000) >> 12;
27719 immB = (value & 0x00000ffc) >> 2;
27720 immC = (value & 0x00000002) >> 1;
27721
27722 newval = md_chars_to_number (buf, THUMB_SIZE);
27723 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27724 newval |= immA;
27725 newval2 |= (immC << 11) | (immB << 1);
27726 md_number_to_chars (buf, newval, THUMB_SIZE);
27727 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27728 }
27729 break;
27730
27731 case BFD_RELOC_ARM_THUMB_LOOP12:
27732 if (fixP->fx_addsy
27733 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27734 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27735 && ARM_IS_FUNC (fixP->fx_addsy)
27736 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27737 {
27738 /* Force a relocation for a branch 12 bits wide. */
27739 fixP->fx_done = 0;
27740 }
27741
27742 bfd_vma insn = get_thumb32_insn (buf);
27743 /* le lr, <label> or le <label> */
27744 if (((insn & 0xffffffff) == 0xf00fc001)
27745 || ((insn & 0xffffffff) == 0xf02fc001))
27746 value = -value;
27747
27748 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27749 as_bad_where (fixP->fx_file, fixP->fx_line,
27750 BAD_BRANCH_OFF);
27751 if (fixP->fx_done || !seg->use_rela_p)
27752 {
27753 addressT imml, immh;
27754
27755 immh = (value & 0x00000ffc) >> 2;
27756 imml = (value & 0x00000002) >> 1;
27757
27758 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27759 newval |= (imml << 11) | (immh << 1);
27760 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27761 }
27762 break;
27763
27764 case BFD_RELOC_ARM_V4BX:
27765 /* This will need to go in the object file. */
27766 fixP->fx_done = 0;
27767 break;
27768
27769 case BFD_RELOC_UNUSED:
27770 default:
27771 as_bad_where (fixP->fx_file, fixP->fx_line,
27772 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27773 }
27774 }
27775
27776 /* Translate internal representation of relocation info to BFD target
27777 format. */
27778
27779 arelent *
27780 tc_gen_reloc (asection *section, fixS *fixp)
27781 {
27782 arelent * reloc;
27783 bfd_reloc_code_real_type code;
27784
27785 reloc = XNEW (arelent);
27786
27787 reloc->sym_ptr_ptr = XNEW (asymbol *);
27788 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27789 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27790
27791 if (fixp->fx_pcrel)
27792 {
27793 if (section->use_rela_p)
27794 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27795 else
27796 fixp->fx_offset = reloc->address;
27797 }
27798 reloc->addend = fixp->fx_offset;
27799
27800 switch (fixp->fx_r_type)
27801 {
27802 case BFD_RELOC_8:
27803 if (fixp->fx_pcrel)
27804 {
27805 code = BFD_RELOC_8_PCREL;
27806 break;
27807 }
27808 /* Fall through. */
27809
27810 case BFD_RELOC_16:
27811 if (fixp->fx_pcrel)
27812 {
27813 code = BFD_RELOC_16_PCREL;
27814 break;
27815 }
27816 /* Fall through. */
27817
27818 case BFD_RELOC_32:
27819 if (fixp->fx_pcrel)
27820 {
27821 code = BFD_RELOC_32_PCREL;
27822 break;
27823 }
27824 /* Fall through. */
27825
27826 case BFD_RELOC_ARM_MOVW:
27827 if (fixp->fx_pcrel)
27828 {
27829 code = BFD_RELOC_ARM_MOVW_PCREL;
27830 break;
27831 }
27832 /* Fall through. */
27833
27834 case BFD_RELOC_ARM_MOVT:
27835 if (fixp->fx_pcrel)
27836 {
27837 code = BFD_RELOC_ARM_MOVT_PCREL;
27838 break;
27839 }
27840 /* Fall through. */
27841
27842 case BFD_RELOC_ARM_THUMB_MOVW:
27843 if (fixp->fx_pcrel)
27844 {
27845 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27846 break;
27847 }
27848 /* Fall through. */
27849
27850 case BFD_RELOC_ARM_THUMB_MOVT:
27851 if (fixp->fx_pcrel)
27852 {
27853 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27854 break;
27855 }
27856 /* Fall through. */
27857
27858 case BFD_RELOC_NONE:
27859 case BFD_RELOC_ARM_PCREL_BRANCH:
27860 case BFD_RELOC_ARM_PCREL_BLX:
27861 case BFD_RELOC_RVA:
27862 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27863 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27864 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27865 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27866 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27867 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27868 case BFD_RELOC_VTABLE_ENTRY:
27869 case BFD_RELOC_VTABLE_INHERIT:
27870 #ifdef TE_PE
27871 case BFD_RELOC_32_SECREL:
27872 #endif
27873 code = fixp->fx_r_type;
27874 break;
27875
27876 case BFD_RELOC_THUMB_PCREL_BLX:
27877 #ifdef OBJ_ELF
27878 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27879 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27880 else
27881 #endif
27882 code = BFD_RELOC_THUMB_PCREL_BLX;
27883 break;
27884
27885 case BFD_RELOC_ARM_LITERAL:
27886 case BFD_RELOC_ARM_HWLITERAL:
27887 /* If this is called then the a literal has
27888 been referenced across a section boundary. */
27889 as_bad_where (fixp->fx_file, fixp->fx_line,
27890 _("literal referenced across section boundary"));
27891 return NULL;
27892
27893 #ifdef OBJ_ELF
27894 case BFD_RELOC_ARM_TLS_CALL:
27895 case BFD_RELOC_ARM_THM_TLS_CALL:
27896 case BFD_RELOC_ARM_TLS_DESCSEQ:
27897 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27898 case BFD_RELOC_ARM_GOT32:
27899 case BFD_RELOC_ARM_GOTOFF:
27900 case BFD_RELOC_ARM_GOT_PREL:
27901 case BFD_RELOC_ARM_PLT32:
27902 case BFD_RELOC_ARM_TARGET1:
27903 case BFD_RELOC_ARM_ROSEGREL32:
27904 case BFD_RELOC_ARM_SBREL32:
27905 case BFD_RELOC_ARM_PREL31:
27906 case BFD_RELOC_ARM_TARGET2:
27907 case BFD_RELOC_ARM_TLS_LDO32:
27908 case BFD_RELOC_ARM_PCREL_CALL:
27909 case BFD_RELOC_ARM_PCREL_JUMP:
27910 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27911 case BFD_RELOC_ARM_ALU_PC_G0:
27912 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27913 case BFD_RELOC_ARM_ALU_PC_G1:
27914 case BFD_RELOC_ARM_ALU_PC_G2:
27915 case BFD_RELOC_ARM_LDR_PC_G0:
27916 case BFD_RELOC_ARM_LDR_PC_G1:
27917 case BFD_RELOC_ARM_LDR_PC_G2:
27918 case BFD_RELOC_ARM_LDRS_PC_G0:
27919 case BFD_RELOC_ARM_LDRS_PC_G1:
27920 case BFD_RELOC_ARM_LDRS_PC_G2:
27921 case BFD_RELOC_ARM_LDC_PC_G0:
27922 case BFD_RELOC_ARM_LDC_PC_G1:
27923 case BFD_RELOC_ARM_LDC_PC_G2:
27924 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27925 case BFD_RELOC_ARM_ALU_SB_G0:
27926 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27927 case BFD_RELOC_ARM_ALU_SB_G1:
27928 case BFD_RELOC_ARM_ALU_SB_G2:
27929 case BFD_RELOC_ARM_LDR_SB_G0:
27930 case BFD_RELOC_ARM_LDR_SB_G1:
27931 case BFD_RELOC_ARM_LDR_SB_G2:
27932 case BFD_RELOC_ARM_LDRS_SB_G0:
27933 case BFD_RELOC_ARM_LDRS_SB_G1:
27934 case BFD_RELOC_ARM_LDRS_SB_G2:
27935 case BFD_RELOC_ARM_LDC_SB_G0:
27936 case BFD_RELOC_ARM_LDC_SB_G1:
27937 case BFD_RELOC_ARM_LDC_SB_G2:
27938 case BFD_RELOC_ARM_V4BX:
27939 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27940 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27941 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27942 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27943 case BFD_RELOC_ARM_GOTFUNCDESC:
27944 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27945 case BFD_RELOC_ARM_FUNCDESC:
27946 case BFD_RELOC_ARM_THUMB_BF17:
27947 case BFD_RELOC_ARM_THUMB_BF19:
27948 case BFD_RELOC_ARM_THUMB_BF13:
27949 code = fixp->fx_r_type;
27950 break;
27951
27952 case BFD_RELOC_ARM_TLS_GOTDESC:
27953 case BFD_RELOC_ARM_TLS_GD32:
27954 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27955 case BFD_RELOC_ARM_TLS_LE32:
27956 case BFD_RELOC_ARM_TLS_IE32:
27957 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27958 case BFD_RELOC_ARM_TLS_LDM32:
27959 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27960 /* BFD will include the symbol's address in the addend.
27961 But we don't want that, so subtract it out again here. */
27962 if (!S_IS_COMMON (fixp->fx_addsy))
27963 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27964 code = fixp->fx_r_type;
27965 break;
27966 #endif
27967
27968 case BFD_RELOC_ARM_IMMEDIATE:
27969 as_bad_where (fixp->fx_file, fixp->fx_line,
27970 _("internal relocation (type: IMMEDIATE) not fixed up"));
27971 return NULL;
27972
27973 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27974 as_bad_where (fixp->fx_file, fixp->fx_line,
27975 _("ADRL used for a symbol not defined in the same file"));
27976 return NULL;
27977
27978 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27979 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27980 case BFD_RELOC_ARM_THUMB_LOOP12:
27981 as_bad_where (fixp->fx_file, fixp->fx_line,
27982 _("%s used for a symbol not defined in the same file"),
27983 bfd_get_reloc_code_name (fixp->fx_r_type));
27984 return NULL;
27985
27986 case BFD_RELOC_ARM_OFFSET_IMM:
27987 if (section->use_rela_p)
27988 {
27989 code = fixp->fx_r_type;
27990 break;
27991 }
27992
27993 if (fixp->fx_addsy != NULL
27994 && !S_IS_DEFINED (fixp->fx_addsy)
27995 && S_IS_LOCAL (fixp->fx_addsy))
27996 {
27997 as_bad_where (fixp->fx_file, fixp->fx_line,
27998 _("undefined local label `%s'"),
27999 S_GET_NAME (fixp->fx_addsy));
28000 return NULL;
28001 }
28002
28003 as_bad_where (fixp->fx_file, fixp->fx_line,
28004 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28005 return NULL;
28006
28007 default:
28008 {
28009 const char * type;
28010
28011 switch (fixp->fx_r_type)
28012 {
28013 case BFD_RELOC_NONE: type = "NONE"; break;
28014 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28015 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28016 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28017 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28018 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28019 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28020 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28021 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28022 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28023 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28024 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28025 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28026 default: type = _("<unknown>"); break;
28027 }
28028 as_bad_where (fixp->fx_file, fixp->fx_line,
28029 _("cannot represent %s relocation in this object file format"),
28030 type);
28031 return NULL;
28032 }
28033 }
28034
28035 #ifdef OBJ_ELF
28036 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28037 && GOT_symbol
28038 && fixp->fx_addsy == GOT_symbol)
28039 {
28040 code = BFD_RELOC_ARM_GOTPC;
28041 reloc->addend = fixp->fx_offset = reloc->address;
28042 }
28043 #endif
28044
28045 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28046
28047 if (reloc->howto == NULL)
28048 {
28049 as_bad_where (fixp->fx_file, fixp->fx_line,
28050 _("cannot represent %s relocation in this object file format"),
28051 bfd_get_reloc_code_name (code));
28052 return NULL;
28053 }
28054
28055 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28056 vtable entry to be used in the relocation's section offset. */
28057 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28058 reloc->address = fixp->fx_offset;
28059
28060 return reloc;
28061 }
28062
28063 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28064
28065 void
28066 cons_fix_new_arm (fragS * frag,
28067 int where,
28068 int size,
28069 expressionS * exp,
28070 bfd_reloc_code_real_type reloc)
28071 {
28072 int pcrel = 0;
28073
28074 /* Pick a reloc.
28075 FIXME: @@ Should look at CPU word size. */
28076 switch (size)
28077 {
28078 case 1:
28079 reloc = BFD_RELOC_8;
28080 break;
28081 case 2:
28082 reloc = BFD_RELOC_16;
28083 break;
28084 case 4:
28085 default:
28086 reloc = BFD_RELOC_32;
28087 break;
28088 case 8:
28089 reloc = BFD_RELOC_64;
28090 break;
28091 }
28092
28093 #ifdef TE_PE
28094 if (exp->X_op == O_secrel)
28095 {
28096 exp->X_op = O_symbol;
28097 reloc = BFD_RELOC_32_SECREL;
28098 }
28099 #endif
28100
28101 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28102 }
28103
28104 #if defined (OBJ_COFF)
28105 void
28106 arm_validate_fix (fixS * fixP)
28107 {
28108 /* If the destination of the branch is a defined symbol which does not have
28109 the THUMB_FUNC attribute, then we must be calling a function which has
28110 the (interfacearm) attribute. We look for the Thumb entry point to that
28111 function and change the branch to refer to that function instead. */
28112 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28113 && fixP->fx_addsy != NULL
28114 && S_IS_DEFINED (fixP->fx_addsy)
28115 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28116 {
28117 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28118 }
28119 }
28120 #endif
28121
28122
28123 int
28124 arm_force_relocation (struct fix * fixp)
28125 {
28126 #if defined (OBJ_COFF) && defined (TE_PE)
28127 if (fixp->fx_r_type == BFD_RELOC_RVA)
28128 return 1;
28129 #endif
28130
28131 /* In case we have a call or a branch to a function in ARM ISA mode from
28132 a thumb function or vice-versa force the relocation. These relocations
28133 are cleared off for some cores that might have blx and simple transformations
28134 are possible. */
28135
28136 #ifdef OBJ_ELF
28137 switch (fixp->fx_r_type)
28138 {
28139 case BFD_RELOC_ARM_PCREL_JUMP:
28140 case BFD_RELOC_ARM_PCREL_CALL:
28141 case BFD_RELOC_THUMB_PCREL_BLX:
28142 if (THUMB_IS_FUNC (fixp->fx_addsy))
28143 return 1;
28144 break;
28145
28146 case BFD_RELOC_ARM_PCREL_BLX:
28147 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28148 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28149 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28150 if (ARM_IS_FUNC (fixp->fx_addsy))
28151 return 1;
28152 break;
28153
28154 default:
28155 break;
28156 }
28157 #endif
28158
28159 /* Resolve these relocations even if the symbol is extern or weak.
28160 Technically this is probably wrong due to symbol preemption.
28161 In practice these relocations do not have enough range to be useful
28162 at dynamic link time, and some code (e.g. in the Linux kernel)
28163 expects these references to be resolved. */
28164 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28165 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28166 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28167 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28168 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28169 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28170 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28171 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28172 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28173 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28174 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28175 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28176 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28177 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28178 return 0;
28179
28180 /* Always leave these relocations for the linker. */
28181 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28182 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28183 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28184 return 1;
28185
28186 /* Always generate relocations against function symbols. */
28187 if (fixp->fx_r_type == BFD_RELOC_32
28188 && fixp->fx_addsy
28189 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28190 return 1;
28191
28192 return generic_force_reloc (fixp);
28193 }
28194
28195 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28196 /* Relocations against function names must be left unadjusted,
28197 so that the linker can use this information to generate interworking
28198 stubs. The MIPS version of this function
28199 also prevents relocations that are mips-16 specific, but I do not
28200 know why it does this.
28201
28202 FIXME:
28203 There is one other problem that ought to be addressed here, but
28204 which currently is not: Taking the address of a label (rather
28205 than a function) and then later jumping to that address. Such
28206 addresses also ought to have their bottom bit set (assuming that
28207 they reside in Thumb code), but at the moment they will not. */
28208
28209 bfd_boolean
28210 arm_fix_adjustable (fixS * fixP)
28211 {
28212 if (fixP->fx_addsy == NULL)
28213 return 1;
28214
28215 /* Preserve relocations against symbols with function type. */
28216 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28217 return FALSE;
28218
28219 if (THUMB_IS_FUNC (fixP->fx_addsy)
28220 && fixP->fx_subsy == NULL)
28221 return FALSE;
28222
28223 /* We need the symbol name for the VTABLE entries. */
28224 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28225 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28226 return FALSE;
28227
28228 /* Don't allow symbols to be discarded on GOT related relocs. */
28229 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28230 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28231 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28232 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28233 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28234 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28235 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28236 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28237 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28238 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28239 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28240 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28241 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28242 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28243 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28244 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28245 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28246 return FALSE;
28247
28248 /* Similarly for group relocations. */
28249 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28250 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28251 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28252 return FALSE;
28253
28254 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28255 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28256 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28257 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28258 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28259 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28260 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28261 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28262 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28263 return FALSE;
28264
28265 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28266 offsets, so keep these symbols. */
28267 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28268 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28269 return FALSE;
28270
28271 return TRUE;
28272 }
28273 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28274
28275 #ifdef OBJ_ELF
28276 const char *
28277 elf32_arm_target_format (void)
28278 {
28279 #ifdef TE_SYMBIAN
28280 return (target_big_endian
28281 ? "elf32-bigarm-symbian"
28282 : "elf32-littlearm-symbian");
28283 #elif defined (TE_VXWORKS)
28284 return (target_big_endian
28285 ? "elf32-bigarm-vxworks"
28286 : "elf32-littlearm-vxworks");
28287 #elif defined (TE_NACL)
28288 return (target_big_endian
28289 ? "elf32-bigarm-nacl"
28290 : "elf32-littlearm-nacl");
28291 #else
28292 if (arm_fdpic)
28293 {
28294 if (target_big_endian)
28295 return "elf32-bigarm-fdpic";
28296 else
28297 return "elf32-littlearm-fdpic";
28298 }
28299 else
28300 {
28301 if (target_big_endian)
28302 return "elf32-bigarm";
28303 else
28304 return "elf32-littlearm";
28305 }
28306 #endif
28307 }
28308
28309 void
28310 armelf_frob_symbol (symbolS * symp,
28311 int * puntp)
28312 {
28313 elf_frob_symbol (symp, puntp);
28314 }
28315 #endif
28316
28317 /* MD interface: Finalization. */
28318
28319 void
28320 arm_cleanup (void)
28321 {
28322 literal_pool * pool;
28323
28324 /* Ensure that all the predication blocks are properly closed. */
28325 check_pred_blocks_finished ();
28326
28327 for (pool = list_of_pools; pool; pool = pool->next)
28328 {
28329 /* Put it at the end of the relevant section. */
28330 subseg_set (pool->section, pool->sub_section);
28331 #ifdef OBJ_ELF
28332 arm_elf_change_section ();
28333 #endif
28334 s_ltorg (0);
28335 }
28336 }
28337
28338 #ifdef OBJ_ELF
28339 /* Remove any excess mapping symbols generated for alignment frags in
28340 SEC. We may have created a mapping symbol before a zero byte
28341 alignment; remove it if there's a mapping symbol after the
28342 alignment. */
28343 static void
28344 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28345 void *dummy ATTRIBUTE_UNUSED)
28346 {
28347 segment_info_type *seginfo = seg_info (sec);
28348 fragS *fragp;
28349
28350 if (seginfo == NULL || seginfo->frchainP == NULL)
28351 return;
28352
28353 for (fragp = seginfo->frchainP->frch_root;
28354 fragp != NULL;
28355 fragp = fragp->fr_next)
28356 {
28357 symbolS *sym = fragp->tc_frag_data.last_map;
28358 fragS *next = fragp->fr_next;
28359
28360 /* Variable-sized frags have been converted to fixed size by
28361 this point. But if this was variable-sized to start with,
28362 there will be a fixed-size frag after it. So don't handle
28363 next == NULL. */
28364 if (sym == NULL || next == NULL)
28365 continue;
28366
28367 if (S_GET_VALUE (sym) < next->fr_address)
28368 /* Not at the end of this frag. */
28369 continue;
28370 know (S_GET_VALUE (sym) == next->fr_address);
28371
28372 do
28373 {
28374 if (next->tc_frag_data.first_map != NULL)
28375 {
28376 /* Next frag starts with a mapping symbol. Discard this
28377 one. */
28378 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28379 break;
28380 }
28381
28382 if (next->fr_next == NULL)
28383 {
28384 /* This mapping symbol is at the end of the section. Discard
28385 it. */
28386 know (next->fr_fix == 0 && next->fr_var == 0);
28387 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28388 break;
28389 }
28390
28391 /* As long as we have empty frags without any mapping symbols,
28392 keep looking. */
28393 /* If the next frag is non-empty and does not start with a
28394 mapping symbol, then this mapping symbol is required. */
28395 if (next->fr_address != next->fr_next->fr_address)
28396 break;
28397
28398 next = next->fr_next;
28399 }
28400 while (next != NULL);
28401 }
28402 }
28403 #endif
28404
28405 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28406 ARM ones. */
28407
28408 void
28409 arm_adjust_symtab (void)
28410 {
28411 #ifdef OBJ_COFF
28412 symbolS * sym;
28413
28414 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28415 {
28416 if (ARM_IS_THUMB (sym))
28417 {
28418 if (THUMB_IS_FUNC (sym))
28419 {
28420 /* Mark the symbol as a Thumb function. */
28421 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28422 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28423 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28424
28425 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28426 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28427 else
28428 as_bad (_("%s: unexpected function type: %d"),
28429 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28430 }
28431 else switch (S_GET_STORAGE_CLASS (sym))
28432 {
28433 case C_EXT:
28434 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28435 break;
28436 case C_STAT:
28437 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28438 break;
28439 case C_LABEL:
28440 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28441 break;
28442 default:
28443 /* Do nothing. */
28444 break;
28445 }
28446 }
28447
28448 if (ARM_IS_INTERWORK (sym))
28449 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28450 }
28451 #endif
28452 #ifdef OBJ_ELF
28453 symbolS * sym;
28454 char bind;
28455
28456 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28457 {
28458 if (ARM_IS_THUMB (sym))
28459 {
28460 elf_symbol_type * elf_sym;
28461
28462 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28463 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28464
28465 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28466 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28467 {
28468 /* If it's a .thumb_func, declare it as so,
28469 otherwise tag label as .code 16. */
28470 if (THUMB_IS_FUNC (sym))
28471 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28472 ST_BRANCH_TO_THUMB);
28473 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28474 elf_sym->internal_elf_sym.st_info =
28475 ELF_ST_INFO (bind, STT_ARM_16BIT);
28476 }
28477 }
28478 }
28479
28480 /* Remove any overlapping mapping symbols generated by alignment frags. */
28481 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28482 /* Now do generic ELF adjustments. */
28483 elf_adjust_symtab ();
28484 #endif
28485 }
28486
28487 /* MD interface: Initialization. */
28488
28489 static void
28490 set_constant_flonums (void)
28491 {
28492 int i;
28493
28494 for (i = 0; i < NUM_FLOAT_VALS; i++)
28495 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28496 abort ();
28497 }
28498
28499 /* Auto-select Thumb mode if it's the only available instruction set for the
28500 given architecture. */
28501
28502 static void
28503 autoselect_thumb_from_cpu_variant (void)
28504 {
28505 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28506 opcode_select (16);
28507 }
28508
28509 void
28510 md_begin (void)
28511 {
28512 unsigned mach;
28513 unsigned int i;
28514
28515 if ( (arm_ops_hsh = hash_new ()) == NULL
28516 || (arm_cond_hsh = hash_new ()) == NULL
28517 || (arm_vcond_hsh = hash_new ()) == NULL
28518 || (arm_shift_hsh = hash_new ()) == NULL
28519 || (arm_psr_hsh = hash_new ()) == NULL
28520 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28521 || (arm_reg_hsh = hash_new ()) == NULL
28522 || (arm_reloc_hsh = hash_new ()) == NULL
28523 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28524 as_fatal (_("virtual memory exhausted"));
28525
28526 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28527 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28528 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28529 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28530 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28531 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28532 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28533 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28534 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28535 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28536 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28537 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28538 (void *) (v7m_psrs + i));
28539 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28540 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28541 for (i = 0;
28542 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28543 i++)
28544 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28545 (void *) (barrier_opt_names + i));
28546 #ifdef OBJ_ELF
28547 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28548 {
28549 struct reloc_entry * entry = reloc_names + i;
28550
28551 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28552 /* This makes encode_branch() use the EABI versions of this relocation. */
28553 entry->reloc = BFD_RELOC_UNUSED;
28554
28555 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28556 }
28557 #endif
28558
28559 set_constant_flonums ();
28560
28561 /* Set the cpu variant based on the command-line options. We prefer
28562 -mcpu= over -march= if both are set (as for GCC); and we prefer
28563 -mfpu= over any other way of setting the floating point unit.
28564 Use of legacy options with new options are faulted. */
28565 if (legacy_cpu)
28566 {
28567 if (mcpu_cpu_opt || march_cpu_opt)
28568 as_bad (_("use of old and new-style options to set CPU type"));
28569
28570 selected_arch = *legacy_cpu;
28571 }
28572 else if (mcpu_cpu_opt)
28573 {
28574 selected_arch = *mcpu_cpu_opt;
28575 selected_ext = *mcpu_ext_opt;
28576 }
28577 else if (march_cpu_opt)
28578 {
28579 selected_arch = *march_cpu_opt;
28580 selected_ext = *march_ext_opt;
28581 }
28582 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28583
28584 if (legacy_fpu)
28585 {
28586 if (mfpu_opt)
28587 as_bad (_("use of old and new-style options to set FPU type"));
28588
28589 selected_fpu = *legacy_fpu;
28590 }
28591 else if (mfpu_opt)
28592 selected_fpu = *mfpu_opt;
28593 else
28594 {
28595 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28596 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28597 /* Some environments specify a default FPU. If they don't, infer it
28598 from the processor. */
28599 if (mcpu_fpu_opt)
28600 selected_fpu = *mcpu_fpu_opt;
28601 else if (march_fpu_opt)
28602 selected_fpu = *march_fpu_opt;
28603 #else
28604 selected_fpu = fpu_default;
28605 #endif
28606 }
28607
28608 if (ARM_FEATURE_ZERO (selected_fpu))
28609 {
28610 if (!no_cpu_selected ())
28611 selected_fpu = fpu_default;
28612 else
28613 selected_fpu = fpu_arch_fpa;
28614 }
28615
28616 #ifdef CPU_DEFAULT
28617 if (ARM_FEATURE_ZERO (selected_arch))
28618 {
28619 selected_arch = cpu_default;
28620 selected_cpu = selected_arch;
28621 }
28622 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28623 #else
28624 /* Autodection of feature mode: allow all features in cpu_variant but leave
28625 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28626 after all instruction have been processed and we can decide what CPU
28627 should be selected. */
28628 if (ARM_FEATURE_ZERO (selected_arch))
28629 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28630 else
28631 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28632 #endif
28633
28634 autoselect_thumb_from_cpu_variant ();
28635
28636 arm_arch_used = thumb_arch_used = arm_arch_none;
28637
28638 #if defined OBJ_COFF || defined OBJ_ELF
28639 {
28640 unsigned int flags = 0;
28641
28642 #if defined OBJ_ELF
28643 flags = meabi_flags;
28644
28645 switch (meabi_flags)
28646 {
28647 case EF_ARM_EABI_UNKNOWN:
28648 #endif
28649 /* Set the flags in the private structure. */
28650 if (uses_apcs_26) flags |= F_APCS26;
28651 if (support_interwork) flags |= F_INTERWORK;
28652 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28653 if (pic_code) flags |= F_PIC;
28654 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28655 flags |= F_SOFT_FLOAT;
28656
28657 switch (mfloat_abi_opt)
28658 {
28659 case ARM_FLOAT_ABI_SOFT:
28660 case ARM_FLOAT_ABI_SOFTFP:
28661 flags |= F_SOFT_FLOAT;
28662 break;
28663
28664 case ARM_FLOAT_ABI_HARD:
28665 if (flags & F_SOFT_FLOAT)
28666 as_bad (_("hard-float conflicts with specified fpu"));
28667 break;
28668 }
28669
28670 /* Using pure-endian doubles (even if soft-float). */
28671 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28672 flags |= F_VFP_FLOAT;
28673
28674 #if defined OBJ_ELF
28675 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28676 flags |= EF_ARM_MAVERICK_FLOAT;
28677 break;
28678
28679 case EF_ARM_EABI_VER4:
28680 case EF_ARM_EABI_VER5:
28681 /* No additional flags to set. */
28682 break;
28683
28684 default:
28685 abort ();
28686 }
28687 #endif
28688 bfd_set_private_flags (stdoutput, flags);
28689
28690 /* We have run out flags in the COFF header to encode the
28691 status of ATPCS support, so instead we create a dummy,
28692 empty, debug section called .arm.atpcs. */
28693 if (atpcs)
28694 {
28695 asection * sec;
28696
28697 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28698
28699 if (sec != NULL)
28700 {
28701 bfd_set_section_flags
28702 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28703 bfd_set_section_size (stdoutput, sec, 0);
28704 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28705 }
28706 }
28707 }
28708 #endif
28709
28710 /* Record the CPU type as well. */
28711 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28712 mach = bfd_mach_arm_iWMMXt2;
28713 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28714 mach = bfd_mach_arm_iWMMXt;
28715 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28716 mach = bfd_mach_arm_XScale;
28717 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28718 mach = bfd_mach_arm_ep9312;
28719 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28720 mach = bfd_mach_arm_5TE;
28721 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28722 {
28723 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28724 mach = bfd_mach_arm_5T;
28725 else
28726 mach = bfd_mach_arm_5;
28727 }
28728 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28729 {
28730 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28731 mach = bfd_mach_arm_4T;
28732 else
28733 mach = bfd_mach_arm_4;
28734 }
28735 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28736 mach = bfd_mach_arm_3M;
28737 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28738 mach = bfd_mach_arm_3;
28739 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28740 mach = bfd_mach_arm_2a;
28741 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28742 mach = bfd_mach_arm_2;
28743 else
28744 mach = bfd_mach_arm_unknown;
28745
28746 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28747 }
28748
28749 /* Command line processing. */
28750
28751 /* md_parse_option
28752 Invocation line includes a switch not recognized by the base assembler.
28753 See if it's a processor-specific option.
28754
28755 This routine is somewhat complicated by the need for backwards
28756 compatibility (since older releases of gcc can't be changed).
28757 The new options try to make the interface as compatible as
28758 possible with GCC.
28759
28760 New options (supported) are:
28761
28762 -mcpu=<cpu name> Assemble for selected processor
28763 -march=<architecture name> Assemble for selected architecture
28764 -mfpu=<fpu architecture> Assemble for selected FPU.
28765 -EB/-mbig-endian Big-endian
28766 -EL/-mlittle-endian Little-endian
28767 -k Generate PIC code
28768 -mthumb Start in Thumb mode
28769 -mthumb-interwork Code supports ARM/Thumb interworking
28770
28771 -m[no-]warn-deprecated Warn about deprecated features
28772 -m[no-]warn-syms Warn when symbols match instructions
28773
28774 For now we will also provide support for:
28775
28776 -mapcs-32 32-bit Program counter
28777 -mapcs-26 26-bit Program counter
28778 -macps-float Floats passed in FP registers
28779 -mapcs-reentrant Reentrant code
28780 -matpcs
28781 (sometime these will probably be replaced with -mapcs=<list of options>
28782 and -matpcs=<list of options>)
28783
28784 The remaining options are only supported for back-wards compatibility.
28785 Cpu variants, the arm part is optional:
28786 -m[arm]1 Currently not supported.
28787 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28788 -m[arm]3 Arm 3 processor
28789 -m[arm]6[xx], Arm 6 processors
28790 -m[arm]7[xx][t][[d]m] Arm 7 processors
28791 -m[arm]8[10] Arm 8 processors
28792 -m[arm]9[20][tdmi] Arm 9 processors
28793 -mstrongarm[110[0]] StrongARM processors
28794 -mxscale XScale processors
28795 -m[arm]v[2345[t[e]]] Arm architectures
28796 -mall All (except the ARM1)
28797 FP variants:
28798 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28799 -mfpe-old (No float load/store multiples)
28800 -mvfpxd VFP Single precision
28801 -mvfp All VFP
28802 -mno-fpu Disable all floating point instructions
28803
28804 The following CPU names are recognized:
28805 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28806 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28807 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28808 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28809 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28810 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28811 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28812
28813 */
28814
28815 const char * md_shortopts = "m:k";
28816
28817 #ifdef ARM_BI_ENDIAN
28818 #define OPTION_EB (OPTION_MD_BASE + 0)
28819 #define OPTION_EL (OPTION_MD_BASE + 1)
28820 #else
28821 #if TARGET_BYTES_BIG_ENDIAN
28822 #define OPTION_EB (OPTION_MD_BASE + 0)
28823 #else
28824 #define OPTION_EL (OPTION_MD_BASE + 1)
28825 #endif
28826 #endif
28827 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28828 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28829
28830 struct option md_longopts[] =
28831 {
28832 #ifdef OPTION_EB
28833 {"EB", no_argument, NULL, OPTION_EB},
28834 #endif
28835 #ifdef OPTION_EL
28836 {"EL", no_argument, NULL, OPTION_EL},
28837 #endif
28838 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28839 #ifdef OBJ_ELF
28840 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28841 #endif
28842 {NULL, no_argument, NULL, 0}
28843 };
28844
28845 size_t md_longopts_size = sizeof (md_longopts);
28846
28847 struct arm_option_table
28848 {
28849 const char * option; /* Option name to match. */
28850 const char * help; /* Help information. */
28851 int * var; /* Variable to change. */
28852 int value; /* What to change it to. */
28853 const char * deprecated; /* If non-null, print this message. */
28854 };
28855
28856 struct arm_option_table arm_opts[] =
28857 {
28858 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28859 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28860 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28861 &support_interwork, 1, NULL},
28862 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28863 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28864 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28865 1, NULL},
28866 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28867 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28868 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28869 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28870 NULL},
28871
28872 /* These are recognized by the assembler, but have no affect on code. */
28873 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28874 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28875
28876 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28877 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28878 &warn_on_deprecated, 0, NULL},
28879 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28880 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28881 {NULL, NULL, NULL, 0, NULL}
28882 };
28883
28884 struct arm_legacy_option_table
28885 {
28886 const char * option; /* Option name to match. */
28887 const arm_feature_set ** var; /* Variable to change. */
28888 const arm_feature_set value; /* What to change it to. */
28889 const char * deprecated; /* If non-null, print this message. */
28890 };
28891
28892 const struct arm_legacy_option_table arm_legacy_opts[] =
28893 {
28894 /* DON'T add any new processors to this list -- we want the whole list
28895 to go away... Add them to the processors table instead. */
28896 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28897 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28898 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28899 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28900 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28901 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28902 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28903 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28904 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28905 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28906 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28907 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28908 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28909 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28910 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28911 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28912 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28913 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28914 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28915 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28916 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28917 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28918 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28919 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28920 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28921 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28922 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28923 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28924 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28925 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28926 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28927 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28928 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28929 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28930 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28931 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28932 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28933 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28934 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28935 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28936 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28937 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28938 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28939 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28940 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28941 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28942 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28943 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28944 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28945 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28946 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28947 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28948 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28949 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28950 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28951 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28952 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28953 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28954 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28955 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28956 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28957 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28958 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28959 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28960 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28961 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28962 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28963 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28964 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28965 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
28966 N_("use -mcpu=strongarm110")},
28967 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
28968 N_("use -mcpu=strongarm1100")},
28969 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
28970 N_("use -mcpu=strongarm1110")},
28971 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28972 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28973 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
28974
28975 /* Architecture variants -- don't add any more to this list either. */
28976 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28977 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28978 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28979 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28980 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28981 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28982 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28983 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28984 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28985 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28986 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28987 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28988 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28989 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28990 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28991 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28992 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28993 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28994
28995 /* Floating point variants -- don't add any more to this list either. */
28996 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28997 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28998 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28999 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29000 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29001
29002 {NULL, NULL, ARM_ARCH_NONE, NULL}
29003 };
29004
29005 struct arm_cpu_option_table
29006 {
29007 const char * name;
29008 size_t name_len;
29009 const arm_feature_set value;
29010 const arm_feature_set ext;
29011 /* For some CPUs we assume an FPU unless the user explicitly sets
29012 -mfpu=... */
29013 const arm_feature_set default_fpu;
29014 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29015 case. */
29016 const char * canonical_name;
29017 };
29018
29019 /* This list should, at a minimum, contain all the cpu names
29020 recognized by GCC. */
29021 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29022
29023 static const struct arm_cpu_option_table arm_cpus[] =
29024 {
29025 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29026 ARM_ARCH_NONE,
29027 FPU_ARCH_FPA),
29028 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29029 ARM_ARCH_NONE,
29030 FPU_ARCH_FPA),
29031 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29032 ARM_ARCH_NONE,
29033 FPU_ARCH_FPA),
29034 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29035 ARM_ARCH_NONE,
29036 FPU_ARCH_FPA),
29037 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29038 ARM_ARCH_NONE,
29039 FPU_ARCH_FPA),
29040 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29041 ARM_ARCH_NONE,
29042 FPU_ARCH_FPA),
29043 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29044 ARM_ARCH_NONE,
29045 FPU_ARCH_FPA),
29046 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29047 ARM_ARCH_NONE,
29048 FPU_ARCH_FPA),
29049 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29050 ARM_ARCH_NONE,
29051 FPU_ARCH_FPA),
29052 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29053 ARM_ARCH_NONE,
29054 FPU_ARCH_FPA),
29055 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29056 ARM_ARCH_NONE,
29057 FPU_ARCH_FPA),
29058 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29059 ARM_ARCH_NONE,
29060 FPU_ARCH_FPA),
29061 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29062 ARM_ARCH_NONE,
29063 FPU_ARCH_FPA),
29064 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29065 ARM_ARCH_NONE,
29066 FPU_ARCH_FPA),
29067 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29068 ARM_ARCH_NONE,
29069 FPU_ARCH_FPA),
29070 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29071 ARM_ARCH_NONE,
29072 FPU_ARCH_FPA),
29073 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29074 ARM_ARCH_NONE,
29075 FPU_ARCH_FPA),
29076 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29077 ARM_ARCH_NONE,
29078 FPU_ARCH_FPA),
29079 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29080 ARM_ARCH_NONE,
29081 FPU_ARCH_FPA),
29082 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29083 ARM_ARCH_NONE,
29084 FPU_ARCH_FPA),
29085 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29086 ARM_ARCH_NONE,
29087 FPU_ARCH_FPA),
29088 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29089 ARM_ARCH_NONE,
29090 FPU_ARCH_FPA),
29091 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29092 ARM_ARCH_NONE,
29093 FPU_ARCH_FPA),
29094 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29095 ARM_ARCH_NONE,
29096 FPU_ARCH_FPA),
29097 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29098 ARM_ARCH_NONE,
29099 FPU_ARCH_FPA),
29100 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29101 ARM_ARCH_NONE,
29102 FPU_ARCH_FPA),
29103 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29104 ARM_ARCH_NONE,
29105 FPU_ARCH_FPA),
29106 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29107 ARM_ARCH_NONE,
29108 FPU_ARCH_FPA),
29109 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29110 ARM_ARCH_NONE,
29111 FPU_ARCH_FPA),
29112 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29113 ARM_ARCH_NONE,
29114 FPU_ARCH_FPA),
29115 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29116 ARM_ARCH_NONE,
29117 FPU_ARCH_FPA),
29118 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29119 ARM_ARCH_NONE,
29120 FPU_ARCH_FPA),
29121 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29122 ARM_ARCH_NONE,
29123 FPU_ARCH_FPA),
29124 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29125 ARM_ARCH_NONE,
29126 FPU_ARCH_FPA),
29127 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29128 ARM_ARCH_NONE,
29129 FPU_ARCH_FPA),
29130 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29131 ARM_ARCH_NONE,
29132 FPU_ARCH_FPA),
29133 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29134 ARM_ARCH_NONE,
29135 FPU_ARCH_FPA),
29136 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29137 ARM_ARCH_NONE,
29138 FPU_ARCH_FPA),
29139 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29140 ARM_ARCH_NONE,
29141 FPU_ARCH_FPA),
29142 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29143 ARM_ARCH_NONE,
29144 FPU_ARCH_FPA),
29145 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29146 ARM_ARCH_NONE,
29147 FPU_ARCH_FPA),
29148 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29149 ARM_ARCH_NONE,
29150 FPU_ARCH_FPA),
29151 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29152 ARM_ARCH_NONE,
29153 FPU_ARCH_FPA),
29154 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29155 ARM_ARCH_NONE,
29156 FPU_ARCH_FPA),
29157 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29158 ARM_ARCH_NONE,
29159 FPU_ARCH_FPA),
29160 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29161 ARM_ARCH_NONE,
29162 FPU_ARCH_FPA),
29163
29164 /* For V5 or later processors we default to using VFP; but the user
29165 should really set the FPU type explicitly. */
29166 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29167 ARM_ARCH_NONE,
29168 FPU_ARCH_VFP_V2),
29169 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29170 ARM_ARCH_NONE,
29171 FPU_ARCH_VFP_V2),
29172 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29173 ARM_ARCH_NONE,
29174 FPU_ARCH_VFP_V2),
29175 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29176 ARM_ARCH_NONE,
29177 FPU_ARCH_VFP_V2),
29178 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29179 ARM_ARCH_NONE,
29180 FPU_ARCH_VFP_V2),
29181 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29182 ARM_ARCH_NONE,
29183 FPU_ARCH_VFP_V2),
29184 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29185 ARM_ARCH_NONE,
29186 FPU_ARCH_VFP_V2),
29187 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29188 ARM_ARCH_NONE,
29189 FPU_ARCH_VFP_V2),
29190 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29191 ARM_ARCH_NONE,
29192 FPU_ARCH_VFP_V2),
29193 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29194 ARM_ARCH_NONE,
29195 FPU_ARCH_VFP_V2),
29196 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29197 ARM_ARCH_NONE,
29198 FPU_ARCH_VFP_V2),
29199 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29200 ARM_ARCH_NONE,
29201 FPU_ARCH_VFP_V2),
29202 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29203 ARM_ARCH_NONE,
29204 FPU_ARCH_VFP_V1),
29205 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29206 ARM_ARCH_NONE,
29207 FPU_ARCH_VFP_V1),
29208 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29209 ARM_ARCH_NONE,
29210 FPU_ARCH_VFP_V2),
29211 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29212 ARM_ARCH_NONE,
29213 FPU_ARCH_VFP_V2),
29214 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29215 ARM_ARCH_NONE,
29216 FPU_ARCH_VFP_V1),
29217 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29218 ARM_ARCH_NONE,
29219 FPU_ARCH_VFP_V2),
29220 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29221 ARM_ARCH_NONE,
29222 FPU_ARCH_VFP_V2),
29223 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29224 ARM_ARCH_NONE,
29225 FPU_ARCH_VFP_V2),
29226 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29227 ARM_ARCH_NONE,
29228 FPU_ARCH_VFP_V2),
29229 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29230 ARM_ARCH_NONE,
29231 FPU_ARCH_VFP_V2),
29232 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29233 ARM_ARCH_NONE,
29234 FPU_ARCH_VFP_V2),
29235 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29236 ARM_ARCH_NONE,
29237 FPU_ARCH_VFP_V2),
29238 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29239 ARM_ARCH_NONE,
29240 FPU_ARCH_VFP_V2),
29241 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29242 ARM_ARCH_NONE,
29243 FPU_ARCH_VFP_V2),
29244 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29245 ARM_ARCH_NONE,
29246 FPU_NONE),
29247 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29248 ARM_ARCH_NONE,
29249 FPU_NONE),
29250 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29251 ARM_ARCH_NONE,
29252 FPU_ARCH_VFP_V2),
29253 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29254 ARM_ARCH_NONE,
29255 FPU_ARCH_VFP_V2),
29256 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29257 ARM_ARCH_NONE,
29258 FPU_ARCH_VFP_V2),
29259 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29260 ARM_ARCH_NONE,
29261 FPU_NONE),
29262 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29263 ARM_ARCH_NONE,
29264 FPU_NONE),
29265 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29266 ARM_ARCH_NONE,
29267 FPU_ARCH_VFP_V2),
29268 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29269 ARM_ARCH_NONE,
29270 FPU_NONE),
29271 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29272 ARM_ARCH_NONE,
29273 FPU_ARCH_VFP_V2),
29274 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29275 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29276 FPU_NONE),
29277 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29278 ARM_ARCH_NONE,
29279 FPU_ARCH_NEON_VFP_V4),
29280 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29281 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29282 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29283 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29284 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29285 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29286 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29287 ARM_ARCH_NONE,
29288 FPU_ARCH_NEON_VFP_V4),
29289 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29290 ARM_ARCH_NONE,
29291 FPU_ARCH_NEON_VFP_V4),
29292 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29293 ARM_ARCH_NONE,
29294 FPU_ARCH_NEON_VFP_V4),
29295 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29296 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29297 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29298 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29299 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29300 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29301 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29302 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29303 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29304 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29305 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29306 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29307 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29308 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29309 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29310 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29311 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29312 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29313 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29314 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29315 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29316 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29317 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29318 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29319 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29320 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29321 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29322 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29323 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29324 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29325 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29326 ARM_ARCH_NONE,
29327 FPU_NONE),
29328 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29329 ARM_ARCH_NONE,
29330 FPU_ARCH_VFP_V3D16),
29331 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29332 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29333 FPU_NONE),
29334 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29335 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29336 FPU_ARCH_VFP_V3D16),
29337 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29338 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29339 FPU_ARCH_VFP_V3D16),
29340 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29341 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29342 FPU_ARCH_NEON_VFP_ARMV8),
29343 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29344 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29345 FPU_NONE),
29346 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29347 ARM_ARCH_NONE,
29348 FPU_NONE),
29349 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29350 ARM_ARCH_NONE,
29351 FPU_NONE),
29352 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29353 ARM_ARCH_NONE,
29354 FPU_NONE),
29355 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29356 ARM_ARCH_NONE,
29357 FPU_NONE),
29358 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29359 ARM_ARCH_NONE,
29360 FPU_NONE),
29361 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29362 ARM_ARCH_NONE,
29363 FPU_NONE),
29364 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29365 ARM_ARCH_NONE,
29366 FPU_NONE),
29367 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29368 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29369 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29370 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29371 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29372 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29373 /* ??? XSCALE is really an architecture. */
29374 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29375 ARM_ARCH_NONE,
29376 FPU_ARCH_VFP_V2),
29377
29378 /* ??? iwmmxt is not a processor. */
29379 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29380 ARM_ARCH_NONE,
29381 FPU_ARCH_VFP_V2),
29382 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29383 ARM_ARCH_NONE,
29384 FPU_ARCH_VFP_V2),
29385 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29386 ARM_ARCH_NONE,
29387 FPU_ARCH_VFP_V2),
29388
29389 /* Maverick. */
29390 ARM_CPU_OPT ("ep9312", "ARM920T",
29391 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29392 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29393
29394 /* Marvell processors. */
29395 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29396 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29397 FPU_ARCH_VFP_V3D16),
29398 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29399 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29400 FPU_ARCH_NEON_VFP_V4),
29401
29402 /* APM X-Gene family. */
29403 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29404 ARM_ARCH_NONE,
29405 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29406 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29407 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29408 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29409
29410 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29411 };
29412 #undef ARM_CPU_OPT
29413
29414 struct arm_ext_table
29415 {
29416 const char * name;
29417 size_t name_len;
29418 const arm_feature_set merge;
29419 const arm_feature_set clear;
29420 };
29421
29422 struct arm_arch_option_table
29423 {
29424 const char * name;
29425 size_t name_len;
29426 const arm_feature_set value;
29427 const arm_feature_set default_fpu;
29428 const struct arm_ext_table * ext_table;
29429 };
29430
29431 /* Used to add support for +E and +noE extension. */
29432 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29433 /* Used to add support for a +E extension. */
29434 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29435 /* Used to add support for a +noE extension. */
29436 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29437
29438 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29439 ~0 & ~FPU_ENDIAN_PURE)
29440
29441 static const struct arm_ext_table armv5te_ext_table[] =
29442 {
29443 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29444 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29445 };
29446
29447 static const struct arm_ext_table armv7_ext_table[] =
29448 {
29449 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29450 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29451 };
29452
29453 static const struct arm_ext_table armv7ve_ext_table[] =
29454 {
29455 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29456 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29457 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29458 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29459 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29460 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29461 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29462
29463 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29464 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29465
29466 /* Aliases for +simd. */
29467 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29468
29469 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29470 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29471 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29472
29473 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29474 };
29475
29476 static const struct arm_ext_table armv7a_ext_table[] =
29477 {
29478 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29479 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29480 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29481 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29482 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29483 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29484 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29485
29486 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29487 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29488
29489 /* Aliases for +simd. */
29490 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29491 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29492
29493 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29494 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29495
29496 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29497 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29498 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29499 };
29500
29501 static const struct arm_ext_table armv7r_ext_table[] =
29502 {
29503 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29504 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29505 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29506 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29507 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29508 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29509 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29510 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29511 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29512 };
29513
29514 static const struct arm_ext_table armv7em_ext_table[] =
29515 {
29516 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29517 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29518 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29519 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29520 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29521 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29522 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29523 };
29524
29525 static const struct arm_ext_table armv8a_ext_table[] =
29526 {
29527 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29528 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29529 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29530 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29531
29532 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29533 should use the +simd option to turn on FP. */
29534 ARM_REMOVE ("fp", ALL_FP),
29535 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29536 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29537 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29538 };
29539
29540
29541 static const struct arm_ext_table armv81a_ext_table[] =
29542 {
29543 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29544 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29545 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29546
29547 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29548 should use the +simd option to turn on FP. */
29549 ARM_REMOVE ("fp", ALL_FP),
29550 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29551 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29552 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29553 };
29554
29555 static const struct arm_ext_table armv82a_ext_table[] =
29556 {
29557 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29558 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29559 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29560 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29561 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29562 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29563
29564 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29565 should use the +simd option to turn on FP. */
29566 ARM_REMOVE ("fp", ALL_FP),
29567 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29568 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29569 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29570 };
29571
29572 static const struct arm_ext_table armv84a_ext_table[] =
29573 {
29574 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29575 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29576 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29577 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29578
29579 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29580 should use the +simd option to turn on FP. */
29581 ARM_REMOVE ("fp", ALL_FP),
29582 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29583 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29584 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29585 };
29586
29587 static const struct arm_ext_table armv85a_ext_table[] =
29588 {
29589 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29590 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29591 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29592 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29593
29594 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29595 should use the +simd option to turn on FP. */
29596 ARM_REMOVE ("fp", ALL_FP),
29597 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29598 };
29599
29600 static const struct arm_ext_table armv8m_main_ext_table[] =
29601 {
29602 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29603 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29604 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29605 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29606 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29607 };
29608
29609 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29610 {
29611 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29612 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29613 ARM_EXT ("fp",
29614 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29615 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29616 ALL_FP),
29617 ARM_ADD ("fp.dp",
29618 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29619 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29620 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29621 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29622 ARM_ADD ("mve.fp",
29623 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29624 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29625 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29626 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29627 };
29628
29629 static const struct arm_ext_table armv8r_ext_table[] =
29630 {
29631 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29632 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29633 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29634 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29635 ARM_REMOVE ("fp", ALL_FP),
29636 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29637 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29638 };
29639
29640 /* This list should, at a minimum, contain all the architecture names
29641 recognized by GCC. */
29642 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29643 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29644 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29645
29646 static const struct arm_arch_option_table arm_archs[] =
29647 {
29648 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29649 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29650 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29651 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29652 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29653 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29654 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29655 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29656 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29657 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29658 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29659 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29660 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29661 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29662 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29663 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29664 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29665 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29666 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29667 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29668 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29669 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29670 kept to preserve existing behaviour. */
29671 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29672 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29673 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29674 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29675 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29676 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29677 kept to preserve existing behaviour. */
29678 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29679 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29680 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29681 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29682 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29683 /* The official spelling of the ARMv7 profile variants is the dashed form.
29684 Accept the non-dashed form for compatibility with old toolchains. */
29685 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29686 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29687 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29688 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29689 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29690 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29691 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29692 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29693 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29694 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29695 armv8m_main),
29696 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29697 armv8_1m_main),
29698 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29699 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29700 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29701 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29702 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29703 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29704 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29705 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29706 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29707 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29708 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29709 };
29710 #undef ARM_ARCH_OPT
29711
29712 /* ISA extensions in the co-processor and main instruction set space. */
29713
29714 struct arm_option_extension_value_table
29715 {
29716 const char * name;
29717 size_t name_len;
29718 const arm_feature_set merge_value;
29719 const arm_feature_set clear_value;
29720 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29721 indicates that an extension is available for all architectures while
29722 ARM_ANY marks an empty entry. */
29723 const arm_feature_set allowed_archs[2];
29724 };
29725
29726 /* The following table must be in alphabetical order with a NULL last entry. */
29727
29728 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29729 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29730
29731 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29732 use the context sensitive approach using arm_ext_table's. */
29733 static const struct arm_option_extension_value_table arm_extensions[] =
29734 {
29735 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29736 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29737 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29738 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29739 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29740 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29741 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29742 ARM_ARCH_V8_2A),
29743 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29744 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29745 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29746 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29747 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29748 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29749 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29750 ARM_ARCH_V8_2A),
29751 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29752 | ARM_EXT2_FP16_FML),
29753 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29754 | ARM_EXT2_FP16_FML),
29755 ARM_ARCH_V8_2A),
29756 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29757 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29758 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29759 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29760 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29761 Thumb divide instruction. Due to this having the same name as the
29762 previous entry, this will be ignored when doing command-line parsing and
29763 only considered by build attribute selection code. */
29764 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29765 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29766 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29767 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29768 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29769 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29770 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29771 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29772 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29773 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29774 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29775 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29776 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29777 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29778 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29779 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29780 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29781 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29782 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29783 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29784 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29785 ARM_ARCH_V8A),
29786 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29787 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29788 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29789 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29790 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29791 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29792 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29793 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29794 ARM_ARCH_V8A),
29795 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29796 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29797 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29798 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29799 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29800 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29801 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29802 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29803 | ARM_EXT_DIV),
29804 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29805 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29806 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29807 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29808 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29809 };
29810 #undef ARM_EXT_OPT
29811
29812 /* ISA floating-point and Advanced SIMD extensions. */
29813 struct arm_option_fpu_value_table
29814 {
29815 const char * name;
29816 const arm_feature_set value;
29817 };
29818
29819 /* This list should, at a minimum, contain all the fpu names
29820 recognized by GCC. */
29821 static const struct arm_option_fpu_value_table arm_fpus[] =
29822 {
29823 {"softfpa", FPU_NONE},
29824 {"fpe", FPU_ARCH_FPE},
29825 {"fpe2", FPU_ARCH_FPE},
29826 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29827 {"fpa", FPU_ARCH_FPA},
29828 {"fpa10", FPU_ARCH_FPA},
29829 {"fpa11", FPU_ARCH_FPA},
29830 {"arm7500fe", FPU_ARCH_FPA},
29831 {"softvfp", FPU_ARCH_VFP},
29832 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29833 {"vfp", FPU_ARCH_VFP_V2},
29834 {"vfp9", FPU_ARCH_VFP_V2},
29835 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29836 {"vfp10", FPU_ARCH_VFP_V2},
29837 {"vfp10-r0", FPU_ARCH_VFP_V1},
29838 {"vfpxd", FPU_ARCH_VFP_V1xD},
29839 {"vfpv2", FPU_ARCH_VFP_V2},
29840 {"vfpv3", FPU_ARCH_VFP_V3},
29841 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29842 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29843 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29844 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29845 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29846 {"arm1020t", FPU_ARCH_VFP_V1},
29847 {"arm1020e", FPU_ARCH_VFP_V2},
29848 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29849 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29850 {"maverick", FPU_ARCH_MAVERICK},
29851 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29852 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29853 {"neon-fp16", FPU_ARCH_NEON_FP16},
29854 {"vfpv4", FPU_ARCH_VFP_V4},
29855 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29856 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29857 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29858 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29859 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29860 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29861 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29862 {"crypto-neon-fp-armv8",
29863 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29864 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29865 {"crypto-neon-fp-armv8.1",
29866 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29867 {NULL, ARM_ARCH_NONE}
29868 };
29869
29870 struct arm_option_value_table
29871 {
29872 const char *name;
29873 long value;
29874 };
29875
29876 static const struct arm_option_value_table arm_float_abis[] =
29877 {
29878 {"hard", ARM_FLOAT_ABI_HARD},
29879 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29880 {"soft", ARM_FLOAT_ABI_SOFT},
29881 {NULL, 0}
29882 };
29883
29884 #ifdef OBJ_ELF
29885 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29886 static const struct arm_option_value_table arm_eabis[] =
29887 {
29888 {"gnu", EF_ARM_EABI_UNKNOWN},
29889 {"4", EF_ARM_EABI_VER4},
29890 {"5", EF_ARM_EABI_VER5},
29891 {NULL, 0}
29892 };
29893 #endif
29894
29895 struct arm_long_option_table
29896 {
29897 const char * option; /* Substring to match. */
29898 const char * help; /* Help information. */
29899 int (* func) (const char * subopt); /* Function to decode sub-option. */
29900 const char * deprecated; /* If non-null, print this message. */
29901 };
29902
29903 static bfd_boolean
29904 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29905 arm_feature_set *ext_set,
29906 const struct arm_ext_table *ext_table)
29907 {
29908 /* We insist on extensions being specified in alphabetical order, and with
29909 extensions being added before being removed. We achieve this by having
29910 the global ARM_EXTENSIONS table in alphabetical order, and using the
29911 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29912 or removing it (0) and only allowing it to change in the order
29913 -1 -> 1 -> 0. */
29914 const struct arm_option_extension_value_table * opt = NULL;
29915 const arm_feature_set arm_any = ARM_ANY;
29916 int adding_value = -1;
29917
29918 while (str != NULL && *str != 0)
29919 {
29920 const char *ext;
29921 size_t len;
29922
29923 if (*str != '+')
29924 {
29925 as_bad (_("invalid architectural extension"));
29926 return FALSE;
29927 }
29928
29929 str++;
29930 ext = strchr (str, '+');
29931
29932 if (ext != NULL)
29933 len = ext - str;
29934 else
29935 len = strlen (str);
29936
29937 if (len >= 2 && strncmp (str, "no", 2) == 0)
29938 {
29939 if (adding_value != 0)
29940 {
29941 adding_value = 0;
29942 opt = arm_extensions;
29943 }
29944
29945 len -= 2;
29946 str += 2;
29947 }
29948 else if (len > 0)
29949 {
29950 if (adding_value == -1)
29951 {
29952 adding_value = 1;
29953 opt = arm_extensions;
29954 }
29955 else if (adding_value != 1)
29956 {
29957 as_bad (_("must specify extensions to add before specifying "
29958 "those to remove"));
29959 return FALSE;
29960 }
29961 }
29962
29963 if (len == 0)
29964 {
29965 as_bad (_("missing architectural extension"));
29966 return FALSE;
29967 }
29968
29969 gas_assert (adding_value != -1);
29970 gas_assert (opt != NULL);
29971
29972 if (ext_table != NULL)
29973 {
29974 const struct arm_ext_table * ext_opt = ext_table;
29975 bfd_boolean found = FALSE;
29976 for (; ext_opt->name != NULL; ext_opt++)
29977 if (ext_opt->name_len == len
29978 && strncmp (ext_opt->name, str, len) == 0)
29979 {
29980 if (adding_value)
29981 {
29982 if (ARM_FEATURE_ZERO (ext_opt->merge))
29983 /* TODO: Option not supported. When we remove the
29984 legacy table this case should error out. */
29985 continue;
29986
29987 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29988 }
29989 else
29990 {
29991 if (ARM_FEATURE_ZERO (ext_opt->clear))
29992 /* TODO: Option not supported. When we remove the
29993 legacy table this case should error out. */
29994 continue;
29995 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29996 }
29997 found = TRUE;
29998 break;
29999 }
30000 if (found)
30001 {
30002 str = ext;
30003 continue;
30004 }
30005 }
30006
30007 /* Scan over the options table trying to find an exact match. */
30008 for (; opt->name != NULL; opt++)
30009 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30010 {
30011 int i, nb_allowed_archs =
30012 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30013 /* Check we can apply the extension to this architecture. */
30014 for (i = 0; i < nb_allowed_archs; i++)
30015 {
30016 /* Empty entry. */
30017 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30018 continue;
30019 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30020 break;
30021 }
30022 if (i == nb_allowed_archs)
30023 {
30024 as_bad (_("extension does not apply to the base architecture"));
30025 return FALSE;
30026 }
30027
30028 /* Add or remove the extension. */
30029 if (adding_value)
30030 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30031 else
30032 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30033
30034 /* Allowing Thumb division instructions for ARMv7 in autodetection
30035 rely on this break so that duplicate extensions (extensions
30036 with the same name as a previous extension in the list) are not
30037 considered for command-line parsing. */
30038 break;
30039 }
30040
30041 if (opt->name == NULL)
30042 {
30043 /* Did we fail to find an extension because it wasn't specified in
30044 alphabetical order, or because it does not exist? */
30045
30046 for (opt = arm_extensions; opt->name != NULL; opt++)
30047 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30048 break;
30049
30050 if (opt->name == NULL)
30051 as_bad (_("unknown architectural extension `%s'"), str);
30052 else
30053 as_bad (_("architectural extensions must be specified in "
30054 "alphabetical order"));
30055
30056 return FALSE;
30057 }
30058 else
30059 {
30060 /* We should skip the extension we've just matched the next time
30061 round. */
30062 opt++;
30063 }
30064
30065 str = ext;
30066 };
30067
30068 return TRUE;
30069 }
30070
30071 static bfd_boolean
30072 arm_parse_cpu (const char *str)
30073 {
30074 const struct arm_cpu_option_table *opt;
30075 const char *ext = strchr (str, '+');
30076 size_t len;
30077
30078 if (ext != NULL)
30079 len = ext - str;
30080 else
30081 len = strlen (str);
30082
30083 if (len == 0)
30084 {
30085 as_bad (_("missing cpu name `%s'"), str);
30086 return FALSE;
30087 }
30088
30089 for (opt = arm_cpus; opt->name != NULL; opt++)
30090 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30091 {
30092 mcpu_cpu_opt = &opt->value;
30093 if (mcpu_ext_opt == NULL)
30094 mcpu_ext_opt = XNEW (arm_feature_set);
30095 *mcpu_ext_opt = opt->ext;
30096 mcpu_fpu_opt = &opt->default_fpu;
30097 if (opt->canonical_name)
30098 {
30099 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30100 strcpy (selected_cpu_name, opt->canonical_name);
30101 }
30102 else
30103 {
30104 size_t i;
30105
30106 if (len >= sizeof selected_cpu_name)
30107 len = (sizeof selected_cpu_name) - 1;
30108
30109 for (i = 0; i < len; i++)
30110 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30111 selected_cpu_name[i] = 0;
30112 }
30113
30114 if (ext != NULL)
30115 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30116
30117 return TRUE;
30118 }
30119
30120 as_bad (_("unknown cpu `%s'"), str);
30121 return FALSE;
30122 }
30123
30124 static bfd_boolean
30125 arm_parse_arch (const char *str)
30126 {
30127 const struct arm_arch_option_table *opt;
30128 const char *ext = strchr (str, '+');
30129 size_t len;
30130
30131 if (ext != NULL)
30132 len = ext - str;
30133 else
30134 len = strlen (str);
30135
30136 if (len == 0)
30137 {
30138 as_bad (_("missing architecture name `%s'"), str);
30139 return FALSE;
30140 }
30141
30142 for (opt = arm_archs; opt->name != NULL; opt++)
30143 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30144 {
30145 march_cpu_opt = &opt->value;
30146 if (march_ext_opt == NULL)
30147 march_ext_opt = XNEW (arm_feature_set);
30148 *march_ext_opt = arm_arch_none;
30149 march_fpu_opt = &opt->default_fpu;
30150 strcpy (selected_cpu_name, opt->name);
30151
30152 if (ext != NULL)
30153 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30154 opt->ext_table);
30155
30156 return TRUE;
30157 }
30158
30159 as_bad (_("unknown architecture `%s'\n"), str);
30160 return FALSE;
30161 }
30162
30163 static bfd_boolean
30164 arm_parse_fpu (const char * str)
30165 {
30166 const struct arm_option_fpu_value_table * opt;
30167
30168 for (opt = arm_fpus; opt->name != NULL; opt++)
30169 if (streq (opt->name, str))
30170 {
30171 mfpu_opt = &opt->value;
30172 return TRUE;
30173 }
30174
30175 as_bad (_("unknown floating point format `%s'\n"), str);
30176 return FALSE;
30177 }
30178
30179 static bfd_boolean
30180 arm_parse_float_abi (const char * str)
30181 {
30182 const struct arm_option_value_table * opt;
30183
30184 for (opt = arm_float_abis; opt->name != NULL; opt++)
30185 if (streq (opt->name, str))
30186 {
30187 mfloat_abi_opt = opt->value;
30188 return TRUE;
30189 }
30190
30191 as_bad (_("unknown floating point abi `%s'\n"), str);
30192 return FALSE;
30193 }
30194
30195 #ifdef OBJ_ELF
30196 static bfd_boolean
30197 arm_parse_eabi (const char * str)
30198 {
30199 const struct arm_option_value_table *opt;
30200
30201 for (opt = arm_eabis; opt->name != NULL; opt++)
30202 if (streq (opt->name, str))
30203 {
30204 meabi_flags = opt->value;
30205 return TRUE;
30206 }
30207 as_bad (_("unknown EABI `%s'\n"), str);
30208 return FALSE;
30209 }
30210 #endif
30211
30212 static bfd_boolean
30213 arm_parse_it_mode (const char * str)
30214 {
30215 bfd_boolean ret = TRUE;
30216
30217 if (streq ("arm", str))
30218 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30219 else if (streq ("thumb", str))
30220 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30221 else if (streq ("always", str))
30222 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30223 else if (streq ("never", str))
30224 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30225 else
30226 {
30227 as_bad (_("unknown implicit IT mode `%s', should be "\
30228 "arm, thumb, always, or never."), str);
30229 ret = FALSE;
30230 }
30231
30232 return ret;
30233 }
30234
30235 static bfd_boolean
30236 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30237 {
30238 codecomposer_syntax = TRUE;
30239 arm_comment_chars[0] = ';';
30240 arm_line_separator_chars[0] = 0;
30241 return TRUE;
30242 }
30243
30244 struct arm_long_option_table arm_long_opts[] =
30245 {
30246 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30247 arm_parse_cpu, NULL},
30248 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30249 arm_parse_arch, NULL},
30250 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30251 arm_parse_fpu, NULL},
30252 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30253 arm_parse_float_abi, NULL},
30254 #ifdef OBJ_ELF
30255 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30256 arm_parse_eabi, NULL},
30257 #endif
30258 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30259 arm_parse_it_mode, NULL},
30260 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30261 arm_ccs_mode, NULL},
30262 {NULL, NULL, 0, NULL}
30263 };
30264
30265 int
30266 md_parse_option (int c, const char * arg)
30267 {
30268 struct arm_option_table *opt;
30269 const struct arm_legacy_option_table *fopt;
30270 struct arm_long_option_table *lopt;
30271
30272 switch (c)
30273 {
30274 #ifdef OPTION_EB
30275 case OPTION_EB:
30276 target_big_endian = 1;
30277 break;
30278 #endif
30279
30280 #ifdef OPTION_EL
30281 case OPTION_EL:
30282 target_big_endian = 0;
30283 break;
30284 #endif
30285
30286 case OPTION_FIX_V4BX:
30287 fix_v4bx = TRUE;
30288 break;
30289
30290 #ifdef OBJ_ELF
30291 case OPTION_FDPIC:
30292 arm_fdpic = TRUE;
30293 break;
30294 #endif /* OBJ_ELF */
30295
30296 case 'a':
30297 /* Listing option. Just ignore these, we don't support additional
30298 ones. */
30299 return 0;
30300
30301 default:
30302 for (opt = arm_opts; opt->option != NULL; opt++)
30303 {
30304 if (c == opt->option[0]
30305 && ((arg == NULL && opt->option[1] == 0)
30306 || streq (arg, opt->option + 1)))
30307 {
30308 /* If the option is deprecated, tell the user. */
30309 if (warn_on_deprecated && opt->deprecated != NULL)
30310 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30311 arg ? arg : "", _(opt->deprecated));
30312
30313 if (opt->var != NULL)
30314 *opt->var = opt->value;
30315
30316 return 1;
30317 }
30318 }
30319
30320 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30321 {
30322 if (c == fopt->option[0]
30323 && ((arg == NULL && fopt->option[1] == 0)
30324 || streq (arg, fopt->option + 1)))
30325 {
30326 /* If the option is deprecated, tell the user. */
30327 if (warn_on_deprecated && fopt->deprecated != NULL)
30328 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30329 arg ? arg : "", _(fopt->deprecated));
30330
30331 if (fopt->var != NULL)
30332 *fopt->var = &fopt->value;
30333
30334 return 1;
30335 }
30336 }
30337
30338 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30339 {
30340 /* These options are expected to have an argument. */
30341 if (c == lopt->option[0]
30342 && arg != NULL
30343 && strncmp (arg, lopt->option + 1,
30344 strlen (lopt->option + 1)) == 0)
30345 {
30346 /* If the option is deprecated, tell the user. */
30347 if (warn_on_deprecated && lopt->deprecated != NULL)
30348 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30349 _(lopt->deprecated));
30350
30351 /* Call the sup-option parser. */
30352 return lopt->func (arg + strlen (lopt->option) - 1);
30353 }
30354 }
30355
30356 return 0;
30357 }
30358
30359 return 1;
30360 }
30361
30362 void
30363 md_show_usage (FILE * fp)
30364 {
30365 struct arm_option_table *opt;
30366 struct arm_long_option_table *lopt;
30367
30368 fprintf (fp, _(" ARM-specific assembler options:\n"));
30369
30370 for (opt = arm_opts; opt->option != NULL; opt++)
30371 if (opt->help != NULL)
30372 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30373
30374 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30375 if (lopt->help != NULL)
30376 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30377
30378 #ifdef OPTION_EB
30379 fprintf (fp, _("\
30380 -EB assemble code for a big-endian cpu\n"));
30381 #endif
30382
30383 #ifdef OPTION_EL
30384 fprintf (fp, _("\
30385 -EL assemble code for a little-endian cpu\n"));
30386 #endif
30387
30388 fprintf (fp, _("\
30389 --fix-v4bx Allow BX in ARMv4 code\n"));
30390
30391 #ifdef OBJ_ELF
30392 fprintf (fp, _("\
30393 --fdpic generate an FDPIC object file\n"));
30394 #endif /* OBJ_ELF */
30395 }
30396
30397 #ifdef OBJ_ELF
30398
30399 typedef struct
30400 {
30401 int val;
30402 arm_feature_set flags;
30403 } cpu_arch_ver_table;
30404
30405 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30406 chronologically for architectures, with an exception for ARMv6-M and
30407 ARMv6S-M due to legacy reasons. No new architecture should have a
30408 special case. This allows for build attribute selection results to be
30409 stable when new architectures are added. */
30410 static const cpu_arch_ver_table cpu_arch_ver[] =
30411 {
30412 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30413 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30414 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30415 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30416 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30417 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30418 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30419 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30420 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30421 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30422 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30423 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30424 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30425 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30426 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30427 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30428 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30429 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30430 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30431 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30432 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30433 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30434 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30435 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30436
30437 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30438 always selected build attributes to match those of ARMv6-M
30439 (resp. ARMv6S-M). However, due to these architectures being a strict
30440 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30441 would be selected when fully respecting chronology of architectures.
30442 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30443 move them before ARMv7 architectures. */
30444 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30445 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30446
30447 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30448 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30449 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30450 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30451 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30452 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30453 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30454 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30455 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30456 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30457 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30458 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30459 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30460 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30461 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30462 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30463 {-1, ARM_ARCH_NONE}
30464 };
30465
30466 /* Set an attribute if it has not already been set by the user. */
30467
30468 static void
30469 aeabi_set_attribute_int (int tag, int value)
30470 {
30471 if (tag < 1
30472 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30473 || !attributes_set_explicitly[tag])
30474 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30475 }
30476
30477 static void
30478 aeabi_set_attribute_string (int tag, const char *value)
30479 {
30480 if (tag < 1
30481 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30482 || !attributes_set_explicitly[tag])
30483 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30484 }
30485
30486 /* Return whether features in the *NEEDED feature set are available via
30487 extensions for the architecture whose feature set is *ARCH_FSET. */
30488
30489 static bfd_boolean
30490 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30491 const arm_feature_set *needed)
30492 {
30493 int i, nb_allowed_archs;
30494 arm_feature_set ext_fset;
30495 const struct arm_option_extension_value_table *opt;
30496
30497 ext_fset = arm_arch_none;
30498 for (opt = arm_extensions; opt->name != NULL; opt++)
30499 {
30500 /* Extension does not provide any feature we need. */
30501 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30502 continue;
30503
30504 nb_allowed_archs =
30505 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30506 for (i = 0; i < nb_allowed_archs; i++)
30507 {
30508 /* Empty entry. */
30509 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30510 break;
30511
30512 /* Extension is available, add it. */
30513 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30514 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30515 }
30516 }
30517
30518 /* Can we enable all features in *needed? */
30519 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30520 }
30521
30522 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30523 a given architecture feature set *ARCH_EXT_FSET including extension feature
30524 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30525 - if true, check for an exact match of the architecture modulo extensions;
30526 - otherwise, select build attribute value of the first superset
30527 architecture released so that results remains stable when new architectures
30528 are added.
30529 For -march/-mcpu=all the build attribute value of the most featureful
30530 architecture is returned. Tag_CPU_arch_profile result is returned in
30531 PROFILE. */
30532
30533 static int
30534 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30535 const arm_feature_set *ext_fset,
30536 char *profile, int exact_match)
30537 {
30538 arm_feature_set arch_fset;
30539 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30540
30541 /* Select most featureful architecture with all its extensions if building
30542 for -march=all as the feature sets used to set build attributes. */
30543 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30544 {
30545 /* Force revisiting of decision for each new architecture. */
30546 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30547 *profile = 'A';
30548 return TAG_CPU_ARCH_V8;
30549 }
30550
30551 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30552
30553 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30554 {
30555 arm_feature_set known_arch_fset;
30556
30557 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30558 if (exact_match)
30559 {
30560 /* Base architecture match user-specified architecture and
30561 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30562 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30563 {
30564 p_ver_ret = p_ver;
30565 goto found;
30566 }
30567 /* Base architecture match user-specified architecture only
30568 (eg. ARMv6-M in the same case as above). Record it in case we
30569 find a match with above condition. */
30570 else if (p_ver_ret == NULL
30571 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30572 p_ver_ret = p_ver;
30573 }
30574 else
30575 {
30576
30577 /* Architecture has all features wanted. */
30578 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30579 {
30580 arm_feature_set added_fset;
30581
30582 /* Compute features added by this architecture over the one
30583 recorded in p_ver_ret. */
30584 if (p_ver_ret != NULL)
30585 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30586 p_ver_ret->flags);
30587 /* First architecture that match incl. with extensions, or the
30588 only difference in features over the recorded match is
30589 features that were optional and are now mandatory. */
30590 if (p_ver_ret == NULL
30591 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30592 {
30593 p_ver_ret = p_ver;
30594 goto found;
30595 }
30596 }
30597 else if (p_ver_ret == NULL)
30598 {
30599 arm_feature_set needed_ext_fset;
30600
30601 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30602
30603 /* Architecture has all features needed when using some
30604 extensions. Record it and continue searching in case there
30605 exist an architecture providing all needed features without
30606 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30607 OS extension). */
30608 if (have_ext_for_needed_feat_p (&known_arch_fset,
30609 &needed_ext_fset))
30610 p_ver_ret = p_ver;
30611 }
30612 }
30613 }
30614
30615 if (p_ver_ret == NULL)
30616 return -1;
30617
30618 found:
30619 /* Tag_CPU_arch_profile. */
30620 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30621 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30622 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30623 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30624 *profile = 'A';
30625 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30626 *profile = 'R';
30627 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30628 *profile = 'M';
30629 else
30630 *profile = '\0';
30631 return p_ver_ret->val;
30632 }
30633
30634 /* Set the public EABI object attributes. */
30635
30636 static void
30637 aeabi_set_public_attributes (void)
30638 {
30639 char profile = '\0';
30640 int arch = -1;
30641 int virt_sec = 0;
30642 int fp16_optional = 0;
30643 int skip_exact_match = 0;
30644 arm_feature_set flags, flags_arch, flags_ext;
30645
30646 /* Autodetection mode, choose the architecture based the instructions
30647 actually used. */
30648 if (no_cpu_selected ())
30649 {
30650 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30651
30652 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30653 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30654
30655 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30656 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30657
30658 /* Code run during relaxation relies on selected_cpu being set. */
30659 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30660 flags_ext = arm_arch_none;
30661 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30662 selected_ext = flags_ext;
30663 selected_cpu = flags;
30664 }
30665 /* Otherwise, choose the architecture based on the capabilities of the
30666 requested cpu. */
30667 else
30668 {
30669 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30670 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30671 flags_ext = selected_ext;
30672 flags = selected_cpu;
30673 }
30674 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30675
30676 /* Allow the user to override the reported architecture. */
30677 if (!ARM_FEATURE_ZERO (selected_object_arch))
30678 {
30679 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30680 flags_ext = arm_arch_none;
30681 }
30682 else
30683 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30684
30685 /* When this function is run again after relaxation has happened there is no
30686 way to determine whether an architecture or CPU was specified by the user:
30687 - selected_cpu is set above for relaxation to work;
30688 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30689 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30690 Therefore, if not in -march=all case we first try an exact match and fall
30691 back to autodetection. */
30692 if (!skip_exact_match)
30693 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30694 if (arch == -1)
30695 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30696 if (arch == -1)
30697 as_bad (_("no architecture contains all the instructions used\n"));
30698
30699 /* Tag_CPU_name. */
30700 if (selected_cpu_name[0])
30701 {
30702 char *q;
30703
30704 q = selected_cpu_name;
30705 if (strncmp (q, "armv", 4) == 0)
30706 {
30707 int i;
30708
30709 q += 4;
30710 for (i = 0; q[i]; i++)
30711 q[i] = TOUPPER (q[i]);
30712 }
30713 aeabi_set_attribute_string (Tag_CPU_name, q);
30714 }
30715
30716 /* Tag_CPU_arch. */
30717 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30718
30719 /* Tag_CPU_arch_profile. */
30720 if (profile != '\0')
30721 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30722
30723 /* Tag_DSP_extension. */
30724 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30725 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30726
30727 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30728 /* Tag_ARM_ISA_use. */
30729 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30730 || ARM_FEATURE_ZERO (flags_arch))
30731 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30732
30733 /* Tag_THUMB_ISA_use. */
30734 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30735 || ARM_FEATURE_ZERO (flags_arch))
30736 {
30737 int thumb_isa_use;
30738
30739 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30740 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30741 thumb_isa_use = 3;
30742 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30743 thumb_isa_use = 2;
30744 else
30745 thumb_isa_use = 1;
30746 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30747 }
30748
30749 /* Tag_VFP_arch. */
30750 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30751 aeabi_set_attribute_int (Tag_VFP_arch,
30752 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30753 ? 7 : 8);
30754 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30755 aeabi_set_attribute_int (Tag_VFP_arch,
30756 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30757 ? 5 : 6);
30758 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30759 {
30760 fp16_optional = 1;
30761 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30762 }
30763 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30764 {
30765 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30766 fp16_optional = 1;
30767 }
30768 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30769 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30770 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30771 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30772 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30773
30774 /* Tag_ABI_HardFP_use. */
30775 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30776 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30777 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30778
30779 /* Tag_WMMX_arch. */
30780 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30781 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30782 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30783 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30784
30785 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30786 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30787 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30788 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30789 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30790 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30791 {
30792 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30793 {
30794 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30795 }
30796 else
30797 {
30798 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30799 fp16_optional = 1;
30800 }
30801 }
30802
30803 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30804 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30805 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30806 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30807
30808 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30809 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30810 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30811
30812 /* Tag_DIV_use.
30813
30814 We set Tag_DIV_use to two when integer divide instructions have been used
30815 in ARM state, or when Thumb integer divide instructions have been used,
30816 but we have no architecture profile set, nor have we any ARM instructions.
30817
30818 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30819 by the base architecture.
30820
30821 For new architectures we will have to check these tests. */
30822 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30823 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30824 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30825 aeabi_set_attribute_int (Tag_DIV_use, 0);
30826 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30827 || (profile == '\0'
30828 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30829 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30830 aeabi_set_attribute_int (Tag_DIV_use, 2);
30831
30832 /* Tag_MP_extension_use. */
30833 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30834 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30835
30836 /* Tag Virtualization_use. */
30837 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30838 virt_sec |= 1;
30839 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30840 virt_sec |= 2;
30841 if (virt_sec != 0)
30842 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30843 }
30844
30845 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30846 finished and free extension feature bits which will not be used anymore. */
30847
30848 void
30849 arm_md_post_relax (void)
30850 {
30851 aeabi_set_public_attributes ();
30852 XDELETE (mcpu_ext_opt);
30853 mcpu_ext_opt = NULL;
30854 XDELETE (march_ext_opt);
30855 march_ext_opt = NULL;
30856 }
30857
30858 /* Add the default contents for the .ARM.attributes section. */
30859
30860 void
30861 arm_md_end (void)
30862 {
30863 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30864 return;
30865
30866 aeabi_set_public_attributes ();
30867 }
30868 #endif /* OBJ_ELF */
30869
30870 /* Parse a .cpu directive. */
30871
30872 static void
30873 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30874 {
30875 const struct arm_cpu_option_table *opt;
30876 char *name;
30877 char saved_char;
30878
30879 name = input_line_pointer;
30880 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30881 input_line_pointer++;
30882 saved_char = *input_line_pointer;
30883 *input_line_pointer = 0;
30884
30885 /* Skip the first "all" entry. */
30886 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30887 if (streq (opt->name, name))
30888 {
30889 selected_arch = opt->value;
30890 selected_ext = opt->ext;
30891 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30892 if (opt->canonical_name)
30893 strcpy (selected_cpu_name, opt->canonical_name);
30894 else
30895 {
30896 int i;
30897 for (i = 0; opt->name[i]; i++)
30898 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30899
30900 selected_cpu_name[i] = 0;
30901 }
30902 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30903
30904 *input_line_pointer = saved_char;
30905 demand_empty_rest_of_line ();
30906 return;
30907 }
30908 as_bad (_("unknown cpu `%s'"), name);
30909 *input_line_pointer = saved_char;
30910 ignore_rest_of_line ();
30911 }
30912
30913 /* Parse a .arch directive. */
30914
30915 static void
30916 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30917 {
30918 const struct arm_arch_option_table *opt;
30919 char saved_char;
30920 char *name;
30921
30922 name = input_line_pointer;
30923 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30924 input_line_pointer++;
30925 saved_char = *input_line_pointer;
30926 *input_line_pointer = 0;
30927
30928 /* Skip the first "all" entry. */
30929 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30930 if (streq (opt->name, name))
30931 {
30932 selected_arch = opt->value;
30933 selected_ext = arm_arch_none;
30934 selected_cpu = selected_arch;
30935 strcpy (selected_cpu_name, opt->name);
30936 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30937 *input_line_pointer = saved_char;
30938 demand_empty_rest_of_line ();
30939 return;
30940 }
30941
30942 as_bad (_("unknown architecture `%s'\n"), name);
30943 *input_line_pointer = saved_char;
30944 ignore_rest_of_line ();
30945 }
30946
30947 /* Parse a .object_arch directive. */
30948
30949 static void
30950 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30951 {
30952 const struct arm_arch_option_table *opt;
30953 char saved_char;
30954 char *name;
30955
30956 name = input_line_pointer;
30957 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30958 input_line_pointer++;
30959 saved_char = *input_line_pointer;
30960 *input_line_pointer = 0;
30961
30962 /* Skip the first "all" entry. */
30963 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30964 if (streq (opt->name, name))
30965 {
30966 selected_object_arch = opt->value;
30967 *input_line_pointer = saved_char;
30968 demand_empty_rest_of_line ();
30969 return;
30970 }
30971
30972 as_bad (_("unknown architecture `%s'\n"), name);
30973 *input_line_pointer = saved_char;
30974 ignore_rest_of_line ();
30975 }
30976
30977 /* Parse a .arch_extension directive. */
30978
30979 static void
30980 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30981 {
30982 const struct arm_option_extension_value_table *opt;
30983 char saved_char;
30984 char *name;
30985 int adding_value = 1;
30986
30987 name = input_line_pointer;
30988 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30989 input_line_pointer++;
30990 saved_char = *input_line_pointer;
30991 *input_line_pointer = 0;
30992
30993 if (strlen (name) >= 2
30994 && strncmp (name, "no", 2) == 0)
30995 {
30996 adding_value = 0;
30997 name += 2;
30998 }
30999
31000 for (opt = arm_extensions; opt->name != NULL; opt++)
31001 if (streq (opt->name, name))
31002 {
31003 int i, nb_allowed_archs =
31004 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31005 for (i = 0; i < nb_allowed_archs; i++)
31006 {
31007 /* Empty entry. */
31008 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31009 continue;
31010 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31011 break;
31012 }
31013
31014 if (i == nb_allowed_archs)
31015 {
31016 as_bad (_("architectural extension `%s' is not allowed for the "
31017 "current base architecture"), name);
31018 break;
31019 }
31020
31021 if (adding_value)
31022 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31023 opt->merge_value);
31024 else
31025 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31026
31027 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31028 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31029 *input_line_pointer = saved_char;
31030 demand_empty_rest_of_line ();
31031 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31032 on this return so that duplicate extensions (extensions with the
31033 same name as a previous extension in the list) are not considered
31034 for command-line parsing. */
31035 return;
31036 }
31037
31038 if (opt->name == NULL)
31039 as_bad (_("unknown architecture extension `%s'\n"), name);
31040
31041 *input_line_pointer = saved_char;
31042 ignore_rest_of_line ();
31043 }
31044
31045 /* Parse a .fpu directive. */
31046
31047 static void
31048 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31049 {
31050 const struct arm_option_fpu_value_table *opt;
31051 char saved_char;
31052 char *name;
31053
31054 name = input_line_pointer;
31055 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31056 input_line_pointer++;
31057 saved_char = *input_line_pointer;
31058 *input_line_pointer = 0;
31059
31060 for (opt = arm_fpus; opt->name != NULL; opt++)
31061 if (streq (opt->name, name))
31062 {
31063 selected_fpu = opt->value;
31064 #ifndef CPU_DEFAULT
31065 if (no_cpu_selected ())
31066 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31067 else
31068 #endif
31069 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31070 *input_line_pointer = saved_char;
31071 demand_empty_rest_of_line ();
31072 return;
31073 }
31074
31075 as_bad (_("unknown floating point format `%s'\n"), name);
31076 *input_line_pointer = saved_char;
31077 ignore_rest_of_line ();
31078 }
31079
31080 /* Copy symbol information. */
31081
31082 void
31083 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31084 {
31085 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31086 }
31087
31088 #ifdef OBJ_ELF
31089 /* Given a symbolic attribute NAME, return the proper integer value.
31090 Returns -1 if the attribute is not known. */
31091
31092 int
31093 arm_convert_symbolic_attribute (const char *name)
31094 {
31095 static const struct
31096 {
31097 const char * name;
31098 const int tag;
31099 }
31100 attribute_table[] =
31101 {
31102 /* When you modify this table you should
31103 also modify the list in doc/c-arm.texi. */
31104 #define T(tag) {#tag, tag}
31105 T (Tag_CPU_raw_name),
31106 T (Tag_CPU_name),
31107 T (Tag_CPU_arch),
31108 T (Tag_CPU_arch_profile),
31109 T (Tag_ARM_ISA_use),
31110 T (Tag_THUMB_ISA_use),
31111 T (Tag_FP_arch),
31112 T (Tag_VFP_arch),
31113 T (Tag_WMMX_arch),
31114 T (Tag_Advanced_SIMD_arch),
31115 T (Tag_PCS_config),
31116 T (Tag_ABI_PCS_R9_use),
31117 T (Tag_ABI_PCS_RW_data),
31118 T (Tag_ABI_PCS_RO_data),
31119 T (Tag_ABI_PCS_GOT_use),
31120 T (Tag_ABI_PCS_wchar_t),
31121 T (Tag_ABI_FP_rounding),
31122 T (Tag_ABI_FP_denormal),
31123 T (Tag_ABI_FP_exceptions),
31124 T (Tag_ABI_FP_user_exceptions),
31125 T (Tag_ABI_FP_number_model),
31126 T (Tag_ABI_align_needed),
31127 T (Tag_ABI_align8_needed),
31128 T (Tag_ABI_align_preserved),
31129 T (Tag_ABI_align8_preserved),
31130 T (Tag_ABI_enum_size),
31131 T (Tag_ABI_HardFP_use),
31132 T (Tag_ABI_VFP_args),
31133 T (Tag_ABI_WMMX_args),
31134 T (Tag_ABI_optimization_goals),
31135 T (Tag_ABI_FP_optimization_goals),
31136 T (Tag_compatibility),
31137 T (Tag_CPU_unaligned_access),
31138 T (Tag_FP_HP_extension),
31139 T (Tag_VFP_HP_extension),
31140 T (Tag_ABI_FP_16bit_format),
31141 T (Tag_MPextension_use),
31142 T (Tag_DIV_use),
31143 T (Tag_nodefaults),
31144 T (Tag_also_compatible_with),
31145 T (Tag_conformance),
31146 T (Tag_T2EE_use),
31147 T (Tag_Virtualization_use),
31148 T (Tag_DSP_extension),
31149 T (Tag_MVE_arch),
31150 /* We deliberately do not include Tag_MPextension_use_legacy. */
31151 #undef T
31152 };
31153 unsigned int i;
31154
31155 if (name == NULL)
31156 return -1;
31157
31158 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31159 if (streq (name, attribute_table[i].name))
31160 return attribute_table[i].tag;
31161
31162 return -1;
31163 }
31164
31165 /* Apply sym value for relocations only in the case that they are for
31166 local symbols in the same segment as the fixup and you have the
31167 respective architectural feature for blx and simple switches. */
31168
31169 int
31170 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31171 {
31172 if (fixP->fx_addsy
31173 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31174 /* PR 17444: If the local symbol is in a different section then a reloc
31175 will always be generated for it, so applying the symbol value now
31176 will result in a double offset being stored in the relocation. */
31177 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31178 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31179 {
31180 switch (fixP->fx_r_type)
31181 {
31182 case BFD_RELOC_ARM_PCREL_BLX:
31183 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31184 if (ARM_IS_FUNC (fixP->fx_addsy))
31185 return 1;
31186 break;
31187
31188 case BFD_RELOC_ARM_PCREL_CALL:
31189 case BFD_RELOC_THUMB_PCREL_BLX:
31190 if (THUMB_IS_FUNC (fixP->fx_addsy))
31191 return 1;
31192 break;
31193
31194 default:
31195 break;
31196 }
31197
31198 }
31199 return 0;
31200 }
31201 #endif /* OBJ_ELF */
This page took 1.437067 seconds and 3 git commands to generate.