d95ff65370b65a84460dbe7905b0505f244e8775
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
6933 OP_REGLST, /* ARM register list */
6934 OP_CLRMLST, /* CLRM register list */
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
6943
6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
6954 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6955 scalar, or ARM register. */
6956 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6957 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6958 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6959 register. */
6960 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6961 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6962 OP_VMOV, /* Neon VMOV operands. */
6963 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6964 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6965 OP_RNDQMQ_Ibig,
6966 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6967 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6968 OP_VLDR, /* VLDR operand. */
6969
6970 OP_I0, /* immediate zero */
6971 OP_I7, /* immediate value 0 .. 7 */
6972 OP_I15, /* 0 .. 15 */
6973 OP_I16, /* 1 .. 16 */
6974 OP_I16z, /* 0 .. 16 */
6975 OP_I31, /* 0 .. 31 */
6976 OP_I31w, /* 0 .. 31, optional trailing ! */
6977 OP_I32, /* 1 .. 32 */
6978 OP_I32z, /* 0 .. 32 */
6979 OP_I63, /* 0 .. 63 */
6980 OP_I63s, /* -64 .. 63 */
6981 OP_I64, /* 1 .. 64 */
6982 OP_I64z, /* 0 .. 64 */
6983 OP_I255, /* 0 .. 255 */
6984
6985 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6986 OP_I7b, /* 0 .. 7 */
6987 OP_I15b, /* 0 .. 15 */
6988 OP_I31b, /* 0 .. 31 */
6989
6990 OP_SH, /* shifter operand */
6991 OP_SHG, /* shifter operand with possible group relocation */
6992 OP_ADDR, /* Memory address expression (any mode) */
6993 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6994 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6995 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6996 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6997 OP_EXP, /* arbitrary expression */
6998 OP_EXPi, /* same, with optional immediate prefix */
6999 OP_EXPr, /* same, with optional relocation suffix */
7000 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7001 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7002 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7003 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7004
7005 OP_CPSF, /* CPS flags */
7006 OP_ENDI, /* Endianness specifier */
7007 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7008 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7009 OP_COND, /* conditional code */
7010 OP_TB, /* Table branch. */
7011
7012 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7013
7014 OP_RRnpc_I0, /* ARM register or literal 0 */
7015 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7016 OP_RR_EXi, /* ARM register or expression with imm prefix */
7017 OP_RF_IF, /* FPA register or immediate */
7018 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7019 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7020
7021 /* Optional operands. */
7022 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7023 OP_oI31b, /* 0 .. 31 */
7024 OP_oI32b, /* 1 .. 32 */
7025 OP_oI32z, /* 0 .. 32 */
7026 OP_oIffffb, /* 0 .. 65535 */
7027 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7028
7029 OP_oRR, /* ARM register */
7030 OP_oLR, /* ARM LR register */
7031 OP_oRRnpc, /* ARM register, not the PC */
7032 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7033 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7034 OP_oRND, /* Optional Neon double precision register */
7035 OP_oRNQ, /* Optional Neon quad precision register */
7036 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7037 OP_oRNDQ, /* Optional Neon double or quad precision register */
7038 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7039 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7040 register. */
7041 OP_oSHll, /* LSL immediate */
7042 OP_oSHar, /* ASR immediate */
7043 OP_oSHllar, /* LSL or ASR immediate */
7044 OP_oROR, /* ROR 0/8/16/24 */
7045 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7046
7047 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7048
7049 /* Some pre-defined mixed (ARM/THUMB) operands. */
7050 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7051 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7052 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7053
7054 OP_FIRST_OPTIONAL = OP_oI7b
7055 };
7056
7057 /* Generic instruction operand parser. This does no encoding and no
7058 semantic validation; it merely squirrels values away in the inst
7059 structure. Returns SUCCESS or FAIL depending on whether the
7060 specified grammar matched. */
7061 static int
7062 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7063 {
7064 unsigned const int *upat = pattern;
7065 char *backtrack_pos = 0;
7066 const char *backtrack_error = 0;
7067 int i, val = 0, backtrack_index = 0;
7068 enum arm_reg_type rtype;
7069 parse_operand_result result;
7070 unsigned int op_parse_code;
7071 bfd_boolean partial_match;
7072
7073 #define po_char_or_fail(chr) \
7074 do \
7075 { \
7076 if (skip_past_char (&str, chr) == FAIL) \
7077 goto bad_args; \
7078 } \
7079 while (0)
7080
7081 #define po_reg_or_fail(regtype) \
7082 do \
7083 { \
7084 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7085 & inst.operands[i].vectype); \
7086 if (val == FAIL) \
7087 { \
7088 first_error (_(reg_expected_msgs[regtype])); \
7089 goto failure; \
7090 } \
7091 inst.operands[i].reg = val; \
7092 inst.operands[i].isreg = 1; \
7093 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7094 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7095 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7096 || rtype == REG_TYPE_VFD \
7097 || rtype == REG_TYPE_NQ); \
7098 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7099 } \
7100 while (0)
7101
7102 #define po_reg_or_goto(regtype, label) \
7103 do \
7104 { \
7105 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7106 & inst.operands[i].vectype); \
7107 if (val == FAIL) \
7108 goto label; \
7109 \
7110 inst.operands[i].reg = val; \
7111 inst.operands[i].isreg = 1; \
7112 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7113 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7114 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7115 || rtype == REG_TYPE_VFD \
7116 || rtype == REG_TYPE_NQ); \
7117 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7118 } \
7119 while (0)
7120
7121 #define po_imm_or_fail(min, max, popt) \
7122 do \
7123 { \
7124 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7125 goto failure; \
7126 inst.operands[i].imm = val; \
7127 } \
7128 while (0)
7129
7130 #define po_scalar_or_goto(elsz, label, reg_type) \
7131 do \
7132 { \
7133 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7134 reg_type); \
7135 if (val == FAIL) \
7136 goto label; \
7137 inst.operands[i].reg = val; \
7138 inst.operands[i].isscalar = 1; \
7139 } \
7140 while (0)
7141
7142 #define po_misc_or_fail(expr) \
7143 do \
7144 { \
7145 if (expr) \
7146 goto failure; \
7147 } \
7148 while (0)
7149
7150 #define po_misc_or_fail_no_backtrack(expr) \
7151 do \
7152 { \
7153 result = expr; \
7154 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7155 backtrack_pos = 0; \
7156 if (result != PARSE_OPERAND_SUCCESS) \
7157 goto failure; \
7158 } \
7159 while (0)
7160
7161 #define po_barrier_or_imm(str) \
7162 do \
7163 { \
7164 val = parse_barrier (&str); \
7165 if (val == FAIL && ! ISALPHA (*str)) \
7166 goto immediate; \
7167 if (val == FAIL \
7168 /* ISB can only take SY as an option. */ \
7169 || ((inst.instruction & 0xf0) == 0x60 \
7170 && val != 0xf)) \
7171 { \
7172 inst.error = _("invalid barrier type"); \
7173 backtrack_pos = 0; \
7174 goto failure; \
7175 } \
7176 } \
7177 while (0)
7178
7179 skip_whitespace (str);
7180
7181 for (i = 0; upat[i] != OP_stop; i++)
7182 {
7183 op_parse_code = upat[i];
7184 if (op_parse_code >= 1<<16)
7185 op_parse_code = thumb ? (op_parse_code >> 16)
7186 : (op_parse_code & ((1<<16)-1));
7187
7188 if (op_parse_code >= OP_FIRST_OPTIONAL)
7189 {
7190 /* Remember where we are in case we need to backtrack. */
7191 backtrack_pos = str;
7192 backtrack_error = inst.error;
7193 backtrack_index = i;
7194 }
7195
7196 if (i > 0 && (i > 1 || inst.operands[0].present))
7197 po_char_or_fail (',');
7198
7199 switch (op_parse_code)
7200 {
7201 /* Registers */
7202 case OP_oRRnpc:
7203 case OP_oRRnpcsp:
7204 case OP_RRnpc:
7205 case OP_RRnpcsp:
7206 case OP_oRR:
7207 case OP_RRe:
7208 case OP_RRo:
7209 case OP_LR:
7210 case OP_oLR:
7211 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7212 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7213 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7214 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7215 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7216 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7217 case OP_oRND:
7218 case OP_RNDMQR:
7219 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7220 break;
7221 try_rndmq:
7222 case OP_RNDMQ:
7223 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7224 break;
7225 try_rnd:
7226 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7227 case OP_RVC:
7228 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7229 break;
7230 /* Also accept generic coprocessor regs for unknown registers. */
7231 coproc_reg:
7232 po_reg_or_fail (REG_TYPE_CN);
7233 break;
7234 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7235 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7236 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7237 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7238 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7239 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7240 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7241 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7242 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7243 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7244 case OP_oRNQ:
7245 case OP_RNQMQ:
7246 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7247 break;
7248 try_nq:
7249 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7250 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7251 case OP_RNDQMQR:
7252 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7253 break;
7254 try_rndqmq:
7255 case OP_oRNDQMQ:
7256 case OP_RNDQMQ:
7257 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7258 break;
7259 try_rndq:
7260 case OP_oRNDQ:
7261 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7262 case OP_RVSDMQ:
7263 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7264 break;
7265 try_rvsd:
7266 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7267 case OP_RVSD_COND:
7268 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7269 break;
7270 case OP_oRNSDQ:
7271 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7272 case OP_RNSDQMQR:
7273 po_reg_or_goto (REG_TYPE_RN, try_mq);
7274 break;
7275 try_mq:
7276 case OP_oRNSDQMQ:
7277 case OP_RNSDQMQ:
7278 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7279 break;
7280 try_nsdq2:
7281 po_reg_or_fail (REG_TYPE_NSDQ);
7282 inst.error = 0;
7283 break;
7284 case OP_RMQ:
7285 po_reg_or_fail (REG_TYPE_MQ);
7286 break;
7287 /* Neon scalar. Using an element size of 8 means that some invalid
7288 scalars are accepted here, so deal with those in later code. */
7289 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7290
7291 case OP_RNDQ_I0:
7292 {
7293 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7294 break;
7295 try_imm0:
7296 po_imm_or_fail (0, 0, TRUE);
7297 }
7298 break;
7299
7300 case OP_RVSD_I0:
7301 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7302 break;
7303
7304 case OP_RSVDMQ_FI0:
7305 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7306 break;
7307 try_rsvd_fi0:
7308 case OP_RSVD_FI0:
7309 {
7310 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7311 break;
7312 try_ifimm0:
7313 if (parse_ifimm_zero (&str))
7314 inst.operands[i].imm = 0;
7315 else
7316 {
7317 inst.error
7318 = _("only floating point zero is allowed as immediate value");
7319 goto failure;
7320 }
7321 }
7322 break;
7323
7324 case OP_RR_RNSC:
7325 {
7326 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7327 break;
7328 try_rr:
7329 po_reg_or_fail (REG_TYPE_RN);
7330 }
7331 break;
7332
7333 case OP_RNSDQ_RNSC_MQ_RR:
7334 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7335 break;
7336 try_rnsdq_rnsc_mq:
7337 case OP_RNSDQ_RNSC_MQ:
7338 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7339 break;
7340 try_rnsdq_rnsc:
7341 case OP_RNSDQ_RNSC:
7342 {
7343 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7344 inst.error = 0;
7345 break;
7346 try_nsdq:
7347 po_reg_or_fail (REG_TYPE_NSDQ);
7348 inst.error = 0;
7349 }
7350 break;
7351
7352 case OP_RNSD_RNSC:
7353 {
7354 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7355 break;
7356 try_s_scalar:
7357 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7358 break;
7359 try_nsd:
7360 po_reg_or_fail (REG_TYPE_NSD);
7361 }
7362 break;
7363
7364 case OP_RNDQMQ_RNSC_RR:
7365 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7366 break;
7367 try_rndq_rnsc_rr:
7368 case OP_RNDQ_RNSC_RR:
7369 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7370 break;
7371 case OP_RNDQMQ_RNSC:
7372 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7373 break;
7374 try_rndq_rnsc:
7375 case OP_RNDQ_RNSC:
7376 {
7377 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7378 break;
7379 try_ndq:
7380 po_reg_or_fail (REG_TYPE_NDQ);
7381 }
7382 break;
7383
7384 case OP_RND_RNSC:
7385 {
7386 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7387 break;
7388 try_vfd:
7389 po_reg_or_fail (REG_TYPE_VFD);
7390 }
7391 break;
7392
7393 case OP_VMOV:
7394 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7395 not careful then bad things might happen. */
7396 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7397 break;
7398
7399 case OP_RNDQMQ_Ibig:
7400 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7401 break;
7402 try_rndq_ibig:
7403 case OP_RNDQ_Ibig:
7404 {
7405 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7406 break;
7407 try_immbig:
7408 /* There's a possibility of getting a 64-bit immediate here, so
7409 we need special handling. */
7410 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7411 == FAIL)
7412 {
7413 inst.error = _("immediate value is out of range");
7414 goto failure;
7415 }
7416 }
7417 break;
7418
7419 case OP_RNDQ_I63b:
7420 {
7421 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7422 break;
7423 try_shimm:
7424 po_imm_or_fail (0, 63, TRUE);
7425 }
7426 break;
7427
7428 case OP_RRnpcb:
7429 po_char_or_fail ('[');
7430 po_reg_or_fail (REG_TYPE_RN);
7431 po_char_or_fail (']');
7432 break;
7433
7434 case OP_RRnpctw:
7435 case OP_RRw:
7436 case OP_oRRw:
7437 po_reg_or_fail (REG_TYPE_RN);
7438 if (skip_past_char (&str, '!') == SUCCESS)
7439 inst.operands[i].writeback = 1;
7440 break;
7441
7442 /* Immediates */
7443 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7444 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7445 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7446 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7447 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7448 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7449 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7450 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7451 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7452 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7453 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7454 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7455
7456 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7457 case OP_oI7b:
7458 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7459 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7460 case OP_oI31b:
7461 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7462 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7463 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7464 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7465
7466 /* Immediate variants */
7467 case OP_oI255c:
7468 po_char_or_fail ('{');
7469 po_imm_or_fail (0, 255, TRUE);
7470 po_char_or_fail ('}');
7471 break;
7472
7473 case OP_I31w:
7474 /* The expression parser chokes on a trailing !, so we have
7475 to find it first and zap it. */
7476 {
7477 char *s = str;
7478 while (*s && *s != ',')
7479 s++;
7480 if (s[-1] == '!')
7481 {
7482 s[-1] = '\0';
7483 inst.operands[i].writeback = 1;
7484 }
7485 po_imm_or_fail (0, 31, TRUE);
7486 if (str == s - 1)
7487 str = s;
7488 }
7489 break;
7490
7491 /* Expressions */
7492 case OP_EXPi: EXPi:
7493 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7494 GE_OPT_PREFIX));
7495 break;
7496
7497 case OP_EXP:
7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7499 GE_NO_PREFIX));
7500 break;
7501
7502 case OP_EXPr: EXPr:
7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7504 GE_NO_PREFIX));
7505 if (inst.relocs[0].exp.X_op == O_symbol)
7506 {
7507 val = parse_reloc (&str);
7508 if (val == -1)
7509 {
7510 inst.error = _("unrecognized relocation suffix");
7511 goto failure;
7512 }
7513 else if (val != BFD_RELOC_UNUSED)
7514 {
7515 inst.operands[i].imm = val;
7516 inst.operands[i].hasreloc = 1;
7517 }
7518 }
7519 break;
7520
7521 case OP_EXPs:
7522 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7523 GE_NO_PREFIX));
7524 if (inst.relocs[i].exp.X_op == O_symbol)
7525 {
7526 inst.operands[i].hasreloc = 1;
7527 }
7528 else if (inst.relocs[i].exp.X_op == O_constant)
7529 {
7530 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7531 inst.operands[i].hasreloc = 0;
7532 }
7533 break;
7534
7535 /* Operand for MOVW or MOVT. */
7536 case OP_HALF:
7537 po_misc_or_fail (parse_half (&str));
7538 break;
7539
7540 /* Register or expression. */
7541 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7542 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7543
7544 /* Register or immediate. */
7545 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7546 I0: po_imm_or_fail (0, 0, FALSE); break;
7547
7548 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7549 IF:
7550 if (!is_immediate_prefix (*str))
7551 goto bad_args;
7552 str++;
7553 val = parse_fpa_immediate (&str);
7554 if (val == FAIL)
7555 goto failure;
7556 /* FPA immediates are encoded as registers 8-15.
7557 parse_fpa_immediate has already applied the offset. */
7558 inst.operands[i].reg = val;
7559 inst.operands[i].isreg = 1;
7560 break;
7561
7562 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7563 I32z: po_imm_or_fail (0, 32, FALSE); break;
7564
7565 /* Two kinds of register. */
7566 case OP_RIWR_RIWC:
7567 {
7568 struct reg_entry *rege = arm_reg_parse_multi (&str);
7569 if (!rege
7570 || (rege->type != REG_TYPE_MMXWR
7571 && rege->type != REG_TYPE_MMXWC
7572 && rege->type != REG_TYPE_MMXWCG))
7573 {
7574 inst.error = _("iWMMXt data or control register expected");
7575 goto failure;
7576 }
7577 inst.operands[i].reg = rege->number;
7578 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7579 }
7580 break;
7581
7582 case OP_RIWC_RIWG:
7583 {
7584 struct reg_entry *rege = arm_reg_parse_multi (&str);
7585 if (!rege
7586 || (rege->type != REG_TYPE_MMXWC
7587 && rege->type != REG_TYPE_MMXWCG))
7588 {
7589 inst.error = _("iWMMXt control register expected");
7590 goto failure;
7591 }
7592 inst.operands[i].reg = rege->number;
7593 inst.operands[i].isreg = 1;
7594 }
7595 break;
7596
7597 /* Misc */
7598 case OP_CPSF: val = parse_cps_flags (&str); break;
7599 case OP_ENDI: val = parse_endian_specifier (&str); break;
7600 case OP_oROR: val = parse_ror (&str); break;
7601 try_cond:
7602 case OP_COND: val = parse_cond (&str); break;
7603 case OP_oBARRIER_I15:
7604 po_barrier_or_imm (str); break;
7605 immediate:
7606 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7607 goto failure;
7608 break;
7609
7610 case OP_wPSR:
7611 case OP_rPSR:
7612 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7613 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7614 {
7615 inst.error = _("Banked registers are not available with this "
7616 "architecture.");
7617 goto failure;
7618 }
7619 break;
7620 try_psr:
7621 val = parse_psr (&str, op_parse_code == OP_wPSR);
7622 break;
7623
7624 case OP_VLDR:
7625 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7626 break;
7627 try_sysreg:
7628 val = parse_sys_vldr_vstr (&str);
7629 break;
7630
7631 case OP_APSR_RR:
7632 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7633 break;
7634 try_apsr:
7635 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7636 instruction). */
7637 if (strncasecmp (str, "APSR_", 5) == 0)
7638 {
7639 unsigned found = 0;
7640 str += 5;
7641 while (found < 15)
7642 switch (*str++)
7643 {
7644 case 'c': found = (found & 1) ? 16 : found | 1; break;
7645 case 'n': found = (found & 2) ? 16 : found | 2; break;
7646 case 'z': found = (found & 4) ? 16 : found | 4; break;
7647 case 'v': found = (found & 8) ? 16 : found | 8; break;
7648 default: found = 16;
7649 }
7650 if (found != 15)
7651 goto failure;
7652 inst.operands[i].isvec = 1;
7653 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7654 inst.operands[i].reg = REG_PC;
7655 }
7656 else
7657 goto failure;
7658 break;
7659
7660 case OP_TB:
7661 po_misc_or_fail (parse_tb (&str));
7662 break;
7663
7664 /* Register lists. */
7665 case OP_REGLST:
7666 val = parse_reg_list (&str, REGLIST_RN);
7667 if (*str == '^')
7668 {
7669 inst.operands[i].writeback = 1;
7670 str++;
7671 }
7672 break;
7673
7674 case OP_CLRMLST:
7675 val = parse_reg_list (&str, REGLIST_CLRM);
7676 break;
7677
7678 case OP_VRSLST:
7679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7680 &partial_match);
7681 break;
7682
7683 case OP_VRDLST:
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7685 &partial_match);
7686 break;
7687
7688 case OP_VRSDLST:
7689 /* Allow Q registers too. */
7690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7691 REGLIST_NEON_D, &partial_match);
7692 if (val == FAIL)
7693 {
7694 inst.error = NULL;
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7696 REGLIST_VFP_S, &partial_match);
7697 inst.operands[i].issingle = 1;
7698 }
7699 break;
7700
7701 case OP_VRSDVLST:
7702 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7703 REGLIST_VFP_D_VPR, &partial_match);
7704 if (val == FAIL && !partial_match)
7705 {
7706 inst.error = NULL;
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_S_VPR, &partial_match);
7709 inst.operands[i].issingle = 1;
7710 }
7711 break;
7712
7713 case OP_NRDLST:
7714 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7715 REGLIST_NEON_D, &partial_match);
7716 break;
7717
7718 case OP_MSTRLST4:
7719 case OP_MSTRLST2:
7720 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7721 1, &inst.operands[i].vectype);
7722 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7723 goto failure;
7724 break;
7725 case OP_NSTRLST:
7726 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7727 0, &inst.operands[i].vectype);
7728 break;
7729
7730 /* Addressing modes */
7731 case OP_ADDRMVE:
7732 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7733 break;
7734
7735 case OP_ADDR:
7736 po_misc_or_fail (parse_address (&str, i));
7737 break;
7738
7739 case OP_ADDRGLDR:
7740 po_misc_or_fail_no_backtrack (
7741 parse_address_group_reloc (&str, i, GROUP_LDR));
7742 break;
7743
7744 case OP_ADDRGLDRS:
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str, i, GROUP_LDRS));
7747 break;
7748
7749 case OP_ADDRGLDC:
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str, i, GROUP_LDC));
7752 break;
7753
7754 case OP_SH:
7755 po_misc_or_fail (parse_shifter_operand (&str, i));
7756 break;
7757
7758 case OP_SHG:
7759 po_misc_or_fail_no_backtrack (
7760 parse_shifter_operand_group_reloc (&str, i));
7761 break;
7762
7763 case OP_oSHll:
7764 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7765 break;
7766
7767 case OP_oSHar:
7768 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7769 break;
7770
7771 case OP_oSHllar:
7772 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7773 break;
7774
7775 case OP_RMQRZ:
7776 case OP_oRMQRZ:
7777 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7778 break;
7779 try_rr_zr:
7780 po_reg_or_goto (REG_TYPE_RN, ZR);
7781 break;
7782 ZR:
7783 po_reg_or_fail (REG_TYPE_ZR);
7784 break;
7785
7786 default:
7787 as_fatal (_("unhandled operand code %d"), op_parse_code);
7788 }
7789
7790 /* Various value-based sanity checks and shared operations. We
7791 do not signal immediate failures for the register constraints;
7792 this allows a syntax error to take precedence. */
7793 switch (op_parse_code)
7794 {
7795 case OP_oRRnpc:
7796 case OP_RRnpc:
7797 case OP_RRnpcb:
7798 case OP_RRw:
7799 case OP_oRRw:
7800 case OP_RRnpc_I0:
7801 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7802 inst.error = BAD_PC;
7803 break;
7804
7805 case OP_oRRnpcsp:
7806 case OP_RRnpcsp:
7807 if (inst.operands[i].isreg)
7808 {
7809 if (inst.operands[i].reg == REG_PC)
7810 inst.error = BAD_PC;
7811 else if (inst.operands[i].reg == REG_SP
7812 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7813 relaxed since ARMv8-A. */
7814 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7815 {
7816 gas_assert (thumb);
7817 inst.error = BAD_SP;
7818 }
7819 }
7820 break;
7821
7822 case OP_RRnpctw:
7823 if (inst.operands[i].isreg
7824 && inst.operands[i].reg == REG_PC
7825 && (inst.operands[i].writeback || thumb))
7826 inst.error = BAD_PC;
7827 break;
7828
7829 case OP_RVSD_COND:
7830 case OP_VLDR:
7831 if (inst.operands[i].isreg)
7832 break;
7833 /* fall through. */
7834
7835 case OP_CPSF:
7836 case OP_ENDI:
7837 case OP_oROR:
7838 case OP_wPSR:
7839 case OP_rPSR:
7840 case OP_COND:
7841 case OP_oBARRIER_I15:
7842 case OP_REGLST:
7843 case OP_CLRMLST:
7844 case OP_VRSLST:
7845 case OP_VRDLST:
7846 case OP_VRSDLST:
7847 case OP_VRSDVLST:
7848 case OP_NRDLST:
7849 case OP_NSTRLST:
7850 case OP_MSTRLST2:
7851 case OP_MSTRLST4:
7852 if (val == FAIL)
7853 goto failure;
7854 inst.operands[i].imm = val;
7855 break;
7856
7857 case OP_LR:
7858 case OP_oLR:
7859 if (inst.operands[i].reg != REG_LR)
7860 inst.error = _("operand must be LR register");
7861 break;
7862
7863 case OP_RMQRZ:
7864 case OP_oRMQRZ:
7865 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7866 inst.error = BAD_PC;
7867 break;
7868
7869 case OP_RRe:
7870 if (inst.operands[i].isreg
7871 && (inst.operands[i].reg & 0x00000001) != 0)
7872 inst.error = BAD_ODD;
7873 break;
7874
7875 case OP_RRo:
7876 if (inst.operands[i].isreg)
7877 {
7878 if ((inst.operands[i].reg & 0x00000001) != 1)
7879 inst.error = BAD_EVEN;
7880 else if (inst.operands[i].reg == REG_SP)
7881 as_tsktsk (MVE_BAD_SP);
7882 else if (inst.operands[i].reg == REG_PC)
7883 inst.error = BAD_PC;
7884 }
7885 break;
7886
7887 default:
7888 break;
7889 }
7890
7891 /* If we get here, this operand was successfully parsed. */
7892 inst.operands[i].present = 1;
7893 continue;
7894
7895 bad_args:
7896 inst.error = BAD_ARGS;
7897
7898 failure:
7899 if (!backtrack_pos)
7900 {
7901 /* The parse routine should already have set inst.error, but set a
7902 default here just in case. */
7903 if (!inst.error)
7904 inst.error = BAD_SYNTAX;
7905 return FAIL;
7906 }
7907
7908 /* Do not backtrack over a trailing optional argument that
7909 absorbed some text. We will only fail again, with the
7910 'garbage following instruction' error message, which is
7911 probably less helpful than the current one. */
7912 if (backtrack_index == i && backtrack_pos != str
7913 && upat[i+1] == OP_stop)
7914 {
7915 if (!inst.error)
7916 inst.error = BAD_SYNTAX;
7917 return FAIL;
7918 }
7919
7920 /* Try again, skipping the optional argument at backtrack_pos. */
7921 str = backtrack_pos;
7922 inst.error = backtrack_error;
7923 inst.operands[backtrack_index].present = 0;
7924 i = backtrack_index;
7925 backtrack_pos = 0;
7926 }
7927
7928 /* Check that we have parsed all the arguments. */
7929 if (*str != '\0' && !inst.error)
7930 inst.error = _("garbage following instruction");
7931
7932 return inst.error ? FAIL : SUCCESS;
7933 }
7934
7935 #undef po_char_or_fail
7936 #undef po_reg_or_fail
7937 #undef po_reg_or_goto
7938 #undef po_imm_or_fail
7939 #undef po_scalar_or_fail
7940 #undef po_barrier_or_imm
7941
7942 /* Shorthand macro for instruction encoding functions issuing errors. */
7943 #define constraint(expr, err) \
7944 do \
7945 { \
7946 if (expr) \
7947 { \
7948 inst.error = err; \
7949 return; \
7950 } \
7951 } \
7952 while (0)
7953
7954 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7955 instructions are unpredictable if these registers are used. This
7956 is the BadReg predicate in ARM's Thumb-2 documentation.
7957
7958 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7959 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7960 #define reject_bad_reg(reg) \
7961 do \
7962 if (reg == REG_PC) \
7963 { \
7964 inst.error = BAD_PC; \
7965 return; \
7966 } \
7967 else if (reg == REG_SP \
7968 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7969 { \
7970 inst.error = BAD_SP; \
7971 return; \
7972 } \
7973 while (0)
7974
7975 /* If REG is R13 (the stack pointer), warn that its use is
7976 deprecated. */
7977 #define warn_deprecated_sp(reg) \
7978 do \
7979 if (warn_on_deprecated && reg == REG_SP) \
7980 as_tsktsk (_("use of r13 is deprecated")); \
7981 while (0)
7982
7983 /* Functions for operand encoding. ARM, then Thumb. */
7984
7985 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7986
7987 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7988
7989 The only binary encoding difference is the Coprocessor number. Coprocessor
7990 9 is used for half-precision calculations or conversions. The format of the
7991 instruction is the same as the equivalent Coprocessor 10 instruction that
7992 exists for Single-Precision operation. */
7993
7994 static void
7995 do_scalar_fp16_v82_encode (void)
7996 {
7997 if (inst.cond < COND_ALWAYS)
7998 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7999 " the behaviour is UNPREDICTABLE"));
8000 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8001 _(BAD_FP16));
8002
8003 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8004 mark_feature_used (&arm_ext_fp16);
8005 }
8006
8007 /* If VAL can be encoded in the immediate field of an ARM instruction,
8008 return the encoded form. Otherwise, return FAIL. */
8009
8010 static unsigned int
8011 encode_arm_immediate (unsigned int val)
8012 {
8013 unsigned int a, i;
8014
8015 if (val <= 0xff)
8016 return val;
8017
8018 for (i = 2; i < 32; i += 2)
8019 if ((a = rotate_left (val, i)) <= 0xff)
8020 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8021
8022 return FAIL;
8023 }
8024
8025 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8026 return the encoded form. Otherwise, return FAIL. */
8027 static unsigned int
8028 encode_thumb32_immediate (unsigned int val)
8029 {
8030 unsigned int a, i;
8031
8032 if (val <= 0xff)
8033 return val;
8034
8035 for (i = 1; i <= 24; i++)
8036 {
8037 a = val >> i;
8038 if ((val & ~(0xff << i)) == 0)
8039 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8040 }
8041
8042 a = val & 0xff;
8043 if (val == ((a << 16) | a))
8044 return 0x100 | a;
8045 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8046 return 0x300 | a;
8047
8048 a = val & 0xff00;
8049 if (val == ((a << 16) | a))
8050 return 0x200 | (a >> 8);
8051
8052 return FAIL;
8053 }
8054 /* Encode a VFP SP or DP register number into inst.instruction. */
8055
8056 static void
8057 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8058 {
8059 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8060 && reg > 15)
8061 {
8062 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8063 {
8064 if (thumb_mode)
8065 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8066 fpu_vfp_ext_d32);
8067 else
8068 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8069 fpu_vfp_ext_d32);
8070 }
8071 else
8072 {
8073 first_error (_("D register out of range for selected VFP version"));
8074 return;
8075 }
8076 }
8077
8078 switch (pos)
8079 {
8080 case VFP_REG_Sd:
8081 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8082 break;
8083
8084 case VFP_REG_Sn:
8085 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8086 break;
8087
8088 case VFP_REG_Sm:
8089 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8090 break;
8091
8092 case VFP_REG_Dd:
8093 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8094 break;
8095
8096 case VFP_REG_Dn:
8097 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8098 break;
8099
8100 case VFP_REG_Dm:
8101 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8102 break;
8103
8104 default:
8105 abort ();
8106 }
8107 }
8108
8109 /* Encode a <shift> in an ARM-format instruction. The immediate,
8110 if any, is handled by md_apply_fix. */
8111 static void
8112 encode_arm_shift (int i)
8113 {
8114 /* register-shifted register. */
8115 if (inst.operands[i].immisreg)
8116 {
8117 int op_index;
8118 for (op_index = 0; op_index <= i; ++op_index)
8119 {
8120 /* Check the operand only when it's presented. In pre-UAL syntax,
8121 if the destination register is the same as the first operand, two
8122 register form of the instruction can be used. */
8123 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8124 && inst.operands[op_index].reg == REG_PC)
8125 as_warn (UNPRED_REG ("r15"));
8126 }
8127
8128 if (inst.operands[i].imm == REG_PC)
8129 as_warn (UNPRED_REG ("r15"));
8130 }
8131
8132 if (inst.operands[i].shift_kind == SHIFT_RRX)
8133 inst.instruction |= SHIFT_ROR << 5;
8134 else
8135 {
8136 inst.instruction |= inst.operands[i].shift_kind << 5;
8137 if (inst.operands[i].immisreg)
8138 {
8139 inst.instruction |= SHIFT_BY_REG;
8140 inst.instruction |= inst.operands[i].imm << 8;
8141 }
8142 else
8143 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8144 }
8145 }
8146
8147 static void
8148 encode_arm_shifter_operand (int i)
8149 {
8150 if (inst.operands[i].isreg)
8151 {
8152 inst.instruction |= inst.operands[i].reg;
8153 encode_arm_shift (i);
8154 }
8155 else
8156 {
8157 inst.instruction |= INST_IMMEDIATE;
8158 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8159 inst.instruction |= inst.operands[i].imm;
8160 }
8161 }
8162
8163 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8164 static void
8165 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8166 {
8167 /* PR 14260:
8168 Generate an error if the operand is not a register. */
8169 constraint (!inst.operands[i].isreg,
8170 _("Instruction does not support =N addresses"));
8171
8172 inst.instruction |= inst.operands[i].reg << 16;
8173
8174 if (inst.operands[i].preind)
8175 {
8176 if (is_t)
8177 {
8178 inst.error = _("instruction does not accept preindexed addressing");
8179 return;
8180 }
8181 inst.instruction |= PRE_INDEX;
8182 if (inst.operands[i].writeback)
8183 inst.instruction |= WRITE_BACK;
8184
8185 }
8186 else if (inst.operands[i].postind)
8187 {
8188 gas_assert (inst.operands[i].writeback);
8189 if (is_t)
8190 inst.instruction |= WRITE_BACK;
8191 }
8192 else /* unindexed - only for coprocessor */
8193 {
8194 inst.error = _("instruction does not accept unindexed addressing");
8195 return;
8196 }
8197
8198 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8199 && (((inst.instruction & 0x000f0000) >> 16)
8200 == ((inst.instruction & 0x0000f000) >> 12)))
8201 as_warn ((inst.instruction & LOAD_BIT)
8202 ? _("destination register same as write-back base")
8203 : _("source register same as write-back base"));
8204 }
8205
8206 /* inst.operands[i] was set up by parse_address. Encode it into an
8207 ARM-format mode 2 load or store instruction. If is_t is true,
8208 reject forms that cannot be used with a T instruction (i.e. not
8209 post-indexed). */
8210 static void
8211 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8212 {
8213 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8214
8215 encode_arm_addr_mode_common (i, is_t);
8216
8217 if (inst.operands[i].immisreg)
8218 {
8219 constraint ((inst.operands[i].imm == REG_PC
8220 || (is_pc && inst.operands[i].writeback)),
8221 BAD_PC_ADDRESSING);
8222 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8223 inst.instruction |= inst.operands[i].imm;
8224 if (!inst.operands[i].negative)
8225 inst.instruction |= INDEX_UP;
8226 if (inst.operands[i].shifted)
8227 {
8228 if (inst.operands[i].shift_kind == SHIFT_RRX)
8229 inst.instruction |= SHIFT_ROR << 5;
8230 else
8231 {
8232 inst.instruction |= inst.operands[i].shift_kind << 5;
8233 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8234 }
8235 }
8236 }
8237 else /* immediate offset in inst.relocs[0] */
8238 {
8239 if (is_pc && !inst.relocs[0].pc_rel)
8240 {
8241 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8242
8243 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8244 cannot use PC in addressing.
8245 PC cannot be used in writeback addressing, either. */
8246 constraint ((is_t || inst.operands[i].writeback),
8247 BAD_PC_ADDRESSING);
8248
8249 /* Use of PC in str is deprecated for ARMv7. */
8250 if (warn_on_deprecated
8251 && !is_load
8252 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8253 as_tsktsk (_("use of PC in this instruction is deprecated"));
8254 }
8255
8256 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8257 {
8258 /* Prefer + for zero encoded value. */
8259 if (!inst.operands[i].negative)
8260 inst.instruction |= INDEX_UP;
8261 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8262 }
8263 }
8264 }
8265
8266 /* inst.operands[i] was set up by parse_address. Encode it into an
8267 ARM-format mode 3 load or store instruction. Reject forms that
8268 cannot be used with such instructions. If is_t is true, reject
8269 forms that cannot be used with a T instruction (i.e. not
8270 post-indexed). */
8271 static void
8272 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8273 {
8274 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8275 {
8276 inst.error = _("instruction does not accept scaled register index");
8277 return;
8278 }
8279
8280 encode_arm_addr_mode_common (i, is_t);
8281
8282 if (inst.operands[i].immisreg)
8283 {
8284 constraint ((inst.operands[i].imm == REG_PC
8285 || (is_t && inst.operands[i].reg == REG_PC)),
8286 BAD_PC_ADDRESSING);
8287 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8288 BAD_PC_WRITEBACK);
8289 inst.instruction |= inst.operands[i].imm;
8290 if (!inst.operands[i].negative)
8291 inst.instruction |= INDEX_UP;
8292 }
8293 else /* immediate offset in inst.relocs[0] */
8294 {
8295 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8296 && inst.operands[i].writeback),
8297 BAD_PC_WRITEBACK);
8298 inst.instruction |= HWOFFSET_IMM;
8299 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8300 {
8301 /* Prefer + for zero encoded value. */
8302 if (!inst.operands[i].negative)
8303 inst.instruction |= INDEX_UP;
8304
8305 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8306 }
8307 }
8308 }
8309
8310 /* Write immediate bits [7:0] to the following locations:
8311
8312 |28/24|23 19|18 16|15 4|3 0|
8313 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8314
8315 This function is used by VMOV/VMVN/VORR/VBIC. */
8316
8317 static void
8318 neon_write_immbits (unsigned immbits)
8319 {
8320 inst.instruction |= immbits & 0xf;
8321 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8322 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8323 }
8324
8325 /* Invert low-order SIZE bits of XHI:XLO. */
8326
8327 static void
8328 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8329 {
8330 unsigned immlo = xlo ? *xlo : 0;
8331 unsigned immhi = xhi ? *xhi : 0;
8332
8333 switch (size)
8334 {
8335 case 8:
8336 immlo = (~immlo) & 0xff;
8337 break;
8338
8339 case 16:
8340 immlo = (~immlo) & 0xffff;
8341 break;
8342
8343 case 64:
8344 immhi = (~immhi) & 0xffffffff;
8345 /* fall through. */
8346
8347 case 32:
8348 immlo = (~immlo) & 0xffffffff;
8349 break;
8350
8351 default:
8352 abort ();
8353 }
8354
8355 if (xlo)
8356 *xlo = immlo;
8357
8358 if (xhi)
8359 *xhi = immhi;
8360 }
8361
8362 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8363 A, B, C, D. */
8364
8365 static int
8366 neon_bits_same_in_bytes (unsigned imm)
8367 {
8368 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8369 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8370 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8371 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8372 }
8373
8374 /* For immediate of above form, return 0bABCD. */
8375
8376 static unsigned
8377 neon_squash_bits (unsigned imm)
8378 {
8379 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8380 | ((imm & 0x01000000) >> 21);
8381 }
8382
8383 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8384
8385 static unsigned
8386 neon_qfloat_bits (unsigned imm)
8387 {
8388 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8389 }
8390
8391 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8392 the instruction. *OP is passed as the initial value of the op field, and
8393 may be set to a different value depending on the constant (i.e.
8394 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8395 MVN). If the immediate looks like a repeated pattern then also
8396 try smaller element sizes. */
8397
8398 static int
8399 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8400 unsigned *immbits, int *op, int size,
8401 enum neon_el_type type)
8402 {
8403 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8404 float. */
8405 if (type == NT_float && !float_p)
8406 return FAIL;
8407
8408 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8409 {
8410 if (size != 32 || *op == 1)
8411 return FAIL;
8412 *immbits = neon_qfloat_bits (immlo);
8413 return 0xf;
8414 }
8415
8416 if (size == 64)
8417 {
8418 if (neon_bits_same_in_bytes (immhi)
8419 && neon_bits_same_in_bytes (immlo))
8420 {
8421 if (*op == 1)
8422 return FAIL;
8423 *immbits = (neon_squash_bits (immhi) << 4)
8424 | neon_squash_bits (immlo);
8425 *op = 1;
8426 return 0xe;
8427 }
8428
8429 if (immhi != immlo)
8430 return FAIL;
8431 }
8432
8433 if (size >= 32)
8434 {
8435 if (immlo == (immlo & 0x000000ff))
8436 {
8437 *immbits = immlo;
8438 return 0x0;
8439 }
8440 else if (immlo == (immlo & 0x0000ff00))
8441 {
8442 *immbits = immlo >> 8;
8443 return 0x2;
8444 }
8445 else if (immlo == (immlo & 0x00ff0000))
8446 {
8447 *immbits = immlo >> 16;
8448 return 0x4;
8449 }
8450 else if (immlo == (immlo & 0xff000000))
8451 {
8452 *immbits = immlo >> 24;
8453 return 0x6;
8454 }
8455 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8456 {
8457 *immbits = (immlo >> 8) & 0xff;
8458 return 0xc;
8459 }
8460 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8461 {
8462 *immbits = (immlo >> 16) & 0xff;
8463 return 0xd;
8464 }
8465
8466 if ((immlo & 0xffff) != (immlo >> 16))
8467 return FAIL;
8468 immlo &= 0xffff;
8469 }
8470
8471 if (size >= 16)
8472 {
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 *immbits = immlo;
8476 return 0x8;
8477 }
8478 else if (immlo == (immlo & 0x0000ff00))
8479 {
8480 *immbits = immlo >> 8;
8481 return 0xa;
8482 }
8483
8484 if ((immlo & 0xff) != (immlo >> 8))
8485 return FAIL;
8486 immlo &= 0xff;
8487 }
8488
8489 if (immlo == (immlo & 0x000000ff))
8490 {
8491 /* Don't allow MVN with 8-bit immediate. */
8492 if (*op == 1)
8493 return FAIL;
8494 *immbits = immlo;
8495 return 0xe;
8496 }
8497
8498 return FAIL;
8499 }
8500
8501 #if defined BFD_HOST_64_BIT
8502 /* Returns TRUE if double precision value V may be cast
8503 to single precision without loss of accuracy. */
8504
8505 static bfd_boolean
8506 is_double_a_single (bfd_int64_t v)
8507 {
8508 int exp = (int)((v >> 52) & 0x7FF);
8509 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8510
8511 return (exp == 0 || exp == 0x7FF
8512 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8513 && (mantissa & 0x1FFFFFFFl) == 0;
8514 }
8515
8516 /* Returns a double precision value casted to single precision
8517 (ignoring the least significant bits in exponent and mantissa). */
8518
8519 static int
8520 double_to_single (bfd_int64_t v)
8521 {
8522 int sign = (int) ((v >> 63) & 1l);
8523 int exp = (int) ((v >> 52) & 0x7FF);
8524 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8525
8526 if (exp == 0x7FF)
8527 exp = 0xFF;
8528 else
8529 {
8530 exp = exp - 1023 + 127;
8531 if (exp >= 0xFF)
8532 {
8533 /* Infinity. */
8534 exp = 0x7F;
8535 mantissa = 0;
8536 }
8537 else if (exp < 0)
8538 {
8539 /* No denormalized numbers. */
8540 exp = 0;
8541 mantissa = 0;
8542 }
8543 }
8544 mantissa >>= 29;
8545 return (sign << 31) | (exp << 23) | mantissa;
8546 }
8547 #endif /* BFD_HOST_64_BIT */
8548
8549 enum lit_type
8550 {
8551 CONST_THUMB,
8552 CONST_ARM,
8553 CONST_VEC
8554 };
8555
8556 static void do_vfp_nsyn_opcode (const char *);
8557
8558 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8559 Determine whether it can be performed with a move instruction; if
8560 it can, convert inst.instruction to that move instruction and
8561 return TRUE; if it can't, convert inst.instruction to a literal-pool
8562 load and return FALSE. If this is not a valid thing to do in the
8563 current context, set inst.error and return TRUE.
8564
8565 inst.operands[i] describes the destination register. */
8566
8567 static bfd_boolean
8568 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8569 {
8570 unsigned long tbit;
8571 bfd_boolean thumb_p = (t == CONST_THUMB);
8572 bfd_boolean arm_p = (t == CONST_ARM);
8573
8574 if (thumb_p)
8575 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8576 else
8577 tbit = LOAD_BIT;
8578
8579 if ((inst.instruction & tbit) == 0)
8580 {
8581 inst.error = _("invalid pseudo operation");
8582 return TRUE;
8583 }
8584
8585 if (inst.relocs[0].exp.X_op != O_constant
8586 && inst.relocs[0].exp.X_op != O_symbol
8587 && inst.relocs[0].exp.X_op != O_big)
8588 {
8589 inst.error = _("constant expression expected");
8590 return TRUE;
8591 }
8592
8593 if (inst.relocs[0].exp.X_op == O_constant
8594 || inst.relocs[0].exp.X_op == O_big)
8595 {
8596 #if defined BFD_HOST_64_BIT
8597 bfd_int64_t v;
8598 #else
8599 offsetT v;
8600 #endif
8601 if (inst.relocs[0].exp.X_op == O_big)
8602 {
8603 LITTLENUM_TYPE w[X_PRECISION];
8604 LITTLENUM_TYPE * l;
8605
8606 if (inst.relocs[0].exp.X_add_number == -1)
8607 {
8608 gen_to_words (w, X_PRECISION, E_PRECISION);
8609 l = w;
8610 /* FIXME: Should we check words w[2..5] ? */
8611 }
8612 else
8613 l = generic_bignum;
8614
8615 #if defined BFD_HOST_64_BIT
8616 v =
8617 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8618 << LITTLENUM_NUMBER_OF_BITS)
8619 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8620 << LITTLENUM_NUMBER_OF_BITS)
8621 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8622 << LITTLENUM_NUMBER_OF_BITS)
8623 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8624 #else
8625 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8626 | (l[0] & LITTLENUM_MASK);
8627 #endif
8628 }
8629 else
8630 v = inst.relocs[0].exp.X_add_number;
8631
8632 if (!inst.operands[i].issingle)
8633 {
8634 if (thumb_p)
8635 {
8636 /* LDR should not use lead in a flag-setting instruction being
8637 chosen so we do not check whether movs can be used. */
8638
8639 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8640 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8641 && inst.operands[i].reg != 13
8642 && inst.operands[i].reg != 15)
8643 {
8644 /* Check if on thumb2 it can be done with a mov.w, mvn or
8645 movw instruction. */
8646 unsigned int newimm;
8647 bfd_boolean isNegated;
8648
8649 newimm = encode_thumb32_immediate (v);
8650 if (newimm != (unsigned int) FAIL)
8651 isNegated = FALSE;
8652 else
8653 {
8654 newimm = encode_thumb32_immediate (~v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = TRUE;
8657 }
8658
8659 /* The number can be loaded with a mov.w or mvn
8660 instruction. */
8661 if (newimm != (unsigned int) FAIL
8662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8663 {
8664 inst.instruction = (0xf04f0000 /* MOV.W. */
8665 | (inst.operands[i].reg << 8));
8666 /* Change to MOVN. */
8667 inst.instruction |= (isNegated ? 0x200000 : 0);
8668 inst.instruction |= (newimm & 0x800) << 15;
8669 inst.instruction |= (newimm & 0x700) << 4;
8670 inst.instruction |= (newimm & 0x0ff);
8671 return TRUE;
8672 }
8673 /* The number can be loaded with a movw instruction. */
8674 else if ((v & ~0xFFFF) == 0
8675 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8676 {
8677 int imm = v & 0xFFFF;
8678
8679 inst.instruction = 0xf2400000; /* MOVW. */
8680 inst.instruction |= (inst.operands[i].reg << 8);
8681 inst.instruction |= (imm & 0xf000) << 4;
8682 inst.instruction |= (imm & 0x0800) << 15;
8683 inst.instruction |= (imm & 0x0700) << 4;
8684 inst.instruction |= (imm & 0x00ff);
8685 return TRUE;
8686 }
8687 }
8688 }
8689 else if (arm_p)
8690 {
8691 int value = encode_arm_immediate (v);
8692
8693 if (value != FAIL)
8694 {
8695 /* This can be done with a mov instruction. */
8696 inst.instruction &= LITERAL_MASK;
8697 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8698 inst.instruction |= value & 0xfff;
8699 return TRUE;
8700 }
8701
8702 value = encode_arm_immediate (~ v);
8703 if (value != FAIL)
8704 {
8705 /* This can be done with a mvn instruction. */
8706 inst.instruction &= LITERAL_MASK;
8707 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8708 inst.instruction |= value & 0xfff;
8709 return TRUE;
8710 }
8711 }
8712 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8713 {
8714 int op = 0;
8715 unsigned immbits = 0;
8716 unsigned immlo = inst.operands[1].imm;
8717 unsigned immhi = inst.operands[1].regisimm
8718 ? inst.operands[1].reg
8719 : inst.relocs[0].exp.X_unsigned
8720 ? 0
8721 : ((bfd_int64_t)((int) immlo)) >> 32;
8722 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8723 &op, 64, NT_invtype);
8724
8725 if (cmode == FAIL)
8726 {
8727 neon_invert_size (&immlo, &immhi, 64);
8728 op = !op;
8729 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8730 &op, 64, NT_invtype);
8731 }
8732
8733 if (cmode != FAIL)
8734 {
8735 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8736 | (1 << 23)
8737 | (cmode << 8)
8738 | (op << 5)
8739 | (1 << 4);
8740
8741 /* Fill other bits in vmov encoding for both thumb and arm. */
8742 if (thumb_mode)
8743 inst.instruction |= (0x7U << 29) | (0xF << 24);
8744 else
8745 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8746 neon_write_immbits (immbits);
8747 return TRUE;
8748 }
8749 }
8750 }
8751
8752 if (t == CONST_VEC)
8753 {
8754 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8755 if (inst.operands[i].issingle
8756 && is_quarter_float (inst.operands[1].imm)
8757 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8758 {
8759 inst.operands[1].imm =
8760 neon_qfloat_bits (v);
8761 do_vfp_nsyn_opcode ("fconsts");
8762 return TRUE;
8763 }
8764
8765 /* If our host does not support a 64-bit type then we cannot perform
8766 the following optimization. This mean that there will be a
8767 discrepancy between the output produced by an assembler built for
8768 a 32-bit-only host and the output produced from a 64-bit host, but
8769 this cannot be helped. */
8770 #if defined BFD_HOST_64_BIT
8771 else if (!inst.operands[1].issingle
8772 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8773 {
8774 if (is_double_a_single (v)
8775 && is_quarter_float (double_to_single (v)))
8776 {
8777 inst.operands[1].imm =
8778 neon_qfloat_bits (double_to_single (v));
8779 do_vfp_nsyn_opcode ("fconstd");
8780 return TRUE;
8781 }
8782 }
8783 #endif
8784 }
8785 }
8786
8787 if (add_to_lit_pool ((!inst.operands[i].isvec
8788 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8789 return TRUE;
8790
8791 inst.operands[1].reg = REG_PC;
8792 inst.operands[1].isreg = 1;
8793 inst.operands[1].preind = 1;
8794 inst.relocs[0].pc_rel = 1;
8795 inst.relocs[0].type = (thumb_p
8796 ? BFD_RELOC_ARM_THUMB_OFFSET
8797 : (mode_3
8798 ? BFD_RELOC_ARM_HWLITERAL
8799 : BFD_RELOC_ARM_LITERAL));
8800 return FALSE;
8801 }
8802
8803 /* inst.operands[i] was set up by parse_address. Encode it into an
8804 ARM-format instruction. Reject all forms which cannot be encoded
8805 into a coprocessor load/store instruction. If wb_ok is false,
8806 reject use of writeback; if unind_ok is false, reject use of
8807 unindexed addressing. If reloc_override is not 0, use it instead
8808 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8809 (in which case it is preserved). */
8810
8811 static int
8812 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8813 {
8814 if (!inst.operands[i].isreg)
8815 {
8816 /* PR 18256 */
8817 if (! inst.operands[0].isvec)
8818 {
8819 inst.error = _("invalid co-processor operand");
8820 return FAIL;
8821 }
8822 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8823 return SUCCESS;
8824 }
8825
8826 inst.instruction |= inst.operands[i].reg << 16;
8827
8828 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8829
8830 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8831 {
8832 gas_assert (!inst.operands[i].writeback);
8833 if (!unind_ok)
8834 {
8835 inst.error = _("instruction does not support unindexed addressing");
8836 return FAIL;
8837 }
8838 inst.instruction |= inst.operands[i].imm;
8839 inst.instruction |= INDEX_UP;
8840 return SUCCESS;
8841 }
8842
8843 if (inst.operands[i].preind)
8844 inst.instruction |= PRE_INDEX;
8845
8846 if (inst.operands[i].writeback)
8847 {
8848 if (inst.operands[i].reg == REG_PC)
8849 {
8850 inst.error = _("pc may not be used with write-back");
8851 return FAIL;
8852 }
8853 if (!wb_ok)
8854 {
8855 inst.error = _("instruction does not support writeback");
8856 return FAIL;
8857 }
8858 inst.instruction |= WRITE_BACK;
8859 }
8860
8861 if (reloc_override)
8862 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8863 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8864 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8865 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8866 {
8867 if (thumb_mode)
8868 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8869 else
8870 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8871 }
8872
8873 /* Prefer + for zero encoded value. */
8874 if (!inst.operands[i].negative)
8875 inst.instruction |= INDEX_UP;
8876
8877 return SUCCESS;
8878 }
8879
8880 /* Functions for instruction encoding, sorted by sub-architecture.
8881 First some generics; their names are taken from the conventional
8882 bit positions for register arguments in ARM format instructions. */
8883
8884 static void
8885 do_noargs (void)
8886 {
8887 }
8888
8889 static void
8890 do_rd (void)
8891 {
8892 inst.instruction |= inst.operands[0].reg << 12;
8893 }
8894
8895 static void
8896 do_rn (void)
8897 {
8898 inst.instruction |= inst.operands[0].reg << 16;
8899 }
8900
8901 static void
8902 do_rd_rm (void)
8903 {
8904 inst.instruction |= inst.operands[0].reg << 12;
8905 inst.instruction |= inst.operands[1].reg;
8906 }
8907
8908 static void
8909 do_rm_rn (void)
8910 {
8911 inst.instruction |= inst.operands[0].reg;
8912 inst.instruction |= inst.operands[1].reg << 16;
8913 }
8914
8915 static void
8916 do_rd_rn (void)
8917 {
8918 inst.instruction |= inst.operands[0].reg << 12;
8919 inst.instruction |= inst.operands[1].reg << 16;
8920 }
8921
8922 static void
8923 do_rn_rd (void)
8924 {
8925 inst.instruction |= inst.operands[0].reg << 16;
8926 inst.instruction |= inst.operands[1].reg << 12;
8927 }
8928
8929 static void
8930 do_tt (void)
8931 {
8932 inst.instruction |= inst.operands[0].reg << 8;
8933 inst.instruction |= inst.operands[1].reg << 16;
8934 }
8935
8936 static bfd_boolean
8937 check_obsolete (const arm_feature_set *feature, const char *msg)
8938 {
8939 if (ARM_CPU_IS_ANY (cpu_variant))
8940 {
8941 as_tsktsk ("%s", msg);
8942 return TRUE;
8943 }
8944 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8945 {
8946 as_bad ("%s", msg);
8947 return TRUE;
8948 }
8949
8950 return FALSE;
8951 }
8952
8953 static void
8954 do_rd_rm_rn (void)
8955 {
8956 unsigned Rn = inst.operands[2].reg;
8957 /* Enforce restrictions on SWP instruction. */
8958 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8959 {
8960 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8961 _("Rn must not overlap other operands"));
8962
8963 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8964 */
8965 if (!check_obsolete (&arm_ext_v8,
8966 _("swp{b} use is obsoleted for ARMv8 and later"))
8967 && warn_on_deprecated
8968 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8969 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8970 }
8971
8972 inst.instruction |= inst.operands[0].reg << 12;
8973 inst.instruction |= inst.operands[1].reg;
8974 inst.instruction |= Rn << 16;
8975 }
8976
8977 static void
8978 do_rd_rn_rm (void)
8979 {
8980 inst.instruction |= inst.operands[0].reg << 12;
8981 inst.instruction |= inst.operands[1].reg << 16;
8982 inst.instruction |= inst.operands[2].reg;
8983 }
8984
8985 static void
8986 do_rm_rd_rn (void)
8987 {
8988 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8989 constraint (((inst.relocs[0].exp.X_op != O_constant
8990 && inst.relocs[0].exp.X_op != O_illegal)
8991 || inst.relocs[0].exp.X_add_number != 0),
8992 BAD_ADDR_MODE);
8993 inst.instruction |= inst.operands[0].reg;
8994 inst.instruction |= inst.operands[1].reg << 12;
8995 inst.instruction |= inst.operands[2].reg << 16;
8996 }
8997
8998 static void
8999 do_imm0 (void)
9000 {
9001 inst.instruction |= inst.operands[0].imm;
9002 }
9003
9004 static void
9005 do_rd_cpaddr (void)
9006 {
9007 inst.instruction |= inst.operands[0].reg << 12;
9008 encode_arm_cp_address (1, TRUE, TRUE, 0);
9009 }
9010
9011 /* ARM instructions, in alphabetical order by function name (except
9012 that wrapper functions appear immediately after the function they
9013 wrap). */
9014
9015 /* This is a pseudo-op of the form "adr rd, label" to be converted
9016 into a relative address of the form "add rd, pc, #label-.-8". */
9017
9018 static void
9019 do_adr (void)
9020 {
9021 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9022
9023 /* Frag hacking will turn this into a sub instruction if the offset turns
9024 out to be negative. */
9025 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9026 inst.relocs[0].pc_rel = 1;
9027 inst.relocs[0].exp.X_add_number -= 8;
9028
9029 if (support_interwork
9030 && inst.relocs[0].exp.X_op == O_symbol
9031 && inst.relocs[0].exp.X_add_symbol != NULL
9032 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9033 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9034 inst.relocs[0].exp.X_add_number |= 1;
9035 }
9036
9037 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9038 into a relative address of the form:
9039 add rd, pc, #low(label-.-8)"
9040 add rd, rd, #high(label-.-8)" */
9041
9042 static void
9043 do_adrl (void)
9044 {
9045 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9046
9047 /* Frag hacking will turn this into a sub instruction if the offset turns
9048 out to be negative. */
9049 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9050 inst.relocs[0].pc_rel = 1;
9051 inst.size = INSN_SIZE * 2;
9052 inst.relocs[0].exp.X_add_number -= 8;
9053
9054 if (support_interwork
9055 && inst.relocs[0].exp.X_op == O_symbol
9056 && inst.relocs[0].exp.X_add_symbol != NULL
9057 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9058 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9059 inst.relocs[0].exp.X_add_number |= 1;
9060 }
9061
9062 static void
9063 do_arit (void)
9064 {
9065 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9066 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9067 THUMB1_RELOC_ONLY);
9068 if (!inst.operands[1].present)
9069 inst.operands[1].reg = inst.operands[0].reg;
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= inst.operands[1].reg << 16;
9072 encode_arm_shifter_operand (2);
9073 }
9074
9075 static void
9076 do_barrier (void)
9077 {
9078 if (inst.operands[0].present)
9079 inst.instruction |= inst.operands[0].imm;
9080 else
9081 inst.instruction |= 0xf;
9082 }
9083
9084 static void
9085 do_bfc (void)
9086 {
9087 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9088 constraint (msb > 32, _("bit-field extends past end of register"));
9089 /* The instruction encoding stores the LSB and MSB,
9090 not the LSB and width. */
9091 inst.instruction |= inst.operands[0].reg << 12;
9092 inst.instruction |= inst.operands[1].imm << 7;
9093 inst.instruction |= (msb - 1) << 16;
9094 }
9095
9096 static void
9097 do_bfi (void)
9098 {
9099 unsigned int msb;
9100
9101 /* #0 in second position is alternative syntax for bfc, which is
9102 the same instruction but with REG_PC in the Rm field. */
9103 if (!inst.operands[1].isreg)
9104 inst.operands[1].reg = REG_PC;
9105
9106 msb = inst.operands[2].imm + inst.operands[3].imm;
9107 constraint (msb > 32, _("bit-field extends past end of register"));
9108 /* The instruction encoding stores the LSB and MSB,
9109 not the LSB and width. */
9110 inst.instruction |= inst.operands[0].reg << 12;
9111 inst.instruction |= inst.operands[1].reg;
9112 inst.instruction |= inst.operands[2].imm << 7;
9113 inst.instruction |= (msb - 1) << 16;
9114 }
9115
9116 static void
9117 do_bfx (void)
9118 {
9119 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9120 _("bit-field extends past end of register"));
9121 inst.instruction |= inst.operands[0].reg << 12;
9122 inst.instruction |= inst.operands[1].reg;
9123 inst.instruction |= inst.operands[2].imm << 7;
9124 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9125 }
9126
9127 /* ARM V5 breakpoint instruction (argument parse)
9128 BKPT <16 bit unsigned immediate>
9129 Instruction is not conditional.
9130 The bit pattern given in insns[] has the COND_ALWAYS condition,
9131 and it is an error if the caller tried to override that. */
9132
9133 static void
9134 do_bkpt (void)
9135 {
9136 /* Top 12 of 16 bits to bits 19:8. */
9137 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9138
9139 /* Bottom 4 of 16 bits to bits 3:0. */
9140 inst.instruction |= inst.operands[0].imm & 0xf;
9141 }
9142
9143 static void
9144 encode_branch (int default_reloc)
9145 {
9146 if (inst.operands[0].hasreloc)
9147 {
9148 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9149 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9150 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9151 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9152 ? BFD_RELOC_ARM_PLT32
9153 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9154 }
9155 else
9156 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9157 inst.relocs[0].pc_rel = 1;
9158 }
9159
9160 static void
9161 do_branch (void)
9162 {
9163 #ifdef OBJ_ELF
9164 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9165 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9166 else
9167 #endif
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9169 }
9170
9171 static void
9172 do_bl (void)
9173 {
9174 #ifdef OBJ_ELF
9175 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9176 {
9177 if (inst.cond == COND_ALWAYS)
9178 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9179 else
9180 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9181 }
9182 else
9183 #endif
9184 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9185 }
9186
9187 /* ARM V5 branch-link-exchange instruction (argument parse)
9188 BLX <target_addr> ie BLX(1)
9189 BLX{<condition>} <Rm> ie BLX(2)
9190 Unfortunately, there are two different opcodes for this mnemonic.
9191 So, the insns[].value is not used, and the code here zaps values
9192 into inst.instruction.
9193 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9194
9195 static void
9196 do_blx (void)
9197 {
9198 if (inst.operands[0].isreg)
9199 {
9200 /* Arg is a register; the opcode provided by insns[] is correct.
9201 It is not illegal to do "blx pc", just useless. */
9202 if (inst.operands[0].reg == REG_PC)
9203 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9204
9205 inst.instruction |= inst.operands[0].reg;
9206 }
9207 else
9208 {
9209 /* Arg is an address; this instruction cannot be executed
9210 conditionally, and the opcode must be adjusted.
9211 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9212 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9213 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9214 inst.instruction = 0xfa000000;
9215 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9216 }
9217 }
9218
9219 static void
9220 do_bx (void)
9221 {
9222 bfd_boolean want_reloc;
9223
9224 if (inst.operands[0].reg == REG_PC)
9225 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9226
9227 inst.instruction |= inst.operands[0].reg;
9228 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9229 it is for ARMv4t or earlier. */
9230 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9231 if (!ARM_FEATURE_ZERO (selected_object_arch)
9232 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9233 want_reloc = TRUE;
9234
9235 #ifdef OBJ_ELF
9236 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9237 #endif
9238 want_reloc = FALSE;
9239
9240 if (want_reloc)
9241 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9242 }
9243
9244
9245 /* ARM v5TEJ. Jump to Jazelle code. */
9246
9247 static void
9248 do_bxj (void)
9249 {
9250 if (inst.operands[0].reg == REG_PC)
9251 as_tsktsk (_("use of r15 in bxj is not really useful"));
9252
9253 inst.instruction |= inst.operands[0].reg;
9254 }
9255
9256 /* Co-processor data operation:
9257 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9258 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9259 static void
9260 do_cdp (void)
9261 {
9262 inst.instruction |= inst.operands[0].reg << 8;
9263 inst.instruction |= inst.operands[1].imm << 20;
9264 inst.instruction |= inst.operands[2].reg << 12;
9265 inst.instruction |= inst.operands[3].reg << 16;
9266 inst.instruction |= inst.operands[4].reg;
9267 inst.instruction |= inst.operands[5].imm << 5;
9268 }
9269
9270 static void
9271 do_cmp (void)
9272 {
9273 inst.instruction |= inst.operands[0].reg << 16;
9274 encode_arm_shifter_operand (1);
9275 }
9276
9277 /* Transfer between coprocessor and ARM registers.
9278 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9279 MRC2
9280 MCR{cond}
9281 MCR2
9282
9283 No special properties. */
9284
9285 struct deprecated_coproc_regs_s
9286 {
9287 unsigned cp;
9288 int opc1;
9289 unsigned crn;
9290 unsigned crm;
9291 int opc2;
9292 arm_feature_set deprecated;
9293 arm_feature_set obsoleted;
9294 const char *dep_msg;
9295 const char *obs_msg;
9296 };
9297
9298 #define DEPR_ACCESS_V8 \
9299 N_("This coprocessor register access is deprecated in ARMv8")
9300
9301 /* Table of all deprecated coprocessor registers. */
9302 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9303 {
9304 {15, 0, 7, 10, 5, /* CP15DMB. */
9305 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9306 DEPR_ACCESS_V8, NULL},
9307 {15, 0, 7, 10, 4, /* CP15DSB. */
9308 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9309 DEPR_ACCESS_V8, NULL},
9310 {15, 0, 7, 5, 4, /* CP15ISB. */
9311 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9312 DEPR_ACCESS_V8, NULL},
9313 {14, 6, 1, 0, 0, /* TEEHBR. */
9314 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9315 DEPR_ACCESS_V8, NULL},
9316 {14, 6, 0, 0, 0, /* TEECR. */
9317 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9318 DEPR_ACCESS_V8, NULL},
9319 };
9320
9321 #undef DEPR_ACCESS_V8
9322
9323 static const size_t deprecated_coproc_reg_count =
9324 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9325
9326 static void
9327 do_co_reg (void)
9328 {
9329 unsigned Rd;
9330 size_t i;
9331
9332 Rd = inst.operands[2].reg;
9333 if (thumb_mode)
9334 {
9335 if (inst.instruction == 0xee000010
9336 || inst.instruction == 0xfe000010)
9337 /* MCR, MCR2 */
9338 reject_bad_reg (Rd);
9339 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9340 /* MRC, MRC2 */
9341 constraint (Rd == REG_SP, BAD_SP);
9342 }
9343 else
9344 {
9345 /* MCR */
9346 if (inst.instruction == 0xe000010)
9347 constraint (Rd == REG_PC, BAD_PC);
9348 }
9349
9350 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9351 {
9352 const struct deprecated_coproc_regs_s *r =
9353 deprecated_coproc_regs + i;
9354
9355 if (inst.operands[0].reg == r->cp
9356 && inst.operands[1].imm == r->opc1
9357 && inst.operands[3].reg == r->crn
9358 && inst.operands[4].reg == r->crm
9359 && inst.operands[5].imm == r->opc2)
9360 {
9361 if (! ARM_CPU_IS_ANY (cpu_variant)
9362 && warn_on_deprecated
9363 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9364 as_tsktsk ("%s", r->dep_msg);
9365 }
9366 }
9367
9368 inst.instruction |= inst.operands[0].reg << 8;
9369 inst.instruction |= inst.operands[1].imm << 21;
9370 inst.instruction |= Rd << 12;
9371 inst.instruction |= inst.operands[3].reg << 16;
9372 inst.instruction |= inst.operands[4].reg;
9373 inst.instruction |= inst.operands[5].imm << 5;
9374 }
9375
9376 /* Transfer between coprocessor register and pair of ARM registers.
9377 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9378 MCRR2
9379 MRRC{cond}
9380 MRRC2
9381
9382 Two XScale instructions are special cases of these:
9383
9384 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9385 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9386
9387 Result unpredictable if Rd or Rn is R15. */
9388
9389 static void
9390 do_co_reg2c (void)
9391 {
9392 unsigned Rd, Rn;
9393
9394 Rd = inst.operands[2].reg;
9395 Rn = inst.operands[3].reg;
9396
9397 if (thumb_mode)
9398 {
9399 reject_bad_reg (Rd);
9400 reject_bad_reg (Rn);
9401 }
9402 else
9403 {
9404 constraint (Rd == REG_PC, BAD_PC);
9405 constraint (Rn == REG_PC, BAD_PC);
9406 }
9407
9408 /* Only check the MRRC{2} variants. */
9409 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9410 {
9411 /* If Rd == Rn, error that the operation is
9412 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9413 constraint (Rd == Rn, BAD_OVERLAP);
9414 }
9415
9416 inst.instruction |= inst.operands[0].reg << 8;
9417 inst.instruction |= inst.operands[1].imm << 4;
9418 inst.instruction |= Rd << 12;
9419 inst.instruction |= Rn << 16;
9420 inst.instruction |= inst.operands[4].reg;
9421 }
9422
9423 static void
9424 do_cpsi (void)
9425 {
9426 inst.instruction |= inst.operands[0].imm << 6;
9427 if (inst.operands[1].present)
9428 {
9429 inst.instruction |= CPSI_MMOD;
9430 inst.instruction |= inst.operands[1].imm;
9431 }
9432 }
9433
9434 static void
9435 do_dbg (void)
9436 {
9437 inst.instruction |= inst.operands[0].imm;
9438 }
9439
9440 static void
9441 do_div (void)
9442 {
9443 unsigned Rd, Rn, Rm;
9444
9445 Rd = inst.operands[0].reg;
9446 Rn = (inst.operands[1].present
9447 ? inst.operands[1].reg : Rd);
9448 Rm = inst.operands[2].reg;
9449
9450 constraint ((Rd == REG_PC), BAD_PC);
9451 constraint ((Rn == REG_PC), BAD_PC);
9452 constraint ((Rm == REG_PC), BAD_PC);
9453
9454 inst.instruction |= Rd << 16;
9455 inst.instruction |= Rn << 0;
9456 inst.instruction |= Rm << 8;
9457 }
9458
9459 static void
9460 do_it (void)
9461 {
9462 /* There is no IT instruction in ARM mode. We
9463 process it to do the validation as if in
9464 thumb mode, just in case the code gets
9465 assembled for thumb using the unified syntax. */
9466
9467 inst.size = 0;
9468 if (unified_syntax)
9469 {
9470 set_pred_insn_type (IT_INSN);
9471 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9472 now_pred.cc = inst.operands[0].imm;
9473 }
9474 }
9475
9476 /* If there is only one register in the register list,
9477 then return its register number. Otherwise return -1. */
9478 static int
9479 only_one_reg_in_list (int range)
9480 {
9481 int i = ffs (range) - 1;
9482 return (i > 15 || range != (1 << i)) ? -1 : i;
9483 }
9484
9485 static void
9486 encode_ldmstm(int from_push_pop_mnem)
9487 {
9488 int base_reg = inst.operands[0].reg;
9489 int range = inst.operands[1].imm;
9490 int one_reg;
9491
9492 inst.instruction |= base_reg << 16;
9493 inst.instruction |= range;
9494
9495 if (inst.operands[1].writeback)
9496 inst.instruction |= LDM_TYPE_2_OR_3;
9497
9498 if (inst.operands[0].writeback)
9499 {
9500 inst.instruction |= WRITE_BACK;
9501 /* Check for unpredictable uses of writeback. */
9502 if (inst.instruction & LOAD_BIT)
9503 {
9504 /* Not allowed in LDM type 2. */
9505 if ((inst.instruction & LDM_TYPE_2_OR_3)
9506 && ((range & (1 << REG_PC)) == 0))
9507 as_warn (_("writeback of base register is UNPREDICTABLE"));
9508 /* Only allowed if base reg not in list for other types. */
9509 else if (range & (1 << base_reg))
9510 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9511 }
9512 else /* STM. */
9513 {
9514 /* Not allowed for type 2. */
9515 if (inst.instruction & LDM_TYPE_2_OR_3)
9516 as_warn (_("writeback of base register is UNPREDICTABLE"));
9517 /* Only allowed if base reg not in list, or first in list. */
9518 else if ((range & (1 << base_reg))
9519 && (range & ((1 << base_reg) - 1)))
9520 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9521 }
9522 }
9523
9524 /* If PUSH/POP has only one register, then use the A2 encoding. */
9525 one_reg = only_one_reg_in_list (range);
9526 if (from_push_pop_mnem && one_reg >= 0)
9527 {
9528 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9529
9530 if (is_push && one_reg == 13 /* SP */)
9531 /* PR 22483: The A2 encoding cannot be used when
9532 pushing the stack pointer as this is UNPREDICTABLE. */
9533 return;
9534
9535 inst.instruction &= A_COND_MASK;
9536 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9537 inst.instruction |= one_reg << 12;
9538 }
9539 }
9540
9541 static void
9542 do_ldmstm (void)
9543 {
9544 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9545 }
9546
9547 /* ARMv5TE load-consecutive (argument parse)
9548 Mode is like LDRH.
9549
9550 LDRccD R, mode
9551 STRccD R, mode. */
9552
9553 static void
9554 do_ldrd (void)
9555 {
9556 constraint (inst.operands[0].reg % 2 != 0,
9557 _("first transfer register must be even"));
9558 constraint (inst.operands[1].present
9559 && inst.operands[1].reg != inst.operands[0].reg + 1,
9560 _("can only transfer two consecutive registers"));
9561 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9562 constraint (!inst.operands[2].isreg, _("'[' expected"));
9563
9564 if (!inst.operands[1].present)
9565 inst.operands[1].reg = inst.operands[0].reg + 1;
9566
9567 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9568 register and the first register written; we have to diagnose
9569 overlap between the base and the second register written here. */
9570
9571 if (inst.operands[2].reg == inst.operands[1].reg
9572 && (inst.operands[2].writeback || inst.operands[2].postind))
9573 as_warn (_("base register written back, and overlaps "
9574 "second transfer register"));
9575
9576 if (!(inst.instruction & V4_STR_BIT))
9577 {
9578 /* For an index-register load, the index register must not overlap the
9579 destination (even if not write-back). */
9580 if (inst.operands[2].immisreg
9581 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9582 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9583 as_warn (_("index register overlaps transfer register"));
9584 }
9585 inst.instruction |= inst.operands[0].reg << 12;
9586 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9587 }
9588
9589 static void
9590 do_ldrex (void)
9591 {
9592 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9593 || inst.operands[1].postind || inst.operands[1].writeback
9594 || inst.operands[1].immisreg || inst.operands[1].shifted
9595 || inst.operands[1].negative
9596 /* This can arise if the programmer has written
9597 strex rN, rM, foo
9598 or if they have mistakenly used a register name as the last
9599 operand, eg:
9600 strex rN, rM, rX
9601 It is very difficult to distinguish between these two cases
9602 because "rX" might actually be a label. ie the register
9603 name has been occluded by a symbol of the same name. So we
9604 just generate a general 'bad addressing mode' type error
9605 message and leave it up to the programmer to discover the
9606 true cause and fix their mistake. */
9607 || (inst.operands[1].reg == REG_PC),
9608 BAD_ADDR_MODE);
9609
9610 constraint (inst.relocs[0].exp.X_op != O_constant
9611 || inst.relocs[0].exp.X_add_number != 0,
9612 _("offset must be zero in ARM encoding"));
9613
9614 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9615
9616 inst.instruction |= inst.operands[0].reg << 12;
9617 inst.instruction |= inst.operands[1].reg << 16;
9618 inst.relocs[0].type = BFD_RELOC_UNUSED;
9619 }
9620
9621 static void
9622 do_ldrexd (void)
9623 {
9624 constraint (inst.operands[0].reg % 2 != 0,
9625 _("even register required"));
9626 constraint (inst.operands[1].present
9627 && inst.operands[1].reg != inst.operands[0].reg + 1,
9628 _("can only load two consecutive registers"));
9629 /* If op 1 were present and equal to PC, this function wouldn't
9630 have been called in the first place. */
9631 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9632
9633 inst.instruction |= inst.operands[0].reg << 12;
9634 inst.instruction |= inst.operands[2].reg << 16;
9635 }
9636
9637 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9638 which is not a multiple of four is UNPREDICTABLE. */
9639 static void
9640 check_ldr_r15_aligned (void)
9641 {
9642 constraint (!(inst.operands[1].immisreg)
9643 && (inst.operands[0].reg == REG_PC
9644 && inst.operands[1].reg == REG_PC
9645 && (inst.relocs[0].exp.X_add_number & 0x3)),
9646 _("ldr to register 15 must be 4-byte aligned"));
9647 }
9648
9649 static void
9650 do_ldst (void)
9651 {
9652 inst.instruction |= inst.operands[0].reg << 12;
9653 if (!inst.operands[1].isreg)
9654 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9655 return;
9656 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9657 check_ldr_r15_aligned ();
9658 }
9659
9660 static void
9661 do_ldstt (void)
9662 {
9663 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9664 reject [Rn,...]. */
9665 if (inst.operands[1].preind)
9666 {
9667 constraint (inst.relocs[0].exp.X_op != O_constant
9668 || inst.relocs[0].exp.X_add_number != 0,
9669 _("this instruction requires a post-indexed address"));
9670
9671 inst.operands[1].preind = 0;
9672 inst.operands[1].postind = 1;
9673 inst.operands[1].writeback = 1;
9674 }
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9677 }
9678
9679 /* Halfword and signed-byte load/store operations. */
9680
9681 static void
9682 do_ldstv4 (void)
9683 {
9684 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9685 inst.instruction |= inst.operands[0].reg << 12;
9686 if (!inst.operands[1].isreg)
9687 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9688 return;
9689 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9690 }
9691
9692 static void
9693 do_ldsttv4 (void)
9694 {
9695 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9696 reject [Rn,...]. */
9697 if (inst.operands[1].preind)
9698 {
9699 constraint (inst.relocs[0].exp.X_op != O_constant
9700 || inst.relocs[0].exp.X_add_number != 0,
9701 _("this instruction requires a post-indexed address"));
9702
9703 inst.operands[1].preind = 0;
9704 inst.operands[1].postind = 1;
9705 inst.operands[1].writeback = 1;
9706 }
9707 inst.instruction |= inst.operands[0].reg << 12;
9708 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9709 }
9710
9711 /* Co-processor register load/store.
9712 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9713 static void
9714 do_lstc (void)
9715 {
9716 inst.instruction |= inst.operands[0].reg << 8;
9717 inst.instruction |= inst.operands[1].reg << 12;
9718 encode_arm_cp_address (2, TRUE, TRUE, 0);
9719 }
9720
9721 static void
9722 do_mlas (void)
9723 {
9724 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9725 if (inst.operands[0].reg == inst.operands[1].reg
9726 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9727 && !(inst.instruction & 0x00400000))
9728 as_tsktsk (_("Rd and Rm should be different in mla"));
9729
9730 inst.instruction |= inst.operands[0].reg << 16;
9731 inst.instruction |= inst.operands[1].reg;
9732 inst.instruction |= inst.operands[2].reg << 8;
9733 inst.instruction |= inst.operands[3].reg << 12;
9734 }
9735
9736 static void
9737 do_mov (void)
9738 {
9739 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9740 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9741 THUMB1_RELOC_ONLY);
9742 inst.instruction |= inst.operands[0].reg << 12;
9743 encode_arm_shifter_operand (1);
9744 }
9745
9746 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9747 static void
9748 do_mov16 (void)
9749 {
9750 bfd_vma imm;
9751 bfd_boolean top;
9752
9753 top = (inst.instruction & 0x00400000) != 0;
9754 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9755 _(":lower16: not allowed in this instruction"));
9756 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9757 _(":upper16: not allowed in this instruction"));
9758 inst.instruction |= inst.operands[0].reg << 12;
9759 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9760 {
9761 imm = inst.relocs[0].exp.X_add_number;
9762 /* The value is in two pieces: 0:11, 16:19. */
9763 inst.instruction |= (imm & 0x00000fff);
9764 inst.instruction |= (imm & 0x0000f000) << 4;
9765 }
9766 }
9767
9768 static int
9769 do_vfp_nsyn_mrs (void)
9770 {
9771 if (inst.operands[0].isvec)
9772 {
9773 if (inst.operands[1].reg != 1)
9774 first_error (_("operand 1 must be FPSCR"));
9775 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9776 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9777 do_vfp_nsyn_opcode ("fmstat");
9778 }
9779 else if (inst.operands[1].isvec)
9780 do_vfp_nsyn_opcode ("fmrx");
9781 else
9782 return FAIL;
9783
9784 return SUCCESS;
9785 }
9786
9787 static int
9788 do_vfp_nsyn_msr (void)
9789 {
9790 if (inst.operands[0].isvec)
9791 do_vfp_nsyn_opcode ("fmxr");
9792 else
9793 return FAIL;
9794
9795 return SUCCESS;
9796 }
9797
9798 static void
9799 do_vmrs (void)
9800 {
9801 unsigned Rt = inst.operands[0].reg;
9802
9803 if (thumb_mode && Rt == REG_SP)
9804 {
9805 inst.error = BAD_SP;
9806 return;
9807 }
9808
9809 /* MVFR2 is only valid at ARMv8-A. */
9810 if (inst.operands[1].reg == 5)
9811 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9812 _(BAD_FPU));
9813
9814 /* APSR_ sets isvec. All other refs to PC are illegal. */
9815 if (!inst.operands[0].isvec && Rt == REG_PC)
9816 {
9817 inst.error = BAD_PC;
9818 return;
9819 }
9820
9821 /* If we get through parsing the register name, we just insert the number
9822 generated into the instruction without further validation. */
9823 inst.instruction |= (inst.operands[1].reg << 16);
9824 inst.instruction |= (Rt << 12);
9825 }
9826
9827 static void
9828 do_vmsr (void)
9829 {
9830 unsigned Rt = inst.operands[1].reg;
9831
9832 if (thumb_mode)
9833 reject_bad_reg (Rt);
9834 else if (Rt == REG_PC)
9835 {
9836 inst.error = BAD_PC;
9837 return;
9838 }
9839
9840 /* MVFR2 is only valid for ARMv8-A. */
9841 if (inst.operands[0].reg == 5)
9842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9843 _(BAD_FPU));
9844
9845 /* If we get through parsing the register name, we just insert the number
9846 generated into the instruction without further validation. */
9847 inst.instruction |= (inst.operands[0].reg << 16);
9848 inst.instruction |= (Rt << 12);
9849 }
9850
9851 static void
9852 do_mrs (void)
9853 {
9854 unsigned br;
9855
9856 if (do_vfp_nsyn_mrs () == SUCCESS)
9857 return;
9858
9859 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9860 inst.instruction |= inst.operands[0].reg << 12;
9861
9862 if (inst.operands[1].isreg)
9863 {
9864 br = inst.operands[1].reg;
9865 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9866 as_bad (_("bad register for mrs"));
9867 }
9868 else
9869 {
9870 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9871 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9872 != (PSR_c|PSR_f),
9873 _("'APSR', 'CPSR' or 'SPSR' expected"));
9874 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9875 }
9876
9877 inst.instruction |= br;
9878 }
9879
9880 /* Two possible forms:
9881 "{C|S}PSR_<field>, Rm",
9882 "{C|S}PSR_f, #expression". */
9883
9884 static void
9885 do_msr (void)
9886 {
9887 if (do_vfp_nsyn_msr () == SUCCESS)
9888 return;
9889
9890 inst.instruction |= inst.operands[0].imm;
9891 if (inst.operands[1].isreg)
9892 inst.instruction |= inst.operands[1].reg;
9893 else
9894 {
9895 inst.instruction |= INST_IMMEDIATE;
9896 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9897 inst.relocs[0].pc_rel = 0;
9898 }
9899 }
9900
9901 static void
9902 do_mul (void)
9903 {
9904 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9905
9906 if (!inst.operands[2].present)
9907 inst.operands[2].reg = inst.operands[0].reg;
9908 inst.instruction |= inst.operands[0].reg << 16;
9909 inst.instruction |= inst.operands[1].reg;
9910 inst.instruction |= inst.operands[2].reg << 8;
9911
9912 if (inst.operands[0].reg == inst.operands[1].reg
9913 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9914 as_tsktsk (_("Rd and Rm should be different in mul"));
9915 }
9916
9917 /* Long Multiply Parser
9918 UMULL RdLo, RdHi, Rm, Rs
9919 SMULL RdLo, RdHi, Rm, Rs
9920 UMLAL RdLo, RdHi, Rm, Rs
9921 SMLAL RdLo, RdHi, Rm, Rs. */
9922
9923 static void
9924 do_mull (void)
9925 {
9926 inst.instruction |= inst.operands[0].reg << 12;
9927 inst.instruction |= inst.operands[1].reg << 16;
9928 inst.instruction |= inst.operands[2].reg;
9929 inst.instruction |= inst.operands[3].reg << 8;
9930
9931 /* rdhi and rdlo must be different. */
9932 if (inst.operands[0].reg == inst.operands[1].reg)
9933 as_tsktsk (_("rdhi and rdlo must be different"));
9934
9935 /* rdhi, rdlo and rm must all be different before armv6. */
9936 if ((inst.operands[0].reg == inst.operands[2].reg
9937 || inst.operands[1].reg == inst.operands[2].reg)
9938 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9939 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9940 }
9941
9942 static void
9943 do_nop (void)
9944 {
9945 if (inst.operands[0].present
9946 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9947 {
9948 /* Architectural NOP hints are CPSR sets with no bits selected. */
9949 inst.instruction &= 0xf0000000;
9950 inst.instruction |= 0x0320f000;
9951 if (inst.operands[0].present)
9952 inst.instruction |= inst.operands[0].imm;
9953 }
9954 }
9955
9956 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9957 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9958 Condition defaults to COND_ALWAYS.
9959 Error if Rd, Rn or Rm are R15. */
9960
9961 static void
9962 do_pkhbt (void)
9963 {
9964 inst.instruction |= inst.operands[0].reg << 12;
9965 inst.instruction |= inst.operands[1].reg << 16;
9966 inst.instruction |= inst.operands[2].reg;
9967 if (inst.operands[3].present)
9968 encode_arm_shift (3);
9969 }
9970
9971 /* ARM V6 PKHTB (Argument Parse). */
9972
9973 static void
9974 do_pkhtb (void)
9975 {
9976 if (!inst.operands[3].present)
9977 {
9978 /* If the shift specifier is omitted, turn the instruction
9979 into pkhbt rd, rm, rn. */
9980 inst.instruction &= 0xfff00010;
9981 inst.instruction |= inst.operands[0].reg << 12;
9982 inst.instruction |= inst.operands[1].reg;
9983 inst.instruction |= inst.operands[2].reg << 16;
9984 }
9985 else
9986 {
9987 inst.instruction |= inst.operands[0].reg << 12;
9988 inst.instruction |= inst.operands[1].reg << 16;
9989 inst.instruction |= inst.operands[2].reg;
9990 encode_arm_shift (3);
9991 }
9992 }
9993
9994 /* ARMv5TE: Preload-Cache
9995 MP Extensions: Preload for write
9996
9997 PLD(W) <addr_mode>
9998
9999 Syntactically, like LDR with B=1, W=0, L=1. */
10000
10001 static void
10002 do_pld (void)
10003 {
10004 constraint (!inst.operands[0].isreg,
10005 _("'[' expected after PLD mnemonic"));
10006 constraint (inst.operands[0].postind,
10007 _("post-indexed expression used in preload instruction"));
10008 constraint (inst.operands[0].writeback,
10009 _("writeback used in preload instruction"));
10010 constraint (!inst.operands[0].preind,
10011 _("unindexed addressing used in preload instruction"));
10012 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10013 }
10014
10015 /* ARMv7: PLI <addr_mode> */
10016 static void
10017 do_pli (void)
10018 {
10019 constraint (!inst.operands[0].isreg,
10020 _("'[' expected after PLI mnemonic"));
10021 constraint (inst.operands[0].postind,
10022 _("post-indexed expression used in preload instruction"));
10023 constraint (inst.operands[0].writeback,
10024 _("writeback used in preload instruction"));
10025 constraint (!inst.operands[0].preind,
10026 _("unindexed addressing used in preload instruction"));
10027 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10028 inst.instruction &= ~PRE_INDEX;
10029 }
10030
10031 static void
10032 do_push_pop (void)
10033 {
10034 constraint (inst.operands[0].writeback,
10035 _("push/pop do not support {reglist}^"));
10036 inst.operands[1] = inst.operands[0];
10037 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10038 inst.operands[0].isreg = 1;
10039 inst.operands[0].writeback = 1;
10040 inst.operands[0].reg = REG_SP;
10041 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10042 }
10043
10044 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10045 word at the specified address and the following word
10046 respectively.
10047 Unconditionally executed.
10048 Error if Rn is R15. */
10049
10050 static void
10051 do_rfe (void)
10052 {
10053 inst.instruction |= inst.operands[0].reg << 16;
10054 if (inst.operands[0].writeback)
10055 inst.instruction |= WRITE_BACK;
10056 }
10057
10058 /* ARM V6 ssat (argument parse). */
10059
10060 static void
10061 do_ssat (void)
10062 {
10063 inst.instruction |= inst.operands[0].reg << 12;
10064 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10065 inst.instruction |= inst.operands[2].reg;
10066
10067 if (inst.operands[3].present)
10068 encode_arm_shift (3);
10069 }
10070
10071 /* ARM V6 usat (argument parse). */
10072
10073 static void
10074 do_usat (void)
10075 {
10076 inst.instruction |= inst.operands[0].reg << 12;
10077 inst.instruction |= inst.operands[1].imm << 16;
10078 inst.instruction |= inst.operands[2].reg;
10079
10080 if (inst.operands[3].present)
10081 encode_arm_shift (3);
10082 }
10083
10084 /* ARM V6 ssat16 (argument parse). */
10085
10086 static void
10087 do_ssat16 (void)
10088 {
10089 inst.instruction |= inst.operands[0].reg << 12;
10090 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10091 inst.instruction |= inst.operands[2].reg;
10092 }
10093
10094 static void
10095 do_usat16 (void)
10096 {
10097 inst.instruction |= inst.operands[0].reg << 12;
10098 inst.instruction |= inst.operands[1].imm << 16;
10099 inst.instruction |= inst.operands[2].reg;
10100 }
10101
10102 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10103 preserving the other bits.
10104
10105 setend <endian_specifier>, where <endian_specifier> is either
10106 BE or LE. */
10107
10108 static void
10109 do_setend (void)
10110 {
10111 if (warn_on_deprecated
10112 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10113 as_tsktsk (_("setend use is deprecated for ARMv8"));
10114
10115 if (inst.operands[0].imm)
10116 inst.instruction |= 0x200;
10117 }
10118
10119 static void
10120 do_shift (void)
10121 {
10122 unsigned int Rm = (inst.operands[1].present
10123 ? inst.operands[1].reg
10124 : inst.operands[0].reg);
10125
10126 inst.instruction |= inst.operands[0].reg << 12;
10127 inst.instruction |= Rm;
10128 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10129 {
10130 inst.instruction |= inst.operands[2].reg << 8;
10131 inst.instruction |= SHIFT_BY_REG;
10132 /* PR 12854: Error on extraneous shifts. */
10133 constraint (inst.operands[2].shifted,
10134 _("extraneous shift as part of operand to shift insn"));
10135 }
10136 else
10137 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10138 }
10139
10140 static void
10141 do_smc (void)
10142 {
10143 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10144 inst.relocs[0].pc_rel = 0;
10145 }
10146
10147 static void
10148 do_hvc (void)
10149 {
10150 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10151 inst.relocs[0].pc_rel = 0;
10152 }
10153
10154 static void
10155 do_swi (void)
10156 {
10157 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10158 inst.relocs[0].pc_rel = 0;
10159 }
10160
10161 static void
10162 do_setpan (void)
10163 {
10164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10165 _("selected processor does not support SETPAN instruction"));
10166
10167 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10168 }
10169
10170 static void
10171 do_t_setpan (void)
10172 {
10173 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10174 _("selected processor does not support SETPAN instruction"));
10175
10176 inst.instruction |= (inst.operands[0].imm << 3);
10177 }
10178
10179 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10180 SMLAxy{cond} Rd,Rm,Rs,Rn
10181 SMLAWy{cond} Rd,Rm,Rs,Rn
10182 Error if any register is R15. */
10183
10184 static void
10185 do_smla (void)
10186 {
10187 inst.instruction |= inst.operands[0].reg << 16;
10188 inst.instruction |= inst.operands[1].reg;
10189 inst.instruction |= inst.operands[2].reg << 8;
10190 inst.instruction |= inst.operands[3].reg << 12;
10191 }
10192
10193 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10194 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10195 Error if any register is R15.
10196 Warning if Rdlo == Rdhi. */
10197
10198 static void
10199 do_smlal (void)
10200 {
10201 inst.instruction |= inst.operands[0].reg << 12;
10202 inst.instruction |= inst.operands[1].reg << 16;
10203 inst.instruction |= inst.operands[2].reg;
10204 inst.instruction |= inst.operands[3].reg << 8;
10205
10206 if (inst.operands[0].reg == inst.operands[1].reg)
10207 as_tsktsk (_("rdhi and rdlo must be different"));
10208 }
10209
10210 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10211 SMULxy{cond} Rd,Rm,Rs
10212 Error if any register is R15. */
10213
10214 static void
10215 do_smul (void)
10216 {
10217 inst.instruction |= inst.operands[0].reg << 16;
10218 inst.instruction |= inst.operands[1].reg;
10219 inst.instruction |= inst.operands[2].reg << 8;
10220 }
10221
10222 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10223 the same for both ARM and Thumb-2. */
10224
10225 static void
10226 do_srs (void)
10227 {
10228 int reg;
10229
10230 if (inst.operands[0].present)
10231 {
10232 reg = inst.operands[0].reg;
10233 constraint (reg != REG_SP, _("SRS base register must be r13"));
10234 }
10235 else
10236 reg = REG_SP;
10237
10238 inst.instruction |= reg << 16;
10239 inst.instruction |= inst.operands[1].imm;
10240 if (inst.operands[0].writeback || inst.operands[1].writeback)
10241 inst.instruction |= WRITE_BACK;
10242 }
10243
10244 /* ARM V6 strex (argument parse). */
10245
10246 static void
10247 do_strex (void)
10248 {
10249 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10250 || inst.operands[2].postind || inst.operands[2].writeback
10251 || inst.operands[2].immisreg || inst.operands[2].shifted
10252 || inst.operands[2].negative
10253 /* See comment in do_ldrex(). */
10254 || (inst.operands[2].reg == REG_PC),
10255 BAD_ADDR_MODE);
10256
10257 constraint (inst.operands[0].reg == inst.operands[1].reg
10258 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10259
10260 constraint (inst.relocs[0].exp.X_op != O_constant
10261 || inst.relocs[0].exp.X_add_number != 0,
10262 _("offset must be zero in ARM encoding"));
10263
10264 inst.instruction |= inst.operands[0].reg << 12;
10265 inst.instruction |= inst.operands[1].reg;
10266 inst.instruction |= inst.operands[2].reg << 16;
10267 inst.relocs[0].type = BFD_RELOC_UNUSED;
10268 }
10269
10270 static void
10271 do_t_strexbh (void)
10272 {
10273 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10274 || inst.operands[2].postind || inst.operands[2].writeback
10275 || inst.operands[2].immisreg || inst.operands[2].shifted
10276 || inst.operands[2].negative,
10277 BAD_ADDR_MODE);
10278
10279 constraint (inst.operands[0].reg == inst.operands[1].reg
10280 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10281
10282 do_rm_rd_rn ();
10283 }
10284
10285 static void
10286 do_strexd (void)
10287 {
10288 constraint (inst.operands[1].reg % 2 != 0,
10289 _("even register required"));
10290 constraint (inst.operands[2].present
10291 && inst.operands[2].reg != inst.operands[1].reg + 1,
10292 _("can only store two consecutive registers"));
10293 /* If op 2 were present and equal to PC, this function wouldn't
10294 have been called in the first place. */
10295 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10296
10297 constraint (inst.operands[0].reg == inst.operands[1].reg
10298 || inst.operands[0].reg == inst.operands[1].reg + 1
10299 || inst.operands[0].reg == inst.operands[3].reg,
10300 BAD_OVERLAP);
10301
10302 inst.instruction |= inst.operands[0].reg << 12;
10303 inst.instruction |= inst.operands[1].reg;
10304 inst.instruction |= inst.operands[3].reg << 16;
10305 }
10306
10307 /* ARM V8 STRL. */
10308 static void
10309 do_stlex (void)
10310 {
10311 constraint (inst.operands[0].reg == inst.operands[1].reg
10312 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10313
10314 do_rd_rm_rn ();
10315 }
10316
10317 static void
10318 do_t_stlex (void)
10319 {
10320 constraint (inst.operands[0].reg == inst.operands[1].reg
10321 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10322
10323 do_rm_rd_rn ();
10324 }
10325
10326 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10327 extends it to 32-bits, and adds the result to a value in another
10328 register. You can specify a rotation by 0, 8, 16, or 24 bits
10329 before extracting the 16-bit value.
10330 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10331 Condition defaults to COND_ALWAYS.
10332 Error if any register uses R15. */
10333
10334 static void
10335 do_sxtah (void)
10336 {
10337 inst.instruction |= inst.operands[0].reg << 12;
10338 inst.instruction |= inst.operands[1].reg << 16;
10339 inst.instruction |= inst.operands[2].reg;
10340 inst.instruction |= inst.operands[3].imm << 10;
10341 }
10342
10343 /* ARM V6 SXTH.
10344
10345 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10346 Condition defaults to COND_ALWAYS.
10347 Error if any register uses R15. */
10348
10349 static void
10350 do_sxth (void)
10351 {
10352 inst.instruction |= inst.operands[0].reg << 12;
10353 inst.instruction |= inst.operands[1].reg;
10354 inst.instruction |= inst.operands[2].imm << 10;
10355 }
10356 \f
10357 /* VFP instructions. In a logical order: SP variant first, monad
10358 before dyad, arithmetic then move then load/store. */
10359
10360 static void
10361 do_vfp_sp_monadic (void)
10362 {
10363 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10364 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10365 _(BAD_FPU));
10366
10367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10368 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10369 }
10370
10371 static void
10372 do_vfp_sp_dyadic (void)
10373 {
10374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10376 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10377 }
10378
10379 static void
10380 do_vfp_sp_compare_z (void)
10381 {
10382 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10383 }
10384
10385 static void
10386 do_vfp_dp_sp_cvt (void)
10387 {
10388 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10389 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10390 }
10391
10392 static void
10393 do_vfp_sp_dp_cvt (void)
10394 {
10395 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10396 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10397 }
10398
10399 static void
10400 do_vfp_reg_from_sp (void)
10401 {
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10404 _(BAD_FPU));
10405
10406 inst.instruction |= inst.operands[0].reg << 12;
10407 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10408 }
10409
10410 static void
10411 do_vfp_reg2_from_sp2 (void)
10412 {
10413 constraint (inst.operands[2].imm != 2,
10414 _("only two consecutive VFP SP registers allowed here"));
10415 inst.instruction |= inst.operands[0].reg << 12;
10416 inst.instruction |= inst.operands[1].reg << 16;
10417 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10418 }
10419
10420 static void
10421 do_vfp_sp_from_reg (void)
10422 {
10423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10424 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10425 _(BAD_FPU));
10426
10427 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10428 inst.instruction |= inst.operands[1].reg << 12;
10429 }
10430
10431 static void
10432 do_vfp_sp2_from_reg2 (void)
10433 {
10434 constraint (inst.operands[0].imm != 2,
10435 _("only two consecutive VFP SP registers allowed here"));
10436 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10437 inst.instruction |= inst.operands[1].reg << 12;
10438 inst.instruction |= inst.operands[2].reg << 16;
10439 }
10440
10441 static void
10442 do_vfp_sp_ldst (void)
10443 {
10444 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10445 encode_arm_cp_address (1, FALSE, TRUE, 0);
10446 }
10447
10448 static void
10449 do_vfp_dp_ldst (void)
10450 {
10451 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10452 encode_arm_cp_address (1, FALSE, TRUE, 0);
10453 }
10454
10455
10456 static void
10457 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10458 {
10459 if (inst.operands[0].writeback)
10460 inst.instruction |= WRITE_BACK;
10461 else
10462 constraint (ldstm_type != VFP_LDSTMIA,
10463 _("this addressing mode requires base-register writeback"));
10464 inst.instruction |= inst.operands[0].reg << 16;
10465 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10466 inst.instruction |= inst.operands[1].imm;
10467 }
10468
10469 static void
10470 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10471 {
10472 int count;
10473
10474 if (inst.operands[0].writeback)
10475 inst.instruction |= WRITE_BACK;
10476 else
10477 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10478 _("this addressing mode requires base-register writeback"));
10479
10480 inst.instruction |= inst.operands[0].reg << 16;
10481 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10482
10483 count = inst.operands[1].imm << 1;
10484 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10485 count += 1;
10486
10487 inst.instruction |= count;
10488 }
10489
10490 static void
10491 do_vfp_sp_ldstmia (void)
10492 {
10493 vfp_sp_ldstm (VFP_LDSTMIA);
10494 }
10495
10496 static void
10497 do_vfp_sp_ldstmdb (void)
10498 {
10499 vfp_sp_ldstm (VFP_LDSTMDB);
10500 }
10501
10502 static void
10503 do_vfp_dp_ldstmia (void)
10504 {
10505 vfp_dp_ldstm (VFP_LDSTMIA);
10506 }
10507
10508 static void
10509 do_vfp_dp_ldstmdb (void)
10510 {
10511 vfp_dp_ldstm (VFP_LDSTMDB);
10512 }
10513
10514 static void
10515 do_vfp_xp_ldstmia (void)
10516 {
10517 vfp_dp_ldstm (VFP_LDSTMIAX);
10518 }
10519
10520 static void
10521 do_vfp_xp_ldstmdb (void)
10522 {
10523 vfp_dp_ldstm (VFP_LDSTMDBX);
10524 }
10525
10526 static void
10527 do_vfp_dp_rd_rm (void)
10528 {
10529 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10530 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10531 _(BAD_FPU));
10532
10533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10534 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10535 }
10536
10537 static void
10538 do_vfp_dp_rn_rd (void)
10539 {
10540 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10541 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10542 }
10543
10544 static void
10545 do_vfp_dp_rd_rn (void)
10546 {
10547 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10548 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10549 }
10550
10551 static void
10552 do_vfp_dp_rd_rn_rm (void)
10553 {
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10555 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10556 _(BAD_FPU));
10557
10558 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10559 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10560 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10561 }
10562
10563 static void
10564 do_vfp_dp_rd (void)
10565 {
10566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10567 }
10568
10569 static void
10570 do_vfp_dp_rm_rd_rn (void)
10571 {
10572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10573 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10574 _(BAD_FPU));
10575
10576 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10577 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10578 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10579 }
10580
10581 /* VFPv3 instructions. */
10582 static void
10583 do_vfp_sp_const (void)
10584 {
10585 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10586 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10587 inst.instruction |= (inst.operands[1].imm & 0x0f);
10588 }
10589
10590 static void
10591 do_vfp_dp_const (void)
10592 {
10593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10594 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10595 inst.instruction |= (inst.operands[1].imm & 0x0f);
10596 }
10597
10598 static void
10599 vfp_conv (int srcsize)
10600 {
10601 int immbits = srcsize - inst.operands[1].imm;
10602
10603 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10604 {
10605 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10606 i.e. immbits must be in range 0 - 16. */
10607 inst.error = _("immediate value out of range, expected range [0, 16]");
10608 return;
10609 }
10610 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10611 {
10612 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10613 i.e. immbits must be in range 0 - 31. */
10614 inst.error = _("immediate value out of range, expected range [1, 32]");
10615 return;
10616 }
10617
10618 inst.instruction |= (immbits & 1) << 5;
10619 inst.instruction |= (immbits >> 1);
10620 }
10621
10622 static void
10623 do_vfp_sp_conv_16 (void)
10624 {
10625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10626 vfp_conv (16);
10627 }
10628
10629 static void
10630 do_vfp_dp_conv_16 (void)
10631 {
10632 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10633 vfp_conv (16);
10634 }
10635
10636 static void
10637 do_vfp_sp_conv_32 (void)
10638 {
10639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10640 vfp_conv (32);
10641 }
10642
10643 static void
10644 do_vfp_dp_conv_32 (void)
10645 {
10646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10647 vfp_conv (32);
10648 }
10649 \f
10650 /* FPA instructions. Also in a logical order. */
10651
10652 static void
10653 do_fpa_cmp (void)
10654 {
10655 inst.instruction |= inst.operands[0].reg << 16;
10656 inst.instruction |= inst.operands[1].reg;
10657 }
10658
10659 static void
10660 do_fpa_ldmstm (void)
10661 {
10662 inst.instruction |= inst.operands[0].reg << 12;
10663 switch (inst.operands[1].imm)
10664 {
10665 case 1: inst.instruction |= CP_T_X; break;
10666 case 2: inst.instruction |= CP_T_Y; break;
10667 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10668 case 4: break;
10669 default: abort ();
10670 }
10671
10672 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10673 {
10674 /* The instruction specified "ea" or "fd", so we can only accept
10675 [Rn]{!}. The instruction does not really support stacking or
10676 unstacking, so we have to emulate these by setting appropriate
10677 bits and offsets. */
10678 constraint (inst.relocs[0].exp.X_op != O_constant
10679 || inst.relocs[0].exp.X_add_number != 0,
10680 _("this instruction does not support indexing"));
10681
10682 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10683 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10684
10685 if (!(inst.instruction & INDEX_UP))
10686 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10687
10688 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10689 {
10690 inst.operands[2].preind = 0;
10691 inst.operands[2].postind = 1;
10692 }
10693 }
10694
10695 encode_arm_cp_address (2, TRUE, TRUE, 0);
10696 }
10697 \f
10698 /* iWMMXt instructions: strictly in alphabetical order. */
10699
10700 static void
10701 do_iwmmxt_tandorc (void)
10702 {
10703 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10704 }
10705
10706 static void
10707 do_iwmmxt_textrc (void)
10708 {
10709 inst.instruction |= inst.operands[0].reg << 12;
10710 inst.instruction |= inst.operands[1].imm;
10711 }
10712
10713 static void
10714 do_iwmmxt_textrm (void)
10715 {
10716 inst.instruction |= inst.operands[0].reg << 12;
10717 inst.instruction |= inst.operands[1].reg << 16;
10718 inst.instruction |= inst.operands[2].imm;
10719 }
10720
10721 static void
10722 do_iwmmxt_tinsr (void)
10723 {
10724 inst.instruction |= inst.operands[0].reg << 16;
10725 inst.instruction |= inst.operands[1].reg << 12;
10726 inst.instruction |= inst.operands[2].imm;
10727 }
10728
10729 static void
10730 do_iwmmxt_tmia (void)
10731 {
10732 inst.instruction |= inst.operands[0].reg << 5;
10733 inst.instruction |= inst.operands[1].reg;
10734 inst.instruction |= inst.operands[2].reg << 12;
10735 }
10736
10737 static void
10738 do_iwmmxt_waligni (void)
10739 {
10740 inst.instruction |= inst.operands[0].reg << 12;
10741 inst.instruction |= inst.operands[1].reg << 16;
10742 inst.instruction |= inst.operands[2].reg;
10743 inst.instruction |= inst.operands[3].imm << 20;
10744 }
10745
10746 static void
10747 do_iwmmxt_wmerge (void)
10748 {
10749 inst.instruction |= inst.operands[0].reg << 12;
10750 inst.instruction |= inst.operands[1].reg << 16;
10751 inst.instruction |= inst.operands[2].reg;
10752 inst.instruction |= inst.operands[3].imm << 21;
10753 }
10754
10755 static void
10756 do_iwmmxt_wmov (void)
10757 {
10758 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10759 inst.instruction |= inst.operands[0].reg << 12;
10760 inst.instruction |= inst.operands[1].reg << 16;
10761 inst.instruction |= inst.operands[1].reg;
10762 }
10763
10764 static void
10765 do_iwmmxt_wldstbh (void)
10766 {
10767 int reloc;
10768 inst.instruction |= inst.operands[0].reg << 12;
10769 if (thumb_mode)
10770 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10771 else
10772 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10773 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10774 }
10775
10776 static void
10777 do_iwmmxt_wldstw (void)
10778 {
10779 /* RIWR_RIWC clears .isreg for a control register. */
10780 if (!inst.operands[0].isreg)
10781 {
10782 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10783 inst.instruction |= 0xf0000000;
10784 }
10785
10786 inst.instruction |= inst.operands[0].reg << 12;
10787 encode_arm_cp_address (1, TRUE, TRUE, 0);
10788 }
10789
10790 static void
10791 do_iwmmxt_wldstd (void)
10792 {
10793 inst.instruction |= inst.operands[0].reg << 12;
10794 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10795 && inst.operands[1].immisreg)
10796 {
10797 inst.instruction &= ~0x1a000ff;
10798 inst.instruction |= (0xfU << 28);
10799 if (inst.operands[1].preind)
10800 inst.instruction |= PRE_INDEX;
10801 if (!inst.operands[1].negative)
10802 inst.instruction |= INDEX_UP;
10803 if (inst.operands[1].writeback)
10804 inst.instruction |= WRITE_BACK;
10805 inst.instruction |= inst.operands[1].reg << 16;
10806 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10807 inst.instruction |= inst.operands[1].imm;
10808 }
10809 else
10810 encode_arm_cp_address (1, TRUE, FALSE, 0);
10811 }
10812
10813 static void
10814 do_iwmmxt_wshufh (void)
10815 {
10816 inst.instruction |= inst.operands[0].reg << 12;
10817 inst.instruction |= inst.operands[1].reg << 16;
10818 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10819 inst.instruction |= (inst.operands[2].imm & 0x0f);
10820 }
10821
10822 static void
10823 do_iwmmxt_wzero (void)
10824 {
10825 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10826 inst.instruction |= inst.operands[0].reg;
10827 inst.instruction |= inst.operands[0].reg << 12;
10828 inst.instruction |= inst.operands[0].reg << 16;
10829 }
10830
10831 static void
10832 do_iwmmxt_wrwrwr_or_imm5 (void)
10833 {
10834 if (inst.operands[2].isreg)
10835 do_rd_rn_rm ();
10836 else {
10837 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10838 _("immediate operand requires iWMMXt2"));
10839 do_rd_rn ();
10840 if (inst.operands[2].imm == 0)
10841 {
10842 switch ((inst.instruction >> 20) & 0xf)
10843 {
10844 case 4:
10845 case 5:
10846 case 6:
10847 case 7:
10848 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10849 inst.operands[2].imm = 16;
10850 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10851 break;
10852 case 8:
10853 case 9:
10854 case 10:
10855 case 11:
10856 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10857 inst.operands[2].imm = 32;
10858 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10859 break;
10860 case 12:
10861 case 13:
10862 case 14:
10863 case 15:
10864 {
10865 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10866 unsigned long wrn;
10867 wrn = (inst.instruction >> 16) & 0xf;
10868 inst.instruction &= 0xff0fff0f;
10869 inst.instruction |= wrn;
10870 /* Bail out here; the instruction is now assembled. */
10871 return;
10872 }
10873 }
10874 }
10875 /* Map 32 -> 0, etc. */
10876 inst.operands[2].imm &= 0x1f;
10877 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10878 }
10879 }
10880 \f
10881 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10882 operations first, then control, shift, and load/store. */
10883
10884 /* Insns like "foo X,Y,Z". */
10885
10886 static void
10887 do_mav_triple (void)
10888 {
10889 inst.instruction |= inst.operands[0].reg << 16;
10890 inst.instruction |= inst.operands[1].reg;
10891 inst.instruction |= inst.operands[2].reg << 12;
10892 }
10893
10894 /* Insns like "foo W,X,Y,Z".
10895 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10896
10897 static void
10898 do_mav_quad (void)
10899 {
10900 inst.instruction |= inst.operands[0].reg << 5;
10901 inst.instruction |= inst.operands[1].reg << 12;
10902 inst.instruction |= inst.operands[2].reg << 16;
10903 inst.instruction |= inst.operands[3].reg;
10904 }
10905
10906 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10907 static void
10908 do_mav_dspsc (void)
10909 {
10910 inst.instruction |= inst.operands[1].reg << 12;
10911 }
10912
10913 /* Maverick shift immediate instructions.
10914 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10915 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10916
10917 static void
10918 do_mav_shift (void)
10919 {
10920 int imm = inst.operands[2].imm;
10921
10922 inst.instruction |= inst.operands[0].reg << 12;
10923 inst.instruction |= inst.operands[1].reg << 16;
10924
10925 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10926 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10927 Bit 4 should be 0. */
10928 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10929
10930 inst.instruction |= imm;
10931 }
10932 \f
10933 /* XScale instructions. Also sorted arithmetic before move. */
10934
10935 /* Xscale multiply-accumulate (argument parse)
10936 MIAcc acc0,Rm,Rs
10937 MIAPHcc acc0,Rm,Rs
10938 MIAxycc acc0,Rm,Rs. */
10939
10940 static void
10941 do_xsc_mia (void)
10942 {
10943 inst.instruction |= inst.operands[1].reg;
10944 inst.instruction |= inst.operands[2].reg << 12;
10945 }
10946
10947 /* Xscale move-accumulator-register (argument parse)
10948
10949 MARcc acc0,RdLo,RdHi. */
10950
10951 static void
10952 do_xsc_mar (void)
10953 {
10954 inst.instruction |= inst.operands[1].reg << 12;
10955 inst.instruction |= inst.operands[2].reg << 16;
10956 }
10957
10958 /* Xscale move-register-accumulator (argument parse)
10959
10960 MRAcc RdLo,RdHi,acc0. */
10961
10962 static void
10963 do_xsc_mra (void)
10964 {
10965 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10966 inst.instruction |= inst.operands[0].reg << 12;
10967 inst.instruction |= inst.operands[1].reg << 16;
10968 }
10969 \f
10970 /* Encoding functions relevant only to Thumb. */
10971
10972 /* inst.operands[i] is a shifted-register operand; encode
10973 it into inst.instruction in the format used by Thumb32. */
10974
10975 static void
10976 encode_thumb32_shifted_operand (int i)
10977 {
10978 unsigned int value = inst.relocs[0].exp.X_add_number;
10979 unsigned int shift = inst.operands[i].shift_kind;
10980
10981 constraint (inst.operands[i].immisreg,
10982 _("shift by register not allowed in thumb mode"));
10983 inst.instruction |= inst.operands[i].reg;
10984 if (shift == SHIFT_RRX)
10985 inst.instruction |= SHIFT_ROR << 4;
10986 else
10987 {
10988 constraint (inst.relocs[0].exp.X_op != O_constant,
10989 _("expression too complex"));
10990
10991 constraint (value > 32
10992 || (value == 32 && (shift == SHIFT_LSL
10993 || shift == SHIFT_ROR)),
10994 _("shift expression is too large"));
10995
10996 if (value == 0)
10997 shift = SHIFT_LSL;
10998 else if (value == 32)
10999 value = 0;
11000
11001 inst.instruction |= shift << 4;
11002 inst.instruction |= (value & 0x1c) << 10;
11003 inst.instruction |= (value & 0x03) << 6;
11004 }
11005 }
11006
11007
11008 /* inst.operands[i] was set up by parse_address. Encode it into a
11009 Thumb32 format load or store instruction. Reject forms that cannot
11010 be used with such instructions. If is_t is true, reject forms that
11011 cannot be used with a T instruction; if is_d is true, reject forms
11012 that cannot be used with a D instruction. If it is a store insn,
11013 reject PC in Rn. */
11014
11015 static void
11016 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11017 {
11018 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11019
11020 constraint (!inst.operands[i].isreg,
11021 _("Instruction does not support =N addresses"));
11022
11023 inst.instruction |= inst.operands[i].reg << 16;
11024 if (inst.operands[i].immisreg)
11025 {
11026 constraint (is_pc, BAD_PC_ADDRESSING);
11027 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11028 constraint (inst.operands[i].negative,
11029 _("Thumb does not support negative register indexing"));
11030 constraint (inst.operands[i].postind,
11031 _("Thumb does not support register post-indexing"));
11032 constraint (inst.operands[i].writeback,
11033 _("Thumb does not support register indexing with writeback"));
11034 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11035 _("Thumb supports only LSL in shifted register indexing"));
11036
11037 inst.instruction |= inst.operands[i].imm;
11038 if (inst.operands[i].shifted)
11039 {
11040 constraint (inst.relocs[0].exp.X_op != O_constant,
11041 _("expression too complex"));
11042 constraint (inst.relocs[0].exp.X_add_number < 0
11043 || inst.relocs[0].exp.X_add_number > 3,
11044 _("shift out of range"));
11045 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11046 }
11047 inst.relocs[0].type = BFD_RELOC_UNUSED;
11048 }
11049 else if (inst.operands[i].preind)
11050 {
11051 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11052 constraint (is_t && inst.operands[i].writeback,
11053 _("cannot use writeback with this instruction"));
11054 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11055 BAD_PC_ADDRESSING);
11056
11057 if (is_d)
11058 {
11059 inst.instruction |= 0x01000000;
11060 if (inst.operands[i].writeback)
11061 inst.instruction |= 0x00200000;
11062 }
11063 else
11064 {
11065 inst.instruction |= 0x00000c00;
11066 if (inst.operands[i].writeback)
11067 inst.instruction |= 0x00000100;
11068 }
11069 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11070 }
11071 else if (inst.operands[i].postind)
11072 {
11073 gas_assert (inst.operands[i].writeback);
11074 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11075 constraint (is_t, _("cannot use post-indexing with this instruction"));
11076
11077 if (is_d)
11078 inst.instruction |= 0x00200000;
11079 else
11080 inst.instruction |= 0x00000900;
11081 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11082 }
11083 else /* unindexed - only for coprocessor */
11084 inst.error = _("instruction does not accept unindexed addressing");
11085 }
11086
11087 /* Table of Thumb instructions which exist in both 16- and 32-bit
11088 encodings (the latter only in post-V6T2 cores). The index is the
11089 value used in the insns table below. When there is more than one
11090 possible 16-bit encoding for the instruction, this table always
11091 holds variant (1).
11092 Also contains several pseudo-instructions used during relaxation. */
11093 #define T16_32_TAB \
11094 X(_adc, 4140, eb400000), \
11095 X(_adcs, 4140, eb500000), \
11096 X(_add, 1c00, eb000000), \
11097 X(_adds, 1c00, eb100000), \
11098 X(_addi, 0000, f1000000), \
11099 X(_addis, 0000, f1100000), \
11100 X(_add_pc,000f, f20f0000), \
11101 X(_add_sp,000d, f10d0000), \
11102 X(_adr, 000f, f20f0000), \
11103 X(_and, 4000, ea000000), \
11104 X(_ands, 4000, ea100000), \
11105 X(_asr, 1000, fa40f000), \
11106 X(_asrs, 1000, fa50f000), \
11107 X(_b, e000, f000b000), \
11108 X(_bcond, d000, f0008000), \
11109 X(_bf, 0000, f040e001), \
11110 X(_bfcsel,0000, f000e001), \
11111 X(_bfx, 0000, f060e001), \
11112 X(_bfl, 0000, f000c001), \
11113 X(_bflx, 0000, f070e001), \
11114 X(_bic, 4380, ea200000), \
11115 X(_bics, 4380, ea300000), \
11116 X(_cmn, 42c0, eb100f00), \
11117 X(_cmp, 2800, ebb00f00), \
11118 X(_cpsie, b660, f3af8400), \
11119 X(_cpsid, b670, f3af8600), \
11120 X(_cpy, 4600, ea4f0000), \
11121 X(_dec_sp,80dd, f1ad0d00), \
11122 X(_dls, 0000, f040e001), \
11123 X(_eor, 4040, ea800000), \
11124 X(_eors, 4040, ea900000), \
11125 X(_inc_sp,00dd, f10d0d00), \
11126 X(_ldmia, c800, e8900000), \
11127 X(_ldr, 6800, f8500000), \
11128 X(_ldrb, 7800, f8100000), \
11129 X(_ldrh, 8800, f8300000), \
11130 X(_ldrsb, 5600, f9100000), \
11131 X(_ldrsh, 5e00, f9300000), \
11132 X(_ldr_pc,4800, f85f0000), \
11133 X(_ldr_pc2,4800, f85f0000), \
11134 X(_ldr_sp,9800, f85d0000), \
11135 X(_le, 0000, f00fc001), \
11136 X(_lsl, 0000, fa00f000), \
11137 X(_lsls, 0000, fa10f000), \
11138 X(_lsr, 0800, fa20f000), \
11139 X(_lsrs, 0800, fa30f000), \
11140 X(_mov, 2000, ea4f0000), \
11141 X(_movs, 2000, ea5f0000), \
11142 X(_mul, 4340, fb00f000), \
11143 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11144 X(_mvn, 43c0, ea6f0000), \
11145 X(_mvns, 43c0, ea7f0000), \
11146 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11147 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11148 X(_orr, 4300, ea400000), \
11149 X(_orrs, 4300, ea500000), \
11150 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11151 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11152 X(_rev, ba00, fa90f080), \
11153 X(_rev16, ba40, fa90f090), \
11154 X(_revsh, bac0, fa90f0b0), \
11155 X(_ror, 41c0, fa60f000), \
11156 X(_rors, 41c0, fa70f000), \
11157 X(_sbc, 4180, eb600000), \
11158 X(_sbcs, 4180, eb700000), \
11159 X(_stmia, c000, e8800000), \
11160 X(_str, 6000, f8400000), \
11161 X(_strb, 7000, f8000000), \
11162 X(_strh, 8000, f8200000), \
11163 X(_str_sp,9000, f84d0000), \
11164 X(_sub, 1e00, eba00000), \
11165 X(_subs, 1e00, ebb00000), \
11166 X(_subi, 8000, f1a00000), \
11167 X(_subis, 8000, f1b00000), \
11168 X(_sxtb, b240, fa4ff080), \
11169 X(_sxth, b200, fa0ff080), \
11170 X(_tst, 4200, ea100f00), \
11171 X(_uxtb, b2c0, fa5ff080), \
11172 X(_uxth, b280, fa1ff080), \
11173 X(_nop, bf00, f3af8000), \
11174 X(_yield, bf10, f3af8001), \
11175 X(_wfe, bf20, f3af8002), \
11176 X(_wfi, bf30, f3af8003), \
11177 X(_wls, 0000, f040c001), \
11178 X(_sev, bf40, f3af8004), \
11179 X(_sevl, bf50, f3af8005), \
11180 X(_udf, de00, f7f0a000)
11181
11182 /* To catch errors in encoding functions, the codes are all offset by
11183 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11184 as 16-bit instructions. */
11185 #define X(a,b,c) T_MNEM##a
11186 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11187 #undef X
11188
11189 #define X(a,b,c) 0x##b
11190 static const unsigned short thumb_op16[] = { T16_32_TAB };
11191 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11192 #undef X
11193
11194 #define X(a,b,c) 0x##c
11195 static const unsigned int thumb_op32[] = { T16_32_TAB };
11196 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11197 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11198 #undef X
11199 #undef T16_32_TAB
11200
11201 /* Thumb instruction encoders, in alphabetical order. */
11202
11203 /* ADDW or SUBW. */
11204
11205 static void
11206 do_t_add_sub_w (void)
11207 {
11208 int Rd, Rn;
11209
11210 Rd = inst.operands[0].reg;
11211 Rn = inst.operands[1].reg;
11212
11213 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11214 is the SP-{plus,minus}-immediate form of the instruction. */
11215 if (Rn == REG_SP)
11216 constraint (Rd == REG_PC, BAD_PC);
11217 else
11218 reject_bad_reg (Rd);
11219
11220 inst.instruction |= (Rn << 16) | (Rd << 8);
11221 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11222 }
11223
11224 /* Parse an add or subtract instruction. We get here with inst.instruction
11225 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11226
11227 static void
11228 do_t_add_sub (void)
11229 {
11230 int Rd, Rs, Rn;
11231
11232 Rd = inst.operands[0].reg;
11233 Rs = (inst.operands[1].present
11234 ? inst.operands[1].reg /* Rd, Rs, foo */
11235 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11236
11237 if (Rd == REG_PC)
11238 set_pred_insn_type_last ();
11239
11240 if (unified_syntax)
11241 {
11242 bfd_boolean flags;
11243 bfd_boolean narrow;
11244 int opcode;
11245
11246 flags = (inst.instruction == T_MNEM_adds
11247 || inst.instruction == T_MNEM_subs);
11248 if (flags)
11249 narrow = !in_pred_block ();
11250 else
11251 narrow = in_pred_block ();
11252 if (!inst.operands[2].isreg)
11253 {
11254 int add;
11255
11256 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11257 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11258
11259 add = (inst.instruction == T_MNEM_add
11260 || inst.instruction == T_MNEM_adds);
11261 opcode = 0;
11262 if (inst.size_req != 4)
11263 {
11264 /* Attempt to use a narrow opcode, with relaxation if
11265 appropriate. */
11266 if (Rd == REG_SP && Rs == REG_SP && !flags)
11267 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11268 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11269 opcode = T_MNEM_add_sp;
11270 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11271 opcode = T_MNEM_add_pc;
11272 else if (Rd <= 7 && Rs <= 7 && narrow)
11273 {
11274 if (flags)
11275 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11276 else
11277 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11278 }
11279 if (opcode)
11280 {
11281 inst.instruction = THUMB_OP16(opcode);
11282 inst.instruction |= (Rd << 4) | Rs;
11283 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11284 || (inst.relocs[0].type
11285 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11286 {
11287 if (inst.size_req == 2)
11288 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11289 else
11290 inst.relax = opcode;
11291 }
11292 }
11293 else
11294 constraint (inst.size_req == 2, BAD_HIREG);
11295 }
11296 if (inst.size_req == 4
11297 || (inst.size_req != 2 && !opcode))
11298 {
11299 constraint ((inst.relocs[0].type
11300 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11301 && (inst.relocs[0].type
11302 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11303 THUMB1_RELOC_ONLY);
11304 if (Rd == REG_PC)
11305 {
11306 constraint (add, BAD_PC);
11307 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11308 _("only SUBS PC, LR, #const allowed"));
11309 constraint (inst.relocs[0].exp.X_op != O_constant,
11310 _("expression too complex"));
11311 constraint (inst.relocs[0].exp.X_add_number < 0
11312 || inst.relocs[0].exp.X_add_number > 0xff,
11313 _("immediate value out of range"));
11314 inst.instruction = T2_SUBS_PC_LR
11315 | inst.relocs[0].exp.X_add_number;
11316 inst.relocs[0].type = BFD_RELOC_UNUSED;
11317 return;
11318 }
11319 else if (Rs == REG_PC)
11320 {
11321 /* Always use addw/subw. */
11322 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11323 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11324 }
11325 else
11326 {
11327 inst.instruction = THUMB_OP32 (inst.instruction);
11328 inst.instruction = (inst.instruction & 0xe1ffffff)
11329 | 0x10000000;
11330 if (flags)
11331 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11332 else
11333 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11334 }
11335 inst.instruction |= Rd << 8;
11336 inst.instruction |= Rs << 16;
11337 }
11338 }
11339 else
11340 {
11341 unsigned int value = inst.relocs[0].exp.X_add_number;
11342 unsigned int shift = inst.operands[2].shift_kind;
11343
11344 Rn = inst.operands[2].reg;
11345 /* See if we can do this with a 16-bit instruction. */
11346 if (!inst.operands[2].shifted && inst.size_req != 4)
11347 {
11348 if (Rd > 7 || Rs > 7 || Rn > 7)
11349 narrow = FALSE;
11350
11351 if (narrow)
11352 {
11353 inst.instruction = ((inst.instruction == T_MNEM_adds
11354 || inst.instruction == T_MNEM_add)
11355 ? T_OPCODE_ADD_R3
11356 : T_OPCODE_SUB_R3);
11357 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11358 return;
11359 }
11360
11361 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11362 {
11363 /* Thumb-1 cores (except v6-M) require at least one high
11364 register in a narrow non flag setting add. */
11365 if (Rd > 7 || Rn > 7
11366 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11367 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11368 {
11369 if (Rd == Rn)
11370 {
11371 Rn = Rs;
11372 Rs = Rd;
11373 }
11374 inst.instruction = T_OPCODE_ADD_HI;
11375 inst.instruction |= (Rd & 8) << 4;
11376 inst.instruction |= (Rd & 7);
11377 inst.instruction |= Rn << 3;
11378 return;
11379 }
11380 }
11381 }
11382
11383 constraint (Rd == REG_PC, BAD_PC);
11384 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11385 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11386 constraint (Rs == REG_PC, BAD_PC);
11387 reject_bad_reg (Rn);
11388
11389 /* If we get here, it can't be done in 16 bits. */
11390 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11391 _("shift must be constant"));
11392 inst.instruction = THUMB_OP32 (inst.instruction);
11393 inst.instruction |= Rd << 8;
11394 inst.instruction |= Rs << 16;
11395 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11396 _("shift value over 3 not allowed in thumb mode"));
11397 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11398 _("only LSL shift allowed in thumb mode"));
11399 encode_thumb32_shifted_operand (2);
11400 }
11401 }
11402 else
11403 {
11404 constraint (inst.instruction == T_MNEM_adds
11405 || inst.instruction == T_MNEM_subs,
11406 BAD_THUMB32);
11407
11408 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11409 {
11410 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11411 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11412 BAD_HIREG);
11413
11414 inst.instruction = (inst.instruction == T_MNEM_add
11415 ? 0x0000 : 0x8000);
11416 inst.instruction |= (Rd << 4) | Rs;
11417 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11418 return;
11419 }
11420
11421 Rn = inst.operands[2].reg;
11422 constraint (inst.operands[2].shifted, _("unshifted register required"));
11423
11424 /* We now have Rd, Rs, and Rn set to registers. */
11425 if (Rd > 7 || Rs > 7 || Rn > 7)
11426 {
11427 /* Can't do this for SUB. */
11428 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11429 inst.instruction = T_OPCODE_ADD_HI;
11430 inst.instruction |= (Rd & 8) << 4;
11431 inst.instruction |= (Rd & 7);
11432 if (Rs == Rd)
11433 inst.instruction |= Rn << 3;
11434 else if (Rn == Rd)
11435 inst.instruction |= Rs << 3;
11436 else
11437 constraint (1, _("dest must overlap one source register"));
11438 }
11439 else
11440 {
11441 inst.instruction = (inst.instruction == T_MNEM_add
11442 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11443 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11444 }
11445 }
11446 }
11447
11448 static void
11449 do_t_adr (void)
11450 {
11451 unsigned Rd;
11452
11453 Rd = inst.operands[0].reg;
11454 reject_bad_reg (Rd);
11455
11456 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11457 {
11458 /* Defer to section relaxation. */
11459 inst.relax = inst.instruction;
11460 inst.instruction = THUMB_OP16 (inst.instruction);
11461 inst.instruction |= Rd << 4;
11462 }
11463 else if (unified_syntax && inst.size_req != 2)
11464 {
11465 /* Generate a 32-bit opcode. */
11466 inst.instruction = THUMB_OP32 (inst.instruction);
11467 inst.instruction |= Rd << 8;
11468 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11469 inst.relocs[0].pc_rel = 1;
11470 }
11471 else
11472 {
11473 /* Generate a 16-bit opcode. */
11474 inst.instruction = THUMB_OP16 (inst.instruction);
11475 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11476 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11477 inst.relocs[0].pc_rel = 1;
11478 inst.instruction |= Rd << 4;
11479 }
11480
11481 if (inst.relocs[0].exp.X_op == O_symbol
11482 && inst.relocs[0].exp.X_add_symbol != NULL
11483 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11484 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11485 inst.relocs[0].exp.X_add_number += 1;
11486 }
11487
11488 /* Arithmetic instructions for which there is just one 16-bit
11489 instruction encoding, and it allows only two low registers.
11490 For maximal compatibility with ARM syntax, we allow three register
11491 operands even when Thumb-32 instructions are not available, as long
11492 as the first two are identical. For instance, both "sbc r0,r1" and
11493 "sbc r0,r0,r1" are allowed. */
11494 static void
11495 do_t_arit3 (void)
11496 {
11497 int Rd, Rs, Rn;
11498
11499 Rd = inst.operands[0].reg;
11500 Rs = (inst.operands[1].present
11501 ? inst.operands[1].reg /* Rd, Rs, foo */
11502 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11503 Rn = inst.operands[2].reg;
11504
11505 reject_bad_reg (Rd);
11506 reject_bad_reg (Rs);
11507 if (inst.operands[2].isreg)
11508 reject_bad_reg (Rn);
11509
11510 if (unified_syntax)
11511 {
11512 if (!inst.operands[2].isreg)
11513 {
11514 /* For an immediate, we always generate a 32-bit opcode;
11515 section relaxation will shrink it later if possible. */
11516 inst.instruction = THUMB_OP32 (inst.instruction);
11517 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11518 inst.instruction |= Rd << 8;
11519 inst.instruction |= Rs << 16;
11520 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11521 }
11522 else
11523 {
11524 bfd_boolean narrow;
11525
11526 /* See if we can do this with a 16-bit instruction. */
11527 if (THUMB_SETS_FLAGS (inst.instruction))
11528 narrow = !in_pred_block ();
11529 else
11530 narrow = in_pred_block ();
11531
11532 if (Rd > 7 || Rn > 7 || Rs > 7)
11533 narrow = FALSE;
11534 if (inst.operands[2].shifted)
11535 narrow = FALSE;
11536 if (inst.size_req == 4)
11537 narrow = FALSE;
11538
11539 if (narrow
11540 && Rd == Rs)
11541 {
11542 inst.instruction = THUMB_OP16 (inst.instruction);
11543 inst.instruction |= Rd;
11544 inst.instruction |= Rn << 3;
11545 return;
11546 }
11547
11548 /* If we get here, it can't be done in 16 bits. */
11549 constraint (inst.operands[2].shifted
11550 && inst.operands[2].immisreg,
11551 _("shift must be constant"));
11552 inst.instruction = THUMB_OP32 (inst.instruction);
11553 inst.instruction |= Rd << 8;
11554 inst.instruction |= Rs << 16;
11555 encode_thumb32_shifted_operand (2);
11556 }
11557 }
11558 else
11559 {
11560 /* On its face this is a lie - the instruction does set the
11561 flags. However, the only supported mnemonic in this mode
11562 says it doesn't. */
11563 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11564
11565 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11566 _("unshifted register required"));
11567 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11568 constraint (Rd != Rs,
11569 _("dest and source1 must be the same register"));
11570
11571 inst.instruction = THUMB_OP16 (inst.instruction);
11572 inst.instruction |= Rd;
11573 inst.instruction |= Rn << 3;
11574 }
11575 }
11576
11577 /* Similarly, but for instructions where the arithmetic operation is
11578 commutative, so we can allow either of them to be different from
11579 the destination operand in a 16-bit instruction. For instance, all
11580 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11581 accepted. */
11582 static void
11583 do_t_arit3c (void)
11584 {
11585 int Rd, Rs, Rn;
11586
11587 Rd = inst.operands[0].reg;
11588 Rs = (inst.operands[1].present
11589 ? inst.operands[1].reg /* Rd, Rs, foo */
11590 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11591 Rn = inst.operands[2].reg;
11592
11593 reject_bad_reg (Rd);
11594 reject_bad_reg (Rs);
11595 if (inst.operands[2].isreg)
11596 reject_bad_reg (Rn);
11597
11598 if (unified_syntax)
11599 {
11600 if (!inst.operands[2].isreg)
11601 {
11602 /* For an immediate, we always generate a 32-bit opcode;
11603 section relaxation will shrink it later if possible. */
11604 inst.instruction = THUMB_OP32 (inst.instruction);
11605 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11606 inst.instruction |= Rd << 8;
11607 inst.instruction |= Rs << 16;
11608 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11609 }
11610 else
11611 {
11612 bfd_boolean narrow;
11613
11614 /* See if we can do this with a 16-bit instruction. */
11615 if (THUMB_SETS_FLAGS (inst.instruction))
11616 narrow = !in_pred_block ();
11617 else
11618 narrow = in_pred_block ();
11619
11620 if (Rd > 7 || Rn > 7 || Rs > 7)
11621 narrow = FALSE;
11622 if (inst.operands[2].shifted)
11623 narrow = FALSE;
11624 if (inst.size_req == 4)
11625 narrow = FALSE;
11626
11627 if (narrow)
11628 {
11629 if (Rd == Rs)
11630 {
11631 inst.instruction = THUMB_OP16 (inst.instruction);
11632 inst.instruction |= Rd;
11633 inst.instruction |= Rn << 3;
11634 return;
11635 }
11636 if (Rd == Rn)
11637 {
11638 inst.instruction = THUMB_OP16 (inst.instruction);
11639 inst.instruction |= Rd;
11640 inst.instruction |= Rs << 3;
11641 return;
11642 }
11643 }
11644
11645 /* If we get here, it can't be done in 16 bits. */
11646 constraint (inst.operands[2].shifted
11647 && inst.operands[2].immisreg,
11648 _("shift must be constant"));
11649 inst.instruction = THUMB_OP32 (inst.instruction);
11650 inst.instruction |= Rd << 8;
11651 inst.instruction |= Rs << 16;
11652 encode_thumb32_shifted_operand (2);
11653 }
11654 }
11655 else
11656 {
11657 /* On its face this is a lie - the instruction does set the
11658 flags. However, the only supported mnemonic in this mode
11659 says it doesn't. */
11660 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11661
11662 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11663 _("unshifted register required"));
11664 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11665
11666 inst.instruction = THUMB_OP16 (inst.instruction);
11667 inst.instruction |= Rd;
11668
11669 if (Rd == Rs)
11670 inst.instruction |= Rn << 3;
11671 else if (Rd == Rn)
11672 inst.instruction |= Rs << 3;
11673 else
11674 constraint (1, _("dest must overlap one source register"));
11675 }
11676 }
11677
11678 static void
11679 do_t_bfc (void)
11680 {
11681 unsigned Rd;
11682 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11683 constraint (msb > 32, _("bit-field extends past end of register"));
11684 /* The instruction encoding stores the LSB and MSB,
11685 not the LSB and width. */
11686 Rd = inst.operands[0].reg;
11687 reject_bad_reg (Rd);
11688 inst.instruction |= Rd << 8;
11689 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11690 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11691 inst.instruction |= msb - 1;
11692 }
11693
11694 static void
11695 do_t_bfi (void)
11696 {
11697 int Rd, Rn;
11698 unsigned int msb;
11699
11700 Rd = inst.operands[0].reg;
11701 reject_bad_reg (Rd);
11702
11703 /* #0 in second position is alternative syntax for bfc, which is
11704 the same instruction but with REG_PC in the Rm field. */
11705 if (!inst.operands[1].isreg)
11706 Rn = REG_PC;
11707 else
11708 {
11709 Rn = inst.operands[1].reg;
11710 reject_bad_reg (Rn);
11711 }
11712
11713 msb = inst.operands[2].imm + inst.operands[3].imm;
11714 constraint (msb > 32, _("bit-field extends past end of register"));
11715 /* The instruction encoding stores the LSB and MSB,
11716 not the LSB and width. */
11717 inst.instruction |= Rd << 8;
11718 inst.instruction |= Rn << 16;
11719 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11720 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11721 inst.instruction |= msb - 1;
11722 }
11723
11724 static void
11725 do_t_bfx (void)
11726 {
11727 unsigned Rd, Rn;
11728
11729 Rd = inst.operands[0].reg;
11730 Rn = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rn);
11734
11735 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11736 _("bit-field extends past end of register"));
11737 inst.instruction |= Rd << 8;
11738 inst.instruction |= Rn << 16;
11739 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11740 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11741 inst.instruction |= inst.operands[3].imm - 1;
11742 }
11743
11744 /* ARM V5 Thumb BLX (argument parse)
11745 BLX <target_addr> which is BLX(1)
11746 BLX <Rm> which is BLX(2)
11747 Unfortunately, there are two different opcodes for this mnemonic.
11748 So, the insns[].value is not used, and the code here zaps values
11749 into inst.instruction.
11750
11751 ??? How to take advantage of the additional two bits of displacement
11752 available in Thumb32 mode? Need new relocation? */
11753
11754 static void
11755 do_t_blx (void)
11756 {
11757 set_pred_insn_type_last ();
11758
11759 if (inst.operands[0].isreg)
11760 {
11761 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11762 /* We have a register, so this is BLX(2). */
11763 inst.instruction |= inst.operands[0].reg << 3;
11764 }
11765 else
11766 {
11767 /* No register. This must be BLX(1). */
11768 inst.instruction = 0xf000e800;
11769 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11770 }
11771 }
11772
11773 static void
11774 do_t_branch (void)
11775 {
11776 int opcode;
11777 int cond;
11778 bfd_reloc_code_real_type reloc;
11779
11780 cond = inst.cond;
11781 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11782
11783 if (in_pred_block ())
11784 {
11785 /* Conditional branches inside IT blocks are encoded as unconditional
11786 branches. */
11787 cond = COND_ALWAYS;
11788 }
11789 else
11790 cond = inst.cond;
11791
11792 if (cond != COND_ALWAYS)
11793 opcode = T_MNEM_bcond;
11794 else
11795 opcode = inst.instruction;
11796
11797 if (unified_syntax
11798 && (inst.size_req == 4
11799 || (inst.size_req != 2
11800 && (inst.operands[0].hasreloc
11801 || inst.relocs[0].exp.X_op == O_constant))))
11802 {
11803 inst.instruction = THUMB_OP32(opcode);
11804 if (cond == COND_ALWAYS)
11805 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11806 else
11807 {
11808 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11809 _("selected architecture does not support "
11810 "wide conditional branch instruction"));
11811
11812 gas_assert (cond != 0xF);
11813 inst.instruction |= cond << 22;
11814 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11815 }
11816 }
11817 else
11818 {
11819 inst.instruction = THUMB_OP16(opcode);
11820 if (cond == COND_ALWAYS)
11821 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11822 else
11823 {
11824 inst.instruction |= cond << 8;
11825 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11826 }
11827 /* Allow section relaxation. */
11828 if (unified_syntax && inst.size_req != 2)
11829 inst.relax = opcode;
11830 }
11831 inst.relocs[0].type = reloc;
11832 inst.relocs[0].pc_rel = 1;
11833 }
11834
11835 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11836 between the two is the maximum immediate allowed - which is passed in
11837 RANGE. */
11838 static void
11839 do_t_bkpt_hlt1 (int range)
11840 {
11841 constraint (inst.cond != COND_ALWAYS,
11842 _("instruction is always unconditional"));
11843 if (inst.operands[0].present)
11844 {
11845 constraint (inst.operands[0].imm > range,
11846 _("immediate value out of range"));
11847 inst.instruction |= inst.operands[0].imm;
11848 }
11849
11850 set_pred_insn_type (NEUTRAL_IT_INSN);
11851 }
11852
11853 static void
11854 do_t_hlt (void)
11855 {
11856 do_t_bkpt_hlt1 (63);
11857 }
11858
11859 static void
11860 do_t_bkpt (void)
11861 {
11862 do_t_bkpt_hlt1 (255);
11863 }
11864
11865 static void
11866 do_t_branch23 (void)
11867 {
11868 set_pred_insn_type_last ();
11869 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11870
11871 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11872 this file. We used to simply ignore the PLT reloc type here --
11873 the branch encoding is now needed to deal with TLSCALL relocs.
11874 So if we see a PLT reloc now, put it back to how it used to be to
11875 keep the preexisting behaviour. */
11876 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11877 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11878
11879 #if defined(OBJ_COFF)
11880 /* If the destination of the branch is a defined symbol which does not have
11881 the THUMB_FUNC attribute, then we must be calling a function which has
11882 the (interfacearm) attribute. We look for the Thumb entry point to that
11883 function and change the branch to refer to that function instead. */
11884 if ( inst.relocs[0].exp.X_op == O_symbol
11885 && inst.relocs[0].exp.X_add_symbol != NULL
11886 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11887 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11888 inst.relocs[0].exp.X_add_symbol
11889 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11890 #endif
11891 }
11892
11893 static void
11894 do_t_bx (void)
11895 {
11896 set_pred_insn_type_last ();
11897 inst.instruction |= inst.operands[0].reg << 3;
11898 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11899 should cause the alignment to be checked once it is known. This is
11900 because BX PC only works if the instruction is word aligned. */
11901 }
11902
11903 static void
11904 do_t_bxj (void)
11905 {
11906 int Rm;
11907
11908 set_pred_insn_type_last ();
11909 Rm = inst.operands[0].reg;
11910 reject_bad_reg (Rm);
11911 inst.instruction |= Rm << 16;
11912 }
11913
11914 static void
11915 do_t_clz (void)
11916 {
11917 unsigned Rd;
11918 unsigned Rm;
11919
11920 Rd = inst.operands[0].reg;
11921 Rm = inst.operands[1].reg;
11922
11923 reject_bad_reg (Rd);
11924 reject_bad_reg (Rm);
11925
11926 inst.instruction |= Rd << 8;
11927 inst.instruction |= Rm << 16;
11928 inst.instruction |= Rm;
11929 }
11930
11931 static void
11932 do_t_csdb (void)
11933 {
11934 set_pred_insn_type (OUTSIDE_PRED_INSN);
11935 }
11936
11937 static void
11938 do_t_cps (void)
11939 {
11940 set_pred_insn_type (OUTSIDE_PRED_INSN);
11941 inst.instruction |= inst.operands[0].imm;
11942 }
11943
11944 static void
11945 do_t_cpsi (void)
11946 {
11947 set_pred_insn_type (OUTSIDE_PRED_INSN);
11948 if (unified_syntax
11949 && (inst.operands[1].present || inst.size_req == 4)
11950 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11951 {
11952 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11953 inst.instruction = 0xf3af8000;
11954 inst.instruction |= imod << 9;
11955 inst.instruction |= inst.operands[0].imm << 5;
11956 if (inst.operands[1].present)
11957 inst.instruction |= 0x100 | inst.operands[1].imm;
11958 }
11959 else
11960 {
11961 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11962 && (inst.operands[0].imm & 4),
11963 _("selected processor does not support 'A' form "
11964 "of this instruction"));
11965 constraint (inst.operands[1].present || inst.size_req == 4,
11966 _("Thumb does not support the 2-argument "
11967 "form of this instruction"));
11968 inst.instruction |= inst.operands[0].imm;
11969 }
11970 }
11971
11972 /* THUMB CPY instruction (argument parse). */
11973
11974 static void
11975 do_t_cpy (void)
11976 {
11977 if (inst.size_req == 4)
11978 {
11979 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11980 inst.instruction |= inst.operands[0].reg << 8;
11981 inst.instruction |= inst.operands[1].reg;
11982 }
11983 else
11984 {
11985 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11986 inst.instruction |= (inst.operands[0].reg & 0x7);
11987 inst.instruction |= inst.operands[1].reg << 3;
11988 }
11989 }
11990
11991 static void
11992 do_t_cbz (void)
11993 {
11994 set_pred_insn_type (OUTSIDE_PRED_INSN);
11995 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11996 inst.instruction |= inst.operands[0].reg;
11997 inst.relocs[0].pc_rel = 1;
11998 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11999 }
12000
12001 static void
12002 do_t_dbg (void)
12003 {
12004 inst.instruction |= inst.operands[0].imm;
12005 }
12006
12007 static void
12008 do_t_div (void)
12009 {
12010 unsigned Rd, Rn, Rm;
12011
12012 Rd = inst.operands[0].reg;
12013 Rn = (inst.operands[1].present
12014 ? inst.operands[1].reg : Rd);
12015 Rm = inst.operands[2].reg;
12016
12017 reject_bad_reg (Rd);
12018 reject_bad_reg (Rn);
12019 reject_bad_reg (Rm);
12020
12021 inst.instruction |= Rd << 8;
12022 inst.instruction |= Rn << 16;
12023 inst.instruction |= Rm;
12024 }
12025
12026 static void
12027 do_t_hint (void)
12028 {
12029 if (unified_syntax && inst.size_req == 4)
12030 inst.instruction = THUMB_OP32 (inst.instruction);
12031 else
12032 inst.instruction = THUMB_OP16 (inst.instruction);
12033 }
12034
12035 static void
12036 do_t_it (void)
12037 {
12038 unsigned int cond = inst.operands[0].imm;
12039
12040 set_pred_insn_type (IT_INSN);
12041 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12042 now_pred.cc = cond;
12043 now_pred.warn_deprecated = FALSE;
12044 now_pred.type = SCALAR_PRED;
12045
12046 /* If the condition is a negative condition, invert the mask. */
12047 if ((cond & 0x1) == 0x0)
12048 {
12049 unsigned int mask = inst.instruction & 0x000f;
12050
12051 if ((mask & 0x7) == 0)
12052 {
12053 /* No conversion needed. */
12054 now_pred.block_length = 1;
12055 }
12056 else if ((mask & 0x3) == 0)
12057 {
12058 mask ^= 0x8;
12059 now_pred.block_length = 2;
12060 }
12061 else if ((mask & 0x1) == 0)
12062 {
12063 mask ^= 0xC;
12064 now_pred.block_length = 3;
12065 }
12066 else
12067 {
12068 mask ^= 0xE;
12069 now_pred.block_length = 4;
12070 }
12071
12072 inst.instruction &= 0xfff0;
12073 inst.instruction |= mask;
12074 }
12075
12076 inst.instruction |= cond << 4;
12077 }
12078
12079 /* Helper function used for both push/pop and ldm/stm. */
12080 static void
12081 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12082 bfd_boolean writeback)
12083 {
12084 bfd_boolean load, store;
12085
12086 gas_assert (base != -1 || !do_io);
12087 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12088 store = do_io && !load;
12089
12090 if (mask & (1 << 13))
12091 inst.error = _("SP not allowed in register list");
12092
12093 if (do_io && (mask & (1 << base)) != 0
12094 && writeback)
12095 inst.error = _("having the base register in the register list when "
12096 "using write back is UNPREDICTABLE");
12097
12098 if (load)
12099 {
12100 if (mask & (1 << 15))
12101 {
12102 if (mask & (1 << 14))
12103 inst.error = _("LR and PC should not both be in register list");
12104 else
12105 set_pred_insn_type_last ();
12106 }
12107 }
12108 else if (store)
12109 {
12110 if (mask & (1 << 15))
12111 inst.error = _("PC not allowed in register list");
12112 }
12113
12114 if (do_io && ((mask & (mask - 1)) == 0))
12115 {
12116 /* Single register transfers implemented as str/ldr. */
12117 if (writeback)
12118 {
12119 if (inst.instruction & (1 << 23))
12120 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12121 else
12122 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12123 }
12124 else
12125 {
12126 if (inst.instruction & (1 << 23))
12127 inst.instruction = 0x00800000; /* ia -> [base] */
12128 else
12129 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12130 }
12131
12132 inst.instruction |= 0xf8400000;
12133 if (load)
12134 inst.instruction |= 0x00100000;
12135
12136 mask = ffs (mask) - 1;
12137 mask <<= 12;
12138 }
12139 else if (writeback)
12140 inst.instruction |= WRITE_BACK;
12141
12142 inst.instruction |= mask;
12143 if (do_io)
12144 inst.instruction |= base << 16;
12145 }
12146
12147 static void
12148 do_t_ldmstm (void)
12149 {
12150 /* This really doesn't seem worth it. */
12151 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12152 _("expression too complex"));
12153 constraint (inst.operands[1].writeback,
12154 _("Thumb load/store multiple does not support {reglist}^"));
12155
12156 if (unified_syntax)
12157 {
12158 bfd_boolean narrow;
12159 unsigned mask;
12160
12161 narrow = FALSE;
12162 /* See if we can use a 16-bit instruction. */
12163 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12164 && inst.size_req != 4
12165 && !(inst.operands[1].imm & ~0xff))
12166 {
12167 mask = 1 << inst.operands[0].reg;
12168
12169 if (inst.operands[0].reg <= 7)
12170 {
12171 if (inst.instruction == T_MNEM_stmia
12172 ? inst.operands[0].writeback
12173 : (inst.operands[0].writeback
12174 == !(inst.operands[1].imm & mask)))
12175 {
12176 if (inst.instruction == T_MNEM_stmia
12177 && (inst.operands[1].imm & mask)
12178 && (inst.operands[1].imm & (mask - 1)))
12179 as_warn (_("value stored for r%d is UNKNOWN"),
12180 inst.operands[0].reg);
12181
12182 inst.instruction = THUMB_OP16 (inst.instruction);
12183 inst.instruction |= inst.operands[0].reg << 8;
12184 inst.instruction |= inst.operands[1].imm;
12185 narrow = TRUE;
12186 }
12187 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12188 {
12189 /* This means 1 register in reg list one of 3 situations:
12190 1. Instruction is stmia, but without writeback.
12191 2. lmdia without writeback, but with Rn not in
12192 reglist.
12193 3. ldmia with writeback, but with Rn in reglist.
12194 Case 3 is UNPREDICTABLE behaviour, so we handle
12195 case 1 and 2 which can be converted into a 16-bit
12196 str or ldr. The SP cases are handled below. */
12197 unsigned long opcode;
12198 /* First, record an error for Case 3. */
12199 if (inst.operands[1].imm & mask
12200 && inst.operands[0].writeback)
12201 inst.error =
12202 _("having the base register in the register list when "
12203 "using write back is UNPREDICTABLE");
12204
12205 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12206 : T_MNEM_ldr);
12207 inst.instruction = THUMB_OP16 (opcode);
12208 inst.instruction |= inst.operands[0].reg << 3;
12209 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12210 narrow = TRUE;
12211 }
12212 }
12213 else if (inst.operands[0] .reg == REG_SP)
12214 {
12215 if (inst.operands[0].writeback)
12216 {
12217 inst.instruction =
12218 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12219 ? T_MNEM_push : T_MNEM_pop);
12220 inst.instruction |= inst.operands[1].imm;
12221 narrow = TRUE;
12222 }
12223 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12224 {
12225 inst.instruction =
12226 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12227 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12228 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12229 narrow = TRUE;
12230 }
12231 }
12232 }
12233
12234 if (!narrow)
12235 {
12236 if (inst.instruction < 0xffff)
12237 inst.instruction = THUMB_OP32 (inst.instruction);
12238
12239 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12240 inst.operands[1].imm,
12241 inst.operands[0].writeback);
12242 }
12243 }
12244 else
12245 {
12246 constraint (inst.operands[0].reg > 7
12247 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12248 constraint (inst.instruction != T_MNEM_ldmia
12249 && inst.instruction != T_MNEM_stmia,
12250 _("Thumb-2 instruction only valid in unified syntax"));
12251 if (inst.instruction == T_MNEM_stmia)
12252 {
12253 if (!inst.operands[0].writeback)
12254 as_warn (_("this instruction will write back the base register"));
12255 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12256 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12257 as_warn (_("value stored for r%d is UNKNOWN"),
12258 inst.operands[0].reg);
12259 }
12260 else
12261 {
12262 if (!inst.operands[0].writeback
12263 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12264 as_warn (_("this instruction will write back the base register"));
12265 else if (inst.operands[0].writeback
12266 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12267 as_warn (_("this instruction will not write back the base register"));
12268 }
12269
12270 inst.instruction = THUMB_OP16 (inst.instruction);
12271 inst.instruction |= inst.operands[0].reg << 8;
12272 inst.instruction |= inst.operands[1].imm;
12273 }
12274 }
12275
12276 static void
12277 do_t_ldrex (void)
12278 {
12279 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12280 || inst.operands[1].postind || inst.operands[1].writeback
12281 || inst.operands[1].immisreg || inst.operands[1].shifted
12282 || inst.operands[1].negative,
12283 BAD_ADDR_MODE);
12284
12285 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12286
12287 inst.instruction |= inst.operands[0].reg << 12;
12288 inst.instruction |= inst.operands[1].reg << 16;
12289 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12290 }
12291
12292 static void
12293 do_t_ldrexd (void)
12294 {
12295 if (!inst.operands[1].present)
12296 {
12297 constraint (inst.operands[0].reg == REG_LR,
12298 _("r14 not allowed as first register "
12299 "when second register is omitted"));
12300 inst.operands[1].reg = inst.operands[0].reg + 1;
12301 }
12302 constraint (inst.operands[0].reg == inst.operands[1].reg,
12303 BAD_OVERLAP);
12304
12305 inst.instruction |= inst.operands[0].reg << 12;
12306 inst.instruction |= inst.operands[1].reg << 8;
12307 inst.instruction |= inst.operands[2].reg << 16;
12308 }
12309
12310 static void
12311 do_t_ldst (void)
12312 {
12313 unsigned long opcode;
12314 int Rn;
12315
12316 if (inst.operands[0].isreg
12317 && !inst.operands[0].preind
12318 && inst.operands[0].reg == REG_PC)
12319 set_pred_insn_type_last ();
12320
12321 opcode = inst.instruction;
12322 if (unified_syntax)
12323 {
12324 if (!inst.operands[1].isreg)
12325 {
12326 if (opcode <= 0xffff)
12327 inst.instruction = THUMB_OP32 (opcode);
12328 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12329 return;
12330 }
12331 if (inst.operands[1].isreg
12332 && !inst.operands[1].writeback
12333 && !inst.operands[1].shifted && !inst.operands[1].postind
12334 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12335 && opcode <= 0xffff
12336 && inst.size_req != 4)
12337 {
12338 /* Insn may have a 16-bit form. */
12339 Rn = inst.operands[1].reg;
12340 if (inst.operands[1].immisreg)
12341 {
12342 inst.instruction = THUMB_OP16 (opcode);
12343 /* [Rn, Rik] */
12344 if (Rn <= 7 && inst.operands[1].imm <= 7)
12345 goto op16;
12346 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12347 reject_bad_reg (inst.operands[1].imm);
12348 }
12349 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12350 && opcode != T_MNEM_ldrsb)
12351 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12352 || (Rn == REG_SP && opcode == T_MNEM_str))
12353 {
12354 /* [Rn, #const] */
12355 if (Rn > 7)
12356 {
12357 if (Rn == REG_PC)
12358 {
12359 if (inst.relocs[0].pc_rel)
12360 opcode = T_MNEM_ldr_pc2;
12361 else
12362 opcode = T_MNEM_ldr_pc;
12363 }
12364 else
12365 {
12366 if (opcode == T_MNEM_ldr)
12367 opcode = T_MNEM_ldr_sp;
12368 else
12369 opcode = T_MNEM_str_sp;
12370 }
12371 inst.instruction = inst.operands[0].reg << 8;
12372 }
12373 else
12374 {
12375 inst.instruction = inst.operands[0].reg;
12376 inst.instruction |= inst.operands[1].reg << 3;
12377 }
12378 inst.instruction |= THUMB_OP16 (opcode);
12379 if (inst.size_req == 2)
12380 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12381 else
12382 inst.relax = opcode;
12383 return;
12384 }
12385 }
12386 /* Definitely a 32-bit variant. */
12387
12388 /* Warning for Erratum 752419. */
12389 if (opcode == T_MNEM_ldr
12390 && inst.operands[0].reg == REG_SP
12391 && inst.operands[1].writeback == 1
12392 && !inst.operands[1].immisreg)
12393 {
12394 if (no_cpu_selected ()
12395 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12396 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12397 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12398 as_warn (_("This instruction may be unpredictable "
12399 "if executed on M-profile cores "
12400 "with interrupts enabled."));
12401 }
12402
12403 /* Do some validations regarding addressing modes. */
12404 if (inst.operands[1].immisreg)
12405 reject_bad_reg (inst.operands[1].imm);
12406
12407 constraint (inst.operands[1].writeback == 1
12408 && inst.operands[0].reg == inst.operands[1].reg,
12409 BAD_OVERLAP);
12410
12411 inst.instruction = THUMB_OP32 (opcode);
12412 inst.instruction |= inst.operands[0].reg << 12;
12413 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12414 check_ldr_r15_aligned ();
12415 return;
12416 }
12417
12418 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12419
12420 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12421 {
12422 /* Only [Rn,Rm] is acceptable. */
12423 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12424 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12425 || inst.operands[1].postind || inst.operands[1].shifted
12426 || inst.operands[1].negative,
12427 _("Thumb does not support this addressing mode"));
12428 inst.instruction = THUMB_OP16 (inst.instruction);
12429 goto op16;
12430 }
12431
12432 inst.instruction = THUMB_OP16 (inst.instruction);
12433 if (!inst.operands[1].isreg)
12434 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12435 return;
12436
12437 constraint (!inst.operands[1].preind
12438 || inst.operands[1].shifted
12439 || inst.operands[1].writeback,
12440 _("Thumb does not support this addressing mode"));
12441 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12442 {
12443 constraint (inst.instruction & 0x0600,
12444 _("byte or halfword not valid for base register"));
12445 constraint (inst.operands[1].reg == REG_PC
12446 && !(inst.instruction & THUMB_LOAD_BIT),
12447 _("r15 based store not allowed"));
12448 constraint (inst.operands[1].immisreg,
12449 _("invalid base register for register offset"));
12450
12451 if (inst.operands[1].reg == REG_PC)
12452 inst.instruction = T_OPCODE_LDR_PC;
12453 else if (inst.instruction & THUMB_LOAD_BIT)
12454 inst.instruction = T_OPCODE_LDR_SP;
12455 else
12456 inst.instruction = T_OPCODE_STR_SP;
12457
12458 inst.instruction |= inst.operands[0].reg << 8;
12459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12460 return;
12461 }
12462
12463 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12464 if (!inst.operands[1].immisreg)
12465 {
12466 /* Immediate offset. */
12467 inst.instruction |= inst.operands[0].reg;
12468 inst.instruction |= inst.operands[1].reg << 3;
12469 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12470 return;
12471 }
12472
12473 /* Register offset. */
12474 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12475 constraint (inst.operands[1].negative,
12476 _("Thumb does not support this addressing mode"));
12477
12478 op16:
12479 switch (inst.instruction)
12480 {
12481 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12482 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12483 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12484 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12485 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12486 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12487 case 0x5600 /* ldrsb */:
12488 case 0x5e00 /* ldrsh */: break;
12489 default: abort ();
12490 }
12491
12492 inst.instruction |= inst.operands[0].reg;
12493 inst.instruction |= inst.operands[1].reg << 3;
12494 inst.instruction |= inst.operands[1].imm << 6;
12495 }
12496
12497 static void
12498 do_t_ldstd (void)
12499 {
12500 if (!inst.operands[1].present)
12501 {
12502 inst.operands[1].reg = inst.operands[0].reg + 1;
12503 constraint (inst.operands[0].reg == REG_LR,
12504 _("r14 not allowed here"));
12505 constraint (inst.operands[0].reg == REG_R12,
12506 _("r12 not allowed here"));
12507 }
12508
12509 if (inst.operands[2].writeback
12510 && (inst.operands[0].reg == inst.operands[2].reg
12511 || inst.operands[1].reg == inst.operands[2].reg))
12512 as_warn (_("base register written back, and overlaps "
12513 "one of transfer registers"));
12514
12515 inst.instruction |= inst.operands[0].reg << 12;
12516 inst.instruction |= inst.operands[1].reg << 8;
12517 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12518 }
12519
12520 static void
12521 do_t_ldstt (void)
12522 {
12523 inst.instruction |= inst.operands[0].reg << 12;
12524 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12525 }
12526
12527 static void
12528 do_t_mla (void)
12529 {
12530 unsigned Rd, Rn, Rm, Ra;
12531
12532 Rd = inst.operands[0].reg;
12533 Rn = inst.operands[1].reg;
12534 Rm = inst.operands[2].reg;
12535 Ra = inst.operands[3].reg;
12536
12537 reject_bad_reg (Rd);
12538 reject_bad_reg (Rn);
12539 reject_bad_reg (Rm);
12540 reject_bad_reg (Ra);
12541
12542 inst.instruction |= Rd << 8;
12543 inst.instruction |= Rn << 16;
12544 inst.instruction |= Rm;
12545 inst.instruction |= Ra << 12;
12546 }
12547
12548 static void
12549 do_t_mlal (void)
12550 {
12551 unsigned RdLo, RdHi, Rn, Rm;
12552
12553 RdLo = inst.operands[0].reg;
12554 RdHi = inst.operands[1].reg;
12555 Rn = inst.operands[2].reg;
12556 Rm = inst.operands[3].reg;
12557
12558 reject_bad_reg (RdLo);
12559 reject_bad_reg (RdHi);
12560 reject_bad_reg (Rn);
12561 reject_bad_reg (Rm);
12562
12563 inst.instruction |= RdLo << 12;
12564 inst.instruction |= RdHi << 8;
12565 inst.instruction |= Rn << 16;
12566 inst.instruction |= Rm;
12567 }
12568
12569 static void
12570 do_t_mov_cmp (void)
12571 {
12572 unsigned Rn, Rm;
12573
12574 Rn = inst.operands[0].reg;
12575 Rm = inst.operands[1].reg;
12576
12577 if (Rn == REG_PC)
12578 set_pred_insn_type_last ();
12579
12580 if (unified_syntax)
12581 {
12582 int r0off = (inst.instruction == T_MNEM_mov
12583 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12584 unsigned long opcode;
12585 bfd_boolean narrow;
12586 bfd_boolean low_regs;
12587
12588 low_regs = (Rn <= 7 && Rm <= 7);
12589 opcode = inst.instruction;
12590 if (in_pred_block ())
12591 narrow = opcode != T_MNEM_movs;
12592 else
12593 narrow = opcode != T_MNEM_movs || low_regs;
12594 if (inst.size_req == 4
12595 || inst.operands[1].shifted)
12596 narrow = FALSE;
12597
12598 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12599 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12600 && !inst.operands[1].shifted
12601 && Rn == REG_PC
12602 && Rm == REG_LR)
12603 {
12604 inst.instruction = T2_SUBS_PC_LR;
12605 return;
12606 }
12607
12608 if (opcode == T_MNEM_cmp)
12609 {
12610 constraint (Rn == REG_PC, BAD_PC);
12611 if (narrow)
12612 {
12613 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12614 but valid. */
12615 warn_deprecated_sp (Rm);
12616 /* R15 was documented as a valid choice for Rm in ARMv6,
12617 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12618 tools reject R15, so we do too. */
12619 constraint (Rm == REG_PC, BAD_PC);
12620 }
12621 else
12622 reject_bad_reg (Rm);
12623 }
12624 else if (opcode == T_MNEM_mov
12625 || opcode == T_MNEM_movs)
12626 {
12627 if (inst.operands[1].isreg)
12628 {
12629 if (opcode == T_MNEM_movs)
12630 {
12631 reject_bad_reg (Rn);
12632 reject_bad_reg (Rm);
12633 }
12634 else if (narrow)
12635 {
12636 /* This is mov.n. */
12637 if ((Rn == REG_SP || Rn == REG_PC)
12638 && (Rm == REG_SP || Rm == REG_PC))
12639 {
12640 as_tsktsk (_("Use of r%u as a source register is "
12641 "deprecated when r%u is the destination "
12642 "register."), Rm, Rn);
12643 }
12644 }
12645 else
12646 {
12647 /* This is mov.w. */
12648 constraint (Rn == REG_PC, BAD_PC);
12649 constraint (Rm == REG_PC, BAD_PC);
12650 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12651 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12652 }
12653 }
12654 else
12655 reject_bad_reg (Rn);
12656 }
12657
12658 if (!inst.operands[1].isreg)
12659 {
12660 /* Immediate operand. */
12661 if (!in_pred_block () && opcode == T_MNEM_mov)
12662 narrow = 0;
12663 if (low_regs && narrow)
12664 {
12665 inst.instruction = THUMB_OP16 (opcode);
12666 inst.instruction |= Rn << 8;
12667 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12668 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12669 {
12670 if (inst.size_req == 2)
12671 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12672 else
12673 inst.relax = opcode;
12674 }
12675 }
12676 else
12677 {
12678 constraint ((inst.relocs[0].type
12679 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12680 && (inst.relocs[0].type
12681 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12682 THUMB1_RELOC_ONLY);
12683
12684 inst.instruction = THUMB_OP32 (inst.instruction);
12685 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12686 inst.instruction |= Rn << r0off;
12687 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12688 }
12689 }
12690 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12691 && (inst.instruction == T_MNEM_mov
12692 || inst.instruction == T_MNEM_movs))
12693 {
12694 /* Register shifts are encoded as separate shift instructions. */
12695 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12696
12697 if (in_pred_block ())
12698 narrow = !flags;
12699 else
12700 narrow = flags;
12701
12702 if (inst.size_req == 4)
12703 narrow = FALSE;
12704
12705 if (!low_regs || inst.operands[1].imm > 7)
12706 narrow = FALSE;
12707
12708 if (Rn != Rm)
12709 narrow = FALSE;
12710
12711 switch (inst.operands[1].shift_kind)
12712 {
12713 case SHIFT_LSL:
12714 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12715 break;
12716 case SHIFT_ASR:
12717 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12718 break;
12719 case SHIFT_LSR:
12720 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12721 break;
12722 case SHIFT_ROR:
12723 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12724 break;
12725 default:
12726 abort ();
12727 }
12728
12729 inst.instruction = opcode;
12730 if (narrow)
12731 {
12732 inst.instruction |= Rn;
12733 inst.instruction |= inst.operands[1].imm << 3;
12734 }
12735 else
12736 {
12737 if (flags)
12738 inst.instruction |= CONDS_BIT;
12739
12740 inst.instruction |= Rn << 8;
12741 inst.instruction |= Rm << 16;
12742 inst.instruction |= inst.operands[1].imm;
12743 }
12744 }
12745 else if (!narrow)
12746 {
12747 /* Some mov with immediate shift have narrow variants.
12748 Register shifts are handled above. */
12749 if (low_regs && inst.operands[1].shifted
12750 && (inst.instruction == T_MNEM_mov
12751 || inst.instruction == T_MNEM_movs))
12752 {
12753 if (in_pred_block ())
12754 narrow = (inst.instruction == T_MNEM_mov);
12755 else
12756 narrow = (inst.instruction == T_MNEM_movs);
12757 }
12758
12759 if (narrow)
12760 {
12761 switch (inst.operands[1].shift_kind)
12762 {
12763 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12764 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12765 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12766 default: narrow = FALSE; break;
12767 }
12768 }
12769
12770 if (narrow)
12771 {
12772 inst.instruction |= Rn;
12773 inst.instruction |= Rm << 3;
12774 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12775 }
12776 else
12777 {
12778 inst.instruction = THUMB_OP32 (inst.instruction);
12779 inst.instruction |= Rn << r0off;
12780 encode_thumb32_shifted_operand (1);
12781 }
12782 }
12783 else
12784 switch (inst.instruction)
12785 {
12786 case T_MNEM_mov:
12787 /* In v4t or v5t a move of two lowregs produces unpredictable
12788 results. Don't allow this. */
12789 if (low_regs)
12790 {
12791 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12792 "MOV Rd, Rs with two low registers is not "
12793 "permitted on this architecture");
12794 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12795 arm_ext_v6);
12796 }
12797
12798 inst.instruction = T_OPCODE_MOV_HR;
12799 inst.instruction |= (Rn & 0x8) << 4;
12800 inst.instruction |= (Rn & 0x7);
12801 inst.instruction |= Rm << 3;
12802 break;
12803
12804 case T_MNEM_movs:
12805 /* We know we have low registers at this point.
12806 Generate LSLS Rd, Rs, #0. */
12807 inst.instruction = T_OPCODE_LSL_I;
12808 inst.instruction |= Rn;
12809 inst.instruction |= Rm << 3;
12810 break;
12811
12812 case T_MNEM_cmp:
12813 if (low_regs)
12814 {
12815 inst.instruction = T_OPCODE_CMP_LR;
12816 inst.instruction |= Rn;
12817 inst.instruction |= Rm << 3;
12818 }
12819 else
12820 {
12821 inst.instruction = T_OPCODE_CMP_HR;
12822 inst.instruction |= (Rn & 0x8) << 4;
12823 inst.instruction |= (Rn & 0x7);
12824 inst.instruction |= Rm << 3;
12825 }
12826 break;
12827 }
12828 return;
12829 }
12830
12831 inst.instruction = THUMB_OP16 (inst.instruction);
12832
12833 /* PR 10443: Do not silently ignore shifted operands. */
12834 constraint (inst.operands[1].shifted,
12835 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12836
12837 if (inst.operands[1].isreg)
12838 {
12839 if (Rn < 8 && Rm < 8)
12840 {
12841 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12842 since a MOV instruction produces unpredictable results. */
12843 if (inst.instruction == T_OPCODE_MOV_I8)
12844 inst.instruction = T_OPCODE_ADD_I3;
12845 else
12846 inst.instruction = T_OPCODE_CMP_LR;
12847
12848 inst.instruction |= Rn;
12849 inst.instruction |= Rm << 3;
12850 }
12851 else
12852 {
12853 if (inst.instruction == T_OPCODE_MOV_I8)
12854 inst.instruction = T_OPCODE_MOV_HR;
12855 else
12856 inst.instruction = T_OPCODE_CMP_HR;
12857 do_t_cpy ();
12858 }
12859 }
12860 else
12861 {
12862 constraint (Rn > 7,
12863 _("only lo regs allowed with immediate"));
12864 inst.instruction |= Rn << 8;
12865 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12866 }
12867 }
12868
12869 static void
12870 do_t_mov16 (void)
12871 {
12872 unsigned Rd;
12873 bfd_vma imm;
12874 bfd_boolean top;
12875
12876 top = (inst.instruction & 0x00800000) != 0;
12877 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12878 {
12879 constraint (top, _(":lower16: not allowed in this instruction"));
12880 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12881 }
12882 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12883 {
12884 constraint (!top, _(":upper16: not allowed in this instruction"));
12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12886 }
12887
12888 Rd = inst.operands[0].reg;
12889 reject_bad_reg (Rd);
12890
12891 inst.instruction |= Rd << 8;
12892 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12893 {
12894 imm = inst.relocs[0].exp.X_add_number;
12895 inst.instruction |= (imm & 0xf000) << 4;
12896 inst.instruction |= (imm & 0x0800) << 15;
12897 inst.instruction |= (imm & 0x0700) << 4;
12898 inst.instruction |= (imm & 0x00ff);
12899 }
12900 }
12901
12902 static void
12903 do_t_mvn_tst (void)
12904 {
12905 unsigned Rn, Rm;
12906
12907 Rn = inst.operands[0].reg;
12908 Rm = inst.operands[1].reg;
12909
12910 if (inst.instruction == T_MNEM_cmp
12911 || inst.instruction == T_MNEM_cmn)
12912 constraint (Rn == REG_PC, BAD_PC);
12913 else
12914 reject_bad_reg (Rn);
12915 reject_bad_reg (Rm);
12916
12917 if (unified_syntax)
12918 {
12919 int r0off = (inst.instruction == T_MNEM_mvn
12920 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12921 bfd_boolean narrow;
12922
12923 if (inst.size_req == 4
12924 || inst.instruction > 0xffff
12925 || inst.operands[1].shifted
12926 || Rn > 7 || Rm > 7)
12927 narrow = FALSE;
12928 else if (inst.instruction == T_MNEM_cmn
12929 || inst.instruction == T_MNEM_tst)
12930 narrow = TRUE;
12931 else if (THUMB_SETS_FLAGS (inst.instruction))
12932 narrow = !in_pred_block ();
12933 else
12934 narrow = in_pred_block ();
12935
12936 if (!inst.operands[1].isreg)
12937 {
12938 /* For an immediate, we always generate a 32-bit opcode;
12939 section relaxation will shrink it later if possible. */
12940 if (inst.instruction < 0xffff)
12941 inst.instruction = THUMB_OP32 (inst.instruction);
12942 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12943 inst.instruction |= Rn << r0off;
12944 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12945 }
12946 else
12947 {
12948 /* See if we can do this with a 16-bit instruction. */
12949 if (narrow)
12950 {
12951 inst.instruction = THUMB_OP16 (inst.instruction);
12952 inst.instruction |= Rn;
12953 inst.instruction |= Rm << 3;
12954 }
12955 else
12956 {
12957 constraint (inst.operands[1].shifted
12958 && inst.operands[1].immisreg,
12959 _("shift must be constant"));
12960 if (inst.instruction < 0xffff)
12961 inst.instruction = THUMB_OP32 (inst.instruction);
12962 inst.instruction |= Rn << r0off;
12963 encode_thumb32_shifted_operand (1);
12964 }
12965 }
12966 }
12967 else
12968 {
12969 constraint (inst.instruction > 0xffff
12970 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12971 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12972 _("unshifted register required"));
12973 constraint (Rn > 7 || Rm > 7,
12974 BAD_HIREG);
12975
12976 inst.instruction = THUMB_OP16 (inst.instruction);
12977 inst.instruction |= Rn;
12978 inst.instruction |= Rm << 3;
12979 }
12980 }
12981
12982 static void
12983 do_t_mrs (void)
12984 {
12985 unsigned Rd;
12986
12987 if (do_vfp_nsyn_mrs () == SUCCESS)
12988 return;
12989
12990 Rd = inst.operands[0].reg;
12991 reject_bad_reg (Rd);
12992 inst.instruction |= Rd << 8;
12993
12994 if (inst.operands[1].isreg)
12995 {
12996 unsigned br = inst.operands[1].reg;
12997 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12998 as_bad (_("bad register for mrs"));
12999
13000 inst.instruction |= br & (0xf << 16);
13001 inst.instruction |= (br & 0x300) >> 4;
13002 inst.instruction |= (br & SPSR_BIT) >> 2;
13003 }
13004 else
13005 {
13006 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13007
13008 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13009 {
13010 /* PR gas/12698: The constraint is only applied for m_profile.
13011 If the user has specified -march=all, we want to ignore it as
13012 we are building for any CPU type, including non-m variants. */
13013 bfd_boolean m_profile =
13014 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13015 constraint ((flags != 0) && m_profile, _("selected processor does "
13016 "not support requested special purpose register"));
13017 }
13018 else
13019 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13020 devices). */
13021 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13022 _("'APSR', 'CPSR' or 'SPSR' expected"));
13023
13024 inst.instruction |= (flags & SPSR_BIT) >> 2;
13025 inst.instruction |= inst.operands[1].imm & 0xff;
13026 inst.instruction |= 0xf0000;
13027 }
13028 }
13029
13030 static void
13031 do_t_msr (void)
13032 {
13033 int flags;
13034 unsigned Rn;
13035
13036 if (do_vfp_nsyn_msr () == SUCCESS)
13037 return;
13038
13039 constraint (!inst.operands[1].isreg,
13040 _("Thumb encoding does not support an immediate here"));
13041
13042 if (inst.operands[0].isreg)
13043 flags = (int)(inst.operands[0].reg);
13044 else
13045 flags = inst.operands[0].imm;
13046
13047 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13048 {
13049 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13050
13051 /* PR gas/12698: The constraint is only applied for m_profile.
13052 If the user has specified -march=all, we want to ignore it as
13053 we are building for any CPU type, including non-m variants. */
13054 bfd_boolean m_profile =
13055 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13056 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13057 && (bits & ~(PSR_s | PSR_f)) != 0)
13058 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13059 && bits != PSR_f)) && m_profile,
13060 _("selected processor does not support requested special "
13061 "purpose register"));
13062 }
13063 else
13064 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13065 "requested special purpose register"));
13066
13067 Rn = inst.operands[1].reg;
13068 reject_bad_reg (Rn);
13069
13070 inst.instruction |= (flags & SPSR_BIT) >> 2;
13071 inst.instruction |= (flags & 0xf0000) >> 8;
13072 inst.instruction |= (flags & 0x300) >> 4;
13073 inst.instruction |= (flags & 0xff);
13074 inst.instruction |= Rn << 16;
13075 }
13076
13077 static void
13078 do_t_mul (void)
13079 {
13080 bfd_boolean narrow;
13081 unsigned Rd, Rn, Rm;
13082
13083 if (!inst.operands[2].present)
13084 inst.operands[2].reg = inst.operands[0].reg;
13085
13086 Rd = inst.operands[0].reg;
13087 Rn = inst.operands[1].reg;
13088 Rm = inst.operands[2].reg;
13089
13090 if (unified_syntax)
13091 {
13092 if (inst.size_req == 4
13093 || (Rd != Rn
13094 && Rd != Rm)
13095 || Rn > 7
13096 || Rm > 7)
13097 narrow = FALSE;
13098 else if (inst.instruction == T_MNEM_muls)
13099 narrow = !in_pred_block ();
13100 else
13101 narrow = in_pred_block ();
13102 }
13103 else
13104 {
13105 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13106 constraint (Rn > 7 || Rm > 7,
13107 BAD_HIREG);
13108 narrow = TRUE;
13109 }
13110
13111 if (narrow)
13112 {
13113 /* 16-bit MULS/Conditional MUL. */
13114 inst.instruction = THUMB_OP16 (inst.instruction);
13115 inst.instruction |= Rd;
13116
13117 if (Rd == Rn)
13118 inst.instruction |= Rm << 3;
13119 else if (Rd == Rm)
13120 inst.instruction |= Rn << 3;
13121 else
13122 constraint (1, _("dest must overlap one source register"));
13123 }
13124 else
13125 {
13126 constraint (inst.instruction != T_MNEM_mul,
13127 _("Thumb-2 MUL must not set flags"));
13128 /* 32-bit MUL. */
13129 inst.instruction = THUMB_OP32 (inst.instruction);
13130 inst.instruction |= Rd << 8;
13131 inst.instruction |= Rn << 16;
13132 inst.instruction |= Rm << 0;
13133
13134 reject_bad_reg (Rd);
13135 reject_bad_reg (Rn);
13136 reject_bad_reg (Rm);
13137 }
13138 }
13139
13140 static void
13141 do_t_mull (void)
13142 {
13143 unsigned RdLo, RdHi, Rn, Rm;
13144
13145 RdLo = inst.operands[0].reg;
13146 RdHi = inst.operands[1].reg;
13147 Rn = inst.operands[2].reg;
13148 Rm = inst.operands[3].reg;
13149
13150 reject_bad_reg (RdLo);
13151 reject_bad_reg (RdHi);
13152 reject_bad_reg (Rn);
13153 reject_bad_reg (Rm);
13154
13155 inst.instruction |= RdLo << 12;
13156 inst.instruction |= RdHi << 8;
13157 inst.instruction |= Rn << 16;
13158 inst.instruction |= Rm;
13159
13160 if (RdLo == RdHi)
13161 as_tsktsk (_("rdhi and rdlo must be different"));
13162 }
13163
13164 static void
13165 do_t_nop (void)
13166 {
13167 set_pred_insn_type (NEUTRAL_IT_INSN);
13168
13169 if (unified_syntax)
13170 {
13171 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13172 {
13173 inst.instruction = THUMB_OP32 (inst.instruction);
13174 inst.instruction |= inst.operands[0].imm;
13175 }
13176 else
13177 {
13178 /* PR9722: Check for Thumb2 availability before
13179 generating a thumb2 nop instruction. */
13180 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13181 {
13182 inst.instruction = THUMB_OP16 (inst.instruction);
13183 inst.instruction |= inst.operands[0].imm << 4;
13184 }
13185 else
13186 inst.instruction = 0x46c0;
13187 }
13188 }
13189 else
13190 {
13191 constraint (inst.operands[0].present,
13192 _("Thumb does not support NOP with hints"));
13193 inst.instruction = 0x46c0;
13194 }
13195 }
13196
13197 static void
13198 do_t_neg (void)
13199 {
13200 if (unified_syntax)
13201 {
13202 bfd_boolean narrow;
13203
13204 if (THUMB_SETS_FLAGS (inst.instruction))
13205 narrow = !in_pred_block ();
13206 else
13207 narrow = in_pred_block ();
13208 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13209 narrow = FALSE;
13210 if (inst.size_req == 4)
13211 narrow = FALSE;
13212
13213 if (!narrow)
13214 {
13215 inst.instruction = THUMB_OP32 (inst.instruction);
13216 inst.instruction |= inst.operands[0].reg << 8;
13217 inst.instruction |= inst.operands[1].reg << 16;
13218 }
13219 else
13220 {
13221 inst.instruction = THUMB_OP16 (inst.instruction);
13222 inst.instruction |= inst.operands[0].reg;
13223 inst.instruction |= inst.operands[1].reg << 3;
13224 }
13225 }
13226 else
13227 {
13228 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13229 BAD_HIREG);
13230 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13231
13232 inst.instruction = THUMB_OP16 (inst.instruction);
13233 inst.instruction |= inst.operands[0].reg;
13234 inst.instruction |= inst.operands[1].reg << 3;
13235 }
13236 }
13237
13238 static void
13239 do_t_orn (void)
13240 {
13241 unsigned Rd, Rn;
13242
13243 Rd = inst.operands[0].reg;
13244 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13245
13246 reject_bad_reg (Rd);
13247 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13248 reject_bad_reg (Rn);
13249
13250 inst.instruction |= Rd << 8;
13251 inst.instruction |= Rn << 16;
13252
13253 if (!inst.operands[2].isreg)
13254 {
13255 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13256 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13257 }
13258 else
13259 {
13260 unsigned Rm;
13261
13262 Rm = inst.operands[2].reg;
13263 reject_bad_reg (Rm);
13264
13265 constraint (inst.operands[2].shifted
13266 && inst.operands[2].immisreg,
13267 _("shift must be constant"));
13268 encode_thumb32_shifted_operand (2);
13269 }
13270 }
13271
13272 static void
13273 do_t_pkhbt (void)
13274 {
13275 unsigned Rd, Rn, Rm;
13276
13277 Rd = inst.operands[0].reg;
13278 Rn = inst.operands[1].reg;
13279 Rm = inst.operands[2].reg;
13280
13281 reject_bad_reg (Rd);
13282 reject_bad_reg (Rn);
13283 reject_bad_reg (Rm);
13284
13285 inst.instruction |= Rd << 8;
13286 inst.instruction |= Rn << 16;
13287 inst.instruction |= Rm;
13288 if (inst.operands[3].present)
13289 {
13290 unsigned int val = inst.relocs[0].exp.X_add_number;
13291 constraint (inst.relocs[0].exp.X_op != O_constant,
13292 _("expression too complex"));
13293 inst.instruction |= (val & 0x1c) << 10;
13294 inst.instruction |= (val & 0x03) << 6;
13295 }
13296 }
13297
13298 static void
13299 do_t_pkhtb (void)
13300 {
13301 if (!inst.operands[3].present)
13302 {
13303 unsigned Rtmp;
13304
13305 inst.instruction &= ~0x00000020;
13306
13307 /* PR 10168. Swap the Rm and Rn registers. */
13308 Rtmp = inst.operands[1].reg;
13309 inst.operands[1].reg = inst.operands[2].reg;
13310 inst.operands[2].reg = Rtmp;
13311 }
13312 do_t_pkhbt ();
13313 }
13314
13315 static void
13316 do_t_pld (void)
13317 {
13318 if (inst.operands[0].immisreg)
13319 reject_bad_reg (inst.operands[0].imm);
13320
13321 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13322 }
13323
13324 static void
13325 do_t_push_pop (void)
13326 {
13327 unsigned mask;
13328
13329 constraint (inst.operands[0].writeback,
13330 _("push/pop do not support {reglist}^"));
13331 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13332 _("expression too complex"));
13333
13334 mask = inst.operands[0].imm;
13335 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13336 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13337 else if (inst.size_req != 4
13338 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13339 ? REG_LR : REG_PC)))
13340 {
13341 inst.instruction = THUMB_OP16 (inst.instruction);
13342 inst.instruction |= THUMB_PP_PC_LR;
13343 inst.instruction |= mask & 0xff;
13344 }
13345 else if (unified_syntax)
13346 {
13347 inst.instruction = THUMB_OP32 (inst.instruction);
13348 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13349 }
13350 else
13351 {
13352 inst.error = _("invalid register list to push/pop instruction");
13353 return;
13354 }
13355 }
13356
13357 static void
13358 do_t_clrm (void)
13359 {
13360 if (unified_syntax)
13361 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13362 else
13363 {
13364 inst.error = _("invalid register list to push/pop instruction");
13365 return;
13366 }
13367 }
13368
13369 static void
13370 do_t_vscclrm (void)
13371 {
13372 if (inst.operands[0].issingle)
13373 {
13374 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13375 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13376 inst.instruction |= inst.operands[0].imm;
13377 }
13378 else
13379 {
13380 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13381 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13382 inst.instruction |= 1 << 8;
13383 inst.instruction |= inst.operands[0].imm << 1;
13384 }
13385 }
13386
13387 static void
13388 do_t_rbit (void)
13389 {
13390 unsigned Rd, Rm;
13391
13392 Rd = inst.operands[0].reg;
13393 Rm = inst.operands[1].reg;
13394
13395 reject_bad_reg (Rd);
13396 reject_bad_reg (Rm);
13397
13398 inst.instruction |= Rd << 8;
13399 inst.instruction |= Rm << 16;
13400 inst.instruction |= Rm;
13401 }
13402
13403 static void
13404 do_t_rev (void)
13405 {
13406 unsigned Rd, Rm;
13407
13408 Rd = inst.operands[0].reg;
13409 Rm = inst.operands[1].reg;
13410
13411 reject_bad_reg (Rd);
13412 reject_bad_reg (Rm);
13413
13414 if (Rd <= 7 && Rm <= 7
13415 && inst.size_req != 4)
13416 {
13417 inst.instruction = THUMB_OP16 (inst.instruction);
13418 inst.instruction |= Rd;
13419 inst.instruction |= Rm << 3;
13420 }
13421 else if (unified_syntax)
13422 {
13423 inst.instruction = THUMB_OP32 (inst.instruction);
13424 inst.instruction |= Rd << 8;
13425 inst.instruction |= Rm << 16;
13426 inst.instruction |= Rm;
13427 }
13428 else
13429 inst.error = BAD_HIREG;
13430 }
13431
13432 static void
13433 do_t_rrx (void)
13434 {
13435 unsigned Rd, Rm;
13436
13437 Rd = inst.operands[0].reg;
13438 Rm = inst.operands[1].reg;
13439
13440 reject_bad_reg (Rd);
13441 reject_bad_reg (Rm);
13442
13443 inst.instruction |= Rd << 8;
13444 inst.instruction |= Rm;
13445 }
13446
13447 static void
13448 do_t_rsb (void)
13449 {
13450 unsigned Rd, Rs;
13451
13452 Rd = inst.operands[0].reg;
13453 Rs = (inst.operands[1].present
13454 ? inst.operands[1].reg /* Rd, Rs, foo */
13455 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13456
13457 reject_bad_reg (Rd);
13458 reject_bad_reg (Rs);
13459 if (inst.operands[2].isreg)
13460 reject_bad_reg (inst.operands[2].reg);
13461
13462 inst.instruction |= Rd << 8;
13463 inst.instruction |= Rs << 16;
13464 if (!inst.operands[2].isreg)
13465 {
13466 bfd_boolean narrow;
13467
13468 if ((inst.instruction & 0x00100000) != 0)
13469 narrow = !in_pred_block ();
13470 else
13471 narrow = in_pred_block ();
13472
13473 if (Rd > 7 || Rs > 7)
13474 narrow = FALSE;
13475
13476 if (inst.size_req == 4 || !unified_syntax)
13477 narrow = FALSE;
13478
13479 if (inst.relocs[0].exp.X_op != O_constant
13480 || inst.relocs[0].exp.X_add_number != 0)
13481 narrow = FALSE;
13482
13483 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13484 relaxation, but it doesn't seem worth the hassle. */
13485 if (narrow)
13486 {
13487 inst.relocs[0].type = BFD_RELOC_UNUSED;
13488 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13489 inst.instruction |= Rs << 3;
13490 inst.instruction |= Rd;
13491 }
13492 else
13493 {
13494 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13495 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13496 }
13497 }
13498 else
13499 encode_thumb32_shifted_operand (2);
13500 }
13501
13502 static void
13503 do_t_setend (void)
13504 {
13505 if (warn_on_deprecated
13506 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13507 as_tsktsk (_("setend use is deprecated for ARMv8"));
13508
13509 set_pred_insn_type (OUTSIDE_PRED_INSN);
13510 if (inst.operands[0].imm)
13511 inst.instruction |= 0x8;
13512 }
13513
13514 static void
13515 do_t_shift (void)
13516 {
13517 if (!inst.operands[1].present)
13518 inst.operands[1].reg = inst.operands[0].reg;
13519
13520 if (unified_syntax)
13521 {
13522 bfd_boolean narrow;
13523 int shift_kind;
13524
13525 switch (inst.instruction)
13526 {
13527 case T_MNEM_asr:
13528 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13529 case T_MNEM_lsl:
13530 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13531 case T_MNEM_lsr:
13532 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13533 case T_MNEM_ror:
13534 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13535 default: abort ();
13536 }
13537
13538 if (THUMB_SETS_FLAGS (inst.instruction))
13539 narrow = !in_pred_block ();
13540 else
13541 narrow = in_pred_block ();
13542 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13543 narrow = FALSE;
13544 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13545 narrow = FALSE;
13546 if (inst.operands[2].isreg
13547 && (inst.operands[1].reg != inst.operands[0].reg
13548 || inst.operands[2].reg > 7))
13549 narrow = FALSE;
13550 if (inst.size_req == 4)
13551 narrow = FALSE;
13552
13553 reject_bad_reg (inst.operands[0].reg);
13554 reject_bad_reg (inst.operands[1].reg);
13555
13556 if (!narrow)
13557 {
13558 if (inst.operands[2].isreg)
13559 {
13560 reject_bad_reg (inst.operands[2].reg);
13561 inst.instruction = THUMB_OP32 (inst.instruction);
13562 inst.instruction |= inst.operands[0].reg << 8;
13563 inst.instruction |= inst.operands[1].reg << 16;
13564 inst.instruction |= inst.operands[2].reg;
13565
13566 /* PR 12854: Error on extraneous shifts. */
13567 constraint (inst.operands[2].shifted,
13568 _("extraneous shift as part of operand to shift insn"));
13569 }
13570 else
13571 {
13572 inst.operands[1].shifted = 1;
13573 inst.operands[1].shift_kind = shift_kind;
13574 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13575 ? T_MNEM_movs : T_MNEM_mov);
13576 inst.instruction |= inst.operands[0].reg << 8;
13577 encode_thumb32_shifted_operand (1);
13578 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13579 inst.relocs[0].type = BFD_RELOC_UNUSED;
13580 }
13581 }
13582 else
13583 {
13584 if (inst.operands[2].isreg)
13585 {
13586 switch (shift_kind)
13587 {
13588 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13589 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13590 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13591 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13592 default: abort ();
13593 }
13594
13595 inst.instruction |= inst.operands[0].reg;
13596 inst.instruction |= inst.operands[2].reg << 3;
13597
13598 /* PR 12854: Error on extraneous shifts. */
13599 constraint (inst.operands[2].shifted,
13600 _("extraneous shift as part of operand to shift insn"));
13601 }
13602 else
13603 {
13604 switch (shift_kind)
13605 {
13606 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13607 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13608 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13609 default: abort ();
13610 }
13611 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13612 inst.instruction |= inst.operands[0].reg;
13613 inst.instruction |= inst.operands[1].reg << 3;
13614 }
13615 }
13616 }
13617 else
13618 {
13619 constraint (inst.operands[0].reg > 7
13620 || inst.operands[1].reg > 7, BAD_HIREG);
13621 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13622
13623 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13624 {
13625 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13626 constraint (inst.operands[0].reg != inst.operands[1].reg,
13627 _("source1 and dest must be same register"));
13628
13629 switch (inst.instruction)
13630 {
13631 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13632 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13633 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13634 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13635 default: abort ();
13636 }
13637
13638 inst.instruction |= inst.operands[0].reg;
13639 inst.instruction |= inst.operands[2].reg << 3;
13640
13641 /* PR 12854: Error on extraneous shifts. */
13642 constraint (inst.operands[2].shifted,
13643 _("extraneous shift as part of operand to shift insn"));
13644 }
13645 else
13646 {
13647 switch (inst.instruction)
13648 {
13649 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13650 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13651 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13652 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13653 default: abort ();
13654 }
13655 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13656 inst.instruction |= inst.operands[0].reg;
13657 inst.instruction |= inst.operands[1].reg << 3;
13658 }
13659 }
13660 }
13661
13662 static void
13663 do_t_simd (void)
13664 {
13665 unsigned Rd, Rn, Rm;
13666
13667 Rd = inst.operands[0].reg;
13668 Rn = inst.operands[1].reg;
13669 Rm = inst.operands[2].reg;
13670
13671 reject_bad_reg (Rd);
13672 reject_bad_reg (Rn);
13673 reject_bad_reg (Rm);
13674
13675 inst.instruction |= Rd << 8;
13676 inst.instruction |= Rn << 16;
13677 inst.instruction |= Rm;
13678 }
13679
13680 static void
13681 do_t_simd2 (void)
13682 {
13683 unsigned Rd, Rn, Rm;
13684
13685 Rd = inst.operands[0].reg;
13686 Rm = inst.operands[1].reg;
13687 Rn = inst.operands[2].reg;
13688
13689 reject_bad_reg (Rd);
13690 reject_bad_reg (Rn);
13691 reject_bad_reg (Rm);
13692
13693 inst.instruction |= Rd << 8;
13694 inst.instruction |= Rn << 16;
13695 inst.instruction |= Rm;
13696 }
13697
13698 static void
13699 do_t_smc (void)
13700 {
13701 unsigned int value = inst.relocs[0].exp.X_add_number;
13702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13703 _("SMC is not permitted on this architecture"));
13704 constraint (inst.relocs[0].exp.X_op != O_constant,
13705 _("expression too complex"));
13706 inst.relocs[0].type = BFD_RELOC_UNUSED;
13707 inst.instruction |= (value & 0xf000) >> 12;
13708 inst.instruction |= (value & 0x0ff0);
13709 inst.instruction |= (value & 0x000f) << 16;
13710 /* PR gas/15623: SMC instructions must be last in an IT block. */
13711 set_pred_insn_type_last ();
13712 }
13713
13714 static void
13715 do_t_hvc (void)
13716 {
13717 unsigned int value = inst.relocs[0].exp.X_add_number;
13718
13719 inst.relocs[0].type = BFD_RELOC_UNUSED;
13720 inst.instruction |= (value & 0x0fff);
13721 inst.instruction |= (value & 0xf000) << 4;
13722 }
13723
13724 static void
13725 do_t_ssat_usat (int bias)
13726 {
13727 unsigned Rd, Rn;
13728
13729 Rd = inst.operands[0].reg;
13730 Rn = inst.operands[2].reg;
13731
13732 reject_bad_reg (Rd);
13733 reject_bad_reg (Rn);
13734
13735 inst.instruction |= Rd << 8;
13736 inst.instruction |= inst.operands[1].imm - bias;
13737 inst.instruction |= Rn << 16;
13738
13739 if (inst.operands[3].present)
13740 {
13741 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13742
13743 inst.relocs[0].type = BFD_RELOC_UNUSED;
13744
13745 constraint (inst.relocs[0].exp.X_op != O_constant,
13746 _("expression too complex"));
13747
13748 if (shift_amount != 0)
13749 {
13750 constraint (shift_amount > 31,
13751 _("shift expression is too large"));
13752
13753 if (inst.operands[3].shift_kind == SHIFT_ASR)
13754 inst.instruction |= 0x00200000; /* sh bit. */
13755
13756 inst.instruction |= (shift_amount & 0x1c) << 10;
13757 inst.instruction |= (shift_amount & 0x03) << 6;
13758 }
13759 }
13760 }
13761
13762 static void
13763 do_t_ssat (void)
13764 {
13765 do_t_ssat_usat (1);
13766 }
13767
13768 static void
13769 do_t_ssat16 (void)
13770 {
13771 unsigned Rd, Rn;
13772
13773 Rd = inst.operands[0].reg;
13774 Rn = inst.operands[2].reg;
13775
13776 reject_bad_reg (Rd);
13777 reject_bad_reg (Rn);
13778
13779 inst.instruction |= Rd << 8;
13780 inst.instruction |= inst.operands[1].imm - 1;
13781 inst.instruction |= Rn << 16;
13782 }
13783
13784 static void
13785 do_t_strex (void)
13786 {
13787 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13788 || inst.operands[2].postind || inst.operands[2].writeback
13789 || inst.operands[2].immisreg || inst.operands[2].shifted
13790 || inst.operands[2].negative,
13791 BAD_ADDR_MODE);
13792
13793 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13794
13795 inst.instruction |= inst.operands[0].reg << 8;
13796 inst.instruction |= inst.operands[1].reg << 12;
13797 inst.instruction |= inst.operands[2].reg << 16;
13798 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13799 }
13800
13801 static void
13802 do_t_strexd (void)
13803 {
13804 if (!inst.operands[2].present)
13805 inst.operands[2].reg = inst.operands[1].reg + 1;
13806
13807 constraint (inst.operands[0].reg == inst.operands[1].reg
13808 || inst.operands[0].reg == inst.operands[2].reg
13809 || inst.operands[0].reg == inst.operands[3].reg,
13810 BAD_OVERLAP);
13811
13812 inst.instruction |= inst.operands[0].reg;
13813 inst.instruction |= inst.operands[1].reg << 12;
13814 inst.instruction |= inst.operands[2].reg << 8;
13815 inst.instruction |= inst.operands[3].reg << 16;
13816 }
13817
13818 static void
13819 do_t_sxtah (void)
13820 {
13821 unsigned Rd, Rn, Rm;
13822
13823 Rd = inst.operands[0].reg;
13824 Rn = inst.operands[1].reg;
13825 Rm = inst.operands[2].reg;
13826
13827 reject_bad_reg (Rd);
13828 reject_bad_reg (Rn);
13829 reject_bad_reg (Rm);
13830
13831 inst.instruction |= Rd << 8;
13832 inst.instruction |= Rn << 16;
13833 inst.instruction |= Rm;
13834 inst.instruction |= inst.operands[3].imm << 4;
13835 }
13836
13837 static void
13838 do_t_sxth (void)
13839 {
13840 unsigned Rd, Rm;
13841
13842 Rd = inst.operands[0].reg;
13843 Rm = inst.operands[1].reg;
13844
13845 reject_bad_reg (Rd);
13846 reject_bad_reg (Rm);
13847
13848 if (inst.instruction <= 0xffff
13849 && inst.size_req != 4
13850 && Rd <= 7 && Rm <= 7
13851 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13852 {
13853 inst.instruction = THUMB_OP16 (inst.instruction);
13854 inst.instruction |= Rd;
13855 inst.instruction |= Rm << 3;
13856 }
13857 else if (unified_syntax)
13858 {
13859 if (inst.instruction <= 0xffff)
13860 inst.instruction = THUMB_OP32 (inst.instruction);
13861 inst.instruction |= Rd << 8;
13862 inst.instruction |= Rm;
13863 inst.instruction |= inst.operands[2].imm << 4;
13864 }
13865 else
13866 {
13867 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13868 _("Thumb encoding does not support rotation"));
13869 constraint (1, BAD_HIREG);
13870 }
13871 }
13872
13873 static void
13874 do_t_swi (void)
13875 {
13876 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13877 }
13878
13879 static void
13880 do_t_tb (void)
13881 {
13882 unsigned Rn, Rm;
13883 int half;
13884
13885 half = (inst.instruction & 0x10) != 0;
13886 set_pred_insn_type_last ();
13887 constraint (inst.operands[0].immisreg,
13888 _("instruction requires register index"));
13889
13890 Rn = inst.operands[0].reg;
13891 Rm = inst.operands[0].imm;
13892
13893 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13894 constraint (Rn == REG_SP, BAD_SP);
13895 reject_bad_reg (Rm);
13896
13897 constraint (!half && inst.operands[0].shifted,
13898 _("instruction does not allow shifted index"));
13899 inst.instruction |= (Rn << 16) | Rm;
13900 }
13901
13902 static void
13903 do_t_udf (void)
13904 {
13905 if (!inst.operands[0].present)
13906 inst.operands[0].imm = 0;
13907
13908 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13909 {
13910 constraint (inst.size_req == 2,
13911 _("immediate value out of range"));
13912 inst.instruction = THUMB_OP32 (inst.instruction);
13913 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13914 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13915 }
13916 else
13917 {
13918 inst.instruction = THUMB_OP16 (inst.instruction);
13919 inst.instruction |= inst.operands[0].imm;
13920 }
13921
13922 set_pred_insn_type (NEUTRAL_IT_INSN);
13923 }
13924
13925
13926 static void
13927 do_t_usat (void)
13928 {
13929 do_t_ssat_usat (0);
13930 }
13931
13932 static void
13933 do_t_usat16 (void)
13934 {
13935 unsigned Rd, Rn;
13936
13937 Rd = inst.operands[0].reg;
13938 Rn = inst.operands[2].reg;
13939
13940 reject_bad_reg (Rd);
13941 reject_bad_reg (Rn);
13942
13943 inst.instruction |= Rd << 8;
13944 inst.instruction |= inst.operands[1].imm;
13945 inst.instruction |= Rn << 16;
13946 }
13947
13948 /* Checking the range of the branch offset (VAL) with NBITS bits
13949 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13950 static int
13951 v8_1_branch_value_check (int val, int nbits, int is_signed)
13952 {
13953 gas_assert (nbits > 0 && nbits <= 32);
13954 if (is_signed)
13955 {
13956 int cmp = (1 << (nbits - 1));
13957 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13958 return FAIL;
13959 }
13960 else
13961 {
13962 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13963 return FAIL;
13964 }
13965 return SUCCESS;
13966 }
13967
13968 /* For branches in Armv8.1-M Mainline. */
13969 static void
13970 do_t_branch_future (void)
13971 {
13972 unsigned long insn = inst.instruction;
13973
13974 inst.instruction = THUMB_OP32 (inst.instruction);
13975 if (inst.operands[0].hasreloc == 0)
13976 {
13977 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13978 as_bad (BAD_BRANCH_OFF);
13979
13980 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13981 }
13982 else
13983 {
13984 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13985 inst.relocs[0].pc_rel = 1;
13986 }
13987
13988 switch (insn)
13989 {
13990 case T_MNEM_bf:
13991 if (inst.operands[1].hasreloc == 0)
13992 {
13993 int val = inst.operands[1].imm;
13994 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13995 as_bad (BAD_BRANCH_OFF);
13996
13997 int immA = (val & 0x0001f000) >> 12;
13998 int immB = (val & 0x00000ffc) >> 2;
13999 int immC = (val & 0x00000002) >> 1;
14000 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14001 }
14002 else
14003 {
14004 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14005 inst.relocs[1].pc_rel = 1;
14006 }
14007 break;
14008
14009 case T_MNEM_bfl:
14010 if (inst.operands[1].hasreloc == 0)
14011 {
14012 int val = inst.operands[1].imm;
14013 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14014 as_bad (BAD_BRANCH_OFF);
14015
14016 int immA = (val & 0x0007f000) >> 12;
14017 int immB = (val & 0x00000ffc) >> 2;
14018 int immC = (val & 0x00000002) >> 1;
14019 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14020 }
14021 else
14022 {
14023 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14024 inst.relocs[1].pc_rel = 1;
14025 }
14026 break;
14027
14028 case T_MNEM_bfcsel:
14029 /* Operand 1. */
14030 if (inst.operands[1].hasreloc == 0)
14031 {
14032 int val = inst.operands[1].imm;
14033 int immA = (val & 0x00001000) >> 12;
14034 int immB = (val & 0x00000ffc) >> 2;
14035 int immC = (val & 0x00000002) >> 1;
14036 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14037 }
14038 else
14039 {
14040 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14041 inst.relocs[1].pc_rel = 1;
14042 }
14043
14044 /* Operand 2. */
14045 if (inst.operands[2].hasreloc == 0)
14046 {
14047 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14048 int val2 = inst.operands[2].imm;
14049 int val0 = inst.operands[0].imm & 0x1f;
14050 int diff = val2 - val0;
14051 if (diff == 4)
14052 inst.instruction |= 1 << 17; /* T bit. */
14053 else if (diff != 2)
14054 as_bad (_("out of range label-relative fixup value"));
14055 }
14056 else
14057 {
14058 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14059 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14060 inst.relocs[2].pc_rel = 1;
14061 }
14062
14063 /* Operand 3. */
14064 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14065 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14066 break;
14067
14068 case T_MNEM_bfx:
14069 case T_MNEM_bflx:
14070 inst.instruction |= inst.operands[1].reg << 16;
14071 break;
14072
14073 default: abort ();
14074 }
14075 }
14076
14077 /* Helper function for do_t_loloop to handle relocations. */
14078 static void
14079 v8_1_loop_reloc (int is_le)
14080 {
14081 if (inst.relocs[0].exp.X_op == O_constant)
14082 {
14083 int value = inst.relocs[0].exp.X_add_number;
14084 value = (is_le) ? -value : value;
14085
14086 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14087 as_bad (BAD_BRANCH_OFF);
14088
14089 int imml, immh;
14090
14091 immh = (value & 0x00000ffc) >> 2;
14092 imml = (value & 0x00000002) >> 1;
14093
14094 inst.instruction |= (imml << 11) | (immh << 1);
14095 }
14096 else
14097 {
14098 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14099 inst.relocs[0].pc_rel = 1;
14100 }
14101 }
14102
14103 /* To handle the Scalar Low Overhead Loop instructions
14104 in Armv8.1-M Mainline. */
14105 static void
14106 do_t_loloop (void)
14107 {
14108 unsigned long insn = inst.instruction;
14109
14110 set_pred_insn_type (OUTSIDE_PRED_INSN);
14111 inst.instruction = THUMB_OP32 (inst.instruction);
14112
14113 switch (insn)
14114 {
14115 case T_MNEM_le:
14116 /* le <label>. */
14117 if (!inst.operands[0].present)
14118 inst.instruction |= 1 << 21;
14119
14120 v8_1_loop_reloc (TRUE);
14121 break;
14122
14123 case T_MNEM_wls:
14124 v8_1_loop_reloc (FALSE);
14125 /* Fall through. */
14126 case T_MNEM_dls:
14127 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14128 inst.instruction |= (inst.operands[1].reg << 16);
14129 break;
14130
14131 default: abort();
14132 }
14133 }
14134
14135 /* MVE instruction encoder helpers. */
14136 #define M_MNEM_vabav 0xee800f01
14137 #define M_MNEM_vmladav 0xeef00e00
14138 #define M_MNEM_vmladava 0xeef00e20
14139 #define M_MNEM_vmladavx 0xeef01e00
14140 #define M_MNEM_vmladavax 0xeef01e20
14141 #define M_MNEM_vmlsdav 0xeef00e01
14142 #define M_MNEM_vmlsdava 0xeef00e21
14143 #define M_MNEM_vmlsdavx 0xeef01e01
14144 #define M_MNEM_vmlsdavax 0xeef01e21
14145 #define M_MNEM_vmullt 0xee011e00
14146 #define M_MNEM_vmullb 0xee010e00
14147 #define M_MNEM_vst20 0xfc801e00
14148 #define M_MNEM_vst21 0xfc801e20
14149 #define M_MNEM_vst40 0xfc801e01
14150 #define M_MNEM_vst41 0xfc801e21
14151 #define M_MNEM_vst42 0xfc801e41
14152 #define M_MNEM_vst43 0xfc801e61
14153 #define M_MNEM_vld20 0xfc901e00
14154 #define M_MNEM_vld21 0xfc901e20
14155 #define M_MNEM_vld40 0xfc901e01
14156 #define M_MNEM_vld41 0xfc901e21
14157 #define M_MNEM_vld42 0xfc901e41
14158 #define M_MNEM_vld43 0xfc901e61
14159 #define M_MNEM_vstrb 0xec000e00
14160 #define M_MNEM_vstrh 0xec000e10
14161 #define M_MNEM_vstrw 0xec000e40
14162 #define M_MNEM_vstrd 0xec000e50
14163 #define M_MNEM_vldrb 0xec100e00
14164 #define M_MNEM_vldrh 0xec100e10
14165 #define M_MNEM_vldrw 0xec100e40
14166 #define M_MNEM_vldrd 0xec100e50
14167 #define M_MNEM_vmovlt 0xeea01f40
14168 #define M_MNEM_vmovlb 0xeea00f40
14169 #define M_MNEM_vmovnt 0xfe311e81
14170 #define M_MNEM_vmovnb 0xfe310e81
14171 #define M_MNEM_vadc 0xee300f00
14172 #define M_MNEM_vadci 0xee301f00
14173 #define M_MNEM_vbrsr 0xfe011e60
14174 #define M_MNEM_vaddlv 0xee890f00
14175 #define M_MNEM_vaddlva 0xee890f20
14176 #define M_MNEM_vaddv 0xeef10f00
14177 #define M_MNEM_vaddva 0xeef10f20
14178 #define M_MNEM_vddup 0xee011f6e
14179 #define M_MNEM_vdwdup 0xee011f60
14180 #define M_MNEM_vidup 0xee010f6e
14181 #define M_MNEM_viwdup 0xee010f60
14182 #define M_MNEM_vmaxv 0xeee20f00
14183 #define M_MNEM_vmaxav 0xeee00f00
14184 #define M_MNEM_vminv 0xeee20f80
14185 #define M_MNEM_vminav 0xeee00f80
14186 #define M_MNEM_vmlaldav 0xee800e00
14187 #define M_MNEM_vmlaldava 0xee800e20
14188 #define M_MNEM_vmlaldavx 0xee801e00
14189 #define M_MNEM_vmlaldavax 0xee801e20
14190 #define M_MNEM_vmlsldav 0xee800e01
14191 #define M_MNEM_vmlsldava 0xee800e21
14192 #define M_MNEM_vmlsldavx 0xee801e01
14193 #define M_MNEM_vmlsldavax 0xee801e21
14194 #define M_MNEM_vrmlaldavhx 0xee801f00
14195 #define M_MNEM_vrmlaldavhax 0xee801f20
14196 #define M_MNEM_vrmlsldavh 0xfe800e01
14197 #define M_MNEM_vrmlsldavha 0xfe800e21
14198 #define M_MNEM_vrmlsldavhx 0xfe801e01
14199 #define M_MNEM_vrmlsldavhax 0xfe801e21
14200
14201 /* Neon instruction encoder helpers. */
14202
14203 /* Encodings for the different types for various Neon opcodes. */
14204
14205 /* An "invalid" code for the following tables. */
14206 #define N_INV -1u
14207
14208 struct neon_tab_entry
14209 {
14210 unsigned integer;
14211 unsigned float_or_poly;
14212 unsigned scalar_or_imm;
14213 };
14214
14215 /* Map overloaded Neon opcodes to their respective encodings. */
14216 #define NEON_ENC_TAB \
14217 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14218 X(vabdl, 0x0800700, N_INV, N_INV), \
14219 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14220 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14221 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14222 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14223 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14224 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14225 X(vaddl, 0x0800000, N_INV, N_INV), \
14226 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14227 X(vsubl, 0x0800200, N_INV, N_INV), \
14228 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14229 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14230 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14231 /* Register variants of the following two instructions are encoded as
14232 vcge / vcgt with the operands reversed. */ \
14233 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14234 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14235 X(vfma, N_INV, 0x0000c10, N_INV), \
14236 X(vfms, N_INV, 0x0200c10, N_INV), \
14237 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14238 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14239 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14240 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14241 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14242 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14243 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14244 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14245 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14246 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14247 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14248 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14249 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14250 X(vshl, 0x0000400, N_INV, 0x0800510), \
14251 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14252 X(vand, 0x0000110, N_INV, 0x0800030), \
14253 X(vbic, 0x0100110, N_INV, 0x0800030), \
14254 X(veor, 0x1000110, N_INV, N_INV), \
14255 X(vorn, 0x0300110, N_INV, 0x0800010), \
14256 X(vorr, 0x0200110, N_INV, 0x0800010), \
14257 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14258 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14259 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14260 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14261 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14262 X(vst1, 0x0000000, 0x0800000, N_INV), \
14263 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14264 X(vst2, 0x0000100, 0x0800100, N_INV), \
14265 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14266 X(vst3, 0x0000200, 0x0800200, N_INV), \
14267 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14268 X(vst4, 0x0000300, 0x0800300, N_INV), \
14269 X(vmovn, 0x1b20200, N_INV, N_INV), \
14270 X(vtrn, 0x1b20080, N_INV, N_INV), \
14271 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14272 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14273 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14274 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14275 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14276 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14277 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14278 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14279 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14280 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14281 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14282 X(vseleq, 0xe000a00, N_INV, N_INV), \
14283 X(vselvs, 0xe100a00, N_INV, N_INV), \
14284 X(vselge, 0xe200a00, N_INV, N_INV), \
14285 X(vselgt, 0xe300a00, N_INV, N_INV), \
14286 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14287 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14288 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14289 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14290 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14291 X(aes, 0x3b00300, N_INV, N_INV), \
14292 X(sha3op, 0x2000c00, N_INV, N_INV), \
14293 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14294 X(sha2op, 0x3ba0380, N_INV, N_INV)
14295
14296 enum neon_opc
14297 {
14298 #define X(OPC,I,F,S) N_MNEM_##OPC
14299 NEON_ENC_TAB
14300 #undef X
14301 };
14302
14303 static const struct neon_tab_entry neon_enc_tab[] =
14304 {
14305 #define X(OPC,I,F,S) { (I), (F), (S) }
14306 NEON_ENC_TAB
14307 #undef X
14308 };
14309
14310 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14311 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14312 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14313 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14314 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14315 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14316 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14317 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14318 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14319 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14320 #define NEON_ENC_SINGLE_(X) \
14321 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14322 #define NEON_ENC_DOUBLE_(X) \
14323 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14324 #define NEON_ENC_FPV8_(X) \
14325 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14326
14327 #define NEON_ENCODE(type, inst) \
14328 do \
14329 { \
14330 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14331 inst.is_neon = 1; \
14332 } \
14333 while (0)
14334
14335 #define check_neon_suffixes \
14336 do \
14337 { \
14338 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14339 { \
14340 as_bad (_("invalid neon suffix for non neon instruction")); \
14341 return; \
14342 } \
14343 } \
14344 while (0)
14345
14346 /* Define shapes for instruction operands. The following mnemonic characters
14347 are used in this table:
14348
14349 F - VFP S<n> register
14350 D - Neon D<n> register
14351 Q - Neon Q<n> register
14352 I - Immediate
14353 S - Scalar
14354 R - ARM register
14355 L - D<n> register list
14356
14357 This table is used to generate various data:
14358 - enumerations of the form NS_DDR to be used as arguments to
14359 neon_select_shape.
14360 - a table classifying shapes into single, double, quad, mixed.
14361 - a table used to drive neon_select_shape. */
14362
14363 #define NEON_SHAPE_DEF \
14364 X(4, (R, R, Q, Q), QUAD), \
14365 X(4, (Q, R, R, I), QUAD), \
14366 X(4, (R, R, S, S), QUAD), \
14367 X(4, (S, S, R, R), QUAD), \
14368 X(3, (Q, R, I), QUAD), \
14369 X(3, (I, Q, Q), QUAD), \
14370 X(3, (I, Q, R), QUAD), \
14371 X(3, (R, Q, Q), QUAD), \
14372 X(3, (D, D, D), DOUBLE), \
14373 X(3, (Q, Q, Q), QUAD), \
14374 X(3, (D, D, I), DOUBLE), \
14375 X(3, (Q, Q, I), QUAD), \
14376 X(3, (D, D, S), DOUBLE), \
14377 X(3, (Q, Q, S), QUAD), \
14378 X(3, (Q, Q, R), QUAD), \
14379 X(3, (R, R, Q), QUAD), \
14380 X(2, (R, Q), QUAD), \
14381 X(2, (D, D), DOUBLE), \
14382 X(2, (Q, Q), QUAD), \
14383 X(2, (D, S), DOUBLE), \
14384 X(2, (Q, S), QUAD), \
14385 X(2, (D, R), DOUBLE), \
14386 X(2, (Q, R), QUAD), \
14387 X(2, (D, I), DOUBLE), \
14388 X(2, (Q, I), QUAD), \
14389 X(3, (D, L, D), DOUBLE), \
14390 X(2, (D, Q), MIXED), \
14391 X(2, (Q, D), MIXED), \
14392 X(3, (D, Q, I), MIXED), \
14393 X(3, (Q, D, I), MIXED), \
14394 X(3, (Q, D, D), MIXED), \
14395 X(3, (D, Q, Q), MIXED), \
14396 X(3, (Q, Q, D), MIXED), \
14397 X(3, (Q, D, S), MIXED), \
14398 X(3, (D, Q, S), MIXED), \
14399 X(4, (D, D, D, I), DOUBLE), \
14400 X(4, (Q, Q, Q, I), QUAD), \
14401 X(4, (D, D, S, I), DOUBLE), \
14402 X(4, (Q, Q, S, I), QUAD), \
14403 X(2, (F, F), SINGLE), \
14404 X(3, (F, F, F), SINGLE), \
14405 X(2, (F, I), SINGLE), \
14406 X(2, (F, D), MIXED), \
14407 X(2, (D, F), MIXED), \
14408 X(3, (F, F, I), MIXED), \
14409 X(4, (R, R, F, F), SINGLE), \
14410 X(4, (F, F, R, R), SINGLE), \
14411 X(3, (D, R, R), DOUBLE), \
14412 X(3, (R, R, D), DOUBLE), \
14413 X(2, (S, R), SINGLE), \
14414 X(2, (R, S), SINGLE), \
14415 X(2, (F, R), SINGLE), \
14416 X(2, (R, F), SINGLE), \
14417 /* Half float shape supported so far. */\
14418 X (2, (H, D), MIXED), \
14419 X (2, (D, H), MIXED), \
14420 X (2, (H, F), MIXED), \
14421 X (2, (F, H), MIXED), \
14422 X (2, (H, H), HALF), \
14423 X (2, (H, R), HALF), \
14424 X (2, (R, H), HALF), \
14425 X (2, (H, I), HALF), \
14426 X (3, (H, H, H), HALF), \
14427 X (3, (H, F, I), MIXED), \
14428 X (3, (F, H, I), MIXED), \
14429 X (3, (D, H, H), MIXED), \
14430 X (3, (D, H, S), MIXED)
14431
14432 #define S2(A,B) NS_##A##B
14433 #define S3(A,B,C) NS_##A##B##C
14434 #define S4(A,B,C,D) NS_##A##B##C##D
14435
14436 #define X(N, L, C) S##N L
14437
14438 enum neon_shape
14439 {
14440 NEON_SHAPE_DEF,
14441 NS_NULL
14442 };
14443
14444 #undef X
14445 #undef S2
14446 #undef S3
14447 #undef S4
14448
14449 enum neon_shape_class
14450 {
14451 SC_HALF,
14452 SC_SINGLE,
14453 SC_DOUBLE,
14454 SC_QUAD,
14455 SC_MIXED
14456 };
14457
14458 #define X(N, L, C) SC_##C
14459
14460 static enum neon_shape_class neon_shape_class[] =
14461 {
14462 NEON_SHAPE_DEF
14463 };
14464
14465 #undef X
14466
14467 enum neon_shape_el
14468 {
14469 SE_H,
14470 SE_F,
14471 SE_D,
14472 SE_Q,
14473 SE_I,
14474 SE_S,
14475 SE_R,
14476 SE_L
14477 };
14478
14479 /* Register widths of above. */
14480 static unsigned neon_shape_el_size[] =
14481 {
14482 16,
14483 32,
14484 64,
14485 128,
14486 0,
14487 32,
14488 32,
14489 0
14490 };
14491
14492 struct neon_shape_info
14493 {
14494 unsigned els;
14495 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14496 };
14497
14498 #define S2(A,B) { SE_##A, SE_##B }
14499 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14500 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14501
14502 #define X(N, L, C) { N, S##N L }
14503
14504 static struct neon_shape_info neon_shape_tab[] =
14505 {
14506 NEON_SHAPE_DEF
14507 };
14508
14509 #undef X
14510 #undef S2
14511 #undef S3
14512 #undef S4
14513
14514 /* Bit masks used in type checking given instructions.
14515 'N_EQK' means the type must be the same as (or based on in some way) the key
14516 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14517 set, various other bits can be set as well in order to modify the meaning of
14518 the type constraint. */
14519
14520 enum neon_type_mask
14521 {
14522 N_S8 = 0x0000001,
14523 N_S16 = 0x0000002,
14524 N_S32 = 0x0000004,
14525 N_S64 = 0x0000008,
14526 N_U8 = 0x0000010,
14527 N_U16 = 0x0000020,
14528 N_U32 = 0x0000040,
14529 N_U64 = 0x0000080,
14530 N_I8 = 0x0000100,
14531 N_I16 = 0x0000200,
14532 N_I32 = 0x0000400,
14533 N_I64 = 0x0000800,
14534 N_8 = 0x0001000,
14535 N_16 = 0x0002000,
14536 N_32 = 0x0004000,
14537 N_64 = 0x0008000,
14538 N_P8 = 0x0010000,
14539 N_P16 = 0x0020000,
14540 N_F16 = 0x0040000,
14541 N_F32 = 0x0080000,
14542 N_F64 = 0x0100000,
14543 N_P64 = 0x0200000,
14544 N_KEY = 0x1000000, /* Key element (main type specifier). */
14545 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14546 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14547 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14548 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14549 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14550 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14551 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14552 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14553 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14554 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14555 N_UTYP = 0,
14556 N_MAX_NONSPECIAL = N_P64
14557 };
14558
14559 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14560
14561 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14562 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14563 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14564 #define N_S_32 (N_S8 | N_S16 | N_S32)
14565 #define N_F_16_32 (N_F16 | N_F32)
14566 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14567 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14568 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14569 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14570 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14571 #define N_F_MVE (N_F16 | N_F32)
14572 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14573
14574 /* Pass this as the first type argument to neon_check_type to ignore types
14575 altogether. */
14576 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14577
14578 /* Select a "shape" for the current instruction (describing register types or
14579 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14580 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14581 function of operand parsing, so this function doesn't need to be called.
14582 Shapes should be listed in order of decreasing length. */
14583
14584 static enum neon_shape
14585 neon_select_shape (enum neon_shape shape, ...)
14586 {
14587 va_list ap;
14588 enum neon_shape first_shape = shape;
14589
14590 /* Fix missing optional operands. FIXME: we don't know at this point how
14591 many arguments we should have, so this makes the assumption that we have
14592 > 1. This is true of all current Neon opcodes, I think, but may not be
14593 true in the future. */
14594 if (!inst.operands[1].present)
14595 inst.operands[1] = inst.operands[0];
14596
14597 va_start (ap, shape);
14598
14599 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14600 {
14601 unsigned j;
14602 int matches = 1;
14603
14604 for (j = 0; j < neon_shape_tab[shape].els; j++)
14605 {
14606 if (!inst.operands[j].present)
14607 {
14608 matches = 0;
14609 break;
14610 }
14611
14612 switch (neon_shape_tab[shape].el[j])
14613 {
14614 /* If a .f16, .16, .u16, .s16 type specifier is given over
14615 a VFP single precision register operand, it's essentially
14616 means only half of the register is used.
14617
14618 If the type specifier is given after the mnemonics, the
14619 information is stored in inst.vectype. If the type specifier
14620 is given after register operand, the information is stored
14621 in inst.operands[].vectype.
14622
14623 When there is only one type specifier, and all the register
14624 operands are the same type of hardware register, the type
14625 specifier applies to all register operands.
14626
14627 If no type specifier is given, the shape is inferred from
14628 operand information.
14629
14630 for example:
14631 vadd.f16 s0, s1, s2: NS_HHH
14632 vabs.f16 s0, s1: NS_HH
14633 vmov.f16 s0, r1: NS_HR
14634 vmov.f16 r0, s1: NS_RH
14635 vcvt.f16 r0, s1: NS_RH
14636 vcvt.f16.s32 s2, s2, #29: NS_HFI
14637 vcvt.f16.s32 s2, s2: NS_HF
14638 */
14639 case SE_H:
14640 if (!(inst.operands[j].isreg
14641 && inst.operands[j].isvec
14642 && inst.operands[j].issingle
14643 && !inst.operands[j].isquad
14644 && ((inst.vectype.elems == 1
14645 && inst.vectype.el[0].size == 16)
14646 || (inst.vectype.elems > 1
14647 && inst.vectype.el[j].size == 16)
14648 || (inst.vectype.elems == 0
14649 && inst.operands[j].vectype.type != NT_invtype
14650 && inst.operands[j].vectype.size == 16))))
14651 matches = 0;
14652 break;
14653
14654 case SE_F:
14655 if (!(inst.operands[j].isreg
14656 && inst.operands[j].isvec
14657 && inst.operands[j].issingle
14658 && !inst.operands[j].isquad
14659 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14660 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14661 || (inst.vectype.elems == 0
14662 && (inst.operands[j].vectype.size == 32
14663 || inst.operands[j].vectype.type == NT_invtype)))))
14664 matches = 0;
14665 break;
14666
14667 case SE_D:
14668 if (!(inst.operands[j].isreg
14669 && inst.operands[j].isvec
14670 && !inst.operands[j].isquad
14671 && !inst.operands[j].issingle))
14672 matches = 0;
14673 break;
14674
14675 case SE_R:
14676 if (!(inst.operands[j].isreg
14677 && !inst.operands[j].isvec))
14678 matches = 0;
14679 break;
14680
14681 case SE_Q:
14682 if (!(inst.operands[j].isreg
14683 && inst.operands[j].isvec
14684 && inst.operands[j].isquad
14685 && !inst.operands[j].issingle))
14686 matches = 0;
14687 break;
14688
14689 case SE_I:
14690 if (!(!inst.operands[j].isreg
14691 && !inst.operands[j].isscalar))
14692 matches = 0;
14693 break;
14694
14695 case SE_S:
14696 if (!(!inst.operands[j].isreg
14697 && inst.operands[j].isscalar))
14698 matches = 0;
14699 break;
14700
14701 case SE_L:
14702 break;
14703 }
14704 if (!matches)
14705 break;
14706 }
14707 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14708 /* We've matched all the entries in the shape table, and we don't
14709 have any left over operands which have not been matched. */
14710 break;
14711 }
14712
14713 va_end (ap);
14714
14715 if (shape == NS_NULL && first_shape != NS_NULL)
14716 first_error (_("invalid instruction shape"));
14717
14718 return shape;
14719 }
14720
14721 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14722 means the Q bit should be set). */
14723
14724 static int
14725 neon_quad (enum neon_shape shape)
14726 {
14727 return neon_shape_class[shape] == SC_QUAD;
14728 }
14729
14730 static void
14731 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14732 unsigned *g_size)
14733 {
14734 /* Allow modification to be made to types which are constrained to be
14735 based on the key element, based on bits set alongside N_EQK. */
14736 if ((typebits & N_EQK) != 0)
14737 {
14738 if ((typebits & N_HLF) != 0)
14739 *g_size /= 2;
14740 else if ((typebits & N_DBL) != 0)
14741 *g_size *= 2;
14742 if ((typebits & N_SGN) != 0)
14743 *g_type = NT_signed;
14744 else if ((typebits & N_UNS) != 0)
14745 *g_type = NT_unsigned;
14746 else if ((typebits & N_INT) != 0)
14747 *g_type = NT_integer;
14748 else if ((typebits & N_FLT) != 0)
14749 *g_type = NT_float;
14750 else if ((typebits & N_SIZ) != 0)
14751 *g_type = NT_untyped;
14752 }
14753 }
14754
14755 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14756 operand type, i.e. the single type specified in a Neon instruction when it
14757 is the only one given. */
14758
14759 static struct neon_type_el
14760 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14761 {
14762 struct neon_type_el dest = *key;
14763
14764 gas_assert ((thisarg & N_EQK) != 0);
14765
14766 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14767
14768 return dest;
14769 }
14770
14771 /* Convert Neon type and size into compact bitmask representation. */
14772
14773 static enum neon_type_mask
14774 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14775 {
14776 switch (type)
14777 {
14778 case NT_untyped:
14779 switch (size)
14780 {
14781 case 8: return N_8;
14782 case 16: return N_16;
14783 case 32: return N_32;
14784 case 64: return N_64;
14785 default: ;
14786 }
14787 break;
14788
14789 case NT_integer:
14790 switch (size)
14791 {
14792 case 8: return N_I8;
14793 case 16: return N_I16;
14794 case 32: return N_I32;
14795 case 64: return N_I64;
14796 default: ;
14797 }
14798 break;
14799
14800 case NT_float:
14801 switch (size)
14802 {
14803 case 16: return N_F16;
14804 case 32: return N_F32;
14805 case 64: return N_F64;
14806 default: ;
14807 }
14808 break;
14809
14810 case NT_poly:
14811 switch (size)
14812 {
14813 case 8: return N_P8;
14814 case 16: return N_P16;
14815 case 64: return N_P64;
14816 default: ;
14817 }
14818 break;
14819
14820 case NT_signed:
14821 switch (size)
14822 {
14823 case 8: return N_S8;
14824 case 16: return N_S16;
14825 case 32: return N_S32;
14826 case 64: return N_S64;
14827 default: ;
14828 }
14829 break;
14830
14831 case NT_unsigned:
14832 switch (size)
14833 {
14834 case 8: return N_U8;
14835 case 16: return N_U16;
14836 case 32: return N_U32;
14837 case 64: return N_U64;
14838 default: ;
14839 }
14840 break;
14841
14842 default: ;
14843 }
14844
14845 return N_UTYP;
14846 }
14847
14848 /* Convert compact Neon bitmask type representation to a type and size. Only
14849 handles the case where a single bit is set in the mask. */
14850
14851 static int
14852 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14853 enum neon_type_mask mask)
14854 {
14855 if ((mask & N_EQK) != 0)
14856 return FAIL;
14857
14858 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14859 *size = 8;
14860 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14861 *size = 16;
14862 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14863 *size = 32;
14864 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14865 *size = 64;
14866 else
14867 return FAIL;
14868
14869 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14870 *type = NT_signed;
14871 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14872 *type = NT_unsigned;
14873 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14874 *type = NT_integer;
14875 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14876 *type = NT_untyped;
14877 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14878 *type = NT_poly;
14879 else if ((mask & (N_F_ALL)) != 0)
14880 *type = NT_float;
14881 else
14882 return FAIL;
14883
14884 return SUCCESS;
14885 }
14886
14887 /* Modify a bitmask of allowed types. This is only needed for type
14888 relaxation. */
14889
14890 static unsigned
14891 modify_types_allowed (unsigned allowed, unsigned mods)
14892 {
14893 unsigned size;
14894 enum neon_el_type type;
14895 unsigned destmask;
14896 int i;
14897
14898 destmask = 0;
14899
14900 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14901 {
14902 if (el_type_of_type_chk (&type, &size,
14903 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14904 {
14905 neon_modify_type_size (mods, &type, &size);
14906 destmask |= type_chk_of_el_type (type, size);
14907 }
14908 }
14909
14910 return destmask;
14911 }
14912
14913 /* Check type and return type classification.
14914 The manual states (paraphrase): If one datatype is given, it indicates the
14915 type given in:
14916 - the second operand, if there is one
14917 - the operand, if there is no second operand
14918 - the result, if there are no operands.
14919 This isn't quite good enough though, so we use a concept of a "key" datatype
14920 which is set on a per-instruction basis, which is the one which matters when
14921 only one data type is written.
14922 Note: this function has side-effects (e.g. filling in missing operands). All
14923 Neon instructions should call it before performing bit encoding. */
14924
14925 static struct neon_type_el
14926 neon_check_type (unsigned els, enum neon_shape ns, ...)
14927 {
14928 va_list ap;
14929 unsigned i, pass, key_el = 0;
14930 unsigned types[NEON_MAX_TYPE_ELS];
14931 enum neon_el_type k_type = NT_invtype;
14932 unsigned k_size = -1u;
14933 struct neon_type_el badtype = {NT_invtype, -1};
14934 unsigned key_allowed = 0;
14935
14936 /* Optional registers in Neon instructions are always (not) in operand 1.
14937 Fill in the missing operand here, if it was omitted. */
14938 if (els > 1 && !inst.operands[1].present)
14939 inst.operands[1] = inst.operands[0];
14940
14941 /* Suck up all the varargs. */
14942 va_start (ap, ns);
14943 for (i = 0; i < els; i++)
14944 {
14945 unsigned thisarg = va_arg (ap, unsigned);
14946 if (thisarg == N_IGNORE_TYPE)
14947 {
14948 va_end (ap);
14949 return badtype;
14950 }
14951 types[i] = thisarg;
14952 if ((thisarg & N_KEY) != 0)
14953 key_el = i;
14954 }
14955 va_end (ap);
14956
14957 if (inst.vectype.elems > 0)
14958 for (i = 0; i < els; i++)
14959 if (inst.operands[i].vectype.type != NT_invtype)
14960 {
14961 first_error (_("types specified in both the mnemonic and operands"));
14962 return badtype;
14963 }
14964
14965 /* Duplicate inst.vectype elements here as necessary.
14966 FIXME: No idea if this is exactly the same as the ARM assembler,
14967 particularly when an insn takes one register and one non-register
14968 operand. */
14969 if (inst.vectype.elems == 1 && els > 1)
14970 {
14971 unsigned j;
14972 inst.vectype.elems = els;
14973 inst.vectype.el[key_el] = inst.vectype.el[0];
14974 for (j = 0; j < els; j++)
14975 if (j != key_el)
14976 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14977 types[j]);
14978 }
14979 else if (inst.vectype.elems == 0 && els > 0)
14980 {
14981 unsigned j;
14982 /* No types were given after the mnemonic, so look for types specified
14983 after each operand. We allow some flexibility here; as long as the
14984 "key" operand has a type, we can infer the others. */
14985 for (j = 0; j < els; j++)
14986 if (inst.operands[j].vectype.type != NT_invtype)
14987 inst.vectype.el[j] = inst.operands[j].vectype;
14988
14989 if (inst.operands[key_el].vectype.type != NT_invtype)
14990 {
14991 for (j = 0; j < els; j++)
14992 if (inst.operands[j].vectype.type == NT_invtype)
14993 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14994 types[j]);
14995 }
14996 else
14997 {
14998 first_error (_("operand types can't be inferred"));
14999 return badtype;
15000 }
15001 }
15002 else if (inst.vectype.elems != els)
15003 {
15004 first_error (_("type specifier has the wrong number of parts"));
15005 return badtype;
15006 }
15007
15008 for (pass = 0; pass < 2; pass++)
15009 {
15010 for (i = 0; i < els; i++)
15011 {
15012 unsigned thisarg = types[i];
15013 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15014 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15015 enum neon_el_type g_type = inst.vectype.el[i].type;
15016 unsigned g_size = inst.vectype.el[i].size;
15017
15018 /* Decay more-specific signed & unsigned types to sign-insensitive
15019 integer types if sign-specific variants are unavailable. */
15020 if ((g_type == NT_signed || g_type == NT_unsigned)
15021 && (types_allowed & N_SU_ALL) == 0)
15022 g_type = NT_integer;
15023
15024 /* If only untyped args are allowed, decay any more specific types to
15025 them. Some instructions only care about signs for some element
15026 sizes, so handle that properly. */
15027 if (((types_allowed & N_UNT) == 0)
15028 && ((g_size == 8 && (types_allowed & N_8) != 0)
15029 || (g_size == 16 && (types_allowed & N_16) != 0)
15030 || (g_size == 32 && (types_allowed & N_32) != 0)
15031 || (g_size == 64 && (types_allowed & N_64) != 0)))
15032 g_type = NT_untyped;
15033
15034 if (pass == 0)
15035 {
15036 if ((thisarg & N_KEY) != 0)
15037 {
15038 k_type = g_type;
15039 k_size = g_size;
15040 key_allowed = thisarg & ~N_KEY;
15041
15042 /* Check architecture constraint on FP16 extension. */
15043 if (k_size == 16
15044 && k_type == NT_float
15045 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15046 {
15047 inst.error = _(BAD_FP16);
15048 return badtype;
15049 }
15050 }
15051 }
15052 else
15053 {
15054 if ((thisarg & N_VFP) != 0)
15055 {
15056 enum neon_shape_el regshape;
15057 unsigned regwidth, match;
15058
15059 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15060 if (ns == NS_NULL)
15061 {
15062 first_error (_("invalid instruction shape"));
15063 return badtype;
15064 }
15065 regshape = neon_shape_tab[ns].el[i];
15066 regwidth = neon_shape_el_size[regshape];
15067
15068 /* In VFP mode, operands must match register widths. If we
15069 have a key operand, use its width, else use the width of
15070 the current operand. */
15071 if (k_size != -1u)
15072 match = k_size;
15073 else
15074 match = g_size;
15075
15076 /* FP16 will use a single precision register. */
15077 if (regwidth == 32 && match == 16)
15078 {
15079 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15080 match = regwidth;
15081 else
15082 {
15083 inst.error = _(BAD_FP16);
15084 return badtype;
15085 }
15086 }
15087
15088 if (regwidth != match)
15089 {
15090 first_error (_("operand size must match register width"));
15091 return badtype;
15092 }
15093 }
15094
15095 if ((thisarg & N_EQK) == 0)
15096 {
15097 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15098
15099 if ((given_type & types_allowed) == 0)
15100 {
15101 first_error (BAD_SIMD_TYPE);
15102 return badtype;
15103 }
15104 }
15105 else
15106 {
15107 enum neon_el_type mod_k_type = k_type;
15108 unsigned mod_k_size = k_size;
15109 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15110 if (g_type != mod_k_type || g_size != mod_k_size)
15111 {
15112 first_error (_("inconsistent types in Neon instruction"));
15113 return badtype;
15114 }
15115 }
15116 }
15117 }
15118 }
15119
15120 return inst.vectype.el[key_el];
15121 }
15122
15123 /* Neon-style VFP instruction forwarding. */
15124
15125 /* Thumb VFP instructions have 0xE in the condition field. */
15126
15127 static void
15128 do_vfp_cond_or_thumb (void)
15129 {
15130 inst.is_neon = 1;
15131
15132 if (thumb_mode)
15133 inst.instruction |= 0xe0000000;
15134 else
15135 inst.instruction |= inst.cond << 28;
15136 }
15137
15138 /* Look up and encode a simple mnemonic, for use as a helper function for the
15139 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15140 etc. It is assumed that operand parsing has already been done, and that the
15141 operands are in the form expected by the given opcode (this isn't necessarily
15142 the same as the form in which they were parsed, hence some massaging must
15143 take place before this function is called).
15144 Checks current arch version against that in the looked-up opcode. */
15145
15146 static void
15147 do_vfp_nsyn_opcode (const char *opname)
15148 {
15149 const struct asm_opcode *opcode;
15150
15151 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15152
15153 if (!opcode)
15154 abort ();
15155
15156 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15157 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15158 _(BAD_FPU));
15159
15160 inst.is_neon = 1;
15161
15162 if (thumb_mode)
15163 {
15164 inst.instruction = opcode->tvalue;
15165 opcode->tencode ();
15166 }
15167 else
15168 {
15169 inst.instruction = (inst.cond << 28) | opcode->avalue;
15170 opcode->aencode ();
15171 }
15172 }
15173
15174 static void
15175 do_vfp_nsyn_add_sub (enum neon_shape rs)
15176 {
15177 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15178
15179 if (rs == NS_FFF || rs == NS_HHH)
15180 {
15181 if (is_add)
15182 do_vfp_nsyn_opcode ("fadds");
15183 else
15184 do_vfp_nsyn_opcode ("fsubs");
15185
15186 /* ARMv8.2 fp16 instruction. */
15187 if (rs == NS_HHH)
15188 do_scalar_fp16_v82_encode ();
15189 }
15190 else
15191 {
15192 if (is_add)
15193 do_vfp_nsyn_opcode ("faddd");
15194 else
15195 do_vfp_nsyn_opcode ("fsubd");
15196 }
15197 }
15198
15199 /* Check operand types to see if this is a VFP instruction, and if so call
15200 PFN (). */
15201
15202 static int
15203 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15204 {
15205 enum neon_shape rs;
15206 struct neon_type_el et;
15207
15208 switch (args)
15209 {
15210 case 2:
15211 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15212 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15213 break;
15214
15215 case 3:
15216 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15217 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15218 N_F_ALL | N_KEY | N_VFP);
15219 break;
15220
15221 default:
15222 abort ();
15223 }
15224
15225 if (et.type != NT_invtype)
15226 {
15227 pfn (rs);
15228 return SUCCESS;
15229 }
15230
15231 inst.error = NULL;
15232 return FAIL;
15233 }
15234
15235 static void
15236 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15237 {
15238 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15239
15240 if (rs == NS_FFF || rs == NS_HHH)
15241 {
15242 if (is_mla)
15243 do_vfp_nsyn_opcode ("fmacs");
15244 else
15245 do_vfp_nsyn_opcode ("fnmacs");
15246
15247 /* ARMv8.2 fp16 instruction. */
15248 if (rs == NS_HHH)
15249 do_scalar_fp16_v82_encode ();
15250 }
15251 else
15252 {
15253 if (is_mla)
15254 do_vfp_nsyn_opcode ("fmacd");
15255 else
15256 do_vfp_nsyn_opcode ("fnmacd");
15257 }
15258 }
15259
15260 static void
15261 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15262 {
15263 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15264
15265 if (rs == NS_FFF || rs == NS_HHH)
15266 {
15267 if (is_fma)
15268 do_vfp_nsyn_opcode ("ffmas");
15269 else
15270 do_vfp_nsyn_opcode ("ffnmas");
15271
15272 /* ARMv8.2 fp16 instruction. */
15273 if (rs == NS_HHH)
15274 do_scalar_fp16_v82_encode ();
15275 }
15276 else
15277 {
15278 if (is_fma)
15279 do_vfp_nsyn_opcode ("ffmad");
15280 else
15281 do_vfp_nsyn_opcode ("ffnmad");
15282 }
15283 }
15284
15285 static void
15286 do_vfp_nsyn_mul (enum neon_shape rs)
15287 {
15288 if (rs == NS_FFF || rs == NS_HHH)
15289 {
15290 do_vfp_nsyn_opcode ("fmuls");
15291
15292 /* ARMv8.2 fp16 instruction. */
15293 if (rs == NS_HHH)
15294 do_scalar_fp16_v82_encode ();
15295 }
15296 else
15297 do_vfp_nsyn_opcode ("fmuld");
15298 }
15299
15300 static void
15301 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15302 {
15303 int is_neg = (inst.instruction & 0x80) != 0;
15304 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15305
15306 if (rs == NS_FF || rs == NS_HH)
15307 {
15308 if (is_neg)
15309 do_vfp_nsyn_opcode ("fnegs");
15310 else
15311 do_vfp_nsyn_opcode ("fabss");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HH)
15315 do_scalar_fp16_v82_encode ();
15316 }
15317 else
15318 {
15319 if (is_neg)
15320 do_vfp_nsyn_opcode ("fnegd");
15321 else
15322 do_vfp_nsyn_opcode ("fabsd");
15323 }
15324 }
15325
15326 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15327 insns belong to Neon, and are handled elsewhere. */
15328
15329 static void
15330 do_vfp_nsyn_ldm_stm (int is_dbmode)
15331 {
15332 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15333 if (is_ldm)
15334 {
15335 if (is_dbmode)
15336 do_vfp_nsyn_opcode ("fldmdbs");
15337 else
15338 do_vfp_nsyn_opcode ("fldmias");
15339 }
15340 else
15341 {
15342 if (is_dbmode)
15343 do_vfp_nsyn_opcode ("fstmdbs");
15344 else
15345 do_vfp_nsyn_opcode ("fstmias");
15346 }
15347 }
15348
15349 static void
15350 do_vfp_nsyn_sqrt (void)
15351 {
15352 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15353 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15354
15355 if (rs == NS_FF || rs == NS_HH)
15356 {
15357 do_vfp_nsyn_opcode ("fsqrts");
15358
15359 /* ARMv8.2 fp16 instruction. */
15360 if (rs == NS_HH)
15361 do_scalar_fp16_v82_encode ();
15362 }
15363 else
15364 do_vfp_nsyn_opcode ("fsqrtd");
15365 }
15366
15367 static void
15368 do_vfp_nsyn_div (void)
15369 {
15370 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15371 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15372 N_F_ALL | N_KEY | N_VFP);
15373
15374 if (rs == NS_FFF || rs == NS_HHH)
15375 {
15376 do_vfp_nsyn_opcode ("fdivs");
15377
15378 /* ARMv8.2 fp16 instruction. */
15379 if (rs == NS_HHH)
15380 do_scalar_fp16_v82_encode ();
15381 }
15382 else
15383 do_vfp_nsyn_opcode ("fdivd");
15384 }
15385
15386 static void
15387 do_vfp_nsyn_nmul (void)
15388 {
15389 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15390 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15391 N_F_ALL | N_KEY | N_VFP);
15392
15393 if (rs == NS_FFF || rs == NS_HHH)
15394 {
15395 NEON_ENCODE (SINGLE, inst);
15396 do_vfp_sp_dyadic ();
15397
15398 /* ARMv8.2 fp16 instruction. */
15399 if (rs == NS_HHH)
15400 do_scalar_fp16_v82_encode ();
15401 }
15402 else
15403 {
15404 NEON_ENCODE (DOUBLE, inst);
15405 do_vfp_dp_rd_rn_rm ();
15406 }
15407 do_vfp_cond_or_thumb ();
15408
15409 }
15410
15411 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15412 (0, 1, 2, 3). */
15413
15414 static unsigned
15415 neon_logbits (unsigned x)
15416 {
15417 return ffs (x) - 4;
15418 }
15419
15420 #define LOW4(R) ((R) & 0xf)
15421 #define HI1(R) (((R) >> 4) & 1)
15422
15423 static unsigned
15424 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15425 {
15426 switch (et.type)
15427 {
15428 default:
15429 first_error (BAD_EL_TYPE);
15430 return 0;
15431 case NT_float:
15432 switch (inst.operands[0].imm)
15433 {
15434 default:
15435 first_error (_("invalid condition"));
15436 return 0;
15437 case 0x0:
15438 /* eq. */
15439 return 0;
15440 case 0x1:
15441 /* ne. */
15442 return 1;
15443 case 0xa:
15444 /* ge/ */
15445 return 4;
15446 case 0xb:
15447 /* lt. */
15448 return 5;
15449 case 0xc:
15450 /* gt. */
15451 return 6;
15452 case 0xd:
15453 /* le. */
15454 return 7;
15455 }
15456 case NT_integer:
15457 /* only accept eq and ne. */
15458 if (inst.operands[0].imm > 1)
15459 {
15460 first_error (_("invalid condition"));
15461 return 0;
15462 }
15463 return inst.operands[0].imm;
15464 case NT_unsigned:
15465 if (inst.operands[0].imm == 0x2)
15466 return 2;
15467 else if (inst.operands[0].imm == 0x8)
15468 return 3;
15469 else
15470 {
15471 first_error (_("invalid condition"));
15472 return 0;
15473 }
15474 case NT_signed:
15475 switch (inst.operands[0].imm)
15476 {
15477 default:
15478 first_error (_("invalid condition"));
15479 return 0;
15480 case 0xa:
15481 /* ge. */
15482 return 4;
15483 case 0xb:
15484 /* lt. */
15485 return 5;
15486 case 0xc:
15487 /* gt. */
15488 return 6;
15489 case 0xd:
15490 /* le. */
15491 return 7;
15492 }
15493 }
15494 /* Should be unreachable. */
15495 abort ();
15496 }
15497
15498 static void
15499 do_mve_vpt (void)
15500 {
15501 /* We are dealing with a vector predicated block. */
15502 if (inst.operands[0].present)
15503 {
15504 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15505 struct neon_type_el et
15506 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15507 N_EQK);
15508
15509 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15510
15511 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15512
15513 if (et.type == NT_invtype)
15514 return;
15515
15516 if (et.type == NT_float)
15517 {
15518 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15519 BAD_FPU);
15520 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15521 inst.instruction |= (et.size == 16) << 28;
15522 inst.instruction |= 0x3 << 20;
15523 }
15524 else
15525 {
15526 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15527 BAD_EL_TYPE);
15528 inst.instruction |= 1 << 28;
15529 inst.instruction |= neon_logbits (et.size) << 20;
15530 }
15531
15532 if (inst.operands[2].isquad)
15533 {
15534 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15535 inst.instruction |= LOW4 (inst.operands[2].reg);
15536 inst.instruction |= (fcond & 0x2) >> 1;
15537 }
15538 else
15539 {
15540 if (inst.operands[2].reg == REG_SP)
15541 as_tsktsk (MVE_BAD_SP);
15542 inst.instruction |= 1 << 6;
15543 inst.instruction |= (fcond & 0x2) << 4;
15544 inst.instruction |= inst.operands[2].reg;
15545 }
15546 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15547 inst.instruction |= (fcond & 0x4) << 10;
15548 inst.instruction |= (fcond & 0x1) << 7;
15549
15550 }
15551 set_pred_insn_type (VPT_INSN);
15552 now_pred.cc = 0;
15553 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15554 | ((inst.instruction & 0xe000) >> 13);
15555 now_pred.warn_deprecated = FALSE;
15556 now_pred.type = VECTOR_PRED;
15557 inst.is_neon = 1;
15558 }
15559
15560 static void
15561 do_mve_vcmp (void)
15562 {
15563 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15564 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15565 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15566 if (!inst.operands[2].present)
15567 first_error (_("MVE vector or ARM register expected"));
15568 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15569
15570 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15571 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15572 && inst.operands[1].isquad)
15573 {
15574 inst.instruction = N_MNEM_vcmp;
15575 inst.cond = 0x10;
15576 }
15577
15578 if (inst.cond > COND_ALWAYS)
15579 inst.pred_insn_type = INSIDE_VPT_INSN;
15580 else
15581 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15582
15583 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15584 struct neon_type_el et
15585 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15586 N_EQK);
15587
15588 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15589 && !inst.operands[2].iszr, BAD_PC);
15590
15591 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15592
15593 inst.instruction = 0xee010f00;
15594 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15595 inst.instruction |= (fcond & 0x4) << 10;
15596 inst.instruction |= (fcond & 0x1) << 7;
15597 if (et.type == NT_float)
15598 {
15599 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15600 BAD_FPU);
15601 inst.instruction |= (et.size == 16) << 28;
15602 inst.instruction |= 0x3 << 20;
15603 }
15604 else
15605 {
15606 inst.instruction |= 1 << 28;
15607 inst.instruction |= neon_logbits (et.size) << 20;
15608 }
15609 if (inst.operands[2].isquad)
15610 {
15611 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15612 inst.instruction |= (fcond & 0x2) >> 1;
15613 inst.instruction |= LOW4 (inst.operands[2].reg);
15614 }
15615 else
15616 {
15617 if (inst.operands[2].reg == REG_SP)
15618 as_tsktsk (MVE_BAD_SP);
15619 inst.instruction |= 1 << 6;
15620 inst.instruction |= (fcond & 0x2) << 4;
15621 inst.instruction |= inst.operands[2].reg;
15622 }
15623
15624 inst.is_neon = 1;
15625 return;
15626 }
15627
15628 static void
15629 do_mve_vmaxa_vmina (void)
15630 {
15631 if (inst.cond > COND_ALWAYS)
15632 inst.pred_insn_type = INSIDE_VPT_INSN;
15633 else
15634 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15635
15636 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15637 struct neon_type_el et
15638 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15639
15640 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15641 inst.instruction |= neon_logbits (et.size) << 18;
15642 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15643 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15644 inst.instruction |= LOW4 (inst.operands[1].reg);
15645 inst.is_neon = 1;
15646 }
15647
15648 static void
15649 do_mve_vfmas (void)
15650 {
15651 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15652 struct neon_type_el et
15653 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15654
15655 if (inst.cond > COND_ALWAYS)
15656 inst.pred_insn_type = INSIDE_VPT_INSN;
15657 else
15658 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15659
15660 if (inst.operands[2].reg == REG_SP)
15661 as_tsktsk (MVE_BAD_SP);
15662 else if (inst.operands[2].reg == REG_PC)
15663 as_tsktsk (MVE_BAD_PC);
15664
15665 inst.instruction |= (et.size == 16) << 28;
15666 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15667 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15668 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15669 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15670 inst.instruction |= inst.operands[2].reg;
15671 inst.is_neon = 1;
15672 }
15673
15674 static void
15675 do_mve_viddup (void)
15676 {
15677 if (inst.cond > COND_ALWAYS)
15678 inst.pred_insn_type = INSIDE_VPT_INSN;
15679 else
15680 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15681
15682 unsigned imm = inst.relocs[0].exp.X_add_number;
15683 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15684 _("immediate must be either 1, 2, 4 or 8"));
15685
15686 enum neon_shape rs;
15687 struct neon_type_el et;
15688 unsigned Rm;
15689 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15690 {
15691 rs = neon_select_shape (NS_QRI, NS_NULL);
15692 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15693 Rm = 7;
15694 }
15695 else
15696 {
15697 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15698 if (inst.operands[2].reg == REG_SP)
15699 as_tsktsk (MVE_BAD_SP);
15700 else if (inst.operands[2].reg == REG_PC)
15701 first_error (BAD_PC);
15702
15703 rs = neon_select_shape (NS_QRRI, NS_NULL);
15704 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15705 Rm = inst.operands[2].reg >> 1;
15706 }
15707 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15708 inst.instruction |= neon_logbits (et.size) << 20;
15709 inst.instruction |= inst.operands[1].reg << 16;
15710 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15711 inst.instruction |= (imm > 2) << 7;
15712 inst.instruction |= Rm << 1;
15713 inst.instruction |= (imm == 2 || imm == 8);
15714 inst.is_neon = 1;
15715 }
15716
15717 static void
15718 do_mve_vmlas (void)
15719 {
15720 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15721 struct neon_type_el et
15722 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15723
15724 if (inst.operands[2].reg == REG_PC)
15725 as_tsktsk (MVE_BAD_PC);
15726 else if (inst.operands[2].reg == REG_SP)
15727 as_tsktsk (MVE_BAD_SP);
15728
15729 if (inst.cond > COND_ALWAYS)
15730 inst.pred_insn_type = INSIDE_VPT_INSN;
15731 else
15732 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15733
15734 inst.instruction |= (et.type == NT_unsigned) << 28;
15735 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15736 inst.instruction |= neon_logbits (et.size) << 20;
15737 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15738 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15739 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15740 inst.instruction |= inst.operands[2].reg;
15741 inst.is_neon = 1;
15742 }
15743
15744 static void
15745 do_mve_vpsel (void)
15746 {
15747 neon_select_shape (NS_QQQ, NS_NULL);
15748
15749 if (inst.cond > COND_ALWAYS)
15750 inst.pred_insn_type = INSIDE_VPT_INSN;
15751 else
15752 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15753
15754 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15755 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15756 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15757 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15758 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15759 inst.instruction |= LOW4 (inst.operands[2].reg);
15760 inst.is_neon = 1;
15761 }
15762
15763 static void
15764 do_mve_vpnot (void)
15765 {
15766 if (inst.cond > COND_ALWAYS)
15767 inst.pred_insn_type = INSIDE_VPT_INSN;
15768 else
15769 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15770 }
15771
15772 static void
15773 do_mve_vmaxnma_vminnma (void)
15774 {
15775 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15776 struct neon_type_el et
15777 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15778
15779 if (inst.cond > COND_ALWAYS)
15780 inst.pred_insn_type = INSIDE_VPT_INSN;
15781 else
15782 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15783
15784 inst.instruction |= (et.size == 16) << 28;
15785 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15786 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15787 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15788 inst.instruction |= LOW4 (inst.operands[1].reg);
15789 inst.is_neon = 1;
15790 }
15791
15792 static void
15793 do_mve_vcmul (void)
15794 {
15795 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15796 struct neon_type_el et
15797 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15798
15799 if (inst.cond > COND_ALWAYS)
15800 inst.pred_insn_type = INSIDE_VPT_INSN;
15801 else
15802 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15803
15804 unsigned rot = inst.relocs[0].exp.X_add_number;
15805 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15806 _("immediate out of range"));
15807
15808 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15809 || inst.operands[0].reg == inst.operands[2].reg))
15810 as_tsktsk (BAD_MVE_SRCDEST);
15811
15812 inst.instruction |= (et.size == 32) << 28;
15813 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15814 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15815 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15816 inst.instruction |= (rot > 90) << 12;
15817 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15818 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15819 inst.instruction |= LOW4 (inst.operands[2].reg);
15820 inst.instruction |= (rot == 90 || rot == 270);
15821 inst.is_neon = 1;
15822 }
15823
15824 static void
15825 do_vfp_nsyn_cmp (void)
15826 {
15827 enum neon_shape rs;
15828 if (!inst.operands[0].isreg)
15829 {
15830 do_mve_vcmp ();
15831 return;
15832 }
15833 else
15834 {
15835 constraint (inst.operands[2].present, BAD_SYNTAX);
15836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15837 BAD_FPU);
15838 }
15839
15840 if (inst.operands[1].isreg)
15841 {
15842 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15843 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15844
15845 if (rs == NS_FF || rs == NS_HH)
15846 {
15847 NEON_ENCODE (SINGLE, inst);
15848 do_vfp_sp_monadic ();
15849 }
15850 else
15851 {
15852 NEON_ENCODE (DOUBLE, inst);
15853 do_vfp_dp_rd_rm ();
15854 }
15855 }
15856 else
15857 {
15858 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15859 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15860
15861 switch (inst.instruction & 0x0fffffff)
15862 {
15863 case N_MNEM_vcmp:
15864 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15865 break;
15866 case N_MNEM_vcmpe:
15867 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15868 break;
15869 default:
15870 abort ();
15871 }
15872
15873 if (rs == NS_FI || rs == NS_HI)
15874 {
15875 NEON_ENCODE (SINGLE, inst);
15876 do_vfp_sp_compare_z ();
15877 }
15878 else
15879 {
15880 NEON_ENCODE (DOUBLE, inst);
15881 do_vfp_dp_rd ();
15882 }
15883 }
15884 do_vfp_cond_or_thumb ();
15885
15886 /* ARMv8.2 fp16 instruction. */
15887 if (rs == NS_HI || rs == NS_HH)
15888 do_scalar_fp16_v82_encode ();
15889 }
15890
15891 static void
15892 nsyn_insert_sp (void)
15893 {
15894 inst.operands[1] = inst.operands[0];
15895 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15896 inst.operands[0].reg = REG_SP;
15897 inst.operands[0].isreg = 1;
15898 inst.operands[0].writeback = 1;
15899 inst.operands[0].present = 1;
15900 }
15901
15902 static void
15903 do_vfp_nsyn_push (void)
15904 {
15905 nsyn_insert_sp ();
15906
15907 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15908 _("register list must contain at least 1 and at most 16 "
15909 "registers"));
15910
15911 if (inst.operands[1].issingle)
15912 do_vfp_nsyn_opcode ("fstmdbs");
15913 else
15914 do_vfp_nsyn_opcode ("fstmdbd");
15915 }
15916
15917 static void
15918 do_vfp_nsyn_pop (void)
15919 {
15920 nsyn_insert_sp ();
15921
15922 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15923 _("register list must contain at least 1 and at most 16 "
15924 "registers"));
15925
15926 if (inst.operands[1].issingle)
15927 do_vfp_nsyn_opcode ("fldmias");
15928 else
15929 do_vfp_nsyn_opcode ("fldmiad");
15930 }
15931
15932 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15933 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15934
15935 static void
15936 neon_dp_fixup (struct arm_it* insn)
15937 {
15938 unsigned int i = insn->instruction;
15939 insn->is_neon = 1;
15940
15941 if (thumb_mode)
15942 {
15943 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15944 if (i & (1 << 24))
15945 i |= 1 << 28;
15946
15947 i &= ~(1 << 24);
15948
15949 i |= 0xef000000;
15950 }
15951 else
15952 i |= 0xf2000000;
15953
15954 insn->instruction = i;
15955 }
15956
15957 static void
15958 mve_encode_qqr (int size, int U, int fp)
15959 {
15960 if (inst.operands[2].reg == REG_SP)
15961 as_tsktsk (MVE_BAD_SP);
15962 else if (inst.operands[2].reg == REG_PC)
15963 as_tsktsk (MVE_BAD_PC);
15964
15965 if (fp)
15966 {
15967 /* vadd. */
15968 if (((unsigned)inst.instruction) == 0xd00)
15969 inst.instruction = 0xee300f40;
15970 /* vsub. */
15971 else if (((unsigned)inst.instruction) == 0x200d00)
15972 inst.instruction = 0xee301f40;
15973 /* vmul. */
15974 else if (((unsigned)inst.instruction) == 0x1000d10)
15975 inst.instruction = 0xee310e60;
15976
15977 /* Setting size which is 1 for F16 and 0 for F32. */
15978 inst.instruction |= (size == 16) << 28;
15979 }
15980 else
15981 {
15982 /* vadd. */
15983 if (((unsigned)inst.instruction) == 0x800)
15984 inst.instruction = 0xee010f40;
15985 /* vsub. */
15986 else if (((unsigned)inst.instruction) == 0x1000800)
15987 inst.instruction = 0xee011f40;
15988 /* vhadd. */
15989 else if (((unsigned)inst.instruction) == 0)
15990 inst.instruction = 0xee000f40;
15991 /* vhsub. */
15992 else if (((unsigned)inst.instruction) == 0x200)
15993 inst.instruction = 0xee001f40;
15994 /* vmla. */
15995 else if (((unsigned)inst.instruction) == 0x900)
15996 inst.instruction = 0xee010e40;
15997 /* vmul. */
15998 else if (((unsigned)inst.instruction) == 0x910)
15999 inst.instruction = 0xee011e60;
16000 /* vqadd. */
16001 else if (((unsigned)inst.instruction) == 0x10)
16002 inst.instruction = 0xee000f60;
16003 /* vqsub. */
16004 else if (((unsigned)inst.instruction) == 0x210)
16005 inst.instruction = 0xee001f60;
16006 /* vqrdmlah. */
16007 else if (((unsigned)inst.instruction) == 0x3000b10)
16008 inst.instruction = 0xee000e40;
16009 /* vqdmulh. */
16010 else if (((unsigned)inst.instruction) == 0x0000b00)
16011 inst.instruction = 0xee010e60;
16012 /* vqrdmulh. */
16013 else if (((unsigned)inst.instruction) == 0x1000b00)
16014 inst.instruction = 0xfe010e60;
16015
16016 /* Set U-bit. */
16017 inst.instruction |= U << 28;
16018
16019 /* Setting bits for size. */
16020 inst.instruction |= neon_logbits (size) << 20;
16021 }
16022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16024 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16025 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16026 inst.instruction |= inst.operands[2].reg;
16027 inst.is_neon = 1;
16028 }
16029
16030 static void
16031 mve_encode_rqq (unsigned bit28, unsigned size)
16032 {
16033 inst.instruction |= bit28 << 28;
16034 inst.instruction |= neon_logbits (size) << 20;
16035 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16036 inst.instruction |= inst.operands[0].reg << 12;
16037 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16038 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16039 inst.instruction |= LOW4 (inst.operands[2].reg);
16040 inst.is_neon = 1;
16041 }
16042
16043 static void
16044 mve_encode_qqq (int ubit, int size)
16045 {
16046
16047 inst.instruction |= (ubit != 0) << 28;
16048 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16049 inst.instruction |= neon_logbits (size) << 20;
16050 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16051 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16052 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16053 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16054 inst.instruction |= LOW4 (inst.operands[2].reg);
16055
16056 inst.is_neon = 1;
16057 }
16058
16059 static void
16060 mve_encode_rq (unsigned bit28, unsigned size)
16061 {
16062 inst.instruction |= bit28 << 28;
16063 inst.instruction |= neon_logbits (size) << 18;
16064 inst.instruction |= inst.operands[0].reg << 12;
16065 inst.instruction |= LOW4 (inst.operands[1].reg);
16066 inst.is_neon = 1;
16067 }
16068
16069 static void
16070 mve_encode_rrqq (unsigned U, unsigned size)
16071 {
16072 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16073
16074 inst.instruction |= U << 28;
16075 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16076 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16077 inst.instruction |= (size == 32) << 16;
16078 inst.instruction |= inst.operands[0].reg << 12;
16079 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16080 inst.instruction |= inst.operands[3].reg;
16081 inst.is_neon = 1;
16082 }
16083
16084 /* Encode insns with bit pattern:
16085
16086 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16087 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16088
16089 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16090 different meaning for some instruction. */
16091
16092 static void
16093 neon_three_same (int isquad, int ubit, int size)
16094 {
16095 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16096 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16097 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16098 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16099 inst.instruction |= LOW4 (inst.operands[2].reg);
16100 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16101 inst.instruction |= (isquad != 0) << 6;
16102 inst.instruction |= (ubit != 0) << 24;
16103 if (size != -1)
16104 inst.instruction |= neon_logbits (size) << 20;
16105
16106 neon_dp_fixup (&inst);
16107 }
16108
16109 /* Encode instructions of the form:
16110
16111 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16112 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16113
16114 Don't write size if SIZE == -1. */
16115
16116 static void
16117 neon_two_same (int qbit, int ubit, int size)
16118 {
16119 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16120 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16121 inst.instruction |= LOW4 (inst.operands[1].reg);
16122 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16123 inst.instruction |= (qbit != 0) << 6;
16124 inst.instruction |= (ubit != 0) << 24;
16125
16126 if (size != -1)
16127 inst.instruction |= neon_logbits (size) << 18;
16128
16129 neon_dp_fixup (&inst);
16130 }
16131
16132 enum vfp_or_neon_is_neon_bits
16133 {
16134 NEON_CHECK_CC = 1,
16135 NEON_CHECK_ARCH = 2,
16136 NEON_CHECK_ARCH8 = 4
16137 };
16138
16139 /* Call this function if an instruction which may have belonged to the VFP or
16140 Neon instruction sets, but turned out to be a Neon instruction (due to the
16141 operand types involved, etc.). We have to check and/or fix-up a couple of
16142 things:
16143
16144 - Make sure the user hasn't attempted to make a Neon instruction
16145 conditional.
16146 - Alter the value in the condition code field if necessary.
16147 - Make sure that the arch supports Neon instructions.
16148
16149 Which of these operations take place depends on bits from enum
16150 vfp_or_neon_is_neon_bits.
16151
16152 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16153 current instruction's condition is COND_ALWAYS, the condition field is
16154 changed to inst.uncond_value. This is necessary because instructions shared
16155 between VFP and Neon may be conditional for the VFP variants only, and the
16156 unconditional Neon version must have, e.g., 0xF in the condition field. */
16157
16158 static int
16159 vfp_or_neon_is_neon (unsigned check)
16160 {
16161 /* Conditions are always legal in Thumb mode (IT blocks). */
16162 if (!thumb_mode && (check & NEON_CHECK_CC))
16163 {
16164 if (inst.cond != COND_ALWAYS)
16165 {
16166 first_error (_(BAD_COND));
16167 return FAIL;
16168 }
16169 if (inst.uncond_value != -1)
16170 inst.instruction |= inst.uncond_value << 28;
16171 }
16172
16173
16174 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16175 || ((check & NEON_CHECK_ARCH8)
16176 && !mark_feature_used (&fpu_neon_ext_armv8)))
16177 {
16178 first_error (_(BAD_FPU));
16179 return FAIL;
16180 }
16181
16182 return SUCCESS;
16183 }
16184
16185 static int
16186 check_simd_pred_availability (int fp, unsigned check)
16187 {
16188 if (inst.cond > COND_ALWAYS)
16189 {
16190 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16191 {
16192 inst.error = BAD_FPU;
16193 return 1;
16194 }
16195 inst.pred_insn_type = INSIDE_VPT_INSN;
16196 }
16197 else if (inst.cond < COND_ALWAYS)
16198 {
16199 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16200 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16201 else if (vfp_or_neon_is_neon (check) == FAIL)
16202 return 2;
16203 }
16204 else
16205 {
16206 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16207 && vfp_or_neon_is_neon (check) == FAIL)
16208 return 3;
16209
16210 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16211 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16212 }
16213 return 0;
16214 }
16215
16216 /* Neon instruction encoders, in approximate order of appearance. */
16217
16218 static void
16219 do_neon_dyadic_i_su (void)
16220 {
16221 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16222 return;
16223
16224 enum neon_shape rs;
16225 struct neon_type_el et;
16226 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16227 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16228 else
16229 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16230
16231 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16232
16233
16234 if (rs != NS_QQR)
16235 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16236 else
16237 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16238 }
16239
16240 static void
16241 do_neon_dyadic_i64_su (void)
16242 {
16243 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16244 return;
16245 enum neon_shape rs;
16246 struct neon_type_el et;
16247 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16248 {
16249 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16250 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16251 }
16252 else
16253 {
16254 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16255 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16256 }
16257 if (rs == NS_QQR)
16258 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16259 else
16260 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16261 }
16262
16263 static void
16264 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16265 unsigned immbits)
16266 {
16267 unsigned size = et.size >> 3;
16268 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16269 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16270 inst.instruction |= LOW4 (inst.operands[1].reg);
16271 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16272 inst.instruction |= (isquad != 0) << 6;
16273 inst.instruction |= immbits << 16;
16274 inst.instruction |= (size >> 3) << 7;
16275 inst.instruction |= (size & 0x7) << 19;
16276 if (write_ubit)
16277 inst.instruction |= (uval != 0) << 24;
16278
16279 neon_dp_fixup (&inst);
16280 }
16281
16282 static void
16283 do_neon_shl_imm (void)
16284 {
16285 if (!inst.operands[2].isreg)
16286 {
16287 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16288 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16289 int imm = inst.operands[2].imm;
16290
16291 constraint (imm < 0 || (unsigned)imm >= et.size,
16292 _("immediate out of range for shift"));
16293 NEON_ENCODE (IMMED, inst);
16294 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16295 }
16296 else
16297 {
16298 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16299 struct neon_type_el et = neon_check_type (3, rs,
16300 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16301 unsigned int tmp;
16302
16303 /* VSHL/VQSHL 3-register variants have syntax such as:
16304 vshl.xx Dd, Dm, Dn
16305 whereas other 3-register operations encoded by neon_three_same have
16306 syntax like:
16307 vadd.xx Dd, Dn, Dm
16308 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16309 here. */
16310 tmp = inst.operands[2].reg;
16311 inst.operands[2].reg = inst.operands[1].reg;
16312 inst.operands[1].reg = tmp;
16313 NEON_ENCODE (INTEGER, inst);
16314 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16315 }
16316 }
16317
16318 static void
16319 do_neon_qshl_imm (void)
16320 {
16321 if (!inst.operands[2].isreg)
16322 {
16323 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16324 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16325 int imm = inst.operands[2].imm;
16326
16327 constraint (imm < 0 || (unsigned)imm >= et.size,
16328 _("immediate out of range for shift"));
16329 NEON_ENCODE (IMMED, inst);
16330 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16331 }
16332 else
16333 {
16334 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16335 struct neon_type_el et = neon_check_type (3, rs,
16336 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16337 unsigned int tmp;
16338
16339 /* See note in do_neon_shl_imm. */
16340 tmp = inst.operands[2].reg;
16341 inst.operands[2].reg = inst.operands[1].reg;
16342 inst.operands[1].reg = tmp;
16343 NEON_ENCODE (INTEGER, inst);
16344 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16345 }
16346 }
16347
16348 static void
16349 do_neon_rshl (void)
16350 {
16351 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16352 struct neon_type_el et = neon_check_type (3, rs,
16353 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16354 unsigned int tmp;
16355
16356 tmp = inst.operands[2].reg;
16357 inst.operands[2].reg = inst.operands[1].reg;
16358 inst.operands[1].reg = tmp;
16359 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16360 }
16361
16362 static int
16363 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16364 {
16365 /* Handle .I8 pseudo-instructions. */
16366 if (size == 8)
16367 {
16368 /* Unfortunately, this will make everything apart from zero out-of-range.
16369 FIXME is this the intended semantics? There doesn't seem much point in
16370 accepting .I8 if so. */
16371 immediate |= immediate << 8;
16372 size = 16;
16373 }
16374
16375 if (size >= 32)
16376 {
16377 if (immediate == (immediate & 0x000000ff))
16378 {
16379 *immbits = immediate;
16380 return 0x1;
16381 }
16382 else if (immediate == (immediate & 0x0000ff00))
16383 {
16384 *immbits = immediate >> 8;
16385 return 0x3;
16386 }
16387 else if (immediate == (immediate & 0x00ff0000))
16388 {
16389 *immbits = immediate >> 16;
16390 return 0x5;
16391 }
16392 else if (immediate == (immediate & 0xff000000))
16393 {
16394 *immbits = immediate >> 24;
16395 return 0x7;
16396 }
16397 if ((immediate & 0xffff) != (immediate >> 16))
16398 goto bad_immediate;
16399 immediate &= 0xffff;
16400 }
16401
16402 if (immediate == (immediate & 0x000000ff))
16403 {
16404 *immbits = immediate;
16405 return 0x9;
16406 }
16407 else if (immediate == (immediate & 0x0000ff00))
16408 {
16409 *immbits = immediate >> 8;
16410 return 0xb;
16411 }
16412
16413 bad_immediate:
16414 first_error (_("immediate value out of range"));
16415 return FAIL;
16416 }
16417
16418 static void
16419 do_neon_logic (void)
16420 {
16421 if (inst.operands[2].present && inst.operands[2].isreg)
16422 {
16423 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16424 if (rs == NS_QQQ
16425 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16426 == FAIL)
16427 return;
16428 else if (rs != NS_QQQ
16429 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16430 first_error (BAD_FPU);
16431
16432 neon_check_type (3, rs, N_IGNORE_TYPE);
16433 /* U bit and size field were set as part of the bitmask. */
16434 NEON_ENCODE (INTEGER, inst);
16435 neon_three_same (neon_quad (rs), 0, -1);
16436 }
16437 else
16438 {
16439 const int three_ops_form = (inst.operands[2].present
16440 && !inst.operands[2].isreg);
16441 const int immoperand = (three_ops_form ? 2 : 1);
16442 enum neon_shape rs = (three_ops_form
16443 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16444 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16445 /* Because neon_select_shape makes the second operand a copy of the first
16446 if the second operand is not present. */
16447 if (rs == NS_QQI
16448 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16449 == FAIL)
16450 return;
16451 else if (rs != NS_QQI
16452 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16453 first_error (BAD_FPU);
16454
16455 struct neon_type_el et;
16456 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16457 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16458 else
16459 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16460 | N_KEY, N_EQK);
16461
16462 if (et.type == NT_invtype)
16463 return;
16464 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16465 unsigned immbits;
16466 int cmode;
16467
16468
16469 if (three_ops_form)
16470 constraint (inst.operands[0].reg != inst.operands[1].reg,
16471 _("first and second operands shall be the same register"));
16472
16473 NEON_ENCODE (IMMED, inst);
16474
16475 immbits = inst.operands[immoperand].imm;
16476 if (et.size == 64)
16477 {
16478 /* .i64 is a pseudo-op, so the immediate must be a repeating
16479 pattern. */
16480 if (immbits != (inst.operands[immoperand].regisimm ?
16481 inst.operands[immoperand].reg : 0))
16482 {
16483 /* Set immbits to an invalid constant. */
16484 immbits = 0xdeadbeef;
16485 }
16486 }
16487
16488 switch (opcode)
16489 {
16490 case N_MNEM_vbic:
16491 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16492 break;
16493
16494 case N_MNEM_vorr:
16495 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16496 break;
16497
16498 case N_MNEM_vand:
16499 /* Pseudo-instruction for VBIC. */
16500 neon_invert_size (&immbits, 0, et.size);
16501 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16502 break;
16503
16504 case N_MNEM_vorn:
16505 /* Pseudo-instruction for VORR. */
16506 neon_invert_size (&immbits, 0, et.size);
16507 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16508 break;
16509
16510 default:
16511 abort ();
16512 }
16513
16514 if (cmode == FAIL)
16515 return;
16516
16517 inst.instruction |= neon_quad (rs) << 6;
16518 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16519 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16520 inst.instruction |= cmode << 8;
16521 neon_write_immbits (immbits);
16522
16523 neon_dp_fixup (&inst);
16524 }
16525 }
16526
16527 static void
16528 do_neon_bitfield (void)
16529 {
16530 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16531 neon_check_type (3, rs, N_IGNORE_TYPE);
16532 neon_three_same (neon_quad (rs), 0, -1);
16533 }
16534
16535 static void
16536 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16537 unsigned destbits)
16538 {
16539 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16540 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16541 types | N_KEY);
16542 if (et.type == NT_float)
16543 {
16544 NEON_ENCODE (FLOAT, inst);
16545 if (rs == NS_QQR)
16546 mve_encode_qqr (et.size, 0, 1);
16547 else
16548 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16549 }
16550 else
16551 {
16552 NEON_ENCODE (INTEGER, inst);
16553 if (rs == NS_QQR)
16554 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16555 else
16556 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16557 }
16558 }
16559
16560
16561 static void
16562 do_neon_dyadic_if_su_d (void)
16563 {
16564 /* This version only allow D registers, but that constraint is enforced during
16565 operand parsing so we don't need to do anything extra here. */
16566 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16567 }
16568
16569 static void
16570 do_neon_dyadic_if_i_d (void)
16571 {
16572 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16573 affected if we specify unsigned args. */
16574 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16575 }
16576
16577 static void
16578 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16579 {
16580 constraint (size < 32, BAD_ADDR_MODE);
16581 constraint (size != elsize, BAD_EL_TYPE);
16582 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16583 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16584 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16585 _("destination register and offset register may not be the"
16586 " same"));
16587
16588 int imm = inst.relocs[0].exp.X_add_number;
16589 int add = 1;
16590 if (imm < 0)
16591 {
16592 add = 0;
16593 imm = -imm;
16594 }
16595 constraint ((imm % (size / 8) != 0)
16596 || imm > (0x7f << neon_logbits (size)),
16597 (size == 32) ? _("immediate must be a multiple of 4 in the"
16598 " range of +/-[0,508]")
16599 : _("immediate must be a multiple of 8 in the"
16600 " range of +/-[0,1016]"));
16601 inst.instruction |= 0x11 << 24;
16602 inst.instruction |= add << 23;
16603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16604 inst.instruction |= inst.operands[1].writeback << 21;
16605 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16606 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16607 inst.instruction |= 1 << 12;
16608 inst.instruction |= (size == 64) << 8;
16609 inst.instruction &= 0xffffff00;
16610 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16611 inst.instruction |= imm >> neon_logbits (size);
16612 }
16613
16614 static void
16615 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16616 {
16617 unsigned os = inst.operands[1].imm >> 5;
16618 constraint (os != 0 && size == 8,
16619 _("can not shift offsets when accessing less than half-word"));
16620 constraint (os && os != neon_logbits (size),
16621 _("shift immediate must be 1, 2 or 3 for half-word, word"
16622 " or double-word accesses respectively"));
16623 if (inst.operands[1].reg == REG_PC)
16624 as_tsktsk (MVE_BAD_PC);
16625
16626 switch (size)
16627 {
16628 case 8:
16629 constraint (elsize >= 64, BAD_EL_TYPE);
16630 break;
16631 case 16:
16632 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16633 break;
16634 case 32:
16635 case 64:
16636 constraint (elsize != size, BAD_EL_TYPE);
16637 break;
16638 default:
16639 break;
16640 }
16641 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16642 BAD_ADDR_MODE);
16643 if (load)
16644 {
16645 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16646 _("destination register and offset register may not be"
16647 " the same"));
16648 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16649 BAD_EL_TYPE);
16650 constraint (inst.vectype.el[0].type != NT_unsigned
16651 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16652 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16653 }
16654 else
16655 {
16656 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16657 }
16658
16659 inst.instruction |= 1 << 23;
16660 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16661 inst.instruction |= inst.operands[1].reg << 16;
16662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16663 inst.instruction |= neon_logbits (elsize) << 7;
16664 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16665 inst.instruction |= LOW4 (inst.operands[1].imm);
16666 inst.instruction |= !!os;
16667 }
16668
16669 static void
16670 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16671 {
16672 enum neon_el_type type = inst.vectype.el[0].type;
16673
16674 constraint (size >= 64, BAD_ADDR_MODE);
16675 switch (size)
16676 {
16677 case 16:
16678 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16679 break;
16680 case 32:
16681 constraint (elsize != size, BAD_EL_TYPE);
16682 break;
16683 default:
16684 break;
16685 }
16686 if (load)
16687 {
16688 constraint (elsize != size && type != NT_unsigned
16689 && type != NT_signed, BAD_EL_TYPE);
16690 }
16691 else
16692 {
16693 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16694 }
16695
16696 int imm = inst.relocs[0].exp.X_add_number;
16697 int add = 1;
16698 if (imm < 0)
16699 {
16700 add = 0;
16701 imm = -imm;
16702 }
16703
16704 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16705 {
16706 switch (size)
16707 {
16708 case 8:
16709 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16710 break;
16711 case 16:
16712 constraint (1, _("immediate must be a multiple of 2 in the"
16713 " range of +/-[0,254]"));
16714 break;
16715 case 32:
16716 constraint (1, _("immediate must be a multiple of 4 in the"
16717 " range of +/-[0,508]"));
16718 break;
16719 }
16720 }
16721
16722 if (size != elsize)
16723 {
16724 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16725 constraint (inst.operands[0].reg > 14,
16726 _("MVE vector register in the range [Q0..Q7] expected"));
16727 inst.instruction |= (load && type == NT_unsigned) << 28;
16728 inst.instruction |= (size == 16) << 19;
16729 inst.instruction |= neon_logbits (elsize) << 7;
16730 }
16731 else
16732 {
16733 if (inst.operands[1].reg == REG_PC)
16734 as_tsktsk (MVE_BAD_PC);
16735 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16736 as_tsktsk (MVE_BAD_SP);
16737 inst.instruction |= 1 << 12;
16738 inst.instruction |= neon_logbits (size) << 7;
16739 }
16740 inst.instruction |= inst.operands[1].preind << 24;
16741 inst.instruction |= add << 23;
16742 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16743 inst.instruction |= inst.operands[1].writeback << 21;
16744 inst.instruction |= inst.operands[1].reg << 16;
16745 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16746 inst.instruction &= 0xffffff80;
16747 inst.instruction |= imm >> neon_logbits (size);
16748
16749 }
16750
16751 static void
16752 do_mve_vstr_vldr (void)
16753 {
16754 unsigned size;
16755 int load = 0;
16756
16757 if (inst.cond > COND_ALWAYS)
16758 inst.pred_insn_type = INSIDE_VPT_INSN;
16759 else
16760 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16761
16762 switch (inst.instruction)
16763 {
16764 default:
16765 gas_assert (0);
16766 break;
16767 case M_MNEM_vldrb:
16768 load = 1;
16769 /* fall through. */
16770 case M_MNEM_vstrb:
16771 size = 8;
16772 break;
16773 case M_MNEM_vldrh:
16774 load = 1;
16775 /* fall through. */
16776 case M_MNEM_vstrh:
16777 size = 16;
16778 break;
16779 case M_MNEM_vldrw:
16780 load = 1;
16781 /* fall through. */
16782 case M_MNEM_vstrw:
16783 size = 32;
16784 break;
16785 case M_MNEM_vldrd:
16786 load = 1;
16787 /* fall through. */
16788 case M_MNEM_vstrd:
16789 size = 64;
16790 break;
16791 }
16792 unsigned elsize = inst.vectype.el[0].size;
16793
16794 if (inst.operands[1].isquad)
16795 {
16796 /* We are dealing with [Q, imm]{!} cases. */
16797 do_mve_vstr_vldr_QI (size, elsize, load);
16798 }
16799 else
16800 {
16801 if (inst.operands[1].immisreg == 2)
16802 {
16803 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16804 do_mve_vstr_vldr_RQ (size, elsize, load);
16805 }
16806 else if (!inst.operands[1].immisreg)
16807 {
16808 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16809 do_mve_vstr_vldr_RI (size, elsize, load);
16810 }
16811 else
16812 constraint (1, BAD_ADDR_MODE);
16813 }
16814
16815 inst.is_neon = 1;
16816 }
16817
16818 static void
16819 do_mve_vst_vld (void)
16820 {
16821 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16822 return;
16823
16824 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16825 || inst.relocs[0].exp.X_add_number != 0
16826 || inst.operands[1].immisreg != 0,
16827 BAD_ADDR_MODE);
16828 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16829 if (inst.operands[1].reg == REG_PC)
16830 as_tsktsk (MVE_BAD_PC);
16831 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16832 as_tsktsk (MVE_BAD_SP);
16833
16834
16835 /* These instructions are one of the "exceptions" mentioned in
16836 handle_pred_state. They are MVE instructions that are not VPT compatible
16837 and do not accept a VPT code, thus appending such a code is a syntax
16838 error. */
16839 if (inst.cond > COND_ALWAYS)
16840 first_error (BAD_SYNTAX);
16841 /* If we append a scalar condition code we can set this to
16842 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16843 else if (inst.cond < COND_ALWAYS)
16844 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16845 else
16846 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16847
16848 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16849 inst.instruction |= inst.operands[1].writeback << 21;
16850 inst.instruction |= inst.operands[1].reg << 16;
16851 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16852 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16853 inst.is_neon = 1;
16854 }
16855
16856 static void
16857 do_mve_vaddlv (void)
16858 {
16859 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16860 struct neon_type_el et
16861 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16862
16863 if (et.type == NT_invtype)
16864 first_error (BAD_EL_TYPE);
16865
16866 if (inst.cond > COND_ALWAYS)
16867 inst.pred_insn_type = INSIDE_VPT_INSN;
16868 else
16869 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16870
16871 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16872
16873 inst.instruction |= (et.type == NT_unsigned) << 28;
16874 inst.instruction |= inst.operands[1].reg << 19;
16875 inst.instruction |= inst.operands[0].reg << 12;
16876 inst.instruction |= inst.operands[2].reg;
16877 inst.is_neon = 1;
16878 }
16879
16880 static void
16881 do_neon_dyadic_if_su (void)
16882 {
16883 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16884 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16885 N_SUF_32 | N_KEY);
16886
16887 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16888 || inst.instruction == ((unsigned) N_MNEM_vmin))
16889 && et.type == NT_float
16890 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16891
16892 if (check_simd_pred_availability (et.type == NT_float,
16893 NEON_CHECK_ARCH | NEON_CHECK_CC))
16894 return;
16895
16896 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16897 }
16898
16899 static void
16900 do_neon_addsub_if_i (void)
16901 {
16902 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16903 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16904 return;
16905
16906 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16907 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16908 N_EQK, N_IF_32 | N_I64 | N_KEY);
16909
16910 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16911 /* If we are parsing Q registers and the element types match MVE, which NEON
16912 also supports, then we must check whether this is an instruction that can
16913 be used by both MVE/NEON. This distinction can be made based on whether
16914 they are predicated or not. */
16915 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16916 {
16917 if (check_simd_pred_availability (et.type == NT_float,
16918 NEON_CHECK_ARCH | NEON_CHECK_CC))
16919 return;
16920 }
16921 else
16922 {
16923 /* If they are either in a D register or are using an unsupported. */
16924 if (rs != NS_QQR
16925 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16926 return;
16927 }
16928
16929 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16930 affected if we specify unsigned args. */
16931 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16932 }
16933
16934 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16935 result to be:
16936 V<op> A,B (A is operand 0, B is operand 2)
16937 to mean:
16938 V<op> A,B,A
16939 not:
16940 V<op> A,B,B
16941 so handle that case specially. */
16942
16943 static void
16944 neon_exchange_operands (void)
16945 {
16946 if (inst.operands[1].present)
16947 {
16948 void *scratch = xmalloc (sizeof (inst.operands[0]));
16949
16950 /* Swap operands[1] and operands[2]. */
16951 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16952 inst.operands[1] = inst.operands[2];
16953 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16954 free (scratch);
16955 }
16956 else
16957 {
16958 inst.operands[1] = inst.operands[2];
16959 inst.operands[2] = inst.operands[0];
16960 }
16961 }
16962
16963 static void
16964 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16965 {
16966 if (inst.operands[2].isreg)
16967 {
16968 if (invert)
16969 neon_exchange_operands ();
16970 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16971 }
16972 else
16973 {
16974 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16975 struct neon_type_el et = neon_check_type (2, rs,
16976 N_EQK | N_SIZ, immtypes | N_KEY);
16977
16978 NEON_ENCODE (IMMED, inst);
16979 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16981 inst.instruction |= LOW4 (inst.operands[1].reg);
16982 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16983 inst.instruction |= neon_quad (rs) << 6;
16984 inst.instruction |= (et.type == NT_float) << 10;
16985 inst.instruction |= neon_logbits (et.size) << 18;
16986
16987 neon_dp_fixup (&inst);
16988 }
16989 }
16990
16991 static void
16992 do_neon_cmp (void)
16993 {
16994 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16995 }
16996
16997 static void
16998 do_neon_cmp_inv (void)
16999 {
17000 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17001 }
17002
17003 static void
17004 do_neon_ceq (void)
17005 {
17006 neon_compare (N_IF_32, N_IF_32, FALSE);
17007 }
17008
17009 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17010 scalars, which are encoded in 5 bits, M : Rm.
17011 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17012 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17013 index in M.
17014
17015 Dot Product instructions are similar to multiply instructions except elsize
17016 should always be 32.
17017
17018 This function translates SCALAR, which is GAS's internal encoding of indexed
17019 scalar register, to raw encoding. There is also register and index range
17020 check based on ELSIZE. */
17021
17022 static unsigned
17023 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17024 {
17025 unsigned regno = NEON_SCALAR_REG (scalar);
17026 unsigned elno = NEON_SCALAR_INDEX (scalar);
17027
17028 switch (elsize)
17029 {
17030 case 16:
17031 if (regno > 7 || elno > 3)
17032 goto bad_scalar;
17033 return regno | (elno << 3);
17034
17035 case 32:
17036 if (regno > 15 || elno > 1)
17037 goto bad_scalar;
17038 return regno | (elno << 4);
17039
17040 default:
17041 bad_scalar:
17042 first_error (_("scalar out of range for multiply instruction"));
17043 }
17044
17045 return 0;
17046 }
17047
17048 /* Encode multiply / multiply-accumulate scalar instructions. */
17049
17050 static void
17051 neon_mul_mac (struct neon_type_el et, int ubit)
17052 {
17053 unsigned scalar;
17054
17055 /* Give a more helpful error message if we have an invalid type. */
17056 if (et.type == NT_invtype)
17057 return;
17058
17059 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17061 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17062 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17063 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17064 inst.instruction |= LOW4 (scalar);
17065 inst.instruction |= HI1 (scalar) << 5;
17066 inst.instruction |= (et.type == NT_float) << 8;
17067 inst.instruction |= neon_logbits (et.size) << 20;
17068 inst.instruction |= (ubit != 0) << 24;
17069
17070 neon_dp_fixup (&inst);
17071 }
17072
17073 static void
17074 do_neon_mac_maybe_scalar (void)
17075 {
17076 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17077 return;
17078
17079 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17080 return;
17081
17082 if (inst.operands[2].isscalar)
17083 {
17084 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17085 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17086 struct neon_type_el et = neon_check_type (3, rs,
17087 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17088 NEON_ENCODE (SCALAR, inst);
17089 neon_mul_mac (et, neon_quad (rs));
17090 }
17091 else if (!inst.operands[2].isvec)
17092 {
17093 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17094
17095 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17096 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17097
17098 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17099 }
17100 else
17101 {
17102 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17103 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17104 affected if we specify unsigned args. */
17105 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17106 }
17107 }
17108
17109 static void
17110 do_neon_fmac (void)
17111 {
17112 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17113 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17114 return;
17115
17116 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17117 return;
17118
17119 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17120 {
17121 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17122 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17123 N_EQK);
17124
17125 if (rs == NS_QQR)
17126 {
17127 if (inst.operands[2].reg == REG_SP)
17128 as_tsktsk (MVE_BAD_SP);
17129 else if (inst.operands[2].reg == REG_PC)
17130 as_tsktsk (MVE_BAD_PC);
17131
17132 inst.instruction = 0xee310e40;
17133 inst.instruction |= (et.size == 16) << 28;
17134 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17135 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17136 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17137 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17138 inst.instruction |= inst.operands[2].reg;
17139 inst.is_neon = 1;
17140 return;
17141 }
17142 }
17143 else
17144 {
17145 constraint (!inst.operands[2].isvec, BAD_FPU);
17146 }
17147
17148 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17149 }
17150
17151 static void
17152 do_neon_tst (void)
17153 {
17154 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17155 struct neon_type_el et = neon_check_type (3, rs,
17156 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17157 neon_three_same (neon_quad (rs), 0, et.size);
17158 }
17159
17160 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17161 same types as the MAC equivalents. The polynomial type for this instruction
17162 is encoded the same as the integer type. */
17163
17164 static void
17165 do_neon_mul (void)
17166 {
17167 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17168 return;
17169
17170 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17171 return;
17172
17173 if (inst.operands[2].isscalar)
17174 {
17175 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17176 do_neon_mac_maybe_scalar ();
17177 }
17178 else
17179 {
17180 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17181 {
17182 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17183 struct neon_type_el et
17184 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17185 if (et.type == NT_float)
17186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17187 BAD_FPU);
17188
17189 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17190 }
17191 else
17192 {
17193 constraint (!inst.operands[2].isvec, BAD_FPU);
17194 neon_dyadic_misc (NT_poly,
17195 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17196 }
17197 }
17198 }
17199
17200 static void
17201 do_neon_qdmulh (void)
17202 {
17203 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17204 return;
17205
17206 if (inst.operands[2].isscalar)
17207 {
17208 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17209 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17210 struct neon_type_el et = neon_check_type (3, rs,
17211 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17212 NEON_ENCODE (SCALAR, inst);
17213 neon_mul_mac (et, neon_quad (rs));
17214 }
17215 else
17216 {
17217 enum neon_shape rs;
17218 struct neon_type_el et;
17219 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17220 {
17221 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17222 et = neon_check_type (3, rs,
17223 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17224 }
17225 else
17226 {
17227 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17228 et = neon_check_type (3, rs,
17229 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17230 }
17231
17232 NEON_ENCODE (INTEGER, inst);
17233 if (rs == NS_QQR)
17234 mve_encode_qqr (et.size, 0, 0);
17235 else
17236 /* The U bit (rounding) comes from bit mask. */
17237 neon_three_same (neon_quad (rs), 0, et.size);
17238 }
17239 }
17240
17241 static void
17242 do_mve_vaddv (void)
17243 {
17244 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17245 struct neon_type_el et
17246 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17247
17248 if (et.type == NT_invtype)
17249 first_error (BAD_EL_TYPE);
17250
17251 if (inst.cond > COND_ALWAYS)
17252 inst.pred_insn_type = INSIDE_VPT_INSN;
17253 else
17254 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17255
17256 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17257
17258 mve_encode_rq (et.type == NT_unsigned, et.size);
17259 }
17260
17261 static void
17262 do_mve_vhcadd (void)
17263 {
17264 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17265 struct neon_type_el et
17266 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17267
17268 if (inst.cond > COND_ALWAYS)
17269 inst.pred_insn_type = INSIDE_VPT_INSN;
17270 else
17271 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17272
17273 unsigned rot = inst.relocs[0].exp.X_add_number;
17274 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17275
17276 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17277 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17278 "operand makes instruction UNPREDICTABLE"));
17279
17280 mve_encode_qqq (0, et.size);
17281 inst.instruction |= (rot == 270) << 12;
17282 inst.is_neon = 1;
17283 }
17284
17285 static void
17286 do_mve_vadc (void)
17287 {
17288 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17289 struct neon_type_el et
17290 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17291
17292 if (et.type == NT_invtype)
17293 first_error (BAD_EL_TYPE);
17294
17295 if (inst.cond > COND_ALWAYS)
17296 inst.pred_insn_type = INSIDE_VPT_INSN;
17297 else
17298 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17299
17300 mve_encode_qqq (0, 64);
17301 }
17302
17303 static void
17304 do_mve_vbrsr (void)
17305 {
17306 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17307 struct neon_type_el et
17308 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17309
17310 if (inst.cond > COND_ALWAYS)
17311 inst.pred_insn_type = INSIDE_VPT_INSN;
17312 else
17313 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17314
17315 mve_encode_qqr (et.size, 0, 0);
17316 }
17317
17318 static void
17319 do_mve_vsbc (void)
17320 {
17321 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17322
17323 if (inst.cond > COND_ALWAYS)
17324 inst.pred_insn_type = INSIDE_VPT_INSN;
17325 else
17326 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17327
17328 mve_encode_qqq (1, 64);
17329 }
17330
17331 static void
17332 do_mve_vmulh (void)
17333 {
17334 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17335 struct neon_type_el et
17336 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17337
17338 if (inst.cond > COND_ALWAYS)
17339 inst.pred_insn_type = INSIDE_VPT_INSN;
17340 else
17341 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17342
17343 mve_encode_qqq (et.type == NT_unsigned, et.size);
17344 }
17345
17346 static void
17347 do_mve_vqdmlah (void)
17348 {
17349 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17350 struct neon_type_el et
17351 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17352
17353 if (inst.cond > COND_ALWAYS)
17354 inst.pred_insn_type = INSIDE_VPT_INSN;
17355 else
17356 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17357
17358 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17359 }
17360
17361 static void
17362 do_mve_vqdmladh (void)
17363 {
17364 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17365 struct neon_type_el et
17366 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17367
17368 if (inst.cond > COND_ALWAYS)
17369 inst.pred_insn_type = INSIDE_VPT_INSN;
17370 else
17371 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17372
17373 if (et.size == 32
17374 && (inst.operands[0].reg == inst.operands[1].reg
17375 || inst.operands[0].reg == inst.operands[2].reg))
17376 as_tsktsk (BAD_MVE_SRCDEST);
17377
17378 mve_encode_qqq (0, et.size);
17379 }
17380
17381
17382 static void
17383 do_mve_vmull (void)
17384 {
17385
17386 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17387 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17388 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17389 && inst.cond == COND_ALWAYS
17390 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17391 {
17392 if (rs == NS_QQQ)
17393 {
17394
17395 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17396 N_SUF_32 | N_F64 | N_P8
17397 | N_P16 | N_I_MVE | N_KEY);
17398 if (((et.type == NT_poly) && et.size == 8
17399 && ARM_CPU_IS_ANY (cpu_variant))
17400 || (et.type == NT_integer) || (et.type == NT_float))
17401 goto neon_vmul;
17402 }
17403 else
17404 goto neon_vmul;
17405 }
17406
17407 constraint (rs != NS_QQQ, BAD_FPU);
17408 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17409 N_SU_32 | N_P8 | N_P16 | N_KEY);
17410
17411 /* We are dealing with MVE's vmullt. */
17412 if (et.size == 32
17413 && (inst.operands[0].reg == inst.operands[1].reg
17414 || inst.operands[0].reg == inst.operands[2].reg))
17415 as_tsktsk (BAD_MVE_SRCDEST);
17416
17417 if (inst.cond > COND_ALWAYS)
17418 inst.pred_insn_type = INSIDE_VPT_INSN;
17419 else
17420 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17421
17422 if (et.type == NT_poly)
17423 mve_encode_qqq (neon_logbits (et.size), 64);
17424 else
17425 mve_encode_qqq (et.type == NT_unsigned, et.size);
17426
17427 return;
17428
17429 neon_vmul:
17430 inst.instruction = N_MNEM_vmul;
17431 inst.cond = 0xb;
17432 if (thumb_mode)
17433 inst.pred_insn_type = INSIDE_IT_INSN;
17434 do_neon_mul ();
17435 }
17436
17437 static void
17438 do_mve_vabav (void)
17439 {
17440 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17441
17442 if (rs == NS_NULL)
17443 return;
17444
17445 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17446 return;
17447
17448 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17449 | N_S16 | N_S32 | N_U8 | N_U16
17450 | N_U32);
17451
17452 if (inst.cond > COND_ALWAYS)
17453 inst.pred_insn_type = INSIDE_VPT_INSN;
17454 else
17455 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17456
17457 mve_encode_rqq (et.type == NT_unsigned, et.size);
17458 }
17459
17460 static void
17461 do_mve_vmladav (void)
17462 {
17463 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17464 struct neon_type_el et = neon_check_type (3, rs,
17465 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17466
17467 if (et.type == NT_unsigned
17468 && (inst.instruction == M_MNEM_vmladavx
17469 || inst.instruction == M_MNEM_vmladavax
17470 || inst.instruction == M_MNEM_vmlsdav
17471 || inst.instruction == M_MNEM_vmlsdava
17472 || inst.instruction == M_MNEM_vmlsdavx
17473 || inst.instruction == M_MNEM_vmlsdavax))
17474 first_error (BAD_SIMD_TYPE);
17475
17476 constraint (inst.operands[2].reg > 14,
17477 _("MVE vector register in the range [Q0..Q7] expected"));
17478
17479 if (inst.cond > COND_ALWAYS)
17480 inst.pred_insn_type = INSIDE_VPT_INSN;
17481 else
17482 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17483
17484 if (inst.instruction == M_MNEM_vmlsdav
17485 || inst.instruction == M_MNEM_vmlsdava
17486 || inst.instruction == M_MNEM_vmlsdavx
17487 || inst.instruction == M_MNEM_vmlsdavax)
17488 inst.instruction |= (et.size == 8) << 28;
17489 else
17490 inst.instruction |= (et.size == 8) << 8;
17491
17492 mve_encode_rqq (et.type == NT_unsigned, 64);
17493 inst.instruction |= (et.size == 32) << 16;
17494 }
17495
17496 static void
17497 do_mve_vmlaldav (void)
17498 {
17499 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17500 struct neon_type_el et
17501 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17502 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17503
17504 if (et.type == NT_unsigned
17505 && (inst.instruction == M_MNEM_vmlsldav
17506 || inst.instruction == M_MNEM_vmlsldava
17507 || inst.instruction == M_MNEM_vmlsldavx
17508 || inst.instruction == M_MNEM_vmlsldavax))
17509 first_error (BAD_SIMD_TYPE);
17510
17511 if (inst.cond > COND_ALWAYS)
17512 inst.pred_insn_type = INSIDE_VPT_INSN;
17513 else
17514 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17515
17516 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17517 }
17518
17519 static void
17520 do_mve_vrmlaldavh (void)
17521 {
17522 struct neon_type_el et;
17523 if (inst.instruction == M_MNEM_vrmlsldavh
17524 || inst.instruction == M_MNEM_vrmlsldavha
17525 || inst.instruction == M_MNEM_vrmlsldavhx
17526 || inst.instruction == M_MNEM_vrmlsldavhax)
17527 {
17528 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17529 if (inst.operands[1].reg == REG_SP)
17530 as_tsktsk (MVE_BAD_SP);
17531 }
17532 else
17533 {
17534 if (inst.instruction == M_MNEM_vrmlaldavhx
17535 || inst.instruction == M_MNEM_vrmlaldavhax)
17536 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17537 else
17538 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17539 N_U32 | N_S32 | N_KEY);
17540 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17541 with vmax/min instructions, making the use of SP in assembly really
17542 nonsensical, so instead of issuing a warning like we do for other uses
17543 of SP for the odd register operand we error out. */
17544 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17545 }
17546
17547 /* Make sure we still check the second operand is an odd one and that PC is
17548 disallowed. This because we are parsing for any GPR operand, to be able
17549 to distinguish between giving a warning or an error for SP as described
17550 above. */
17551 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17552 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17553
17554 if (inst.cond > COND_ALWAYS)
17555 inst.pred_insn_type = INSIDE_VPT_INSN;
17556 else
17557 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17558
17559 mve_encode_rrqq (et.type == NT_unsigned, 0);
17560 }
17561
17562
17563 static void
17564 do_mve_vmaxnmv (void)
17565 {
17566 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17567 struct neon_type_el et
17568 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17569
17570 if (inst.cond > COND_ALWAYS)
17571 inst.pred_insn_type = INSIDE_VPT_INSN;
17572 else
17573 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17574
17575 if (inst.operands[0].reg == REG_SP)
17576 as_tsktsk (MVE_BAD_SP);
17577 else if (inst.operands[0].reg == REG_PC)
17578 as_tsktsk (MVE_BAD_PC);
17579
17580 mve_encode_rq (et.size == 16, 64);
17581 }
17582
17583 static void
17584 do_mve_vmaxv (void)
17585 {
17586 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17587 struct neon_type_el et;
17588
17589 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17590 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17591 else
17592 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17593
17594 if (inst.cond > COND_ALWAYS)
17595 inst.pred_insn_type = INSIDE_VPT_INSN;
17596 else
17597 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17598
17599 if (inst.operands[0].reg == REG_SP)
17600 as_tsktsk (MVE_BAD_SP);
17601 else if (inst.operands[0].reg == REG_PC)
17602 as_tsktsk (MVE_BAD_PC);
17603
17604 mve_encode_rq (et.type == NT_unsigned, et.size);
17605 }
17606
17607
17608 static void
17609 do_neon_qrdmlah (void)
17610 {
17611 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17612 return;
17613 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17614 {
17615 /* Check we're on the correct architecture. */
17616 if (!mark_feature_used (&fpu_neon_ext_armv8))
17617 inst.error
17618 = _("instruction form not available on this architecture.");
17619 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17620 {
17621 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17622 record_feature_use (&fpu_neon_ext_v8_1);
17623 }
17624 if (inst.operands[2].isscalar)
17625 {
17626 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17627 struct neon_type_el et = neon_check_type (3, rs,
17628 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17629 NEON_ENCODE (SCALAR, inst);
17630 neon_mul_mac (et, neon_quad (rs));
17631 }
17632 else
17633 {
17634 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17635 struct neon_type_el et = neon_check_type (3, rs,
17636 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17637 NEON_ENCODE (INTEGER, inst);
17638 /* The U bit (rounding) comes from bit mask. */
17639 neon_three_same (neon_quad (rs), 0, et.size);
17640 }
17641 }
17642 else
17643 {
17644 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17645 struct neon_type_el et
17646 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17647
17648 NEON_ENCODE (INTEGER, inst);
17649 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17650 }
17651 }
17652
17653 static void
17654 do_neon_fcmp_absolute (void)
17655 {
17656 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17657 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17658 N_F_16_32 | N_KEY);
17659 /* Size field comes from bit mask. */
17660 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17661 }
17662
17663 static void
17664 do_neon_fcmp_absolute_inv (void)
17665 {
17666 neon_exchange_operands ();
17667 do_neon_fcmp_absolute ();
17668 }
17669
17670 static void
17671 do_neon_step (void)
17672 {
17673 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17674 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17675 N_F_16_32 | N_KEY);
17676 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17677 }
17678
17679 static void
17680 do_neon_abs_neg (void)
17681 {
17682 enum neon_shape rs;
17683 struct neon_type_el et;
17684
17685 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17686 return;
17687
17688 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17689 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17690
17691 if (check_simd_pred_availability (et.type == NT_float,
17692 NEON_CHECK_ARCH | NEON_CHECK_CC))
17693 return;
17694
17695 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17696 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17697 inst.instruction |= LOW4 (inst.operands[1].reg);
17698 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17699 inst.instruction |= neon_quad (rs) << 6;
17700 inst.instruction |= (et.type == NT_float) << 10;
17701 inst.instruction |= neon_logbits (et.size) << 18;
17702
17703 neon_dp_fixup (&inst);
17704 }
17705
17706 static void
17707 do_neon_sli (void)
17708 {
17709 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17710 struct neon_type_el et = neon_check_type (2, rs,
17711 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17712 int imm = inst.operands[2].imm;
17713 constraint (imm < 0 || (unsigned)imm >= et.size,
17714 _("immediate out of range for insert"));
17715 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17716 }
17717
17718 static void
17719 do_neon_sri (void)
17720 {
17721 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17722 struct neon_type_el et = neon_check_type (2, rs,
17723 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17724 int imm = inst.operands[2].imm;
17725 constraint (imm < 1 || (unsigned)imm > et.size,
17726 _("immediate out of range for insert"));
17727 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17728 }
17729
17730 static void
17731 do_neon_qshlu_imm (void)
17732 {
17733 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17734 struct neon_type_el et = neon_check_type (2, rs,
17735 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17736 int imm = inst.operands[2].imm;
17737 constraint (imm < 0 || (unsigned)imm >= et.size,
17738 _("immediate out of range for shift"));
17739 /* Only encodes the 'U present' variant of the instruction.
17740 In this case, signed types have OP (bit 8) set to 0.
17741 Unsigned types have OP set to 1. */
17742 inst.instruction |= (et.type == NT_unsigned) << 8;
17743 /* The rest of the bits are the same as other immediate shifts. */
17744 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17745 }
17746
17747 static void
17748 do_neon_qmovn (void)
17749 {
17750 struct neon_type_el et = neon_check_type (2, NS_DQ,
17751 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17752 /* Saturating move where operands can be signed or unsigned, and the
17753 destination has the same signedness. */
17754 NEON_ENCODE (INTEGER, inst);
17755 if (et.type == NT_unsigned)
17756 inst.instruction |= 0xc0;
17757 else
17758 inst.instruction |= 0x80;
17759 neon_two_same (0, 1, et.size / 2);
17760 }
17761
17762 static void
17763 do_neon_qmovun (void)
17764 {
17765 struct neon_type_el et = neon_check_type (2, NS_DQ,
17766 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17767 /* Saturating move with unsigned results. Operands must be signed. */
17768 NEON_ENCODE (INTEGER, inst);
17769 neon_two_same (0, 1, et.size / 2);
17770 }
17771
17772 static void
17773 do_neon_rshift_sat_narrow (void)
17774 {
17775 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17776 or unsigned. If operands are unsigned, results must also be unsigned. */
17777 struct neon_type_el et = neon_check_type (2, NS_DQI,
17778 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17779 int imm = inst.operands[2].imm;
17780 /* This gets the bounds check, size encoding and immediate bits calculation
17781 right. */
17782 et.size /= 2;
17783
17784 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17785 VQMOVN.I<size> <Dd>, <Qm>. */
17786 if (imm == 0)
17787 {
17788 inst.operands[2].present = 0;
17789 inst.instruction = N_MNEM_vqmovn;
17790 do_neon_qmovn ();
17791 return;
17792 }
17793
17794 constraint (imm < 1 || (unsigned)imm > et.size,
17795 _("immediate out of range"));
17796 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17797 }
17798
17799 static void
17800 do_neon_rshift_sat_narrow_u (void)
17801 {
17802 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17803 or unsigned. If operands are unsigned, results must also be unsigned. */
17804 struct neon_type_el et = neon_check_type (2, NS_DQI,
17805 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17806 int imm = inst.operands[2].imm;
17807 /* This gets the bounds check, size encoding and immediate bits calculation
17808 right. */
17809 et.size /= 2;
17810
17811 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17812 VQMOVUN.I<size> <Dd>, <Qm>. */
17813 if (imm == 0)
17814 {
17815 inst.operands[2].present = 0;
17816 inst.instruction = N_MNEM_vqmovun;
17817 do_neon_qmovun ();
17818 return;
17819 }
17820
17821 constraint (imm < 1 || (unsigned)imm > et.size,
17822 _("immediate out of range"));
17823 /* FIXME: The manual is kind of unclear about what value U should have in
17824 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17825 must be 1. */
17826 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17827 }
17828
17829 static void
17830 do_neon_movn (void)
17831 {
17832 struct neon_type_el et = neon_check_type (2, NS_DQ,
17833 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17834 NEON_ENCODE (INTEGER, inst);
17835 neon_two_same (0, 1, et.size / 2);
17836 }
17837
17838 static void
17839 do_neon_rshift_narrow (void)
17840 {
17841 struct neon_type_el et = neon_check_type (2, NS_DQI,
17842 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17843 int imm = inst.operands[2].imm;
17844 /* This gets the bounds check, size encoding and immediate bits calculation
17845 right. */
17846 et.size /= 2;
17847
17848 /* If immediate is zero then we are a pseudo-instruction for
17849 VMOVN.I<size> <Dd>, <Qm> */
17850 if (imm == 0)
17851 {
17852 inst.operands[2].present = 0;
17853 inst.instruction = N_MNEM_vmovn;
17854 do_neon_movn ();
17855 return;
17856 }
17857
17858 constraint (imm < 1 || (unsigned)imm > et.size,
17859 _("immediate out of range for narrowing operation"));
17860 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17861 }
17862
17863 static void
17864 do_neon_shll (void)
17865 {
17866 /* FIXME: Type checking when lengthening. */
17867 struct neon_type_el et = neon_check_type (2, NS_QDI,
17868 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17869 unsigned imm = inst.operands[2].imm;
17870
17871 if (imm == et.size)
17872 {
17873 /* Maximum shift variant. */
17874 NEON_ENCODE (INTEGER, inst);
17875 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17876 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17877 inst.instruction |= LOW4 (inst.operands[1].reg);
17878 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17879 inst.instruction |= neon_logbits (et.size) << 18;
17880
17881 neon_dp_fixup (&inst);
17882 }
17883 else
17884 {
17885 /* A more-specific type check for non-max versions. */
17886 et = neon_check_type (2, NS_QDI,
17887 N_EQK | N_DBL, N_SU_32 | N_KEY);
17888 NEON_ENCODE (IMMED, inst);
17889 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17890 }
17891 }
17892
17893 /* Check the various types for the VCVT instruction, and return which version
17894 the current instruction is. */
17895
17896 #define CVT_FLAVOUR_VAR \
17897 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17898 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17899 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17900 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17901 /* Half-precision conversions. */ \
17902 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17903 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17904 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17905 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17906 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17907 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17908 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17909 Compared with single/double precision variants, only the co-processor \
17910 field is different, so the encoding flow is reused here. */ \
17911 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17912 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17913 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17914 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17915 /* VFP instructions. */ \
17916 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17917 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17918 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17919 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17920 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17921 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17922 /* VFP instructions with bitshift. */ \
17923 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17924 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17925 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17926 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17927 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17928 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17929 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17930 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17931
17932 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17933 neon_cvt_flavour_##C,
17934
17935 /* The different types of conversions we can do. */
17936 enum neon_cvt_flavour
17937 {
17938 CVT_FLAVOUR_VAR
17939 neon_cvt_flavour_invalid,
17940 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17941 };
17942
17943 #undef CVT_VAR
17944
17945 static enum neon_cvt_flavour
17946 get_neon_cvt_flavour (enum neon_shape rs)
17947 {
17948 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17949 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17950 if (et.type != NT_invtype) \
17951 { \
17952 inst.error = NULL; \
17953 return (neon_cvt_flavour_##C); \
17954 }
17955
17956 struct neon_type_el et;
17957 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17958 || rs == NS_FF) ? N_VFP : 0;
17959 /* The instruction versions which take an immediate take one register
17960 argument, which is extended to the width of the full register. Thus the
17961 "source" and "destination" registers must have the same width. Hack that
17962 here by making the size equal to the key (wider, in this case) operand. */
17963 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17964
17965 CVT_FLAVOUR_VAR;
17966
17967 return neon_cvt_flavour_invalid;
17968 #undef CVT_VAR
17969 }
17970
17971 enum neon_cvt_mode
17972 {
17973 neon_cvt_mode_a,
17974 neon_cvt_mode_n,
17975 neon_cvt_mode_p,
17976 neon_cvt_mode_m,
17977 neon_cvt_mode_z,
17978 neon_cvt_mode_x,
17979 neon_cvt_mode_r
17980 };
17981
17982 /* Neon-syntax VFP conversions. */
17983
17984 static void
17985 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17986 {
17987 const char *opname = 0;
17988
17989 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17990 || rs == NS_FHI || rs == NS_HFI)
17991 {
17992 /* Conversions with immediate bitshift. */
17993 const char *enc[] =
17994 {
17995 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17996 CVT_FLAVOUR_VAR
17997 NULL
17998 #undef CVT_VAR
17999 };
18000
18001 if (flavour < (int) ARRAY_SIZE (enc))
18002 {
18003 opname = enc[flavour];
18004 constraint (inst.operands[0].reg != inst.operands[1].reg,
18005 _("operands 0 and 1 must be the same register"));
18006 inst.operands[1] = inst.operands[2];
18007 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18008 }
18009 }
18010 else
18011 {
18012 /* Conversions without bitshift. */
18013 const char *enc[] =
18014 {
18015 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18016 CVT_FLAVOUR_VAR
18017 NULL
18018 #undef CVT_VAR
18019 };
18020
18021 if (flavour < (int) ARRAY_SIZE (enc))
18022 opname = enc[flavour];
18023 }
18024
18025 if (opname)
18026 do_vfp_nsyn_opcode (opname);
18027
18028 /* ARMv8.2 fp16 VCVT instruction. */
18029 if (flavour == neon_cvt_flavour_s32_f16
18030 || flavour == neon_cvt_flavour_u32_f16
18031 || flavour == neon_cvt_flavour_f16_u32
18032 || flavour == neon_cvt_flavour_f16_s32)
18033 do_scalar_fp16_v82_encode ();
18034 }
18035
18036 static void
18037 do_vfp_nsyn_cvtz (void)
18038 {
18039 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18040 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18041 const char *enc[] =
18042 {
18043 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18044 CVT_FLAVOUR_VAR
18045 NULL
18046 #undef CVT_VAR
18047 };
18048
18049 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18050 do_vfp_nsyn_opcode (enc[flavour]);
18051 }
18052
18053 static void
18054 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18055 enum neon_cvt_mode mode)
18056 {
18057 int sz, op;
18058 int rm;
18059
18060 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18061 D register operands. */
18062 if (flavour == neon_cvt_flavour_s32_f64
18063 || flavour == neon_cvt_flavour_u32_f64)
18064 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18065 _(BAD_FPU));
18066
18067 if (flavour == neon_cvt_flavour_s32_f16
18068 || flavour == neon_cvt_flavour_u32_f16)
18069 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18070 _(BAD_FP16));
18071
18072 set_pred_insn_type (OUTSIDE_PRED_INSN);
18073
18074 switch (flavour)
18075 {
18076 case neon_cvt_flavour_s32_f64:
18077 sz = 1;
18078 op = 1;
18079 break;
18080 case neon_cvt_flavour_s32_f32:
18081 sz = 0;
18082 op = 1;
18083 break;
18084 case neon_cvt_flavour_s32_f16:
18085 sz = 0;
18086 op = 1;
18087 break;
18088 case neon_cvt_flavour_u32_f64:
18089 sz = 1;
18090 op = 0;
18091 break;
18092 case neon_cvt_flavour_u32_f32:
18093 sz = 0;
18094 op = 0;
18095 break;
18096 case neon_cvt_flavour_u32_f16:
18097 sz = 0;
18098 op = 0;
18099 break;
18100 default:
18101 first_error (_("invalid instruction shape"));
18102 return;
18103 }
18104
18105 switch (mode)
18106 {
18107 case neon_cvt_mode_a: rm = 0; break;
18108 case neon_cvt_mode_n: rm = 1; break;
18109 case neon_cvt_mode_p: rm = 2; break;
18110 case neon_cvt_mode_m: rm = 3; break;
18111 default: first_error (_("invalid rounding mode")); return;
18112 }
18113
18114 NEON_ENCODE (FPV8, inst);
18115 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18116 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18117 inst.instruction |= sz << 8;
18118
18119 /* ARMv8.2 fp16 VCVT instruction. */
18120 if (flavour == neon_cvt_flavour_s32_f16
18121 ||flavour == neon_cvt_flavour_u32_f16)
18122 do_scalar_fp16_v82_encode ();
18123 inst.instruction |= op << 7;
18124 inst.instruction |= rm << 16;
18125 inst.instruction |= 0xf0000000;
18126 inst.is_neon = TRUE;
18127 }
18128
18129 static void
18130 do_neon_cvt_1 (enum neon_cvt_mode mode)
18131 {
18132 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18133 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18134 NS_FH, NS_HF, NS_FHI, NS_HFI,
18135 NS_NULL);
18136 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18137
18138 if (flavour == neon_cvt_flavour_invalid)
18139 return;
18140
18141 /* PR11109: Handle round-to-zero for VCVT conversions. */
18142 if (mode == neon_cvt_mode_z
18143 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18144 && (flavour == neon_cvt_flavour_s16_f16
18145 || flavour == neon_cvt_flavour_u16_f16
18146 || flavour == neon_cvt_flavour_s32_f32
18147 || flavour == neon_cvt_flavour_u32_f32
18148 || flavour == neon_cvt_flavour_s32_f64
18149 || flavour == neon_cvt_flavour_u32_f64)
18150 && (rs == NS_FD || rs == NS_FF))
18151 {
18152 do_vfp_nsyn_cvtz ();
18153 return;
18154 }
18155
18156 /* ARMv8.2 fp16 VCVT conversions. */
18157 if (mode == neon_cvt_mode_z
18158 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18159 && (flavour == neon_cvt_flavour_s32_f16
18160 || flavour == neon_cvt_flavour_u32_f16)
18161 && (rs == NS_FH))
18162 {
18163 do_vfp_nsyn_cvtz ();
18164 do_scalar_fp16_v82_encode ();
18165 return;
18166 }
18167
18168 /* VFP rather than Neon conversions. */
18169 if (flavour >= neon_cvt_flavour_first_fp)
18170 {
18171 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18172 do_vfp_nsyn_cvt (rs, flavour);
18173 else
18174 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18175
18176 return;
18177 }
18178
18179 switch (rs)
18180 {
18181 case NS_QQI:
18182 if (mode == neon_cvt_mode_z
18183 && (flavour == neon_cvt_flavour_f16_s16
18184 || flavour == neon_cvt_flavour_f16_u16
18185 || flavour == neon_cvt_flavour_s16_f16
18186 || flavour == neon_cvt_flavour_u16_f16
18187 || flavour == neon_cvt_flavour_f32_u32
18188 || flavour == neon_cvt_flavour_f32_s32
18189 || flavour == neon_cvt_flavour_s32_f32
18190 || flavour == neon_cvt_flavour_u32_f32))
18191 {
18192 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18193 return;
18194 }
18195 else if (mode == neon_cvt_mode_n)
18196 {
18197 /* We are dealing with vcvt with the 'ne' condition. */
18198 inst.cond = 0x1;
18199 inst.instruction = N_MNEM_vcvt;
18200 do_neon_cvt_1 (neon_cvt_mode_z);
18201 return;
18202 }
18203 /* fall through. */
18204 case NS_DDI:
18205 {
18206 unsigned immbits;
18207 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18208 0x0000100, 0x1000100, 0x0, 0x1000000};
18209
18210 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18211 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18212 return;
18213
18214 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18215 {
18216 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18217 _("immediate value out of range"));
18218 switch (flavour)
18219 {
18220 case neon_cvt_flavour_f16_s16:
18221 case neon_cvt_flavour_f16_u16:
18222 case neon_cvt_flavour_s16_f16:
18223 case neon_cvt_flavour_u16_f16:
18224 constraint (inst.operands[2].imm > 16,
18225 _("immediate value out of range"));
18226 break;
18227 case neon_cvt_flavour_f32_u32:
18228 case neon_cvt_flavour_f32_s32:
18229 case neon_cvt_flavour_s32_f32:
18230 case neon_cvt_flavour_u32_f32:
18231 constraint (inst.operands[2].imm > 32,
18232 _("immediate value out of range"));
18233 break;
18234 default:
18235 inst.error = BAD_FPU;
18236 return;
18237 }
18238 }
18239
18240 /* Fixed-point conversion with #0 immediate is encoded as an
18241 integer conversion. */
18242 if (inst.operands[2].present && inst.operands[2].imm == 0)
18243 goto int_encode;
18244 NEON_ENCODE (IMMED, inst);
18245 if (flavour != neon_cvt_flavour_invalid)
18246 inst.instruction |= enctab[flavour];
18247 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18248 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18249 inst.instruction |= LOW4 (inst.operands[1].reg);
18250 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18251 inst.instruction |= neon_quad (rs) << 6;
18252 inst.instruction |= 1 << 21;
18253 if (flavour < neon_cvt_flavour_s16_f16)
18254 {
18255 inst.instruction |= 1 << 21;
18256 immbits = 32 - inst.operands[2].imm;
18257 inst.instruction |= immbits << 16;
18258 }
18259 else
18260 {
18261 inst.instruction |= 3 << 20;
18262 immbits = 16 - inst.operands[2].imm;
18263 inst.instruction |= immbits << 16;
18264 inst.instruction &= ~(1 << 9);
18265 }
18266
18267 neon_dp_fixup (&inst);
18268 }
18269 break;
18270
18271 case NS_QQ:
18272 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18273 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18274 && (flavour == neon_cvt_flavour_s16_f16
18275 || flavour == neon_cvt_flavour_u16_f16
18276 || flavour == neon_cvt_flavour_s32_f32
18277 || flavour == neon_cvt_flavour_u32_f32))
18278 {
18279 if (check_simd_pred_availability (1,
18280 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18281 return;
18282 }
18283 else if (mode == neon_cvt_mode_z
18284 && (flavour == neon_cvt_flavour_f16_s16
18285 || flavour == neon_cvt_flavour_f16_u16
18286 || flavour == neon_cvt_flavour_s16_f16
18287 || flavour == neon_cvt_flavour_u16_f16
18288 || flavour == neon_cvt_flavour_f32_u32
18289 || flavour == neon_cvt_flavour_f32_s32
18290 || flavour == neon_cvt_flavour_s32_f32
18291 || flavour == neon_cvt_flavour_u32_f32))
18292 {
18293 if (check_simd_pred_availability (1,
18294 NEON_CHECK_CC | NEON_CHECK_ARCH))
18295 return;
18296 }
18297 /* fall through. */
18298 case NS_DD:
18299 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18300 {
18301
18302 NEON_ENCODE (FLOAT, inst);
18303 if (check_simd_pred_availability (1,
18304 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18305 return;
18306
18307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18308 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18309 inst.instruction |= LOW4 (inst.operands[1].reg);
18310 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18311 inst.instruction |= neon_quad (rs) << 6;
18312 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18313 || flavour == neon_cvt_flavour_u32_f32) << 7;
18314 inst.instruction |= mode << 8;
18315 if (flavour == neon_cvt_flavour_u16_f16
18316 || flavour == neon_cvt_flavour_s16_f16)
18317 /* Mask off the original size bits and reencode them. */
18318 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18319
18320 if (thumb_mode)
18321 inst.instruction |= 0xfc000000;
18322 else
18323 inst.instruction |= 0xf0000000;
18324 }
18325 else
18326 {
18327 int_encode:
18328 {
18329 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18330 0x100, 0x180, 0x0, 0x080};
18331
18332 NEON_ENCODE (INTEGER, inst);
18333
18334 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18335 {
18336 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18337 return;
18338 }
18339
18340 if (flavour != neon_cvt_flavour_invalid)
18341 inst.instruction |= enctab[flavour];
18342
18343 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18344 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18345 inst.instruction |= LOW4 (inst.operands[1].reg);
18346 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18347 inst.instruction |= neon_quad (rs) << 6;
18348 if (flavour >= neon_cvt_flavour_s16_f16
18349 && flavour <= neon_cvt_flavour_f16_u16)
18350 /* Half precision. */
18351 inst.instruction |= 1 << 18;
18352 else
18353 inst.instruction |= 2 << 18;
18354
18355 neon_dp_fixup (&inst);
18356 }
18357 }
18358 break;
18359
18360 /* Half-precision conversions for Advanced SIMD -- neon. */
18361 case NS_QD:
18362 case NS_DQ:
18363 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18364 return;
18365
18366 if ((rs == NS_DQ)
18367 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18368 {
18369 as_bad (_("operand size must match register width"));
18370 break;
18371 }
18372
18373 if ((rs == NS_QD)
18374 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18375 {
18376 as_bad (_("operand size must match register width"));
18377 break;
18378 }
18379
18380 if (rs == NS_DQ)
18381 inst.instruction = 0x3b60600;
18382 else
18383 inst.instruction = 0x3b60700;
18384
18385 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18386 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18387 inst.instruction |= LOW4 (inst.operands[1].reg);
18388 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18389 neon_dp_fixup (&inst);
18390 break;
18391
18392 default:
18393 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18394 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18395 do_vfp_nsyn_cvt (rs, flavour);
18396 else
18397 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18398 }
18399 }
18400
18401 static void
18402 do_neon_cvtr (void)
18403 {
18404 do_neon_cvt_1 (neon_cvt_mode_x);
18405 }
18406
18407 static void
18408 do_neon_cvt (void)
18409 {
18410 do_neon_cvt_1 (neon_cvt_mode_z);
18411 }
18412
18413 static void
18414 do_neon_cvta (void)
18415 {
18416 do_neon_cvt_1 (neon_cvt_mode_a);
18417 }
18418
18419 static void
18420 do_neon_cvtn (void)
18421 {
18422 do_neon_cvt_1 (neon_cvt_mode_n);
18423 }
18424
18425 static void
18426 do_neon_cvtp (void)
18427 {
18428 do_neon_cvt_1 (neon_cvt_mode_p);
18429 }
18430
18431 static void
18432 do_neon_cvtm (void)
18433 {
18434 do_neon_cvt_1 (neon_cvt_mode_m);
18435 }
18436
18437 static void
18438 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18439 {
18440 if (is_double)
18441 mark_feature_used (&fpu_vfp_ext_armv8);
18442
18443 encode_arm_vfp_reg (inst.operands[0].reg,
18444 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18445 encode_arm_vfp_reg (inst.operands[1].reg,
18446 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18447 inst.instruction |= to ? 0x10000 : 0;
18448 inst.instruction |= t ? 0x80 : 0;
18449 inst.instruction |= is_double ? 0x100 : 0;
18450 do_vfp_cond_or_thumb ();
18451 }
18452
18453 static void
18454 do_neon_cvttb_1 (bfd_boolean t)
18455 {
18456 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18457 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18458
18459 if (rs == NS_NULL)
18460 return;
18461 else if (rs == NS_QQ || rs == NS_QQI)
18462 {
18463 int single_to_half = 0;
18464 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18465 return;
18466
18467 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18468
18469 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18470 && (flavour == neon_cvt_flavour_u16_f16
18471 || flavour == neon_cvt_flavour_s16_f16
18472 || flavour == neon_cvt_flavour_f16_s16
18473 || flavour == neon_cvt_flavour_f16_u16
18474 || flavour == neon_cvt_flavour_u32_f32
18475 || flavour == neon_cvt_flavour_s32_f32
18476 || flavour == neon_cvt_flavour_f32_s32
18477 || flavour == neon_cvt_flavour_f32_u32))
18478 {
18479 inst.cond = 0xf;
18480 inst.instruction = N_MNEM_vcvt;
18481 set_pred_insn_type (INSIDE_VPT_INSN);
18482 do_neon_cvt_1 (neon_cvt_mode_z);
18483 return;
18484 }
18485 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18486 single_to_half = 1;
18487 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18488 {
18489 first_error (BAD_FPU);
18490 return;
18491 }
18492
18493 inst.instruction = 0xee3f0e01;
18494 inst.instruction |= single_to_half << 28;
18495 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18496 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18497 inst.instruction |= t << 12;
18498 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18499 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18500 inst.is_neon = 1;
18501 }
18502 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18503 {
18504 inst.error = NULL;
18505 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18506 }
18507 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18508 {
18509 inst.error = NULL;
18510 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18511 }
18512 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18513 {
18514 /* The VCVTB and VCVTT instructions with D-register operands
18515 don't work for SP only targets. */
18516 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18517 _(BAD_FPU));
18518
18519 inst.error = NULL;
18520 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18521 }
18522 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18523 {
18524 /* The VCVTB and VCVTT instructions with D-register operands
18525 don't work for SP only targets. */
18526 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18527 _(BAD_FPU));
18528
18529 inst.error = NULL;
18530 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18531 }
18532 else
18533 return;
18534 }
18535
18536 static void
18537 do_neon_cvtb (void)
18538 {
18539 do_neon_cvttb_1 (FALSE);
18540 }
18541
18542
18543 static void
18544 do_neon_cvtt (void)
18545 {
18546 do_neon_cvttb_1 (TRUE);
18547 }
18548
18549 static void
18550 neon_move_immediate (void)
18551 {
18552 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18553 struct neon_type_el et = neon_check_type (2, rs,
18554 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18555 unsigned immlo, immhi = 0, immbits;
18556 int op, cmode, float_p;
18557
18558 constraint (et.type == NT_invtype,
18559 _("operand size must be specified for immediate VMOV"));
18560
18561 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18562 op = (inst.instruction & (1 << 5)) != 0;
18563
18564 immlo = inst.operands[1].imm;
18565 if (inst.operands[1].regisimm)
18566 immhi = inst.operands[1].reg;
18567
18568 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18569 _("immediate has bits set outside the operand size"));
18570
18571 float_p = inst.operands[1].immisfloat;
18572
18573 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18574 et.size, et.type)) == FAIL)
18575 {
18576 /* Invert relevant bits only. */
18577 neon_invert_size (&immlo, &immhi, et.size);
18578 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18579 with one or the other; those cases are caught by
18580 neon_cmode_for_move_imm. */
18581 op = !op;
18582 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18583 &op, et.size, et.type)) == FAIL)
18584 {
18585 first_error (_("immediate out of range"));
18586 return;
18587 }
18588 }
18589
18590 inst.instruction &= ~(1 << 5);
18591 inst.instruction |= op << 5;
18592
18593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18594 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18595 inst.instruction |= neon_quad (rs) << 6;
18596 inst.instruction |= cmode << 8;
18597
18598 neon_write_immbits (immbits);
18599 }
18600
18601 static void
18602 do_neon_mvn (void)
18603 {
18604 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18605 return;
18606
18607 if (inst.operands[1].isreg)
18608 {
18609 enum neon_shape rs;
18610 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18611 rs = neon_select_shape (NS_QQ, NS_NULL);
18612 else
18613 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18614
18615 NEON_ENCODE (INTEGER, inst);
18616 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18617 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18618 inst.instruction |= LOW4 (inst.operands[1].reg);
18619 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18620 inst.instruction |= neon_quad (rs) << 6;
18621 }
18622 else
18623 {
18624 NEON_ENCODE (IMMED, inst);
18625 neon_move_immediate ();
18626 }
18627
18628 neon_dp_fixup (&inst);
18629
18630 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18631 {
18632 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18633 constraint ((inst.instruction & 0xd00) == 0xd00,
18634 _("immediate value out of range"));
18635 }
18636 }
18637
18638 /* Encode instructions of form:
18639
18640 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18641 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18642
18643 static void
18644 neon_mixed_length (struct neon_type_el et, unsigned size)
18645 {
18646 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18647 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18648 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18649 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18650 inst.instruction |= LOW4 (inst.operands[2].reg);
18651 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18652 inst.instruction |= (et.type == NT_unsigned) << 24;
18653 inst.instruction |= neon_logbits (size) << 20;
18654
18655 neon_dp_fixup (&inst);
18656 }
18657
18658 static void
18659 do_neon_dyadic_long (void)
18660 {
18661 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18662 if (rs == NS_QDD)
18663 {
18664 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18665 return;
18666
18667 NEON_ENCODE (INTEGER, inst);
18668 /* FIXME: Type checking for lengthening op. */
18669 struct neon_type_el et = neon_check_type (3, NS_QDD,
18670 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18671 neon_mixed_length (et, et.size);
18672 }
18673 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18674 && (inst.cond == 0xf || inst.cond == 0x10))
18675 {
18676 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18677 in an IT block with le/lt conditions. */
18678
18679 if (inst.cond == 0xf)
18680 inst.cond = 0xb;
18681 else if (inst.cond == 0x10)
18682 inst.cond = 0xd;
18683
18684 inst.pred_insn_type = INSIDE_IT_INSN;
18685
18686 if (inst.instruction == N_MNEM_vaddl)
18687 {
18688 inst.instruction = N_MNEM_vadd;
18689 do_neon_addsub_if_i ();
18690 }
18691 else if (inst.instruction == N_MNEM_vsubl)
18692 {
18693 inst.instruction = N_MNEM_vsub;
18694 do_neon_addsub_if_i ();
18695 }
18696 else if (inst.instruction == N_MNEM_vabdl)
18697 {
18698 inst.instruction = N_MNEM_vabd;
18699 do_neon_dyadic_if_su ();
18700 }
18701 }
18702 else
18703 first_error (BAD_FPU);
18704 }
18705
18706 static void
18707 do_neon_abal (void)
18708 {
18709 struct neon_type_el et = neon_check_type (3, NS_QDD,
18710 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18711 neon_mixed_length (et, et.size);
18712 }
18713
18714 static void
18715 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18716 {
18717 if (inst.operands[2].isscalar)
18718 {
18719 struct neon_type_el et = neon_check_type (3, NS_QDS,
18720 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18721 NEON_ENCODE (SCALAR, inst);
18722 neon_mul_mac (et, et.type == NT_unsigned);
18723 }
18724 else
18725 {
18726 struct neon_type_el et = neon_check_type (3, NS_QDD,
18727 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18728 NEON_ENCODE (INTEGER, inst);
18729 neon_mixed_length (et, et.size);
18730 }
18731 }
18732
18733 static void
18734 do_neon_mac_maybe_scalar_long (void)
18735 {
18736 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18737 }
18738
18739 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18740 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18741
18742 static unsigned
18743 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18744 {
18745 unsigned regno = NEON_SCALAR_REG (scalar);
18746 unsigned elno = NEON_SCALAR_INDEX (scalar);
18747
18748 if (quad_p)
18749 {
18750 if (regno > 7 || elno > 3)
18751 goto bad_scalar;
18752
18753 return ((regno & 0x7)
18754 | ((elno & 0x1) << 3)
18755 | (((elno >> 1) & 0x1) << 5));
18756 }
18757 else
18758 {
18759 if (regno > 15 || elno > 1)
18760 goto bad_scalar;
18761
18762 return (((regno & 0x1) << 5)
18763 | ((regno >> 1) & 0x7)
18764 | ((elno & 0x1) << 3));
18765 }
18766
18767 bad_scalar:
18768 first_error (_("scalar out of range for multiply instruction"));
18769 return 0;
18770 }
18771
18772 static void
18773 do_neon_fmac_maybe_scalar_long (int subtype)
18774 {
18775 enum neon_shape rs;
18776 int high8;
18777 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18778 field (bits[21:20]) has different meaning. For scalar index variant, it's
18779 used to differentiate add and subtract, otherwise it's with fixed value
18780 0x2. */
18781 int size = -1;
18782
18783 if (inst.cond != COND_ALWAYS)
18784 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18785 "behaviour is UNPREDICTABLE"));
18786
18787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18788 _(BAD_FP16));
18789
18790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18791 _(BAD_FPU));
18792
18793 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18794 be a scalar index register. */
18795 if (inst.operands[2].isscalar)
18796 {
18797 high8 = 0xfe000000;
18798 if (subtype)
18799 size = 16;
18800 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18801 }
18802 else
18803 {
18804 high8 = 0xfc000000;
18805 size = 32;
18806 if (subtype)
18807 inst.instruction |= (0x1 << 23);
18808 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18809 }
18810
18811 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18812
18813 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18814 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18815 so we simply pass -1 as size. */
18816 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18817 neon_three_same (quad_p, 0, size);
18818
18819 /* Undo neon_dp_fixup. Redo the high eight bits. */
18820 inst.instruction &= 0x00ffffff;
18821 inst.instruction |= high8;
18822
18823 #define LOW1(R) ((R) & 0x1)
18824 #define HI4(R) (((R) >> 1) & 0xf)
18825 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18826 whether the instruction is in Q form and whether Vm is a scalar indexed
18827 operand. */
18828 if (inst.operands[2].isscalar)
18829 {
18830 unsigned rm
18831 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18832 inst.instruction &= 0xffffffd0;
18833 inst.instruction |= rm;
18834
18835 if (!quad_p)
18836 {
18837 /* Redo Rn as well. */
18838 inst.instruction &= 0xfff0ff7f;
18839 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18840 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18841 }
18842 }
18843 else if (!quad_p)
18844 {
18845 /* Redo Rn and Rm. */
18846 inst.instruction &= 0xfff0ff50;
18847 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18848 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18849 inst.instruction |= HI4 (inst.operands[2].reg);
18850 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18851 }
18852 }
18853
18854 static void
18855 do_neon_vfmal (void)
18856 {
18857 return do_neon_fmac_maybe_scalar_long (0);
18858 }
18859
18860 static void
18861 do_neon_vfmsl (void)
18862 {
18863 return do_neon_fmac_maybe_scalar_long (1);
18864 }
18865
18866 static void
18867 do_neon_dyadic_wide (void)
18868 {
18869 struct neon_type_el et = neon_check_type (3, NS_QQD,
18870 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18871 neon_mixed_length (et, et.size);
18872 }
18873
18874 static void
18875 do_neon_dyadic_narrow (void)
18876 {
18877 struct neon_type_el et = neon_check_type (3, NS_QDD,
18878 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18879 /* Operand sign is unimportant, and the U bit is part of the opcode,
18880 so force the operand type to integer. */
18881 et.type = NT_integer;
18882 neon_mixed_length (et, et.size / 2);
18883 }
18884
18885 static void
18886 do_neon_mul_sat_scalar_long (void)
18887 {
18888 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18889 }
18890
18891 static void
18892 do_neon_vmull (void)
18893 {
18894 if (inst.operands[2].isscalar)
18895 do_neon_mac_maybe_scalar_long ();
18896 else
18897 {
18898 struct neon_type_el et = neon_check_type (3, NS_QDD,
18899 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18900
18901 if (et.type == NT_poly)
18902 NEON_ENCODE (POLY, inst);
18903 else
18904 NEON_ENCODE (INTEGER, inst);
18905
18906 /* For polynomial encoding the U bit must be zero, and the size must
18907 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18908 obviously, as 0b10). */
18909 if (et.size == 64)
18910 {
18911 /* Check we're on the correct architecture. */
18912 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18913 inst.error =
18914 _("Instruction form not available on this architecture.");
18915
18916 et.size = 32;
18917 }
18918
18919 neon_mixed_length (et, et.size);
18920 }
18921 }
18922
18923 static void
18924 do_neon_ext (void)
18925 {
18926 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18927 struct neon_type_el et = neon_check_type (3, rs,
18928 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18929 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18930
18931 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18932 _("shift out of range"));
18933 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18934 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18935 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18936 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18937 inst.instruction |= LOW4 (inst.operands[2].reg);
18938 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18939 inst.instruction |= neon_quad (rs) << 6;
18940 inst.instruction |= imm << 8;
18941
18942 neon_dp_fixup (&inst);
18943 }
18944
18945 static void
18946 do_neon_rev (void)
18947 {
18948 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18949 struct neon_type_el et = neon_check_type (2, rs,
18950 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18951 unsigned op = (inst.instruction >> 7) & 3;
18952 /* N (width of reversed regions) is encoded as part of the bitmask. We
18953 extract it here to check the elements to be reversed are smaller.
18954 Otherwise we'd get a reserved instruction. */
18955 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18956 gas_assert (elsize != 0);
18957 constraint (et.size >= elsize,
18958 _("elements must be smaller than reversal region"));
18959 neon_two_same (neon_quad (rs), 1, et.size);
18960 }
18961
18962 static void
18963 do_neon_dup (void)
18964 {
18965 if (inst.operands[1].isscalar)
18966 {
18967 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18968 BAD_FPU);
18969 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18970 struct neon_type_el et = neon_check_type (2, rs,
18971 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18972 unsigned sizebits = et.size >> 3;
18973 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18974 int logsize = neon_logbits (et.size);
18975 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18976
18977 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18978 return;
18979
18980 NEON_ENCODE (SCALAR, inst);
18981 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18982 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18983 inst.instruction |= LOW4 (dm);
18984 inst.instruction |= HI1 (dm) << 5;
18985 inst.instruction |= neon_quad (rs) << 6;
18986 inst.instruction |= x << 17;
18987 inst.instruction |= sizebits << 16;
18988
18989 neon_dp_fixup (&inst);
18990 }
18991 else
18992 {
18993 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18994 struct neon_type_el et = neon_check_type (2, rs,
18995 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18996 if (rs == NS_QR)
18997 {
18998 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18999 return;
19000 }
19001 else
19002 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19003 BAD_FPU);
19004
19005 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19006 {
19007 if (inst.operands[1].reg == REG_SP)
19008 as_tsktsk (MVE_BAD_SP);
19009 else if (inst.operands[1].reg == REG_PC)
19010 as_tsktsk (MVE_BAD_PC);
19011 }
19012
19013 /* Duplicate ARM register to lanes of vector. */
19014 NEON_ENCODE (ARMREG, inst);
19015 switch (et.size)
19016 {
19017 case 8: inst.instruction |= 0x400000; break;
19018 case 16: inst.instruction |= 0x000020; break;
19019 case 32: inst.instruction |= 0x000000; break;
19020 default: break;
19021 }
19022 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19023 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19024 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19025 inst.instruction |= neon_quad (rs) << 21;
19026 /* The encoding for this instruction is identical for the ARM and Thumb
19027 variants, except for the condition field. */
19028 do_vfp_cond_or_thumb ();
19029 }
19030 }
19031
19032 static void
19033 do_mve_mov (int toQ)
19034 {
19035 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19036 return;
19037 if (inst.cond > COND_ALWAYS)
19038 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19039
19040 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19041 if (toQ)
19042 {
19043 Q0 = 0;
19044 Q1 = 1;
19045 Rt = 2;
19046 Rt2 = 3;
19047 }
19048
19049 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19050 _("Index one must be [2,3] and index two must be two less than"
19051 " index one."));
19052 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19053 _("General purpose registers may not be the same"));
19054 constraint (inst.operands[Rt].reg == REG_SP
19055 || inst.operands[Rt2].reg == REG_SP,
19056 BAD_SP);
19057 constraint (inst.operands[Rt].reg == REG_PC
19058 || inst.operands[Rt2].reg == REG_PC,
19059 BAD_PC);
19060
19061 inst.instruction = 0xec000f00;
19062 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19063 inst.instruction |= !!toQ << 20;
19064 inst.instruction |= inst.operands[Rt2].reg << 16;
19065 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19066 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19067 inst.instruction |= inst.operands[Rt].reg;
19068 }
19069
19070 static void
19071 do_mve_movn (void)
19072 {
19073 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19074 return;
19075
19076 if (inst.cond > COND_ALWAYS)
19077 inst.pred_insn_type = INSIDE_VPT_INSN;
19078 else
19079 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19080
19081 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19082 | N_KEY);
19083
19084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19085 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19086 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19087 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19088 inst.instruction |= LOW4 (inst.operands[1].reg);
19089 inst.is_neon = 1;
19090
19091 }
19092
19093 /* VMOV has particularly many variations. It can be one of:
19094 0. VMOV<c><q> <Qd>, <Qm>
19095 1. VMOV<c><q> <Dd>, <Dm>
19096 (Register operations, which are VORR with Rm = Rn.)
19097 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19098 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19099 (Immediate loads.)
19100 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19101 (ARM register to scalar.)
19102 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19103 (Two ARM registers to vector.)
19104 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19105 (Scalar to ARM register.)
19106 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19107 (Vector to two ARM registers.)
19108 8. VMOV.F32 <Sd>, <Sm>
19109 9. VMOV.F64 <Dd>, <Dm>
19110 (VFP register moves.)
19111 10. VMOV.F32 <Sd>, #imm
19112 11. VMOV.F64 <Dd>, #imm
19113 (VFP float immediate load.)
19114 12. VMOV <Rd>, <Sm>
19115 (VFP single to ARM reg.)
19116 13. VMOV <Sd>, <Rm>
19117 (ARM reg to VFP single.)
19118 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19119 (Two ARM regs to two VFP singles.)
19120 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19121 (Two VFP singles to two ARM regs.)
19122 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19123 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19124 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19125 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19126
19127 These cases can be disambiguated using neon_select_shape, except cases 1/9
19128 and 3/11 which depend on the operand type too.
19129
19130 All the encoded bits are hardcoded by this function.
19131
19132 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19133 Cases 5, 7 may be used with VFPv2 and above.
19134
19135 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19136 can specify a type where it doesn't make sense to, and is ignored). */
19137
19138 static void
19139 do_neon_mov (void)
19140 {
19141 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19142 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19143 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19144 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19145 NS_NULL);
19146 struct neon_type_el et;
19147 const char *ldconst = 0;
19148
19149 switch (rs)
19150 {
19151 case NS_DD: /* case 1/9. */
19152 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19153 /* It is not an error here if no type is given. */
19154 inst.error = NULL;
19155 if (et.type == NT_float && et.size == 64)
19156 {
19157 do_vfp_nsyn_opcode ("fcpyd");
19158 break;
19159 }
19160 /* fall through. */
19161
19162 case NS_QQ: /* case 0/1. */
19163 {
19164 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19165 return;
19166 /* The architecture manual I have doesn't explicitly state which
19167 value the U bit should have for register->register moves, but
19168 the equivalent VORR instruction has U = 0, so do that. */
19169 inst.instruction = 0x0200110;
19170 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19171 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19172 inst.instruction |= LOW4 (inst.operands[1].reg);
19173 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19174 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19175 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19176 inst.instruction |= neon_quad (rs) << 6;
19177
19178 neon_dp_fixup (&inst);
19179 }
19180 break;
19181
19182 case NS_DI: /* case 3/11. */
19183 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19184 inst.error = NULL;
19185 if (et.type == NT_float && et.size == 64)
19186 {
19187 /* case 11 (fconstd). */
19188 ldconst = "fconstd";
19189 goto encode_fconstd;
19190 }
19191 /* fall through. */
19192
19193 case NS_QI: /* case 2/3. */
19194 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19195 return;
19196 inst.instruction = 0x0800010;
19197 neon_move_immediate ();
19198 neon_dp_fixup (&inst);
19199 break;
19200
19201 case NS_SR: /* case 4. */
19202 {
19203 unsigned bcdebits = 0;
19204 int logsize;
19205 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19206 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19207
19208 /* .<size> is optional here, defaulting to .32. */
19209 if (inst.vectype.elems == 0
19210 && inst.operands[0].vectype.type == NT_invtype
19211 && inst.operands[1].vectype.type == NT_invtype)
19212 {
19213 inst.vectype.el[0].type = NT_untyped;
19214 inst.vectype.el[0].size = 32;
19215 inst.vectype.elems = 1;
19216 }
19217
19218 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19219 logsize = neon_logbits (et.size);
19220
19221 if (et.size != 32)
19222 {
19223 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19224 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19225 return;
19226 }
19227 else
19228 {
19229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19230 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19231 _(BAD_FPU));
19232 }
19233
19234 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19235 {
19236 if (inst.operands[1].reg == REG_SP)
19237 as_tsktsk (MVE_BAD_SP);
19238 else if (inst.operands[1].reg == REG_PC)
19239 as_tsktsk (MVE_BAD_PC);
19240 }
19241 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19242
19243 constraint (et.type == NT_invtype, _("bad type for scalar"));
19244 constraint (x >= size / et.size, _("scalar index out of range"));
19245
19246
19247 switch (et.size)
19248 {
19249 case 8: bcdebits = 0x8; break;
19250 case 16: bcdebits = 0x1; break;
19251 case 32: bcdebits = 0x0; break;
19252 default: ;
19253 }
19254
19255 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19256
19257 inst.instruction = 0xe000b10;
19258 do_vfp_cond_or_thumb ();
19259 inst.instruction |= LOW4 (dn) << 16;
19260 inst.instruction |= HI1 (dn) << 7;
19261 inst.instruction |= inst.operands[1].reg << 12;
19262 inst.instruction |= (bcdebits & 3) << 5;
19263 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19264 inst.instruction |= (x >> (3-logsize)) << 16;
19265 }
19266 break;
19267
19268 case NS_DRR: /* case 5 (fmdrr). */
19269 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19270 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19271 _(BAD_FPU));
19272
19273 inst.instruction = 0xc400b10;
19274 do_vfp_cond_or_thumb ();
19275 inst.instruction |= LOW4 (inst.operands[0].reg);
19276 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19277 inst.instruction |= inst.operands[1].reg << 12;
19278 inst.instruction |= inst.operands[2].reg << 16;
19279 break;
19280
19281 case NS_RS: /* case 6. */
19282 {
19283 unsigned logsize;
19284 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19285 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19286 unsigned abcdebits = 0;
19287
19288 /* .<dt> is optional here, defaulting to .32. */
19289 if (inst.vectype.elems == 0
19290 && inst.operands[0].vectype.type == NT_invtype
19291 && inst.operands[1].vectype.type == NT_invtype)
19292 {
19293 inst.vectype.el[0].type = NT_untyped;
19294 inst.vectype.el[0].size = 32;
19295 inst.vectype.elems = 1;
19296 }
19297
19298 et = neon_check_type (2, NS_NULL,
19299 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19300 logsize = neon_logbits (et.size);
19301
19302 if (et.size != 32)
19303 {
19304 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19305 && vfp_or_neon_is_neon (NEON_CHECK_CC
19306 | NEON_CHECK_ARCH) == FAIL)
19307 return;
19308 }
19309 else
19310 {
19311 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19312 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19313 _(BAD_FPU));
19314 }
19315
19316 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19317 {
19318 if (inst.operands[0].reg == REG_SP)
19319 as_tsktsk (MVE_BAD_SP);
19320 else if (inst.operands[0].reg == REG_PC)
19321 as_tsktsk (MVE_BAD_PC);
19322 }
19323
19324 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19325
19326 constraint (et.type == NT_invtype, _("bad type for scalar"));
19327 constraint (x >= size / et.size, _("scalar index out of range"));
19328
19329 switch (et.size)
19330 {
19331 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19332 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19333 case 32: abcdebits = 0x00; break;
19334 default: ;
19335 }
19336
19337 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19338 inst.instruction = 0xe100b10;
19339 do_vfp_cond_or_thumb ();
19340 inst.instruction |= LOW4 (dn) << 16;
19341 inst.instruction |= HI1 (dn) << 7;
19342 inst.instruction |= inst.operands[0].reg << 12;
19343 inst.instruction |= (abcdebits & 3) << 5;
19344 inst.instruction |= (abcdebits >> 2) << 21;
19345 inst.instruction |= (x >> (3-logsize)) << 16;
19346 }
19347 break;
19348
19349 case NS_RRD: /* case 7 (fmrrd). */
19350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19351 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19352 _(BAD_FPU));
19353
19354 inst.instruction = 0xc500b10;
19355 do_vfp_cond_or_thumb ();
19356 inst.instruction |= inst.operands[0].reg << 12;
19357 inst.instruction |= inst.operands[1].reg << 16;
19358 inst.instruction |= LOW4 (inst.operands[2].reg);
19359 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19360 break;
19361
19362 case NS_FF: /* case 8 (fcpys). */
19363 do_vfp_nsyn_opcode ("fcpys");
19364 break;
19365
19366 case NS_HI:
19367 case NS_FI: /* case 10 (fconsts). */
19368 ldconst = "fconsts";
19369 encode_fconstd:
19370 if (!inst.operands[1].immisfloat)
19371 {
19372 unsigned new_imm;
19373 /* Immediate has to fit in 8 bits so float is enough. */
19374 float imm = (float) inst.operands[1].imm;
19375 memcpy (&new_imm, &imm, sizeof (float));
19376 /* But the assembly may have been written to provide an integer
19377 bit pattern that equates to a float, so check that the
19378 conversion has worked. */
19379 if (is_quarter_float (new_imm))
19380 {
19381 if (is_quarter_float (inst.operands[1].imm))
19382 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19383
19384 inst.operands[1].imm = new_imm;
19385 inst.operands[1].immisfloat = 1;
19386 }
19387 }
19388
19389 if (is_quarter_float (inst.operands[1].imm))
19390 {
19391 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19392 do_vfp_nsyn_opcode (ldconst);
19393
19394 /* ARMv8.2 fp16 vmov.f16 instruction. */
19395 if (rs == NS_HI)
19396 do_scalar_fp16_v82_encode ();
19397 }
19398 else
19399 first_error (_("immediate out of range"));
19400 break;
19401
19402 case NS_RH:
19403 case NS_RF: /* case 12 (fmrs). */
19404 do_vfp_nsyn_opcode ("fmrs");
19405 /* ARMv8.2 fp16 vmov.f16 instruction. */
19406 if (rs == NS_RH)
19407 do_scalar_fp16_v82_encode ();
19408 break;
19409
19410 case NS_HR:
19411 case NS_FR: /* case 13 (fmsr). */
19412 do_vfp_nsyn_opcode ("fmsr");
19413 /* ARMv8.2 fp16 vmov.f16 instruction. */
19414 if (rs == NS_HR)
19415 do_scalar_fp16_v82_encode ();
19416 break;
19417
19418 case NS_RRSS:
19419 do_mve_mov (0);
19420 break;
19421 case NS_SSRR:
19422 do_mve_mov (1);
19423 break;
19424
19425 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19426 (one of which is a list), but we have parsed four. Do some fiddling to
19427 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19428 expect. */
19429 case NS_RRFF: /* case 14 (fmrrs). */
19430 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19431 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19432 _(BAD_FPU));
19433 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19434 _("VFP registers must be adjacent"));
19435 inst.operands[2].imm = 2;
19436 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19437 do_vfp_nsyn_opcode ("fmrrs");
19438 break;
19439
19440 case NS_FFRR: /* case 15 (fmsrr). */
19441 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19442 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19443 _(BAD_FPU));
19444 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19445 _("VFP registers must be adjacent"));
19446 inst.operands[1] = inst.operands[2];
19447 inst.operands[2] = inst.operands[3];
19448 inst.operands[0].imm = 2;
19449 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19450 do_vfp_nsyn_opcode ("fmsrr");
19451 break;
19452
19453 case NS_NULL:
19454 /* neon_select_shape has determined that the instruction
19455 shape is wrong and has already set the error message. */
19456 break;
19457
19458 default:
19459 abort ();
19460 }
19461 }
19462
19463 static void
19464 do_mve_movl (void)
19465 {
19466 if (!(inst.operands[0].present && inst.operands[0].isquad
19467 && inst.operands[1].present && inst.operands[1].isquad
19468 && !inst.operands[2].present))
19469 {
19470 inst.instruction = 0;
19471 inst.cond = 0xb;
19472 if (thumb_mode)
19473 set_pred_insn_type (INSIDE_IT_INSN);
19474 do_neon_mov ();
19475 return;
19476 }
19477
19478 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19479 return;
19480
19481 if (inst.cond != COND_ALWAYS)
19482 inst.pred_insn_type = INSIDE_VPT_INSN;
19483
19484 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19485 | N_S16 | N_U16 | N_KEY);
19486
19487 inst.instruction |= (et.type == NT_unsigned) << 28;
19488 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19489 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19490 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19491 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19492 inst.instruction |= LOW4 (inst.operands[1].reg);
19493 inst.is_neon = 1;
19494 }
19495
19496 static void
19497 do_neon_rshift_round_imm (void)
19498 {
19499 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19500 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19501 int imm = inst.operands[2].imm;
19502
19503 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19504 if (imm == 0)
19505 {
19506 inst.operands[2].present = 0;
19507 do_neon_mov ();
19508 return;
19509 }
19510
19511 constraint (imm < 1 || (unsigned)imm > et.size,
19512 _("immediate out of range for shift"));
19513 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19514 et.size - imm);
19515 }
19516
19517 static void
19518 do_neon_movhf (void)
19519 {
19520 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19521 constraint (rs != NS_HH, _("invalid suffix"));
19522
19523 if (inst.cond != COND_ALWAYS)
19524 {
19525 if (thumb_mode)
19526 {
19527 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19528 " the behaviour is UNPREDICTABLE"));
19529 }
19530 else
19531 {
19532 inst.error = BAD_COND;
19533 return;
19534 }
19535 }
19536
19537 do_vfp_sp_monadic ();
19538
19539 inst.is_neon = 1;
19540 inst.instruction |= 0xf0000000;
19541 }
19542
19543 static void
19544 do_neon_movl (void)
19545 {
19546 struct neon_type_el et = neon_check_type (2, NS_QD,
19547 N_EQK | N_DBL, N_SU_32 | N_KEY);
19548 unsigned sizebits = et.size >> 3;
19549 inst.instruction |= sizebits << 19;
19550 neon_two_same (0, et.type == NT_unsigned, -1);
19551 }
19552
19553 static void
19554 do_neon_trn (void)
19555 {
19556 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19557 struct neon_type_el et = neon_check_type (2, rs,
19558 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19559 NEON_ENCODE (INTEGER, inst);
19560 neon_two_same (neon_quad (rs), 1, et.size);
19561 }
19562
19563 static void
19564 do_neon_zip_uzp (void)
19565 {
19566 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19567 struct neon_type_el et = neon_check_type (2, rs,
19568 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19569 if (rs == NS_DD && et.size == 32)
19570 {
19571 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19572 inst.instruction = N_MNEM_vtrn;
19573 do_neon_trn ();
19574 return;
19575 }
19576 neon_two_same (neon_quad (rs), 1, et.size);
19577 }
19578
19579 static void
19580 do_neon_sat_abs_neg (void)
19581 {
19582 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19583 return;
19584
19585 enum neon_shape rs;
19586 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19587 rs = neon_select_shape (NS_QQ, NS_NULL);
19588 else
19589 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19590 struct neon_type_el et = neon_check_type (2, rs,
19591 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19592 neon_two_same (neon_quad (rs), 1, et.size);
19593 }
19594
19595 static void
19596 do_neon_pair_long (void)
19597 {
19598 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19599 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19600 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19601 inst.instruction |= (et.type == NT_unsigned) << 7;
19602 neon_two_same (neon_quad (rs), 1, et.size);
19603 }
19604
19605 static void
19606 do_neon_recip_est (void)
19607 {
19608 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19609 struct neon_type_el et = neon_check_type (2, rs,
19610 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19611 inst.instruction |= (et.type == NT_float) << 8;
19612 neon_two_same (neon_quad (rs), 1, et.size);
19613 }
19614
19615 static void
19616 do_neon_cls (void)
19617 {
19618 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19619 return;
19620
19621 enum neon_shape rs;
19622 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19623 rs = neon_select_shape (NS_QQ, NS_NULL);
19624 else
19625 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19626
19627 struct neon_type_el et = neon_check_type (2, rs,
19628 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19629 neon_two_same (neon_quad (rs), 1, et.size);
19630 }
19631
19632 static void
19633 do_neon_clz (void)
19634 {
19635 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19636 return;
19637
19638 enum neon_shape rs;
19639 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19640 rs = neon_select_shape (NS_QQ, NS_NULL);
19641 else
19642 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19643
19644 struct neon_type_el et = neon_check_type (2, rs,
19645 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19646 neon_two_same (neon_quad (rs), 1, et.size);
19647 }
19648
19649 static void
19650 do_neon_cnt (void)
19651 {
19652 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19653 struct neon_type_el et = neon_check_type (2, rs,
19654 N_EQK | N_INT, N_8 | N_KEY);
19655 neon_two_same (neon_quad (rs), 1, et.size);
19656 }
19657
19658 static void
19659 do_neon_swp (void)
19660 {
19661 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19662 neon_two_same (neon_quad (rs), 1, -1);
19663 }
19664
19665 static void
19666 do_neon_tbl_tbx (void)
19667 {
19668 unsigned listlenbits;
19669 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19670
19671 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19672 {
19673 first_error (_("bad list length for table lookup"));
19674 return;
19675 }
19676
19677 listlenbits = inst.operands[1].imm - 1;
19678 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19679 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19680 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19681 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19682 inst.instruction |= LOW4 (inst.operands[2].reg);
19683 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19684 inst.instruction |= listlenbits << 8;
19685
19686 neon_dp_fixup (&inst);
19687 }
19688
19689 static void
19690 do_neon_ldm_stm (void)
19691 {
19692 /* P, U and L bits are part of bitmask. */
19693 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19694 unsigned offsetbits = inst.operands[1].imm * 2;
19695
19696 if (inst.operands[1].issingle)
19697 {
19698 do_vfp_nsyn_ldm_stm (is_dbmode);
19699 return;
19700 }
19701
19702 constraint (is_dbmode && !inst.operands[0].writeback,
19703 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19704
19705 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19706 _("register list must contain at least 1 and at most 16 "
19707 "registers"));
19708
19709 inst.instruction |= inst.operands[0].reg << 16;
19710 inst.instruction |= inst.operands[0].writeback << 21;
19711 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19712 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19713
19714 inst.instruction |= offsetbits;
19715
19716 do_vfp_cond_or_thumb ();
19717 }
19718
19719 static void
19720 do_neon_ldr_str (void)
19721 {
19722 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19723
19724 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19725 And is UNPREDICTABLE in thumb mode. */
19726 if (!is_ldr
19727 && inst.operands[1].reg == REG_PC
19728 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19729 {
19730 if (thumb_mode)
19731 inst.error = _("Use of PC here is UNPREDICTABLE");
19732 else if (warn_on_deprecated)
19733 as_tsktsk (_("Use of PC here is deprecated"));
19734 }
19735
19736 if (inst.operands[0].issingle)
19737 {
19738 if (is_ldr)
19739 do_vfp_nsyn_opcode ("flds");
19740 else
19741 do_vfp_nsyn_opcode ("fsts");
19742
19743 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19744 if (inst.vectype.el[0].size == 16)
19745 do_scalar_fp16_v82_encode ();
19746 }
19747 else
19748 {
19749 if (is_ldr)
19750 do_vfp_nsyn_opcode ("fldd");
19751 else
19752 do_vfp_nsyn_opcode ("fstd");
19753 }
19754 }
19755
19756 static void
19757 do_t_vldr_vstr_sysreg (void)
19758 {
19759 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19760 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19761
19762 /* Use of PC is UNPREDICTABLE. */
19763 if (inst.operands[1].reg == REG_PC)
19764 inst.error = _("Use of PC here is UNPREDICTABLE");
19765
19766 if (inst.operands[1].immisreg)
19767 inst.error = _("instruction does not accept register index");
19768
19769 if (!inst.operands[1].isreg)
19770 inst.error = _("instruction does not accept PC-relative addressing");
19771
19772 if (abs (inst.operands[1].imm) >= (1 << 7))
19773 inst.error = _("immediate value out of range");
19774
19775 inst.instruction = 0xec000f80;
19776 if (is_vldr)
19777 inst.instruction |= 1 << sysreg_vldr_bitno;
19778 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19779 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19780 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19781 }
19782
19783 static void
19784 do_vldr_vstr (void)
19785 {
19786 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19787
19788 /* VLDR/VSTR (System Register). */
19789 if (sysreg_op)
19790 {
19791 if (!mark_feature_used (&arm_ext_v8_1m_main))
19792 as_bad (_("Instruction not permitted on this architecture"));
19793
19794 do_t_vldr_vstr_sysreg ();
19795 }
19796 /* VLDR/VSTR. */
19797 else
19798 {
19799 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19800 as_bad (_("Instruction not permitted on this architecture"));
19801 do_neon_ldr_str ();
19802 }
19803 }
19804
19805 /* "interleave" version also handles non-interleaving register VLD1/VST1
19806 instructions. */
19807
19808 static void
19809 do_neon_ld_st_interleave (void)
19810 {
19811 struct neon_type_el et = neon_check_type (1, NS_NULL,
19812 N_8 | N_16 | N_32 | N_64);
19813 unsigned alignbits = 0;
19814 unsigned idx;
19815 /* The bits in this table go:
19816 0: register stride of one (0) or two (1)
19817 1,2: register list length, minus one (1, 2, 3, 4).
19818 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19819 We use -1 for invalid entries. */
19820 const int typetable[] =
19821 {
19822 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19823 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19824 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19825 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19826 };
19827 int typebits;
19828
19829 if (et.type == NT_invtype)
19830 return;
19831
19832 if (inst.operands[1].immisalign)
19833 switch (inst.operands[1].imm >> 8)
19834 {
19835 case 64: alignbits = 1; break;
19836 case 128:
19837 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19838 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19839 goto bad_alignment;
19840 alignbits = 2;
19841 break;
19842 case 256:
19843 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19844 goto bad_alignment;
19845 alignbits = 3;
19846 break;
19847 default:
19848 bad_alignment:
19849 first_error (_("bad alignment"));
19850 return;
19851 }
19852
19853 inst.instruction |= alignbits << 4;
19854 inst.instruction |= neon_logbits (et.size) << 6;
19855
19856 /* Bits [4:6] of the immediate in a list specifier encode register stride
19857 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19858 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19859 up the right value for "type" in a table based on this value and the given
19860 list style, then stick it back. */
19861 idx = ((inst.operands[0].imm >> 4) & 7)
19862 | (((inst.instruction >> 8) & 3) << 3);
19863
19864 typebits = typetable[idx];
19865
19866 constraint (typebits == -1, _("bad list type for instruction"));
19867 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19868 BAD_EL_TYPE);
19869
19870 inst.instruction &= ~0xf00;
19871 inst.instruction |= typebits << 8;
19872 }
19873
19874 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19875 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19876 otherwise. The variable arguments are a list of pairs of legal (size, align)
19877 values, terminated with -1. */
19878
19879 static int
19880 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19881 {
19882 va_list ap;
19883 int result = FAIL, thissize, thisalign;
19884
19885 if (!inst.operands[1].immisalign)
19886 {
19887 *do_alignment = 0;
19888 return SUCCESS;
19889 }
19890
19891 va_start (ap, do_alignment);
19892
19893 do
19894 {
19895 thissize = va_arg (ap, int);
19896 if (thissize == -1)
19897 break;
19898 thisalign = va_arg (ap, int);
19899
19900 if (size == thissize && align == thisalign)
19901 result = SUCCESS;
19902 }
19903 while (result != SUCCESS);
19904
19905 va_end (ap);
19906
19907 if (result == SUCCESS)
19908 *do_alignment = 1;
19909 else
19910 first_error (_("unsupported alignment for instruction"));
19911
19912 return result;
19913 }
19914
19915 static void
19916 do_neon_ld_st_lane (void)
19917 {
19918 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19919 int align_good, do_alignment = 0;
19920 int logsize = neon_logbits (et.size);
19921 int align = inst.operands[1].imm >> 8;
19922 int n = (inst.instruction >> 8) & 3;
19923 int max_el = 64 / et.size;
19924
19925 if (et.type == NT_invtype)
19926 return;
19927
19928 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19929 _("bad list length"));
19930 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19931 _("scalar index out of range"));
19932 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19933 && et.size == 8,
19934 _("stride of 2 unavailable when element size is 8"));
19935
19936 switch (n)
19937 {
19938 case 0: /* VLD1 / VST1. */
19939 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19940 32, 32, -1);
19941 if (align_good == FAIL)
19942 return;
19943 if (do_alignment)
19944 {
19945 unsigned alignbits = 0;
19946 switch (et.size)
19947 {
19948 case 16: alignbits = 0x1; break;
19949 case 32: alignbits = 0x3; break;
19950 default: ;
19951 }
19952 inst.instruction |= alignbits << 4;
19953 }
19954 break;
19955
19956 case 1: /* VLD2 / VST2. */
19957 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19958 16, 32, 32, 64, -1);
19959 if (align_good == FAIL)
19960 return;
19961 if (do_alignment)
19962 inst.instruction |= 1 << 4;
19963 break;
19964
19965 case 2: /* VLD3 / VST3. */
19966 constraint (inst.operands[1].immisalign,
19967 _("can't use alignment with this instruction"));
19968 break;
19969
19970 case 3: /* VLD4 / VST4. */
19971 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19972 16, 64, 32, 64, 32, 128, -1);
19973 if (align_good == FAIL)
19974 return;
19975 if (do_alignment)
19976 {
19977 unsigned alignbits = 0;
19978 switch (et.size)
19979 {
19980 case 8: alignbits = 0x1; break;
19981 case 16: alignbits = 0x1; break;
19982 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19983 default: ;
19984 }
19985 inst.instruction |= alignbits << 4;
19986 }
19987 break;
19988
19989 default: ;
19990 }
19991
19992 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19993 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19994 inst.instruction |= 1 << (4 + logsize);
19995
19996 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19997 inst.instruction |= logsize << 10;
19998 }
19999
20000 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20001
20002 static void
20003 do_neon_ld_dup (void)
20004 {
20005 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20006 int align_good, do_alignment = 0;
20007
20008 if (et.type == NT_invtype)
20009 return;
20010
20011 switch ((inst.instruction >> 8) & 3)
20012 {
20013 case 0: /* VLD1. */
20014 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20015 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20016 &do_alignment, 16, 16, 32, 32, -1);
20017 if (align_good == FAIL)
20018 return;
20019 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20020 {
20021 case 1: break;
20022 case 2: inst.instruction |= 1 << 5; break;
20023 default: first_error (_("bad list length")); return;
20024 }
20025 inst.instruction |= neon_logbits (et.size) << 6;
20026 break;
20027
20028 case 1: /* VLD2. */
20029 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20030 &do_alignment, 8, 16, 16, 32, 32, 64,
20031 -1);
20032 if (align_good == FAIL)
20033 return;
20034 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20035 _("bad list length"));
20036 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20037 inst.instruction |= 1 << 5;
20038 inst.instruction |= neon_logbits (et.size) << 6;
20039 break;
20040
20041 case 2: /* VLD3. */
20042 constraint (inst.operands[1].immisalign,
20043 _("can't use alignment with this instruction"));
20044 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20045 _("bad list length"));
20046 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20047 inst.instruction |= 1 << 5;
20048 inst.instruction |= neon_logbits (et.size) << 6;
20049 break;
20050
20051 case 3: /* VLD4. */
20052 {
20053 int align = inst.operands[1].imm >> 8;
20054 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20055 16, 64, 32, 64, 32, 128, -1);
20056 if (align_good == FAIL)
20057 return;
20058 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20059 _("bad list length"));
20060 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20061 inst.instruction |= 1 << 5;
20062 if (et.size == 32 && align == 128)
20063 inst.instruction |= 0x3 << 6;
20064 else
20065 inst.instruction |= neon_logbits (et.size) << 6;
20066 }
20067 break;
20068
20069 default: ;
20070 }
20071
20072 inst.instruction |= do_alignment << 4;
20073 }
20074
20075 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20076 apart from bits [11:4]. */
20077
20078 static void
20079 do_neon_ldx_stx (void)
20080 {
20081 if (inst.operands[1].isreg)
20082 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20083
20084 switch (NEON_LANE (inst.operands[0].imm))
20085 {
20086 case NEON_INTERLEAVE_LANES:
20087 NEON_ENCODE (INTERLV, inst);
20088 do_neon_ld_st_interleave ();
20089 break;
20090
20091 case NEON_ALL_LANES:
20092 NEON_ENCODE (DUP, inst);
20093 if (inst.instruction == N_INV)
20094 {
20095 first_error ("only loads support such operands");
20096 break;
20097 }
20098 do_neon_ld_dup ();
20099 break;
20100
20101 default:
20102 NEON_ENCODE (LANE, inst);
20103 do_neon_ld_st_lane ();
20104 }
20105
20106 /* L bit comes from bit mask. */
20107 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20108 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20109 inst.instruction |= inst.operands[1].reg << 16;
20110
20111 if (inst.operands[1].postind)
20112 {
20113 int postreg = inst.operands[1].imm & 0xf;
20114 constraint (!inst.operands[1].immisreg,
20115 _("post-index must be a register"));
20116 constraint (postreg == 0xd || postreg == 0xf,
20117 _("bad register for post-index"));
20118 inst.instruction |= postreg;
20119 }
20120 else
20121 {
20122 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20123 constraint (inst.relocs[0].exp.X_op != O_constant
20124 || inst.relocs[0].exp.X_add_number != 0,
20125 BAD_ADDR_MODE);
20126
20127 if (inst.operands[1].writeback)
20128 {
20129 inst.instruction |= 0xd;
20130 }
20131 else
20132 inst.instruction |= 0xf;
20133 }
20134
20135 if (thumb_mode)
20136 inst.instruction |= 0xf9000000;
20137 else
20138 inst.instruction |= 0xf4000000;
20139 }
20140
20141 /* FP v8. */
20142 static void
20143 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20144 {
20145 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20146 D register operands. */
20147 if (neon_shape_class[rs] == SC_DOUBLE)
20148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20149 _(BAD_FPU));
20150
20151 NEON_ENCODE (FPV8, inst);
20152
20153 if (rs == NS_FFF || rs == NS_HHH)
20154 {
20155 do_vfp_sp_dyadic ();
20156
20157 /* ARMv8.2 fp16 instruction. */
20158 if (rs == NS_HHH)
20159 do_scalar_fp16_v82_encode ();
20160 }
20161 else
20162 do_vfp_dp_rd_rn_rm ();
20163
20164 if (rs == NS_DDD)
20165 inst.instruction |= 0x100;
20166
20167 inst.instruction |= 0xf0000000;
20168 }
20169
20170 static void
20171 do_vsel (void)
20172 {
20173 set_pred_insn_type (OUTSIDE_PRED_INSN);
20174
20175 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20176 first_error (_("invalid instruction shape"));
20177 }
20178
20179 static void
20180 do_vmaxnm (void)
20181 {
20182 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20183 set_pred_insn_type (OUTSIDE_PRED_INSN);
20184
20185 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20186 return;
20187
20188 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20189 return;
20190
20191 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20192 }
20193
20194 static void
20195 do_vrint_1 (enum neon_cvt_mode mode)
20196 {
20197 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20198 struct neon_type_el et;
20199
20200 if (rs == NS_NULL)
20201 return;
20202
20203 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20204 D register operands. */
20205 if (neon_shape_class[rs] == SC_DOUBLE)
20206 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20207 _(BAD_FPU));
20208
20209 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20210 | N_VFP);
20211 if (et.type != NT_invtype)
20212 {
20213 /* VFP encodings. */
20214 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20215 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20216 set_pred_insn_type (OUTSIDE_PRED_INSN);
20217
20218 NEON_ENCODE (FPV8, inst);
20219 if (rs == NS_FF || rs == NS_HH)
20220 do_vfp_sp_monadic ();
20221 else
20222 do_vfp_dp_rd_rm ();
20223
20224 switch (mode)
20225 {
20226 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20227 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20228 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20229 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20230 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20231 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20232 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20233 default: abort ();
20234 }
20235
20236 inst.instruction |= (rs == NS_DD) << 8;
20237 do_vfp_cond_or_thumb ();
20238
20239 /* ARMv8.2 fp16 vrint instruction. */
20240 if (rs == NS_HH)
20241 do_scalar_fp16_v82_encode ();
20242 }
20243 else
20244 {
20245 /* Neon encodings (or something broken...). */
20246 inst.error = NULL;
20247 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20248
20249 if (et.type == NT_invtype)
20250 return;
20251
20252 set_pred_insn_type (OUTSIDE_PRED_INSN);
20253 NEON_ENCODE (FLOAT, inst);
20254
20255 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20256 return;
20257
20258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20260 inst.instruction |= LOW4 (inst.operands[1].reg);
20261 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20262 inst.instruction |= neon_quad (rs) << 6;
20263 /* Mask off the original size bits and reencode them. */
20264 inst.instruction = ((inst.instruction & 0xfff3ffff)
20265 | neon_logbits (et.size) << 18);
20266
20267 switch (mode)
20268 {
20269 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20270 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20271 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20272 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20273 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20274 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20275 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20276 default: abort ();
20277 }
20278
20279 if (thumb_mode)
20280 inst.instruction |= 0xfc000000;
20281 else
20282 inst.instruction |= 0xf0000000;
20283 }
20284 }
20285
20286 static void
20287 do_vrintx (void)
20288 {
20289 do_vrint_1 (neon_cvt_mode_x);
20290 }
20291
20292 static void
20293 do_vrintz (void)
20294 {
20295 do_vrint_1 (neon_cvt_mode_z);
20296 }
20297
20298 static void
20299 do_vrintr (void)
20300 {
20301 do_vrint_1 (neon_cvt_mode_r);
20302 }
20303
20304 static void
20305 do_vrinta (void)
20306 {
20307 do_vrint_1 (neon_cvt_mode_a);
20308 }
20309
20310 static void
20311 do_vrintn (void)
20312 {
20313 do_vrint_1 (neon_cvt_mode_n);
20314 }
20315
20316 static void
20317 do_vrintp (void)
20318 {
20319 do_vrint_1 (neon_cvt_mode_p);
20320 }
20321
20322 static void
20323 do_vrintm (void)
20324 {
20325 do_vrint_1 (neon_cvt_mode_m);
20326 }
20327
20328 static unsigned
20329 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20330 {
20331 unsigned regno = NEON_SCALAR_REG (opnd);
20332 unsigned elno = NEON_SCALAR_INDEX (opnd);
20333
20334 if (elsize == 16 && elno < 2 && regno < 16)
20335 return regno | (elno << 4);
20336 else if (elsize == 32 && elno == 0)
20337 return regno;
20338
20339 first_error (_("scalar out of range"));
20340 return 0;
20341 }
20342
20343 static void
20344 do_vcmla (void)
20345 {
20346 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20347 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20348 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20349 constraint (inst.relocs[0].exp.X_op != O_constant,
20350 _("expression too complex"));
20351 unsigned rot = inst.relocs[0].exp.X_add_number;
20352 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20353 _("immediate out of range"));
20354 rot /= 90;
20355
20356 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20357 return;
20358
20359 if (inst.operands[2].isscalar)
20360 {
20361 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20362 first_error (_("invalid instruction shape"));
20363 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20364 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20365 N_KEY | N_F16 | N_F32).size;
20366 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20367 inst.is_neon = 1;
20368 inst.instruction = 0xfe000800;
20369 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20370 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20371 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20372 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20373 inst.instruction |= LOW4 (m);
20374 inst.instruction |= HI1 (m) << 5;
20375 inst.instruction |= neon_quad (rs) << 6;
20376 inst.instruction |= rot << 20;
20377 inst.instruction |= (size == 32) << 23;
20378 }
20379 else
20380 {
20381 enum neon_shape rs;
20382 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20383 rs = neon_select_shape (NS_QQQI, NS_NULL);
20384 else
20385 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20386
20387 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20388 N_KEY | N_F16 | N_F32).size;
20389 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20390 && (inst.operands[0].reg == inst.operands[1].reg
20391 || inst.operands[0].reg == inst.operands[2].reg))
20392 as_tsktsk (BAD_MVE_SRCDEST);
20393
20394 neon_three_same (neon_quad (rs), 0, -1);
20395 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20396 inst.instruction |= 0xfc200800;
20397 inst.instruction |= rot << 23;
20398 inst.instruction |= (size == 32) << 20;
20399 }
20400 }
20401
20402 static void
20403 do_vcadd (void)
20404 {
20405 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20406 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20407 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20408 constraint (inst.relocs[0].exp.X_op != O_constant,
20409 _("expression too complex"));
20410
20411 unsigned rot = inst.relocs[0].exp.X_add_number;
20412 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20413 enum neon_shape rs;
20414 struct neon_type_el et;
20415 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20416 {
20417 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20418 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20419 }
20420 else
20421 {
20422 rs = neon_select_shape (NS_QQQI, NS_NULL);
20423 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20424 | N_I16 | N_I32);
20425 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20426 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20427 "operand makes instruction UNPREDICTABLE"));
20428 }
20429
20430 if (et.type == NT_invtype)
20431 return;
20432
20433 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20434 | NEON_CHECK_CC))
20435 return;
20436
20437 if (et.type == NT_float)
20438 {
20439 neon_three_same (neon_quad (rs), 0, -1);
20440 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20441 inst.instruction |= 0xfc800800;
20442 inst.instruction |= (rot == 270) << 24;
20443 inst.instruction |= (et.size == 32) << 20;
20444 }
20445 else
20446 {
20447 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20448 inst.instruction = 0xfe000f00;
20449 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20450 inst.instruction |= neon_logbits (et.size) << 20;
20451 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20452 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20453 inst.instruction |= (rot == 270) << 12;
20454 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20455 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20456 inst.instruction |= LOW4 (inst.operands[2].reg);
20457 inst.is_neon = 1;
20458 }
20459 }
20460
20461 /* Dot Product instructions encoding support. */
20462
20463 static void
20464 do_neon_dotproduct (int unsigned_p)
20465 {
20466 enum neon_shape rs;
20467 unsigned scalar_oprd2 = 0;
20468 int high8;
20469
20470 if (inst.cond != COND_ALWAYS)
20471 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20472 "is UNPREDICTABLE"));
20473
20474 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20475 _(BAD_FPU));
20476
20477 /* Dot Product instructions are in three-same D/Q register format or the third
20478 operand can be a scalar index register. */
20479 if (inst.operands[2].isscalar)
20480 {
20481 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20482 high8 = 0xfe000000;
20483 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20484 }
20485 else
20486 {
20487 high8 = 0xfc000000;
20488 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20489 }
20490
20491 if (unsigned_p)
20492 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20493 else
20494 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20495
20496 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20497 Product instruction, so we pass 0 as the "ubit" parameter. And the
20498 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20499 neon_three_same (neon_quad (rs), 0, 32);
20500
20501 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20502 different NEON three-same encoding. */
20503 inst.instruction &= 0x00ffffff;
20504 inst.instruction |= high8;
20505 /* Encode 'U' bit which indicates signedness. */
20506 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20507 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20508 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20509 the instruction encoding. */
20510 if (inst.operands[2].isscalar)
20511 {
20512 inst.instruction &= 0xffffffd0;
20513 inst.instruction |= LOW4 (scalar_oprd2);
20514 inst.instruction |= HI1 (scalar_oprd2) << 5;
20515 }
20516 }
20517
20518 /* Dot Product instructions for signed integer. */
20519
20520 static void
20521 do_neon_dotproduct_s (void)
20522 {
20523 return do_neon_dotproduct (0);
20524 }
20525
20526 /* Dot Product instructions for unsigned integer. */
20527
20528 static void
20529 do_neon_dotproduct_u (void)
20530 {
20531 return do_neon_dotproduct (1);
20532 }
20533
20534 /* Crypto v1 instructions. */
20535 static void
20536 do_crypto_2op_1 (unsigned elttype, int op)
20537 {
20538 set_pred_insn_type (OUTSIDE_PRED_INSN);
20539
20540 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20541 == NT_invtype)
20542 return;
20543
20544 inst.error = NULL;
20545
20546 NEON_ENCODE (INTEGER, inst);
20547 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20548 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20549 inst.instruction |= LOW4 (inst.operands[1].reg);
20550 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20551 if (op != -1)
20552 inst.instruction |= op << 6;
20553
20554 if (thumb_mode)
20555 inst.instruction |= 0xfc000000;
20556 else
20557 inst.instruction |= 0xf0000000;
20558 }
20559
20560 static void
20561 do_crypto_3op_1 (int u, int op)
20562 {
20563 set_pred_insn_type (OUTSIDE_PRED_INSN);
20564
20565 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20566 N_32 | N_UNT | N_KEY).type == NT_invtype)
20567 return;
20568
20569 inst.error = NULL;
20570
20571 NEON_ENCODE (INTEGER, inst);
20572 neon_three_same (1, u, 8 << op);
20573 }
20574
20575 static void
20576 do_aese (void)
20577 {
20578 do_crypto_2op_1 (N_8, 0);
20579 }
20580
20581 static void
20582 do_aesd (void)
20583 {
20584 do_crypto_2op_1 (N_8, 1);
20585 }
20586
20587 static void
20588 do_aesmc (void)
20589 {
20590 do_crypto_2op_1 (N_8, 2);
20591 }
20592
20593 static void
20594 do_aesimc (void)
20595 {
20596 do_crypto_2op_1 (N_8, 3);
20597 }
20598
20599 static void
20600 do_sha1c (void)
20601 {
20602 do_crypto_3op_1 (0, 0);
20603 }
20604
20605 static void
20606 do_sha1p (void)
20607 {
20608 do_crypto_3op_1 (0, 1);
20609 }
20610
20611 static void
20612 do_sha1m (void)
20613 {
20614 do_crypto_3op_1 (0, 2);
20615 }
20616
20617 static void
20618 do_sha1su0 (void)
20619 {
20620 do_crypto_3op_1 (0, 3);
20621 }
20622
20623 static void
20624 do_sha256h (void)
20625 {
20626 do_crypto_3op_1 (1, 0);
20627 }
20628
20629 static void
20630 do_sha256h2 (void)
20631 {
20632 do_crypto_3op_1 (1, 1);
20633 }
20634
20635 static void
20636 do_sha256su1 (void)
20637 {
20638 do_crypto_3op_1 (1, 2);
20639 }
20640
20641 static void
20642 do_sha1h (void)
20643 {
20644 do_crypto_2op_1 (N_32, -1);
20645 }
20646
20647 static void
20648 do_sha1su1 (void)
20649 {
20650 do_crypto_2op_1 (N_32, 0);
20651 }
20652
20653 static void
20654 do_sha256su0 (void)
20655 {
20656 do_crypto_2op_1 (N_32, 1);
20657 }
20658
20659 static void
20660 do_crc32_1 (unsigned int poly, unsigned int sz)
20661 {
20662 unsigned int Rd = inst.operands[0].reg;
20663 unsigned int Rn = inst.operands[1].reg;
20664 unsigned int Rm = inst.operands[2].reg;
20665
20666 set_pred_insn_type (OUTSIDE_PRED_INSN);
20667 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20668 inst.instruction |= LOW4 (Rn) << 16;
20669 inst.instruction |= LOW4 (Rm);
20670 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20671 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20672
20673 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20674 as_warn (UNPRED_REG ("r15"));
20675 }
20676
20677 static void
20678 do_crc32b (void)
20679 {
20680 do_crc32_1 (0, 0);
20681 }
20682
20683 static void
20684 do_crc32h (void)
20685 {
20686 do_crc32_1 (0, 1);
20687 }
20688
20689 static void
20690 do_crc32w (void)
20691 {
20692 do_crc32_1 (0, 2);
20693 }
20694
20695 static void
20696 do_crc32cb (void)
20697 {
20698 do_crc32_1 (1, 0);
20699 }
20700
20701 static void
20702 do_crc32ch (void)
20703 {
20704 do_crc32_1 (1, 1);
20705 }
20706
20707 static void
20708 do_crc32cw (void)
20709 {
20710 do_crc32_1 (1, 2);
20711 }
20712
20713 static void
20714 do_vjcvt (void)
20715 {
20716 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20717 _(BAD_FPU));
20718 neon_check_type (2, NS_FD, N_S32, N_F64);
20719 do_vfp_sp_dp_cvt ();
20720 do_vfp_cond_or_thumb ();
20721 }
20722
20723 \f
20724 /* Overall per-instruction processing. */
20725
20726 /* We need to be able to fix up arbitrary expressions in some statements.
20727 This is so that we can handle symbols that are an arbitrary distance from
20728 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20729 which returns part of an address in a form which will be valid for
20730 a data instruction. We do this by pushing the expression into a symbol
20731 in the expr_section, and creating a fix for that. */
20732
20733 static void
20734 fix_new_arm (fragS * frag,
20735 int where,
20736 short int size,
20737 expressionS * exp,
20738 int pc_rel,
20739 int reloc)
20740 {
20741 fixS * new_fix;
20742
20743 switch (exp->X_op)
20744 {
20745 case O_constant:
20746 if (pc_rel)
20747 {
20748 /* Create an absolute valued symbol, so we have something to
20749 refer to in the object file. Unfortunately for us, gas's
20750 generic expression parsing will already have folded out
20751 any use of .set foo/.type foo %function that may have
20752 been used to set type information of the target location,
20753 that's being specified symbolically. We have to presume
20754 the user knows what they are doing. */
20755 char name[16 + 8];
20756 symbolS *symbol;
20757
20758 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20759
20760 symbol = symbol_find_or_make (name);
20761 S_SET_SEGMENT (symbol, absolute_section);
20762 symbol_set_frag (symbol, &zero_address_frag);
20763 S_SET_VALUE (symbol, exp->X_add_number);
20764 exp->X_op = O_symbol;
20765 exp->X_add_symbol = symbol;
20766 exp->X_add_number = 0;
20767 }
20768 /* FALLTHROUGH */
20769 case O_symbol:
20770 case O_add:
20771 case O_subtract:
20772 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20773 (enum bfd_reloc_code_real) reloc);
20774 break;
20775
20776 default:
20777 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20778 pc_rel, (enum bfd_reloc_code_real) reloc);
20779 break;
20780 }
20781
20782 /* Mark whether the fix is to a THUMB instruction, or an ARM
20783 instruction. */
20784 new_fix->tc_fix_data = thumb_mode;
20785 }
20786
20787 /* Create a frg for an instruction requiring relaxation. */
20788 static void
20789 output_relax_insn (void)
20790 {
20791 char * to;
20792 symbolS *sym;
20793 int offset;
20794
20795 /* The size of the instruction is unknown, so tie the debug info to the
20796 start of the instruction. */
20797 dwarf2_emit_insn (0);
20798
20799 switch (inst.relocs[0].exp.X_op)
20800 {
20801 case O_symbol:
20802 sym = inst.relocs[0].exp.X_add_symbol;
20803 offset = inst.relocs[0].exp.X_add_number;
20804 break;
20805 case O_constant:
20806 sym = NULL;
20807 offset = inst.relocs[0].exp.X_add_number;
20808 break;
20809 default:
20810 sym = make_expr_symbol (&inst.relocs[0].exp);
20811 offset = 0;
20812 break;
20813 }
20814 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20815 inst.relax, sym, offset, NULL/*offset, opcode*/);
20816 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20817 }
20818
20819 /* Write a 32-bit thumb instruction to buf. */
20820 static void
20821 put_thumb32_insn (char * buf, unsigned long insn)
20822 {
20823 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20824 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20825 }
20826
20827 static void
20828 output_inst (const char * str)
20829 {
20830 char * to = NULL;
20831
20832 if (inst.error)
20833 {
20834 as_bad ("%s -- `%s'", inst.error, str);
20835 return;
20836 }
20837 if (inst.relax)
20838 {
20839 output_relax_insn ();
20840 return;
20841 }
20842 if (inst.size == 0)
20843 return;
20844
20845 to = frag_more (inst.size);
20846 /* PR 9814: Record the thumb mode into the current frag so that we know
20847 what type of NOP padding to use, if necessary. We override any previous
20848 setting so that if the mode has changed then the NOPS that we use will
20849 match the encoding of the last instruction in the frag. */
20850 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20851
20852 if (thumb_mode && (inst.size > THUMB_SIZE))
20853 {
20854 gas_assert (inst.size == (2 * THUMB_SIZE));
20855 put_thumb32_insn (to, inst.instruction);
20856 }
20857 else if (inst.size > INSN_SIZE)
20858 {
20859 gas_assert (inst.size == (2 * INSN_SIZE));
20860 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20861 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20862 }
20863 else
20864 md_number_to_chars (to, inst.instruction, inst.size);
20865
20866 int r;
20867 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20868 {
20869 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20870 fix_new_arm (frag_now, to - frag_now->fr_literal,
20871 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20872 inst.relocs[r].type);
20873 }
20874
20875 dwarf2_emit_insn (inst.size);
20876 }
20877
20878 static char *
20879 output_it_inst (int cond, int mask, char * to)
20880 {
20881 unsigned long instruction = 0xbf00;
20882
20883 mask &= 0xf;
20884 instruction |= mask;
20885 instruction |= cond << 4;
20886
20887 if (to == NULL)
20888 {
20889 to = frag_more (2);
20890 #ifdef OBJ_ELF
20891 dwarf2_emit_insn (2);
20892 #endif
20893 }
20894
20895 md_number_to_chars (to, instruction, 2);
20896
20897 return to;
20898 }
20899
20900 /* Tag values used in struct asm_opcode's tag field. */
20901 enum opcode_tag
20902 {
20903 OT_unconditional, /* Instruction cannot be conditionalized.
20904 The ARM condition field is still 0xE. */
20905 OT_unconditionalF, /* Instruction cannot be conditionalized
20906 and carries 0xF in its ARM condition field. */
20907 OT_csuffix, /* Instruction takes a conditional suffix. */
20908 OT_csuffixF, /* Some forms of the instruction take a scalar
20909 conditional suffix, others place 0xF where the
20910 condition field would be, others take a vector
20911 conditional suffix. */
20912 OT_cinfix3, /* Instruction takes a conditional infix,
20913 beginning at character index 3. (In
20914 unified mode, it becomes a suffix.) */
20915 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20916 tsts, cmps, cmns, and teqs. */
20917 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20918 character index 3, even in unified mode. Used for
20919 legacy instructions where suffix and infix forms
20920 may be ambiguous. */
20921 OT_csuf_or_in3, /* Instruction takes either a conditional
20922 suffix or an infix at character index 3. */
20923 OT_odd_infix_unc, /* This is the unconditional variant of an
20924 instruction that takes a conditional infix
20925 at an unusual position. In unified mode,
20926 this variant will accept a suffix. */
20927 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20928 are the conditional variants of instructions that
20929 take conditional infixes in unusual positions.
20930 The infix appears at character index
20931 (tag - OT_odd_infix_0). These are not accepted
20932 in unified mode. */
20933 };
20934
20935 /* Subroutine of md_assemble, responsible for looking up the primary
20936 opcode from the mnemonic the user wrote. STR points to the
20937 beginning of the mnemonic.
20938
20939 This is not simply a hash table lookup, because of conditional
20940 variants. Most instructions have conditional variants, which are
20941 expressed with a _conditional affix_ to the mnemonic. If we were
20942 to encode each conditional variant as a literal string in the opcode
20943 table, it would have approximately 20,000 entries.
20944
20945 Most mnemonics take this affix as a suffix, and in unified syntax,
20946 'most' is upgraded to 'all'. However, in the divided syntax, some
20947 instructions take the affix as an infix, notably the s-variants of
20948 the arithmetic instructions. Of those instructions, all but six
20949 have the infix appear after the third character of the mnemonic.
20950
20951 Accordingly, the algorithm for looking up primary opcodes given
20952 an identifier is:
20953
20954 1. Look up the identifier in the opcode table.
20955 If we find a match, go to step U.
20956
20957 2. Look up the last two characters of the identifier in the
20958 conditions table. If we find a match, look up the first N-2
20959 characters of the identifier in the opcode table. If we
20960 find a match, go to step CE.
20961
20962 3. Look up the fourth and fifth characters of the identifier in
20963 the conditions table. If we find a match, extract those
20964 characters from the identifier, and look up the remaining
20965 characters in the opcode table. If we find a match, go
20966 to step CM.
20967
20968 4. Fail.
20969
20970 U. Examine the tag field of the opcode structure, in case this is
20971 one of the six instructions with its conditional infix in an
20972 unusual place. If it is, the tag tells us where to find the
20973 infix; look it up in the conditions table and set inst.cond
20974 accordingly. Otherwise, this is an unconditional instruction.
20975 Again set inst.cond accordingly. Return the opcode structure.
20976
20977 CE. Examine the tag field to make sure this is an instruction that
20978 should receive a conditional suffix. If it is not, fail.
20979 Otherwise, set inst.cond from the suffix we already looked up,
20980 and return the opcode structure.
20981
20982 CM. Examine the tag field to make sure this is an instruction that
20983 should receive a conditional infix after the third character.
20984 If it is not, fail. Otherwise, undo the edits to the current
20985 line of input and proceed as for case CE. */
20986
20987 static const struct asm_opcode *
20988 opcode_lookup (char **str)
20989 {
20990 char *end, *base;
20991 char *affix;
20992 const struct asm_opcode *opcode;
20993 const struct asm_cond *cond;
20994 char save[2];
20995
20996 /* Scan up to the end of the mnemonic, which must end in white space,
20997 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20998 for (base = end = *str; *end != '\0'; end++)
20999 if (*end == ' ' || *end == '.')
21000 break;
21001
21002 if (end == base)
21003 return NULL;
21004
21005 /* Handle a possible width suffix and/or Neon type suffix. */
21006 if (end[0] == '.')
21007 {
21008 int offset = 2;
21009
21010 /* The .w and .n suffixes are only valid if the unified syntax is in
21011 use. */
21012 if (unified_syntax && end[1] == 'w')
21013 inst.size_req = 4;
21014 else if (unified_syntax && end[1] == 'n')
21015 inst.size_req = 2;
21016 else
21017 offset = 0;
21018
21019 inst.vectype.elems = 0;
21020
21021 *str = end + offset;
21022
21023 if (end[offset] == '.')
21024 {
21025 /* See if we have a Neon type suffix (possible in either unified or
21026 non-unified ARM syntax mode). */
21027 if (parse_neon_type (&inst.vectype, str) == FAIL)
21028 return NULL;
21029 }
21030 else if (end[offset] != '\0' && end[offset] != ' ')
21031 return NULL;
21032 }
21033 else
21034 *str = end;
21035
21036 /* Look for unaffixed or special-case affixed mnemonic. */
21037 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21038 end - base);
21039 if (opcode)
21040 {
21041 /* step U */
21042 if (opcode->tag < OT_odd_infix_0)
21043 {
21044 inst.cond = COND_ALWAYS;
21045 return opcode;
21046 }
21047
21048 if (warn_on_deprecated && unified_syntax)
21049 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21050 affix = base + (opcode->tag - OT_odd_infix_0);
21051 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21052 gas_assert (cond);
21053
21054 inst.cond = cond->value;
21055 return opcode;
21056 }
21057 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21058 {
21059 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21060 */
21061 if (end - base < 2)
21062 return NULL;
21063 affix = end - 1;
21064 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21065 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21066 affix - base);
21067 /* If this opcode can not be vector predicated then don't accept it with a
21068 vector predication code. */
21069 if (opcode && !opcode->mayBeVecPred)
21070 opcode = NULL;
21071 }
21072 if (!opcode || !cond)
21073 {
21074 /* Cannot have a conditional suffix on a mnemonic of less than two
21075 characters. */
21076 if (end - base < 3)
21077 return NULL;
21078
21079 /* Look for suffixed mnemonic. */
21080 affix = end - 2;
21081 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21082 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21083 affix - base);
21084 }
21085
21086 if (opcode && cond)
21087 {
21088 /* step CE */
21089 switch (opcode->tag)
21090 {
21091 case OT_cinfix3_legacy:
21092 /* Ignore conditional suffixes matched on infix only mnemonics. */
21093 break;
21094
21095 case OT_cinfix3:
21096 case OT_cinfix3_deprecated:
21097 case OT_odd_infix_unc:
21098 if (!unified_syntax)
21099 return NULL;
21100 /* Fall through. */
21101
21102 case OT_csuffix:
21103 case OT_csuffixF:
21104 case OT_csuf_or_in3:
21105 inst.cond = cond->value;
21106 return opcode;
21107
21108 case OT_unconditional:
21109 case OT_unconditionalF:
21110 if (thumb_mode)
21111 inst.cond = cond->value;
21112 else
21113 {
21114 /* Delayed diagnostic. */
21115 inst.error = BAD_COND;
21116 inst.cond = COND_ALWAYS;
21117 }
21118 return opcode;
21119
21120 default:
21121 return NULL;
21122 }
21123 }
21124
21125 /* Cannot have a usual-position infix on a mnemonic of less than
21126 six characters (five would be a suffix). */
21127 if (end - base < 6)
21128 return NULL;
21129
21130 /* Look for infixed mnemonic in the usual position. */
21131 affix = base + 3;
21132 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21133 if (!cond)
21134 return NULL;
21135
21136 memcpy (save, affix, 2);
21137 memmove (affix, affix + 2, (end - affix) - 2);
21138 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21139 (end - base) - 2);
21140 memmove (affix + 2, affix, (end - affix) - 2);
21141 memcpy (affix, save, 2);
21142
21143 if (opcode
21144 && (opcode->tag == OT_cinfix3
21145 || opcode->tag == OT_cinfix3_deprecated
21146 || opcode->tag == OT_csuf_or_in3
21147 || opcode->tag == OT_cinfix3_legacy))
21148 {
21149 /* Step CM. */
21150 if (warn_on_deprecated && unified_syntax
21151 && (opcode->tag == OT_cinfix3
21152 || opcode->tag == OT_cinfix3_deprecated))
21153 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21154
21155 inst.cond = cond->value;
21156 return opcode;
21157 }
21158
21159 return NULL;
21160 }
21161
21162 /* This function generates an initial IT instruction, leaving its block
21163 virtually open for the new instructions. Eventually,
21164 the mask will be updated by now_pred_add_mask () each time
21165 a new instruction needs to be included in the IT block.
21166 Finally, the block is closed with close_automatic_it_block ().
21167 The block closure can be requested either from md_assemble (),
21168 a tencode (), or due to a label hook. */
21169
21170 static void
21171 new_automatic_it_block (int cond)
21172 {
21173 now_pred.state = AUTOMATIC_PRED_BLOCK;
21174 now_pred.mask = 0x18;
21175 now_pred.cc = cond;
21176 now_pred.block_length = 1;
21177 mapping_state (MAP_THUMB);
21178 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21179 now_pred.warn_deprecated = FALSE;
21180 now_pred.insn_cond = TRUE;
21181 }
21182
21183 /* Close an automatic IT block.
21184 See comments in new_automatic_it_block (). */
21185
21186 static void
21187 close_automatic_it_block (void)
21188 {
21189 now_pred.mask = 0x10;
21190 now_pred.block_length = 0;
21191 }
21192
21193 /* Update the mask of the current automatically-generated IT
21194 instruction. See comments in new_automatic_it_block (). */
21195
21196 static void
21197 now_pred_add_mask (int cond)
21198 {
21199 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21200 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21201 | ((bitvalue) << (nbit)))
21202 const int resulting_bit = (cond & 1);
21203
21204 now_pred.mask &= 0xf;
21205 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21206 resulting_bit,
21207 (5 - now_pred.block_length));
21208 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21209 1,
21210 ((5 - now_pred.block_length) - 1));
21211 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21212
21213 #undef CLEAR_BIT
21214 #undef SET_BIT_VALUE
21215 }
21216
21217 /* The IT blocks handling machinery is accessed through the these functions:
21218 it_fsm_pre_encode () from md_assemble ()
21219 set_pred_insn_type () optional, from the tencode functions
21220 set_pred_insn_type_last () ditto
21221 in_pred_block () ditto
21222 it_fsm_post_encode () from md_assemble ()
21223 force_automatic_it_block_close () from label handling functions
21224
21225 Rationale:
21226 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21227 initializing the IT insn type with a generic initial value depending
21228 on the inst.condition.
21229 2) During the tencode function, two things may happen:
21230 a) The tencode function overrides the IT insn type by
21231 calling either set_pred_insn_type (type) or
21232 set_pred_insn_type_last ().
21233 b) The tencode function queries the IT block state by
21234 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21235
21236 Both set_pred_insn_type and in_pred_block run the internal FSM state
21237 handling function (handle_pred_state), because: a) setting the IT insn
21238 type may incur in an invalid state (exiting the function),
21239 and b) querying the state requires the FSM to be updated.
21240 Specifically we want to avoid creating an IT block for conditional
21241 branches, so it_fsm_pre_encode is actually a guess and we can't
21242 determine whether an IT block is required until the tencode () routine
21243 has decided what type of instruction this actually it.
21244 Because of this, if set_pred_insn_type and in_pred_block have to be
21245 used, set_pred_insn_type has to be called first.
21246
21247 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21248 that determines the insn IT type depending on the inst.cond code.
21249 When a tencode () routine encodes an instruction that can be
21250 either outside an IT block, or, in the case of being inside, has to be
21251 the last one, set_pred_insn_type_last () will determine the proper
21252 IT instruction type based on the inst.cond code. Otherwise,
21253 set_pred_insn_type can be called for overriding that logic or
21254 for covering other cases.
21255
21256 Calling handle_pred_state () may not transition the IT block state to
21257 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21258 still queried. Instead, if the FSM determines that the state should
21259 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21260 after the tencode () function: that's what it_fsm_post_encode () does.
21261
21262 Since in_pred_block () calls the state handling function to get an
21263 updated state, an error may occur (due to invalid insns combination).
21264 In that case, inst.error is set.
21265 Therefore, inst.error has to be checked after the execution of
21266 the tencode () routine.
21267
21268 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21269 any pending state change (if any) that didn't take place in
21270 handle_pred_state () as explained above. */
21271
21272 static void
21273 it_fsm_pre_encode (void)
21274 {
21275 if (inst.cond != COND_ALWAYS)
21276 inst.pred_insn_type = INSIDE_IT_INSN;
21277 else
21278 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21279
21280 now_pred.state_handled = 0;
21281 }
21282
21283 /* IT state FSM handling function. */
21284 /* MVE instructions and non-MVE instructions are handled differently because of
21285 the introduction of VPT blocks.
21286 Specifications say that any non-MVE instruction inside a VPT block is
21287 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21288 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21289 few exceptions we have MVE_UNPREDICABLE_INSN.
21290 The error messages provided depending on the different combinations possible
21291 are described in the cases below:
21292 For 'most' MVE instructions:
21293 1) In an IT block, with an IT code: syntax error
21294 2) In an IT block, with a VPT code: error: must be in a VPT block
21295 3) In an IT block, with no code: warning: UNPREDICTABLE
21296 4) In a VPT block, with an IT code: syntax error
21297 5) In a VPT block, with a VPT code: OK!
21298 6) In a VPT block, with no code: error: missing code
21299 7) Outside a pred block, with an IT code: error: syntax error
21300 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21301 9) Outside a pred block, with no code: OK!
21302 For non-MVE instructions:
21303 10) In an IT block, with an IT code: OK!
21304 11) In an IT block, with a VPT code: syntax error
21305 12) In an IT block, with no code: error: missing code
21306 13) In a VPT block, with an IT code: error: should be in an IT block
21307 14) In a VPT block, with a VPT code: syntax error
21308 15) In a VPT block, with no code: UNPREDICTABLE
21309 16) Outside a pred block, with an IT code: error: should be in an IT block
21310 17) Outside a pred block, with a VPT code: syntax error
21311 18) Outside a pred block, with no code: OK!
21312 */
21313
21314
21315 static int
21316 handle_pred_state (void)
21317 {
21318 now_pred.state_handled = 1;
21319 now_pred.insn_cond = FALSE;
21320
21321 switch (now_pred.state)
21322 {
21323 case OUTSIDE_PRED_BLOCK:
21324 switch (inst.pred_insn_type)
21325 {
21326 case MVE_UNPREDICABLE_INSN:
21327 case MVE_OUTSIDE_PRED_INSN:
21328 if (inst.cond < COND_ALWAYS)
21329 {
21330 /* Case 7: Outside a pred block, with an IT code: error: syntax
21331 error. */
21332 inst.error = BAD_SYNTAX;
21333 return FAIL;
21334 }
21335 /* Case 9: Outside a pred block, with no code: OK! */
21336 break;
21337 case OUTSIDE_PRED_INSN:
21338 if (inst.cond > COND_ALWAYS)
21339 {
21340 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21341 */
21342 inst.error = BAD_SYNTAX;
21343 return FAIL;
21344 }
21345 /* Case 18: Outside a pred block, with no code: OK! */
21346 break;
21347
21348 case INSIDE_VPT_INSN:
21349 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21350 a VPT block. */
21351 inst.error = BAD_OUT_VPT;
21352 return FAIL;
21353
21354 case INSIDE_IT_INSN:
21355 case INSIDE_IT_LAST_INSN:
21356 if (inst.cond < COND_ALWAYS)
21357 {
21358 /* Case 16: Outside a pred block, with an IT code: error: should
21359 be in an IT block. */
21360 if (thumb_mode == 0)
21361 {
21362 if (unified_syntax
21363 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21364 as_tsktsk (_("Warning: conditional outside an IT block"\
21365 " for Thumb."));
21366 }
21367 else
21368 {
21369 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21370 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21371 {
21372 /* Automatically generate the IT instruction. */
21373 new_automatic_it_block (inst.cond);
21374 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21375 close_automatic_it_block ();
21376 }
21377 else
21378 {
21379 inst.error = BAD_OUT_IT;
21380 return FAIL;
21381 }
21382 }
21383 break;
21384 }
21385 else if (inst.cond > COND_ALWAYS)
21386 {
21387 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21388 */
21389 inst.error = BAD_SYNTAX;
21390 return FAIL;
21391 }
21392 else
21393 gas_assert (0);
21394 case IF_INSIDE_IT_LAST_INSN:
21395 case NEUTRAL_IT_INSN:
21396 break;
21397
21398 case VPT_INSN:
21399 if (inst.cond != COND_ALWAYS)
21400 first_error (BAD_SYNTAX);
21401 now_pred.state = MANUAL_PRED_BLOCK;
21402 now_pred.block_length = 0;
21403 now_pred.type = VECTOR_PRED;
21404 now_pred.cc = 0;
21405 break;
21406 case IT_INSN:
21407 now_pred.state = MANUAL_PRED_BLOCK;
21408 now_pred.block_length = 0;
21409 now_pred.type = SCALAR_PRED;
21410 break;
21411 }
21412 break;
21413
21414 case AUTOMATIC_PRED_BLOCK:
21415 /* Three things may happen now:
21416 a) We should increment current it block size;
21417 b) We should close current it block (closing insn or 4 insns);
21418 c) We should close current it block and start a new one (due
21419 to incompatible conditions or
21420 4 insns-length block reached). */
21421
21422 switch (inst.pred_insn_type)
21423 {
21424 case INSIDE_VPT_INSN:
21425 case VPT_INSN:
21426 case MVE_UNPREDICABLE_INSN:
21427 case MVE_OUTSIDE_PRED_INSN:
21428 gas_assert (0);
21429 case OUTSIDE_PRED_INSN:
21430 /* The closure of the block shall happen immediately,
21431 so any in_pred_block () call reports the block as closed. */
21432 force_automatic_it_block_close ();
21433 break;
21434
21435 case INSIDE_IT_INSN:
21436 case INSIDE_IT_LAST_INSN:
21437 case IF_INSIDE_IT_LAST_INSN:
21438 now_pred.block_length++;
21439
21440 if (now_pred.block_length > 4
21441 || !now_pred_compatible (inst.cond))
21442 {
21443 force_automatic_it_block_close ();
21444 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21445 new_automatic_it_block (inst.cond);
21446 }
21447 else
21448 {
21449 now_pred.insn_cond = TRUE;
21450 now_pred_add_mask (inst.cond);
21451 }
21452
21453 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21454 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21455 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21456 close_automatic_it_block ();
21457 break;
21458
21459 case NEUTRAL_IT_INSN:
21460 now_pred.block_length++;
21461 now_pred.insn_cond = TRUE;
21462
21463 if (now_pred.block_length > 4)
21464 force_automatic_it_block_close ();
21465 else
21466 now_pred_add_mask (now_pred.cc & 1);
21467 break;
21468
21469 case IT_INSN:
21470 close_automatic_it_block ();
21471 now_pred.state = MANUAL_PRED_BLOCK;
21472 break;
21473 }
21474 break;
21475
21476 case MANUAL_PRED_BLOCK:
21477 {
21478 int cond, is_last;
21479 if (now_pred.type == SCALAR_PRED)
21480 {
21481 /* Check conditional suffixes. */
21482 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21483 now_pred.mask <<= 1;
21484 now_pred.mask &= 0x1f;
21485 is_last = (now_pred.mask == 0x10);
21486 }
21487 else
21488 {
21489 now_pred.cc ^= (now_pred.mask >> 4);
21490 cond = now_pred.cc + 0xf;
21491 now_pred.mask <<= 1;
21492 now_pred.mask &= 0x1f;
21493 is_last = now_pred.mask == 0x10;
21494 }
21495 now_pred.insn_cond = TRUE;
21496
21497 switch (inst.pred_insn_type)
21498 {
21499 case OUTSIDE_PRED_INSN:
21500 if (now_pred.type == SCALAR_PRED)
21501 {
21502 if (inst.cond == COND_ALWAYS)
21503 {
21504 /* Case 12: In an IT block, with no code: error: missing
21505 code. */
21506 inst.error = BAD_NOT_IT;
21507 return FAIL;
21508 }
21509 else if (inst.cond > COND_ALWAYS)
21510 {
21511 /* Case 11: In an IT block, with a VPT code: syntax error.
21512 */
21513 inst.error = BAD_SYNTAX;
21514 return FAIL;
21515 }
21516 else if (thumb_mode)
21517 {
21518 /* This is for some special cases where a non-MVE
21519 instruction is not allowed in an IT block, such as cbz,
21520 but are put into one with a condition code.
21521 You could argue this should be a syntax error, but we
21522 gave the 'not allowed in IT block' diagnostic in the
21523 past so we will keep doing so. */
21524 inst.error = BAD_NOT_IT;
21525 return FAIL;
21526 }
21527 break;
21528 }
21529 else
21530 {
21531 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21532 as_tsktsk (MVE_NOT_VPT);
21533 return SUCCESS;
21534 }
21535 case MVE_OUTSIDE_PRED_INSN:
21536 if (now_pred.type == SCALAR_PRED)
21537 {
21538 if (inst.cond == COND_ALWAYS)
21539 {
21540 /* Case 3: In an IT block, with no code: warning:
21541 UNPREDICTABLE. */
21542 as_tsktsk (MVE_NOT_IT);
21543 return SUCCESS;
21544 }
21545 else if (inst.cond < COND_ALWAYS)
21546 {
21547 /* Case 1: In an IT block, with an IT code: syntax error.
21548 */
21549 inst.error = BAD_SYNTAX;
21550 return FAIL;
21551 }
21552 else
21553 gas_assert (0);
21554 }
21555 else
21556 {
21557 if (inst.cond < COND_ALWAYS)
21558 {
21559 /* Case 4: In a VPT block, with an IT code: syntax error.
21560 */
21561 inst.error = BAD_SYNTAX;
21562 return FAIL;
21563 }
21564 else if (inst.cond == COND_ALWAYS)
21565 {
21566 /* Case 6: In a VPT block, with no code: error: missing
21567 code. */
21568 inst.error = BAD_NOT_VPT;
21569 return FAIL;
21570 }
21571 else
21572 {
21573 gas_assert (0);
21574 }
21575 }
21576 case MVE_UNPREDICABLE_INSN:
21577 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21578 return SUCCESS;
21579 case INSIDE_IT_INSN:
21580 if (inst.cond > COND_ALWAYS)
21581 {
21582 /* Case 11: In an IT block, with a VPT code: syntax error. */
21583 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21584 inst.error = BAD_SYNTAX;
21585 return FAIL;
21586 }
21587 else if (now_pred.type == SCALAR_PRED)
21588 {
21589 /* Case 10: In an IT block, with an IT code: OK! */
21590 if (cond != inst.cond)
21591 {
21592 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21593 BAD_VPT_COND;
21594 return FAIL;
21595 }
21596 }
21597 else
21598 {
21599 /* Case 13: In a VPT block, with an IT code: error: should be
21600 in an IT block. */
21601 inst.error = BAD_OUT_IT;
21602 return FAIL;
21603 }
21604 break;
21605
21606 case INSIDE_VPT_INSN:
21607 if (now_pred.type == SCALAR_PRED)
21608 {
21609 /* Case 2: In an IT block, with a VPT code: error: must be in a
21610 VPT block. */
21611 inst.error = BAD_OUT_VPT;
21612 return FAIL;
21613 }
21614 /* Case 5: In a VPT block, with a VPT code: OK! */
21615 else if (cond != inst.cond)
21616 {
21617 inst.error = BAD_VPT_COND;
21618 return FAIL;
21619 }
21620 break;
21621 case INSIDE_IT_LAST_INSN:
21622 case IF_INSIDE_IT_LAST_INSN:
21623 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21624 {
21625 /* Case 4: In a VPT block, with an IT code: syntax error. */
21626 /* Case 11: In an IT block, with a VPT code: syntax error. */
21627 inst.error = BAD_SYNTAX;
21628 return FAIL;
21629 }
21630 else if (cond != inst.cond)
21631 {
21632 inst.error = BAD_IT_COND;
21633 return FAIL;
21634 }
21635 if (!is_last)
21636 {
21637 inst.error = BAD_BRANCH;
21638 return FAIL;
21639 }
21640 break;
21641
21642 case NEUTRAL_IT_INSN:
21643 /* The BKPT instruction is unconditional even in a IT or VPT
21644 block. */
21645 break;
21646
21647 case IT_INSN:
21648 if (now_pred.type == SCALAR_PRED)
21649 {
21650 inst.error = BAD_IT_IT;
21651 return FAIL;
21652 }
21653 /* fall through. */
21654 case VPT_INSN:
21655 if (inst.cond == COND_ALWAYS)
21656 {
21657 /* Executing a VPT/VPST instruction inside an IT block or a
21658 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21659 */
21660 if (now_pred.type == SCALAR_PRED)
21661 as_tsktsk (MVE_NOT_IT);
21662 else
21663 as_tsktsk (MVE_NOT_VPT);
21664 return SUCCESS;
21665 }
21666 else
21667 {
21668 /* VPT/VPST do not accept condition codes. */
21669 inst.error = BAD_SYNTAX;
21670 return FAIL;
21671 }
21672 }
21673 }
21674 break;
21675 }
21676
21677 return SUCCESS;
21678 }
21679
21680 struct depr_insn_mask
21681 {
21682 unsigned long pattern;
21683 unsigned long mask;
21684 const char* description;
21685 };
21686
21687 /* List of 16-bit instruction patterns deprecated in an IT block in
21688 ARMv8. */
21689 static const struct depr_insn_mask depr_it_insns[] = {
21690 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21691 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21692 { 0xa000, 0xb800, N_("ADR") },
21693 { 0x4800, 0xf800, N_("Literal loads") },
21694 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21695 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21696 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21697 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21698 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21699 { 0, 0, NULL }
21700 };
21701
21702 static void
21703 it_fsm_post_encode (void)
21704 {
21705 int is_last;
21706
21707 if (!now_pred.state_handled)
21708 handle_pred_state ();
21709
21710 if (now_pred.insn_cond
21711 && !now_pred.warn_deprecated
21712 && warn_on_deprecated
21713 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21714 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21715 {
21716 if (inst.instruction >= 0x10000)
21717 {
21718 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21719 "performance deprecated in ARMv8-A and ARMv8-R"));
21720 now_pred.warn_deprecated = TRUE;
21721 }
21722 else
21723 {
21724 const struct depr_insn_mask *p = depr_it_insns;
21725
21726 while (p->mask != 0)
21727 {
21728 if ((inst.instruction & p->mask) == p->pattern)
21729 {
21730 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21731 "instructions of the following class are "
21732 "performance deprecated in ARMv8-A and "
21733 "ARMv8-R: %s"), p->description);
21734 now_pred.warn_deprecated = TRUE;
21735 break;
21736 }
21737
21738 ++p;
21739 }
21740 }
21741
21742 if (now_pred.block_length > 1)
21743 {
21744 as_tsktsk (_("IT blocks containing more than one conditional "
21745 "instruction are performance deprecated in ARMv8-A and "
21746 "ARMv8-R"));
21747 now_pred.warn_deprecated = TRUE;
21748 }
21749 }
21750
21751 is_last = (now_pred.mask == 0x10);
21752 if (is_last)
21753 {
21754 now_pred.state = OUTSIDE_PRED_BLOCK;
21755 now_pred.mask = 0;
21756 }
21757 }
21758
21759 static void
21760 force_automatic_it_block_close (void)
21761 {
21762 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21763 {
21764 close_automatic_it_block ();
21765 now_pred.state = OUTSIDE_PRED_BLOCK;
21766 now_pred.mask = 0;
21767 }
21768 }
21769
21770 static int
21771 in_pred_block (void)
21772 {
21773 if (!now_pred.state_handled)
21774 handle_pred_state ();
21775
21776 return now_pred.state != OUTSIDE_PRED_BLOCK;
21777 }
21778
21779 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21780 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21781 here, hence the "known" in the function name. */
21782
21783 static bfd_boolean
21784 known_t32_only_insn (const struct asm_opcode *opcode)
21785 {
21786 /* Original Thumb-1 wide instruction. */
21787 if (opcode->tencode == do_t_blx
21788 || opcode->tencode == do_t_branch23
21789 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21790 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21791 return TRUE;
21792
21793 /* Wide-only instruction added to ARMv8-M Baseline. */
21794 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21795 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21796 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21797 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21798 return TRUE;
21799
21800 return FALSE;
21801 }
21802
21803 /* Whether wide instruction variant can be used if available for a valid OPCODE
21804 in ARCH. */
21805
21806 static bfd_boolean
21807 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21808 {
21809 if (known_t32_only_insn (opcode))
21810 return TRUE;
21811
21812 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21813 of variant T3 of B.W is checked in do_t_branch. */
21814 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21815 && opcode->tencode == do_t_branch)
21816 return TRUE;
21817
21818 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21819 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21820 && opcode->tencode == do_t_mov_cmp
21821 /* Make sure CMP instruction is not affected. */
21822 && opcode->aencode == do_mov)
21823 return TRUE;
21824
21825 /* Wide instruction variants of all instructions with narrow *and* wide
21826 variants become available with ARMv6t2. Other opcodes are either
21827 narrow-only or wide-only and are thus available if OPCODE is valid. */
21828 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21829 return TRUE;
21830
21831 /* OPCODE with narrow only instruction variant or wide variant not
21832 available. */
21833 return FALSE;
21834 }
21835
21836 void
21837 md_assemble (char *str)
21838 {
21839 char *p = str;
21840 const struct asm_opcode * opcode;
21841
21842 /* Align the previous label if needed. */
21843 if (last_label_seen != NULL)
21844 {
21845 symbol_set_frag (last_label_seen, frag_now);
21846 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21847 S_SET_SEGMENT (last_label_seen, now_seg);
21848 }
21849
21850 memset (&inst, '\0', sizeof (inst));
21851 int r;
21852 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21853 inst.relocs[r].type = BFD_RELOC_UNUSED;
21854
21855 opcode = opcode_lookup (&p);
21856 if (!opcode)
21857 {
21858 /* It wasn't an instruction, but it might be a register alias of
21859 the form alias .req reg, or a Neon .dn/.qn directive. */
21860 if (! create_register_alias (str, p)
21861 && ! create_neon_reg_alias (str, p))
21862 as_bad (_("bad instruction `%s'"), str);
21863
21864 return;
21865 }
21866
21867 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21868 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21869
21870 /* The value which unconditional instructions should have in place of the
21871 condition field. */
21872 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21873
21874 if (thumb_mode)
21875 {
21876 arm_feature_set variant;
21877
21878 variant = cpu_variant;
21879 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21880 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21881 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21882 /* Check that this instruction is supported for this CPU. */
21883 if (!opcode->tvariant
21884 || (thumb_mode == 1
21885 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21886 {
21887 if (opcode->tencode == do_t_swi)
21888 as_bad (_("SVC is not permitted on this architecture"));
21889 else
21890 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21891 return;
21892 }
21893 if (inst.cond != COND_ALWAYS && !unified_syntax
21894 && opcode->tencode != do_t_branch)
21895 {
21896 as_bad (_("Thumb does not support conditional execution"));
21897 return;
21898 }
21899
21900 /* Two things are addressed here:
21901 1) Implicit require narrow instructions on Thumb-1.
21902 This avoids relaxation accidentally introducing Thumb-2
21903 instructions.
21904 2) Reject wide instructions in non Thumb-2 cores.
21905
21906 Only instructions with narrow and wide variants need to be handled
21907 but selecting all non wide-only instructions is easier. */
21908 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21909 && !t32_insn_ok (variant, opcode))
21910 {
21911 if (inst.size_req == 0)
21912 inst.size_req = 2;
21913 else if (inst.size_req == 4)
21914 {
21915 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21916 as_bad (_("selected processor does not support 32bit wide "
21917 "variant of instruction `%s'"), str);
21918 else
21919 as_bad (_("selected processor does not support `%s' in "
21920 "Thumb-2 mode"), str);
21921 return;
21922 }
21923 }
21924
21925 inst.instruction = opcode->tvalue;
21926
21927 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21928 {
21929 /* Prepare the pred_insn_type for those encodings that don't set
21930 it. */
21931 it_fsm_pre_encode ();
21932
21933 opcode->tencode ();
21934
21935 it_fsm_post_encode ();
21936 }
21937
21938 if (!(inst.error || inst.relax))
21939 {
21940 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21941 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21942 if (inst.size_req && inst.size_req != inst.size)
21943 {
21944 as_bad (_("cannot honor width suffix -- `%s'"), str);
21945 return;
21946 }
21947 }
21948
21949 /* Something has gone badly wrong if we try to relax a fixed size
21950 instruction. */
21951 gas_assert (inst.size_req == 0 || !inst.relax);
21952
21953 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21954 *opcode->tvariant);
21955 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21956 set those bits when Thumb-2 32-bit instructions are seen. The impact
21957 of relaxable instructions will be considered later after we finish all
21958 relaxation. */
21959 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21960 variant = arm_arch_none;
21961 else
21962 variant = cpu_variant;
21963 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21964 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21965 arm_ext_v6t2);
21966
21967 check_neon_suffixes;
21968
21969 if (!inst.error)
21970 {
21971 mapping_state (MAP_THUMB);
21972 }
21973 }
21974 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21975 {
21976 bfd_boolean is_bx;
21977
21978 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21979 is_bx = (opcode->aencode == do_bx);
21980
21981 /* Check that this instruction is supported for this CPU. */
21982 if (!(is_bx && fix_v4bx)
21983 && !(opcode->avariant &&
21984 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21985 {
21986 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21987 return;
21988 }
21989 if (inst.size_req)
21990 {
21991 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21992 return;
21993 }
21994
21995 inst.instruction = opcode->avalue;
21996 if (opcode->tag == OT_unconditionalF)
21997 inst.instruction |= 0xFU << 28;
21998 else
21999 inst.instruction |= inst.cond << 28;
22000 inst.size = INSN_SIZE;
22001 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22002 {
22003 it_fsm_pre_encode ();
22004 opcode->aencode ();
22005 it_fsm_post_encode ();
22006 }
22007 /* Arm mode bx is marked as both v4T and v5 because it's still required
22008 on a hypothetical non-thumb v5 core. */
22009 if (is_bx)
22010 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22011 else
22012 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22013 *opcode->avariant);
22014
22015 check_neon_suffixes;
22016
22017 if (!inst.error)
22018 {
22019 mapping_state (MAP_ARM);
22020 }
22021 }
22022 else
22023 {
22024 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22025 "-- `%s'"), str);
22026 return;
22027 }
22028 output_inst (str);
22029 }
22030
22031 static void
22032 check_pred_blocks_finished (void)
22033 {
22034 #ifdef OBJ_ELF
22035 asection *sect;
22036
22037 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22038 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22039 == MANUAL_PRED_BLOCK)
22040 {
22041 if (now_pred.type == SCALAR_PRED)
22042 as_warn (_("section '%s' finished with an open IT block."),
22043 sect->name);
22044 else
22045 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22046 sect->name);
22047 }
22048 #else
22049 if (now_pred.state == MANUAL_PRED_BLOCK)
22050 {
22051 if (now_pred.type == SCALAR_PRED)
22052 as_warn (_("file finished with an open IT block."));
22053 else
22054 as_warn (_("file finished with an open VPT/VPST block."));
22055 }
22056 #endif
22057 }
22058
22059 /* Various frobbings of labels and their addresses. */
22060
22061 void
22062 arm_start_line_hook (void)
22063 {
22064 last_label_seen = NULL;
22065 }
22066
22067 void
22068 arm_frob_label (symbolS * sym)
22069 {
22070 last_label_seen = sym;
22071
22072 ARM_SET_THUMB (sym, thumb_mode);
22073
22074 #if defined OBJ_COFF || defined OBJ_ELF
22075 ARM_SET_INTERWORK (sym, support_interwork);
22076 #endif
22077
22078 force_automatic_it_block_close ();
22079
22080 /* Note - do not allow local symbols (.Lxxx) to be labelled
22081 as Thumb functions. This is because these labels, whilst
22082 they exist inside Thumb code, are not the entry points for
22083 possible ARM->Thumb calls. Also, these labels can be used
22084 as part of a computed goto or switch statement. eg gcc
22085 can generate code that looks like this:
22086
22087 ldr r2, [pc, .Laaa]
22088 lsl r3, r3, #2
22089 ldr r2, [r3, r2]
22090 mov pc, r2
22091
22092 .Lbbb: .word .Lxxx
22093 .Lccc: .word .Lyyy
22094 ..etc...
22095 .Laaa: .word Lbbb
22096
22097 The first instruction loads the address of the jump table.
22098 The second instruction converts a table index into a byte offset.
22099 The third instruction gets the jump address out of the table.
22100 The fourth instruction performs the jump.
22101
22102 If the address stored at .Laaa is that of a symbol which has the
22103 Thumb_Func bit set, then the linker will arrange for this address
22104 to have the bottom bit set, which in turn would mean that the
22105 address computation performed by the third instruction would end
22106 up with the bottom bit set. Since the ARM is capable of unaligned
22107 word loads, the instruction would then load the incorrect address
22108 out of the jump table, and chaos would ensue. */
22109 if (label_is_thumb_function_name
22110 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22111 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22112 {
22113 /* When the address of a Thumb function is taken the bottom
22114 bit of that address should be set. This will allow
22115 interworking between Arm and Thumb functions to work
22116 correctly. */
22117
22118 THUMB_SET_FUNC (sym, 1);
22119
22120 label_is_thumb_function_name = FALSE;
22121 }
22122
22123 dwarf2_emit_label (sym);
22124 }
22125
22126 bfd_boolean
22127 arm_data_in_code (void)
22128 {
22129 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22130 {
22131 *input_line_pointer = '/';
22132 input_line_pointer += 5;
22133 *input_line_pointer = 0;
22134 return TRUE;
22135 }
22136
22137 return FALSE;
22138 }
22139
22140 char *
22141 arm_canonicalize_symbol_name (char * name)
22142 {
22143 int len;
22144
22145 if (thumb_mode && (len = strlen (name)) > 5
22146 && streq (name + len - 5, "/data"))
22147 *(name + len - 5) = 0;
22148
22149 return name;
22150 }
22151 \f
22152 /* Table of all register names defined by default. The user can
22153 define additional names with .req. Note that all register names
22154 should appear in both upper and lowercase variants. Some registers
22155 also have mixed-case names. */
22156
22157 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22158 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22159 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22160 #define REGSET(p,t) \
22161 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22162 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22163 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22164 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22165 #define REGSETH(p,t) \
22166 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22167 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22168 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22169 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22170 #define REGSET2(p,t) \
22171 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22172 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22173 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22174 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22175 #define SPLRBANK(base,bank,t) \
22176 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22177 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22178 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22179 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22180 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22181 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22182
22183 static const struct reg_entry reg_names[] =
22184 {
22185 /* ARM integer registers. */
22186 REGSET(r, RN), REGSET(R, RN),
22187
22188 /* ATPCS synonyms. */
22189 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22190 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22191 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22192
22193 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22194 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22195 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22196
22197 /* Well-known aliases. */
22198 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22199 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22200
22201 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22202 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22203
22204 /* Defining the new Zero register from ARMv8.1-M. */
22205 REGDEF(zr,15,ZR),
22206 REGDEF(ZR,15,ZR),
22207
22208 /* Coprocessor numbers. */
22209 REGSET(p, CP), REGSET(P, CP),
22210
22211 /* Coprocessor register numbers. The "cr" variants are for backward
22212 compatibility. */
22213 REGSET(c, CN), REGSET(C, CN),
22214 REGSET(cr, CN), REGSET(CR, CN),
22215
22216 /* ARM banked registers. */
22217 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22218 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22219 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22220 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22221 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22222 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22223 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22224
22225 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22226 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22227 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22228 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22229 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22230 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22231 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22232 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22233
22234 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22235 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22236 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22237 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22238 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22239 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22240 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22241 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22242 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22243
22244 /* FPA registers. */
22245 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22246 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22247
22248 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22249 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22250
22251 /* VFP SP registers. */
22252 REGSET(s,VFS), REGSET(S,VFS),
22253 REGSETH(s,VFS), REGSETH(S,VFS),
22254
22255 /* VFP DP Registers. */
22256 REGSET(d,VFD), REGSET(D,VFD),
22257 /* Extra Neon DP registers. */
22258 REGSETH(d,VFD), REGSETH(D,VFD),
22259
22260 /* Neon QP registers. */
22261 REGSET2(q,NQ), REGSET2(Q,NQ),
22262
22263 /* VFP control registers. */
22264 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22265 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22266 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22267 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22268 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22269 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22270 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22271
22272 /* Maverick DSP coprocessor registers. */
22273 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22274 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22275
22276 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22277 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22278 REGDEF(dspsc,0,DSPSC),
22279
22280 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22281 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22282 REGDEF(DSPSC,0,DSPSC),
22283
22284 /* iWMMXt data registers - p0, c0-15. */
22285 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22286
22287 /* iWMMXt control registers - p1, c0-3. */
22288 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22289 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22290 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22291 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22292
22293 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22294 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22295 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22296 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22297 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22298
22299 /* XScale accumulator registers. */
22300 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22301 };
22302 #undef REGDEF
22303 #undef REGNUM
22304 #undef REGSET
22305
22306 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22307 within psr_required_here. */
22308 static const struct asm_psr psrs[] =
22309 {
22310 /* Backward compatibility notation. Note that "all" is no longer
22311 truly all possible PSR bits. */
22312 {"all", PSR_c | PSR_f},
22313 {"flg", PSR_f},
22314 {"ctl", PSR_c},
22315
22316 /* Individual flags. */
22317 {"f", PSR_f},
22318 {"c", PSR_c},
22319 {"x", PSR_x},
22320 {"s", PSR_s},
22321
22322 /* Combinations of flags. */
22323 {"fs", PSR_f | PSR_s},
22324 {"fx", PSR_f | PSR_x},
22325 {"fc", PSR_f | PSR_c},
22326 {"sf", PSR_s | PSR_f},
22327 {"sx", PSR_s | PSR_x},
22328 {"sc", PSR_s | PSR_c},
22329 {"xf", PSR_x | PSR_f},
22330 {"xs", PSR_x | PSR_s},
22331 {"xc", PSR_x | PSR_c},
22332 {"cf", PSR_c | PSR_f},
22333 {"cs", PSR_c | PSR_s},
22334 {"cx", PSR_c | PSR_x},
22335 {"fsx", PSR_f | PSR_s | PSR_x},
22336 {"fsc", PSR_f | PSR_s | PSR_c},
22337 {"fxs", PSR_f | PSR_x | PSR_s},
22338 {"fxc", PSR_f | PSR_x | PSR_c},
22339 {"fcs", PSR_f | PSR_c | PSR_s},
22340 {"fcx", PSR_f | PSR_c | PSR_x},
22341 {"sfx", PSR_s | PSR_f | PSR_x},
22342 {"sfc", PSR_s | PSR_f | PSR_c},
22343 {"sxf", PSR_s | PSR_x | PSR_f},
22344 {"sxc", PSR_s | PSR_x | PSR_c},
22345 {"scf", PSR_s | PSR_c | PSR_f},
22346 {"scx", PSR_s | PSR_c | PSR_x},
22347 {"xfs", PSR_x | PSR_f | PSR_s},
22348 {"xfc", PSR_x | PSR_f | PSR_c},
22349 {"xsf", PSR_x | PSR_s | PSR_f},
22350 {"xsc", PSR_x | PSR_s | PSR_c},
22351 {"xcf", PSR_x | PSR_c | PSR_f},
22352 {"xcs", PSR_x | PSR_c | PSR_s},
22353 {"cfs", PSR_c | PSR_f | PSR_s},
22354 {"cfx", PSR_c | PSR_f | PSR_x},
22355 {"csf", PSR_c | PSR_s | PSR_f},
22356 {"csx", PSR_c | PSR_s | PSR_x},
22357 {"cxf", PSR_c | PSR_x | PSR_f},
22358 {"cxs", PSR_c | PSR_x | PSR_s},
22359 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22360 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22361 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22362 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22363 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22364 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22365 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22366 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22367 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22368 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22369 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22370 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22371 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22372 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22373 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22374 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22375 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22376 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22377 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22378 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22379 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22380 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22381 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22382 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22383 };
22384
22385 /* Table of V7M psr names. */
22386 static const struct asm_psr v7m_psrs[] =
22387 {
22388 {"apsr", 0x0 }, {"APSR", 0x0 },
22389 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22390 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22391 {"psr", 0x3 }, {"PSR", 0x3 },
22392 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22393 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22394 {"epsr", 0x6 }, {"EPSR", 0x6 },
22395 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22396 {"msp", 0x8 }, {"MSP", 0x8 },
22397 {"psp", 0x9 }, {"PSP", 0x9 },
22398 {"msplim", 0xa }, {"MSPLIM", 0xa },
22399 {"psplim", 0xb }, {"PSPLIM", 0xb },
22400 {"primask", 0x10}, {"PRIMASK", 0x10},
22401 {"basepri", 0x11}, {"BASEPRI", 0x11},
22402 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22403 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22404 {"control", 0x14}, {"CONTROL", 0x14},
22405 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22406 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22407 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22408 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22409 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22410 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22411 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22412 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22413 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22414 };
22415
22416 /* Table of all shift-in-operand names. */
22417 static const struct asm_shift_name shift_names [] =
22418 {
22419 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22420 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22421 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22422 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22423 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22424 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22425 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22426 };
22427
22428 /* Table of all explicit relocation names. */
22429 #ifdef OBJ_ELF
22430 static struct reloc_entry reloc_names[] =
22431 {
22432 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22433 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22434 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22435 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22436 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22437 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22438 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22439 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22440 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22441 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22442 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22443 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22444 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22445 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22446 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22447 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22448 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22449 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22450 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22451 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22452 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22453 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22454 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22455 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22456 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22457 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22458 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22459 };
22460 #endif
22461
22462 /* Table of all conditional affixes. */
22463 static const struct asm_cond conds[] =
22464 {
22465 {"eq", 0x0},
22466 {"ne", 0x1},
22467 {"cs", 0x2}, {"hs", 0x2},
22468 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22469 {"mi", 0x4},
22470 {"pl", 0x5},
22471 {"vs", 0x6},
22472 {"vc", 0x7},
22473 {"hi", 0x8},
22474 {"ls", 0x9},
22475 {"ge", 0xa},
22476 {"lt", 0xb},
22477 {"gt", 0xc},
22478 {"le", 0xd},
22479 {"al", 0xe}
22480 };
22481 static const struct asm_cond vconds[] =
22482 {
22483 {"t", 0xf},
22484 {"e", 0x10}
22485 };
22486
22487 #define UL_BARRIER(L,U,CODE,FEAT) \
22488 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22489 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22490
22491 static struct asm_barrier_opt barrier_opt_names[] =
22492 {
22493 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22494 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22495 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22496 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22497 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22498 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22499 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22500 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22501 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22502 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22503 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22504 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22505 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22506 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22507 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22508 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22509 };
22510
22511 #undef UL_BARRIER
22512
22513 /* Table of ARM-format instructions. */
22514
22515 /* Macros for gluing together operand strings. N.B. In all cases
22516 other than OPS0, the trailing OP_stop comes from default
22517 zero-initialization of the unspecified elements of the array. */
22518 #define OPS0() { OP_stop, }
22519 #define OPS1(a) { OP_##a, }
22520 #define OPS2(a,b) { OP_##a,OP_##b, }
22521 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22522 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22523 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22524 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22525
22526 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22527 This is useful when mixing operands for ARM and THUMB, i.e. using the
22528 MIX_ARM_THUMB_OPERANDS macro.
22529 In order to use these macros, prefix the number of operands with _
22530 e.g. _3. */
22531 #define OPS_1(a) { a, }
22532 #define OPS_2(a,b) { a,b, }
22533 #define OPS_3(a,b,c) { a,b,c, }
22534 #define OPS_4(a,b,c,d) { a,b,c,d, }
22535 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22536 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22537
22538 /* These macros abstract out the exact format of the mnemonic table and
22539 save some repeated characters. */
22540
22541 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22542 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22543 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22544 THUMB_VARIANT, do_##ae, do_##te, 0 }
22545
22546 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22547 a T_MNEM_xyz enumerator. */
22548 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22549 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22550 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22551 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22552
22553 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22554 infix after the third character. */
22555 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22556 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22557 THUMB_VARIANT, do_##ae, do_##te, 0 }
22558 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22559 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22560 THUMB_VARIANT, do_##ae, do_##te, 0 }
22561 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22562 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22563 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22564 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22565 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22566 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22567 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22568 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22569
22570 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22571 field is still 0xE. Many of the Thumb variants can be executed
22572 conditionally, so this is checked separately. */
22573 #define TUE(mnem, op, top, nops, ops, ae, te) \
22574 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22575 THUMB_VARIANT, do_##ae, do_##te, 0 }
22576
22577 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22578 Used by mnemonics that have very minimal differences in the encoding for
22579 ARM and Thumb variants and can be handled in a common function. */
22580 #define TUEc(mnem, op, top, nops, ops, en) \
22581 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22582 THUMB_VARIANT, do_##en, do_##en, 0 }
22583
22584 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22585 condition code field. */
22586 #define TUF(mnem, op, top, nops, ops, ae, te) \
22587 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22588 THUMB_VARIANT, do_##ae, do_##te, 0 }
22589
22590 /* ARM-only variants of all the above. */
22591 #define CE(mnem, op, nops, ops, ae) \
22592 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22593
22594 #define C3(mnem, op, nops, ops, ae) \
22595 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22596
22597 /* Thumb-only variants of TCE and TUE. */
22598 #define ToC(mnem, top, nops, ops, te) \
22599 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22600 do_##te, 0 }
22601
22602 #define ToU(mnem, top, nops, ops, te) \
22603 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22604 NULL, do_##te, 0 }
22605
22606 /* T_MNEM_xyz enumerator variants of ToC. */
22607 #define toC(mnem, top, nops, ops, te) \
22608 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22609 do_##te, 0 }
22610
22611 /* T_MNEM_xyz enumerator variants of ToU. */
22612 #define toU(mnem, top, nops, ops, te) \
22613 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22614 NULL, do_##te, 0 }
22615
22616 /* Legacy mnemonics that always have conditional infix after the third
22617 character. */
22618 #define CL(mnem, op, nops, ops, ae) \
22619 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22620 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22621
22622 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22623 #define cCE(mnem, op, nops, ops, ae) \
22624 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22625
22626 /* mov instructions that are shared between coprocessor and MVE. */
22627 #define mcCE(mnem, op, nops, ops, ae) \
22628 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22629
22630 /* Legacy coprocessor instructions where conditional infix and conditional
22631 suffix are ambiguous. For consistency this includes all FPA instructions,
22632 not just the potentially ambiguous ones. */
22633 #define cCL(mnem, op, nops, ops, ae) \
22634 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22635 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22636
22637 /* Coprocessor, takes either a suffix or a position-3 infix
22638 (for an FPA corner case). */
22639 #define C3E(mnem, op, nops, ops, ae) \
22640 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22641 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22642
22643 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22644 { m1 #m2 m3, OPS##nops ops, \
22645 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22646 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22647
22648 #define CM(m1, m2, op, nops, ops, ae) \
22649 xCM_ (m1, , m2, op, nops, ops, ae), \
22650 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22651 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22652 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22653 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22654 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22655 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22656 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22657 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22658 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22659 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22660 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22661 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22662 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22663 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22664 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22665 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22666 xCM_ (m1, le, m2, op, nops, ops, ae), \
22667 xCM_ (m1, al, m2, op, nops, ops, ae)
22668
22669 #define UE(mnem, op, nops, ops, ae) \
22670 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22671
22672 #define UF(mnem, op, nops, ops, ae) \
22673 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22674
22675 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22676 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22677 use the same encoding function for each. */
22678 #define NUF(mnem, op, nops, ops, enc) \
22679 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22680 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22681
22682 /* Neon data processing, version which indirects through neon_enc_tab for
22683 the various overloaded versions of opcodes. */
22684 #define nUF(mnem, op, nops, ops, enc) \
22685 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22686 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22687
22688 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22689 version. */
22690 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22691 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22692 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22693
22694 #define NCE(mnem, op, nops, ops, enc) \
22695 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22696
22697 #define NCEF(mnem, op, nops, ops, enc) \
22698 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22699
22700 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22701 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22702 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22703 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22704
22705 #define nCE(mnem, op, nops, ops, enc) \
22706 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22707
22708 #define nCEF(mnem, op, nops, ops, enc) \
22709 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22710
22711 /* */
22712 #define mCEF(mnem, op, nops, ops, enc) \
22713 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22714 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22715
22716
22717 /* nCEF but for MVE predicated instructions. */
22718 #define mnCEF(mnem, op, nops, ops, enc) \
22719 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22720
22721 /* nCE but for MVE predicated instructions. */
22722 #define mnCE(mnem, op, nops, ops, enc) \
22723 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22724
22725 /* NUF but for potentially MVE predicated instructions. */
22726 #define MNUF(mnem, op, nops, ops, enc) \
22727 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22728 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22729
22730 /* nUF but for potentially MVE predicated instructions. */
22731 #define mnUF(mnem, op, nops, ops, enc) \
22732 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22733 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22734
22735 /* ToC but for potentially MVE predicated instructions. */
22736 #define mToC(mnem, top, nops, ops, te) \
22737 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22738 do_##te, 1 }
22739
22740 /* NCE but for MVE predicated instructions. */
22741 #define MNCE(mnem, op, nops, ops, enc) \
22742 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22743
22744 /* NCEF but for MVE predicated instructions. */
22745 #define MNCEF(mnem, op, nops, ops, enc) \
22746 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22747 #define do_0 0
22748
22749 static const struct asm_opcode insns[] =
22750 {
22751 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22752 #define THUMB_VARIANT & arm_ext_v4t
22753 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22754 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22755 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22756 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22757 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22758 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22759 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22760 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22761 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22762 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22763 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22764 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22765 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22766 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22767 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22768 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22769
22770 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22771 for setting PSR flag bits. They are obsolete in V6 and do not
22772 have Thumb equivalents. */
22773 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22774 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22775 CL("tstp", 110f000, 2, (RR, SH), cmp),
22776 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22777 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22778 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22779 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22780 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22781 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22782
22783 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22784 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22785 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22786 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22787
22788 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22789 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22790 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22791 OP_RRnpc),
22792 OP_ADDRGLDR),ldst, t_ldst),
22793 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22794
22795 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22796 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22797 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22798 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22799 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22800 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22801
22802 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22803 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22804
22805 /* Pseudo ops. */
22806 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22807 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22808 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22809 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22810
22811 /* Thumb-compatibility pseudo ops. */
22812 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22813 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22814 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22815 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22816 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22817 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22818 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22819 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22820 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22821 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22822 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22823 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22824
22825 /* These may simplify to neg. */
22826 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22827 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22828
22829 #undef THUMB_VARIANT
22830 #define THUMB_VARIANT & arm_ext_os
22831
22832 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22833 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22834
22835 #undef THUMB_VARIANT
22836 #define THUMB_VARIANT & arm_ext_v6
22837
22838 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22839
22840 /* V1 instructions with no Thumb analogue prior to V6T2. */
22841 #undef THUMB_VARIANT
22842 #define THUMB_VARIANT & arm_ext_v6t2
22843
22844 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22845 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22846 CL("teqp", 130f000, 2, (RR, SH), cmp),
22847
22848 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22849 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22850 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22851 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22852
22853 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22854 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22855
22856 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22857 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22858
22859 /* V1 instructions with no Thumb analogue at all. */
22860 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22861 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22862
22863 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22864 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22865 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22866 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22867 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22868 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22869 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22870 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22871
22872 #undef ARM_VARIANT
22873 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22874 #undef THUMB_VARIANT
22875 #define THUMB_VARIANT & arm_ext_v4t
22876
22877 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22878 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22879
22880 #undef THUMB_VARIANT
22881 #define THUMB_VARIANT & arm_ext_v6t2
22882
22883 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22884 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22885
22886 /* Generic coprocessor instructions. */
22887 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22888 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22889 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22890 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22891 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22892 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22893 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22894
22895 #undef ARM_VARIANT
22896 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22897
22898 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22899 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22900
22901 #undef ARM_VARIANT
22902 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22903 #undef THUMB_VARIANT
22904 #define THUMB_VARIANT & arm_ext_msr
22905
22906 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22907 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22908
22909 #undef ARM_VARIANT
22910 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22911 #undef THUMB_VARIANT
22912 #define THUMB_VARIANT & arm_ext_v6t2
22913
22914 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22915 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22916 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22917 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22918 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22919 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22920 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22921 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22922
22923 #undef ARM_VARIANT
22924 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22925 #undef THUMB_VARIANT
22926 #define THUMB_VARIANT & arm_ext_v4t
22927
22928 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22929 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22930 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22931 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22932 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22933 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22934
22935 #undef ARM_VARIANT
22936 #define ARM_VARIANT & arm_ext_v4t_5
22937
22938 /* ARM Architecture 4T. */
22939 /* Note: bx (and blx) are required on V5, even if the processor does
22940 not support Thumb. */
22941 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22942
22943 #undef ARM_VARIANT
22944 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22945 #undef THUMB_VARIANT
22946 #define THUMB_VARIANT & arm_ext_v5t
22947
22948 /* Note: blx has 2 variants; the .value coded here is for
22949 BLX(2). Only this variant has conditional execution. */
22950 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22951 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22952
22953 #undef THUMB_VARIANT
22954 #define THUMB_VARIANT & arm_ext_v6t2
22955
22956 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22957 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22958 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22959 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22960 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22961 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22962 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22963 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22964
22965 #undef ARM_VARIANT
22966 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22967 #undef THUMB_VARIANT
22968 #define THUMB_VARIANT & arm_ext_v5exp
22969
22970 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22971 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22972 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22973 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22974
22975 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22976 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22977
22978 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22979 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22980 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22981 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22982
22983 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22984 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22985 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22986 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22987
22988 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22989 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22990
22991 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22992 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22993 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22994 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22995
22996 #undef ARM_VARIANT
22997 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22998 #undef THUMB_VARIANT
22999 #define THUMB_VARIANT & arm_ext_v6t2
23000
23001 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23002 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23003 ldrd, t_ldstd),
23004 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23005 ADDRGLDRS), ldrd, t_ldstd),
23006
23007 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23008 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23009
23010 #undef ARM_VARIANT
23011 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23012
23013 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23014
23015 #undef ARM_VARIANT
23016 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23017 #undef THUMB_VARIANT
23018 #define THUMB_VARIANT & arm_ext_v6
23019
23020 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23021 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23022 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23023 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23024 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23025 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23026 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23027 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23028 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23029 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23030
23031 #undef THUMB_VARIANT
23032 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23033
23034 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23035 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23036 strex, t_strex),
23037 #undef THUMB_VARIANT
23038 #define THUMB_VARIANT & arm_ext_v6t2
23039
23040 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23041 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23042
23043 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23044 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23045
23046 /* ARM V6 not included in V7M. */
23047 #undef THUMB_VARIANT
23048 #define THUMB_VARIANT & arm_ext_v6_notm
23049 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23050 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23051 UF(rfeib, 9900a00, 1, (RRw), rfe),
23052 UF(rfeda, 8100a00, 1, (RRw), rfe),
23053 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23054 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23055 UF(rfefa, 8100a00, 1, (RRw), rfe),
23056 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23057 UF(rfeed, 9900a00, 1, (RRw), rfe),
23058 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23059 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23060 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23061 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23062 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23063 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23064 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23065 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23066 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23067 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23068
23069 /* ARM V6 not included in V7M (eg. integer SIMD). */
23070 #undef THUMB_VARIANT
23071 #define THUMB_VARIANT & arm_ext_v6_dsp
23072 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23073 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23074 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23075 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23076 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23077 /* Old name for QASX. */
23078 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23079 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23080 /* Old name for QSAX. */
23081 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23082 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23083 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23084 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23085 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23086 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23087 /* Old name for SASX. */
23088 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23089 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23090 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23091 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23092 /* Old name for SHASX. */
23093 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23094 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23095 /* Old name for SHSAX. */
23096 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23097 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23098 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23099 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23100 /* Old name for SSAX. */
23101 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23102 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23103 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23104 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23105 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23106 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23107 /* Old name for UASX. */
23108 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23109 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23110 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23111 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23112 /* Old name for UHASX. */
23113 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23114 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23115 /* Old name for UHSAX. */
23116 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23117 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23118 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23119 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23120 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23121 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23122 /* Old name for UQASX. */
23123 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23124 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23125 /* Old name for UQSAX. */
23126 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23127 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23128 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23129 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23130 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23131 /* Old name for USAX. */
23132 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23133 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23134 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23135 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23136 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23137 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23138 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23139 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23140 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23141 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23142 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23143 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23144 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23145 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23146 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23147 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23148 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23149 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23150 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23151 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23152 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23153 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23154 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23155 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23156 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23157 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23158 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23159 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23160 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23161 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23162 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23163 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23164 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23165 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23166
23167 #undef ARM_VARIANT
23168 #define ARM_VARIANT & arm_ext_v6k_v6t2
23169 #undef THUMB_VARIANT
23170 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23171
23172 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23173 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23174 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23175 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23176
23177 #undef THUMB_VARIANT
23178 #define THUMB_VARIANT & arm_ext_v6_notm
23179 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23180 ldrexd, t_ldrexd),
23181 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23182 RRnpcb), strexd, t_strexd),
23183
23184 #undef THUMB_VARIANT
23185 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23186 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23187 rd_rn, rd_rn),
23188 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23189 rd_rn, rd_rn),
23190 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23191 strex, t_strexbh),
23192 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23193 strex, t_strexbh),
23194 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23195
23196 #undef ARM_VARIANT
23197 #define ARM_VARIANT & arm_ext_sec
23198 #undef THUMB_VARIANT
23199 #define THUMB_VARIANT & arm_ext_sec
23200
23201 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23202
23203 #undef ARM_VARIANT
23204 #define ARM_VARIANT & arm_ext_virt
23205 #undef THUMB_VARIANT
23206 #define THUMB_VARIANT & arm_ext_virt
23207
23208 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23209 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23210
23211 #undef ARM_VARIANT
23212 #define ARM_VARIANT & arm_ext_pan
23213 #undef THUMB_VARIANT
23214 #define THUMB_VARIANT & arm_ext_pan
23215
23216 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23217
23218 #undef ARM_VARIANT
23219 #define ARM_VARIANT & arm_ext_v6t2
23220 #undef THUMB_VARIANT
23221 #define THUMB_VARIANT & arm_ext_v6t2
23222
23223 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23224 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23225 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23226 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23227
23228 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23229 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23230
23231 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23232 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23233 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23234 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23235
23236 #undef ARM_VARIANT
23237 #define ARM_VARIANT & arm_ext_v3
23238 #undef THUMB_VARIANT
23239 #define THUMB_VARIANT & arm_ext_v6t2
23240
23241 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23242 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23243 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23244
23245 #undef ARM_VARIANT
23246 #define ARM_VARIANT & arm_ext_v6t2
23247 #undef THUMB_VARIANT
23248 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23249 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23250 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23251
23252 /* Thumb-only instructions. */
23253 #undef ARM_VARIANT
23254 #define ARM_VARIANT NULL
23255 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23256 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23257
23258 /* ARM does not really have an IT instruction, so always allow it.
23259 The opcode is copied from Thumb in order to allow warnings in
23260 -mimplicit-it=[never | arm] modes. */
23261 #undef ARM_VARIANT
23262 #define ARM_VARIANT & arm_ext_v1
23263 #undef THUMB_VARIANT
23264 #define THUMB_VARIANT & arm_ext_v6t2
23265
23266 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23267 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23268 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23269 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23270 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23271 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23272 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23273 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23274 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23275 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23276 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23277 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23278 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23279 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23280 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23281 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23282 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23283 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23284
23285 /* Thumb2 only instructions. */
23286 #undef ARM_VARIANT
23287 #define ARM_VARIANT NULL
23288
23289 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23290 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23291 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23292 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23293 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23294 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23295
23296 /* Hardware division instructions. */
23297 #undef ARM_VARIANT
23298 #define ARM_VARIANT & arm_ext_adiv
23299 #undef THUMB_VARIANT
23300 #define THUMB_VARIANT & arm_ext_div
23301
23302 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23303 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23304
23305 /* ARM V6M/V7 instructions. */
23306 #undef ARM_VARIANT
23307 #define ARM_VARIANT & arm_ext_barrier
23308 #undef THUMB_VARIANT
23309 #define THUMB_VARIANT & arm_ext_barrier
23310
23311 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23312 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23313 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23314
23315 /* ARM V7 instructions. */
23316 #undef ARM_VARIANT
23317 #define ARM_VARIANT & arm_ext_v7
23318 #undef THUMB_VARIANT
23319 #define THUMB_VARIANT & arm_ext_v7
23320
23321 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23322 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23323
23324 #undef ARM_VARIANT
23325 #define ARM_VARIANT & arm_ext_mp
23326 #undef THUMB_VARIANT
23327 #define THUMB_VARIANT & arm_ext_mp
23328
23329 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23330
23331 /* AArchv8 instructions. */
23332 #undef ARM_VARIANT
23333 #define ARM_VARIANT & arm_ext_v8
23334
23335 /* Instructions shared between armv8-a and armv8-m. */
23336 #undef THUMB_VARIANT
23337 #define THUMB_VARIANT & arm_ext_atomics
23338
23339 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23340 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23341 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23342 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23343 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23344 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23345 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23346 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23347 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23348 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23349 stlex, t_stlex),
23350 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23351 stlex, t_stlex),
23352 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23353 stlex, t_stlex),
23354 #undef THUMB_VARIANT
23355 #define THUMB_VARIANT & arm_ext_v8
23356
23357 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23358 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23359 ldrexd, t_ldrexd),
23360 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23361 strexd, t_strexd),
23362
23363 /* Defined in V8 but is in undefined encoding space for earlier
23364 architectures. However earlier architectures are required to treat
23365 this instuction as a semihosting trap as well. Hence while not explicitly
23366 defined as such, it is in fact correct to define the instruction for all
23367 architectures. */
23368 #undef THUMB_VARIANT
23369 #define THUMB_VARIANT & arm_ext_v1
23370 #undef ARM_VARIANT
23371 #define ARM_VARIANT & arm_ext_v1
23372 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23373
23374 /* ARMv8 T32 only. */
23375 #undef ARM_VARIANT
23376 #define ARM_VARIANT NULL
23377 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23378 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23379 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23380
23381 /* FP for ARMv8. */
23382 #undef ARM_VARIANT
23383 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23384 #undef THUMB_VARIANT
23385 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23386
23387 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23388 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23389 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23390 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23391 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23392 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23393 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23394 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23395 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23396 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23397 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23398
23399 /* Crypto v1 extensions. */
23400 #undef ARM_VARIANT
23401 #define ARM_VARIANT & fpu_crypto_ext_armv8
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23404
23405 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23406 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23407 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23408 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23409 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23410 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23411 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23412 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23413 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23414 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23415 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23416 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23417 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23418 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23419
23420 #undef ARM_VARIANT
23421 #define ARM_VARIANT & crc_ext_armv8
23422 #undef THUMB_VARIANT
23423 #define THUMB_VARIANT & crc_ext_armv8
23424 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23425 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23426 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23427 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23428 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23429 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23430
23431 /* ARMv8.2 RAS extension. */
23432 #undef ARM_VARIANT
23433 #define ARM_VARIANT & arm_ext_ras
23434 #undef THUMB_VARIANT
23435 #define THUMB_VARIANT & arm_ext_ras
23436 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23437
23438 #undef ARM_VARIANT
23439 #define ARM_VARIANT & arm_ext_v8_3
23440 #undef THUMB_VARIANT
23441 #define THUMB_VARIANT & arm_ext_v8_3
23442 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23443
23444 #undef ARM_VARIANT
23445 #define ARM_VARIANT & fpu_neon_ext_dotprod
23446 #undef THUMB_VARIANT
23447 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23448 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23449 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23450
23451 #undef ARM_VARIANT
23452 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23453 #undef THUMB_VARIANT
23454 #define THUMB_VARIANT NULL
23455
23456 cCE("wfs", e200110, 1, (RR), rd),
23457 cCE("rfs", e300110, 1, (RR), rd),
23458 cCE("wfc", e400110, 1, (RR), rd),
23459 cCE("rfc", e500110, 1, (RR), rd),
23460
23461 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23462 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23463 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23464 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23465
23466 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23467 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23468 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23469 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23470
23471 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23472 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23473 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23474 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23475 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23476 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23477 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23478 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23479 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23480 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23481 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23482 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23483
23484 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23485 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23486 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23487 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23488 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23489 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23490 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23491 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23492 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23493 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23494 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23495 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23496
23497 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23498 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23499 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23500 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23501 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23502 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23503 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23504 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23505 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23506 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23507 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23508 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23509
23510 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23511 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23512 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23513 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23514 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23515 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23516 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23517 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23518 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23519 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23520 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23521 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23522
23523 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23524 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23525 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23526 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23527 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23528 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23529 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23530 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23531 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23532 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23533 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23534 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23535
23536 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23537 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23538 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23539 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23540 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23541 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23542 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23543 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23544 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23545 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23546 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23547 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23548
23549 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23550 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23551 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23552 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23553 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23554 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23555 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23556 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23557 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23558 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23559 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23560 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23561
23562 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23563 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23564 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23565 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23566 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23567 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23568 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23569 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23570 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23571 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23572 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23573 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23574
23575 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23576 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23577 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23578 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23579 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23580 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23581 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23582 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23583 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23584 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23585 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23586 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23587
23588 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23589 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23590 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23591 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23592 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23593 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23594 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23595 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23596 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23597 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23598 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23599 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23600
23601 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23602 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23603 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23604 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23605 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23606 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23607 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23608 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23609 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23610 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23611 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23612 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23613
23614 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23615 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23616 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23617 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23618 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23619 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23620 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23621 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23622 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23623 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23624 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23625 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23626
23627 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23628 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23629 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23630 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23631 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23632 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23633 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23634 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23635 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23636 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23637 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23638 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23639
23640 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23641 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23642 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23643 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23644 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23645 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23646 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23647 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23648 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23649 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23650 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23651 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23652
23653 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23654 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23655 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23656 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23657 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23658 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23659 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23660 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23661 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23662 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23663 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23664 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23665
23666 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23667 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23668 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23669 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23670 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23671 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23672 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23673 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23674 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23675 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23676 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23677 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23678
23679 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23680 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23681 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23682 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23683 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23684 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23685 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23686 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23687 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23688 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23689 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23690 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23691
23692 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23693 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23694 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23695 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23696 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23697 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23698 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23699 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23700 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23701 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23702 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23703 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23704
23705 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23706 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23707 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23708 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23709 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23710 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23711 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23712 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23713 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23714 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23715 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23716 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23717
23718 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23719 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23720 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23721 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23722 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23723 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23724 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23725 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23726 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23727 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23728 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23729 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23730
23731 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23732 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23733 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23734 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23735 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23736 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23737 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23738 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23739 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23740 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23741 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23742 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23743
23744 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23745 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23746 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23747 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23748 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23749 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23750 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23751 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23752 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23753 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23754 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23755 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23756
23757 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23758 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23759 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23760 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23761 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23762 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23763 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23764 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23765 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23766 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23767 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23768 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23769
23770 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23771 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23772 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23773 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23774 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23775 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23776 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23777 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23778 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23779 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23780 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23781 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23782
23783 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23784 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23785 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23786 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23787 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23788 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23789 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23790 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23791 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23792 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23793 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23794 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23795
23796 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23797 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23798 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23799 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23800 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23801 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23802 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23803 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23804 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23805 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23806 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23807 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23808
23809 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23810 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23811 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23812 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23813 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23814 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23815 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23816 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23817 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23818 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23819 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23820 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23821
23822 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23823 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23824 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23825 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23826 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23827 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23828 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23829 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23830 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23831 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23832 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23833 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23834
23835 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23836 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23837 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23838 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23839 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23840 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23841 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23842 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23843 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23844 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23845 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23846 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23847
23848 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23849 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23850 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23851 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23852
23853 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23854 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23855 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23856 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23857 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23858 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23859 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23860 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23861 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23862 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23863 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23864 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23865
23866 /* The implementation of the FIX instruction is broken on some
23867 assemblers, in that it accepts a precision specifier as well as a
23868 rounding specifier, despite the fact that this is meaningless.
23869 To be more compatible, we accept it as well, though of course it
23870 does not set any bits. */
23871 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23872 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23873 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23874 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23875 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23876 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23877 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23878 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23879 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23880 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23881 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23882 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23883 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23884
23885 /* Instructions that were new with the real FPA, call them V2. */
23886 #undef ARM_VARIANT
23887 #define ARM_VARIANT & fpu_fpa_ext_v2
23888
23889 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23890 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23891 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23892 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23893 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23894 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23895
23896 #undef ARM_VARIANT
23897 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23898
23899 /* Moves and type conversions. */
23900 cCE("fmstat", ef1fa10, 0, (), noargs),
23901 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23902 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23903 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23904 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23905 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23906 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23907 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23908 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23909 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23910 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23911
23912 /* Memory operations. */
23913 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23914 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23915 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23916 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23917 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23918 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23919 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23920 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23921 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23922 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23923 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23924 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23925 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23926 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23927 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23928 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23929 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23930 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23931
23932 /* Monadic operations. */
23933 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23934 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23935 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23936
23937 /* Dyadic operations. */
23938 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23939 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23940 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23941 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23942 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23943 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23944 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23945 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23946 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23947
23948 /* Comparisons. */
23949 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23950 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23951 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23952 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23953
23954 /* Double precision load/store are still present on single precision
23955 implementations. */
23956 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23957 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23958 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23959 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23960 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23961 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23962 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23963 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23964 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23965 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23966
23967 #undef ARM_VARIANT
23968 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23969
23970 /* Moves and type conversions. */
23971 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23972 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23973 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23974 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23975 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23976 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23977 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23978 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23979 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23980 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23981 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23982 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23983
23984 /* Monadic operations. */
23985 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23986 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23987 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23988
23989 /* Dyadic operations. */
23990 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23991 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23992 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23993 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23994 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23995 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23996 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23997 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23998 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23999
24000 /* Comparisons. */
24001 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24002 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24003 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24004 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24005
24006 /* Instructions which may belong to either the Neon or VFP instruction sets.
24007 Individual encoder functions perform additional architecture checks. */
24008 #undef ARM_VARIANT
24009 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24010 #undef THUMB_VARIANT
24011 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24012
24013 /* These mnemonics are unique to VFP. */
24014 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24015 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24016 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24017 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24018 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24019 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24020 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24021 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24022
24023 /* Mnemonics shared by Neon and VFP. */
24024 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24025
24026 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24027 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24028 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24029 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24030 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24031 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24032
24033 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24034 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24035 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24036 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24037
24038
24039 /* NOTE: All VMOV encoding is special-cased! */
24040 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24041
24042 #undef THUMB_VARIANT
24043 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24044 by different feature bits. Since we are setting the Thumb guard, we can
24045 require Thumb-1 which makes it a nop guard and set the right feature bit in
24046 do_vldr_vstr (). */
24047 #define THUMB_VARIANT & arm_ext_v4t
24048 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24049 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24050
24051 #undef ARM_VARIANT
24052 #define ARM_VARIANT & arm_ext_fp16
24053 #undef THUMB_VARIANT
24054 #define THUMB_VARIANT & arm_ext_fp16
24055 /* New instructions added from v8.2, allowing the extraction and insertion of
24056 the upper 16 bits of a 32-bit vector register. */
24057 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24058 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24059
24060 /* New backported fma/fms instructions optional in v8.2. */
24061 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24062 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24063
24064 #undef THUMB_VARIANT
24065 #define THUMB_VARIANT & fpu_neon_ext_v1
24066 #undef ARM_VARIANT
24067 #define ARM_VARIANT & fpu_neon_ext_v1
24068
24069 /* Data processing with three registers of the same length. */
24070 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24071 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24072 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24073 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24074 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24075 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24076 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24077 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24078 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24079 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
24080 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24081 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
24082 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24083 /* If not immediate, fall back to neon_dyadic_i64_su.
24084 shl_imm should accept I8 I16 I32 I64,
24085 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24086 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24087 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24088 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24089 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
24090 /* Logic ops, types optional & ignored. */
24091 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24092 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24093 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24094 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24095 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24096 /* Bitfield ops, untyped. */
24097 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24098 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24099 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24100 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24101 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24102 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24103 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24104 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24105 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24106 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24107 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24108 back to neon_dyadic_if_su. */
24109 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24110 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24111 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24112 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24113 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24114 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24115 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24116 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24117 /* Comparison. Type I8 I16 I32 F32. */
24118 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24119 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24120 /* As above, D registers only. */
24121 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24122 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24123 /* Int and float variants, signedness unimportant. */
24124 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24125 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24126 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24127 /* Add/sub take types I8 I16 I32 I64 F32. */
24128 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24129 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24130 /* vtst takes sizes 8, 16, 32. */
24131 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24132 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24133 /* VMUL takes I8 I16 I32 F32 P8. */
24134 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24135 /* VQD{R}MULH takes S16 S32. */
24136 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24137 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24138 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24139 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24140 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24141 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24142 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24143 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24144 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24145 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24146 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24147 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24148 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24149 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24150 /* ARM v8.1 extension. */
24151 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24152 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24153 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24154
24155 /* Two address, int/float. Types S8 S16 S32 F32. */
24156 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24157 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24158
24159 /* Data processing with two registers and a shift amount. */
24160 /* Right shifts, and variants with rounding.
24161 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24162 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24163 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24164 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24165 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24166 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24167 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24168 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24169 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24170 /* Shift and insert. Sizes accepted 8 16 32 64. */
24171 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24172 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24173 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24174 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24175 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24176 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24177 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24178 /* Right shift immediate, saturating & narrowing, with rounding variants.
24179 Types accepted S16 S32 S64 U16 U32 U64. */
24180 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24181 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24182 /* As above, unsigned. Types accepted S16 S32 S64. */
24183 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24184 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24185 /* Right shift narrowing. Types accepted I16 I32 I64. */
24186 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24187 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24188 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24189 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24190 /* CVT with optional immediate for fixed-point variant. */
24191 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24192
24193 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24194
24195 /* Data processing, three registers of different lengths. */
24196 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24197 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24198 /* If not scalar, fall back to neon_dyadic_long.
24199 Vector types as above, scalar types S16 S32 U16 U32. */
24200 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24201 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24202 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24203 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24204 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24205 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24206 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24207 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24208 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24209 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24210 /* Saturating doubling multiplies. Types S16 S32. */
24211 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24212 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24213 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24214 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24215 S16 S32 U16 U32. */
24216 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24217
24218 /* Extract. Size 8. */
24219 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24220 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24221
24222 /* Two registers, miscellaneous. */
24223 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24224 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24225 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24226 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24227 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24228 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24229 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24230 /* Vector replicate. Sizes 8 16 32. */
24231 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24232 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24233 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24234 /* VMOVN. Types I16 I32 I64. */
24235 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24236 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24237 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24238 /* VQMOVUN. Types S16 S32 S64. */
24239 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24240 /* VZIP / VUZP. Sizes 8 16 32. */
24241 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24242 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24243 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24244 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24245 /* VQABS / VQNEG. Types S8 S16 S32. */
24246 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24247 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24248 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24249 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24250 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24251 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24252 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24253 /* Reciprocal estimates. Types U32 F16 F32. */
24254 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24255 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24256 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24257 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24258 /* VCLS. Types S8 S16 S32. */
24259 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24260 /* VCLZ. Types I8 I16 I32. */
24261 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24262 /* VCNT. Size 8. */
24263 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24264 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24265 /* Two address, untyped. */
24266 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24267 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24268 /* VTRN. Sizes 8 16 32. */
24269 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24270 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24271
24272 /* Table lookup. Size 8. */
24273 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24274 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24275
24276 #undef THUMB_VARIANT
24277 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24278 #undef ARM_VARIANT
24279 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24280
24281 /* Neon element/structure load/store. */
24282 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24283 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24284 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24285 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24286 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24287 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24288 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24289 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24290
24291 #undef THUMB_VARIANT
24292 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24293 #undef ARM_VARIANT
24294 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24295 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24296 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24297 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24298 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24299 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24300 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24301 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24302 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24303 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24304
24305 #undef THUMB_VARIANT
24306 #define THUMB_VARIANT & fpu_vfp_ext_v3
24307 #undef ARM_VARIANT
24308 #define ARM_VARIANT & fpu_vfp_ext_v3
24309
24310 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24311 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24312 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24313 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24314 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24315 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24316 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24317 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24318 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24319
24320 #undef ARM_VARIANT
24321 #define ARM_VARIANT & fpu_vfp_ext_fma
24322 #undef THUMB_VARIANT
24323 #define THUMB_VARIANT & fpu_vfp_ext_fma
24324 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24325 VFP FMA variant; NEON and VFP FMA always includes the NEON
24326 FMA instructions. */
24327 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24328 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24329
24330 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24331 the v form should always be used. */
24332 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24333 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24334 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24335 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24336 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24337 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24338
24339 #undef THUMB_VARIANT
24340 #undef ARM_VARIANT
24341 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24342
24343 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24344 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24345 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24346 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24347 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24348 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24349 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24350 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24351
24352 #undef ARM_VARIANT
24353 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24354
24355 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24356 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24357 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24358 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24359 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24360 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24361 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24362 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24363 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24364 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24365 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24366 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24367 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24368 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24369 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24370 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24371 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24372 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24373 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24374 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24375 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24376 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24377 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24378 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24379 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24380 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24381 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24382 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24383 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24384 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24385 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24386 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24387 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24388 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24389 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24390 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24391 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24392 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24393 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24394 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24395 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24396 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24397 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24398 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24399 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24400 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24401 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24402 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24403 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24404 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24405 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24406 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24407 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24408 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24409 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24410 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24411 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24412 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24413 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24414 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24415 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24416 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24417 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24418 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24419 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24420 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24421 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24422 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24423 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24424 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24425 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24426 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24427 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24428 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24429 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24430 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24431 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24432 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24433 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24434 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24435 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24436 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24437 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24438 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24439 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24440 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24441 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24442 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24443 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24444 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24445 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24446 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24447 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24448 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24449 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24450 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24451 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24452 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24453 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24454 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24455 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24456 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24457 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24458 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24459 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24460 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24461 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24462 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24463 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24464 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24465 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24466 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24467 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24468 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24469 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24470 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24471 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24472 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24473 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24474 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24475 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24476 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24477 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24478 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24479 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24480 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24481 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24482 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24483 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24484 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24485 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24486 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24487 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24488 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24489 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24490 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24491 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24492 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24493 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24494 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24495 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24496 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24497 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24498 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24499 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24500 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24501 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24502 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24503 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24504 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24505 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24506 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24507 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24508 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24509 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24510 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24511 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24512 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24513 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24514 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24515 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24516 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24517
24518 #undef ARM_VARIANT
24519 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24520
24521 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24522 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24523 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24524 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24525 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24526 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24527 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24528 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24529 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24530 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24531 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24532 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24533 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24534 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24535 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24536 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24537 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24538 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24539 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24540 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24541 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24542 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24543 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24544 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24545 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24546 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24547 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24548 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24549 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24550 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24551 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24552 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24553 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24554 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24555 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24556 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24557 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24558 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24559 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24560 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24561 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24562 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24566 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24567 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24568 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24569 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24570 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24571 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24572 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24573 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24574 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24575 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24576 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24577 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24578
24579 #undef ARM_VARIANT
24580 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24581
24582 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24583 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24584 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24585 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24586 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24587 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24588 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24589 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24590 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24591 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24592 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24593 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24594 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24595 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24596 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24597 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24598 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24599 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24600 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24601 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24602 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24603 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24604 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24605 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24606 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24607 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24608 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24609 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24610 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24611 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24612 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24613 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24614 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24615 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24616 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24617 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24618 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24619 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24620 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24621 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24622 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24623 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24624 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24625 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24626 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24627 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24628 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24629 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24630 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24631 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24632 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24633 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24634 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24635 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24636 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24637 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24638 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24639 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24640 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24641 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24642 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24643 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24644 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24645 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24646 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24647 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24648 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24649 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24650 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24651 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24652 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24653 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24654 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24655 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24656 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24657 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24658
24659 /* ARMv8.5-A instructions. */
24660 #undef ARM_VARIANT
24661 #define ARM_VARIANT & arm_ext_sb
24662 #undef THUMB_VARIANT
24663 #define THUMB_VARIANT & arm_ext_sb
24664 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24665
24666 #undef ARM_VARIANT
24667 #define ARM_VARIANT & arm_ext_predres
24668 #undef THUMB_VARIANT
24669 #define THUMB_VARIANT & arm_ext_predres
24670 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24671 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24672 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24673
24674 /* ARMv8-M instructions. */
24675 #undef ARM_VARIANT
24676 #define ARM_VARIANT NULL
24677 #undef THUMB_VARIANT
24678 #define THUMB_VARIANT & arm_ext_v8m
24679 ToU("sg", e97fe97f, 0, (), noargs),
24680 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24681 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24682 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24683 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24684 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24685 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24686
24687 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24688 instructions behave as nop if no VFP is present. */
24689 #undef THUMB_VARIANT
24690 #define THUMB_VARIANT & arm_ext_v8m_main
24691 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24692 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24693
24694 /* Armv8.1-M Mainline instructions. */
24695 #undef THUMB_VARIANT
24696 #define THUMB_VARIANT & arm_ext_v8_1m_main
24697 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24698 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24699 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24700 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24701 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24702
24703 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24704 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24705 toU("le", _le, 2, (oLR, EXP), t_loloop),
24706
24707 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24708 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24709
24710 #undef THUMB_VARIANT
24711 #define THUMB_VARIANT & mve_ext
24712
24713 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24714 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24715 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24716 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24717 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24718 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24719 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24720 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24721 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24722 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24723 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24724 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24725 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24726 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24727 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24728
24729 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24730 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24731 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24732 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24733 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24734 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24735 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24736 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24737 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24738 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24739 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24740 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24741 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24742 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24743 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24744
24745 /* MVE and MVE FP only. */
24746 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24747 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24748 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24749 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24750 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24751 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24752 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24753 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24754 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24755 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24756 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24757 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24758 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24759 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24760 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24761 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24762 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24763
24764 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24765 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24766 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24767 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24768 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24769 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24770 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24771 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24772 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24773 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24774 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24775 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24776 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24777 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24778 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24779 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24780 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24781 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24782 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24783 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24784
24785 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24786 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24787 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24788 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24789 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24790 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24791 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24792 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24793 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24794 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24795 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24796 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24797 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24798 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24799 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24800 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24801 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24802
24803 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24804 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24805 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24806 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24807 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24808 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24809 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24810 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24811 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24812 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24813 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24814 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24815 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24816 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24817 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24818 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24819 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24820 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24821 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24822 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24823
24824 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24825 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24826 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24827 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24828 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
24829
24830 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24831 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24832 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24833 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24834 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24835 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24836 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24837 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24838 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24839 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24840 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24841
24842 #undef THUMB_VARIANT
24843 #define THUMB_VARIANT & mve_fp_ext
24844 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24845 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24846 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24847 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24848 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24849 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24850 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24851 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24852
24853 #undef ARM_VARIANT
24854 #define ARM_VARIANT & fpu_vfp_ext_v1
24855 #undef THUMB_VARIANT
24856 #define THUMB_VARIANT & arm_ext_v6t2
24857 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24858 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
24859
24860 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24861
24862 #undef ARM_VARIANT
24863 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24864
24865 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24866 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24867 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24868 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24869
24870 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24871 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24872 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24873
24874 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24875 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24876
24877 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24878 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24879
24880 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24881 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24882
24883 #undef ARM_VARIANT
24884 #define ARM_VARIANT & fpu_vfp_ext_v2
24885
24886 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24887 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24888 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24889 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24890
24891 #undef ARM_VARIANT
24892 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24893 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24894 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24895 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24896 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24897 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24898 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24899
24900 #undef ARM_VARIANT
24901 #define ARM_VARIANT & fpu_neon_ext_v1
24902 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24903 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24904 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24905 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24906 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24907 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24908 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24909 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24910 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24911 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24912 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24913 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24914 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24915 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24916 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24917 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24918 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24919 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24920 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24921 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
24922 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
24923 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
24924 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
24925 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
24926 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
24927
24928 #undef ARM_VARIANT
24929 #define ARM_VARIANT & arm_ext_v8_3
24930 #undef THUMB_VARIANT
24931 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24932 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24933 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24934 };
24935 #undef ARM_VARIANT
24936 #undef THUMB_VARIANT
24937 #undef TCE
24938 #undef TUE
24939 #undef TUF
24940 #undef TCC
24941 #undef cCE
24942 #undef cCL
24943 #undef C3E
24944 #undef C3
24945 #undef CE
24946 #undef CM
24947 #undef CL
24948 #undef UE
24949 #undef UF
24950 #undef UT
24951 #undef NUF
24952 #undef nUF
24953 #undef NCE
24954 #undef nCE
24955 #undef OPS0
24956 #undef OPS1
24957 #undef OPS2
24958 #undef OPS3
24959 #undef OPS4
24960 #undef OPS5
24961 #undef OPS6
24962 #undef do_0
24963 #undef ToC
24964 #undef toC
24965 #undef ToU
24966 #undef toU
24967 \f
24968 /* MD interface: bits in the object file. */
24969
24970 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24971 for use in the a.out file, and stores them in the array pointed to by buf.
24972 This knows about the endian-ness of the target machine and does
24973 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24974 2 (short) and 4 (long) Floating numbers are put out as a series of
24975 LITTLENUMS (shorts, here at least). */
24976
24977 void
24978 md_number_to_chars (char * buf, valueT val, int n)
24979 {
24980 if (target_big_endian)
24981 number_to_chars_bigendian (buf, val, n);
24982 else
24983 number_to_chars_littleendian (buf, val, n);
24984 }
24985
24986 static valueT
24987 md_chars_to_number (char * buf, int n)
24988 {
24989 valueT result = 0;
24990 unsigned char * where = (unsigned char *) buf;
24991
24992 if (target_big_endian)
24993 {
24994 while (n--)
24995 {
24996 result <<= 8;
24997 result |= (*where++ & 255);
24998 }
24999 }
25000 else
25001 {
25002 while (n--)
25003 {
25004 result <<= 8;
25005 result |= (where[n] & 255);
25006 }
25007 }
25008
25009 return result;
25010 }
25011
25012 /* MD interface: Sections. */
25013
25014 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25015 that an rs_machine_dependent frag may reach. */
25016
25017 unsigned int
25018 arm_frag_max_var (fragS *fragp)
25019 {
25020 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25021 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25022
25023 Note that we generate relaxable instructions even for cases that don't
25024 really need it, like an immediate that's a trivial constant. So we're
25025 overestimating the instruction size for some of those cases. Rather
25026 than putting more intelligence here, it would probably be better to
25027 avoid generating a relaxation frag in the first place when it can be
25028 determined up front that a short instruction will suffice. */
25029
25030 gas_assert (fragp->fr_type == rs_machine_dependent);
25031 return INSN_SIZE;
25032 }
25033
25034 /* Estimate the size of a frag before relaxing. Assume everything fits in
25035 2 bytes. */
25036
25037 int
25038 md_estimate_size_before_relax (fragS * fragp,
25039 segT segtype ATTRIBUTE_UNUSED)
25040 {
25041 fragp->fr_var = 2;
25042 return 2;
25043 }
25044
25045 /* Convert a machine dependent frag. */
25046
25047 void
25048 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25049 {
25050 unsigned long insn;
25051 unsigned long old_op;
25052 char *buf;
25053 expressionS exp;
25054 fixS *fixp;
25055 int reloc_type;
25056 int pc_rel;
25057 int opcode;
25058
25059 buf = fragp->fr_literal + fragp->fr_fix;
25060
25061 old_op = bfd_get_16(abfd, buf);
25062 if (fragp->fr_symbol)
25063 {
25064 exp.X_op = O_symbol;
25065 exp.X_add_symbol = fragp->fr_symbol;
25066 }
25067 else
25068 {
25069 exp.X_op = O_constant;
25070 }
25071 exp.X_add_number = fragp->fr_offset;
25072 opcode = fragp->fr_subtype;
25073 switch (opcode)
25074 {
25075 case T_MNEM_ldr_pc:
25076 case T_MNEM_ldr_pc2:
25077 case T_MNEM_ldr_sp:
25078 case T_MNEM_str_sp:
25079 case T_MNEM_ldr:
25080 case T_MNEM_ldrb:
25081 case T_MNEM_ldrh:
25082 case T_MNEM_str:
25083 case T_MNEM_strb:
25084 case T_MNEM_strh:
25085 if (fragp->fr_var == 4)
25086 {
25087 insn = THUMB_OP32 (opcode);
25088 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25089 {
25090 insn |= (old_op & 0x700) << 4;
25091 }
25092 else
25093 {
25094 insn |= (old_op & 7) << 12;
25095 insn |= (old_op & 0x38) << 13;
25096 }
25097 insn |= 0x00000c00;
25098 put_thumb32_insn (buf, insn);
25099 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25100 }
25101 else
25102 {
25103 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25104 }
25105 pc_rel = (opcode == T_MNEM_ldr_pc2);
25106 break;
25107 case T_MNEM_adr:
25108 if (fragp->fr_var == 4)
25109 {
25110 insn = THUMB_OP32 (opcode);
25111 insn |= (old_op & 0xf0) << 4;
25112 put_thumb32_insn (buf, insn);
25113 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25114 }
25115 else
25116 {
25117 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25118 exp.X_add_number -= 4;
25119 }
25120 pc_rel = 1;
25121 break;
25122 case T_MNEM_mov:
25123 case T_MNEM_movs:
25124 case T_MNEM_cmp:
25125 case T_MNEM_cmn:
25126 if (fragp->fr_var == 4)
25127 {
25128 int r0off = (opcode == T_MNEM_mov
25129 || opcode == T_MNEM_movs) ? 0 : 8;
25130 insn = THUMB_OP32 (opcode);
25131 insn = (insn & 0xe1ffffff) | 0x10000000;
25132 insn |= (old_op & 0x700) << r0off;
25133 put_thumb32_insn (buf, insn);
25134 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25135 }
25136 else
25137 {
25138 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25139 }
25140 pc_rel = 0;
25141 break;
25142 case T_MNEM_b:
25143 if (fragp->fr_var == 4)
25144 {
25145 insn = THUMB_OP32(opcode);
25146 put_thumb32_insn (buf, insn);
25147 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25148 }
25149 else
25150 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25151 pc_rel = 1;
25152 break;
25153 case T_MNEM_bcond:
25154 if (fragp->fr_var == 4)
25155 {
25156 insn = THUMB_OP32(opcode);
25157 insn |= (old_op & 0xf00) << 14;
25158 put_thumb32_insn (buf, insn);
25159 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25160 }
25161 else
25162 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25163 pc_rel = 1;
25164 break;
25165 case T_MNEM_add_sp:
25166 case T_MNEM_add_pc:
25167 case T_MNEM_inc_sp:
25168 case T_MNEM_dec_sp:
25169 if (fragp->fr_var == 4)
25170 {
25171 /* ??? Choose between add and addw. */
25172 insn = THUMB_OP32 (opcode);
25173 insn |= (old_op & 0xf0) << 4;
25174 put_thumb32_insn (buf, insn);
25175 if (opcode == T_MNEM_add_pc)
25176 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25177 else
25178 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25179 }
25180 else
25181 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25182 pc_rel = 0;
25183 break;
25184
25185 case T_MNEM_addi:
25186 case T_MNEM_addis:
25187 case T_MNEM_subi:
25188 case T_MNEM_subis:
25189 if (fragp->fr_var == 4)
25190 {
25191 insn = THUMB_OP32 (opcode);
25192 insn |= (old_op & 0xf0) << 4;
25193 insn |= (old_op & 0xf) << 16;
25194 put_thumb32_insn (buf, insn);
25195 if (insn & (1 << 20))
25196 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25197 else
25198 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25199 }
25200 else
25201 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25202 pc_rel = 0;
25203 break;
25204 default:
25205 abort ();
25206 }
25207 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25208 (enum bfd_reloc_code_real) reloc_type);
25209 fixp->fx_file = fragp->fr_file;
25210 fixp->fx_line = fragp->fr_line;
25211 fragp->fr_fix += fragp->fr_var;
25212
25213 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25214 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25215 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25216 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25217 }
25218
25219 /* Return the size of a relaxable immediate operand instruction.
25220 SHIFT and SIZE specify the form of the allowable immediate. */
25221 static int
25222 relax_immediate (fragS *fragp, int size, int shift)
25223 {
25224 offsetT offset;
25225 offsetT mask;
25226 offsetT low;
25227
25228 /* ??? Should be able to do better than this. */
25229 if (fragp->fr_symbol)
25230 return 4;
25231
25232 low = (1 << shift) - 1;
25233 mask = (1 << (shift + size)) - (1 << shift);
25234 offset = fragp->fr_offset;
25235 /* Force misaligned offsets to 32-bit variant. */
25236 if (offset & low)
25237 return 4;
25238 if (offset & ~mask)
25239 return 4;
25240 return 2;
25241 }
25242
25243 /* Get the address of a symbol during relaxation. */
25244 static addressT
25245 relaxed_symbol_addr (fragS *fragp, long stretch)
25246 {
25247 fragS *sym_frag;
25248 addressT addr;
25249 symbolS *sym;
25250
25251 sym = fragp->fr_symbol;
25252 sym_frag = symbol_get_frag (sym);
25253 know (S_GET_SEGMENT (sym) != absolute_section
25254 || sym_frag == &zero_address_frag);
25255 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25256
25257 /* If frag has yet to be reached on this pass, assume it will
25258 move by STRETCH just as we did. If this is not so, it will
25259 be because some frag between grows, and that will force
25260 another pass. */
25261
25262 if (stretch != 0
25263 && sym_frag->relax_marker != fragp->relax_marker)
25264 {
25265 fragS *f;
25266
25267 /* Adjust stretch for any alignment frag. Note that if have
25268 been expanding the earlier code, the symbol may be
25269 defined in what appears to be an earlier frag. FIXME:
25270 This doesn't handle the fr_subtype field, which specifies
25271 a maximum number of bytes to skip when doing an
25272 alignment. */
25273 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25274 {
25275 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25276 {
25277 if (stretch < 0)
25278 stretch = - ((- stretch)
25279 & ~ ((1 << (int) f->fr_offset) - 1));
25280 else
25281 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25282 if (stretch == 0)
25283 break;
25284 }
25285 }
25286 if (f != NULL)
25287 addr += stretch;
25288 }
25289
25290 return addr;
25291 }
25292
25293 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25294 load. */
25295 static int
25296 relax_adr (fragS *fragp, asection *sec, long stretch)
25297 {
25298 addressT addr;
25299 offsetT val;
25300
25301 /* Assume worst case for symbols not known to be in the same section. */
25302 if (fragp->fr_symbol == NULL
25303 || !S_IS_DEFINED (fragp->fr_symbol)
25304 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25305 || S_IS_WEAK (fragp->fr_symbol))
25306 return 4;
25307
25308 val = relaxed_symbol_addr (fragp, stretch);
25309 addr = fragp->fr_address + fragp->fr_fix;
25310 addr = (addr + 4) & ~3;
25311 /* Force misaligned targets to 32-bit variant. */
25312 if (val & 3)
25313 return 4;
25314 val -= addr;
25315 if (val < 0 || val > 1020)
25316 return 4;
25317 return 2;
25318 }
25319
25320 /* Return the size of a relaxable add/sub immediate instruction. */
25321 static int
25322 relax_addsub (fragS *fragp, asection *sec)
25323 {
25324 char *buf;
25325 int op;
25326
25327 buf = fragp->fr_literal + fragp->fr_fix;
25328 op = bfd_get_16(sec->owner, buf);
25329 if ((op & 0xf) == ((op >> 4) & 0xf))
25330 return relax_immediate (fragp, 8, 0);
25331 else
25332 return relax_immediate (fragp, 3, 0);
25333 }
25334
25335 /* Return TRUE iff the definition of symbol S could be pre-empted
25336 (overridden) at link or load time. */
25337 static bfd_boolean
25338 symbol_preemptible (symbolS *s)
25339 {
25340 /* Weak symbols can always be pre-empted. */
25341 if (S_IS_WEAK (s))
25342 return TRUE;
25343
25344 /* Non-global symbols cannot be pre-empted. */
25345 if (! S_IS_EXTERNAL (s))
25346 return FALSE;
25347
25348 #ifdef OBJ_ELF
25349 /* In ELF, a global symbol can be marked protected, or private. In that
25350 case it can't be pre-empted (other definitions in the same link unit
25351 would violate the ODR). */
25352 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25353 return FALSE;
25354 #endif
25355
25356 /* Other global symbols might be pre-empted. */
25357 return TRUE;
25358 }
25359
25360 /* Return the size of a relaxable branch instruction. BITS is the
25361 size of the offset field in the narrow instruction. */
25362
25363 static int
25364 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25365 {
25366 addressT addr;
25367 offsetT val;
25368 offsetT limit;
25369
25370 /* Assume worst case for symbols not known to be in the same section. */
25371 if (!S_IS_DEFINED (fragp->fr_symbol)
25372 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25373 || S_IS_WEAK (fragp->fr_symbol))
25374 return 4;
25375
25376 #ifdef OBJ_ELF
25377 /* A branch to a function in ARM state will require interworking. */
25378 if (S_IS_DEFINED (fragp->fr_symbol)
25379 && ARM_IS_FUNC (fragp->fr_symbol))
25380 return 4;
25381 #endif
25382
25383 if (symbol_preemptible (fragp->fr_symbol))
25384 return 4;
25385
25386 val = relaxed_symbol_addr (fragp, stretch);
25387 addr = fragp->fr_address + fragp->fr_fix + 4;
25388 val -= addr;
25389
25390 /* Offset is a signed value *2 */
25391 limit = 1 << bits;
25392 if (val >= limit || val < -limit)
25393 return 4;
25394 return 2;
25395 }
25396
25397
25398 /* Relax a machine dependent frag. This returns the amount by which
25399 the current size of the frag should change. */
25400
25401 int
25402 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25403 {
25404 int oldsize;
25405 int newsize;
25406
25407 oldsize = fragp->fr_var;
25408 switch (fragp->fr_subtype)
25409 {
25410 case T_MNEM_ldr_pc2:
25411 newsize = relax_adr (fragp, sec, stretch);
25412 break;
25413 case T_MNEM_ldr_pc:
25414 case T_MNEM_ldr_sp:
25415 case T_MNEM_str_sp:
25416 newsize = relax_immediate (fragp, 8, 2);
25417 break;
25418 case T_MNEM_ldr:
25419 case T_MNEM_str:
25420 newsize = relax_immediate (fragp, 5, 2);
25421 break;
25422 case T_MNEM_ldrh:
25423 case T_MNEM_strh:
25424 newsize = relax_immediate (fragp, 5, 1);
25425 break;
25426 case T_MNEM_ldrb:
25427 case T_MNEM_strb:
25428 newsize = relax_immediate (fragp, 5, 0);
25429 break;
25430 case T_MNEM_adr:
25431 newsize = relax_adr (fragp, sec, stretch);
25432 break;
25433 case T_MNEM_mov:
25434 case T_MNEM_movs:
25435 case T_MNEM_cmp:
25436 case T_MNEM_cmn:
25437 newsize = relax_immediate (fragp, 8, 0);
25438 break;
25439 case T_MNEM_b:
25440 newsize = relax_branch (fragp, sec, 11, stretch);
25441 break;
25442 case T_MNEM_bcond:
25443 newsize = relax_branch (fragp, sec, 8, stretch);
25444 break;
25445 case T_MNEM_add_sp:
25446 case T_MNEM_add_pc:
25447 newsize = relax_immediate (fragp, 8, 2);
25448 break;
25449 case T_MNEM_inc_sp:
25450 case T_MNEM_dec_sp:
25451 newsize = relax_immediate (fragp, 7, 2);
25452 break;
25453 case T_MNEM_addi:
25454 case T_MNEM_addis:
25455 case T_MNEM_subi:
25456 case T_MNEM_subis:
25457 newsize = relax_addsub (fragp, sec);
25458 break;
25459 default:
25460 abort ();
25461 }
25462
25463 fragp->fr_var = newsize;
25464 /* Freeze wide instructions that are at or before the same location as
25465 in the previous pass. This avoids infinite loops.
25466 Don't freeze them unconditionally because targets may be artificially
25467 misaligned by the expansion of preceding frags. */
25468 if (stretch <= 0 && newsize > 2)
25469 {
25470 md_convert_frag (sec->owner, sec, fragp);
25471 frag_wane (fragp);
25472 }
25473
25474 return newsize - oldsize;
25475 }
25476
25477 /* Round up a section size to the appropriate boundary. */
25478
25479 valueT
25480 md_section_align (segT segment ATTRIBUTE_UNUSED,
25481 valueT size)
25482 {
25483 return size;
25484 }
25485
25486 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25487 of an rs_align_code fragment. */
25488
25489 void
25490 arm_handle_align (fragS * fragP)
25491 {
25492 static unsigned char const arm_noop[2][2][4] =
25493 {
25494 { /* ARMv1 */
25495 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25496 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25497 },
25498 { /* ARMv6k */
25499 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25500 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25501 },
25502 };
25503 static unsigned char const thumb_noop[2][2][2] =
25504 {
25505 { /* Thumb-1 */
25506 {0xc0, 0x46}, /* LE */
25507 {0x46, 0xc0}, /* BE */
25508 },
25509 { /* Thumb-2 */
25510 {0x00, 0xbf}, /* LE */
25511 {0xbf, 0x00} /* BE */
25512 }
25513 };
25514 static unsigned char const wide_thumb_noop[2][4] =
25515 { /* Wide Thumb-2 */
25516 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25517 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25518 };
25519
25520 unsigned bytes, fix, noop_size;
25521 char * p;
25522 const unsigned char * noop;
25523 const unsigned char *narrow_noop = NULL;
25524 #ifdef OBJ_ELF
25525 enum mstate state;
25526 #endif
25527
25528 if (fragP->fr_type != rs_align_code)
25529 return;
25530
25531 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25532 p = fragP->fr_literal + fragP->fr_fix;
25533 fix = 0;
25534
25535 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25536 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25537
25538 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25539
25540 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25541 {
25542 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25543 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25544 {
25545 narrow_noop = thumb_noop[1][target_big_endian];
25546 noop = wide_thumb_noop[target_big_endian];
25547 }
25548 else
25549 noop = thumb_noop[0][target_big_endian];
25550 noop_size = 2;
25551 #ifdef OBJ_ELF
25552 state = MAP_THUMB;
25553 #endif
25554 }
25555 else
25556 {
25557 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25558 ? selected_cpu : arm_arch_none,
25559 arm_ext_v6k) != 0]
25560 [target_big_endian];
25561 noop_size = 4;
25562 #ifdef OBJ_ELF
25563 state = MAP_ARM;
25564 #endif
25565 }
25566
25567 fragP->fr_var = noop_size;
25568
25569 if (bytes & (noop_size - 1))
25570 {
25571 fix = bytes & (noop_size - 1);
25572 #ifdef OBJ_ELF
25573 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25574 #endif
25575 memset (p, 0, fix);
25576 p += fix;
25577 bytes -= fix;
25578 }
25579
25580 if (narrow_noop)
25581 {
25582 if (bytes & noop_size)
25583 {
25584 /* Insert a narrow noop. */
25585 memcpy (p, narrow_noop, noop_size);
25586 p += noop_size;
25587 bytes -= noop_size;
25588 fix += noop_size;
25589 }
25590
25591 /* Use wide noops for the remainder */
25592 noop_size = 4;
25593 }
25594
25595 while (bytes >= noop_size)
25596 {
25597 memcpy (p, noop, noop_size);
25598 p += noop_size;
25599 bytes -= noop_size;
25600 fix += noop_size;
25601 }
25602
25603 fragP->fr_fix += fix;
25604 }
25605
25606 /* Called from md_do_align. Used to create an alignment
25607 frag in a code section. */
25608
25609 void
25610 arm_frag_align_code (int n, int max)
25611 {
25612 char * p;
25613
25614 /* We assume that there will never be a requirement
25615 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25616 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25617 {
25618 char err_msg[128];
25619
25620 sprintf (err_msg,
25621 _("alignments greater than %d bytes not supported in .text sections."),
25622 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25623 as_fatal ("%s", err_msg);
25624 }
25625
25626 p = frag_var (rs_align_code,
25627 MAX_MEM_FOR_RS_ALIGN_CODE,
25628 1,
25629 (relax_substateT) max,
25630 (symbolS *) NULL,
25631 (offsetT) n,
25632 (char *) NULL);
25633 *p = 0;
25634 }
25635
25636 /* Perform target specific initialisation of a frag.
25637 Note - despite the name this initialisation is not done when the frag
25638 is created, but only when its type is assigned. A frag can be created
25639 and used a long time before its type is set, so beware of assuming that
25640 this initialisation is performed first. */
25641
25642 #ifndef OBJ_ELF
25643 void
25644 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25645 {
25646 /* Record whether this frag is in an ARM or a THUMB area. */
25647 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25648 }
25649
25650 #else /* OBJ_ELF is defined. */
25651 void
25652 arm_init_frag (fragS * fragP, int max_chars)
25653 {
25654 bfd_boolean frag_thumb_mode;
25655
25656 /* If the current ARM vs THUMB mode has not already
25657 been recorded into this frag then do so now. */
25658 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25659 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25660
25661 /* PR 21809: Do not set a mapping state for debug sections
25662 - it just confuses other tools. */
25663 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25664 return;
25665
25666 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25667
25668 /* Record a mapping symbol for alignment frags. We will delete this
25669 later if the alignment ends up empty. */
25670 switch (fragP->fr_type)
25671 {
25672 case rs_align:
25673 case rs_align_test:
25674 case rs_fill:
25675 mapping_state_2 (MAP_DATA, max_chars);
25676 break;
25677 case rs_align_code:
25678 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25679 break;
25680 default:
25681 break;
25682 }
25683 }
25684
25685 /* When we change sections we need to issue a new mapping symbol. */
25686
25687 void
25688 arm_elf_change_section (void)
25689 {
25690 /* Link an unlinked unwind index table section to the .text section. */
25691 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25692 && elf_linked_to_section (now_seg) == NULL)
25693 elf_linked_to_section (now_seg) = text_section;
25694 }
25695
25696 int
25697 arm_elf_section_type (const char * str, size_t len)
25698 {
25699 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25700 return SHT_ARM_EXIDX;
25701
25702 return -1;
25703 }
25704 \f
25705 /* Code to deal with unwinding tables. */
25706
25707 static void add_unwind_adjustsp (offsetT);
25708
25709 /* Generate any deferred unwind frame offset. */
25710
25711 static void
25712 flush_pending_unwind (void)
25713 {
25714 offsetT offset;
25715
25716 offset = unwind.pending_offset;
25717 unwind.pending_offset = 0;
25718 if (offset != 0)
25719 add_unwind_adjustsp (offset);
25720 }
25721
25722 /* Add an opcode to this list for this function. Two-byte opcodes should
25723 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25724 order. */
25725
25726 static void
25727 add_unwind_opcode (valueT op, int length)
25728 {
25729 /* Add any deferred stack adjustment. */
25730 if (unwind.pending_offset)
25731 flush_pending_unwind ();
25732
25733 unwind.sp_restored = 0;
25734
25735 if (unwind.opcode_count + length > unwind.opcode_alloc)
25736 {
25737 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25738 if (unwind.opcodes)
25739 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25740 unwind.opcode_alloc);
25741 else
25742 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25743 }
25744 while (length > 0)
25745 {
25746 length--;
25747 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25748 op >>= 8;
25749 unwind.opcode_count++;
25750 }
25751 }
25752
25753 /* Add unwind opcodes to adjust the stack pointer. */
25754
25755 static void
25756 add_unwind_adjustsp (offsetT offset)
25757 {
25758 valueT op;
25759
25760 if (offset > 0x200)
25761 {
25762 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25763 char bytes[5];
25764 int n;
25765 valueT o;
25766
25767 /* Long form: 0xb2, uleb128. */
25768 /* This might not fit in a word so add the individual bytes,
25769 remembering the list is built in reverse order. */
25770 o = (valueT) ((offset - 0x204) >> 2);
25771 if (o == 0)
25772 add_unwind_opcode (0, 1);
25773
25774 /* Calculate the uleb128 encoding of the offset. */
25775 n = 0;
25776 while (o)
25777 {
25778 bytes[n] = o & 0x7f;
25779 o >>= 7;
25780 if (o)
25781 bytes[n] |= 0x80;
25782 n++;
25783 }
25784 /* Add the insn. */
25785 for (; n; n--)
25786 add_unwind_opcode (bytes[n - 1], 1);
25787 add_unwind_opcode (0xb2, 1);
25788 }
25789 else if (offset > 0x100)
25790 {
25791 /* Two short opcodes. */
25792 add_unwind_opcode (0x3f, 1);
25793 op = (offset - 0x104) >> 2;
25794 add_unwind_opcode (op, 1);
25795 }
25796 else if (offset > 0)
25797 {
25798 /* Short opcode. */
25799 op = (offset - 4) >> 2;
25800 add_unwind_opcode (op, 1);
25801 }
25802 else if (offset < 0)
25803 {
25804 offset = -offset;
25805 while (offset > 0x100)
25806 {
25807 add_unwind_opcode (0x7f, 1);
25808 offset -= 0x100;
25809 }
25810 op = ((offset - 4) >> 2) | 0x40;
25811 add_unwind_opcode (op, 1);
25812 }
25813 }
25814
25815 /* Finish the list of unwind opcodes for this function. */
25816
25817 static void
25818 finish_unwind_opcodes (void)
25819 {
25820 valueT op;
25821
25822 if (unwind.fp_used)
25823 {
25824 /* Adjust sp as necessary. */
25825 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25826 flush_pending_unwind ();
25827
25828 /* After restoring sp from the frame pointer. */
25829 op = 0x90 | unwind.fp_reg;
25830 add_unwind_opcode (op, 1);
25831 }
25832 else
25833 flush_pending_unwind ();
25834 }
25835
25836
25837 /* Start an exception table entry. If idx is nonzero this is an index table
25838 entry. */
25839
25840 static void
25841 start_unwind_section (const segT text_seg, int idx)
25842 {
25843 const char * text_name;
25844 const char * prefix;
25845 const char * prefix_once;
25846 const char * group_name;
25847 char * sec_name;
25848 int type;
25849 int flags;
25850 int linkonce;
25851
25852 if (idx)
25853 {
25854 prefix = ELF_STRING_ARM_unwind;
25855 prefix_once = ELF_STRING_ARM_unwind_once;
25856 type = SHT_ARM_EXIDX;
25857 }
25858 else
25859 {
25860 prefix = ELF_STRING_ARM_unwind_info;
25861 prefix_once = ELF_STRING_ARM_unwind_info_once;
25862 type = SHT_PROGBITS;
25863 }
25864
25865 text_name = segment_name (text_seg);
25866 if (streq (text_name, ".text"))
25867 text_name = "";
25868
25869 if (strncmp (text_name, ".gnu.linkonce.t.",
25870 strlen (".gnu.linkonce.t.")) == 0)
25871 {
25872 prefix = prefix_once;
25873 text_name += strlen (".gnu.linkonce.t.");
25874 }
25875
25876 sec_name = concat (prefix, text_name, (char *) NULL);
25877
25878 flags = SHF_ALLOC;
25879 linkonce = 0;
25880 group_name = 0;
25881
25882 /* Handle COMDAT group. */
25883 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25884 {
25885 group_name = elf_group_name (text_seg);
25886 if (group_name == NULL)
25887 {
25888 as_bad (_("Group section `%s' has no group signature"),
25889 segment_name (text_seg));
25890 ignore_rest_of_line ();
25891 return;
25892 }
25893 flags |= SHF_GROUP;
25894 linkonce = 1;
25895 }
25896
25897 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25898 linkonce, 0);
25899
25900 /* Set the section link for index tables. */
25901 if (idx)
25902 elf_linked_to_section (now_seg) = text_seg;
25903 }
25904
25905
25906 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25907 personality routine data. Returns zero, or the index table value for
25908 an inline entry. */
25909
25910 static valueT
25911 create_unwind_entry (int have_data)
25912 {
25913 int size;
25914 addressT where;
25915 char *ptr;
25916 /* The current word of data. */
25917 valueT data;
25918 /* The number of bytes left in this word. */
25919 int n;
25920
25921 finish_unwind_opcodes ();
25922
25923 /* Remember the current text section. */
25924 unwind.saved_seg = now_seg;
25925 unwind.saved_subseg = now_subseg;
25926
25927 start_unwind_section (now_seg, 0);
25928
25929 if (unwind.personality_routine == NULL)
25930 {
25931 if (unwind.personality_index == -2)
25932 {
25933 if (have_data)
25934 as_bad (_("handlerdata in cantunwind frame"));
25935 return 1; /* EXIDX_CANTUNWIND. */
25936 }
25937
25938 /* Use a default personality routine if none is specified. */
25939 if (unwind.personality_index == -1)
25940 {
25941 if (unwind.opcode_count > 3)
25942 unwind.personality_index = 1;
25943 else
25944 unwind.personality_index = 0;
25945 }
25946
25947 /* Space for the personality routine entry. */
25948 if (unwind.personality_index == 0)
25949 {
25950 if (unwind.opcode_count > 3)
25951 as_bad (_("too many unwind opcodes for personality routine 0"));
25952
25953 if (!have_data)
25954 {
25955 /* All the data is inline in the index table. */
25956 data = 0x80;
25957 n = 3;
25958 while (unwind.opcode_count > 0)
25959 {
25960 unwind.opcode_count--;
25961 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25962 n--;
25963 }
25964
25965 /* Pad with "finish" opcodes. */
25966 while (n--)
25967 data = (data << 8) | 0xb0;
25968
25969 return data;
25970 }
25971 size = 0;
25972 }
25973 else
25974 /* We get two opcodes "free" in the first word. */
25975 size = unwind.opcode_count - 2;
25976 }
25977 else
25978 {
25979 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25980 if (unwind.personality_index != -1)
25981 {
25982 as_bad (_("attempt to recreate an unwind entry"));
25983 return 1;
25984 }
25985
25986 /* An extra byte is required for the opcode count. */
25987 size = unwind.opcode_count + 1;
25988 }
25989
25990 size = (size + 3) >> 2;
25991 if (size > 0xff)
25992 as_bad (_("too many unwind opcodes"));
25993
25994 frag_align (2, 0, 0);
25995 record_alignment (now_seg, 2);
25996 unwind.table_entry = expr_build_dot ();
25997
25998 /* Allocate the table entry. */
25999 ptr = frag_more ((size << 2) + 4);
26000 /* PR 13449: Zero the table entries in case some of them are not used. */
26001 memset (ptr, 0, (size << 2) + 4);
26002 where = frag_now_fix () - ((size << 2) + 4);
26003
26004 switch (unwind.personality_index)
26005 {
26006 case -1:
26007 /* ??? Should this be a PLT generating relocation? */
26008 /* Custom personality routine. */
26009 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26010 BFD_RELOC_ARM_PREL31);
26011
26012 where += 4;
26013 ptr += 4;
26014
26015 /* Set the first byte to the number of additional words. */
26016 data = size > 0 ? size - 1 : 0;
26017 n = 3;
26018 break;
26019
26020 /* ABI defined personality routines. */
26021 case 0:
26022 /* Three opcodes bytes are packed into the first word. */
26023 data = 0x80;
26024 n = 3;
26025 break;
26026
26027 case 1:
26028 case 2:
26029 /* The size and first two opcode bytes go in the first word. */
26030 data = ((0x80 + unwind.personality_index) << 8) | size;
26031 n = 2;
26032 break;
26033
26034 default:
26035 /* Should never happen. */
26036 abort ();
26037 }
26038
26039 /* Pack the opcodes into words (MSB first), reversing the list at the same
26040 time. */
26041 while (unwind.opcode_count > 0)
26042 {
26043 if (n == 0)
26044 {
26045 md_number_to_chars (ptr, data, 4);
26046 ptr += 4;
26047 n = 4;
26048 data = 0;
26049 }
26050 unwind.opcode_count--;
26051 n--;
26052 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26053 }
26054
26055 /* Finish off the last word. */
26056 if (n < 4)
26057 {
26058 /* Pad with "finish" opcodes. */
26059 while (n--)
26060 data = (data << 8) | 0xb0;
26061
26062 md_number_to_chars (ptr, data, 4);
26063 }
26064
26065 if (!have_data)
26066 {
26067 /* Add an empty descriptor if there is no user-specified data. */
26068 ptr = frag_more (4);
26069 md_number_to_chars (ptr, 0, 4);
26070 }
26071
26072 return 0;
26073 }
26074
26075
26076 /* Initialize the DWARF-2 unwind information for this procedure. */
26077
26078 void
26079 tc_arm_frame_initial_instructions (void)
26080 {
26081 cfi_add_CFA_def_cfa (REG_SP, 0);
26082 }
26083 #endif /* OBJ_ELF */
26084
26085 /* Convert REGNAME to a DWARF-2 register number. */
26086
26087 int
26088 tc_arm_regname_to_dw2regnum (char *regname)
26089 {
26090 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26091 if (reg != FAIL)
26092 return reg;
26093
26094 /* PR 16694: Allow VFP registers as well. */
26095 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26096 if (reg != FAIL)
26097 return 64 + reg;
26098
26099 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26100 if (reg != FAIL)
26101 return reg + 256;
26102
26103 return FAIL;
26104 }
26105
26106 #ifdef TE_PE
26107 void
26108 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26109 {
26110 expressionS exp;
26111
26112 exp.X_op = O_secrel;
26113 exp.X_add_symbol = symbol;
26114 exp.X_add_number = 0;
26115 emit_expr (&exp, size);
26116 }
26117 #endif
26118
26119 /* MD interface: Symbol and relocation handling. */
26120
26121 /* Return the address within the segment that a PC-relative fixup is
26122 relative to. For ARM, PC-relative fixups applied to instructions
26123 are generally relative to the location of the fixup plus 8 bytes.
26124 Thumb branches are offset by 4, and Thumb loads relative to PC
26125 require special handling. */
26126
26127 long
26128 md_pcrel_from_section (fixS * fixP, segT seg)
26129 {
26130 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26131
26132 /* If this is pc-relative and we are going to emit a relocation
26133 then we just want to put out any pipeline compensation that the linker
26134 will need. Otherwise we want to use the calculated base.
26135 For WinCE we skip the bias for externals as well, since this
26136 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26137 if (fixP->fx_pcrel
26138 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26139 || (arm_force_relocation (fixP)
26140 #ifdef TE_WINCE
26141 && !S_IS_EXTERNAL (fixP->fx_addsy)
26142 #endif
26143 )))
26144 base = 0;
26145
26146
26147 switch (fixP->fx_r_type)
26148 {
26149 /* PC relative addressing on the Thumb is slightly odd as the
26150 bottom two bits of the PC are forced to zero for the
26151 calculation. This happens *after* application of the
26152 pipeline offset. However, Thumb adrl already adjusts for
26153 this, so we need not do it again. */
26154 case BFD_RELOC_ARM_THUMB_ADD:
26155 return base & ~3;
26156
26157 case BFD_RELOC_ARM_THUMB_OFFSET:
26158 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26159 case BFD_RELOC_ARM_T32_ADD_PC12:
26160 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26161 return (base + 4) & ~3;
26162
26163 /* Thumb branches are simply offset by +4. */
26164 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26165 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26166 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26167 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26168 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26169 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26170 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26171 case BFD_RELOC_ARM_THUMB_BF17:
26172 case BFD_RELOC_ARM_THUMB_BF19:
26173 case BFD_RELOC_ARM_THUMB_BF13:
26174 case BFD_RELOC_ARM_THUMB_LOOP12:
26175 return base + 4;
26176
26177 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26178 if (fixP->fx_addsy
26179 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26180 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26181 && ARM_IS_FUNC (fixP->fx_addsy)
26182 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26183 base = fixP->fx_where + fixP->fx_frag->fr_address;
26184 return base + 4;
26185
26186 /* BLX is like branches above, but forces the low two bits of PC to
26187 zero. */
26188 case BFD_RELOC_THUMB_PCREL_BLX:
26189 if (fixP->fx_addsy
26190 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26191 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26192 && THUMB_IS_FUNC (fixP->fx_addsy)
26193 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26194 base = fixP->fx_where + fixP->fx_frag->fr_address;
26195 return (base + 4) & ~3;
26196
26197 /* ARM mode branches are offset by +8. However, the Windows CE
26198 loader expects the relocation not to take this into account. */
26199 case BFD_RELOC_ARM_PCREL_BLX:
26200 if (fixP->fx_addsy
26201 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26202 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26203 && ARM_IS_FUNC (fixP->fx_addsy)
26204 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26205 base = fixP->fx_where + fixP->fx_frag->fr_address;
26206 return base + 8;
26207
26208 case BFD_RELOC_ARM_PCREL_CALL:
26209 if (fixP->fx_addsy
26210 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26211 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26212 && THUMB_IS_FUNC (fixP->fx_addsy)
26213 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26214 base = fixP->fx_where + fixP->fx_frag->fr_address;
26215 return base + 8;
26216
26217 case BFD_RELOC_ARM_PCREL_BRANCH:
26218 case BFD_RELOC_ARM_PCREL_JUMP:
26219 case BFD_RELOC_ARM_PLT32:
26220 #ifdef TE_WINCE
26221 /* When handling fixups immediately, because we have already
26222 discovered the value of a symbol, or the address of the frag involved
26223 we must account for the offset by +8, as the OS loader will never see the reloc.
26224 see fixup_segment() in write.c
26225 The S_IS_EXTERNAL test handles the case of global symbols.
26226 Those need the calculated base, not just the pipe compensation the linker will need. */
26227 if (fixP->fx_pcrel
26228 && fixP->fx_addsy != NULL
26229 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26230 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26231 return base + 8;
26232 return base;
26233 #else
26234 return base + 8;
26235 #endif
26236
26237
26238 /* ARM mode loads relative to PC are also offset by +8. Unlike
26239 branches, the Windows CE loader *does* expect the relocation
26240 to take this into account. */
26241 case BFD_RELOC_ARM_OFFSET_IMM:
26242 case BFD_RELOC_ARM_OFFSET_IMM8:
26243 case BFD_RELOC_ARM_HWLITERAL:
26244 case BFD_RELOC_ARM_LITERAL:
26245 case BFD_RELOC_ARM_CP_OFF_IMM:
26246 return base + 8;
26247
26248
26249 /* Other PC-relative relocations are un-offset. */
26250 default:
26251 return base;
26252 }
26253 }
26254
26255 static bfd_boolean flag_warn_syms = TRUE;
26256
26257 bfd_boolean
26258 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26259 {
26260 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26261 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26262 does mean that the resulting code might be very confusing to the reader.
26263 Also this warning can be triggered if the user omits an operand before
26264 an immediate address, eg:
26265
26266 LDR =foo
26267
26268 GAS treats this as an assignment of the value of the symbol foo to a
26269 symbol LDR, and so (without this code) it will not issue any kind of
26270 warning or error message.
26271
26272 Note - ARM instructions are case-insensitive but the strings in the hash
26273 table are all stored in lower case, so we must first ensure that name is
26274 lower case too. */
26275 if (flag_warn_syms && arm_ops_hsh)
26276 {
26277 char * nbuf = strdup (name);
26278 char * p;
26279
26280 for (p = nbuf; *p; p++)
26281 *p = TOLOWER (*p);
26282 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26283 {
26284 static struct hash_control * already_warned = NULL;
26285
26286 if (already_warned == NULL)
26287 already_warned = hash_new ();
26288 /* Only warn about the symbol once. To keep the code
26289 simple we let hash_insert do the lookup for us. */
26290 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26291 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26292 }
26293 else
26294 free (nbuf);
26295 }
26296
26297 return FALSE;
26298 }
26299
26300 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26301 Otherwise we have no need to default values of symbols. */
26302
26303 symbolS *
26304 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26305 {
26306 #ifdef OBJ_ELF
26307 if (name[0] == '_' && name[1] == 'G'
26308 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26309 {
26310 if (!GOT_symbol)
26311 {
26312 if (symbol_find (name))
26313 as_bad (_("GOT already in the symbol table"));
26314
26315 GOT_symbol = symbol_new (name, undefined_section,
26316 (valueT) 0, & zero_address_frag);
26317 }
26318
26319 return GOT_symbol;
26320 }
26321 #endif
26322
26323 return NULL;
26324 }
26325
26326 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26327 computed as two separate immediate values, added together. We
26328 already know that this value cannot be computed by just one ARM
26329 instruction. */
26330
26331 static unsigned int
26332 validate_immediate_twopart (unsigned int val,
26333 unsigned int * highpart)
26334 {
26335 unsigned int a;
26336 unsigned int i;
26337
26338 for (i = 0; i < 32; i += 2)
26339 if (((a = rotate_left (val, i)) & 0xff) != 0)
26340 {
26341 if (a & 0xff00)
26342 {
26343 if (a & ~ 0xffff)
26344 continue;
26345 * highpart = (a >> 8) | ((i + 24) << 7);
26346 }
26347 else if (a & 0xff0000)
26348 {
26349 if (a & 0xff000000)
26350 continue;
26351 * highpart = (a >> 16) | ((i + 16) << 7);
26352 }
26353 else
26354 {
26355 gas_assert (a & 0xff000000);
26356 * highpart = (a >> 24) | ((i + 8) << 7);
26357 }
26358
26359 return (a & 0xff) | (i << 7);
26360 }
26361
26362 return FAIL;
26363 }
26364
26365 static int
26366 validate_offset_imm (unsigned int val, int hwse)
26367 {
26368 if ((hwse && val > 255) || val > 4095)
26369 return FAIL;
26370 return val;
26371 }
26372
26373 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26374 negative immediate constant by altering the instruction. A bit of
26375 a hack really.
26376 MOV <-> MVN
26377 AND <-> BIC
26378 ADC <-> SBC
26379 by inverting the second operand, and
26380 ADD <-> SUB
26381 CMP <-> CMN
26382 by negating the second operand. */
26383
26384 static int
26385 negate_data_op (unsigned long * instruction,
26386 unsigned long value)
26387 {
26388 int op, new_inst;
26389 unsigned long negated, inverted;
26390
26391 negated = encode_arm_immediate (-value);
26392 inverted = encode_arm_immediate (~value);
26393
26394 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26395 switch (op)
26396 {
26397 /* First negates. */
26398 case OPCODE_SUB: /* ADD <-> SUB */
26399 new_inst = OPCODE_ADD;
26400 value = negated;
26401 break;
26402
26403 case OPCODE_ADD:
26404 new_inst = OPCODE_SUB;
26405 value = negated;
26406 break;
26407
26408 case OPCODE_CMP: /* CMP <-> CMN */
26409 new_inst = OPCODE_CMN;
26410 value = negated;
26411 break;
26412
26413 case OPCODE_CMN:
26414 new_inst = OPCODE_CMP;
26415 value = negated;
26416 break;
26417
26418 /* Now Inverted ops. */
26419 case OPCODE_MOV: /* MOV <-> MVN */
26420 new_inst = OPCODE_MVN;
26421 value = inverted;
26422 break;
26423
26424 case OPCODE_MVN:
26425 new_inst = OPCODE_MOV;
26426 value = inverted;
26427 break;
26428
26429 case OPCODE_AND: /* AND <-> BIC */
26430 new_inst = OPCODE_BIC;
26431 value = inverted;
26432 break;
26433
26434 case OPCODE_BIC:
26435 new_inst = OPCODE_AND;
26436 value = inverted;
26437 break;
26438
26439 case OPCODE_ADC: /* ADC <-> SBC */
26440 new_inst = OPCODE_SBC;
26441 value = inverted;
26442 break;
26443
26444 case OPCODE_SBC:
26445 new_inst = OPCODE_ADC;
26446 value = inverted;
26447 break;
26448
26449 /* We cannot do anything. */
26450 default:
26451 return FAIL;
26452 }
26453
26454 if (value == (unsigned) FAIL)
26455 return FAIL;
26456
26457 *instruction &= OPCODE_MASK;
26458 *instruction |= new_inst << DATA_OP_SHIFT;
26459 return value;
26460 }
26461
26462 /* Like negate_data_op, but for Thumb-2. */
26463
26464 static unsigned int
26465 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26466 {
26467 int op, new_inst;
26468 int rd;
26469 unsigned int negated, inverted;
26470
26471 negated = encode_thumb32_immediate (-value);
26472 inverted = encode_thumb32_immediate (~value);
26473
26474 rd = (*instruction >> 8) & 0xf;
26475 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26476 switch (op)
26477 {
26478 /* ADD <-> SUB. Includes CMP <-> CMN. */
26479 case T2_OPCODE_SUB:
26480 new_inst = T2_OPCODE_ADD;
26481 value = negated;
26482 break;
26483
26484 case T2_OPCODE_ADD:
26485 new_inst = T2_OPCODE_SUB;
26486 value = negated;
26487 break;
26488
26489 /* ORR <-> ORN. Includes MOV <-> MVN. */
26490 case T2_OPCODE_ORR:
26491 new_inst = T2_OPCODE_ORN;
26492 value = inverted;
26493 break;
26494
26495 case T2_OPCODE_ORN:
26496 new_inst = T2_OPCODE_ORR;
26497 value = inverted;
26498 break;
26499
26500 /* AND <-> BIC. TST has no inverted equivalent. */
26501 case T2_OPCODE_AND:
26502 new_inst = T2_OPCODE_BIC;
26503 if (rd == 15)
26504 value = FAIL;
26505 else
26506 value = inverted;
26507 break;
26508
26509 case T2_OPCODE_BIC:
26510 new_inst = T2_OPCODE_AND;
26511 value = inverted;
26512 break;
26513
26514 /* ADC <-> SBC */
26515 case T2_OPCODE_ADC:
26516 new_inst = T2_OPCODE_SBC;
26517 value = inverted;
26518 break;
26519
26520 case T2_OPCODE_SBC:
26521 new_inst = T2_OPCODE_ADC;
26522 value = inverted;
26523 break;
26524
26525 /* We cannot do anything. */
26526 default:
26527 return FAIL;
26528 }
26529
26530 if (value == (unsigned int)FAIL)
26531 return FAIL;
26532
26533 *instruction &= T2_OPCODE_MASK;
26534 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26535 return value;
26536 }
26537
26538 /* Read a 32-bit thumb instruction from buf. */
26539
26540 static unsigned long
26541 get_thumb32_insn (char * buf)
26542 {
26543 unsigned long insn;
26544 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26545 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26546
26547 return insn;
26548 }
26549
26550 /* We usually want to set the low bit on the address of thumb function
26551 symbols. In particular .word foo - . should have the low bit set.
26552 Generic code tries to fold the difference of two symbols to
26553 a constant. Prevent this and force a relocation when the first symbols
26554 is a thumb function. */
26555
26556 bfd_boolean
26557 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26558 {
26559 if (op == O_subtract
26560 && l->X_op == O_symbol
26561 && r->X_op == O_symbol
26562 && THUMB_IS_FUNC (l->X_add_symbol))
26563 {
26564 l->X_op = O_subtract;
26565 l->X_op_symbol = r->X_add_symbol;
26566 l->X_add_number -= r->X_add_number;
26567 return TRUE;
26568 }
26569
26570 /* Process as normal. */
26571 return FALSE;
26572 }
26573
26574 /* Encode Thumb2 unconditional branches and calls. The encoding
26575 for the 2 are identical for the immediate values. */
26576
26577 static void
26578 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26579 {
26580 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26581 offsetT newval;
26582 offsetT newval2;
26583 addressT S, I1, I2, lo, hi;
26584
26585 S = (value >> 24) & 0x01;
26586 I1 = (value >> 23) & 0x01;
26587 I2 = (value >> 22) & 0x01;
26588 hi = (value >> 12) & 0x3ff;
26589 lo = (value >> 1) & 0x7ff;
26590 newval = md_chars_to_number (buf, THUMB_SIZE);
26591 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26592 newval |= (S << 10) | hi;
26593 newval2 &= ~T2I1I2MASK;
26594 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26595 md_number_to_chars (buf, newval, THUMB_SIZE);
26596 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26597 }
26598
26599 void
26600 md_apply_fix (fixS * fixP,
26601 valueT * valP,
26602 segT seg)
26603 {
26604 offsetT value = * valP;
26605 offsetT newval;
26606 unsigned int newimm;
26607 unsigned long temp;
26608 int sign;
26609 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26610
26611 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26612
26613 /* Note whether this will delete the relocation. */
26614
26615 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26616 fixP->fx_done = 1;
26617
26618 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26619 consistency with the behaviour on 32-bit hosts. Remember value
26620 for emit_reloc. */
26621 value &= 0xffffffff;
26622 value ^= 0x80000000;
26623 value -= 0x80000000;
26624
26625 *valP = value;
26626 fixP->fx_addnumber = value;
26627
26628 /* Same treatment for fixP->fx_offset. */
26629 fixP->fx_offset &= 0xffffffff;
26630 fixP->fx_offset ^= 0x80000000;
26631 fixP->fx_offset -= 0x80000000;
26632
26633 switch (fixP->fx_r_type)
26634 {
26635 case BFD_RELOC_NONE:
26636 /* This will need to go in the object file. */
26637 fixP->fx_done = 0;
26638 break;
26639
26640 case BFD_RELOC_ARM_IMMEDIATE:
26641 /* We claim that this fixup has been processed here,
26642 even if in fact we generate an error because we do
26643 not have a reloc for it, so tc_gen_reloc will reject it. */
26644 fixP->fx_done = 1;
26645
26646 if (fixP->fx_addsy)
26647 {
26648 const char *msg = 0;
26649
26650 if (! S_IS_DEFINED (fixP->fx_addsy))
26651 msg = _("undefined symbol %s used as an immediate value");
26652 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26653 msg = _("symbol %s is in a different section");
26654 else if (S_IS_WEAK (fixP->fx_addsy))
26655 msg = _("symbol %s is weak and may be overridden later");
26656
26657 if (msg)
26658 {
26659 as_bad_where (fixP->fx_file, fixP->fx_line,
26660 msg, S_GET_NAME (fixP->fx_addsy));
26661 break;
26662 }
26663 }
26664
26665 temp = md_chars_to_number (buf, INSN_SIZE);
26666
26667 /* If the offset is negative, we should use encoding A2 for ADR. */
26668 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26669 newimm = negate_data_op (&temp, value);
26670 else
26671 {
26672 newimm = encode_arm_immediate (value);
26673
26674 /* If the instruction will fail, see if we can fix things up by
26675 changing the opcode. */
26676 if (newimm == (unsigned int) FAIL)
26677 newimm = negate_data_op (&temp, value);
26678 /* MOV accepts both ARM modified immediate (A1 encoding) and
26679 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26680 When disassembling, MOV is preferred when there is no encoding
26681 overlap. */
26682 if (newimm == (unsigned int) FAIL
26683 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26684 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26685 && !((temp >> SBIT_SHIFT) & 0x1)
26686 && value >= 0 && value <= 0xffff)
26687 {
26688 /* Clear bits[23:20] to change encoding from A1 to A2. */
26689 temp &= 0xff0fffff;
26690 /* Encoding high 4bits imm. Code below will encode the remaining
26691 low 12bits. */
26692 temp |= (value & 0x0000f000) << 4;
26693 newimm = value & 0x00000fff;
26694 }
26695 }
26696
26697 if (newimm == (unsigned int) FAIL)
26698 {
26699 as_bad_where (fixP->fx_file, fixP->fx_line,
26700 _("invalid constant (%lx) after fixup"),
26701 (unsigned long) value);
26702 break;
26703 }
26704
26705 newimm |= (temp & 0xfffff000);
26706 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26707 break;
26708
26709 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26710 {
26711 unsigned int highpart = 0;
26712 unsigned int newinsn = 0xe1a00000; /* nop. */
26713
26714 if (fixP->fx_addsy)
26715 {
26716 const char *msg = 0;
26717
26718 if (! S_IS_DEFINED (fixP->fx_addsy))
26719 msg = _("undefined symbol %s used as an immediate value");
26720 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26721 msg = _("symbol %s is in a different section");
26722 else if (S_IS_WEAK (fixP->fx_addsy))
26723 msg = _("symbol %s is weak and may be overridden later");
26724
26725 if (msg)
26726 {
26727 as_bad_where (fixP->fx_file, fixP->fx_line,
26728 msg, S_GET_NAME (fixP->fx_addsy));
26729 break;
26730 }
26731 }
26732
26733 newimm = encode_arm_immediate (value);
26734 temp = md_chars_to_number (buf, INSN_SIZE);
26735
26736 /* If the instruction will fail, see if we can fix things up by
26737 changing the opcode. */
26738 if (newimm == (unsigned int) FAIL
26739 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26740 {
26741 /* No ? OK - try using two ADD instructions to generate
26742 the value. */
26743 newimm = validate_immediate_twopart (value, & highpart);
26744
26745 /* Yes - then make sure that the second instruction is
26746 also an add. */
26747 if (newimm != (unsigned int) FAIL)
26748 newinsn = temp;
26749 /* Still No ? Try using a negated value. */
26750 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26751 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26752 /* Otherwise - give up. */
26753 else
26754 {
26755 as_bad_where (fixP->fx_file, fixP->fx_line,
26756 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26757 (long) value);
26758 break;
26759 }
26760
26761 /* Replace the first operand in the 2nd instruction (which
26762 is the PC) with the destination register. We have
26763 already added in the PC in the first instruction and we
26764 do not want to do it again. */
26765 newinsn &= ~ 0xf0000;
26766 newinsn |= ((newinsn & 0x0f000) << 4);
26767 }
26768
26769 newimm |= (temp & 0xfffff000);
26770 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26771
26772 highpart |= (newinsn & 0xfffff000);
26773 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26774 }
26775 break;
26776
26777 case BFD_RELOC_ARM_OFFSET_IMM:
26778 if (!fixP->fx_done && seg->use_rela_p)
26779 value = 0;
26780 /* Fall through. */
26781
26782 case BFD_RELOC_ARM_LITERAL:
26783 sign = value > 0;
26784
26785 if (value < 0)
26786 value = - value;
26787
26788 if (validate_offset_imm (value, 0) == FAIL)
26789 {
26790 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26791 as_bad_where (fixP->fx_file, fixP->fx_line,
26792 _("invalid literal constant: pool needs to be closer"));
26793 else
26794 as_bad_where (fixP->fx_file, fixP->fx_line,
26795 _("bad immediate value for offset (%ld)"),
26796 (long) value);
26797 break;
26798 }
26799
26800 newval = md_chars_to_number (buf, INSN_SIZE);
26801 if (value == 0)
26802 newval &= 0xfffff000;
26803 else
26804 {
26805 newval &= 0xff7ff000;
26806 newval |= value | (sign ? INDEX_UP : 0);
26807 }
26808 md_number_to_chars (buf, newval, INSN_SIZE);
26809 break;
26810
26811 case BFD_RELOC_ARM_OFFSET_IMM8:
26812 case BFD_RELOC_ARM_HWLITERAL:
26813 sign = value > 0;
26814
26815 if (value < 0)
26816 value = - value;
26817
26818 if (validate_offset_imm (value, 1) == FAIL)
26819 {
26820 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26821 as_bad_where (fixP->fx_file, fixP->fx_line,
26822 _("invalid literal constant: pool needs to be closer"));
26823 else
26824 as_bad_where (fixP->fx_file, fixP->fx_line,
26825 _("bad immediate value for 8-bit offset (%ld)"),
26826 (long) value);
26827 break;
26828 }
26829
26830 newval = md_chars_to_number (buf, INSN_SIZE);
26831 if (value == 0)
26832 newval &= 0xfffff0f0;
26833 else
26834 {
26835 newval &= 0xff7ff0f0;
26836 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26837 }
26838 md_number_to_chars (buf, newval, INSN_SIZE);
26839 break;
26840
26841 case BFD_RELOC_ARM_T32_OFFSET_U8:
26842 if (value < 0 || value > 1020 || value % 4 != 0)
26843 as_bad_where (fixP->fx_file, fixP->fx_line,
26844 _("bad immediate value for offset (%ld)"), (long) value);
26845 value /= 4;
26846
26847 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26848 newval |= value;
26849 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26850 break;
26851
26852 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26853 /* This is a complicated relocation used for all varieties of Thumb32
26854 load/store instruction with immediate offset:
26855
26856 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26857 *4, optional writeback(W)
26858 (doubleword load/store)
26859
26860 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26861 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26862 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26863 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26864 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26865
26866 Uppercase letters indicate bits that are already encoded at
26867 this point. Lowercase letters are our problem. For the
26868 second block of instructions, the secondary opcode nybble
26869 (bits 8..11) is present, and bit 23 is zero, even if this is
26870 a PC-relative operation. */
26871 newval = md_chars_to_number (buf, THUMB_SIZE);
26872 newval <<= 16;
26873 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26874
26875 if ((newval & 0xf0000000) == 0xe0000000)
26876 {
26877 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26878 if (value >= 0)
26879 newval |= (1 << 23);
26880 else
26881 value = -value;
26882 if (value % 4 != 0)
26883 {
26884 as_bad_where (fixP->fx_file, fixP->fx_line,
26885 _("offset not a multiple of 4"));
26886 break;
26887 }
26888 value /= 4;
26889 if (value > 0xff)
26890 {
26891 as_bad_where (fixP->fx_file, fixP->fx_line,
26892 _("offset out of range"));
26893 break;
26894 }
26895 newval &= ~0xff;
26896 }
26897 else if ((newval & 0x000f0000) == 0x000f0000)
26898 {
26899 /* PC-relative, 12-bit offset. */
26900 if (value >= 0)
26901 newval |= (1 << 23);
26902 else
26903 value = -value;
26904 if (value > 0xfff)
26905 {
26906 as_bad_where (fixP->fx_file, fixP->fx_line,
26907 _("offset out of range"));
26908 break;
26909 }
26910 newval &= ~0xfff;
26911 }
26912 else if ((newval & 0x00000100) == 0x00000100)
26913 {
26914 /* Writeback: 8-bit, +/- offset. */
26915 if (value >= 0)
26916 newval |= (1 << 9);
26917 else
26918 value = -value;
26919 if (value > 0xff)
26920 {
26921 as_bad_where (fixP->fx_file, fixP->fx_line,
26922 _("offset out of range"));
26923 break;
26924 }
26925 newval &= ~0xff;
26926 }
26927 else if ((newval & 0x00000f00) == 0x00000e00)
26928 {
26929 /* T-instruction: positive 8-bit offset. */
26930 if (value < 0 || value > 0xff)
26931 {
26932 as_bad_where (fixP->fx_file, fixP->fx_line,
26933 _("offset out of range"));
26934 break;
26935 }
26936 newval &= ~0xff;
26937 newval |= value;
26938 }
26939 else
26940 {
26941 /* Positive 12-bit or negative 8-bit offset. */
26942 int limit;
26943 if (value >= 0)
26944 {
26945 newval |= (1 << 23);
26946 limit = 0xfff;
26947 }
26948 else
26949 {
26950 value = -value;
26951 limit = 0xff;
26952 }
26953 if (value > limit)
26954 {
26955 as_bad_where (fixP->fx_file, fixP->fx_line,
26956 _("offset out of range"));
26957 break;
26958 }
26959 newval &= ~limit;
26960 }
26961
26962 newval |= value;
26963 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26964 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26965 break;
26966
26967 case BFD_RELOC_ARM_SHIFT_IMM:
26968 newval = md_chars_to_number (buf, INSN_SIZE);
26969 if (((unsigned long) value) > 32
26970 || (value == 32
26971 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26972 {
26973 as_bad_where (fixP->fx_file, fixP->fx_line,
26974 _("shift expression is too large"));
26975 break;
26976 }
26977
26978 if (value == 0)
26979 /* Shifts of zero must be done as lsl. */
26980 newval &= ~0x60;
26981 else if (value == 32)
26982 value = 0;
26983 newval &= 0xfffff07f;
26984 newval |= (value & 0x1f) << 7;
26985 md_number_to_chars (buf, newval, INSN_SIZE);
26986 break;
26987
26988 case BFD_RELOC_ARM_T32_IMMEDIATE:
26989 case BFD_RELOC_ARM_T32_ADD_IMM:
26990 case BFD_RELOC_ARM_T32_IMM12:
26991 case BFD_RELOC_ARM_T32_ADD_PC12:
26992 /* We claim that this fixup has been processed here,
26993 even if in fact we generate an error because we do
26994 not have a reloc for it, so tc_gen_reloc will reject it. */
26995 fixP->fx_done = 1;
26996
26997 if (fixP->fx_addsy
26998 && ! S_IS_DEFINED (fixP->fx_addsy))
26999 {
27000 as_bad_where (fixP->fx_file, fixP->fx_line,
27001 _("undefined symbol %s used as an immediate value"),
27002 S_GET_NAME (fixP->fx_addsy));
27003 break;
27004 }
27005
27006 newval = md_chars_to_number (buf, THUMB_SIZE);
27007 newval <<= 16;
27008 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27009
27010 newimm = FAIL;
27011 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27012 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27013 Thumb2 modified immediate encoding (T2). */
27014 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27015 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27016 {
27017 newimm = encode_thumb32_immediate (value);
27018 if (newimm == (unsigned int) FAIL)
27019 newimm = thumb32_negate_data_op (&newval, value);
27020 }
27021 if (newimm == (unsigned int) FAIL)
27022 {
27023 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27024 {
27025 /* Turn add/sum into addw/subw. */
27026 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27027 newval = (newval & 0xfeffffff) | 0x02000000;
27028 /* No flat 12-bit imm encoding for addsw/subsw. */
27029 if ((newval & 0x00100000) == 0)
27030 {
27031 /* 12 bit immediate for addw/subw. */
27032 if (value < 0)
27033 {
27034 value = -value;
27035 newval ^= 0x00a00000;
27036 }
27037 if (value > 0xfff)
27038 newimm = (unsigned int) FAIL;
27039 else
27040 newimm = value;
27041 }
27042 }
27043 else
27044 {
27045 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27046 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27047 disassembling, MOV is preferred when there is no encoding
27048 overlap. */
27049 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27050 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27051 but with the Rn field [19:16] set to 1111. */
27052 && (((newval >> 16) & 0xf) == 0xf)
27053 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27054 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27055 && value >= 0 && value <= 0xffff)
27056 {
27057 /* Toggle bit[25] to change encoding from T2 to T3. */
27058 newval ^= 1 << 25;
27059 /* Clear bits[19:16]. */
27060 newval &= 0xfff0ffff;
27061 /* Encoding high 4bits imm. Code below will encode the
27062 remaining low 12bits. */
27063 newval |= (value & 0x0000f000) << 4;
27064 newimm = value & 0x00000fff;
27065 }
27066 }
27067 }
27068
27069 if (newimm == (unsigned int)FAIL)
27070 {
27071 as_bad_where (fixP->fx_file, fixP->fx_line,
27072 _("invalid constant (%lx) after fixup"),
27073 (unsigned long) value);
27074 break;
27075 }
27076
27077 newval |= (newimm & 0x800) << 15;
27078 newval |= (newimm & 0x700) << 4;
27079 newval |= (newimm & 0x0ff);
27080
27081 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27082 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27083 break;
27084
27085 case BFD_RELOC_ARM_SMC:
27086 if (((unsigned long) value) > 0xffff)
27087 as_bad_where (fixP->fx_file, fixP->fx_line,
27088 _("invalid smc expression"));
27089 newval = md_chars_to_number (buf, INSN_SIZE);
27090 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27091 md_number_to_chars (buf, newval, INSN_SIZE);
27092 break;
27093
27094 case BFD_RELOC_ARM_HVC:
27095 if (((unsigned long) value) > 0xffff)
27096 as_bad_where (fixP->fx_file, fixP->fx_line,
27097 _("invalid hvc expression"));
27098 newval = md_chars_to_number (buf, INSN_SIZE);
27099 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27100 md_number_to_chars (buf, newval, INSN_SIZE);
27101 break;
27102
27103 case BFD_RELOC_ARM_SWI:
27104 if (fixP->tc_fix_data != 0)
27105 {
27106 if (((unsigned long) value) > 0xff)
27107 as_bad_where (fixP->fx_file, fixP->fx_line,
27108 _("invalid swi expression"));
27109 newval = md_chars_to_number (buf, THUMB_SIZE);
27110 newval |= value;
27111 md_number_to_chars (buf, newval, THUMB_SIZE);
27112 }
27113 else
27114 {
27115 if (((unsigned long) value) > 0x00ffffff)
27116 as_bad_where (fixP->fx_file, fixP->fx_line,
27117 _("invalid swi expression"));
27118 newval = md_chars_to_number (buf, INSN_SIZE);
27119 newval |= value;
27120 md_number_to_chars (buf, newval, INSN_SIZE);
27121 }
27122 break;
27123
27124 case BFD_RELOC_ARM_MULTI:
27125 if (((unsigned long) value) > 0xffff)
27126 as_bad_where (fixP->fx_file, fixP->fx_line,
27127 _("invalid expression in load/store multiple"));
27128 newval = value | md_chars_to_number (buf, INSN_SIZE);
27129 md_number_to_chars (buf, newval, INSN_SIZE);
27130 break;
27131
27132 #ifdef OBJ_ELF
27133 case BFD_RELOC_ARM_PCREL_CALL:
27134
27135 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27136 && fixP->fx_addsy
27137 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27138 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27139 && THUMB_IS_FUNC (fixP->fx_addsy))
27140 /* Flip the bl to blx. This is a simple flip
27141 bit here because we generate PCREL_CALL for
27142 unconditional bls. */
27143 {
27144 newval = md_chars_to_number (buf, INSN_SIZE);
27145 newval = newval | 0x10000000;
27146 md_number_to_chars (buf, newval, INSN_SIZE);
27147 temp = 1;
27148 fixP->fx_done = 1;
27149 }
27150 else
27151 temp = 3;
27152 goto arm_branch_common;
27153
27154 case BFD_RELOC_ARM_PCREL_JUMP:
27155 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27156 && fixP->fx_addsy
27157 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27158 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27159 && THUMB_IS_FUNC (fixP->fx_addsy))
27160 {
27161 /* This would map to a bl<cond>, b<cond>,
27162 b<always> to a Thumb function. We
27163 need to force a relocation for this particular
27164 case. */
27165 newval = md_chars_to_number (buf, INSN_SIZE);
27166 fixP->fx_done = 0;
27167 }
27168 /* Fall through. */
27169
27170 case BFD_RELOC_ARM_PLT32:
27171 #endif
27172 case BFD_RELOC_ARM_PCREL_BRANCH:
27173 temp = 3;
27174 goto arm_branch_common;
27175
27176 case BFD_RELOC_ARM_PCREL_BLX:
27177
27178 temp = 1;
27179 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27180 && fixP->fx_addsy
27181 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27182 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27183 && ARM_IS_FUNC (fixP->fx_addsy))
27184 {
27185 /* Flip the blx to a bl and warn. */
27186 const char *name = S_GET_NAME (fixP->fx_addsy);
27187 newval = 0xeb000000;
27188 as_warn_where (fixP->fx_file, fixP->fx_line,
27189 _("blx to '%s' an ARM ISA state function changed to bl"),
27190 name);
27191 md_number_to_chars (buf, newval, INSN_SIZE);
27192 temp = 3;
27193 fixP->fx_done = 1;
27194 }
27195
27196 #ifdef OBJ_ELF
27197 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27198 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27199 #endif
27200
27201 arm_branch_common:
27202 /* We are going to store value (shifted right by two) in the
27203 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27204 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27205 also be clear. */
27206 if (value & temp)
27207 as_bad_where (fixP->fx_file, fixP->fx_line,
27208 _("misaligned branch destination"));
27209 if ((value & (offsetT)0xfe000000) != (offsetT)0
27210 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27211 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27212
27213 if (fixP->fx_done || !seg->use_rela_p)
27214 {
27215 newval = md_chars_to_number (buf, INSN_SIZE);
27216 newval |= (value >> 2) & 0x00ffffff;
27217 /* Set the H bit on BLX instructions. */
27218 if (temp == 1)
27219 {
27220 if (value & 2)
27221 newval |= 0x01000000;
27222 else
27223 newval &= ~0x01000000;
27224 }
27225 md_number_to_chars (buf, newval, INSN_SIZE);
27226 }
27227 break;
27228
27229 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27230 /* CBZ can only branch forward. */
27231
27232 /* Attempts to use CBZ to branch to the next instruction
27233 (which, strictly speaking, are prohibited) will be turned into
27234 no-ops.
27235
27236 FIXME: It may be better to remove the instruction completely and
27237 perform relaxation. */
27238 if (value == -2)
27239 {
27240 newval = md_chars_to_number (buf, THUMB_SIZE);
27241 newval = 0xbf00; /* NOP encoding T1 */
27242 md_number_to_chars (buf, newval, THUMB_SIZE);
27243 }
27244 else
27245 {
27246 if (value & ~0x7e)
27247 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27248
27249 if (fixP->fx_done || !seg->use_rela_p)
27250 {
27251 newval = md_chars_to_number (buf, THUMB_SIZE);
27252 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27253 md_number_to_chars (buf, newval, THUMB_SIZE);
27254 }
27255 }
27256 break;
27257
27258 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27259 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27260 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27261
27262 if (fixP->fx_done || !seg->use_rela_p)
27263 {
27264 newval = md_chars_to_number (buf, THUMB_SIZE);
27265 newval |= (value & 0x1ff) >> 1;
27266 md_number_to_chars (buf, newval, THUMB_SIZE);
27267 }
27268 break;
27269
27270 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27271 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27272 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27273
27274 if (fixP->fx_done || !seg->use_rela_p)
27275 {
27276 newval = md_chars_to_number (buf, THUMB_SIZE);
27277 newval |= (value & 0xfff) >> 1;
27278 md_number_to_chars (buf, newval, THUMB_SIZE);
27279 }
27280 break;
27281
27282 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27283 if (fixP->fx_addsy
27284 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27285 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27286 && ARM_IS_FUNC (fixP->fx_addsy)
27287 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27288 {
27289 /* Force a relocation for a branch 20 bits wide. */
27290 fixP->fx_done = 0;
27291 }
27292 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27293 as_bad_where (fixP->fx_file, fixP->fx_line,
27294 _("conditional branch out of range"));
27295
27296 if (fixP->fx_done || !seg->use_rela_p)
27297 {
27298 offsetT newval2;
27299 addressT S, J1, J2, lo, hi;
27300
27301 S = (value & 0x00100000) >> 20;
27302 J2 = (value & 0x00080000) >> 19;
27303 J1 = (value & 0x00040000) >> 18;
27304 hi = (value & 0x0003f000) >> 12;
27305 lo = (value & 0x00000ffe) >> 1;
27306
27307 newval = md_chars_to_number (buf, THUMB_SIZE);
27308 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27309 newval |= (S << 10) | hi;
27310 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27311 md_number_to_chars (buf, newval, THUMB_SIZE);
27312 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27313 }
27314 break;
27315
27316 case BFD_RELOC_THUMB_PCREL_BLX:
27317 /* If there is a blx from a thumb state function to
27318 another thumb function flip this to a bl and warn
27319 about it. */
27320
27321 if (fixP->fx_addsy
27322 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27323 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27324 && THUMB_IS_FUNC (fixP->fx_addsy))
27325 {
27326 const char *name = S_GET_NAME (fixP->fx_addsy);
27327 as_warn_where (fixP->fx_file, fixP->fx_line,
27328 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27329 name);
27330 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27331 newval = newval | 0x1000;
27332 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27333 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27334 fixP->fx_done = 1;
27335 }
27336
27337
27338 goto thumb_bl_common;
27339
27340 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27341 /* A bl from Thumb state ISA to an internal ARM state function
27342 is converted to a blx. */
27343 if (fixP->fx_addsy
27344 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27345 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27346 && ARM_IS_FUNC (fixP->fx_addsy)
27347 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27348 {
27349 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27350 newval = newval & ~0x1000;
27351 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27352 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27353 fixP->fx_done = 1;
27354 }
27355
27356 thumb_bl_common:
27357
27358 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27359 /* For a BLX instruction, make sure that the relocation is rounded up
27360 to a word boundary. This follows the semantics of the instruction
27361 which specifies that bit 1 of the target address will come from bit
27362 1 of the base address. */
27363 value = (value + 3) & ~ 3;
27364
27365 #ifdef OBJ_ELF
27366 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27367 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27368 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27369 #endif
27370
27371 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27372 {
27373 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27374 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27375 else if ((value & ~0x1ffffff)
27376 && ((value & ~0x1ffffff) != ~0x1ffffff))
27377 as_bad_where (fixP->fx_file, fixP->fx_line,
27378 _("Thumb2 branch out of range"));
27379 }
27380
27381 if (fixP->fx_done || !seg->use_rela_p)
27382 encode_thumb2_b_bl_offset (buf, value);
27383
27384 break;
27385
27386 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27387 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27388 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27389
27390 if (fixP->fx_done || !seg->use_rela_p)
27391 encode_thumb2_b_bl_offset (buf, value);
27392
27393 break;
27394
27395 case BFD_RELOC_8:
27396 if (fixP->fx_done || !seg->use_rela_p)
27397 *buf = value;
27398 break;
27399
27400 case BFD_RELOC_16:
27401 if (fixP->fx_done || !seg->use_rela_p)
27402 md_number_to_chars (buf, value, 2);
27403 break;
27404
27405 #ifdef OBJ_ELF
27406 case BFD_RELOC_ARM_TLS_CALL:
27407 case BFD_RELOC_ARM_THM_TLS_CALL:
27408 case BFD_RELOC_ARM_TLS_DESCSEQ:
27409 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27410 case BFD_RELOC_ARM_TLS_GOTDESC:
27411 case BFD_RELOC_ARM_TLS_GD32:
27412 case BFD_RELOC_ARM_TLS_LE32:
27413 case BFD_RELOC_ARM_TLS_IE32:
27414 case BFD_RELOC_ARM_TLS_LDM32:
27415 case BFD_RELOC_ARM_TLS_LDO32:
27416 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27417 break;
27418
27419 /* Same handling as above, but with the arm_fdpic guard. */
27420 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27421 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27422 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27423 if (arm_fdpic)
27424 {
27425 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27426 }
27427 else
27428 {
27429 as_bad_where (fixP->fx_file, fixP->fx_line,
27430 _("Relocation supported only in FDPIC mode"));
27431 }
27432 break;
27433
27434 case BFD_RELOC_ARM_GOT32:
27435 case BFD_RELOC_ARM_GOTOFF:
27436 break;
27437
27438 case BFD_RELOC_ARM_GOT_PREL:
27439 if (fixP->fx_done || !seg->use_rela_p)
27440 md_number_to_chars (buf, value, 4);
27441 break;
27442
27443 case BFD_RELOC_ARM_TARGET2:
27444 /* TARGET2 is not partial-inplace, so we need to write the
27445 addend here for REL targets, because it won't be written out
27446 during reloc processing later. */
27447 if (fixP->fx_done || !seg->use_rela_p)
27448 md_number_to_chars (buf, fixP->fx_offset, 4);
27449 break;
27450
27451 /* Relocations for FDPIC. */
27452 case BFD_RELOC_ARM_GOTFUNCDESC:
27453 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27454 case BFD_RELOC_ARM_FUNCDESC:
27455 if (arm_fdpic)
27456 {
27457 if (fixP->fx_done || !seg->use_rela_p)
27458 md_number_to_chars (buf, 0, 4);
27459 }
27460 else
27461 {
27462 as_bad_where (fixP->fx_file, fixP->fx_line,
27463 _("Relocation supported only in FDPIC mode"));
27464 }
27465 break;
27466 #endif
27467
27468 case BFD_RELOC_RVA:
27469 case BFD_RELOC_32:
27470 case BFD_RELOC_ARM_TARGET1:
27471 case BFD_RELOC_ARM_ROSEGREL32:
27472 case BFD_RELOC_ARM_SBREL32:
27473 case BFD_RELOC_32_PCREL:
27474 #ifdef TE_PE
27475 case BFD_RELOC_32_SECREL:
27476 #endif
27477 if (fixP->fx_done || !seg->use_rela_p)
27478 #ifdef TE_WINCE
27479 /* For WinCE we only do this for pcrel fixups. */
27480 if (fixP->fx_done || fixP->fx_pcrel)
27481 #endif
27482 md_number_to_chars (buf, value, 4);
27483 break;
27484
27485 #ifdef OBJ_ELF
27486 case BFD_RELOC_ARM_PREL31:
27487 if (fixP->fx_done || !seg->use_rela_p)
27488 {
27489 newval = md_chars_to_number (buf, 4) & 0x80000000;
27490 if ((value ^ (value >> 1)) & 0x40000000)
27491 {
27492 as_bad_where (fixP->fx_file, fixP->fx_line,
27493 _("rel31 relocation overflow"));
27494 }
27495 newval |= value & 0x7fffffff;
27496 md_number_to_chars (buf, newval, 4);
27497 }
27498 break;
27499 #endif
27500
27501 case BFD_RELOC_ARM_CP_OFF_IMM:
27502 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27503 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27504 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27505 newval = md_chars_to_number (buf, INSN_SIZE);
27506 else
27507 newval = get_thumb32_insn (buf);
27508 if ((newval & 0x0f200f00) == 0x0d000900)
27509 {
27510 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27511 has permitted values that are multiples of 2, in the range 0
27512 to 510. */
27513 if (value < -510 || value > 510 || (value & 1))
27514 as_bad_where (fixP->fx_file, fixP->fx_line,
27515 _("co-processor offset out of range"));
27516 }
27517 else if ((newval & 0xfe001f80) == 0xec000f80)
27518 {
27519 if (value < -511 || value > 512 || (value & 3))
27520 as_bad_where (fixP->fx_file, fixP->fx_line,
27521 _("co-processor offset out of range"));
27522 }
27523 else if (value < -1023 || value > 1023 || (value & 3))
27524 as_bad_where (fixP->fx_file, fixP->fx_line,
27525 _("co-processor offset out of range"));
27526 cp_off_common:
27527 sign = value > 0;
27528 if (value < 0)
27529 value = -value;
27530 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27531 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27532 newval = md_chars_to_number (buf, INSN_SIZE);
27533 else
27534 newval = get_thumb32_insn (buf);
27535 if (value == 0)
27536 {
27537 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27538 newval &= 0xffffff80;
27539 else
27540 newval &= 0xffffff00;
27541 }
27542 else
27543 {
27544 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27545 newval &= 0xff7fff80;
27546 else
27547 newval &= 0xff7fff00;
27548 if ((newval & 0x0f200f00) == 0x0d000900)
27549 {
27550 /* This is a fp16 vstr/vldr.
27551
27552 It requires the immediate offset in the instruction is shifted
27553 left by 1 to be a half-word offset.
27554
27555 Here, left shift by 1 first, and later right shift by 2
27556 should get the right offset. */
27557 value <<= 1;
27558 }
27559 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27560 }
27561 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27562 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27563 md_number_to_chars (buf, newval, INSN_SIZE);
27564 else
27565 put_thumb32_insn (buf, newval);
27566 break;
27567
27568 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27569 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27570 if (value < -255 || value > 255)
27571 as_bad_where (fixP->fx_file, fixP->fx_line,
27572 _("co-processor offset out of range"));
27573 value *= 4;
27574 goto cp_off_common;
27575
27576 case BFD_RELOC_ARM_THUMB_OFFSET:
27577 newval = md_chars_to_number (buf, THUMB_SIZE);
27578 /* Exactly what ranges, and where the offset is inserted depends
27579 on the type of instruction, we can establish this from the
27580 top 4 bits. */
27581 switch (newval >> 12)
27582 {
27583 case 4: /* PC load. */
27584 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27585 forced to zero for these loads; md_pcrel_from has already
27586 compensated for this. */
27587 if (value & 3)
27588 as_bad_where (fixP->fx_file, fixP->fx_line,
27589 _("invalid offset, target not word aligned (0x%08lX)"),
27590 (((unsigned long) fixP->fx_frag->fr_address
27591 + (unsigned long) fixP->fx_where) & ~3)
27592 + (unsigned long) value);
27593
27594 if (value & ~0x3fc)
27595 as_bad_where (fixP->fx_file, fixP->fx_line,
27596 _("invalid offset, value too big (0x%08lX)"),
27597 (long) value);
27598
27599 newval |= value >> 2;
27600 break;
27601
27602 case 9: /* SP load/store. */
27603 if (value & ~0x3fc)
27604 as_bad_where (fixP->fx_file, fixP->fx_line,
27605 _("invalid offset, value too big (0x%08lX)"),
27606 (long) value);
27607 newval |= value >> 2;
27608 break;
27609
27610 case 6: /* Word load/store. */
27611 if (value & ~0x7c)
27612 as_bad_where (fixP->fx_file, fixP->fx_line,
27613 _("invalid offset, value too big (0x%08lX)"),
27614 (long) value);
27615 newval |= value << 4; /* 6 - 2. */
27616 break;
27617
27618 case 7: /* Byte load/store. */
27619 if (value & ~0x1f)
27620 as_bad_where (fixP->fx_file, fixP->fx_line,
27621 _("invalid offset, value too big (0x%08lX)"),
27622 (long) value);
27623 newval |= value << 6;
27624 break;
27625
27626 case 8: /* Halfword load/store. */
27627 if (value & ~0x3e)
27628 as_bad_where (fixP->fx_file, fixP->fx_line,
27629 _("invalid offset, value too big (0x%08lX)"),
27630 (long) value);
27631 newval |= value << 5; /* 6 - 1. */
27632 break;
27633
27634 default:
27635 as_bad_where (fixP->fx_file, fixP->fx_line,
27636 "Unable to process relocation for thumb opcode: %lx",
27637 (unsigned long) newval);
27638 break;
27639 }
27640 md_number_to_chars (buf, newval, THUMB_SIZE);
27641 break;
27642
27643 case BFD_RELOC_ARM_THUMB_ADD:
27644 /* This is a complicated relocation, since we use it for all of
27645 the following immediate relocations:
27646
27647 3bit ADD/SUB
27648 8bit ADD/SUB
27649 9bit ADD/SUB SP word-aligned
27650 10bit ADD PC/SP word-aligned
27651
27652 The type of instruction being processed is encoded in the
27653 instruction field:
27654
27655 0x8000 SUB
27656 0x00F0 Rd
27657 0x000F Rs
27658 */
27659 newval = md_chars_to_number (buf, THUMB_SIZE);
27660 {
27661 int rd = (newval >> 4) & 0xf;
27662 int rs = newval & 0xf;
27663 int subtract = !!(newval & 0x8000);
27664
27665 /* Check for HI regs, only very restricted cases allowed:
27666 Adjusting SP, and using PC or SP to get an address. */
27667 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27668 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27669 as_bad_where (fixP->fx_file, fixP->fx_line,
27670 _("invalid Hi register with immediate"));
27671
27672 /* If value is negative, choose the opposite instruction. */
27673 if (value < 0)
27674 {
27675 value = -value;
27676 subtract = !subtract;
27677 if (value < 0)
27678 as_bad_where (fixP->fx_file, fixP->fx_line,
27679 _("immediate value out of range"));
27680 }
27681
27682 if (rd == REG_SP)
27683 {
27684 if (value & ~0x1fc)
27685 as_bad_where (fixP->fx_file, fixP->fx_line,
27686 _("invalid immediate for stack address calculation"));
27687 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27688 newval |= value >> 2;
27689 }
27690 else if (rs == REG_PC || rs == REG_SP)
27691 {
27692 /* PR gas/18541. If the addition is for a defined symbol
27693 within range of an ADR instruction then accept it. */
27694 if (subtract
27695 && value == 4
27696 && fixP->fx_addsy != NULL)
27697 {
27698 subtract = 0;
27699
27700 if (! S_IS_DEFINED (fixP->fx_addsy)
27701 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27702 || S_IS_WEAK (fixP->fx_addsy))
27703 {
27704 as_bad_where (fixP->fx_file, fixP->fx_line,
27705 _("address calculation needs a strongly defined nearby symbol"));
27706 }
27707 else
27708 {
27709 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27710
27711 /* Round up to the next 4-byte boundary. */
27712 if (v & 3)
27713 v = (v + 3) & ~ 3;
27714 else
27715 v += 4;
27716 v = S_GET_VALUE (fixP->fx_addsy) - v;
27717
27718 if (v & ~0x3fc)
27719 {
27720 as_bad_where (fixP->fx_file, fixP->fx_line,
27721 _("symbol too far away"));
27722 }
27723 else
27724 {
27725 fixP->fx_done = 1;
27726 value = v;
27727 }
27728 }
27729 }
27730
27731 if (subtract || value & ~0x3fc)
27732 as_bad_where (fixP->fx_file, fixP->fx_line,
27733 _("invalid immediate for address calculation (value = 0x%08lX)"),
27734 (unsigned long) (subtract ? - value : value));
27735 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27736 newval |= rd << 8;
27737 newval |= value >> 2;
27738 }
27739 else if (rs == rd)
27740 {
27741 if (value & ~0xff)
27742 as_bad_where (fixP->fx_file, fixP->fx_line,
27743 _("immediate value out of range"));
27744 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27745 newval |= (rd << 8) | value;
27746 }
27747 else
27748 {
27749 if (value & ~0x7)
27750 as_bad_where (fixP->fx_file, fixP->fx_line,
27751 _("immediate value out of range"));
27752 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27753 newval |= rd | (rs << 3) | (value << 6);
27754 }
27755 }
27756 md_number_to_chars (buf, newval, THUMB_SIZE);
27757 break;
27758
27759 case BFD_RELOC_ARM_THUMB_IMM:
27760 newval = md_chars_to_number (buf, THUMB_SIZE);
27761 if (value < 0 || value > 255)
27762 as_bad_where (fixP->fx_file, fixP->fx_line,
27763 _("invalid immediate: %ld is out of range"),
27764 (long) value);
27765 newval |= value;
27766 md_number_to_chars (buf, newval, THUMB_SIZE);
27767 break;
27768
27769 case BFD_RELOC_ARM_THUMB_SHIFT:
27770 /* 5bit shift value (0..32). LSL cannot take 32. */
27771 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27772 temp = newval & 0xf800;
27773 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27774 as_bad_where (fixP->fx_file, fixP->fx_line,
27775 _("invalid shift value: %ld"), (long) value);
27776 /* Shifts of zero must be encoded as LSL. */
27777 if (value == 0)
27778 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27779 /* Shifts of 32 are encoded as zero. */
27780 else if (value == 32)
27781 value = 0;
27782 newval |= value << 6;
27783 md_number_to_chars (buf, newval, THUMB_SIZE);
27784 break;
27785
27786 case BFD_RELOC_VTABLE_INHERIT:
27787 case BFD_RELOC_VTABLE_ENTRY:
27788 fixP->fx_done = 0;
27789 return;
27790
27791 case BFD_RELOC_ARM_MOVW:
27792 case BFD_RELOC_ARM_MOVT:
27793 case BFD_RELOC_ARM_THUMB_MOVW:
27794 case BFD_RELOC_ARM_THUMB_MOVT:
27795 if (fixP->fx_done || !seg->use_rela_p)
27796 {
27797 /* REL format relocations are limited to a 16-bit addend. */
27798 if (!fixP->fx_done)
27799 {
27800 if (value < -0x8000 || value > 0x7fff)
27801 as_bad_where (fixP->fx_file, fixP->fx_line,
27802 _("offset out of range"));
27803 }
27804 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27805 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27806 {
27807 value >>= 16;
27808 }
27809
27810 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27811 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27812 {
27813 newval = get_thumb32_insn (buf);
27814 newval &= 0xfbf08f00;
27815 newval |= (value & 0xf000) << 4;
27816 newval |= (value & 0x0800) << 15;
27817 newval |= (value & 0x0700) << 4;
27818 newval |= (value & 0x00ff);
27819 put_thumb32_insn (buf, newval);
27820 }
27821 else
27822 {
27823 newval = md_chars_to_number (buf, 4);
27824 newval &= 0xfff0f000;
27825 newval |= value & 0x0fff;
27826 newval |= (value & 0xf000) << 4;
27827 md_number_to_chars (buf, newval, 4);
27828 }
27829 }
27830 return;
27831
27832 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27833 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27834 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27835 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27836 gas_assert (!fixP->fx_done);
27837 {
27838 bfd_vma insn;
27839 bfd_boolean is_mov;
27840 bfd_vma encoded_addend = value;
27841
27842 /* Check that addend can be encoded in instruction. */
27843 if (!seg->use_rela_p && (value < 0 || value > 255))
27844 as_bad_where (fixP->fx_file, fixP->fx_line,
27845 _("the offset 0x%08lX is not representable"),
27846 (unsigned long) encoded_addend);
27847
27848 /* Extract the instruction. */
27849 insn = md_chars_to_number (buf, THUMB_SIZE);
27850 is_mov = (insn & 0xf800) == 0x2000;
27851
27852 /* Encode insn. */
27853 if (is_mov)
27854 {
27855 if (!seg->use_rela_p)
27856 insn |= encoded_addend;
27857 }
27858 else
27859 {
27860 int rd, rs;
27861
27862 /* Extract the instruction. */
27863 /* Encoding is the following
27864 0x8000 SUB
27865 0x00F0 Rd
27866 0x000F Rs
27867 */
27868 /* The following conditions must be true :
27869 - ADD
27870 - Rd == Rs
27871 - Rd <= 7
27872 */
27873 rd = (insn >> 4) & 0xf;
27874 rs = insn & 0xf;
27875 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27876 as_bad_where (fixP->fx_file, fixP->fx_line,
27877 _("Unable to process relocation for thumb opcode: %lx"),
27878 (unsigned long) insn);
27879
27880 /* Encode as ADD immediate8 thumb 1 code. */
27881 insn = 0x3000 | (rd << 8);
27882
27883 /* Place the encoded addend into the first 8 bits of the
27884 instruction. */
27885 if (!seg->use_rela_p)
27886 insn |= encoded_addend;
27887 }
27888
27889 /* Update the instruction. */
27890 md_number_to_chars (buf, insn, THUMB_SIZE);
27891 }
27892 break;
27893
27894 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27895 case BFD_RELOC_ARM_ALU_PC_G0:
27896 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27897 case BFD_RELOC_ARM_ALU_PC_G1:
27898 case BFD_RELOC_ARM_ALU_PC_G2:
27899 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27900 case BFD_RELOC_ARM_ALU_SB_G0:
27901 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27902 case BFD_RELOC_ARM_ALU_SB_G1:
27903 case BFD_RELOC_ARM_ALU_SB_G2:
27904 gas_assert (!fixP->fx_done);
27905 if (!seg->use_rela_p)
27906 {
27907 bfd_vma insn;
27908 bfd_vma encoded_addend;
27909 bfd_vma addend_abs = llabs (value);
27910
27911 /* Check that the absolute value of the addend can be
27912 expressed as an 8-bit constant plus a rotation. */
27913 encoded_addend = encode_arm_immediate (addend_abs);
27914 if (encoded_addend == (unsigned int) FAIL)
27915 as_bad_where (fixP->fx_file, fixP->fx_line,
27916 _("the offset 0x%08lX is not representable"),
27917 (unsigned long) addend_abs);
27918
27919 /* Extract the instruction. */
27920 insn = md_chars_to_number (buf, INSN_SIZE);
27921
27922 /* If the addend is positive, use an ADD instruction.
27923 Otherwise use a SUB. Take care not to destroy the S bit. */
27924 insn &= 0xff1fffff;
27925 if (value < 0)
27926 insn |= 1 << 22;
27927 else
27928 insn |= 1 << 23;
27929
27930 /* Place the encoded addend into the first 12 bits of the
27931 instruction. */
27932 insn &= 0xfffff000;
27933 insn |= encoded_addend;
27934
27935 /* Update the instruction. */
27936 md_number_to_chars (buf, insn, INSN_SIZE);
27937 }
27938 break;
27939
27940 case BFD_RELOC_ARM_LDR_PC_G0:
27941 case BFD_RELOC_ARM_LDR_PC_G1:
27942 case BFD_RELOC_ARM_LDR_PC_G2:
27943 case BFD_RELOC_ARM_LDR_SB_G0:
27944 case BFD_RELOC_ARM_LDR_SB_G1:
27945 case BFD_RELOC_ARM_LDR_SB_G2:
27946 gas_assert (!fixP->fx_done);
27947 if (!seg->use_rela_p)
27948 {
27949 bfd_vma insn;
27950 bfd_vma addend_abs = llabs (value);
27951
27952 /* Check that the absolute value of the addend can be
27953 encoded in 12 bits. */
27954 if (addend_abs >= 0x1000)
27955 as_bad_where (fixP->fx_file, fixP->fx_line,
27956 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27957 (unsigned long) addend_abs);
27958
27959 /* Extract the instruction. */
27960 insn = md_chars_to_number (buf, INSN_SIZE);
27961
27962 /* If the addend is negative, clear bit 23 of the instruction.
27963 Otherwise set it. */
27964 if (value < 0)
27965 insn &= ~(1 << 23);
27966 else
27967 insn |= 1 << 23;
27968
27969 /* Place the absolute value of the addend into the first 12 bits
27970 of the instruction. */
27971 insn &= 0xfffff000;
27972 insn |= addend_abs;
27973
27974 /* Update the instruction. */
27975 md_number_to_chars (buf, insn, INSN_SIZE);
27976 }
27977 break;
27978
27979 case BFD_RELOC_ARM_LDRS_PC_G0:
27980 case BFD_RELOC_ARM_LDRS_PC_G1:
27981 case BFD_RELOC_ARM_LDRS_PC_G2:
27982 case BFD_RELOC_ARM_LDRS_SB_G0:
27983 case BFD_RELOC_ARM_LDRS_SB_G1:
27984 case BFD_RELOC_ARM_LDRS_SB_G2:
27985 gas_assert (!fixP->fx_done);
27986 if (!seg->use_rela_p)
27987 {
27988 bfd_vma insn;
27989 bfd_vma addend_abs = llabs (value);
27990
27991 /* Check that the absolute value of the addend can be
27992 encoded in 8 bits. */
27993 if (addend_abs >= 0x100)
27994 as_bad_where (fixP->fx_file, fixP->fx_line,
27995 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27996 (unsigned long) addend_abs);
27997
27998 /* Extract the instruction. */
27999 insn = md_chars_to_number (buf, INSN_SIZE);
28000
28001 /* If the addend is negative, clear bit 23 of the instruction.
28002 Otherwise set it. */
28003 if (value < 0)
28004 insn &= ~(1 << 23);
28005 else
28006 insn |= 1 << 23;
28007
28008 /* Place the first four bits of the absolute value of the addend
28009 into the first 4 bits of the instruction, and the remaining
28010 four into bits 8 .. 11. */
28011 insn &= 0xfffff0f0;
28012 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28013
28014 /* Update the instruction. */
28015 md_number_to_chars (buf, insn, INSN_SIZE);
28016 }
28017 break;
28018
28019 case BFD_RELOC_ARM_LDC_PC_G0:
28020 case BFD_RELOC_ARM_LDC_PC_G1:
28021 case BFD_RELOC_ARM_LDC_PC_G2:
28022 case BFD_RELOC_ARM_LDC_SB_G0:
28023 case BFD_RELOC_ARM_LDC_SB_G1:
28024 case BFD_RELOC_ARM_LDC_SB_G2:
28025 gas_assert (!fixP->fx_done);
28026 if (!seg->use_rela_p)
28027 {
28028 bfd_vma insn;
28029 bfd_vma addend_abs = llabs (value);
28030
28031 /* Check that the absolute value of the addend is a multiple of
28032 four and, when divided by four, fits in 8 bits. */
28033 if (addend_abs & 0x3)
28034 as_bad_where (fixP->fx_file, fixP->fx_line,
28035 _("bad offset 0x%08lX (must be word-aligned)"),
28036 (unsigned long) addend_abs);
28037
28038 if ((addend_abs >> 2) > 0xff)
28039 as_bad_where (fixP->fx_file, fixP->fx_line,
28040 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28041 (unsigned long) addend_abs);
28042
28043 /* Extract the instruction. */
28044 insn = md_chars_to_number (buf, INSN_SIZE);
28045
28046 /* If the addend is negative, clear bit 23 of the instruction.
28047 Otherwise set it. */
28048 if (value < 0)
28049 insn &= ~(1 << 23);
28050 else
28051 insn |= 1 << 23;
28052
28053 /* Place the addend (divided by four) into the first eight
28054 bits of the instruction. */
28055 insn &= 0xfffffff0;
28056 insn |= addend_abs >> 2;
28057
28058 /* Update the instruction. */
28059 md_number_to_chars (buf, insn, INSN_SIZE);
28060 }
28061 break;
28062
28063 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28064 if (fixP->fx_addsy
28065 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28066 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28067 && ARM_IS_FUNC (fixP->fx_addsy)
28068 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28069 {
28070 /* Force a relocation for a branch 5 bits wide. */
28071 fixP->fx_done = 0;
28072 }
28073 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28074 as_bad_where (fixP->fx_file, fixP->fx_line,
28075 BAD_BRANCH_OFF);
28076
28077 if (fixP->fx_done || !seg->use_rela_p)
28078 {
28079 addressT boff = value >> 1;
28080
28081 newval = md_chars_to_number (buf, THUMB_SIZE);
28082 newval |= (boff << 7);
28083 md_number_to_chars (buf, newval, THUMB_SIZE);
28084 }
28085 break;
28086
28087 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28088 if (fixP->fx_addsy
28089 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28090 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28091 && ARM_IS_FUNC (fixP->fx_addsy)
28092 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28093 {
28094 fixP->fx_done = 0;
28095 }
28096 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28097 as_bad_where (fixP->fx_file, fixP->fx_line,
28098 _("branch out of range"));
28099
28100 if (fixP->fx_done || !seg->use_rela_p)
28101 {
28102 newval = md_chars_to_number (buf, THUMB_SIZE);
28103
28104 addressT boff = ((newval & 0x0780) >> 7) << 1;
28105 addressT diff = value - boff;
28106
28107 if (diff == 4)
28108 {
28109 newval |= 1 << 1; /* T bit. */
28110 }
28111 else if (diff != 2)
28112 {
28113 as_bad_where (fixP->fx_file, fixP->fx_line,
28114 _("out of range label-relative fixup value"));
28115 }
28116 md_number_to_chars (buf, newval, THUMB_SIZE);
28117 }
28118 break;
28119
28120 case BFD_RELOC_ARM_THUMB_BF17:
28121 if (fixP->fx_addsy
28122 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28123 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28124 && ARM_IS_FUNC (fixP->fx_addsy)
28125 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28126 {
28127 /* Force a relocation for a branch 17 bits wide. */
28128 fixP->fx_done = 0;
28129 }
28130
28131 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28132 as_bad_where (fixP->fx_file, fixP->fx_line,
28133 BAD_BRANCH_OFF);
28134
28135 if (fixP->fx_done || !seg->use_rela_p)
28136 {
28137 offsetT newval2;
28138 addressT immA, immB, immC;
28139
28140 immA = (value & 0x0001f000) >> 12;
28141 immB = (value & 0x00000ffc) >> 2;
28142 immC = (value & 0x00000002) >> 1;
28143
28144 newval = md_chars_to_number (buf, THUMB_SIZE);
28145 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28146 newval |= immA;
28147 newval2 |= (immC << 11) | (immB << 1);
28148 md_number_to_chars (buf, newval, THUMB_SIZE);
28149 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28150 }
28151 break;
28152
28153 case BFD_RELOC_ARM_THUMB_BF19:
28154 if (fixP->fx_addsy
28155 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28156 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28157 && ARM_IS_FUNC (fixP->fx_addsy)
28158 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28159 {
28160 /* Force a relocation for a branch 19 bits wide. */
28161 fixP->fx_done = 0;
28162 }
28163
28164 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28165 as_bad_where (fixP->fx_file, fixP->fx_line,
28166 BAD_BRANCH_OFF);
28167
28168 if (fixP->fx_done || !seg->use_rela_p)
28169 {
28170 offsetT newval2;
28171 addressT immA, immB, immC;
28172
28173 immA = (value & 0x0007f000) >> 12;
28174 immB = (value & 0x00000ffc) >> 2;
28175 immC = (value & 0x00000002) >> 1;
28176
28177 newval = md_chars_to_number (buf, THUMB_SIZE);
28178 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28179 newval |= immA;
28180 newval2 |= (immC << 11) | (immB << 1);
28181 md_number_to_chars (buf, newval, THUMB_SIZE);
28182 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28183 }
28184 break;
28185
28186 case BFD_RELOC_ARM_THUMB_BF13:
28187 if (fixP->fx_addsy
28188 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28189 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28190 && ARM_IS_FUNC (fixP->fx_addsy)
28191 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28192 {
28193 /* Force a relocation for a branch 13 bits wide. */
28194 fixP->fx_done = 0;
28195 }
28196
28197 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28198 as_bad_where (fixP->fx_file, fixP->fx_line,
28199 BAD_BRANCH_OFF);
28200
28201 if (fixP->fx_done || !seg->use_rela_p)
28202 {
28203 offsetT newval2;
28204 addressT immA, immB, immC;
28205
28206 immA = (value & 0x00001000) >> 12;
28207 immB = (value & 0x00000ffc) >> 2;
28208 immC = (value & 0x00000002) >> 1;
28209
28210 newval = md_chars_to_number (buf, THUMB_SIZE);
28211 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28212 newval |= immA;
28213 newval2 |= (immC << 11) | (immB << 1);
28214 md_number_to_chars (buf, newval, THUMB_SIZE);
28215 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28216 }
28217 break;
28218
28219 case BFD_RELOC_ARM_THUMB_LOOP12:
28220 if (fixP->fx_addsy
28221 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28222 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28223 && ARM_IS_FUNC (fixP->fx_addsy)
28224 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28225 {
28226 /* Force a relocation for a branch 12 bits wide. */
28227 fixP->fx_done = 0;
28228 }
28229
28230 bfd_vma insn = get_thumb32_insn (buf);
28231 /* le lr, <label> or le <label> */
28232 if (((insn & 0xffffffff) == 0xf00fc001)
28233 || ((insn & 0xffffffff) == 0xf02fc001))
28234 value = -value;
28235
28236 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28237 as_bad_where (fixP->fx_file, fixP->fx_line,
28238 BAD_BRANCH_OFF);
28239 if (fixP->fx_done || !seg->use_rela_p)
28240 {
28241 addressT imml, immh;
28242
28243 immh = (value & 0x00000ffc) >> 2;
28244 imml = (value & 0x00000002) >> 1;
28245
28246 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28247 newval |= (imml << 11) | (immh << 1);
28248 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28249 }
28250 break;
28251
28252 case BFD_RELOC_ARM_V4BX:
28253 /* This will need to go in the object file. */
28254 fixP->fx_done = 0;
28255 break;
28256
28257 case BFD_RELOC_UNUSED:
28258 default:
28259 as_bad_where (fixP->fx_file, fixP->fx_line,
28260 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28261 }
28262 }
28263
28264 /* Translate internal representation of relocation info to BFD target
28265 format. */
28266
28267 arelent *
28268 tc_gen_reloc (asection *section, fixS *fixp)
28269 {
28270 arelent * reloc;
28271 bfd_reloc_code_real_type code;
28272
28273 reloc = XNEW (arelent);
28274
28275 reloc->sym_ptr_ptr = XNEW (asymbol *);
28276 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28277 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28278
28279 if (fixp->fx_pcrel)
28280 {
28281 if (section->use_rela_p)
28282 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28283 else
28284 fixp->fx_offset = reloc->address;
28285 }
28286 reloc->addend = fixp->fx_offset;
28287
28288 switch (fixp->fx_r_type)
28289 {
28290 case BFD_RELOC_8:
28291 if (fixp->fx_pcrel)
28292 {
28293 code = BFD_RELOC_8_PCREL;
28294 break;
28295 }
28296 /* Fall through. */
28297
28298 case BFD_RELOC_16:
28299 if (fixp->fx_pcrel)
28300 {
28301 code = BFD_RELOC_16_PCREL;
28302 break;
28303 }
28304 /* Fall through. */
28305
28306 case BFD_RELOC_32:
28307 if (fixp->fx_pcrel)
28308 {
28309 code = BFD_RELOC_32_PCREL;
28310 break;
28311 }
28312 /* Fall through. */
28313
28314 case BFD_RELOC_ARM_MOVW:
28315 if (fixp->fx_pcrel)
28316 {
28317 code = BFD_RELOC_ARM_MOVW_PCREL;
28318 break;
28319 }
28320 /* Fall through. */
28321
28322 case BFD_RELOC_ARM_MOVT:
28323 if (fixp->fx_pcrel)
28324 {
28325 code = BFD_RELOC_ARM_MOVT_PCREL;
28326 break;
28327 }
28328 /* Fall through. */
28329
28330 case BFD_RELOC_ARM_THUMB_MOVW:
28331 if (fixp->fx_pcrel)
28332 {
28333 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28334 break;
28335 }
28336 /* Fall through. */
28337
28338 case BFD_RELOC_ARM_THUMB_MOVT:
28339 if (fixp->fx_pcrel)
28340 {
28341 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28342 break;
28343 }
28344 /* Fall through. */
28345
28346 case BFD_RELOC_NONE:
28347 case BFD_RELOC_ARM_PCREL_BRANCH:
28348 case BFD_RELOC_ARM_PCREL_BLX:
28349 case BFD_RELOC_RVA:
28350 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28351 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28352 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28353 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28354 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28355 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28356 case BFD_RELOC_VTABLE_ENTRY:
28357 case BFD_RELOC_VTABLE_INHERIT:
28358 #ifdef TE_PE
28359 case BFD_RELOC_32_SECREL:
28360 #endif
28361 code = fixp->fx_r_type;
28362 break;
28363
28364 case BFD_RELOC_THUMB_PCREL_BLX:
28365 #ifdef OBJ_ELF
28366 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28367 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28368 else
28369 #endif
28370 code = BFD_RELOC_THUMB_PCREL_BLX;
28371 break;
28372
28373 case BFD_RELOC_ARM_LITERAL:
28374 case BFD_RELOC_ARM_HWLITERAL:
28375 /* If this is called then the a literal has
28376 been referenced across a section boundary. */
28377 as_bad_where (fixp->fx_file, fixp->fx_line,
28378 _("literal referenced across section boundary"));
28379 return NULL;
28380
28381 #ifdef OBJ_ELF
28382 case BFD_RELOC_ARM_TLS_CALL:
28383 case BFD_RELOC_ARM_THM_TLS_CALL:
28384 case BFD_RELOC_ARM_TLS_DESCSEQ:
28385 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28386 case BFD_RELOC_ARM_GOT32:
28387 case BFD_RELOC_ARM_GOTOFF:
28388 case BFD_RELOC_ARM_GOT_PREL:
28389 case BFD_RELOC_ARM_PLT32:
28390 case BFD_RELOC_ARM_TARGET1:
28391 case BFD_RELOC_ARM_ROSEGREL32:
28392 case BFD_RELOC_ARM_SBREL32:
28393 case BFD_RELOC_ARM_PREL31:
28394 case BFD_RELOC_ARM_TARGET2:
28395 case BFD_RELOC_ARM_TLS_LDO32:
28396 case BFD_RELOC_ARM_PCREL_CALL:
28397 case BFD_RELOC_ARM_PCREL_JUMP:
28398 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28399 case BFD_RELOC_ARM_ALU_PC_G0:
28400 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28401 case BFD_RELOC_ARM_ALU_PC_G1:
28402 case BFD_RELOC_ARM_ALU_PC_G2:
28403 case BFD_RELOC_ARM_LDR_PC_G0:
28404 case BFD_RELOC_ARM_LDR_PC_G1:
28405 case BFD_RELOC_ARM_LDR_PC_G2:
28406 case BFD_RELOC_ARM_LDRS_PC_G0:
28407 case BFD_RELOC_ARM_LDRS_PC_G1:
28408 case BFD_RELOC_ARM_LDRS_PC_G2:
28409 case BFD_RELOC_ARM_LDC_PC_G0:
28410 case BFD_RELOC_ARM_LDC_PC_G1:
28411 case BFD_RELOC_ARM_LDC_PC_G2:
28412 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28413 case BFD_RELOC_ARM_ALU_SB_G0:
28414 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28415 case BFD_RELOC_ARM_ALU_SB_G1:
28416 case BFD_RELOC_ARM_ALU_SB_G2:
28417 case BFD_RELOC_ARM_LDR_SB_G0:
28418 case BFD_RELOC_ARM_LDR_SB_G1:
28419 case BFD_RELOC_ARM_LDR_SB_G2:
28420 case BFD_RELOC_ARM_LDRS_SB_G0:
28421 case BFD_RELOC_ARM_LDRS_SB_G1:
28422 case BFD_RELOC_ARM_LDRS_SB_G2:
28423 case BFD_RELOC_ARM_LDC_SB_G0:
28424 case BFD_RELOC_ARM_LDC_SB_G1:
28425 case BFD_RELOC_ARM_LDC_SB_G2:
28426 case BFD_RELOC_ARM_V4BX:
28427 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28428 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28429 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28430 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28431 case BFD_RELOC_ARM_GOTFUNCDESC:
28432 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28433 case BFD_RELOC_ARM_FUNCDESC:
28434 case BFD_RELOC_ARM_THUMB_BF17:
28435 case BFD_RELOC_ARM_THUMB_BF19:
28436 case BFD_RELOC_ARM_THUMB_BF13:
28437 code = fixp->fx_r_type;
28438 break;
28439
28440 case BFD_RELOC_ARM_TLS_GOTDESC:
28441 case BFD_RELOC_ARM_TLS_GD32:
28442 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28443 case BFD_RELOC_ARM_TLS_LE32:
28444 case BFD_RELOC_ARM_TLS_IE32:
28445 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28446 case BFD_RELOC_ARM_TLS_LDM32:
28447 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28448 /* BFD will include the symbol's address in the addend.
28449 But we don't want that, so subtract it out again here. */
28450 if (!S_IS_COMMON (fixp->fx_addsy))
28451 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28452 code = fixp->fx_r_type;
28453 break;
28454 #endif
28455
28456 case BFD_RELOC_ARM_IMMEDIATE:
28457 as_bad_where (fixp->fx_file, fixp->fx_line,
28458 _("internal relocation (type: IMMEDIATE) not fixed up"));
28459 return NULL;
28460
28461 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28462 as_bad_where (fixp->fx_file, fixp->fx_line,
28463 _("ADRL used for a symbol not defined in the same file"));
28464 return NULL;
28465
28466 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28467 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28468 case BFD_RELOC_ARM_THUMB_LOOP12:
28469 as_bad_where (fixp->fx_file, fixp->fx_line,
28470 _("%s used for a symbol not defined in the same file"),
28471 bfd_get_reloc_code_name (fixp->fx_r_type));
28472 return NULL;
28473
28474 case BFD_RELOC_ARM_OFFSET_IMM:
28475 if (section->use_rela_p)
28476 {
28477 code = fixp->fx_r_type;
28478 break;
28479 }
28480
28481 if (fixp->fx_addsy != NULL
28482 && !S_IS_DEFINED (fixp->fx_addsy)
28483 && S_IS_LOCAL (fixp->fx_addsy))
28484 {
28485 as_bad_where (fixp->fx_file, fixp->fx_line,
28486 _("undefined local label `%s'"),
28487 S_GET_NAME (fixp->fx_addsy));
28488 return NULL;
28489 }
28490
28491 as_bad_where (fixp->fx_file, fixp->fx_line,
28492 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28493 return NULL;
28494
28495 default:
28496 {
28497 const char * type;
28498
28499 switch (fixp->fx_r_type)
28500 {
28501 case BFD_RELOC_NONE: type = "NONE"; break;
28502 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28503 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28504 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28505 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28506 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28507 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28508 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28509 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28510 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28511 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28512 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28513 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28514 default: type = _("<unknown>"); break;
28515 }
28516 as_bad_where (fixp->fx_file, fixp->fx_line,
28517 _("cannot represent %s relocation in this object file format"),
28518 type);
28519 return NULL;
28520 }
28521 }
28522
28523 #ifdef OBJ_ELF
28524 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28525 && GOT_symbol
28526 && fixp->fx_addsy == GOT_symbol)
28527 {
28528 code = BFD_RELOC_ARM_GOTPC;
28529 reloc->addend = fixp->fx_offset = reloc->address;
28530 }
28531 #endif
28532
28533 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28534
28535 if (reloc->howto == NULL)
28536 {
28537 as_bad_where (fixp->fx_file, fixp->fx_line,
28538 _("cannot represent %s relocation in this object file format"),
28539 bfd_get_reloc_code_name (code));
28540 return NULL;
28541 }
28542
28543 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28544 vtable entry to be used in the relocation's section offset. */
28545 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28546 reloc->address = fixp->fx_offset;
28547
28548 return reloc;
28549 }
28550
28551 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28552
28553 void
28554 cons_fix_new_arm (fragS * frag,
28555 int where,
28556 int size,
28557 expressionS * exp,
28558 bfd_reloc_code_real_type reloc)
28559 {
28560 int pcrel = 0;
28561
28562 /* Pick a reloc.
28563 FIXME: @@ Should look at CPU word size. */
28564 switch (size)
28565 {
28566 case 1:
28567 reloc = BFD_RELOC_8;
28568 break;
28569 case 2:
28570 reloc = BFD_RELOC_16;
28571 break;
28572 case 4:
28573 default:
28574 reloc = BFD_RELOC_32;
28575 break;
28576 case 8:
28577 reloc = BFD_RELOC_64;
28578 break;
28579 }
28580
28581 #ifdef TE_PE
28582 if (exp->X_op == O_secrel)
28583 {
28584 exp->X_op = O_symbol;
28585 reloc = BFD_RELOC_32_SECREL;
28586 }
28587 #endif
28588
28589 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28590 }
28591
28592 #if defined (OBJ_COFF)
28593 void
28594 arm_validate_fix (fixS * fixP)
28595 {
28596 /* If the destination of the branch is a defined symbol which does not have
28597 the THUMB_FUNC attribute, then we must be calling a function which has
28598 the (interfacearm) attribute. We look for the Thumb entry point to that
28599 function and change the branch to refer to that function instead. */
28600 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28601 && fixP->fx_addsy != NULL
28602 && S_IS_DEFINED (fixP->fx_addsy)
28603 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28604 {
28605 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28606 }
28607 }
28608 #endif
28609
28610
28611 int
28612 arm_force_relocation (struct fix * fixp)
28613 {
28614 #if defined (OBJ_COFF) && defined (TE_PE)
28615 if (fixp->fx_r_type == BFD_RELOC_RVA)
28616 return 1;
28617 #endif
28618
28619 /* In case we have a call or a branch to a function in ARM ISA mode from
28620 a thumb function or vice-versa force the relocation. These relocations
28621 are cleared off for some cores that might have blx and simple transformations
28622 are possible. */
28623
28624 #ifdef OBJ_ELF
28625 switch (fixp->fx_r_type)
28626 {
28627 case BFD_RELOC_ARM_PCREL_JUMP:
28628 case BFD_RELOC_ARM_PCREL_CALL:
28629 case BFD_RELOC_THUMB_PCREL_BLX:
28630 if (THUMB_IS_FUNC (fixp->fx_addsy))
28631 return 1;
28632 break;
28633
28634 case BFD_RELOC_ARM_PCREL_BLX:
28635 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28636 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28637 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28638 if (ARM_IS_FUNC (fixp->fx_addsy))
28639 return 1;
28640 break;
28641
28642 default:
28643 break;
28644 }
28645 #endif
28646
28647 /* Resolve these relocations even if the symbol is extern or weak.
28648 Technically this is probably wrong due to symbol preemption.
28649 In practice these relocations do not have enough range to be useful
28650 at dynamic link time, and some code (e.g. in the Linux kernel)
28651 expects these references to be resolved. */
28652 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28653 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28654 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28655 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28656 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28657 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28658 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28659 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28660 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28661 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28662 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28663 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28664 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28665 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28666 return 0;
28667
28668 /* Always leave these relocations for the linker. */
28669 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28670 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28671 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28672 return 1;
28673
28674 /* Always generate relocations against function symbols. */
28675 if (fixp->fx_r_type == BFD_RELOC_32
28676 && fixp->fx_addsy
28677 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28678 return 1;
28679
28680 return generic_force_reloc (fixp);
28681 }
28682
28683 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28684 /* Relocations against function names must be left unadjusted,
28685 so that the linker can use this information to generate interworking
28686 stubs. The MIPS version of this function
28687 also prevents relocations that are mips-16 specific, but I do not
28688 know why it does this.
28689
28690 FIXME:
28691 There is one other problem that ought to be addressed here, but
28692 which currently is not: Taking the address of a label (rather
28693 than a function) and then later jumping to that address. Such
28694 addresses also ought to have their bottom bit set (assuming that
28695 they reside in Thumb code), but at the moment they will not. */
28696
28697 bfd_boolean
28698 arm_fix_adjustable (fixS * fixP)
28699 {
28700 if (fixP->fx_addsy == NULL)
28701 return 1;
28702
28703 /* Preserve relocations against symbols with function type. */
28704 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28705 return FALSE;
28706
28707 if (THUMB_IS_FUNC (fixP->fx_addsy)
28708 && fixP->fx_subsy == NULL)
28709 return FALSE;
28710
28711 /* We need the symbol name for the VTABLE entries. */
28712 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28713 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28714 return FALSE;
28715
28716 /* Don't allow symbols to be discarded on GOT related relocs. */
28717 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28718 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28719 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28720 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28721 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28722 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28723 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28724 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28725 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28726 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28727 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28728 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28729 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28730 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28731 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28732 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28733 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28734 return FALSE;
28735
28736 /* Similarly for group relocations. */
28737 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28738 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28739 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28740 return FALSE;
28741
28742 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28743 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28744 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28745 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28746 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28747 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28748 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28749 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28750 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28751 return FALSE;
28752
28753 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28754 offsets, so keep these symbols. */
28755 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28756 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28757 return FALSE;
28758
28759 return TRUE;
28760 }
28761 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28762
28763 #ifdef OBJ_ELF
28764 const char *
28765 elf32_arm_target_format (void)
28766 {
28767 #ifdef TE_SYMBIAN
28768 return (target_big_endian
28769 ? "elf32-bigarm-symbian"
28770 : "elf32-littlearm-symbian");
28771 #elif defined (TE_VXWORKS)
28772 return (target_big_endian
28773 ? "elf32-bigarm-vxworks"
28774 : "elf32-littlearm-vxworks");
28775 #elif defined (TE_NACL)
28776 return (target_big_endian
28777 ? "elf32-bigarm-nacl"
28778 : "elf32-littlearm-nacl");
28779 #else
28780 if (arm_fdpic)
28781 {
28782 if (target_big_endian)
28783 return "elf32-bigarm-fdpic";
28784 else
28785 return "elf32-littlearm-fdpic";
28786 }
28787 else
28788 {
28789 if (target_big_endian)
28790 return "elf32-bigarm";
28791 else
28792 return "elf32-littlearm";
28793 }
28794 #endif
28795 }
28796
28797 void
28798 armelf_frob_symbol (symbolS * symp,
28799 int * puntp)
28800 {
28801 elf_frob_symbol (symp, puntp);
28802 }
28803 #endif
28804
28805 /* MD interface: Finalization. */
28806
28807 void
28808 arm_cleanup (void)
28809 {
28810 literal_pool * pool;
28811
28812 /* Ensure that all the predication blocks are properly closed. */
28813 check_pred_blocks_finished ();
28814
28815 for (pool = list_of_pools; pool; pool = pool->next)
28816 {
28817 /* Put it at the end of the relevant section. */
28818 subseg_set (pool->section, pool->sub_section);
28819 #ifdef OBJ_ELF
28820 arm_elf_change_section ();
28821 #endif
28822 s_ltorg (0);
28823 }
28824 }
28825
28826 #ifdef OBJ_ELF
28827 /* Remove any excess mapping symbols generated for alignment frags in
28828 SEC. We may have created a mapping symbol before a zero byte
28829 alignment; remove it if there's a mapping symbol after the
28830 alignment. */
28831 static void
28832 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28833 void *dummy ATTRIBUTE_UNUSED)
28834 {
28835 segment_info_type *seginfo = seg_info (sec);
28836 fragS *fragp;
28837
28838 if (seginfo == NULL || seginfo->frchainP == NULL)
28839 return;
28840
28841 for (fragp = seginfo->frchainP->frch_root;
28842 fragp != NULL;
28843 fragp = fragp->fr_next)
28844 {
28845 symbolS *sym = fragp->tc_frag_data.last_map;
28846 fragS *next = fragp->fr_next;
28847
28848 /* Variable-sized frags have been converted to fixed size by
28849 this point. But if this was variable-sized to start with,
28850 there will be a fixed-size frag after it. So don't handle
28851 next == NULL. */
28852 if (sym == NULL || next == NULL)
28853 continue;
28854
28855 if (S_GET_VALUE (sym) < next->fr_address)
28856 /* Not at the end of this frag. */
28857 continue;
28858 know (S_GET_VALUE (sym) == next->fr_address);
28859
28860 do
28861 {
28862 if (next->tc_frag_data.first_map != NULL)
28863 {
28864 /* Next frag starts with a mapping symbol. Discard this
28865 one. */
28866 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28867 break;
28868 }
28869
28870 if (next->fr_next == NULL)
28871 {
28872 /* This mapping symbol is at the end of the section. Discard
28873 it. */
28874 know (next->fr_fix == 0 && next->fr_var == 0);
28875 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28876 break;
28877 }
28878
28879 /* As long as we have empty frags without any mapping symbols,
28880 keep looking. */
28881 /* If the next frag is non-empty and does not start with a
28882 mapping symbol, then this mapping symbol is required. */
28883 if (next->fr_address != next->fr_next->fr_address)
28884 break;
28885
28886 next = next->fr_next;
28887 }
28888 while (next != NULL);
28889 }
28890 }
28891 #endif
28892
28893 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28894 ARM ones. */
28895
28896 void
28897 arm_adjust_symtab (void)
28898 {
28899 #ifdef OBJ_COFF
28900 symbolS * sym;
28901
28902 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28903 {
28904 if (ARM_IS_THUMB (sym))
28905 {
28906 if (THUMB_IS_FUNC (sym))
28907 {
28908 /* Mark the symbol as a Thumb function. */
28909 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28910 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28911 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28912
28913 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28914 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28915 else
28916 as_bad (_("%s: unexpected function type: %d"),
28917 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28918 }
28919 else switch (S_GET_STORAGE_CLASS (sym))
28920 {
28921 case C_EXT:
28922 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28923 break;
28924 case C_STAT:
28925 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28926 break;
28927 case C_LABEL:
28928 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28929 break;
28930 default:
28931 /* Do nothing. */
28932 break;
28933 }
28934 }
28935
28936 if (ARM_IS_INTERWORK (sym))
28937 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28938 }
28939 #endif
28940 #ifdef OBJ_ELF
28941 symbolS * sym;
28942 char bind;
28943
28944 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28945 {
28946 if (ARM_IS_THUMB (sym))
28947 {
28948 elf_symbol_type * elf_sym;
28949
28950 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28951 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28952
28953 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28954 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28955 {
28956 /* If it's a .thumb_func, declare it as so,
28957 otherwise tag label as .code 16. */
28958 if (THUMB_IS_FUNC (sym))
28959 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28960 ST_BRANCH_TO_THUMB);
28961 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28962 elf_sym->internal_elf_sym.st_info =
28963 ELF_ST_INFO (bind, STT_ARM_16BIT);
28964 }
28965 }
28966 }
28967
28968 /* Remove any overlapping mapping symbols generated by alignment frags. */
28969 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28970 /* Now do generic ELF adjustments. */
28971 elf_adjust_symtab ();
28972 #endif
28973 }
28974
28975 /* MD interface: Initialization. */
28976
28977 static void
28978 set_constant_flonums (void)
28979 {
28980 int i;
28981
28982 for (i = 0; i < NUM_FLOAT_VALS; i++)
28983 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28984 abort ();
28985 }
28986
28987 /* Auto-select Thumb mode if it's the only available instruction set for the
28988 given architecture. */
28989
28990 static void
28991 autoselect_thumb_from_cpu_variant (void)
28992 {
28993 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28994 opcode_select (16);
28995 }
28996
28997 void
28998 md_begin (void)
28999 {
29000 unsigned mach;
29001 unsigned int i;
29002
29003 if ( (arm_ops_hsh = hash_new ()) == NULL
29004 || (arm_cond_hsh = hash_new ()) == NULL
29005 || (arm_vcond_hsh = hash_new ()) == NULL
29006 || (arm_shift_hsh = hash_new ()) == NULL
29007 || (arm_psr_hsh = hash_new ()) == NULL
29008 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29009 || (arm_reg_hsh = hash_new ()) == NULL
29010 || (arm_reloc_hsh = hash_new ()) == NULL
29011 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29012 as_fatal (_("virtual memory exhausted"));
29013
29014 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29015 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29016 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29017 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29018 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29019 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29020 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29021 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29022 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29023 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29024 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29025 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29026 (void *) (v7m_psrs + i));
29027 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29028 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29029 for (i = 0;
29030 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29031 i++)
29032 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29033 (void *) (barrier_opt_names + i));
29034 #ifdef OBJ_ELF
29035 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29036 {
29037 struct reloc_entry * entry = reloc_names + i;
29038
29039 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29040 /* This makes encode_branch() use the EABI versions of this relocation. */
29041 entry->reloc = BFD_RELOC_UNUSED;
29042
29043 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29044 }
29045 #endif
29046
29047 set_constant_flonums ();
29048
29049 /* Set the cpu variant based on the command-line options. We prefer
29050 -mcpu= over -march= if both are set (as for GCC); and we prefer
29051 -mfpu= over any other way of setting the floating point unit.
29052 Use of legacy options with new options are faulted. */
29053 if (legacy_cpu)
29054 {
29055 if (mcpu_cpu_opt || march_cpu_opt)
29056 as_bad (_("use of old and new-style options to set CPU type"));
29057
29058 selected_arch = *legacy_cpu;
29059 }
29060 else if (mcpu_cpu_opt)
29061 {
29062 selected_arch = *mcpu_cpu_opt;
29063 selected_ext = *mcpu_ext_opt;
29064 }
29065 else if (march_cpu_opt)
29066 {
29067 selected_arch = *march_cpu_opt;
29068 selected_ext = *march_ext_opt;
29069 }
29070 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29071
29072 if (legacy_fpu)
29073 {
29074 if (mfpu_opt)
29075 as_bad (_("use of old and new-style options to set FPU type"));
29076
29077 selected_fpu = *legacy_fpu;
29078 }
29079 else if (mfpu_opt)
29080 selected_fpu = *mfpu_opt;
29081 else
29082 {
29083 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29084 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29085 /* Some environments specify a default FPU. If they don't, infer it
29086 from the processor. */
29087 if (mcpu_fpu_opt)
29088 selected_fpu = *mcpu_fpu_opt;
29089 else if (march_fpu_opt)
29090 selected_fpu = *march_fpu_opt;
29091 #else
29092 selected_fpu = fpu_default;
29093 #endif
29094 }
29095
29096 if (ARM_FEATURE_ZERO (selected_fpu))
29097 {
29098 if (!no_cpu_selected ())
29099 selected_fpu = fpu_default;
29100 else
29101 selected_fpu = fpu_arch_fpa;
29102 }
29103
29104 #ifdef CPU_DEFAULT
29105 if (ARM_FEATURE_ZERO (selected_arch))
29106 {
29107 selected_arch = cpu_default;
29108 selected_cpu = selected_arch;
29109 }
29110 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29111 #else
29112 /* Autodection of feature mode: allow all features in cpu_variant but leave
29113 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29114 after all instruction have been processed and we can decide what CPU
29115 should be selected. */
29116 if (ARM_FEATURE_ZERO (selected_arch))
29117 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29118 else
29119 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29120 #endif
29121
29122 autoselect_thumb_from_cpu_variant ();
29123
29124 arm_arch_used = thumb_arch_used = arm_arch_none;
29125
29126 #if defined OBJ_COFF || defined OBJ_ELF
29127 {
29128 unsigned int flags = 0;
29129
29130 #if defined OBJ_ELF
29131 flags = meabi_flags;
29132
29133 switch (meabi_flags)
29134 {
29135 case EF_ARM_EABI_UNKNOWN:
29136 #endif
29137 /* Set the flags in the private structure. */
29138 if (uses_apcs_26) flags |= F_APCS26;
29139 if (support_interwork) flags |= F_INTERWORK;
29140 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29141 if (pic_code) flags |= F_PIC;
29142 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29143 flags |= F_SOFT_FLOAT;
29144
29145 switch (mfloat_abi_opt)
29146 {
29147 case ARM_FLOAT_ABI_SOFT:
29148 case ARM_FLOAT_ABI_SOFTFP:
29149 flags |= F_SOFT_FLOAT;
29150 break;
29151
29152 case ARM_FLOAT_ABI_HARD:
29153 if (flags & F_SOFT_FLOAT)
29154 as_bad (_("hard-float conflicts with specified fpu"));
29155 break;
29156 }
29157
29158 /* Using pure-endian doubles (even if soft-float). */
29159 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29160 flags |= F_VFP_FLOAT;
29161
29162 #if defined OBJ_ELF
29163 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29164 flags |= EF_ARM_MAVERICK_FLOAT;
29165 break;
29166
29167 case EF_ARM_EABI_VER4:
29168 case EF_ARM_EABI_VER5:
29169 /* No additional flags to set. */
29170 break;
29171
29172 default:
29173 abort ();
29174 }
29175 #endif
29176 bfd_set_private_flags (stdoutput, flags);
29177
29178 /* We have run out flags in the COFF header to encode the
29179 status of ATPCS support, so instead we create a dummy,
29180 empty, debug section called .arm.atpcs. */
29181 if (atpcs)
29182 {
29183 asection * sec;
29184
29185 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29186
29187 if (sec != NULL)
29188 {
29189 bfd_set_section_flags
29190 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29191 bfd_set_section_size (stdoutput, sec, 0);
29192 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29193 }
29194 }
29195 }
29196 #endif
29197
29198 /* Record the CPU type as well. */
29199 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29200 mach = bfd_mach_arm_iWMMXt2;
29201 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29202 mach = bfd_mach_arm_iWMMXt;
29203 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29204 mach = bfd_mach_arm_XScale;
29205 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29206 mach = bfd_mach_arm_ep9312;
29207 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29208 mach = bfd_mach_arm_5TE;
29209 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29210 {
29211 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29212 mach = bfd_mach_arm_5T;
29213 else
29214 mach = bfd_mach_arm_5;
29215 }
29216 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29217 {
29218 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29219 mach = bfd_mach_arm_4T;
29220 else
29221 mach = bfd_mach_arm_4;
29222 }
29223 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29224 mach = bfd_mach_arm_3M;
29225 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29226 mach = bfd_mach_arm_3;
29227 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29228 mach = bfd_mach_arm_2a;
29229 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29230 mach = bfd_mach_arm_2;
29231 else
29232 mach = bfd_mach_arm_unknown;
29233
29234 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29235 }
29236
29237 /* Command line processing. */
29238
29239 /* md_parse_option
29240 Invocation line includes a switch not recognized by the base assembler.
29241 See if it's a processor-specific option.
29242
29243 This routine is somewhat complicated by the need for backwards
29244 compatibility (since older releases of gcc can't be changed).
29245 The new options try to make the interface as compatible as
29246 possible with GCC.
29247
29248 New options (supported) are:
29249
29250 -mcpu=<cpu name> Assemble for selected processor
29251 -march=<architecture name> Assemble for selected architecture
29252 -mfpu=<fpu architecture> Assemble for selected FPU.
29253 -EB/-mbig-endian Big-endian
29254 -EL/-mlittle-endian Little-endian
29255 -k Generate PIC code
29256 -mthumb Start in Thumb mode
29257 -mthumb-interwork Code supports ARM/Thumb interworking
29258
29259 -m[no-]warn-deprecated Warn about deprecated features
29260 -m[no-]warn-syms Warn when symbols match instructions
29261
29262 For now we will also provide support for:
29263
29264 -mapcs-32 32-bit Program counter
29265 -mapcs-26 26-bit Program counter
29266 -macps-float Floats passed in FP registers
29267 -mapcs-reentrant Reentrant code
29268 -matpcs
29269 (sometime these will probably be replaced with -mapcs=<list of options>
29270 and -matpcs=<list of options>)
29271
29272 The remaining options are only supported for back-wards compatibility.
29273 Cpu variants, the arm part is optional:
29274 -m[arm]1 Currently not supported.
29275 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29276 -m[arm]3 Arm 3 processor
29277 -m[arm]6[xx], Arm 6 processors
29278 -m[arm]7[xx][t][[d]m] Arm 7 processors
29279 -m[arm]8[10] Arm 8 processors
29280 -m[arm]9[20][tdmi] Arm 9 processors
29281 -mstrongarm[110[0]] StrongARM processors
29282 -mxscale XScale processors
29283 -m[arm]v[2345[t[e]]] Arm architectures
29284 -mall All (except the ARM1)
29285 FP variants:
29286 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29287 -mfpe-old (No float load/store multiples)
29288 -mvfpxd VFP Single precision
29289 -mvfp All VFP
29290 -mno-fpu Disable all floating point instructions
29291
29292 The following CPU names are recognized:
29293 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29294 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29295 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29296 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29297 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29298 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29299 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29300
29301 */
29302
29303 const char * md_shortopts = "m:k";
29304
29305 #ifdef ARM_BI_ENDIAN
29306 #define OPTION_EB (OPTION_MD_BASE + 0)
29307 #define OPTION_EL (OPTION_MD_BASE + 1)
29308 #else
29309 #if TARGET_BYTES_BIG_ENDIAN
29310 #define OPTION_EB (OPTION_MD_BASE + 0)
29311 #else
29312 #define OPTION_EL (OPTION_MD_BASE + 1)
29313 #endif
29314 #endif
29315 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29316 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29317
29318 struct option md_longopts[] =
29319 {
29320 #ifdef OPTION_EB
29321 {"EB", no_argument, NULL, OPTION_EB},
29322 #endif
29323 #ifdef OPTION_EL
29324 {"EL", no_argument, NULL, OPTION_EL},
29325 #endif
29326 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29327 #ifdef OBJ_ELF
29328 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29329 #endif
29330 {NULL, no_argument, NULL, 0}
29331 };
29332
29333 size_t md_longopts_size = sizeof (md_longopts);
29334
29335 struct arm_option_table
29336 {
29337 const char * option; /* Option name to match. */
29338 const char * help; /* Help information. */
29339 int * var; /* Variable to change. */
29340 int value; /* What to change it to. */
29341 const char * deprecated; /* If non-null, print this message. */
29342 };
29343
29344 struct arm_option_table arm_opts[] =
29345 {
29346 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29347 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29348 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29349 &support_interwork, 1, NULL},
29350 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29351 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29352 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29353 1, NULL},
29354 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29355 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29356 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29357 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29358 NULL},
29359
29360 /* These are recognized by the assembler, but have no affect on code. */
29361 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29362 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29363
29364 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29365 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29366 &warn_on_deprecated, 0, NULL},
29367 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29368 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29369 {NULL, NULL, NULL, 0, NULL}
29370 };
29371
29372 struct arm_legacy_option_table
29373 {
29374 const char * option; /* Option name to match. */
29375 const arm_feature_set ** var; /* Variable to change. */
29376 const arm_feature_set value; /* What to change it to. */
29377 const char * deprecated; /* If non-null, print this message. */
29378 };
29379
29380 const struct arm_legacy_option_table arm_legacy_opts[] =
29381 {
29382 /* DON'T add any new processors to this list -- we want the whole list
29383 to go away... Add them to the processors table instead. */
29384 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29385 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29386 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29387 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29388 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29389 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29390 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29391 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29392 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29393 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29394 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29395 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29396 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29397 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29398 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29399 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29400 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29401 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29402 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29403 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29404 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29405 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29406 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29407 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29408 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29409 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29410 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29411 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29412 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29413 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29414 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29415 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29416 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29417 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29418 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29419 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29420 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29421 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29422 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29423 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29424 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29425 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29426 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29427 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29428 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29429 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29430 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29431 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29432 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29433 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29434 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29435 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29436 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29437 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29438 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29439 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29440 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29441 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29442 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29443 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29444 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29445 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29446 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29447 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29448 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29449 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29450 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29451 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29452 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29453 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29454 N_("use -mcpu=strongarm110")},
29455 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29456 N_("use -mcpu=strongarm1100")},
29457 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29458 N_("use -mcpu=strongarm1110")},
29459 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29460 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29461 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29462
29463 /* Architecture variants -- don't add any more to this list either. */
29464 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29465 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29466 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29467 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29468 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29469 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29470 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29471 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29472 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29473 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29474 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29475 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29476 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29477 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29478 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29479 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29480 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29481 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29482
29483 /* Floating point variants -- don't add any more to this list either. */
29484 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29485 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29486 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29487 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29488 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29489
29490 {NULL, NULL, ARM_ARCH_NONE, NULL}
29491 };
29492
29493 struct arm_cpu_option_table
29494 {
29495 const char * name;
29496 size_t name_len;
29497 const arm_feature_set value;
29498 const arm_feature_set ext;
29499 /* For some CPUs we assume an FPU unless the user explicitly sets
29500 -mfpu=... */
29501 const arm_feature_set default_fpu;
29502 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29503 case. */
29504 const char * canonical_name;
29505 };
29506
29507 /* This list should, at a minimum, contain all the cpu names
29508 recognized by GCC. */
29509 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29510
29511 static const struct arm_cpu_option_table arm_cpus[] =
29512 {
29513 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29514 ARM_ARCH_NONE,
29515 FPU_ARCH_FPA),
29516 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29517 ARM_ARCH_NONE,
29518 FPU_ARCH_FPA),
29519 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29520 ARM_ARCH_NONE,
29521 FPU_ARCH_FPA),
29522 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29523 ARM_ARCH_NONE,
29524 FPU_ARCH_FPA),
29525 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29526 ARM_ARCH_NONE,
29527 FPU_ARCH_FPA),
29528 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29529 ARM_ARCH_NONE,
29530 FPU_ARCH_FPA),
29531 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29532 ARM_ARCH_NONE,
29533 FPU_ARCH_FPA),
29534 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29535 ARM_ARCH_NONE,
29536 FPU_ARCH_FPA),
29537 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29538 ARM_ARCH_NONE,
29539 FPU_ARCH_FPA),
29540 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29541 ARM_ARCH_NONE,
29542 FPU_ARCH_FPA),
29543 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29544 ARM_ARCH_NONE,
29545 FPU_ARCH_FPA),
29546 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29547 ARM_ARCH_NONE,
29548 FPU_ARCH_FPA),
29549 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29550 ARM_ARCH_NONE,
29551 FPU_ARCH_FPA),
29552 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29553 ARM_ARCH_NONE,
29554 FPU_ARCH_FPA),
29555 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29556 ARM_ARCH_NONE,
29557 FPU_ARCH_FPA),
29558 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29559 ARM_ARCH_NONE,
29560 FPU_ARCH_FPA),
29561 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29562 ARM_ARCH_NONE,
29563 FPU_ARCH_FPA),
29564 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29565 ARM_ARCH_NONE,
29566 FPU_ARCH_FPA),
29567 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29568 ARM_ARCH_NONE,
29569 FPU_ARCH_FPA),
29570 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29571 ARM_ARCH_NONE,
29572 FPU_ARCH_FPA),
29573 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29574 ARM_ARCH_NONE,
29575 FPU_ARCH_FPA),
29576 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29577 ARM_ARCH_NONE,
29578 FPU_ARCH_FPA),
29579 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29580 ARM_ARCH_NONE,
29581 FPU_ARCH_FPA),
29582 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29583 ARM_ARCH_NONE,
29584 FPU_ARCH_FPA),
29585 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29586 ARM_ARCH_NONE,
29587 FPU_ARCH_FPA),
29588 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29589 ARM_ARCH_NONE,
29590 FPU_ARCH_FPA),
29591 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29592 ARM_ARCH_NONE,
29593 FPU_ARCH_FPA),
29594 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29595 ARM_ARCH_NONE,
29596 FPU_ARCH_FPA),
29597 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29598 ARM_ARCH_NONE,
29599 FPU_ARCH_FPA),
29600 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29601 ARM_ARCH_NONE,
29602 FPU_ARCH_FPA),
29603 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29604 ARM_ARCH_NONE,
29605 FPU_ARCH_FPA),
29606 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29607 ARM_ARCH_NONE,
29608 FPU_ARCH_FPA),
29609 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29610 ARM_ARCH_NONE,
29611 FPU_ARCH_FPA),
29612 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29613 ARM_ARCH_NONE,
29614 FPU_ARCH_FPA),
29615 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29616 ARM_ARCH_NONE,
29617 FPU_ARCH_FPA),
29618 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29619 ARM_ARCH_NONE,
29620 FPU_ARCH_FPA),
29621 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29622 ARM_ARCH_NONE,
29623 FPU_ARCH_FPA),
29624 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29625 ARM_ARCH_NONE,
29626 FPU_ARCH_FPA),
29627 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29628 ARM_ARCH_NONE,
29629 FPU_ARCH_FPA),
29630 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29631 ARM_ARCH_NONE,
29632 FPU_ARCH_FPA),
29633 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29634 ARM_ARCH_NONE,
29635 FPU_ARCH_FPA),
29636 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29637 ARM_ARCH_NONE,
29638 FPU_ARCH_FPA),
29639 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29640 ARM_ARCH_NONE,
29641 FPU_ARCH_FPA),
29642 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29643 ARM_ARCH_NONE,
29644 FPU_ARCH_FPA),
29645 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29646 ARM_ARCH_NONE,
29647 FPU_ARCH_FPA),
29648 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29649 ARM_ARCH_NONE,
29650 FPU_ARCH_FPA),
29651
29652 /* For V5 or later processors we default to using VFP; but the user
29653 should really set the FPU type explicitly. */
29654 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29655 ARM_ARCH_NONE,
29656 FPU_ARCH_VFP_V2),
29657 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29658 ARM_ARCH_NONE,
29659 FPU_ARCH_VFP_V2),
29660 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29661 ARM_ARCH_NONE,
29662 FPU_ARCH_VFP_V2),
29663 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29664 ARM_ARCH_NONE,
29665 FPU_ARCH_VFP_V2),
29666 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29667 ARM_ARCH_NONE,
29668 FPU_ARCH_VFP_V2),
29669 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29670 ARM_ARCH_NONE,
29671 FPU_ARCH_VFP_V2),
29672 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29673 ARM_ARCH_NONE,
29674 FPU_ARCH_VFP_V2),
29675 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29676 ARM_ARCH_NONE,
29677 FPU_ARCH_VFP_V2),
29678 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29679 ARM_ARCH_NONE,
29680 FPU_ARCH_VFP_V2),
29681 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29682 ARM_ARCH_NONE,
29683 FPU_ARCH_VFP_V2),
29684 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29685 ARM_ARCH_NONE,
29686 FPU_ARCH_VFP_V2),
29687 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29688 ARM_ARCH_NONE,
29689 FPU_ARCH_VFP_V2),
29690 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29691 ARM_ARCH_NONE,
29692 FPU_ARCH_VFP_V1),
29693 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29694 ARM_ARCH_NONE,
29695 FPU_ARCH_VFP_V1),
29696 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29697 ARM_ARCH_NONE,
29698 FPU_ARCH_VFP_V2),
29699 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29700 ARM_ARCH_NONE,
29701 FPU_ARCH_VFP_V2),
29702 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29703 ARM_ARCH_NONE,
29704 FPU_ARCH_VFP_V1),
29705 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29706 ARM_ARCH_NONE,
29707 FPU_ARCH_VFP_V2),
29708 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29709 ARM_ARCH_NONE,
29710 FPU_ARCH_VFP_V2),
29711 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29712 ARM_ARCH_NONE,
29713 FPU_ARCH_VFP_V2),
29714 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29715 ARM_ARCH_NONE,
29716 FPU_ARCH_VFP_V2),
29717 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29718 ARM_ARCH_NONE,
29719 FPU_ARCH_VFP_V2),
29720 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29721 ARM_ARCH_NONE,
29722 FPU_ARCH_VFP_V2),
29723 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29724 ARM_ARCH_NONE,
29725 FPU_ARCH_VFP_V2),
29726 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29727 ARM_ARCH_NONE,
29728 FPU_ARCH_VFP_V2),
29729 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29730 ARM_ARCH_NONE,
29731 FPU_ARCH_VFP_V2),
29732 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29733 ARM_ARCH_NONE,
29734 FPU_NONE),
29735 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29736 ARM_ARCH_NONE,
29737 FPU_NONE),
29738 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29739 ARM_ARCH_NONE,
29740 FPU_ARCH_VFP_V2),
29741 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29742 ARM_ARCH_NONE,
29743 FPU_ARCH_VFP_V2),
29744 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29745 ARM_ARCH_NONE,
29746 FPU_ARCH_VFP_V2),
29747 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29748 ARM_ARCH_NONE,
29749 FPU_NONE),
29750 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29751 ARM_ARCH_NONE,
29752 FPU_NONE),
29753 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29754 ARM_ARCH_NONE,
29755 FPU_ARCH_VFP_V2),
29756 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29757 ARM_ARCH_NONE,
29758 FPU_NONE),
29759 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29760 ARM_ARCH_NONE,
29761 FPU_ARCH_VFP_V2),
29762 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29763 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29764 FPU_NONE),
29765 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29766 ARM_ARCH_NONE,
29767 FPU_ARCH_NEON_VFP_V4),
29768 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29769 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29770 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29771 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29772 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29773 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29774 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29775 ARM_ARCH_NONE,
29776 FPU_ARCH_NEON_VFP_V4),
29777 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29778 ARM_ARCH_NONE,
29779 FPU_ARCH_NEON_VFP_V4),
29780 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29781 ARM_ARCH_NONE,
29782 FPU_ARCH_NEON_VFP_V4),
29783 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29784 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29785 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29786 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29787 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29788 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29789 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29790 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29791 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29792 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29793 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29794 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29795 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29796 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29797 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29798 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29799 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29800 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29801 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29802 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29803 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29804 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29805 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29806 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29807 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29808 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29809 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29810 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29811 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29812 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29813 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29814 ARM_ARCH_NONE,
29815 FPU_NONE),
29816 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29817 ARM_ARCH_NONE,
29818 FPU_ARCH_VFP_V3D16),
29819 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29820 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29821 FPU_NONE),
29822 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29823 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29824 FPU_ARCH_VFP_V3D16),
29825 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29826 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29827 FPU_ARCH_VFP_V3D16),
29828 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29829 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29830 FPU_ARCH_NEON_VFP_ARMV8),
29831 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29832 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29833 FPU_NONE),
29834 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29835 ARM_ARCH_NONE,
29836 FPU_NONE),
29837 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29838 ARM_ARCH_NONE,
29839 FPU_NONE),
29840 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29841 ARM_ARCH_NONE,
29842 FPU_NONE),
29843 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29844 ARM_ARCH_NONE,
29845 FPU_NONE),
29846 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29847 ARM_ARCH_NONE,
29848 FPU_NONE),
29849 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29850 ARM_ARCH_NONE,
29851 FPU_NONE),
29852 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29853 ARM_ARCH_NONE,
29854 FPU_NONE),
29855 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29856 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29857 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29858 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29859 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29860 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29861 /* ??? XSCALE is really an architecture. */
29862 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29863 ARM_ARCH_NONE,
29864 FPU_ARCH_VFP_V2),
29865
29866 /* ??? iwmmxt is not a processor. */
29867 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29868 ARM_ARCH_NONE,
29869 FPU_ARCH_VFP_V2),
29870 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29871 ARM_ARCH_NONE,
29872 FPU_ARCH_VFP_V2),
29873 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29874 ARM_ARCH_NONE,
29875 FPU_ARCH_VFP_V2),
29876
29877 /* Maverick. */
29878 ARM_CPU_OPT ("ep9312", "ARM920T",
29879 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29880 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29881
29882 /* Marvell processors. */
29883 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29884 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29885 FPU_ARCH_VFP_V3D16),
29886 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29887 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29888 FPU_ARCH_NEON_VFP_V4),
29889
29890 /* APM X-Gene family. */
29891 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29892 ARM_ARCH_NONE,
29893 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29894 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29895 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29896 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29897
29898 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29899 };
29900 #undef ARM_CPU_OPT
29901
29902 struct arm_ext_table
29903 {
29904 const char * name;
29905 size_t name_len;
29906 const arm_feature_set merge;
29907 const arm_feature_set clear;
29908 };
29909
29910 struct arm_arch_option_table
29911 {
29912 const char * name;
29913 size_t name_len;
29914 const arm_feature_set value;
29915 const arm_feature_set default_fpu;
29916 const struct arm_ext_table * ext_table;
29917 };
29918
29919 /* Used to add support for +E and +noE extension. */
29920 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29921 /* Used to add support for a +E extension. */
29922 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29923 /* Used to add support for a +noE extension. */
29924 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29925
29926 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29927 ~0 & ~FPU_ENDIAN_PURE)
29928
29929 static const struct arm_ext_table armv5te_ext_table[] =
29930 {
29931 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29932 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29933 };
29934
29935 static const struct arm_ext_table armv7_ext_table[] =
29936 {
29937 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29938 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29939 };
29940
29941 static const struct arm_ext_table armv7ve_ext_table[] =
29942 {
29943 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29944 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29945 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29946 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29947 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29948 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29949 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29950
29951 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29952 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29953
29954 /* Aliases for +simd. */
29955 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29956
29957 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29958 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29959 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29960
29961 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29962 };
29963
29964 static const struct arm_ext_table armv7a_ext_table[] =
29965 {
29966 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29967 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29968 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29969 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29970 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29971 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29972 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29973
29974 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29975 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29976
29977 /* Aliases for +simd. */
29978 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29979 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29980
29981 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29982 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29983
29984 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29985 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29986 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29987 };
29988
29989 static const struct arm_ext_table armv7r_ext_table[] =
29990 {
29991 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29992 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29993 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29994 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29995 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29996 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29997 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29998 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29999 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30000 };
30001
30002 static const struct arm_ext_table armv7em_ext_table[] =
30003 {
30004 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30005 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30006 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30007 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30008 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30009 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30010 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30011 };
30012
30013 static const struct arm_ext_table armv8a_ext_table[] =
30014 {
30015 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30016 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30017 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30018 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30019
30020 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30021 should use the +simd option to turn on FP. */
30022 ARM_REMOVE ("fp", ALL_FP),
30023 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30024 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30025 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30026 };
30027
30028
30029 static const struct arm_ext_table armv81a_ext_table[] =
30030 {
30031 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30032 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30033 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30034
30035 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30036 should use the +simd option to turn on FP. */
30037 ARM_REMOVE ("fp", ALL_FP),
30038 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30039 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30040 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30041 };
30042
30043 static const struct arm_ext_table armv82a_ext_table[] =
30044 {
30045 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30046 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30047 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30048 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30049 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30050 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30051
30052 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30053 should use the +simd option to turn on FP. */
30054 ARM_REMOVE ("fp", ALL_FP),
30055 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30056 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30057 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30058 };
30059
30060 static const struct arm_ext_table armv84a_ext_table[] =
30061 {
30062 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30063 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30064 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30065 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30066
30067 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30068 should use the +simd option to turn on FP. */
30069 ARM_REMOVE ("fp", ALL_FP),
30070 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30071 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30072 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30073 };
30074
30075 static const struct arm_ext_table armv85a_ext_table[] =
30076 {
30077 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30078 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30079 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30080 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30081
30082 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30083 should use the +simd option to turn on FP. */
30084 ARM_REMOVE ("fp", ALL_FP),
30085 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30086 };
30087
30088 static const struct arm_ext_table armv8m_main_ext_table[] =
30089 {
30090 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30091 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30092 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30093 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30094 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30095 };
30096
30097 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30098 {
30099 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30100 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30101 ARM_EXT ("fp",
30102 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30103 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30104 ALL_FP),
30105 ARM_ADD ("fp.dp",
30106 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30107 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30108 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30109 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30110 ARM_ADD ("mve.fp",
30111 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30112 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30113 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30114 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30115 };
30116
30117 static const struct arm_ext_table armv8r_ext_table[] =
30118 {
30119 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30120 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30121 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30122 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30123 ARM_REMOVE ("fp", ALL_FP),
30124 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30125 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30126 };
30127
30128 /* This list should, at a minimum, contain all the architecture names
30129 recognized by GCC. */
30130 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30131 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30132 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30133
30134 static const struct arm_arch_option_table arm_archs[] =
30135 {
30136 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30137 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30138 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30139 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30140 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30141 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30142 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30143 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30144 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30145 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30146 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30147 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30148 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30149 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30150 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30151 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30152 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30153 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30154 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30155 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30156 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30157 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30158 kept to preserve existing behaviour. */
30159 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30160 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30161 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30162 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30163 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30164 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30165 kept to preserve existing behaviour. */
30166 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30167 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30168 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30169 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30170 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30171 /* The official spelling of the ARMv7 profile variants is the dashed form.
30172 Accept the non-dashed form for compatibility with old toolchains. */
30173 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30174 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30175 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30176 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30177 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30178 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30179 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30180 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30181 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30182 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30183 armv8m_main),
30184 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30185 armv8_1m_main),
30186 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30187 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30188 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30189 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30190 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30191 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30192 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30193 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30194 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30195 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30196 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30197 };
30198 #undef ARM_ARCH_OPT
30199
30200 /* ISA extensions in the co-processor and main instruction set space. */
30201
30202 struct arm_option_extension_value_table
30203 {
30204 const char * name;
30205 size_t name_len;
30206 const arm_feature_set merge_value;
30207 const arm_feature_set clear_value;
30208 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30209 indicates that an extension is available for all architectures while
30210 ARM_ANY marks an empty entry. */
30211 const arm_feature_set allowed_archs[2];
30212 };
30213
30214 /* The following table must be in alphabetical order with a NULL last entry. */
30215
30216 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30217 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30218
30219 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30220 use the context sensitive approach using arm_ext_table's. */
30221 static const struct arm_option_extension_value_table arm_extensions[] =
30222 {
30223 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30224 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30225 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30226 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30227 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30228 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30229 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30230 ARM_ARCH_V8_2A),
30231 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30232 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30233 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30234 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30235 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30236 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30238 ARM_ARCH_V8_2A),
30239 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30240 | ARM_EXT2_FP16_FML),
30241 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30242 | ARM_EXT2_FP16_FML),
30243 ARM_ARCH_V8_2A),
30244 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30245 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30246 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30247 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30248 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30249 Thumb divide instruction. Due to this having the same name as the
30250 previous entry, this will be ignored when doing command-line parsing and
30251 only considered by build attribute selection code. */
30252 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30253 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30254 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30255 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30256 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30257 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30258 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30259 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30260 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30261 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30262 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30263 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30264 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30265 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30266 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30267 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30268 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30269 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30271 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30272 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30273 ARM_ARCH_V8A),
30274 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30275 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30276 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30277 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30278 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30279 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30280 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30281 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30282 ARM_ARCH_V8A),
30283 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30284 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30285 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30286 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30287 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30288 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30290 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30291 | ARM_EXT_DIV),
30292 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30293 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30294 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30295 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30296 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30297 };
30298 #undef ARM_EXT_OPT
30299
30300 /* ISA floating-point and Advanced SIMD extensions. */
30301 struct arm_option_fpu_value_table
30302 {
30303 const char * name;
30304 const arm_feature_set value;
30305 };
30306
30307 /* This list should, at a minimum, contain all the fpu names
30308 recognized by GCC. */
30309 static const struct arm_option_fpu_value_table arm_fpus[] =
30310 {
30311 {"softfpa", FPU_NONE},
30312 {"fpe", FPU_ARCH_FPE},
30313 {"fpe2", FPU_ARCH_FPE},
30314 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30315 {"fpa", FPU_ARCH_FPA},
30316 {"fpa10", FPU_ARCH_FPA},
30317 {"fpa11", FPU_ARCH_FPA},
30318 {"arm7500fe", FPU_ARCH_FPA},
30319 {"softvfp", FPU_ARCH_VFP},
30320 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30321 {"vfp", FPU_ARCH_VFP_V2},
30322 {"vfp9", FPU_ARCH_VFP_V2},
30323 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30324 {"vfp10", FPU_ARCH_VFP_V2},
30325 {"vfp10-r0", FPU_ARCH_VFP_V1},
30326 {"vfpxd", FPU_ARCH_VFP_V1xD},
30327 {"vfpv2", FPU_ARCH_VFP_V2},
30328 {"vfpv3", FPU_ARCH_VFP_V3},
30329 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30330 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30331 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30332 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30333 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30334 {"arm1020t", FPU_ARCH_VFP_V1},
30335 {"arm1020e", FPU_ARCH_VFP_V2},
30336 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30337 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30338 {"maverick", FPU_ARCH_MAVERICK},
30339 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30340 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30341 {"neon-fp16", FPU_ARCH_NEON_FP16},
30342 {"vfpv4", FPU_ARCH_VFP_V4},
30343 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30344 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30345 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30346 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30347 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30348 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30349 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30350 {"crypto-neon-fp-armv8",
30351 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30352 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30353 {"crypto-neon-fp-armv8.1",
30354 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30355 {NULL, ARM_ARCH_NONE}
30356 };
30357
30358 struct arm_option_value_table
30359 {
30360 const char *name;
30361 long value;
30362 };
30363
30364 static const struct arm_option_value_table arm_float_abis[] =
30365 {
30366 {"hard", ARM_FLOAT_ABI_HARD},
30367 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30368 {"soft", ARM_FLOAT_ABI_SOFT},
30369 {NULL, 0}
30370 };
30371
30372 #ifdef OBJ_ELF
30373 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30374 static const struct arm_option_value_table arm_eabis[] =
30375 {
30376 {"gnu", EF_ARM_EABI_UNKNOWN},
30377 {"4", EF_ARM_EABI_VER4},
30378 {"5", EF_ARM_EABI_VER5},
30379 {NULL, 0}
30380 };
30381 #endif
30382
30383 struct arm_long_option_table
30384 {
30385 const char * option; /* Substring to match. */
30386 const char * help; /* Help information. */
30387 int (* func) (const char * subopt); /* Function to decode sub-option. */
30388 const char * deprecated; /* If non-null, print this message. */
30389 };
30390
30391 static bfd_boolean
30392 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30393 arm_feature_set *ext_set,
30394 const struct arm_ext_table *ext_table)
30395 {
30396 /* We insist on extensions being specified in alphabetical order, and with
30397 extensions being added before being removed. We achieve this by having
30398 the global ARM_EXTENSIONS table in alphabetical order, and using the
30399 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30400 or removing it (0) and only allowing it to change in the order
30401 -1 -> 1 -> 0. */
30402 const struct arm_option_extension_value_table * opt = NULL;
30403 const arm_feature_set arm_any = ARM_ANY;
30404 int adding_value = -1;
30405
30406 while (str != NULL && *str != 0)
30407 {
30408 const char *ext;
30409 size_t len;
30410
30411 if (*str != '+')
30412 {
30413 as_bad (_("invalid architectural extension"));
30414 return FALSE;
30415 }
30416
30417 str++;
30418 ext = strchr (str, '+');
30419
30420 if (ext != NULL)
30421 len = ext - str;
30422 else
30423 len = strlen (str);
30424
30425 if (len >= 2 && strncmp (str, "no", 2) == 0)
30426 {
30427 if (adding_value != 0)
30428 {
30429 adding_value = 0;
30430 opt = arm_extensions;
30431 }
30432
30433 len -= 2;
30434 str += 2;
30435 }
30436 else if (len > 0)
30437 {
30438 if (adding_value == -1)
30439 {
30440 adding_value = 1;
30441 opt = arm_extensions;
30442 }
30443 else if (adding_value != 1)
30444 {
30445 as_bad (_("must specify extensions to add before specifying "
30446 "those to remove"));
30447 return FALSE;
30448 }
30449 }
30450
30451 if (len == 0)
30452 {
30453 as_bad (_("missing architectural extension"));
30454 return FALSE;
30455 }
30456
30457 gas_assert (adding_value != -1);
30458 gas_assert (opt != NULL);
30459
30460 if (ext_table != NULL)
30461 {
30462 const struct arm_ext_table * ext_opt = ext_table;
30463 bfd_boolean found = FALSE;
30464 for (; ext_opt->name != NULL; ext_opt++)
30465 if (ext_opt->name_len == len
30466 && strncmp (ext_opt->name, str, len) == 0)
30467 {
30468 if (adding_value)
30469 {
30470 if (ARM_FEATURE_ZERO (ext_opt->merge))
30471 /* TODO: Option not supported. When we remove the
30472 legacy table this case should error out. */
30473 continue;
30474
30475 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30476 }
30477 else
30478 {
30479 if (ARM_FEATURE_ZERO (ext_opt->clear))
30480 /* TODO: Option not supported. When we remove the
30481 legacy table this case should error out. */
30482 continue;
30483 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30484 }
30485 found = TRUE;
30486 break;
30487 }
30488 if (found)
30489 {
30490 str = ext;
30491 continue;
30492 }
30493 }
30494
30495 /* Scan over the options table trying to find an exact match. */
30496 for (; opt->name != NULL; opt++)
30497 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30498 {
30499 int i, nb_allowed_archs =
30500 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30501 /* Check we can apply the extension to this architecture. */
30502 for (i = 0; i < nb_allowed_archs; i++)
30503 {
30504 /* Empty entry. */
30505 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30506 continue;
30507 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30508 break;
30509 }
30510 if (i == nb_allowed_archs)
30511 {
30512 as_bad (_("extension does not apply to the base architecture"));
30513 return FALSE;
30514 }
30515
30516 /* Add or remove the extension. */
30517 if (adding_value)
30518 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30519 else
30520 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30521
30522 /* Allowing Thumb division instructions for ARMv7 in autodetection
30523 rely on this break so that duplicate extensions (extensions
30524 with the same name as a previous extension in the list) are not
30525 considered for command-line parsing. */
30526 break;
30527 }
30528
30529 if (opt->name == NULL)
30530 {
30531 /* Did we fail to find an extension because it wasn't specified in
30532 alphabetical order, or because it does not exist? */
30533
30534 for (opt = arm_extensions; opt->name != NULL; opt++)
30535 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30536 break;
30537
30538 if (opt->name == NULL)
30539 as_bad (_("unknown architectural extension `%s'"), str);
30540 else
30541 as_bad (_("architectural extensions must be specified in "
30542 "alphabetical order"));
30543
30544 return FALSE;
30545 }
30546 else
30547 {
30548 /* We should skip the extension we've just matched the next time
30549 round. */
30550 opt++;
30551 }
30552
30553 str = ext;
30554 };
30555
30556 return TRUE;
30557 }
30558
30559 static bfd_boolean
30560 arm_parse_cpu (const char *str)
30561 {
30562 const struct arm_cpu_option_table *opt;
30563 const char *ext = strchr (str, '+');
30564 size_t len;
30565
30566 if (ext != NULL)
30567 len = ext - str;
30568 else
30569 len = strlen (str);
30570
30571 if (len == 0)
30572 {
30573 as_bad (_("missing cpu name `%s'"), str);
30574 return FALSE;
30575 }
30576
30577 for (opt = arm_cpus; opt->name != NULL; opt++)
30578 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30579 {
30580 mcpu_cpu_opt = &opt->value;
30581 if (mcpu_ext_opt == NULL)
30582 mcpu_ext_opt = XNEW (arm_feature_set);
30583 *mcpu_ext_opt = opt->ext;
30584 mcpu_fpu_opt = &opt->default_fpu;
30585 if (opt->canonical_name)
30586 {
30587 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30588 strcpy (selected_cpu_name, opt->canonical_name);
30589 }
30590 else
30591 {
30592 size_t i;
30593
30594 if (len >= sizeof selected_cpu_name)
30595 len = (sizeof selected_cpu_name) - 1;
30596
30597 for (i = 0; i < len; i++)
30598 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30599 selected_cpu_name[i] = 0;
30600 }
30601
30602 if (ext != NULL)
30603 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30604
30605 return TRUE;
30606 }
30607
30608 as_bad (_("unknown cpu `%s'"), str);
30609 return FALSE;
30610 }
30611
30612 static bfd_boolean
30613 arm_parse_arch (const char *str)
30614 {
30615 const struct arm_arch_option_table *opt;
30616 const char *ext = strchr (str, '+');
30617 size_t len;
30618
30619 if (ext != NULL)
30620 len = ext - str;
30621 else
30622 len = strlen (str);
30623
30624 if (len == 0)
30625 {
30626 as_bad (_("missing architecture name `%s'"), str);
30627 return FALSE;
30628 }
30629
30630 for (opt = arm_archs; opt->name != NULL; opt++)
30631 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30632 {
30633 march_cpu_opt = &opt->value;
30634 if (march_ext_opt == NULL)
30635 march_ext_opt = XNEW (arm_feature_set);
30636 *march_ext_opt = arm_arch_none;
30637 march_fpu_opt = &opt->default_fpu;
30638 strcpy (selected_cpu_name, opt->name);
30639
30640 if (ext != NULL)
30641 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30642 opt->ext_table);
30643
30644 return TRUE;
30645 }
30646
30647 as_bad (_("unknown architecture `%s'\n"), str);
30648 return FALSE;
30649 }
30650
30651 static bfd_boolean
30652 arm_parse_fpu (const char * str)
30653 {
30654 const struct arm_option_fpu_value_table * opt;
30655
30656 for (opt = arm_fpus; opt->name != NULL; opt++)
30657 if (streq (opt->name, str))
30658 {
30659 mfpu_opt = &opt->value;
30660 return TRUE;
30661 }
30662
30663 as_bad (_("unknown floating point format `%s'\n"), str);
30664 return FALSE;
30665 }
30666
30667 static bfd_boolean
30668 arm_parse_float_abi (const char * str)
30669 {
30670 const struct arm_option_value_table * opt;
30671
30672 for (opt = arm_float_abis; opt->name != NULL; opt++)
30673 if (streq (opt->name, str))
30674 {
30675 mfloat_abi_opt = opt->value;
30676 return TRUE;
30677 }
30678
30679 as_bad (_("unknown floating point abi `%s'\n"), str);
30680 return FALSE;
30681 }
30682
30683 #ifdef OBJ_ELF
30684 static bfd_boolean
30685 arm_parse_eabi (const char * str)
30686 {
30687 const struct arm_option_value_table *opt;
30688
30689 for (opt = arm_eabis; opt->name != NULL; opt++)
30690 if (streq (opt->name, str))
30691 {
30692 meabi_flags = opt->value;
30693 return TRUE;
30694 }
30695 as_bad (_("unknown EABI `%s'\n"), str);
30696 return FALSE;
30697 }
30698 #endif
30699
30700 static bfd_boolean
30701 arm_parse_it_mode (const char * str)
30702 {
30703 bfd_boolean ret = TRUE;
30704
30705 if (streq ("arm", str))
30706 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30707 else if (streq ("thumb", str))
30708 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30709 else if (streq ("always", str))
30710 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30711 else if (streq ("never", str))
30712 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30713 else
30714 {
30715 as_bad (_("unknown implicit IT mode `%s', should be "\
30716 "arm, thumb, always, or never."), str);
30717 ret = FALSE;
30718 }
30719
30720 return ret;
30721 }
30722
30723 static bfd_boolean
30724 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30725 {
30726 codecomposer_syntax = TRUE;
30727 arm_comment_chars[0] = ';';
30728 arm_line_separator_chars[0] = 0;
30729 return TRUE;
30730 }
30731
30732 struct arm_long_option_table arm_long_opts[] =
30733 {
30734 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30735 arm_parse_cpu, NULL},
30736 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30737 arm_parse_arch, NULL},
30738 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30739 arm_parse_fpu, NULL},
30740 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30741 arm_parse_float_abi, NULL},
30742 #ifdef OBJ_ELF
30743 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30744 arm_parse_eabi, NULL},
30745 #endif
30746 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30747 arm_parse_it_mode, NULL},
30748 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30749 arm_ccs_mode, NULL},
30750 {NULL, NULL, 0, NULL}
30751 };
30752
30753 int
30754 md_parse_option (int c, const char * arg)
30755 {
30756 struct arm_option_table *opt;
30757 const struct arm_legacy_option_table *fopt;
30758 struct arm_long_option_table *lopt;
30759
30760 switch (c)
30761 {
30762 #ifdef OPTION_EB
30763 case OPTION_EB:
30764 target_big_endian = 1;
30765 break;
30766 #endif
30767
30768 #ifdef OPTION_EL
30769 case OPTION_EL:
30770 target_big_endian = 0;
30771 break;
30772 #endif
30773
30774 case OPTION_FIX_V4BX:
30775 fix_v4bx = TRUE;
30776 break;
30777
30778 #ifdef OBJ_ELF
30779 case OPTION_FDPIC:
30780 arm_fdpic = TRUE;
30781 break;
30782 #endif /* OBJ_ELF */
30783
30784 case 'a':
30785 /* Listing option. Just ignore these, we don't support additional
30786 ones. */
30787 return 0;
30788
30789 default:
30790 for (opt = arm_opts; opt->option != NULL; opt++)
30791 {
30792 if (c == opt->option[0]
30793 && ((arg == NULL && opt->option[1] == 0)
30794 || streq (arg, opt->option + 1)))
30795 {
30796 /* If the option is deprecated, tell the user. */
30797 if (warn_on_deprecated && opt->deprecated != NULL)
30798 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30799 arg ? arg : "", _(opt->deprecated));
30800
30801 if (opt->var != NULL)
30802 *opt->var = opt->value;
30803
30804 return 1;
30805 }
30806 }
30807
30808 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30809 {
30810 if (c == fopt->option[0]
30811 && ((arg == NULL && fopt->option[1] == 0)
30812 || streq (arg, fopt->option + 1)))
30813 {
30814 /* If the option is deprecated, tell the user. */
30815 if (warn_on_deprecated && fopt->deprecated != NULL)
30816 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30817 arg ? arg : "", _(fopt->deprecated));
30818
30819 if (fopt->var != NULL)
30820 *fopt->var = &fopt->value;
30821
30822 return 1;
30823 }
30824 }
30825
30826 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30827 {
30828 /* These options are expected to have an argument. */
30829 if (c == lopt->option[0]
30830 && arg != NULL
30831 && strncmp (arg, lopt->option + 1,
30832 strlen (lopt->option + 1)) == 0)
30833 {
30834 /* If the option is deprecated, tell the user. */
30835 if (warn_on_deprecated && lopt->deprecated != NULL)
30836 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30837 _(lopt->deprecated));
30838
30839 /* Call the sup-option parser. */
30840 return lopt->func (arg + strlen (lopt->option) - 1);
30841 }
30842 }
30843
30844 return 0;
30845 }
30846
30847 return 1;
30848 }
30849
30850 void
30851 md_show_usage (FILE * fp)
30852 {
30853 struct arm_option_table *opt;
30854 struct arm_long_option_table *lopt;
30855
30856 fprintf (fp, _(" ARM-specific assembler options:\n"));
30857
30858 for (opt = arm_opts; opt->option != NULL; opt++)
30859 if (opt->help != NULL)
30860 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30861
30862 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30863 if (lopt->help != NULL)
30864 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30865
30866 #ifdef OPTION_EB
30867 fprintf (fp, _("\
30868 -EB assemble code for a big-endian cpu\n"));
30869 #endif
30870
30871 #ifdef OPTION_EL
30872 fprintf (fp, _("\
30873 -EL assemble code for a little-endian cpu\n"));
30874 #endif
30875
30876 fprintf (fp, _("\
30877 --fix-v4bx Allow BX in ARMv4 code\n"));
30878
30879 #ifdef OBJ_ELF
30880 fprintf (fp, _("\
30881 --fdpic generate an FDPIC object file\n"));
30882 #endif /* OBJ_ELF */
30883 }
30884
30885 #ifdef OBJ_ELF
30886
30887 typedef struct
30888 {
30889 int val;
30890 arm_feature_set flags;
30891 } cpu_arch_ver_table;
30892
30893 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30894 chronologically for architectures, with an exception for ARMv6-M and
30895 ARMv6S-M due to legacy reasons. No new architecture should have a
30896 special case. This allows for build attribute selection results to be
30897 stable when new architectures are added. */
30898 static const cpu_arch_ver_table cpu_arch_ver[] =
30899 {
30900 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30901 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30902 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30903 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30904 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30905 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30906 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30907 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30908 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30909 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30910 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30911 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30912 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30913 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30914 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30915 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30916 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30917 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30918 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30919 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30920 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30921 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30922 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30923 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30924
30925 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30926 always selected build attributes to match those of ARMv6-M
30927 (resp. ARMv6S-M). However, due to these architectures being a strict
30928 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30929 would be selected when fully respecting chronology of architectures.
30930 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30931 move them before ARMv7 architectures. */
30932 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30933 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30934
30935 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30936 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30937 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30938 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30939 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30940 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30941 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30942 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30943 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30944 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30945 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30946 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30947 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30948 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30949 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30950 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30951 {-1, ARM_ARCH_NONE}
30952 };
30953
30954 /* Set an attribute if it has not already been set by the user. */
30955
30956 static void
30957 aeabi_set_attribute_int (int tag, int value)
30958 {
30959 if (tag < 1
30960 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30961 || !attributes_set_explicitly[tag])
30962 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30963 }
30964
30965 static void
30966 aeabi_set_attribute_string (int tag, const char *value)
30967 {
30968 if (tag < 1
30969 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30970 || !attributes_set_explicitly[tag])
30971 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30972 }
30973
30974 /* Return whether features in the *NEEDED feature set are available via
30975 extensions for the architecture whose feature set is *ARCH_FSET. */
30976
30977 static bfd_boolean
30978 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30979 const arm_feature_set *needed)
30980 {
30981 int i, nb_allowed_archs;
30982 arm_feature_set ext_fset;
30983 const struct arm_option_extension_value_table *opt;
30984
30985 ext_fset = arm_arch_none;
30986 for (opt = arm_extensions; opt->name != NULL; opt++)
30987 {
30988 /* Extension does not provide any feature we need. */
30989 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30990 continue;
30991
30992 nb_allowed_archs =
30993 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30994 for (i = 0; i < nb_allowed_archs; i++)
30995 {
30996 /* Empty entry. */
30997 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30998 break;
30999
31000 /* Extension is available, add it. */
31001 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31002 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31003 }
31004 }
31005
31006 /* Can we enable all features in *needed? */
31007 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31008 }
31009
31010 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31011 a given architecture feature set *ARCH_EXT_FSET including extension feature
31012 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31013 - if true, check for an exact match of the architecture modulo extensions;
31014 - otherwise, select build attribute value of the first superset
31015 architecture released so that results remains stable when new architectures
31016 are added.
31017 For -march/-mcpu=all the build attribute value of the most featureful
31018 architecture is returned. Tag_CPU_arch_profile result is returned in
31019 PROFILE. */
31020
31021 static int
31022 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31023 const arm_feature_set *ext_fset,
31024 char *profile, int exact_match)
31025 {
31026 arm_feature_set arch_fset;
31027 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31028
31029 /* Select most featureful architecture with all its extensions if building
31030 for -march=all as the feature sets used to set build attributes. */
31031 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31032 {
31033 /* Force revisiting of decision for each new architecture. */
31034 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31035 *profile = 'A';
31036 return TAG_CPU_ARCH_V8;
31037 }
31038
31039 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31040
31041 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31042 {
31043 arm_feature_set known_arch_fset;
31044
31045 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31046 if (exact_match)
31047 {
31048 /* Base architecture match user-specified architecture and
31049 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31050 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31051 {
31052 p_ver_ret = p_ver;
31053 goto found;
31054 }
31055 /* Base architecture match user-specified architecture only
31056 (eg. ARMv6-M in the same case as above). Record it in case we
31057 find a match with above condition. */
31058 else if (p_ver_ret == NULL
31059 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31060 p_ver_ret = p_ver;
31061 }
31062 else
31063 {
31064
31065 /* Architecture has all features wanted. */
31066 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31067 {
31068 arm_feature_set added_fset;
31069
31070 /* Compute features added by this architecture over the one
31071 recorded in p_ver_ret. */
31072 if (p_ver_ret != NULL)
31073 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31074 p_ver_ret->flags);
31075 /* First architecture that match incl. with extensions, or the
31076 only difference in features over the recorded match is
31077 features that were optional and are now mandatory. */
31078 if (p_ver_ret == NULL
31079 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31080 {
31081 p_ver_ret = p_ver;
31082 goto found;
31083 }
31084 }
31085 else if (p_ver_ret == NULL)
31086 {
31087 arm_feature_set needed_ext_fset;
31088
31089 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31090
31091 /* Architecture has all features needed when using some
31092 extensions. Record it and continue searching in case there
31093 exist an architecture providing all needed features without
31094 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31095 OS extension). */
31096 if (have_ext_for_needed_feat_p (&known_arch_fset,
31097 &needed_ext_fset))
31098 p_ver_ret = p_ver;
31099 }
31100 }
31101 }
31102
31103 if (p_ver_ret == NULL)
31104 return -1;
31105
31106 found:
31107 /* Tag_CPU_arch_profile. */
31108 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31109 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31110 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31111 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31112 *profile = 'A';
31113 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31114 *profile = 'R';
31115 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31116 *profile = 'M';
31117 else
31118 *profile = '\0';
31119 return p_ver_ret->val;
31120 }
31121
31122 /* Set the public EABI object attributes. */
31123
31124 static void
31125 aeabi_set_public_attributes (void)
31126 {
31127 char profile = '\0';
31128 int arch = -1;
31129 int virt_sec = 0;
31130 int fp16_optional = 0;
31131 int skip_exact_match = 0;
31132 arm_feature_set flags, flags_arch, flags_ext;
31133
31134 /* Autodetection mode, choose the architecture based the instructions
31135 actually used. */
31136 if (no_cpu_selected ())
31137 {
31138 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31139
31140 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31141 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31142
31143 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31144 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31145
31146 /* Code run during relaxation relies on selected_cpu being set. */
31147 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31148 flags_ext = arm_arch_none;
31149 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31150 selected_ext = flags_ext;
31151 selected_cpu = flags;
31152 }
31153 /* Otherwise, choose the architecture based on the capabilities of the
31154 requested cpu. */
31155 else
31156 {
31157 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31158 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31159 flags_ext = selected_ext;
31160 flags = selected_cpu;
31161 }
31162 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31163
31164 /* Allow the user to override the reported architecture. */
31165 if (!ARM_FEATURE_ZERO (selected_object_arch))
31166 {
31167 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31168 flags_ext = arm_arch_none;
31169 }
31170 else
31171 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31172
31173 /* When this function is run again after relaxation has happened there is no
31174 way to determine whether an architecture or CPU was specified by the user:
31175 - selected_cpu is set above for relaxation to work;
31176 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31177 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31178 Therefore, if not in -march=all case we first try an exact match and fall
31179 back to autodetection. */
31180 if (!skip_exact_match)
31181 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31182 if (arch == -1)
31183 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31184 if (arch == -1)
31185 as_bad (_("no architecture contains all the instructions used\n"));
31186
31187 /* Tag_CPU_name. */
31188 if (selected_cpu_name[0])
31189 {
31190 char *q;
31191
31192 q = selected_cpu_name;
31193 if (strncmp (q, "armv", 4) == 0)
31194 {
31195 int i;
31196
31197 q += 4;
31198 for (i = 0; q[i]; i++)
31199 q[i] = TOUPPER (q[i]);
31200 }
31201 aeabi_set_attribute_string (Tag_CPU_name, q);
31202 }
31203
31204 /* Tag_CPU_arch. */
31205 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31206
31207 /* Tag_CPU_arch_profile. */
31208 if (profile != '\0')
31209 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31210
31211 /* Tag_DSP_extension. */
31212 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31213 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31214
31215 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31216 /* Tag_ARM_ISA_use. */
31217 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31218 || ARM_FEATURE_ZERO (flags_arch))
31219 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31220
31221 /* Tag_THUMB_ISA_use. */
31222 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31223 || ARM_FEATURE_ZERO (flags_arch))
31224 {
31225 int thumb_isa_use;
31226
31227 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31228 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31229 thumb_isa_use = 3;
31230 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31231 thumb_isa_use = 2;
31232 else
31233 thumb_isa_use = 1;
31234 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31235 }
31236
31237 /* Tag_VFP_arch. */
31238 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31239 aeabi_set_attribute_int (Tag_VFP_arch,
31240 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31241 ? 7 : 8);
31242 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31243 aeabi_set_attribute_int (Tag_VFP_arch,
31244 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31245 ? 5 : 6);
31246 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31247 {
31248 fp16_optional = 1;
31249 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31250 }
31251 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31252 {
31253 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31254 fp16_optional = 1;
31255 }
31256 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31257 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31258 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31259 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31260 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31261
31262 /* Tag_ABI_HardFP_use. */
31263 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31264 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31265 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31266
31267 /* Tag_WMMX_arch. */
31268 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31269 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31270 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31271 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31272
31273 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31274 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31275 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31276 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31277 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31278 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31279 {
31280 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31281 {
31282 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31283 }
31284 else
31285 {
31286 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31287 fp16_optional = 1;
31288 }
31289 }
31290
31291 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31292 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31293 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31294 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31295
31296 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31297 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31298 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31299
31300 /* Tag_DIV_use.
31301
31302 We set Tag_DIV_use to two when integer divide instructions have been used
31303 in ARM state, or when Thumb integer divide instructions have been used,
31304 but we have no architecture profile set, nor have we any ARM instructions.
31305
31306 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31307 by the base architecture.
31308
31309 For new architectures we will have to check these tests. */
31310 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31311 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31312 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31313 aeabi_set_attribute_int (Tag_DIV_use, 0);
31314 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31315 || (profile == '\0'
31316 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31317 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31318 aeabi_set_attribute_int (Tag_DIV_use, 2);
31319
31320 /* Tag_MP_extension_use. */
31321 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31322 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31323
31324 /* Tag Virtualization_use. */
31325 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31326 virt_sec |= 1;
31327 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31328 virt_sec |= 2;
31329 if (virt_sec != 0)
31330 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31331 }
31332
31333 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31334 finished and free extension feature bits which will not be used anymore. */
31335
31336 void
31337 arm_md_post_relax (void)
31338 {
31339 aeabi_set_public_attributes ();
31340 XDELETE (mcpu_ext_opt);
31341 mcpu_ext_opt = NULL;
31342 XDELETE (march_ext_opt);
31343 march_ext_opt = NULL;
31344 }
31345
31346 /* Add the default contents for the .ARM.attributes section. */
31347
31348 void
31349 arm_md_end (void)
31350 {
31351 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31352 return;
31353
31354 aeabi_set_public_attributes ();
31355 }
31356 #endif /* OBJ_ELF */
31357
31358 /* Parse a .cpu directive. */
31359
31360 static void
31361 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31362 {
31363 const struct arm_cpu_option_table *opt;
31364 char *name;
31365 char saved_char;
31366
31367 name = input_line_pointer;
31368 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31369 input_line_pointer++;
31370 saved_char = *input_line_pointer;
31371 *input_line_pointer = 0;
31372
31373 /* Skip the first "all" entry. */
31374 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31375 if (streq (opt->name, name))
31376 {
31377 selected_arch = opt->value;
31378 selected_ext = opt->ext;
31379 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31380 if (opt->canonical_name)
31381 strcpy (selected_cpu_name, opt->canonical_name);
31382 else
31383 {
31384 int i;
31385 for (i = 0; opt->name[i]; i++)
31386 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31387
31388 selected_cpu_name[i] = 0;
31389 }
31390 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31391
31392 *input_line_pointer = saved_char;
31393 demand_empty_rest_of_line ();
31394 return;
31395 }
31396 as_bad (_("unknown cpu `%s'"), name);
31397 *input_line_pointer = saved_char;
31398 ignore_rest_of_line ();
31399 }
31400
31401 /* Parse a .arch directive. */
31402
31403 static void
31404 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31405 {
31406 const struct arm_arch_option_table *opt;
31407 char saved_char;
31408 char *name;
31409
31410 name = input_line_pointer;
31411 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31412 input_line_pointer++;
31413 saved_char = *input_line_pointer;
31414 *input_line_pointer = 0;
31415
31416 /* Skip the first "all" entry. */
31417 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31418 if (streq (opt->name, name))
31419 {
31420 selected_arch = opt->value;
31421 selected_ext = arm_arch_none;
31422 selected_cpu = selected_arch;
31423 strcpy (selected_cpu_name, opt->name);
31424 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31425 *input_line_pointer = saved_char;
31426 demand_empty_rest_of_line ();
31427 return;
31428 }
31429
31430 as_bad (_("unknown architecture `%s'\n"), name);
31431 *input_line_pointer = saved_char;
31432 ignore_rest_of_line ();
31433 }
31434
31435 /* Parse a .object_arch directive. */
31436
31437 static void
31438 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31439 {
31440 const struct arm_arch_option_table *opt;
31441 char saved_char;
31442 char *name;
31443
31444 name = input_line_pointer;
31445 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31446 input_line_pointer++;
31447 saved_char = *input_line_pointer;
31448 *input_line_pointer = 0;
31449
31450 /* Skip the first "all" entry. */
31451 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31452 if (streq (opt->name, name))
31453 {
31454 selected_object_arch = opt->value;
31455 *input_line_pointer = saved_char;
31456 demand_empty_rest_of_line ();
31457 return;
31458 }
31459
31460 as_bad (_("unknown architecture `%s'\n"), name);
31461 *input_line_pointer = saved_char;
31462 ignore_rest_of_line ();
31463 }
31464
31465 /* Parse a .arch_extension directive. */
31466
31467 static void
31468 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31469 {
31470 const struct arm_option_extension_value_table *opt;
31471 char saved_char;
31472 char *name;
31473 int adding_value = 1;
31474
31475 name = input_line_pointer;
31476 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31477 input_line_pointer++;
31478 saved_char = *input_line_pointer;
31479 *input_line_pointer = 0;
31480
31481 if (strlen (name) >= 2
31482 && strncmp (name, "no", 2) == 0)
31483 {
31484 adding_value = 0;
31485 name += 2;
31486 }
31487
31488 for (opt = arm_extensions; opt->name != NULL; opt++)
31489 if (streq (opt->name, name))
31490 {
31491 int i, nb_allowed_archs =
31492 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31493 for (i = 0; i < nb_allowed_archs; i++)
31494 {
31495 /* Empty entry. */
31496 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31497 continue;
31498 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31499 break;
31500 }
31501
31502 if (i == nb_allowed_archs)
31503 {
31504 as_bad (_("architectural extension `%s' is not allowed for the "
31505 "current base architecture"), name);
31506 break;
31507 }
31508
31509 if (adding_value)
31510 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31511 opt->merge_value);
31512 else
31513 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31514
31515 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31516 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31517 *input_line_pointer = saved_char;
31518 demand_empty_rest_of_line ();
31519 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31520 on this return so that duplicate extensions (extensions with the
31521 same name as a previous extension in the list) are not considered
31522 for command-line parsing. */
31523 return;
31524 }
31525
31526 if (opt->name == NULL)
31527 as_bad (_("unknown architecture extension `%s'\n"), name);
31528
31529 *input_line_pointer = saved_char;
31530 ignore_rest_of_line ();
31531 }
31532
31533 /* Parse a .fpu directive. */
31534
31535 static void
31536 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31537 {
31538 const struct arm_option_fpu_value_table *opt;
31539 char saved_char;
31540 char *name;
31541
31542 name = input_line_pointer;
31543 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31544 input_line_pointer++;
31545 saved_char = *input_line_pointer;
31546 *input_line_pointer = 0;
31547
31548 for (opt = arm_fpus; opt->name != NULL; opt++)
31549 if (streq (opt->name, name))
31550 {
31551 selected_fpu = opt->value;
31552 #ifndef CPU_DEFAULT
31553 if (no_cpu_selected ())
31554 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31555 else
31556 #endif
31557 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31558 *input_line_pointer = saved_char;
31559 demand_empty_rest_of_line ();
31560 return;
31561 }
31562
31563 as_bad (_("unknown floating point format `%s'\n"), name);
31564 *input_line_pointer = saved_char;
31565 ignore_rest_of_line ();
31566 }
31567
31568 /* Copy symbol information. */
31569
31570 void
31571 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31572 {
31573 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31574 }
31575
31576 #ifdef OBJ_ELF
31577 /* Given a symbolic attribute NAME, return the proper integer value.
31578 Returns -1 if the attribute is not known. */
31579
31580 int
31581 arm_convert_symbolic_attribute (const char *name)
31582 {
31583 static const struct
31584 {
31585 const char * name;
31586 const int tag;
31587 }
31588 attribute_table[] =
31589 {
31590 /* When you modify this table you should
31591 also modify the list in doc/c-arm.texi. */
31592 #define T(tag) {#tag, tag}
31593 T (Tag_CPU_raw_name),
31594 T (Tag_CPU_name),
31595 T (Tag_CPU_arch),
31596 T (Tag_CPU_arch_profile),
31597 T (Tag_ARM_ISA_use),
31598 T (Tag_THUMB_ISA_use),
31599 T (Tag_FP_arch),
31600 T (Tag_VFP_arch),
31601 T (Tag_WMMX_arch),
31602 T (Tag_Advanced_SIMD_arch),
31603 T (Tag_PCS_config),
31604 T (Tag_ABI_PCS_R9_use),
31605 T (Tag_ABI_PCS_RW_data),
31606 T (Tag_ABI_PCS_RO_data),
31607 T (Tag_ABI_PCS_GOT_use),
31608 T (Tag_ABI_PCS_wchar_t),
31609 T (Tag_ABI_FP_rounding),
31610 T (Tag_ABI_FP_denormal),
31611 T (Tag_ABI_FP_exceptions),
31612 T (Tag_ABI_FP_user_exceptions),
31613 T (Tag_ABI_FP_number_model),
31614 T (Tag_ABI_align_needed),
31615 T (Tag_ABI_align8_needed),
31616 T (Tag_ABI_align_preserved),
31617 T (Tag_ABI_align8_preserved),
31618 T (Tag_ABI_enum_size),
31619 T (Tag_ABI_HardFP_use),
31620 T (Tag_ABI_VFP_args),
31621 T (Tag_ABI_WMMX_args),
31622 T (Tag_ABI_optimization_goals),
31623 T (Tag_ABI_FP_optimization_goals),
31624 T (Tag_compatibility),
31625 T (Tag_CPU_unaligned_access),
31626 T (Tag_FP_HP_extension),
31627 T (Tag_VFP_HP_extension),
31628 T (Tag_ABI_FP_16bit_format),
31629 T (Tag_MPextension_use),
31630 T (Tag_DIV_use),
31631 T (Tag_nodefaults),
31632 T (Tag_also_compatible_with),
31633 T (Tag_conformance),
31634 T (Tag_T2EE_use),
31635 T (Tag_Virtualization_use),
31636 T (Tag_DSP_extension),
31637 T (Tag_MVE_arch),
31638 /* We deliberately do not include Tag_MPextension_use_legacy. */
31639 #undef T
31640 };
31641 unsigned int i;
31642
31643 if (name == NULL)
31644 return -1;
31645
31646 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31647 if (streq (name, attribute_table[i].name))
31648 return attribute_table[i].tag;
31649
31650 return -1;
31651 }
31652
31653 /* Apply sym value for relocations only in the case that they are for
31654 local symbols in the same segment as the fixup and you have the
31655 respective architectural feature for blx and simple switches. */
31656
31657 int
31658 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31659 {
31660 if (fixP->fx_addsy
31661 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31662 /* PR 17444: If the local symbol is in a different section then a reloc
31663 will always be generated for it, so applying the symbol value now
31664 will result in a double offset being stored in the relocation. */
31665 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31666 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31667 {
31668 switch (fixP->fx_r_type)
31669 {
31670 case BFD_RELOC_ARM_PCREL_BLX:
31671 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31672 if (ARM_IS_FUNC (fixP->fx_addsy))
31673 return 1;
31674 break;
31675
31676 case BFD_RELOC_ARM_PCREL_CALL:
31677 case BFD_RELOC_THUMB_PCREL_BLX:
31678 if (THUMB_IS_FUNC (fixP->fx_addsy))
31679 return 1;
31680 break;
31681
31682 default:
31683 break;
31684 }
31685
31686 }
31687 return 0;
31688 }
31689 #endif /* OBJ_ELF */
This page took 0.929748 seconds and 3 git commands to generate.