2009-01-26 Andrew Stubbs <ams@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 /* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83 static unsigned int marked_pr_dependency = 0;
84
85 #endif /* OBJ_ELF */
86
87 /* Results from operand parsing worker functions. */
88
89 typedef enum
90 {
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94 } parse_operand_result;
95
96 enum arm_float_abi
97 {
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101 };
102
103 /* Types of processor to assemble for. */
104 #ifndef CPU_DEFAULT
105 #if defined __XSCALE__
106 #define CPU_DEFAULT ARM_ARCH_XSCALE
107 #else
108 #if defined __thumb__
109 #define CPU_DEFAULT ARM_ARCH_V5T
110 #endif
111 #endif
112 #endif
113
114 #ifndef FPU_DEFAULT
115 # ifdef TE_LINUX
116 # define FPU_DEFAULT FPU_ARCH_FPA
117 # elif defined (TE_NetBSD)
118 # ifdef OBJ_ELF
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120 # else
121 /* Legacy a.out format. */
122 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123 # endif
124 # elif defined (TE_VXWORKS)
125 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
126 # else
127 /* For backwards compatibility, default to FPA. */
128 # define FPU_DEFAULT FPU_ARCH_FPA
129 # endif
130 #endif /* ifndef FPU_DEFAULT */
131
132 #define streq(a, b) (strcmp (a, b) == 0)
133
134 static arm_feature_set cpu_variant;
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148
149 /* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
152 static const arm_feature_set *legacy_cpu = NULL;
153 static const arm_feature_set *legacy_fpu = NULL;
154
155 static const arm_feature_set *mcpu_cpu_opt = NULL;
156 static const arm_feature_set *mcpu_fpu_opt = NULL;
157 static const arm_feature_set *march_cpu_opt = NULL;
158 static const arm_feature_set *march_fpu_opt = NULL;
159 static const arm_feature_set *mfpu_opt = NULL;
160 static const arm_feature_set *object_arch = NULL;
161
162 /* Constants for known architecture features. */
163 static const arm_feature_set fpu_default = FPU_DEFAULT;
164 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
166 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
168 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173 #ifdef CPU_DEFAULT
174 static const arm_feature_set cpu_default = CPU_DEFAULT;
175 #endif
176
177 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
195 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
196 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
198 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
202 static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
204
205 static const arm_feature_set arm_arch_any = ARM_ANY;
206 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
210 static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
212 static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214 static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216 static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
224 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
225 static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
227 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
230 static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
231
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
243
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
246 bfd_boolean
247 arm_is_eabi (void)
248 {
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250 }
251 #endif
252
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
257
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263
264 /* If unified_syntax is true, we are processing the new unified
265 ARM/Thumb syntax. Important differences from the old ARM mode:
266
267 - Immediate operands do not require a # prefix.
268 - Conditional affixes always appear at the end of the
269 instruction. (For backward compatibility, those instructions
270 that formerly had them in the middle, continue to accept them
271 there.)
272 - The IT instruction may appear, and if it does is validated
273 against subsequent conditional affixes. It does not generate
274 machine code.
275
276 Important differences from the old Thumb mode:
277
278 - Immediate operands do not require a # prefix.
279 - Most of the V6T2 instructions are only available in unified mode.
280 - The .N and .W suffixes are recognized and honored (it is an error
281 if they cannot be honored).
282 - All instructions set the flags if and only if they have an 's' affix.
283 - Conditional affixes may be used. They are validated against
284 preceding IT instructions. Unlike ARM mode, you cannot use a
285 conditional affix except in the scope of an IT instruction. */
286
287 static bfd_boolean unified_syntax = FALSE;
288
289 enum neon_el_type
290 {
291 NT_invtype,
292 NT_untyped,
293 NT_integer,
294 NT_float,
295 NT_poly,
296 NT_signed,
297 NT_unsigned
298 };
299
300 struct neon_type_el
301 {
302 enum neon_el_type type;
303 unsigned size;
304 };
305
306 #define NEON_MAX_TYPE_ELS 4
307
308 struct neon_type
309 {
310 struct neon_type_el el[NEON_MAX_TYPE_ELS];
311 unsigned elems;
312 };
313
314 struct arm_it
315 {
316 const char * error;
317 unsigned long instruction;
318 int size;
319 int size_req;
320 int cond;
321 /* "uncond_value" is set to the value in place of the conditional field in
322 unconditional versions of the instruction, or -1 if nothing is
323 appropriate. */
324 int uncond_value;
325 struct neon_type vectype;
326 /* Set to the opcode if the instruction needs relaxation.
327 Zero if the instruction is not relaxed. */
328 unsigned long relax;
329 struct
330 {
331 bfd_reloc_code_real_type type;
332 expressionS exp;
333 int pc_rel;
334 } reloc;
335
336 struct
337 {
338 unsigned reg;
339 signed int imm;
340 struct neon_type_el vectype;
341 unsigned present : 1; /* Operand present. */
342 unsigned isreg : 1; /* Operand was a register. */
343 unsigned immisreg : 1; /* .imm field is a second register. */
344 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
345 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
346 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
347 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
348 instructions. This allows us to disambiguate ARM <-> vector insns. */
349 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
350 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
351 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
352 unsigned issingle : 1; /* Operand is VFP single-precision register. */
353 unsigned hasreloc : 1; /* Operand has relocation suffix. */
354 unsigned writeback : 1; /* Operand has trailing ! */
355 unsigned preind : 1; /* Preindexed address. */
356 unsigned postind : 1; /* Postindexed address. */
357 unsigned negative : 1; /* Index register was negated. */
358 unsigned shifted : 1; /* Shift applied to operation. */
359 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
360 } operands[6];
361 };
362
363 static struct arm_it inst;
364
365 #define NUM_FLOAT_VALS 8
366
367 const char * fp_const[] =
368 {
369 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
370 };
371
372 /* Number of littlenums required to hold an extended precision number. */
373 #define MAX_LITTLENUMS 6
374
375 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
376
377 #define FAIL (-1)
378 #define SUCCESS (0)
379
380 #define SUFF_S 1
381 #define SUFF_D 2
382 #define SUFF_E 3
383 #define SUFF_P 4
384
385 #define CP_T_X 0x00008000
386 #define CP_T_Y 0x00400000
387
388 #define CONDS_BIT 0x00100000
389 #define LOAD_BIT 0x00100000
390
391 #define DOUBLE_LOAD_FLAG 0x00000001
392
393 struct asm_cond
394 {
395 const char * template;
396 unsigned long value;
397 };
398
399 #define COND_ALWAYS 0xE
400
401 struct asm_psr
402 {
403 const char *template;
404 unsigned long field;
405 };
406
407 struct asm_barrier_opt
408 {
409 const char *template;
410 unsigned long value;
411 };
412
413 /* The bit that distinguishes CPSR and SPSR. */
414 #define SPSR_BIT (1 << 22)
415
416 /* The individual PSR flag bits. */
417 #define PSR_c (1 << 16)
418 #define PSR_x (1 << 17)
419 #define PSR_s (1 << 18)
420 #define PSR_f (1 << 19)
421
422 struct reloc_entry
423 {
424 char *name;
425 bfd_reloc_code_real_type reloc;
426 };
427
428 enum vfp_reg_pos
429 {
430 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
431 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
432 };
433
434 enum vfp_ldstm_type
435 {
436 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
437 };
438
439 /* Bits for DEFINED field in neon_typed_alias. */
440 #define NTA_HASTYPE 1
441 #define NTA_HASINDEX 2
442
443 struct neon_typed_alias
444 {
445 unsigned char defined;
446 unsigned char index;
447 struct neon_type_el eltype;
448 };
449
450 /* ARM register categories. This includes coprocessor numbers and various
451 architecture extensions' registers. */
452 enum arm_reg_type
453 {
454 REG_TYPE_RN,
455 REG_TYPE_CP,
456 REG_TYPE_CN,
457 REG_TYPE_FN,
458 REG_TYPE_VFS,
459 REG_TYPE_VFD,
460 REG_TYPE_NQ,
461 REG_TYPE_VFSD,
462 REG_TYPE_NDQ,
463 REG_TYPE_NSDQ,
464 REG_TYPE_VFC,
465 REG_TYPE_MVF,
466 REG_TYPE_MVD,
467 REG_TYPE_MVFX,
468 REG_TYPE_MVDX,
469 REG_TYPE_MVAX,
470 REG_TYPE_DSPSC,
471 REG_TYPE_MMXWR,
472 REG_TYPE_MMXWC,
473 REG_TYPE_MMXWCG,
474 REG_TYPE_XSCALE,
475 };
476
477 /* Structure for a hash table entry for a register.
478 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
479 information which states whether a vector type or index is specified (for a
480 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
481 struct reg_entry
482 {
483 const char *name;
484 unsigned char number;
485 unsigned char type;
486 unsigned char builtin;
487 struct neon_typed_alias *neon;
488 };
489
490 /* Diagnostics used when we don't get a register of the expected type. */
491 const char *const reg_expected_msgs[] =
492 {
493 N_("ARM register expected"),
494 N_("bad or missing co-processor number"),
495 N_("co-processor register expected"),
496 N_("FPA register expected"),
497 N_("VFP single precision register expected"),
498 N_("VFP/Neon double precision register expected"),
499 N_("Neon quad precision register expected"),
500 N_("VFP single or double precision register expected"),
501 N_("Neon double or quad precision register expected"),
502 N_("VFP single, double or Neon quad precision register expected"),
503 N_("VFP system register expected"),
504 N_("Maverick MVF register expected"),
505 N_("Maverick MVD register expected"),
506 N_("Maverick MVFX register expected"),
507 N_("Maverick MVDX register expected"),
508 N_("Maverick MVAX register expected"),
509 N_("Maverick DSPSC register expected"),
510 N_("iWMMXt data register expected"),
511 N_("iWMMXt control register expected"),
512 N_("iWMMXt scalar register expected"),
513 N_("XScale accumulator register expected"),
514 };
515
516 /* Some well known registers that we refer to directly elsewhere. */
517 #define REG_SP 13
518 #define REG_LR 14
519 #define REG_PC 15
520
521 /* ARM instructions take 4bytes in the object file, Thumb instructions
522 take 2: */
523 #define INSN_SIZE 4
524
525 struct asm_opcode
526 {
527 /* Basic string to match. */
528 const char *template;
529
530 /* Parameters to instruction. */
531 unsigned char operands[8];
532
533 /* Conditional tag - see opcode_lookup. */
534 unsigned int tag : 4;
535
536 /* Basic instruction code. */
537 unsigned int avalue : 28;
538
539 /* Thumb-format instruction code. */
540 unsigned int tvalue;
541
542 /* Which architecture variant provides this instruction. */
543 const arm_feature_set *avariant;
544 const arm_feature_set *tvariant;
545
546 /* Function to call to encode instruction in ARM format. */
547 void (* aencode) (void);
548
549 /* Function to call to encode instruction in Thumb format. */
550 void (* tencode) (void);
551 };
552
553 /* Defines for various bits that we will want to toggle. */
554 #define INST_IMMEDIATE 0x02000000
555 #define OFFSET_REG 0x02000000
556 #define HWOFFSET_IMM 0x00400000
557 #define SHIFT_BY_REG 0x00000010
558 #define PRE_INDEX 0x01000000
559 #define INDEX_UP 0x00800000
560 #define WRITE_BACK 0x00200000
561 #define LDM_TYPE_2_OR_3 0x00400000
562 #define CPSI_MMOD 0x00020000
563
564 #define LITERAL_MASK 0xf000f000
565 #define OPCODE_MASK 0xfe1fffff
566 #define V4_STR_BIT 0x00000020
567
568 #define T2_SUBS_PC_LR 0xf3de8f00
569
570 #define DATA_OP_SHIFT 21
571
572 #define T2_OPCODE_MASK 0xfe1fffff
573 #define T2_DATA_OP_SHIFT 21
574
575 /* Codes to distinguish the arithmetic instructions. */
576 #define OPCODE_AND 0
577 #define OPCODE_EOR 1
578 #define OPCODE_SUB 2
579 #define OPCODE_RSB 3
580 #define OPCODE_ADD 4
581 #define OPCODE_ADC 5
582 #define OPCODE_SBC 6
583 #define OPCODE_RSC 7
584 #define OPCODE_TST 8
585 #define OPCODE_TEQ 9
586 #define OPCODE_CMP 10
587 #define OPCODE_CMN 11
588 #define OPCODE_ORR 12
589 #define OPCODE_MOV 13
590 #define OPCODE_BIC 14
591 #define OPCODE_MVN 15
592
593 #define T2_OPCODE_AND 0
594 #define T2_OPCODE_BIC 1
595 #define T2_OPCODE_ORR 2
596 #define T2_OPCODE_ORN 3
597 #define T2_OPCODE_EOR 4
598 #define T2_OPCODE_ADD 8
599 #define T2_OPCODE_ADC 10
600 #define T2_OPCODE_SBC 11
601 #define T2_OPCODE_SUB 13
602 #define T2_OPCODE_RSB 14
603
604 #define T_OPCODE_MUL 0x4340
605 #define T_OPCODE_TST 0x4200
606 #define T_OPCODE_CMN 0x42c0
607 #define T_OPCODE_NEG 0x4240
608 #define T_OPCODE_MVN 0x43c0
609
610 #define T_OPCODE_ADD_R3 0x1800
611 #define T_OPCODE_SUB_R3 0x1a00
612 #define T_OPCODE_ADD_HI 0x4400
613 #define T_OPCODE_ADD_ST 0xb000
614 #define T_OPCODE_SUB_ST 0xb080
615 #define T_OPCODE_ADD_SP 0xa800
616 #define T_OPCODE_ADD_PC 0xa000
617 #define T_OPCODE_ADD_I8 0x3000
618 #define T_OPCODE_SUB_I8 0x3800
619 #define T_OPCODE_ADD_I3 0x1c00
620 #define T_OPCODE_SUB_I3 0x1e00
621
622 #define T_OPCODE_ASR_R 0x4100
623 #define T_OPCODE_LSL_R 0x4080
624 #define T_OPCODE_LSR_R 0x40c0
625 #define T_OPCODE_ROR_R 0x41c0
626 #define T_OPCODE_ASR_I 0x1000
627 #define T_OPCODE_LSL_I 0x0000
628 #define T_OPCODE_LSR_I 0x0800
629
630 #define T_OPCODE_MOV_I8 0x2000
631 #define T_OPCODE_CMP_I8 0x2800
632 #define T_OPCODE_CMP_LR 0x4280
633 #define T_OPCODE_MOV_HR 0x4600
634 #define T_OPCODE_CMP_HR 0x4500
635
636 #define T_OPCODE_LDR_PC 0x4800
637 #define T_OPCODE_LDR_SP 0x9800
638 #define T_OPCODE_STR_SP 0x9000
639 #define T_OPCODE_LDR_IW 0x6800
640 #define T_OPCODE_STR_IW 0x6000
641 #define T_OPCODE_LDR_IH 0x8800
642 #define T_OPCODE_STR_IH 0x8000
643 #define T_OPCODE_LDR_IB 0x7800
644 #define T_OPCODE_STR_IB 0x7000
645 #define T_OPCODE_LDR_RW 0x5800
646 #define T_OPCODE_STR_RW 0x5000
647 #define T_OPCODE_LDR_RH 0x5a00
648 #define T_OPCODE_STR_RH 0x5200
649 #define T_OPCODE_LDR_RB 0x5c00
650 #define T_OPCODE_STR_RB 0x5400
651
652 #define T_OPCODE_PUSH 0xb400
653 #define T_OPCODE_POP 0xbc00
654
655 #define T_OPCODE_BRANCH 0xe000
656
657 #define THUMB_SIZE 2 /* Size of thumb instruction. */
658 #define THUMB_PP_PC_LR 0x0100
659 #define THUMB_LOAD_BIT 0x0800
660 #define THUMB2_LOAD_BIT 0x00100000
661
662 #define BAD_ARGS _("bad arguments to instruction")
663 #define BAD_PC _("r15 not allowed here")
664 #define BAD_COND _("instruction cannot be conditional")
665 #define BAD_OVERLAP _("registers may not be the same")
666 #define BAD_HIREG _("lo register required")
667 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
668 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
669 #define BAD_BRANCH _("branch must be last instruction in IT block")
670 #define BAD_NOT_IT _("instruction not allowed in IT block")
671 #define BAD_FPU _("selected FPU does not support instruction")
672
673 static struct hash_control *arm_ops_hsh;
674 static struct hash_control *arm_cond_hsh;
675 static struct hash_control *arm_shift_hsh;
676 static struct hash_control *arm_psr_hsh;
677 static struct hash_control *arm_v7m_psr_hsh;
678 static struct hash_control *arm_reg_hsh;
679 static struct hash_control *arm_reloc_hsh;
680 static struct hash_control *arm_barrier_opt_hsh;
681
682 /* Stuff needed to resolve the label ambiguity
683 As:
684 ...
685 label: <insn>
686 may differ from:
687 ...
688 label:
689 <insn> */
690
691 symbolS * last_label_seen;
692 static int label_is_thumb_function_name = FALSE;
693 \f
694 /* Literal pool structure. Held on a per-section
695 and per-sub-section basis. */
696
697 #define MAX_LITERAL_POOL_SIZE 1024
698 typedef struct literal_pool
699 {
700 expressionS literals [MAX_LITERAL_POOL_SIZE];
701 unsigned int next_free_entry;
702 unsigned int id;
703 symbolS * symbol;
704 segT section;
705 subsegT sub_section;
706 struct literal_pool * next;
707 } literal_pool;
708
709 /* Pointer to a linked list of literal pools. */
710 literal_pool * list_of_pools = NULL;
711
712 /* State variables for IT block handling. */
713 static bfd_boolean current_it_mask = 0;
714 static int current_cc;
715 \f
716 /* Pure syntax. */
717
718 /* This array holds the chars that always start a comment. If the
719 pre-processor is disabled, these aren't very useful. */
720 const char comment_chars[] = "@";
721
722 /* This array holds the chars that only start a comment at the beginning of
723 a line. If the line seems to have the form '# 123 filename'
724 .line and .file directives will appear in the pre-processed output. */
725 /* Note that input_file.c hand checks for '#' at the beginning of the
726 first line of the input file. This is because the compiler outputs
727 #NO_APP at the beginning of its output. */
728 /* Also note that comments like this one will always work. */
729 const char line_comment_chars[] = "#";
730
731 const char line_separator_chars[] = ";";
732
733 /* Chars that can be used to separate mant
734 from exp in floating point numbers. */
735 const char EXP_CHARS[] = "eE";
736
737 /* Chars that mean this number is a floating point constant. */
738 /* As in 0f12.456 */
739 /* or 0d1.2345e12 */
740
741 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
742
743 /* Prefix characters that indicate the start of an immediate
744 value. */
745 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
746
747 /* Separator character handling. */
748
749 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
750
751 static inline int
752 skip_past_char (char ** str, char c)
753 {
754 if (**str == c)
755 {
756 (*str)++;
757 return SUCCESS;
758 }
759 else
760 return FAIL;
761 }
762 #define skip_past_comma(str) skip_past_char (str, ',')
763
764 /* Arithmetic expressions (possibly involving symbols). */
765
766 /* Return TRUE if anything in the expression is a bignum. */
767
768 static int
769 walk_no_bignums (symbolS * sp)
770 {
771 if (symbol_get_value_expression (sp)->X_op == O_big)
772 return 1;
773
774 if (symbol_get_value_expression (sp)->X_add_symbol)
775 {
776 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
777 || (symbol_get_value_expression (sp)->X_op_symbol
778 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
779 }
780
781 return 0;
782 }
783
784 static int in_my_get_expression = 0;
785
786 /* Third argument to my_get_expression. */
787 #define GE_NO_PREFIX 0
788 #define GE_IMM_PREFIX 1
789 #define GE_OPT_PREFIX 2
790 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
791 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
792 #define GE_OPT_PREFIX_BIG 3
793
794 static int
795 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
796 {
797 char * save_in;
798 segT seg;
799
800 /* In unified syntax, all prefixes are optional. */
801 if (unified_syntax)
802 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
803 : GE_OPT_PREFIX;
804
805 switch (prefix_mode)
806 {
807 case GE_NO_PREFIX: break;
808 case GE_IMM_PREFIX:
809 if (!is_immediate_prefix (**str))
810 {
811 inst.error = _("immediate expression requires a # prefix");
812 return FAIL;
813 }
814 (*str)++;
815 break;
816 case GE_OPT_PREFIX:
817 case GE_OPT_PREFIX_BIG:
818 if (is_immediate_prefix (**str))
819 (*str)++;
820 break;
821 default: abort ();
822 }
823
824 memset (ep, 0, sizeof (expressionS));
825
826 save_in = input_line_pointer;
827 input_line_pointer = *str;
828 in_my_get_expression = 1;
829 seg = expression (ep);
830 in_my_get_expression = 0;
831
832 if (ep->X_op == O_illegal)
833 {
834 /* We found a bad expression in md_operand(). */
835 *str = input_line_pointer;
836 input_line_pointer = save_in;
837 if (inst.error == NULL)
838 inst.error = _("bad expression");
839 return 1;
840 }
841
842 #ifdef OBJ_AOUT
843 if (seg != absolute_section
844 && seg != text_section
845 && seg != data_section
846 && seg != bss_section
847 && seg != undefined_section)
848 {
849 inst.error = _("bad segment");
850 *str = input_line_pointer;
851 input_line_pointer = save_in;
852 return 1;
853 }
854 #endif
855
856 /* Get rid of any bignums now, so that we don't generate an error for which
857 we can't establish a line number later on. Big numbers are never valid
858 in instructions, which is where this routine is always called. */
859 if (prefix_mode != GE_OPT_PREFIX_BIG
860 && (ep->X_op == O_big
861 || (ep->X_add_symbol
862 && (walk_no_bignums (ep->X_add_symbol)
863 || (ep->X_op_symbol
864 && walk_no_bignums (ep->X_op_symbol))))))
865 {
866 inst.error = _("invalid constant");
867 *str = input_line_pointer;
868 input_line_pointer = save_in;
869 return 1;
870 }
871
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 0;
875 }
876
877 /* Turn a string in input_line_pointer into a floating point constant
878 of type TYPE, and store the appropriate bytes in *LITP. The number
879 of LITTLENUMS emitted is stored in *SIZEP. An error message is
880 returned, or NULL on OK.
881
882 Note that fp constants aren't represent in the normal way on the ARM.
883 In big endian mode, things are as expected. However, in little endian
884 mode fp constants are big-endian word-wise, and little-endian byte-wise
885 within the words. For example, (double) 1.1 in big endian mode is
886 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
887 the byte sequence 99 99 f1 3f 9a 99 99 99.
888
889 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
890
891 char *
892 md_atof (int type, char * litP, int * sizeP)
893 {
894 int prec;
895 LITTLENUM_TYPE words[MAX_LITTLENUMS];
896 char *t;
897 int i;
898
899 switch (type)
900 {
901 case 'f':
902 case 'F':
903 case 's':
904 case 'S':
905 prec = 2;
906 break;
907
908 case 'd':
909 case 'D':
910 case 'r':
911 case 'R':
912 prec = 4;
913 break;
914
915 case 'x':
916 case 'X':
917 prec = 5;
918 break;
919
920 case 'p':
921 case 'P':
922 prec = 5;
923 break;
924
925 default:
926 *sizeP = 0;
927 return _("Unrecognized or unsupported floating point constant");
928 }
929
930 t = atof_ieee (input_line_pointer, type, words);
931 if (t)
932 input_line_pointer = t;
933 *sizeP = prec * sizeof (LITTLENUM_TYPE);
934
935 if (target_big_endian)
936 {
937 for (i = 0; i < prec; i++)
938 {
939 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
940 litP += sizeof (LITTLENUM_TYPE);
941 }
942 }
943 else
944 {
945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
946 for (i = prec - 1; i >= 0; i--)
947 {
948 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
949 litP += sizeof (LITTLENUM_TYPE);
950 }
951 else
952 /* For a 4 byte float the order of elements in `words' is 1 0.
953 For an 8 byte float the order is 1 0 3 2. */
954 for (i = 0; i < prec; i += 2)
955 {
956 md_number_to_chars (litP, (valueT) words[i + 1],
957 sizeof (LITTLENUM_TYPE));
958 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
959 (valueT) words[i], sizeof (LITTLENUM_TYPE));
960 litP += 2 * sizeof (LITTLENUM_TYPE);
961 }
962 }
963
964 return NULL;
965 }
966
967 /* We handle all bad expressions here, so that we can report the faulty
968 instruction in the error message. */
969 void
970 md_operand (expressionS * expr)
971 {
972 if (in_my_get_expression)
973 expr->X_op = O_illegal;
974 }
975
976 /* Immediate values. */
977
978 /* Generic immediate-value read function for use in directives.
979 Accepts anything that 'expression' can fold to a constant.
980 *val receives the number. */
981 #ifdef OBJ_ELF
982 static int
983 immediate_for_directive (int *val)
984 {
985 expressionS exp;
986 exp.X_op = O_illegal;
987
988 if (is_immediate_prefix (*input_line_pointer))
989 {
990 input_line_pointer++;
991 expression (&exp);
992 }
993
994 if (exp.X_op != O_constant)
995 {
996 as_bad (_("expected #constant"));
997 ignore_rest_of_line ();
998 return FAIL;
999 }
1000 *val = exp.X_add_number;
1001 return SUCCESS;
1002 }
1003 #endif
1004
1005 /* Register parsing. */
1006
1007 /* Generic register parser. CCP points to what should be the
1008 beginning of a register name. If it is indeed a valid register
1009 name, advance CCP over it and return the reg_entry structure;
1010 otherwise return NULL. Does not issue diagnostics. */
1011
1012 static struct reg_entry *
1013 arm_reg_parse_multi (char **ccp)
1014 {
1015 char *start = *ccp;
1016 char *p;
1017 struct reg_entry *reg;
1018
1019 #ifdef REGISTER_PREFIX
1020 if (*start != REGISTER_PREFIX)
1021 return NULL;
1022 start++;
1023 #endif
1024 #ifdef OPTIONAL_REGISTER_PREFIX
1025 if (*start == OPTIONAL_REGISTER_PREFIX)
1026 start++;
1027 #endif
1028
1029 p = start;
1030 if (!ISALPHA (*p) || !is_name_beginner (*p))
1031 return NULL;
1032
1033 do
1034 p++;
1035 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1036
1037 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1038
1039 if (!reg)
1040 return NULL;
1041
1042 *ccp = p;
1043 return reg;
1044 }
1045
1046 static int
1047 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1048 enum arm_reg_type type)
1049 {
1050 /* Alternative syntaxes are accepted for a few register classes. */
1051 switch (type)
1052 {
1053 case REG_TYPE_MVF:
1054 case REG_TYPE_MVD:
1055 case REG_TYPE_MVFX:
1056 case REG_TYPE_MVDX:
1057 /* Generic coprocessor register names are allowed for these. */
1058 if (reg && reg->type == REG_TYPE_CN)
1059 return reg->number;
1060 break;
1061
1062 case REG_TYPE_CP:
1063 /* For backward compatibility, a bare number is valid here. */
1064 {
1065 unsigned long processor = strtoul (start, ccp, 10);
1066 if (*ccp != start && processor <= 15)
1067 return processor;
1068 }
1069
1070 case REG_TYPE_MMXWC:
1071 /* WC includes WCG. ??? I'm not sure this is true for all
1072 instructions that take WC registers. */
1073 if (reg && reg->type == REG_TYPE_MMXWCG)
1074 return reg->number;
1075 break;
1076
1077 default:
1078 break;
1079 }
1080
1081 return FAIL;
1082 }
1083
1084 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1085 return value is the register number or FAIL. */
1086
1087 static int
1088 arm_reg_parse (char **ccp, enum arm_reg_type type)
1089 {
1090 char *start = *ccp;
1091 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1092 int ret;
1093
1094 /* Do not allow a scalar (reg+index) to parse as a register. */
1095 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1096 return FAIL;
1097
1098 if (reg && reg->type == type)
1099 return reg->number;
1100
1101 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1102 return ret;
1103
1104 *ccp = start;
1105 return FAIL;
1106 }
1107
1108 /* Parse a Neon type specifier. *STR should point at the leading '.'
1109 character. Does no verification at this stage that the type fits the opcode
1110 properly. E.g.,
1111
1112 .i32.i32.s16
1113 .s32.f32
1114 .u16
1115
1116 Can all be legally parsed by this function.
1117
1118 Fills in neon_type struct pointer with parsed information, and updates STR
1119 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1120 type, FAIL if not. */
1121
1122 static int
1123 parse_neon_type (struct neon_type *type, char **str)
1124 {
1125 char *ptr = *str;
1126
1127 if (type)
1128 type->elems = 0;
1129
1130 while (type->elems < NEON_MAX_TYPE_ELS)
1131 {
1132 enum neon_el_type thistype = NT_untyped;
1133 unsigned thissize = -1u;
1134
1135 if (*ptr != '.')
1136 break;
1137
1138 ptr++;
1139
1140 /* Just a size without an explicit type. */
1141 if (ISDIGIT (*ptr))
1142 goto parsesize;
1143
1144 switch (TOLOWER (*ptr))
1145 {
1146 case 'i': thistype = NT_integer; break;
1147 case 'f': thistype = NT_float; break;
1148 case 'p': thistype = NT_poly; break;
1149 case 's': thistype = NT_signed; break;
1150 case 'u': thistype = NT_unsigned; break;
1151 case 'd':
1152 thistype = NT_float;
1153 thissize = 64;
1154 ptr++;
1155 goto done;
1156 default:
1157 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1158 return FAIL;
1159 }
1160
1161 ptr++;
1162
1163 /* .f is an abbreviation for .f32. */
1164 if (thistype == NT_float && !ISDIGIT (*ptr))
1165 thissize = 32;
1166 else
1167 {
1168 parsesize:
1169 thissize = strtoul (ptr, &ptr, 10);
1170
1171 if (thissize != 8 && thissize != 16 && thissize != 32
1172 && thissize != 64)
1173 {
1174 as_bad (_("bad size %d in type specifier"), thissize);
1175 return FAIL;
1176 }
1177 }
1178
1179 done:
1180 if (type)
1181 {
1182 type->el[type->elems].type = thistype;
1183 type->el[type->elems].size = thissize;
1184 type->elems++;
1185 }
1186 }
1187
1188 /* Empty/missing type is not a successful parse. */
1189 if (type->elems == 0)
1190 return FAIL;
1191
1192 *str = ptr;
1193
1194 return SUCCESS;
1195 }
1196
1197 /* Errors may be set multiple times during parsing or bit encoding
1198 (particularly in the Neon bits), but usually the earliest error which is set
1199 will be the most meaningful. Avoid overwriting it with later (cascading)
1200 errors by calling this function. */
1201
1202 static void
1203 first_error (const char *err)
1204 {
1205 if (!inst.error)
1206 inst.error = err;
1207 }
1208
1209 /* Parse a single type, e.g. ".s32", leading period included. */
1210 static int
1211 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1212 {
1213 char *str = *ccp;
1214 struct neon_type optype;
1215
1216 if (*str == '.')
1217 {
1218 if (parse_neon_type (&optype, &str) == SUCCESS)
1219 {
1220 if (optype.elems == 1)
1221 *vectype = optype.el[0];
1222 else
1223 {
1224 first_error (_("only one type should be specified for operand"));
1225 return FAIL;
1226 }
1227 }
1228 else
1229 {
1230 first_error (_("vector type expected"));
1231 return FAIL;
1232 }
1233 }
1234 else
1235 return FAIL;
1236
1237 *ccp = str;
1238
1239 return SUCCESS;
1240 }
1241
1242 /* Special meanings for indices (which have a range of 0-7), which will fit into
1243 a 4-bit integer. */
1244
1245 #define NEON_ALL_LANES 15
1246 #define NEON_INTERLEAVE_LANES 14
1247
1248 /* Parse either a register or a scalar, with an optional type. Return the
1249 register number, and optionally fill in the actual type of the register
1250 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1251 type/index information in *TYPEINFO. */
1252
1253 static int
1254 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1255 enum arm_reg_type *rtype,
1256 struct neon_typed_alias *typeinfo)
1257 {
1258 char *str = *ccp;
1259 struct reg_entry *reg = arm_reg_parse_multi (&str);
1260 struct neon_typed_alias atype;
1261 struct neon_type_el parsetype;
1262
1263 atype.defined = 0;
1264 atype.index = -1;
1265 atype.eltype.type = NT_invtype;
1266 atype.eltype.size = -1;
1267
1268 /* Try alternate syntax for some types of register. Note these are mutually
1269 exclusive with the Neon syntax extensions. */
1270 if (reg == NULL)
1271 {
1272 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1273 if (altreg != FAIL)
1274 *ccp = str;
1275 if (typeinfo)
1276 *typeinfo = atype;
1277 return altreg;
1278 }
1279
1280 /* Undo polymorphism when a set of register types may be accepted. */
1281 if ((type == REG_TYPE_NDQ
1282 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1283 || (type == REG_TYPE_VFSD
1284 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1285 || (type == REG_TYPE_NSDQ
1286 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1287 || reg->type == REG_TYPE_NQ))
1288 || (type == REG_TYPE_MMXWC
1289 && (reg->type == REG_TYPE_MMXWCG)))
1290 type = reg->type;
1291
1292 if (type != reg->type)
1293 return FAIL;
1294
1295 if (reg->neon)
1296 atype = *reg->neon;
1297
1298 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1299 {
1300 if ((atype.defined & NTA_HASTYPE) != 0)
1301 {
1302 first_error (_("can't redefine type for operand"));
1303 return FAIL;
1304 }
1305 atype.defined |= NTA_HASTYPE;
1306 atype.eltype = parsetype;
1307 }
1308
1309 if (skip_past_char (&str, '[') == SUCCESS)
1310 {
1311 if (type != REG_TYPE_VFD)
1312 {
1313 first_error (_("only D registers may be indexed"));
1314 return FAIL;
1315 }
1316
1317 if ((atype.defined & NTA_HASINDEX) != 0)
1318 {
1319 first_error (_("can't change index for operand"));
1320 return FAIL;
1321 }
1322
1323 atype.defined |= NTA_HASINDEX;
1324
1325 if (skip_past_char (&str, ']') == SUCCESS)
1326 atype.index = NEON_ALL_LANES;
1327 else
1328 {
1329 expressionS exp;
1330
1331 my_get_expression (&exp, &str, GE_NO_PREFIX);
1332
1333 if (exp.X_op != O_constant)
1334 {
1335 first_error (_("constant expression required"));
1336 return FAIL;
1337 }
1338
1339 if (skip_past_char (&str, ']') == FAIL)
1340 return FAIL;
1341
1342 atype.index = exp.X_add_number;
1343 }
1344 }
1345
1346 if (typeinfo)
1347 *typeinfo = atype;
1348
1349 if (rtype)
1350 *rtype = type;
1351
1352 *ccp = str;
1353
1354 return reg->number;
1355 }
1356
1357 /* Like arm_reg_parse, but allow allow the following extra features:
1358 - If RTYPE is non-zero, return the (possibly restricted) type of the
1359 register (e.g. Neon double or quad reg when either has been requested).
1360 - If this is a Neon vector type with additional type information, fill
1361 in the struct pointed to by VECTYPE (if non-NULL).
1362 This function will fault on encountering a scalar. */
1363
1364 static int
1365 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1366 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1367 {
1368 struct neon_typed_alias atype;
1369 char *str = *ccp;
1370 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1371
1372 if (reg == FAIL)
1373 return FAIL;
1374
1375 /* Do not allow a scalar (reg+index) to parse as a register. */
1376 if ((atype.defined & NTA_HASINDEX) != 0)
1377 {
1378 first_error (_("register operand expected, but got scalar"));
1379 return FAIL;
1380 }
1381
1382 if (vectype)
1383 *vectype = atype.eltype;
1384
1385 *ccp = str;
1386
1387 return reg;
1388 }
1389
1390 #define NEON_SCALAR_REG(X) ((X) >> 4)
1391 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1392
1393 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1394 have enough information to be able to do a good job bounds-checking. So, we
1395 just do easy checks here, and do further checks later. */
1396
1397 static int
1398 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1399 {
1400 int reg;
1401 char *str = *ccp;
1402 struct neon_typed_alias atype;
1403
1404 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1405
1406 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1407 return FAIL;
1408
1409 if (atype.index == NEON_ALL_LANES)
1410 {
1411 first_error (_("scalar must have an index"));
1412 return FAIL;
1413 }
1414 else if (atype.index >= 64 / elsize)
1415 {
1416 first_error (_("scalar index out of range"));
1417 return FAIL;
1418 }
1419
1420 if (type)
1421 *type = atype.eltype;
1422
1423 *ccp = str;
1424
1425 return reg * 16 + atype.index;
1426 }
1427
1428 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1429 static long
1430 parse_reg_list (char ** strp)
1431 {
1432 char * str = * strp;
1433 long range = 0;
1434 int another_range;
1435
1436 /* We come back here if we get ranges concatenated by '+' or '|'. */
1437 do
1438 {
1439 another_range = 0;
1440
1441 if (*str == '{')
1442 {
1443 int in_range = 0;
1444 int cur_reg = -1;
1445
1446 str++;
1447 do
1448 {
1449 int reg;
1450
1451 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1452 {
1453 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1454 return FAIL;
1455 }
1456
1457 if (in_range)
1458 {
1459 int i;
1460
1461 if (reg <= cur_reg)
1462 {
1463 first_error (_("bad range in register list"));
1464 return FAIL;
1465 }
1466
1467 for (i = cur_reg + 1; i < reg; i++)
1468 {
1469 if (range & (1 << i))
1470 as_tsktsk
1471 (_("Warning: duplicated register (r%d) in register list"),
1472 i);
1473 else
1474 range |= 1 << i;
1475 }
1476 in_range = 0;
1477 }
1478
1479 if (range & (1 << reg))
1480 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1481 reg);
1482 else if (reg <= cur_reg)
1483 as_tsktsk (_("Warning: register range not in ascending order"));
1484
1485 range |= 1 << reg;
1486 cur_reg = reg;
1487 }
1488 while (skip_past_comma (&str) != FAIL
1489 || (in_range = 1, *str++ == '-'));
1490 str--;
1491
1492 if (*str++ != '}')
1493 {
1494 first_error (_("missing `}'"));
1495 return FAIL;
1496 }
1497 }
1498 else
1499 {
1500 expressionS expr;
1501
1502 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1503 return FAIL;
1504
1505 if (expr.X_op == O_constant)
1506 {
1507 if (expr.X_add_number
1508 != (expr.X_add_number & 0x0000ffff))
1509 {
1510 inst.error = _("invalid register mask");
1511 return FAIL;
1512 }
1513
1514 if ((range & expr.X_add_number) != 0)
1515 {
1516 int regno = range & expr.X_add_number;
1517
1518 regno &= -regno;
1519 regno = (1 << regno) - 1;
1520 as_tsktsk
1521 (_("Warning: duplicated register (r%d) in register list"),
1522 regno);
1523 }
1524
1525 range |= expr.X_add_number;
1526 }
1527 else
1528 {
1529 if (inst.reloc.type != 0)
1530 {
1531 inst.error = _("expression too complex");
1532 return FAIL;
1533 }
1534
1535 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1536 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1537 inst.reloc.pc_rel = 0;
1538 }
1539 }
1540
1541 if (*str == '|' || *str == '+')
1542 {
1543 str++;
1544 another_range = 1;
1545 }
1546 }
1547 while (another_range);
1548
1549 *strp = str;
1550 return range;
1551 }
1552
1553 /* Types of registers in a list. */
1554
1555 enum reg_list_els
1556 {
1557 REGLIST_VFP_S,
1558 REGLIST_VFP_D,
1559 REGLIST_NEON_D
1560 };
1561
1562 /* Parse a VFP register list. If the string is invalid return FAIL.
1563 Otherwise return the number of registers, and set PBASE to the first
1564 register. Parses registers of type ETYPE.
1565 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1566 - Q registers can be used to specify pairs of D registers
1567 - { } can be omitted from around a singleton register list
1568 FIXME: This is not implemented, as it would require backtracking in
1569 some cases, e.g.:
1570 vtbl.8 d3,d4,d5
1571 This could be done (the meaning isn't really ambiguous), but doesn't
1572 fit in well with the current parsing framework.
1573 - 32 D registers may be used (also true for VFPv3).
1574 FIXME: Types are ignored in these register lists, which is probably a
1575 bug. */
1576
1577 static int
1578 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1579 {
1580 char *str = *ccp;
1581 int base_reg;
1582 int new_base;
1583 enum arm_reg_type regtype = 0;
1584 int max_regs = 0;
1585 int count = 0;
1586 int warned = 0;
1587 unsigned long mask = 0;
1588 int i;
1589
1590 if (*str != '{')
1591 {
1592 inst.error = _("expecting {");
1593 return FAIL;
1594 }
1595
1596 str++;
1597
1598 switch (etype)
1599 {
1600 case REGLIST_VFP_S:
1601 regtype = REG_TYPE_VFS;
1602 max_regs = 32;
1603 break;
1604
1605 case REGLIST_VFP_D:
1606 regtype = REG_TYPE_VFD;
1607 break;
1608
1609 case REGLIST_NEON_D:
1610 regtype = REG_TYPE_NDQ;
1611 break;
1612 }
1613
1614 if (etype != REGLIST_VFP_S)
1615 {
1616 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1617 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1618 {
1619 max_regs = 32;
1620 if (thumb_mode)
1621 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1622 fpu_vfp_ext_d32);
1623 else
1624 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1625 fpu_vfp_ext_d32);
1626 }
1627 else
1628 max_regs = 16;
1629 }
1630
1631 base_reg = max_regs;
1632
1633 do
1634 {
1635 int setmask = 1, addregs = 1;
1636
1637 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1638
1639 if (new_base == FAIL)
1640 {
1641 first_error (_(reg_expected_msgs[regtype]));
1642 return FAIL;
1643 }
1644
1645 if (new_base >= max_regs)
1646 {
1647 first_error (_("register out of range in list"));
1648 return FAIL;
1649 }
1650
1651 /* Note: a value of 2 * n is returned for the register Q<n>. */
1652 if (regtype == REG_TYPE_NQ)
1653 {
1654 setmask = 3;
1655 addregs = 2;
1656 }
1657
1658 if (new_base < base_reg)
1659 base_reg = new_base;
1660
1661 if (mask & (setmask << new_base))
1662 {
1663 first_error (_("invalid register list"));
1664 return FAIL;
1665 }
1666
1667 if ((mask >> new_base) != 0 && ! warned)
1668 {
1669 as_tsktsk (_("register list not in ascending order"));
1670 warned = 1;
1671 }
1672
1673 mask |= setmask << new_base;
1674 count += addregs;
1675
1676 if (*str == '-') /* We have the start of a range expression */
1677 {
1678 int high_range;
1679
1680 str++;
1681
1682 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1683 == FAIL)
1684 {
1685 inst.error = gettext (reg_expected_msgs[regtype]);
1686 return FAIL;
1687 }
1688
1689 if (high_range >= max_regs)
1690 {
1691 first_error (_("register out of range in list"));
1692 return FAIL;
1693 }
1694
1695 if (regtype == REG_TYPE_NQ)
1696 high_range = high_range + 1;
1697
1698 if (high_range <= new_base)
1699 {
1700 inst.error = _("register range not in ascending order");
1701 return FAIL;
1702 }
1703
1704 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1705 {
1706 if (mask & (setmask << new_base))
1707 {
1708 inst.error = _("invalid register list");
1709 return FAIL;
1710 }
1711
1712 mask |= setmask << new_base;
1713 count += addregs;
1714 }
1715 }
1716 }
1717 while (skip_past_comma (&str) != FAIL);
1718
1719 str++;
1720
1721 /* Sanity check -- should have raised a parse error above. */
1722 if (count == 0 || count > max_regs)
1723 abort ();
1724
1725 *pbase = base_reg;
1726
1727 /* Final test -- the registers must be consecutive. */
1728 mask >>= base_reg;
1729 for (i = 0; i < count; i++)
1730 {
1731 if ((mask & (1u << i)) == 0)
1732 {
1733 inst.error = _("non-contiguous register range");
1734 return FAIL;
1735 }
1736 }
1737
1738 *ccp = str;
1739
1740 return count;
1741 }
1742
1743 /* True if two alias types are the same. */
1744
1745 static int
1746 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1747 {
1748 if (!a && !b)
1749 return 1;
1750
1751 if (!a || !b)
1752 return 0;
1753
1754 if (a->defined != b->defined)
1755 return 0;
1756
1757 if ((a->defined & NTA_HASTYPE) != 0
1758 && (a->eltype.type != b->eltype.type
1759 || a->eltype.size != b->eltype.size))
1760 return 0;
1761
1762 if ((a->defined & NTA_HASINDEX) != 0
1763 && (a->index != b->index))
1764 return 0;
1765
1766 return 1;
1767 }
1768
1769 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1770 The base register is put in *PBASE.
1771 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1772 the return value.
1773 The register stride (minus one) is put in bit 4 of the return value.
1774 Bits [6:5] encode the list length (minus one).
1775 The type of the list elements is put in *ELTYPE, if non-NULL. */
1776
1777 #define NEON_LANE(X) ((X) & 0xf)
1778 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1779 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1780
1781 static int
1782 parse_neon_el_struct_list (char **str, unsigned *pbase,
1783 struct neon_type_el *eltype)
1784 {
1785 char *ptr = *str;
1786 int base_reg = -1;
1787 int reg_incr = -1;
1788 int count = 0;
1789 int lane = -1;
1790 int leading_brace = 0;
1791 enum arm_reg_type rtype = REG_TYPE_NDQ;
1792 int addregs = 1;
1793 const char *const incr_error = "register stride must be 1 or 2";
1794 const char *const type_error = "mismatched element/structure types in list";
1795 struct neon_typed_alias firsttype;
1796
1797 if (skip_past_char (&ptr, '{') == SUCCESS)
1798 leading_brace = 1;
1799
1800 do
1801 {
1802 struct neon_typed_alias atype;
1803 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1804
1805 if (getreg == FAIL)
1806 {
1807 first_error (_(reg_expected_msgs[rtype]));
1808 return FAIL;
1809 }
1810
1811 if (base_reg == -1)
1812 {
1813 base_reg = getreg;
1814 if (rtype == REG_TYPE_NQ)
1815 {
1816 reg_incr = 1;
1817 addregs = 2;
1818 }
1819 firsttype = atype;
1820 }
1821 else if (reg_incr == -1)
1822 {
1823 reg_incr = getreg - base_reg;
1824 if (reg_incr < 1 || reg_incr > 2)
1825 {
1826 first_error (_(incr_error));
1827 return FAIL;
1828 }
1829 }
1830 else if (getreg != base_reg + reg_incr * count)
1831 {
1832 first_error (_(incr_error));
1833 return FAIL;
1834 }
1835
1836 if (!neon_alias_types_same (&atype, &firsttype))
1837 {
1838 first_error (_(type_error));
1839 return FAIL;
1840 }
1841
1842 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1843 modes. */
1844 if (ptr[0] == '-')
1845 {
1846 struct neon_typed_alias htype;
1847 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1848 if (lane == -1)
1849 lane = NEON_INTERLEAVE_LANES;
1850 else if (lane != NEON_INTERLEAVE_LANES)
1851 {
1852 first_error (_(type_error));
1853 return FAIL;
1854 }
1855 if (reg_incr == -1)
1856 reg_incr = 1;
1857 else if (reg_incr != 1)
1858 {
1859 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1860 return FAIL;
1861 }
1862 ptr++;
1863 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1864 if (hireg == FAIL)
1865 {
1866 first_error (_(reg_expected_msgs[rtype]));
1867 return FAIL;
1868 }
1869 if (!neon_alias_types_same (&htype, &firsttype))
1870 {
1871 first_error (_(type_error));
1872 return FAIL;
1873 }
1874 count += hireg + dregs - getreg;
1875 continue;
1876 }
1877
1878 /* If we're using Q registers, we can't use [] or [n] syntax. */
1879 if (rtype == REG_TYPE_NQ)
1880 {
1881 count += 2;
1882 continue;
1883 }
1884
1885 if ((atype.defined & NTA_HASINDEX) != 0)
1886 {
1887 if (lane == -1)
1888 lane = atype.index;
1889 else if (lane != atype.index)
1890 {
1891 first_error (_(type_error));
1892 return FAIL;
1893 }
1894 }
1895 else if (lane == -1)
1896 lane = NEON_INTERLEAVE_LANES;
1897 else if (lane != NEON_INTERLEAVE_LANES)
1898 {
1899 first_error (_(type_error));
1900 return FAIL;
1901 }
1902 count++;
1903 }
1904 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1905
1906 /* No lane set by [x]. We must be interleaving structures. */
1907 if (lane == -1)
1908 lane = NEON_INTERLEAVE_LANES;
1909
1910 /* Sanity check. */
1911 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1912 || (count > 1 && reg_incr == -1))
1913 {
1914 first_error (_("error parsing element/structure list"));
1915 return FAIL;
1916 }
1917
1918 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1919 {
1920 first_error (_("expected }"));
1921 return FAIL;
1922 }
1923
1924 if (reg_incr == -1)
1925 reg_incr = 1;
1926
1927 if (eltype)
1928 *eltype = firsttype.eltype;
1929
1930 *pbase = base_reg;
1931 *str = ptr;
1932
1933 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1934 }
1935
1936 /* Parse an explicit relocation suffix on an expression. This is
1937 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1938 arm_reloc_hsh contains no entries, so this function can only
1939 succeed if there is no () after the word. Returns -1 on error,
1940 BFD_RELOC_UNUSED if there wasn't any suffix. */
1941 static int
1942 parse_reloc (char **str)
1943 {
1944 struct reloc_entry *r;
1945 char *p, *q;
1946
1947 if (**str != '(')
1948 return BFD_RELOC_UNUSED;
1949
1950 p = *str + 1;
1951 q = p;
1952
1953 while (*q && *q != ')' && *q != ',')
1954 q++;
1955 if (*q != ')')
1956 return -1;
1957
1958 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1959 return -1;
1960
1961 *str = q + 1;
1962 return r->reloc;
1963 }
1964
1965 /* Directives: register aliases. */
1966
1967 static struct reg_entry *
1968 insert_reg_alias (char *str, int number, int type)
1969 {
1970 struct reg_entry *new;
1971 const char *name;
1972
1973 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1974 {
1975 if (new->builtin)
1976 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1977
1978 /* Only warn about a redefinition if it's not defined as the
1979 same register. */
1980 else if (new->number != number || new->type != type)
1981 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1982
1983 return NULL;
1984 }
1985
1986 name = xstrdup (str);
1987 new = xmalloc (sizeof (struct reg_entry));
1988
1989 new->name = name;
1990 new->number = number;
1991 new->type = type;
1992 new->builtin = FALSE;
1993 new->neon = NULL;
1994
1995 if (hash_insert (arm_reg_hsh, name, (void *) new))
1996 abort ();
1997
1998 return new;
1999 }
2000
2001 static void
2002 insert_neon_reg_alias (char *str, int number, int type,
2003 struct neon_typed_alias *atype)
2004 {
2005 struct reg_entry *reg = insert_reg_alias (str, number, type);
2006
2007 if (!reg)
2008 {
2009 first_error (_("attempt to redefine typed alias"));
2010 return;
2011 }
2012
2013 if (atype)
2014 {
2015 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2016 *reg->neon = *atype;
2017 }
2018 }
2019
2020 /* Look for the .req directive. This is of the form:
2021
2022 new_register_name .req existing_register_name
2023
2024 If we find one, or if it looks sufficiently like one that we want to
2025 handle any error here, return TRUE. Otherwise return FALSE. */
2026
2027 static bfd_boolean
2028 create_register_alias (char * newname, char *p)
2029 {
2030 struct reg_entry *old;
2031 char *oldname, *nbuf;
2032 size_t nlen;
2033
2034 /* The input scrubber ensures that whitespace after the mnemonic is
2035 collapsed to single spaces. */
2036 oldname = p;
2037 if (strncmp (oldname, " .req ", 6) != 0)
2038 return FALSE;
2039
2040 oldname += 6;
2041 if (*oldname == '\0')
2042 return FALSE;
2043
2044 old = hash_find (arm_reg_hsh, oldname);
2045 if (!old)
2046 {
2047 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2048 return TRUE;
2049 }
2050
2051 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2052 the desired alias name, and p points to its end. If not, then
2053 the desired alias name is in the global original_case_string. */
2054 #ifdef TC_CASE_SENSITIVE
2055 nlen = p - newname;
2056 #else
2057 newname = original_case_string;
2058 nlen = strlen (newname);
2059 #endif
2060
2061 nbuf = alloca (nlen + 1);
2062 memcpy (nbuf, newname, nlen);
2063 nbuf[nlen] = '\0';
2064
2065 /* Create aliases under the new name as stated; an all-lowercase
2066 version of the new name; and an all-uppercase version of the new
2067 name. */
2068 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2069 {
2070 for (p = nbuf; *p; p++)
2071 *p = TOUPPER (*p);
2072
2073 if (strncmp (nbuf, newname, nlen))
2074 {
2075 /* If this attempt to create an additional alias fails, do not bother
2076 trying to create the all-lower case alias. We will fail and issue
2077 a second, duplicate error message. This situation arises when the
2078 programmer does something like:
2079 foo .req r0
2080 Foo .req r1
2081 The second .req creates the "Foo" alias but then fails to create
2082 the artificial FOO alias because it has already been created by the
2083 first .req. */
2084 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2085 return TRUE;
2086 }
2087
2088 for (p = nbuf; *p; p++)
2089 *p = TOLOWER (*p);
2090
2091 if (strncmp (nbuf, newname, nlen))
2092 insert_reg_alias (nbuf, old->number, old->type);
2093 }
2094
2095 return TRUE;
2096 }
2097
2098 /* Create a Neon typed/indexed register alias using directives, e.g.:
2099 X .dn d5.s32[1]
2100 Y .qn 6.s16
2101 Z .dn d7
2102 T .dn Z[0]
2103 These typed registers can be used instead of the types specified after the
2104 Neon mnemonic, so long as all operands given have types. Types can also be
2105 specified directly, e.g.:
2106 vadd d0.s32, d1.s32, d2.s32 */
2107
2108 static int
2109 create_neon_reg_alias (char *newname, char *p)
2110 {
2111 enum arm_reg_type basetype;
2112 struct reg_entry *basereg;
2113 struct reg_entry mybasereg;
2114 struct neon_type ntype;
2115 struct neon_typed_alias typeinfo;
2116 char *namebuf, *nameend;
2117 int namelen;
2118
2119 typeinfo.defined = 0;
2120 typeinfo.eltype.type = NT_invtype;
2121 typeinfo.eltype.size = -1;
2122 typeinfo.index = -1;
2123
2124 nameend = p;
2125
2126 if (strncmp (p, " .dn ", 5) == 0)
2127 basetype = REG_TYPE_VFD;
2128 else if (strncmp (p, " .qn ", 5) == 0)
2129 basetype = REG_TYPE_NQ;
2130 else
2131 return 0;
2132
2133 p += 5;
2134
2135 if (*p == '\0')
2136 return 0;
2137
2138 basereg = arm_reg_parse_multi (&p);
2139
2140 if (basereg && basereg->type != basetype)
2141 {
2142 as_bad (_("bad type for register"));
2143 return 0;
2144 }
2145
2146 if (basereg == NULL)
2147 {
2148 expressionS exp;
2149 /* Try parsing as an integer. */
2150 my_get_expression (&exp, &p, GE_NO_PREFIX);
2151 if (exp.X_op != O_constant)
2152 {
2153 as_bad (_("expression must be constant"));
2154 return 0;
2155 }
2156 basereg = &mybasereg;
2157 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2158 : exp.X_add_number;
2159 basereg->neon = 0;
2160 }
2161
2162 if (basereg->neon)
2163 typeinfo = *basereg->neon;
2164
2165 if (parse_neon_type (&ntype, &p) == SUCCESS)
2166 {
2167 /* We got a type. */
2168 if (typeinfo.defined & NTA_HASTYPE)
2169 {
2170 as_bad (_("can't redefine the type of a register alias"));
2171 return 0;
2172 }
2173
2174 typeinfo.defined |= NTA_HASTYPE;
2175 if (ntype.elems != 1)
2176 {
2177 as_bad (_("you must specify a single type only"));
2178 return 0;
2179 }
2180 typeinfo.eltype = ntype.el[0];
2181 }
2182
2183 if (skip_past_char (&p, '[') == SUCCESS)
2184 {
2185 expressionS exp;
2186 /* We got a scalar index. */
2187
2188 if (typeinfo.defined & NTA_HASINDEX)
2189 {
2190 as_bad (_("can't redefine the index of a scalar alias"));
2191 return 0;
2192 }
2193
2194 my_get_expression (&exp, &p, GE_NO_PREFIX);
2195
2196 if (exp.X_op != O_constant)
2197 {
2198 as_bad (_("scalar index must be constant"));
2199 return 0;
2200 }
2201
2202 typeinfo.defined |= NTA_HASINDEX;
2203 typeinfo.index = exp.X_add_number;
2204
2205 if (skip_past_char (&p, ']') == FAIL)
2206 {
2207 as_bad (_("expecting ]"));
2208 return 0;
2209 }
2210 }
2211
2212 namelen = nameend - newname;
2213 namebuf = alloca (namelen + 1);
2214 strncpy (namebuf, newname, namelen);
2215 namebuf[namelen] = '\0';
2216
2217 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2218 typeinfo.defined != 0 ? &typeinfo : NULL);
2219
2220 /* Insert name in all uppercase. */
2221 for (p = namebuf; *p; p++)
2222 *p = TOUPPER (*p);
2223
2224 if (strncmp (namebuf, newname, namelen))
2225 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2226 typeinfo.defined != 0 ? &typeinfo : NULL);
2227
2228 /* Insert name in all lowercase. */
2229 for (p = namebuf; *p; p++)
2230 *p = TOLOWER (*p);
2231
2232 if (strncmp (namebuf, newname, namelen))
2233 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2234 typeinfo.defined != 0 ? &typeinfo : NULL);
2235
2236 return 1;
2237 }
2238
2239 /* Should never be called, as .req goes between the alias and the
2240 register name, not at the beginning of the line. */
2241 static void
2242 s_req (int a ATTRIBUTE_UNUSED)
2243 {
2244 as_bad (_("invalid syntax for .req directive"));
2245 }
2246
2247 static void
2248 s_dn (int a ATTRIBUTE_UNUSED)
2249 {
2250 as_bad (_("invalid syntax for .dn directive"));
2251 }
2252
2253 static void
2254 s_qn (int a ATTRIBUTE_UNUSED)
2255 {
2256 as_bad (_("invalid syntax for .qn directive"));
2257 }
2258
2259 /* The .unreq directive deletes an alias which was previously defined
2260 by .req. For example:
2261
2262 my_alias .req r11
2263 .unreq my_alias */
2264
2265 static void
2266 s_unreq (int a ATTRIBUTE_UNUSED)
2267 {
2268 char * name;
2269 char saved_char;
2270
2271 name = input_line_pointer;
2272
2273 while (*input_line_pointer != 0
2274 && *input_line_pointer != ' '
2275 && *input_line_pointer != '\n')
2276 ++input_line_pointer;
2277
2278 saved_char = *input_line_pointer;
2279 *input_line_pointer = 0;
2280
2281 if (!*name)
2282 as_bad (_("invalid syntax for .unreq directive"));
2283 else
2284 {
2285 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2286
2287 if (!reg)
2288 as_bad (_("unknown register alias '%s'"), name);
2289 else if (reg->builtin)
2290 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2291 name);
2292 else
2293 {
2294 char * p;
2295 char * nbuf;
2296
2297 hash_delete (arm_reg_hsh, name, FALSE);
2298 free ((char *) reg->name);
2299 if (reg->neon)
2300 free (reg->neon);
2301 free (reg);
2302
2303 /* Also locate the all upper case and all lower case versions.
2304 Do not complain if we cannot find one or the other as it
2305 was probably deleted above. */
2306
2307 nbuf = strdup (name);
2308 for (p = nbuf; *p; p++)
2309 *p = TOUPPER (*p);
2310 reg = hash_find (arm_reg_hsh, nbuf);
2311 if (reg)
2312 {
2313 hash_delete (arm_reg_hsh, nbuf, FALSE);
2314 free ((char *) reg->name);
2315 if (reg->neon)
2316 free (reg->neon);
2317 free (reg);
2318 }
2319
2320 for (p = nbuf; *p; p++)
2321 *p = TOLOWER (*p);
2322 reg = hash_find (arm_reg_hsh, nbuf);
2323 if (reg)
2324 {
2325 hash_delete (arm_reg_hsh, nbuf, FALSE);
2326 free ((char *) reg->name);
2327 if (reg->neon)
2328 free (reg->neon);
2329 free (reg);
2330 }
2331
2332 free (nbuf);
2333 }
2334 }
2335
2336 *input_line_pointer = saved_char;
2337 demand_empty_rest_of_line ();
2338 }
2339
2340 /* Directives: Instruction set selection. */
2341
2342 #ifdef OBJ_ELF
2343 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2344 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2345 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2346 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2347
2348 static enum mstate mapstate = MAP_UNDEFINED;
2349
2350 void
2351 mapping_state (enum mstate state)
2352 {
2353 symbolS * symbolP;
2354 const char * symname;
2355 int type;
2356
2357 if (mapstate == state)
2358 /* The mapping symbol has already been emitted.
2359 There is nothing else to do. */
2360 return;
2361
2362 mapstate = state;
2363
2364 switch (state)
2365 {
2366 case MAP_DATA:
2367 symname = "$d";
2368 type = BSF_NO_FLAGS;
2369 break;
2370 case MAP_ARM:
2371 symname = "$a";
2372 type = BSF_NO_FLAGS;
2373 break;
2374 case MAP_THUMB:
2375 symname = "$t";
2376 type = BSF_NO_FLAGS;
2377 break;
2378 case MAP_UNDEFINED:
2379 return;
2380 default:
2381 abort ();
2382 }
2383
2384 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2385
2386 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2387 symbol_table_insert (symbolP);
2388 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2389
2390 switch (state)
2391 {
2392 case MAP_ARM:
2393 THUMB_SET_FUNC (symbolP, 0);
2394 ARM_SET_THUMB (symbolP, 0);
2395 ARM_SET_INTERWORK (symbolP, support_interwork);
2396 break;
2397
2398 case MAP_THUMB:
2399 THUMB_SET_FUNC (symbolP, 1);
2400 ARM_SET_THUMB (symbolP, 1);
2401 ARM_SET_INTERWORK (symbolP, support_interwork);
2402 break;
2403
2404 case MAP_DATA:
2405 default:
2406 return;
2407 }
2408 }
2409 #else
2410 #define mapping_state(x) /* nothing */
2411 #endif
2412
2413 /* Find the real, Thumb encoded start of a Thumb function. */
2414
2415 static symbolS *
2416 find_real_start (symbolS * symbolP)
2417 {
2418 char * real_start;
2419 const char * name = S_GET_NAME (symbolP);
2420 symbolS * new_target;
2421
2422 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2423 #define STUB_NAME ".real_start_of"
2424
2425 if (name == NULL)
2426 abort ();
2427
2428 /* The compiler may generate BL instructions to local labels because
2429 it needs to perform a branch to a far away location. These labels
2430 do not have a corresponding ".real_start_of" label. We check
2431 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2432 the ".real_start_of" convention for nonlocal branches. */
2433 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2434 return symbolP;
2435
2436 real_start = ACONCAT ((STUB_NAME, name, NULL));
2437 new_target = symbol_find (real_start);
2438
2439 if (new_target == NULL)
2440 {
2441 as_warn (_("Failed to find real start of function: %s\n"), name);
2442 new_target = symbolP;
2443 }
2444
2445 return new_target;
2446 }
2447
2448 static void
2449 opcode_select (int width)
2450 {
2451 switch (width)
2452 {
2453 case 16:
2454 if (! thumb_mode)
2455 {
2456 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2457 as_bad (_("selected processor does not support THUMB opcodes"));
2458
2459 thumb_mode = 1;
2460 /* No need to force the alignment, since we will have been
2461 coming from ARM mode, which is word-aligned. */
2462 record_alignment (now_seg, 1);
2463 }
2464 mapping_state (MAP_THUMB);
2465 break;
2466
2467 case 32:
2468 if (thumb_mode)
2469 {
2470 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2471 as_bad (_("selected processor does not support ARM opcodes"));
2472
2473 thumb_mode = 0;
2474
2475 if (!need_pass_2)
2476 frag_align (2, 0, 0);
2477
2478 record_alignment (now_seg, 1);
2479 }
2480 mapping_state (MAP_ARM);
2481 break;
2482
2483 default:
2484 as_bad (_("invalid instruction size selected (%d)"), width);
2485 }
2486 }
2487
2488 static void
2489 s_arm (int ignore ATTRIBUTE_UNUSED)
2490 {
2491 opcode_select (32);
2492 demand_empty_rest_of_line ();
2493 }
2494
2495 static void
2496 s_thumb (int ignore ATTRIBUTE_UNUSED)
2497 {
2498 opcode_select (16);
2499 demand_empty_rest_of_line ();
2500 }
2501
2502 static void
2503 s_code (int unused ATTRIBUTE_UNUSED)
2504 {
2505 int temp;
2506
2507 temp = get_absolute_expression ();
2508 switch (temp)
2509 {
2510 case 16:
2511 case 32:
2512 opcode_select (temp);
2513 break;
2514
2515 default:
2516 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2517 }
2518 }
2519
2520 static void
2521 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2522 {
2523 /* If we are not already in thumb mode go into it, EVEN if
2524 the target processor does not support thumb instructions.
2525 This is used by gcc/config/arm/lib1funcs.asm for example
2526 to compile interworking support functions even if the
2527 target processor should not support interworking. */
2528 if (! thumb_mode)
2529 {
2530 thumb_mode = 2;
2531 record_alignment (now_seg, 1);
2532 }
2533
2534 demand_empty_rest_of_line ();
2535 }
2536
2537 static void
2538 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2539 {
2540 s_thumb (0);
2541
2542 /* The following label is the name/address of the start of a Thumb function.
2543 We need to know this for the interworking support. */
2544 label_is_thumb_function_name = TRUE;
2545 }
2546
2547 /* Perform a .set directive, but also mark the alias as
2548 being a thumb function. */
2549
2550 static void
2551 s_thumb_set (int equiv)
2552 {
2553 /* XXX the following is a duplicate of the code for s_set() in read.c
2554 We cannot just call that code as we need to get at the symbol that
2555 is created. */
2556 char * name;
2557 char delim;
2558 char * end_name;
2559 symbolS * symbolP;
2560
2561 /* Especial apologies for the random logic:
2562 This just grew, and could be parsed much more simply!
2563 Dean - in haste. */
2564 name = input_line_pointer;
2565 delim = get_symbol_end ();
2566 end_name = input_line_pointer;
2567 *end_name = delim;
2568
2569 if (*input_line_pointer != ',')
2570 {
2571 *end_name = 0;
2572 as_bad (_("expected comma after name \"%s\""), name);
2573 *end_name = delim;
2574 ignore_rest_of_line ();
2575 return;
2576 }
2577
2578 input_line_pointer++;
2579 *end_name = 0;
2580
2581 if (name[0] == '.' && name[1] == '\0')
2582 {
2583 /* XXX - this should not happen to .thumb_set. */
2584 abort ();
2585 }
2586
2587 if ((symbolP = symbol_find (name)) == NULL
2588 && (symbolP = md_undefined_symbol (name)) == NULL)
2589 {
2590 #ifndef NO_LISTING
2591 /* When doing symbol listings, play games with dummy fragments living
2592 outside the normal fragment chain to record the file and line info
2593 for this symbol. */
2594 if (listing & LISTING_SYMBOLS)
2595 {
2596 extern struct list_info_struct * listing_tail;
2597 fragS * dummy_frag = xmalloc (sizeof (fragS));
2598
2599 memset (dummy_frag, 0, sizeof (fragS));
2600 dummy_frag->fr_type = rs_fill;
2601 dummy_frag->line = listing_tail;
2602 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2603 dummy_frag->fr_symbol = symbolP;
2604 }
2605 else
2606 #endif
2607 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2608
2609 #ifdef OBJ_COFF
2610 /* "set" symbols are local unless otherwise specified. */
2611 SF_SET_LOCAL (symbolP);
2612 #endif /* OBJ_COFF */
2613 } /* Make a new symbol. */
2614
2615 symbol_table_insert (symbolP);
2616
2617 * end_name = delim;
2618
2619 if (equiv
2620 && S_IS_DEFINED (symbolP)
2621 && S_GET_SEGMENT (symbolP) != reg_section)
2622 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2623
2624 pseudo_set (symbolP);
2625
2626 demand_empty_rest_of_line ();
2627
2628 /* XXX Now we come to the Thumb specific bit of code. */
2629
2630 THUMB_SET_FUNC (symbolP, 1);
2631 ARM_SET_THUMB (symbolP, 1);
2632 #if defined OBJ_ELF || defined OBJ_COFF
2633 ARM_SET_INTERWORK (symbolP, support_interwork);
2634 #endif
2635 }
2636
2637 /* Directives: Mode selection. */
2638
2639 /* .syntax [unified|divided] - choose the new unified syntax
2640 (same for Arm and Thumb encoding, modulo slight differences in what
2641 can be represented) or the old divergent syntax for each mode. */
2642 static void
2643 s_syntax (int unused ATTRIBUTE_UNUSED)
2644 {
2645 char *name, delim;
2646
2647 name = input_line_pointer;
2648 delim = get_symbol_end ();
2649
2650 if (!strcasecmp (name, "unified"))
2651 unified_syntax = TRUE;
2652 else if (!strcasecmp (name, "divided"))
2653 unified_syntax = FALSE;
2654 else
2655 {
2656 as_bad (_("unrecognized syntax mode \"%s\""), name);
2657 return;
2658 }
2659 *input_line_pointer = delim;
2660 demand_empty_rest_of_line ();
2661 }
2662
2663 /* Directives: sectioning and alignment. */
2664
2665 /* Same as s_align_ptwo but align 0 => align 2. */
2666
2667 static void
2668 s_align (int unused ATTRIBUTE_UNUSED)
2669 {
2670 int temp;
2671 bfd_boolean fill_p;
2672 long temp_fill;
2673 long max_alignment = 15;
2674
2675 temp = get_absolute_expression ();
2676 if (temp > max_alignment)
2677 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2678 else if (temp < 0)
2679 {
2680 as_bad (_("alignment negative. 0 assumed."));
2681 temp = 0;
2682 }
2683
2684 if (*input_line_pointer == ',')
2685 {
2686 input_line_pointer++;
2687 temp_fill = get_absolute_expression ();
2688 fill_p = TRUE;
2689 }
2690 else
2691 {
2692 fill_p = FALSE;
2693 temp_fill = 0;
2694 }
2695
2696 if (!temp)
2697 temp = 2;
2698
2699 /* Only make a frag if we HAVE to. */
2700 if (temp && !need_pass_2)
2701 {
2702 if (!fill_p && subseg_text_p (now_seg))
2703 frag_align_code (temp, 0);
2704 else
2705 frag_align (temp, (int) temp_fill, 0);
2706 }
2707 demand_empty_rest_of_line ();
2708
2709 record_alignment (now_seg, temp);
2710 }
2711
2712 static void
2713 s_bss (int ignore ATTRIBUTE_UNUSED)
2714 {
2715 /* We don't support putting frags in the BSS segment, we fake it by
2716 marking in_bss, then looking at s_skip for clues. */
2717 subseg_set (bss_section, 0);
2718 demand_empty_rest_of_line ();
2719 mapping_state (MAP_DATA);
2720 }
2721
2722 static void
2723 s_even (int ignore ATTRIBUTE_UNUSED)
2724 {
2725 /* Never make frag if expect extra pass. */
2726 if (!need_pass_2)
2727 frag_align (1, 0, 0);
2728
2729 record_alignment (now_seg, 1);
2730
2731 demand_empty_rest_of_line ();
2732 }
2733
2734 /* Directives: Literal pools. */
2735
2736 static literal_pool *
2737 find_literal_pool (void)
2738 {
2739 literal_pool * pool;
2740
2741 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2742 {
2743 if (pool->section == now_seg
2744 && pool->sub_section == now_subseg)
2745 break;
2746 }
2747
2748 return pool;
2749 }
2750
2751 static literal_pool *
2752 find_or_make_literal_pool (void)
2753 {
2754 /* Next literal pool ID number. */
2755 static unsigned int latest_pool_num = 1;
2756 literal_pool * pool;
2757
2758 pool = find_literal_pool ();
2759
2760 if (pool == NULL)
2761 {
2762 /* Create a new pool. */
2763 pool = xmalloc (sizeof (* pool));
2764 if (! pool)
2765 return NULL;
2766
2767 pool->next_free_entry = 0;
2768 pool->section = now_seg;
2769 pool->sub_section = now_subseg;
2770 pool->next = list_of_pools;
2771 pool->symbol = NULL;
2772
2773 /* Add it to the list. */
2774 list_of_pools = pool;
2775 }
2776
2777 /* New pools, and emptied pools, will have a NULL symbol. */
2778 if (pool->symbol == NULL)
2779 {
2780 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2781 (valueT) 0, &zero_address_frag);
2782 pool->id = latest_pool_num ++;
2783 }
2784
2785 /* Done. */
2786 return pool;
2787 }
2788
2789 /* Add the literal in the global 'inst'
2790 structure to the relevant literal pool. */
2791
2792 static int
2793 add_to_lit_pool (void)
2794 {
2795 literal_pool * pool;
2796 unsigned int entry;
2797
2798 pool = find_or_make_literal_pool ();
2799
2800 /* Check if this literal value is already in the pool. */
2801 for (entry = 0; entry < pool->next_free_entry; entry ++)
2802 {
2803 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2804 && (inst.reloc.exp.X_op == O_constant)
2805 && (pool->literals[entry].X_add_number
2806 == inst.reloc.exp.X_add_number)
2807 && (pool->literals[entry].X_unsigned
2808 == inst.reloc.exp.X_unsigned))
2809 break;
2810
2811 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2812 && (inst.reloc.exp.X_op == O_symbol)
2813 && (pool->literals[entry].X_add_number
2814 == inst.reloc.exp.X_add_number)
2815 && (pool->literals[entry].X_add_symbol
2816 == inst.reloc.exp.X_add_symbol)
2817 && (pool->literals[entry].X_op_symbol
2818 == inst.reloc.exp.X_op_symbol))
2819 break;
2820 }
2821
2822 /* Do we need to create a new entry? */
2823 if (entry == pool->next_free_entry)
2824 {
2825 if (entry >= MAX_LITERAL_POOL_SIZE)
2826 {
2827 inst.error = _("literal pool overflow");
2828 return FAIL;
2829 }
2830
2831 pool->literals[entry] = inst.reloc.exp;
2832 pool->next_free_entry += 1;
2833 }
2834
2835 inst.reloc.exp.X_op = O_symbol;
2836 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2837 inst.reloc.exp.X_add_symbol = pool->symbol;
2838
2839 return SUCCESS;
2840 }
2841
2842 /* Can't use symbol_new here, so have to create a symbol and then at
2843 a later date assign it a value. Thats what these functions do. */
2844
2845 static void
2846 symbol_locate (symbolS * symbolP,
2847 const char * name, /* It is copied, the caller can modify. */
2848 segT segment, /* Segment identifier (SEG_<something>). */
2849 valueT valu, /* Symbol value. */
2850 fragS * frag) /* Associated fragment. */
2851 {
2852 unsigned int name_length;
2853 char * preserved_copy_of_name;
2854
2855 name_length = strlen (name) + 1; /* +1 for \0. */
2856 obstack_grow (&notes, name, name_length);
2857 preserved_copy_of_name = obstack_finish (&notes);
2858
2859 #ifdef tc_canonicalize_symbol_name
2860 preserved_copy_of_name =
2861 tc_canonicalize_symbol_name (preserved_copy_of_name);
2862 #endif
2863
2864 S_SET_NAME (symbolP, preserved_copy_of_name);
2865
2866 S_SET_SEGMENT (symbolP, segment);
2867 S_SET_VALUE (symbolP, valu);
2868 symbol_clear_list_pointers (symbolP);
2869
2870 symbol_set_frag (symbolP, frag);
2871
2872 /* Link to end of symbol chain. */
2873 {
2874 extern int symbol_table_frozen;
2875
2876 if (symbol_table_frozen)
2877 abort ();
2878 }
2879
2880 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2881
2882 obj_symbol_new_hook (symbolP);
2883
2884 #ifdef tc_symbol_new_hook
2885 tc_symbol_new_hook (symbolP);
2886 #endif
2887
2888 #ifdef DEBUG_SYMS
2889 verify_symbol_chain (symbol_rootP, symbol_lastP);
2890 #endif /* DEBUG_SYMS */
2891 }
2892
2893
2894 static void
2895 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2896 {
2897 unsigned int entry;
2898 literal_pool * pool;
2899 char sym_name[20];
2900
2901 pool = find_literal_pool ();
2902 if (pool == NULL
2903 || pool->symbol == NULL
2904 || pool->next_free_entry == 0)
2905 return;
2906
2907 mapping_state (MAP_DATA);
2908
2909 /* Align pool as you have word accesses.
2910 Only make a frag if we have to. */
2911 if (!need_pass_2)
2912 frag_align (2, 0, 0);
2913
2914 record_alignment (now_seg, 2);
2915
2916 sprintf (sym_name, "$$lit_\002%x", pool->id);
2917
2918 symbol_locate (pool->symbol, sym_name, now_seg,
2919 (valueT) frag_now_fix (), frag_now);
2920 symbol_table_insert (pool->symbol);
2921
2922 ARM_SET_THUMB (pool->symbol, thumb_mode);
2923
2924 #if defined OBJ_COFF || defined OBJ_ELF
2925 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2926 #endif
2927
2928 for (entry = 0; entry < pool->next_free_entry; entry ++)
2929 /* First output the expression in the instruction to the pool. */
2930 emit_expr (&(pool->literals[entry]), 4); /* .word */
2931
2932 /* Mark the pool as empty. */
2933 pool->next_free_entry = 0;
2934 pool->symbol = NULL;
2935 }
2936
2937 #ifdef OBJ_ELF
2938 /* Forward declarations for functions below, in the MD interface
2939 section. */
2940 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2941 static valueT create_unwind_entry (int);
2942 static void start_unwind_section (const segT, int);
2943 static void add_unwind_opcode (valueT, int);
2944 static void flush_pending_unwind (void);
2945
2946 /* Directives: Data. */
2947
2948 static void
2949 s_arm_elf_cons (int nbytes)
2950 {
2951 expressionS exp;
2952
2953 #ifdef md_flush_pending_output
2954 md_flush_pending_output ();
2955 #endif
2956
2957 if (is_it_end_of_statement ())
2958 {
2959 demand_empty_rest_of_line ();
2960 return;
2961 }
2962
2963 #ifdef md_cons_align
2964 md_cons_align (nbytes);
2965 #endif
2966
2967 mapping_state (MAP_DATA);
2968 do
2969 {
2970 int reloc;
2971 char *base = input_line_pointer;
2972
2973 expression (& exp);
2974
2975 if (exp.X_op != O_symbol)
2976 emit_expr (&exp, (unsigned int) nbytes);
2977 else
2978 {
2979 char *before_reloc = input_line_pointer;
2980 reloc = parse_reloc (&input_line_pointer);
2981 if (reloc == -1)
2982 {
2983 as_bad (_("unrecognized relocation suffix"));
2984 ignore_rest_of_line ();
2985 return;
2986 }
2987 else if (reloc == BFD_RELOC_UNUSED)
2988 emit_expr (&exp, (unsigned int) nbytes);
2989 else
2990 {
2991 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2992 int size = bfd_get_reloc_size (howto);
2993
2994 if (reloc == BFD_RELOC_ARM_PLT32)
2995 {
2996 as_bad (_("(plt) is only valid on branch targets"));
2997 reloc = BFD_RELOC_UNUSED;
2998 size = 0;
2999 }
3000
3001 if (size > nbytes)
3002 as_bad (_("%s relocations do not fit in %d bytes"),
3003 howto->name, nbytes);
3004 else
3005 {
3006 /* We've parsed an expression stopping at O_symbol.
3007 But there may be more expression left now that we
3008 have parsed the relocation marker. Parse it again.
3009 XXX Surely there is a cleaner way to do this. */
3010 char *p = input_line_pointer;
3011 int offset;
3012 char *save_buf = alloca (input_line_pointer - base);
3013 memcpy (save_buf, base, input_line_pointer - base);
3014 memmove (base + (input_line_pointer - before_reloc),
3015 base, before_reloc - base);
3016
3017 input_line_pointer = base + (input_line_pointer-before_reloc);
3018 expression (&exp);
3019 memcpy (base, save_buf, p - base);
3020
3021 offset = nbytes - size;
3022 p = frag_more ((int) nbytes);
3023 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3024 size, &exp, 0, reloc);
3025 }
3026 }
3027 }
3028 }
3029 while (*input_line_pointer++ == ',');
3030
3031 /* Put terminator back into stream. */
3032 input_line_pointer --;
3033 demand_empty_rest_of_line ();
3034 }
3035
3036
3037 /* Parse a .rel31 directive. */
3038
3039 static void
3040 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3041 {
3042 expressionS exp;
3043 char *p;
3044 valueT highbit;
3045
3046 highbit = 0;
3047 if (*input_line_pointer == '1')
3048 highbit = 0x80000000;
3049 else if (*input_line_pointer != '0')
3050 as_bad (_("expected 0 or 1"));
3051
3052 input_line_pointer++;
3053 if (*input_line_pointer != ',')
3054 as_bad (_("missing comma"));
3055 input_line_pointer++;
3056
3057 #ifdef md_flush_pending_output
3058 md_flush_pending_output ();
3059 #endif
3060
3061 #ifdef md_cons_align
3062 md_cons_align (4);
3063 #endif
3064
3065 mapping_state (MAP_DATA);
3066
3067 expression (&exp);
3068
3069 p = frag_more (4);
3070 md_number_to_chars (p, highbit, 4);
3071 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3072 BFD_RELOC_ARM_PREL31);
3073
3074 demand_empty_rest_of_line ();
3075 }
3076
3077 /* Directives: AEABI stack-unwind tables. */
3078
3079 /* Parse an unwind_fnstart directive. Simply records the current location. */
3080
3081 static void
3082 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3083 {
3084 demand_empty_rest_of_line ();
3085 /* Mark the start of the function. */
3086 unwind.proc_start = expr_build_dot ();
3087
3088 /* Reset the rest of the unwind info. */
3089 unwind.opcode_count = 0;
3090 unwind.table_entry = NULL;
3091 unwind.personality_routine = NULL;
3092 unwind.personality_index = -1;
3093 unwind.frame_size = 0;
3094 unwind.fp_offset = 0;
3095 unwind.fp_reg = 13;
3096 unwind.fp_used = 0;
3097 unwind.sp_restored = 0;
3098 }
3099
3100
3101 /* Parse a handlerdata directive. Creates the exception handling table entry
3102 for the function. */
3103
3104 static void
3105 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3106 {
3107 demand_empty_rest_of_line ();
3108 if (unwind.table_entry)
3109 as_bad (_("duplicate .handlerdata directive"));
3110
3111 create_unwind_entry (1);
3112 }
3113
3114 /* Parse an unwind_fnend directive. Generates the index table entry. */
3115
3116 static void
3117 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3118 {
3119 long where;
3120 char *ptr;
3121 valueT val;
3122
3123 demand_empty_rest_of_line ();
3124
3125 /* Add eh table entry. */
3126 if (unwind.table_entry == NULL)
3127 val = create_unwind_entry (0);
3128 else
3129 val = 0;
3130
3131 /* Add index table entry. This is two words. */
3132 start_unwind_section (unwind.saved_seg, 1);
3133 frag_align (2, 0, 0);
3134 record_alignment (now_seg, 2);
3135
3136 ptr = frag_more (8);
3137 where = frag_now_fix () - 8;
3138
3139 /* Self relative offset of the function start. */
3140 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3141 BFD_RELOC_ARM_PREL31);
3142
3143 /* Indicate dependency on EHABI-defined personality routines to the
3144 linker, if it hasn't been done already. */
3145 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3146 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3147 {
3148 static const char *const name[] =
3149 {
3150 "__aeabi_unwind_cpp_pr0",
3151 "__aeabi_unwind_cpp_pr1",
3152 "__aeabi_unwind_cpp_pr2"
3153 };
3154 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3155 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3156 marked_pr_dependency |= 1 << unwind.personality_index;
3157 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3158 = marked_pr_dependency;
3159 }
3160
3161 if (val)
3162 /* Inline exception table entry. */
3163 md_number_to_chars (ptr + 4, val, 4);
3164 else
3165 /* Self relative offset of the table entry. */
3166 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3167 BFD_RELOC_ARM_PREL31);
3168
3169 /* Restore the original section. */
3170 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3171 }
3172
3173
3174 /* Parse an unwind_cantunwind directive. */
3175
3176 static void
3177 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3178 {
3179 demand_empty_rest_of_line ();
3180 if (unwind.personality_routine || unwind.personality_index != -1)
3181 as_bad (_("personality routine specified for cantunwind frame"));
3182
3183 unwind.personality_index = -2;
3184 }
3185
3186
3187 /* Parse a personalityindex directive. */
3188
3189 static void
3190 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3191 {
3192 expressionS exp;
3193
3194 if (unwind.personality_routine || unwind.personality_index != -1)
3195 as_bad (_("duplicate .personalityindex directive"));
3196
3197 expression (&exp);
3198
3199 if (exp.X_op != O_constant
3200 || exp.X_add_number < 0 || exp.X_add_number > 15)
3201 {
3202 as_bad (_("bad personality routine number"));
3203 ignore_rest_of_line ();
3204 return;
3205 }
3206
3207 unwind.personality_index = exp.X_add_number;
3208
3209 demand_empty_rest_of_line ();
3210 }
3211
3212
3213 /* Parse a personality directive. */
3214
3215 static void
3216 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3217 {
3218 char *name, *p, c;
3219
3220 if (unwind.personality_routine || unwind.personality_index != -1)
3221 as_bad (_("duplicate .personality directive"));
3222
3223 name = input_line_pointer;
3224 c = get_symbol_end ();
3225 p = input_line_pointer;
3226 unwind.personality_routine = symbol_find_or_make (name);
3227 *p = c;
3228 demand_empty_rest_of_line ();
3229 }
3230
3231
3232 /* Parse a directive saving core registers. */
3233
3234 static void
3235 s_arm_unwind_save_core (void)
3236 {
3237 valueT op;
3238 long range;
3239 int n;
3240
3241 range = parse_reg_list (&input_line_pointer);
3242 if (range == FAIL)
3243 {
3244 as_bad (_("expected register list"));
3245 ignore_rest_of_line ();
3246 return;
3247 }
3248
3249 demand_empty_rest_of_line ();
3250
3251 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3252 into .unwind_save {..., sp...}. We aren't bothered about the value of
3253 ip because it is clobbered by calls. */
3254 if (unwind.sp_restored && unwind.fp_reg == 12
3255 && (range & 0x3000) == 0x1000)
3256 {
3257 unwind.opcode_count--;
3258 unwind.sp_restored = 0;
3259 range = (range | 0x2000) & ~0x1000;
3260 unwind.pending_offset = 0;
3261 }
3262
3263 /* Pop r4-r15. */
3264 if (range & 0xfff0)
3265 {
3266 /* See if we can use the short opcodes. These pop a block of up to 8
3267 registers starting with r4, plus maybe r14. */
3268 for (n = 0; n < 8; n++)
3269 {
3270 /* Break at the first non-saved register. */
3271 if ((range & (1 << (n + 4))) == 0)
3272 break;
3273 }
3274 /* See if there are any other bits set. */
3275 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3276 {
3277 /* Use the long form. */
3278 op = 0x8000 | ((range >> 4) & 0xfff);
3279 add_unwind_opcode (op, 2);
3280 }
3281 else
3282 {
3283 /* Use the short form. */
3284 if (range & 0x4000)
3285 op = 0xa8; /* Pop r14. */
3286 else
3287 op = 0xa0; /* Do not pop r14. */
3288 op |= (n - 1);
3289 add_unwind_opcode (op, 1);
3290 }
3291 }
3292
3293 /* Pop r0-r3. */
3294 if (range & 0xf)
3295 {
3296 op = 0xb100 | (range & 0xf);
3297 add_unwind_opcode (op, 2);
3298 }
3299
3300 /* Record the number of bytes pushed. */
3301 for (n = 0; n < 16; n++)
3302 {
3303 if (range & (1 << n))
3304 unwind.frame_size += 4;
3305 }
3306 }
3307
3308
3309 /* Parse a directive saving FPA registers. */
3310
3311 static void
3312 s_arm_unwind_save_fpa (int reg)
3313 {
3314 expressionS exp;
3315 int num_regs;
3316 valueT op;
3317
3318 /* Get Number of registers to transfer. */
3319 if (skip_past_comma (&input_line_pointer) != FAIL)
3320 expression (&exp);
3321 else
3322 exp.X_op = O_illegal;
3323
3324 if (exp.X_op != O_constant)
3325 {
3326 as_bad (_("expected , <constant>"));
3327 ignore_rest_of_line ();
3328 return;
3329 }
3330
3331 num_regs = exp.X_add_number;
3332
3333 if (num_regs < 1 || num_regs > 4)
3334 {
3335 as_bad (_("number of registers must be in the range [1:4]"));
3336 ignore_rest_of_line ();
3337 return;
3338 }
3339
3340 demand_empty_rest_of_line ();
3341
3342 if (reg == 4)
3343 {
3344 /* Short form. */
3345 op = 0xb4 | (num_regs - 1);
3346 add_unwind_opcode (op, 1);
3347 }
3348 else
3349 {
3350 /* Long form. */
3351 op = 0xc800 | (reg << 4) | (num_regs - 1);
3352 add_unwind_opcode (op, 2);
3353 }
3354 unwind.frame_size += num_regs * 12;
3355 }
3356
3357
3358 /* Parse a directive saving VFP registers for ARMv6 and above. */
3359
3360 static void
3361 s_arm_unwind_save_vfp_armv6 (void)
3362 {
3363 int count;
3364 unsigned int start;
3365 valueT op;
3366 int num_vfpv3_regs = 0;
3367 int num_regs_below_16;
3368
3369 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3370 if (count == FAIL)
3371 {
3372 as_bad (_("expected register list"));
3373 ignore_rest_of_line ();
3374 return;
3375 }
3376
3377 demand_empty_rest_of_line ();
3378
3379 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3380 than FSTMX/FLDMX-style ones). */
3381
3382 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3383 if (start >= 16)
3384 num_vfpv3_regs = count;
3385 else if (start + count > 16)
3386 num_vfpv3_regs = start + count - 16;
3387
3388 if (num_vfpv3_regs > 0)
3389 {
3390 int start_offset = start > 16 ? start - 16 : 0;
3391 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3392 add_unwind_opcode (op, 2);
3393 }
3394
3395 /* Generate opcode for registers numbered in the range 0 .. 15. */
3396 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3397 assert (num_regs_below_16 + num_vfpv3_regs == count);
3398 if (num_regs_below_16 > 0)
3399 {
3400 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3401 add_unwind_opcode (op, 2);
3402 }
3403
3404 unwind.frame_size += count * 8;
3405 }
3406
3407
3408 /* Parse a directive saving VFP registers for pre-ARMv6. */
3409
3410 static void
3411 s_arm_unwind_save_vfp (void)
3412 {
3413 int count;
3414 unsigned int reg;
3415 valueT op;
3416
3417 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3418 if (count == FAIL)
3419 {
3420 as_bad (_("expected register list"));
3421 ignore_rest_of_line ();
3422 return;
3423 }
3424
3425 demand_empty_rest_of_line ();
3426
3427 if (reg == 8)
3428 {
3429 /* Short form. */
3430 op = 0xb8 | (count - 1);
3431 add_unwind_opcode (op, 1);
3432 }
3433 else
3434 {
3435 /* Long form. */
3436 op = 0xb300 | (reg << 4) | (count - 1);
3437 add_unwind_opcode (op, 2);
3438 }
3439 unwind.frame_size += count * 8 + 4;
3440 }
3441
3442
3443 /* Parse a directive saving iWMMXt data registers. */
3444
3445 static void
3446 s_arm_unwind_save_mmxwr (void)
3447 {
3448 int reg;
3449 int hi_reg;
3450 int i;
3451 unsigned mask = 0;
3452 valueT op;
3453
3454 if (*input_line_pointer == '{')
3455 input_line_pointer++;
3456
3457 do
3458 {
3459 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3460
3461 if (reg == FAIL)
3462 {
3463 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3464 goto error;
3465 }
3466
3467 if (mask >> reg)
3468 as_tsktsk (_("register list not in ascending order"));
3469 mask |= 1 << reg;
3470
3471 if (*input_line_pointer == '-')
3472 {
3473 input_line_pointer++;
3474 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3475 if (hi_reg == FAIL)
3476 {
3477 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3478 goto error;
3479 }
3480 else if (reg >= hi_reg)
3481 {
3482 as_bad (_("bad register range"));
3483 goto error;
3484 }
3485 for (; reg < hi_reg; reg++)
3486 mask |= 1 << reg;
3487 }
3488 }
3489 while (skip_past_comma (&input_line_pointer) != FAIL);
3490
3491 if (*input_line_pointer == '}')
3492 input_line_pointer++;
3493
3494 demand_empty_rest_of_line ();
3495
3496 /* Generate any deferred opcodes because we're going to be looking at
3497 the list. */
3498 flush_pending_unwind ();
3499
3500 for (i = 0; i < 16; i++)
3501 {
3502 if (mask & (1 << i))
3503 unwind.frame_size += 8;
3504 }
3505
3506 /* Attempt to combine with a previous opcode. We do this because gcc
3507 likes to output separate unwind directives for a single block of
3508 registers. */
3509 if (unwind.opcode_count > 0)
3510 {
3511 i = unwind.opcodes[unwind.opcode_count - 1];
3512 if ((i & 0xf8) == 0xc0)
3513 {
3514 i &= 7;
3515 /* Only merge if the blocks are contiguous. */
3516 if (i < 6)
3517 {
3518 if ((mask & 0xfe00) == (1 << 9))
3519 {
3520 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3521 unwind.opcode_count--;
3522 }
3523 }
3524 else if (i == 6 && unwind.opcode_count >= 2)
3525 {
3526 i = unwind.opcodes[unwind.opcode_count - 2];
3527 reg = i >> 4;
3528 i &= 0xf;
3529
3530 op = 0xffff << (reg - 1);
3531 if (reg > 0
3532 && ((mask & op) == (1u << (reg - 1))))
3533 {
3534 op = (1 << (reg + i + 1)) - 1;
3535 op &= ~((1 << reg) - 1);
3536 mask |= op;
3537 unwind.opcode_count -= 2;
3538 }
3539 }
3540 }
3541 }
3542
3543 hi_reg = 15;
3544 /* We want to generate opcodes in the order the registers have been
3545 saved, ie. descending order. */
3546 for (reg = 15; reg >= -1; reg--)
3547 {
3548 /* Save registers in blocks. */
3549 if (reg < 0
3550 || !(mask & (1 << reg)))
3551 {
3552 /* We found an unsaved reg. Generate opcodes to save the
3553 preceding block. */
3554 if (reg != hi_reg)
3555 {
3556 if (reg == 9)
3557 {
3558 /* Short form. */
3559 op = 0xc0 | (hi_reg - 10);
3560 add_unwind_opcode (op, 1);
3561 }
3562 else
3563 {
3564 /* Long form. */
3565 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3566 add_unwind_opcode (op, 2);
3567 }
3568 }
3569 hi_reg = reg - 1;
3570 }
3571 }
3572
3573 return;
3574 error:
3575 ignore_rest_of_line ();
3576 }
3577
3578 static void
3579 s_arm_unwind_save_mmxwcg (void)
3580 {
3581 int reg;
3582 int hi_reg;
3583 unsigned mask = 0;
3584 valueT op;
3585
3586 if (*input_line_pointer == '{')
3587 input_line_pointer++;
3588
3589 do
3590 {
3591 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3592
3593 if (reg == FAIL)
3594 {
3595 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3596 goto error;
3597 }
3598
3599 reg -= 8;
3600 if (mask >> reg)
3601 as_tsktsk (_("register list not in ascending order"));
3602 mask |= 1 << reg;
3603
3604 if (*input_line_pointer == '-')
3605 {
3606 input_line_pointer++;
3607 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3608 if (hi_reg == FAIL)
3609 {
3610 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3611 goto error;
3612 }
3613 else if (reg >= hi_reg)
3614 {
3615 as_bad (_("bad register range"));
3616 goto error;
3617 }
3618 for (; reg < hi_reg; reg++)
3619 mask |= 1 << reg;
3620 }
3621 }
3622 while (skip_past_comma (&input_line_pointer) != FAIL);
3623
3624 if (*input_line_pointer == '}')
3625 input_line_pointer++;
3626
3627 demand_empty_rest_of_line ();
3628
3629 /* Generate any deferred opcodes because we're going to be looking at
3630 the list. */
3631 flush_pending_unwind ();
3632
3633 for (reg = 0; reg < 16; reg++)
3634 {
3635 if (mask & (1 << reg))
3636 unwind.frame_size += 4;
3637 }
3638 op = 0xc700 | mask;
3639 add_unwind_opcode (op, 2);
3640 return;
3641 error:
3642 ignore_rest_of_line ();
3643 }
3644
3645
3646 /* Parse an unwind_save directive.
3647 If the argument is non-zero, this is a .vsave directive. */
3648
3649 static void
3650 s_arm_unwind_save (int arch_v6)
3651 {
3652 char *peek;
3653 struct reg_entry *reg;
3654 bfd_boolean had_brace = FALSE;
3655
3656 /* Figure out what sort of save we have. */
3657 peek = input_line_pointer;
3658
3659 if (*peek == '{')
3660 {
3661 had_brace = TRUE;
3662 peek++;
3663 }
3664
3665 reg = arm_reg_parse_multi (&peek);
3666
3667 if (!reg)
3668 {
3669 as_bad (_("register expected"));
3670 ignore_rest_of_line ();
3671 return;
3672 }
3673
3674 switch (reg->type)
3675 {
3676 case REG_TYPE_FN:
3677 if (had_brace)
3678 {
3679 as_bad (_("FPA .unwind_save does not take a register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683 input_line_pointer = peek;
3684 s_arm_unwind_save_fpa (reg->number);
3685 return;
3686
3687 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3688 case REG_TYPE_VFD:
3689 if (arch_v6)
3690 s_arm_unwind_save_vfp_armv6 ();
3691 else
3692 s_arm_unwind_save_vfp ();
3693 return;
3694 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3695 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3696
3697 default:
3698 as_bad (_(".unwind_save does not support this kind of register"));
3699 ignore_rest_of_line ();
3700 }
3701 }
3702
3703
3704 /* Parse an unwind_movsp directive. */
3705
3706 static void
3707 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3708 {
3709 int reg;
3710 valueT op;
3711 int offset;
3712
3713 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3714 if (reg == FAIL)
3715 {
3716 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
3717 ignore_rest_of_line ();
3718 return;
3719 }
3720
3721 /* Optional constant. */
3722 if (skip_past_comma (&input_line_pointer) != FAIL)
3723 {
3724 if (immediate_for_directive (&offset) == FAIL)
3725 return;
3726 }
3727 else
3728 offset = 0;
3729
3730 demand_empty_rest_of_line ();
3731
3732 if (reg == REG_SP || reg == REG_PC)
3733 {
3734 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3735 return;
3736 }
3737
3738 if (unwind.fp_reg != REG_SP)
3739 as_bad (_("unexpected .unwind_movsp directive"));
3740
3741 /* Generate opcode to restore the value. */
3742 op = 0x90 | reg;
3743 add_unwind_opcode (op, 1);
3744
3745 /* Record the information for later. */
3746 unwind.fp_reg = reg;
3747 unwind.fp_offset = unwind.frame_size - offset;
3748 unwind.sp_restored = 1;
3749 }
3750
3751 /* Parse an unwind_pad directive. */
3752
3753 static void
3754 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3755 {
3756 int offset;
3757
3758 if (immediate_for_directive (&offset) == FAIL)
3759 return;
3760
3761 if (offset & 3)
3762 {
3763 as_bad (_("stack increment must be multiple of 4"));
3764 ignore_rest_of_line ();
3765 return;
3766 }
3767
3768 /* Don't generate any opcodes, just record the details for later. */
3769 unwind.frame_size += offset;
3770 unwind.pending_offset += offset;
3771
3772 demand_empty_rest_of_line ();
3773 }
3774
3775 /* Parse an unwind_setfp directive. */
3776
3777 static void
3778 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3779 {
3780 int sp_reg;
3781 int fp_reg;
3782 int offset;
3783
3784 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3785 if (skip_past_comma (&input_line_pointer) == FAIL)
3786 sp_reg = FAIL;
3787 else
3788 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3789
3790 if (fp_reg == FAIL || sp_reg == FAIL)
3791 {
3792 as_bad (_("expected <reg>, <reg>"));
3793 ignore_rest_of_line ();
3794 return;
3795 }
3796
3797 /* Optional constant. */
3798 if (skip_past_comma (&input_line_pointer) != FAIL)
3799 {
3800 if (immediate_for_directive (&offset) == FAIL)
3801 return;
3802 }
3803 else
3804 offset = 0;
3805
3806 demand_empty_rest_of_line ();
3807
3808 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3809 {
3810 as_bad (_("register must be either sp or set by a previous"
3811 "unwind_movsp directive"));
3812 return;
3813 }
3814
3815 /* Don't generate any opcodes, just record the information for later. */
3816 unwind.fp_reg = fp_reg;
3817 unwind.fp_used = 1;
3818 if (sp_reg == 13)
3819 unwind.fp_offset = unwind.frame_size - offset;
3820 else
3821 unwind.fp_offset -= offset;
3822 }
3823
3824 /* Parse an unwind_raw directive. */
3825
3826 static void
3827 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3828 {
3829 expressionS exp;
3830 /* This is an arbitrary limit. */
3831 unsigned char op[16];
3832 int count;
3833
3834 expression (&exp);
3835 if (exp.X_op == O_constant
3836 && skip_past_comma (&input_line_pointer) != FAIL)
3837 {
3838 unwind.frame_size += exp.X_add_number;
3839 expression (&exp);
3840 }
3841 else
3842 exp.X_op = O_illegal;
3843
3844 if (exp.X_op != O_constant)
3845 {
3846 as_bad (_("expected <offset>, <opcode>"));
3847 ignore_rest_of_line ();
3848 return;
3849 }
3850
3851 count = 0;
3852
3853 /* Parse the opcode. */
3854 for (;;)
3855 {
3856 if (count >= 16)
3857 {
3858 as_bad (_("unwind opcode too long"));
3859 ignore_rest_of_line ();
3860 }
3861 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3862 {
3863 as_bad (_("invalid unwind opcode"));
3864 ignore_rest_of_line ();
3865 return;
3866 }
3867 op[count++] = exp.X_add_number;
3868
3869 /* Parse the next byte. */
3870 if (skip_past_comma (&input_line_pointer) == FAIL)
3871 break;
3872
3873 expression (&exp);
3874 }
3875
3876 /* Add the opcode bytes in reverse order. */
3877 while (count--)
3878 add_unwind_opcode (op[count], 1);
3879
3880 demand_empty_rest_of_line ();
3881 }
3882
3883
3884 /* Parse a .eabi_attribute directive. */
3885
3886 static void
3887 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3888 {
3889 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3890
3891 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3892 attributes_set_explicitly[tag] = 1;
3893 }
3894 #endif /* OBJ_ELF */
3895
3896 static void s_arm_arch (int);
3897 static void s_arm_object_arch (int);
3898 static void s_arm_cpu (int);
3899 static void s_arm_fpu (int);
3900
3901 #ifdef TE_PE
3902
3903 static void
3904 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3905 {
3906 expressionS exp;
3907
3908 do
3909 {
3910 expression (&exp);
3911 if (exp.X_op == O_symbol)
3912 exp.X_op = O_secrel;
3913
3914 emit_expr (&exp, 4);
3915 }
3916 while (*input_line_pointer++ == ',');
3917
3918 input_line_pointer--;
3919 demand_empty_rest_of_line ();
3920 }
3921 #endif /* TE_PE */
3922
3923 /* This table describes all the machine specific pseudo-ops the assembler
3924 has to support. The fields are:
3925 pseudo-op name without dot
3926 function to call to execute this pseudo-op
3927 Integer arg to pass to the function. */
3928
3929 const pseudo_typeS md_pseudo_table[] =
3930 {
3931 /* Never called because '.req' does not start a line. */
3932 { "req", s_req, 0 },
3933 /* Following two are likewise never called. */
3934 { "dn", s_dn, 0 },
3935 { "qn", s_qn, 0 },
3936 { "unreq", s_unreq, 0 },
3937 { "bss", s_bss, 0 },
3938 { "align", s_align, 0 },
3939 { "arm", s_arm, 0 },
3940 { "thumb", s_thumb, 0 },
3941 { "code", s_code, 0 },
3942 { "force_thumb", s_force_thumb, 0 },
3943 { "thumb_func", s_thumb_func, 0 },
3944 { "thumb_set", s_thumb_set, 0 },
3945 { "even", s_even, 0 },
3946 { "ltorg", s_ltorg, 0 },
3947 { "pool", s_ltorg, 0 },
3948 { "syntax", s_syntax, 0 },
3949 { "cpu", s_arm_cpu, 0 },
3950 { "arch", s_arm_arch, 0 },
3951 { "object_arch", s_arm_object_arch, 0 },
3952 { "fpu", s_arm_fpu, 0 },
3953 #ifdef OBJ_ELF
3954 { "word", s_arm_elf_cons, 4 },
3955 { "long", s_arm_elf_cons, 4 },
3956 { "rel31", s_arm_rel31, 0 },
3957 { "fnstart", s_arm_unwind_fnstart, 0 },
3958 { "fnend", s_arm_unwind_fnend, 0 },
3959 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3960 { "personality", s_arm_unwind_personality, 0 },
3961 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3962 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3963 { "save", s_arm_unwind_save, 0 },
3964 { "vsave", s_arm_unwind_save, 1 },
3965 { "movsp", s_arm_unwind_movsp, 0 },
3966 { "pad", s_arm_unwind_pad, 0 },
3967 { "setfp", s_arm_unwind_setfp, 0 },
3968 { "unwind_raw", s_arm_unwind_raw, 0 },
3969 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3970 #else
3971 { "word", cons, 4},
3972
3973 /* These are used for dwarf. */
3974 {"2byte", cons, 2},
3975 {"4byte", cons, 4},
3976 {"8byte", cons, 8},
3977 /* These are used for dwarf2. */
3978 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3979 { "loc", dwarf2_directive_loc, 0 },
3980 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3981 #endif
3982 { "extend", float_cons, 'x' },
3983 { "ldouble", float_cons, 'x' },
3984 { "packed", float_cons, 'p' },
3985 #ifdef TE_PE
3986 {"secrel32", pe_directive_secrel, 0},
3987 #endif
3988 { 0, 0, 0 }
3989 };
3990 \f
3991 /* Parser functions used exclusively in instruction operands. */
3992
3993 /* Generic immediate-value read function for use in insn parsing.
3994 STR points to the beginning of the immediate (the leading #);
3995 VAL receives the value; if the value is outside [MIN, MAX]
3996 issue an error. PREFIX_OPT is true if the immediate prefix is
3997 optional. */
3998
3999 static int
4000 parse_immediate (char **str, int *val, int min, int max,
4001 bfd_boolean prefix_opt)
4002 {
4003 expressionS exp;
4004 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4005 if (exp.X_op != O_constant)
4006 {
4007 inst.error = _("constant expression required");
4008 return FAIL;
4009 }
4010
4011 if (exp.X_add_number < min || exp.X_add_number > max)
4012 {
4013 inst.error = _("immediate value out of range");
4014 return FAIL;
4015 }
4016
4017 *val = exp.X_add_number;
4018 return SUCCESS;
4019 }
4020
4021 /* Less-generic immediate-value read function with the possibility of loading a
4022 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4023 instructions. Puts the result directly in inst.operands[i]. */
4024
4025 static int
4026 parse_big_immediate (char **str, int i)
4027 {
4028 expressionS exp;
4029 char *ptr = *str;
4030
4031 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4032
4033 if (exp.X_op == O_constant)
4034 {
4035 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4036 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4037 O_constant. We have to be careful not to break compilation for
4038 32-bit X_add_number, though. */
4039 if ((exp.X_add_number & ~0xffffffffl) != 0)
4040 {
4041 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4042 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4043 inst.operands[i].regisimm = 1;
4044 }
4045 }
4046 else if (exp.X_op == O_big
4047 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4048 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4049 {
4050 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4051 /* Bignums have their least significant bits in
4052 generic_bignum[0]. Make sure we put 32 bits in imm and
4053 32 bits in reg, in a (hopefully) portable way. */
4054 assert (parts != 0);
4055 inst.operands[i].imm = 0;
4056 for (j = 0; j < parts; j++, idx++)
4057 inst.operands[i].imm |= generic_bignum[idx]
4058 << (LITTLENUM_NUMBER_OF_BITS * j);
4059 inst.operands[i].reg = 0;
4060 for (j = 0; j < parts; j++, idx++)
4061 inst.operands[i].reg |= generic_bignum[idx]
4062 << (LITTLENUM_NUMBER_OF_BITS * j);
4063 inst.operands[i].regisimm = 1;
4064 }
4065 else
4066 return FAIL;
4067
4068 *str = ptr;
4069
4070 return SUCCESS;
4071 }
4072
4073 /* Returns the pseudo-register number of an FPA immediate constant,
4074 or FAIL if there isn't a valid constant here. */
4075
4076 static int
4077 parse_fpa_immediate (char ** str)
4078 {
4079 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4080 char * save_in;
4081 expressionS exp;
4082 int i;
4083 int j;
4084
4085 /* First try and match exact strings, this is to guarantee
4086 that some formats will work even for cross assembly. */
4087
4088 for (i = 0; fp_const[i]; i++)
4089 {
4090 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4091 {
4092 char *start = *str;
4093
4094 *str += strlen (fp_const[i]);
4095 if (is_end_of_line[(unsigned char) **str])
4096 return i + 8;
4097 *str = start;
4098 }
4099 }
4100
4101 /* Just because we didn't get a match doesn't mean that the constant
4102 isn't valid, just that it is in a format that we don't
4103 automatically recognize. Try parsing it with the standard
4104 expression routines. */
4105
4106 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4107
4108 /* Look for a raw floating point number. */
4109 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4110 && is_end_of_line[(unsigned char) *save_in])
4111 {
4112 for (i = 0; i < NUM_FLOAT_VALS; i++)
4113 {
4114 for (j = 0; j < MAX_LITTLENUMS; j++)
4115 {
4116 if (words[j] != fp_values[i][j])
4117 break;
4118 }
4119
4120 if (j == MAX_LITTLENUMS)
4121 {
4122 *str = save_in;
4123 return i + 8;
4124 }
4125 }
4126 }
4127
4128 /* Try and parse a more complex expression, this will probably fail
4129 unless the code uses a floating point prefix (eg "0f"). */
4130 save_in = input_line_pointer;
4131 input_line_pointer = *str;
4132 if (expression (&exp) == absolute_section
4133 && exp.X_op == O_big
4134 && exp.X_add_number < 0)
4135 {
4136 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4137 Ditto for 15. */
4138 if (gen_to_words (words, 5, (long) 15) == 0)
4139 {
4140 for (i = 0; i < NUM_FLOAT_VALS; i++)
4141 {
4142 for (j = 0; j < MAX_LITTLENUMS; j++)
4143 {
4144 if (words[j] != fp_values[i][j])
4145 break;
4146 }
4147
4148 if (j == MAX_LITTLENUMS)
4149 {
4150 *str = input_line_pointer;
4151 input_line_pointer = save_in;
4152 return i + 8;
4153 }
4154 }
4155 }
4156 }
4157
4158 *str = input_line_pointer;
4159 input_line_pointer = save_in;
4160 inst.error = _("invalid FPA immediate expression");
4161 return FAIL;
4162 }
4163
4164 /* Returns 1 if a number has "quarter-precision" float format
4165 0baBbbbbbc defgh000 00000000 00000000. */
4166
4167 static int
4168 is_quarter_float (unsigned imm)
4169 {
4170 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4171 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4172 }
4173
4174 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4175 0baBbbbbbc defgh000 00000000 00000000.
4176 The zero and minus-zero cases need special handling, since they can't be
4177 encoded in the "quarter-precision" float format, but can nonetheless be
4178 loaded as integer constants. */
4179
4180 static unsigned
4181 parse_qfloat_immediate (char **ccp, int *immed)
4182 {
4183 char *str = *ccp;
4184 char *fpnum;
4185 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4186 int found_fpchar = 0;
4187
4188 skip_past_char (&str, '#');
4189
4190 /* We must not accidentally parse an integer as a floating-point number. Make
4191 sure that the value we parse is not an integer by checking for special
4192 characters '.' or 'e'.
4193 FIXME: This is a horrible hack, but doing better is tricky because type
4194 information isn't in a very usable state at parse time. */
4195 fpnum = str;
4196 skip_whitespace (fpnum);
4197
4198 if (strncmp (fpnum, "0x", 2) == 0)
4199 return FAIL;
4200 else
4201 {
4202 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4203 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4204 {
4205 found_fpchar = 1;
4206 break;
4207 }
4208
4209 if (!found_fpchar)
4210 return FAIL;
4211 }
4212
4213 if ((str = atof_ieee (str, 's', words)) != NULL)
4214 {
4215 unsigned fpword = 0;
4216 int i;
4217
4218 /* Our FP word must be 32 bits (single-precision FP). */
4219 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4220 {
4221 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4222 fpword |= words[i];
4223 }
4224
4225 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4226 *immed = fpword;
4227 else
4228 return FAIL;
4229
4230 *ccp = str;
4231
4232 return SUCCESS;
4233 }
4234
4235 return FAIL;
4236 }
4237
4238 /* Shift operands. */
4239 enum shift_kind
4240 {
4241 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4242 };
4243
4244 struct asm_shift_name
4245 {
4246 const char *name;
4247 enum shift_kind kind;
4248 };
4249
4250 /* Third argument to parse_shift. */
4251 enum parse_shift_mode
4252 {
4253 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4254 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4255 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4256 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4257 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4258 };
4259
4260 /* Parse a <shift> specifier on an ARM data processing instruction.
4261 This has three forms:
4262
4263 (LSL|LSR|ASL|ASR|ROR) Rs
4264 (LSL|LSR|ASL|ASR|ROR) #imm
4265 RRX
4266
4267 Note that ASL is assimilated to LSL in the instruction encoding, and
4268 RRX to ROR #0 (which cannot be written as such). */
4269
4270 static int
4271 parse_shift (char **str, int i, enum parse_shift_mode mode)
4272 {
4273 const struct asm_shift_name *shift_name;
4274 enum shift_kind shift;
4275 char *s = *str;
4276 char *p = s;
4277 int reg;
4278
4279 for (p = *str; ISALPHA (*p); p++)
4280 ;
4281
4282 if (p == *str)
4283 {
4284 inst.error = _("shift expression expected");
4285 return FAIL;
4286 }
4287
4288 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4289
4290 if (shift_name == NULL)
4291 {
4292 inst.error = _("shift expression expected");
4293 return FAIL;
4294 }
4295
4296 shift = shift_name->kind;
4297
4298 switch (mode)
4299 {
4300 case NO_SHIFT_RESTRICT:
4301 case SHIFT_IMMEDIATE: break;
4302
4303 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4304 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4305 {
4306 inst.error = _("'LSL' or 'ASR' required");
4307 return FAIL;
4308 }
4309 break;
4310
4311 case SHIFT_LSL_IMMEDIATE:
4312 if (shift != SHIFT_LSL)
4313 {
4314 inst.error = _("'LSL' required");
4315 return FAIL;
4316 }
4317 break;
4318
4319 case SHIFT_ASR_IMMEDIATE:
4320 if (shift != SHIFT_ASR)
4321 {
4322 inst.error = _("'ASR' required");
4323 return FAIL;
4324 }
4325 break;
4326
4327 default: abort ();
4328 }
4329
4330 if (shift != SHIFT_RRX)
4331 {
4332 /* Whitespace can appear here if the next thing is a bare digit. */
4333 skip_whitespace (p);
4334
4335 if (mode == NO_SHIFT_RESTRICT
4336 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4337 {
4338 inst.operands[i].imm = reg;
4339 inst.operands[i].immisreg = 1;
4340 }
4341 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4342 return FAIL;
4343 }
4344 inst.operands[i].shift_kind = shift;
4345 inst.operands[i].shifted = 1;
4346 *str = p;
4347 return SUCCESS;
4348 }
4349
4350 /* Parse a <shifter_operand> for an ARM data processing instruction:
4351
4352 #<immediate>
4353 #<immediate>, <rotate>
4354 <Rm>
4355 <Rm>, <shift>
4356
4357 where <shift> is defined by parse_shift above, and <rotate> is a
4358 multiple of 2 between 0 and 30. Validation of immediate operands
4359 is deferred to md_apply_fix. */
4360
4361 static int
4362 parse_shifter_operand (char **str, int i)
4363 {
4364 int value;
4365 expressionS expr;
4366
4367 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4368 {
4369 inst.operands[i].reg = value;
4370 inst.operands[i].isreg = 1;
4371
4372 /* parse_shift will override this if appropriate */
4373 inst.reloc.exp.X_op = O_constant;
4374 inst.reloc.exp.X_add_number = 0;
4375
4376 if (skip_past_comma (str) == FAIL)
4377 return SUCCESS;
4378
4379 /* Shift operation on register. */
4380 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4381 }
4382
4383 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4384 return FAIL;
4385
4386 if (skip_past_comma (str) == SUCCESS)
4387 {
4388 /* #x, y -- ie explicit rotation by Y. */
4389 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4390 return FAIL;
4391
4392 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4393 {
4394 inst.error = _("constant expression expected");
4395 return FAIL;
4396 }
4397
4398 value = expr.X_add_number;
4399 if (value < 0 || value > 30 || value % 2 != 0)
4400 {
4401 inst.error = _("invalid rotation");
4402 return FAIL;
4403 }
4404 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4405 {
4406 inst.error = _("invalid constant");
4407 return FAIL;
4408 }
4409
4410 /* Convert to decoded value. md_apply_fix will put it back. */
4411 inst.reloc.exp.X_add_number
4412 = (((inst.reloc.exp.X_add_number << (32 - value))
4413 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4414 }
4415
4416 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4417 inst.reloc.pc_rel = 0;
4418 return SUCCESS;
4419 }
4420
4421 /* Group relocation information. Each entry in the table contains the
4422 textual name of the relocation as may appear in assembler source
4423 and must end with a colon.
4424 Along with this textual name are the relocation codes to be used if
4425 the corresponding instruction is an ALU instruction (ADD or SUB only),
4426 an LDR, an LDRS, or an LDC. */
4427
4428 struct group_reloc_table_entry
4429 {
4430 const char *name;
4431 int alu_code;
4432 int ldr_code;
4433 int ldrs_code;
4434 int ldc_code;
4435 };
4436
4437 typedef enum
4438 {
4439 /* Varieties of non-ALU group relocation. */
4440
4441 GROUP_LDR,
4442 GROUP_LDRS,
4443 GROUP_LDC
4444 } group_reloc_type;
4445
4446 static struct group_reloc_table_entry group_reloc_table[] =
4447 { /* Program counter relative: */
4448 { "pc_g0_nc",
4449 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4450 0, /* LDR */
4451 0, /* LDRS */
4452 0 }, /* LDC */
4453 { "pc_g0",
4454 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4455 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4456 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4457 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4458 { "pc_g1_nc",
4459 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4460 0, /* LDR */
4461 0, /* LDRS */
4462 0 }, /* LDC */
4463 { "pc_g1",
4464 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4465 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4466 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4467 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4468 { "pc_g2",
4469 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4473 /* Section base relative */
4474 { "sb_g0_nc",
4475 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4476 0, /* LDR */
4477 0, /* LDRS */
4478 0 }, /* LDC */
4479 { "sb_g0",
4480 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4481 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4482 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4483 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4484 { "sb_g1_nc",
4485 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4486 0, /* LDR */
4487 0, /* LDRS */
4488 0 }, /* LDC */
4489 { "sb_g1",
4490 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4491 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4492 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4493 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4494 { "sb_g2",
4495 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4499
4500 /* Given the address of a pointer pointing to the textual name of a group
4501 relocation as may appear in assembler source, attempt to find its details
4502 in group_reloc_table. The pointer will be updated to the character after
4503 the trailing colon. On failure, FAIL will be returned; SUCCESS
4504 otherwise. On success, *entry will be updated to point at the relevant
4505 group_reloc_table entry. */
4506
4507 static int
4508 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4509 {
4510 unsigned int i;
4511 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4512 {
4513 int length = strlen (group_reloc_table[i].name);
4514
4515 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4516 && (*str)[length] == ':')
4517 {
4518 *out = &group_reloc_table[i];
4519 *str += (length + 1);
4520 return SUCCESS;
4521 }
4522 }
4523
4524 return FAIL;
4525 }
4526
4527 /* Parse a <shifter_operand> for an ARM data processing instruction
4528 (as for parse_shifter_operand) where group relocations are allowed:
4529
4530 #<immediate>
4531 #<immediate>, <rotate>
4532 #:<group_reloc>:<expression>
4533 <Rm>
4534 <Rm>, <shift>
4535
4536 where <group_reloc> is one of the strings defined in group_reloc_table.
4537 The hashes are optional.
4538
4539 Everything else is as for parse_shifter_operand. */
4540
4541 static parse_operand_result
4542 parse_shifter_operand_group_reloc (char **str, int i)
4543 {
4544 /* Determine if we have the sequence of characters #: or just :
4545 coming next. If we do, then we check for a group relocation.
4546 If we don't, punt the whole lot to parse_shifter_operand. */
4547
4548 if (((*str)[0] == '#' && (*str)[1] == ':')
4549 || (*str)[0] == ':')
4550 {
4551 struct group_reloc_table_entry *entry;
4552
4553 if ((*str)[0] == '#')
4554 (*str) += 2;
4555 else
4556 (*str)++;
4557
4558 /* Try to parse a group relocation. Anything else is an error. */
4559 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4560 {
4561 inst.error = _("unknown group relocation");
4562 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4563 }
4564
4565 /* We now have the group relocation table entry corresponding to
4566 the name in the assembler source. Next, we parse the expression. */
4567 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4568 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4569
4570 /* Record the relocation type (always the ALU variant here). */
4571 inst.reloc.type = entry->alu_code;
4572 assert (inst.reloc.type != 0);
4573
4574 return PARSE_OPERAND_SUCCESS;
4575 }
4576 else
4577 return parse_shifter_operand (str, i) == SUCCESS
4578 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4579
4580 /* Never reached. */
4581 }
4582
4583 /* Parse all forms of an ARM address expression. Information is written
4584 to inst.operands[i] and/or inst.reloc.
4585
4586 Preindexed addressing (.preind=1):
4587
4588 [Rn, #offset] .reg=Rn .reloc.exp=offset
4589 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4590 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4591 .shift_kind=shift .reloc.exp=shift_imm
4592
4593 These three may have a trailing ! which causes .writeback to be set also.
4594
4595 Postindexed addressing (.postind=1, .writeback=1):
4596
4597 [Rn], #offset .reg=Rn .reloc.exp=offset
4598 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4599 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4600 .shift_kind=shift .reloc.exp=shift_imm
4601
4602 Unindexed addressing (.preind=0, .postind=0):
4603
4604 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4605
4606 Other:
4607
4608 [Rn]{!} shorthand for [Rn,#0]{!}
4609 =immediate .isreg=0 .reloc.exp=immediate
4610 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4611
4612 It is the caller's responsibility to check for addressing modes not
4613 supported by the instruction, and to set inst.reloc.type. */
4614
4615 static parse_operand_result
4616 parse_address_main (char **str, int i, int group_relocations,
4617 group_reloc_type group_type)
4618 {
4619 char *p = *str;
4620 int reg;
4621
4622 if (skip_past_char (&p, '[') == FAIL)
4623 {
4624 if (skip_past_char (&p, '=') == FAIL)
4625 {
4626 /* bare address - translate to PC-relative offset */
4627 inst.reloc.pc_rel = 1;
4628 inst.operands[i].reg = REG_PC;
4629 inst.operands[i].isreg = 1;
4630 inst.operands[i].preind = 1;
4631 }
4632 /* else a load-constant pseudo op, no special treatment needed here */
4633
4634 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4635 return PARSE_OPERAND_FAIL;
4636
4637 *str = p;
4638 return PARSE_OPERAND_SUCCESS;
4639 }
4640
4641 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4642 {
4643 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4644 return PARSE_OPERAND_FAIL;
4645 }
4646 inst.operands[i].reg = reg;
4647 inst.operands[i].isreg = 1;
4648
4649 if (skip_past_comma (&p) == SUCCESS)
4650 {
4651 inst.operands[i].preind = 1;
4652
4653 if (*p == '+') p++;
4654 else if (*p == '-') p++, inst.operands[i].negative = 1;
4655
4656 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4657 {
4658 inst.operands[i].imm = reg;
4659 inst.operands[i].immisreg = 1;
4660
4661 if (skip_past_comma (&p) == SUCCESS)
4662 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4663 return PARSE_OPERAND_FAIL;
4664 }
4665 else if (skip_past_char (&p, ':') == SUCCESS)
4666 {
4667 /* FIXME: '@' should be used here, but it's filtered out by generic
4668 code before we get to see it here. This may be subject to
4669 change. */
4670 expressionS exp;
4671 my_get_expression (&exp, &p, GE_NO_PREFIX);
4672 if (exp.X_op != O_constant)
4673 {
4674 inst.error = _("alignment must be constant");
4675 return PARSE_OPERAND_FAIL;
4676 }
4677 inst.operands[i].imm = exp.X_add_number << 8;
4678 inst.operands[i].immisalign = 1;
4679 /* Alignments are not pre-indexes. */
4680 inst.operands[i].preind = 0;
4681 }
4682 else
4683 {
4684 if (inst.operands[i].negative)
4685 {
4686 inst.operands[i].negative = 0;
4687 p--;
4688 }
4689
4690 if (group_relocations
4691 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4692 {
4693 struct group_reloc_table_entry *entry;
4694
4695 /* Skip over the #: or : sequence. */
4696 if (*p == '#')
4697 p += 2;
4698 else
4699 p++;
4700
4701 /* Try to parse a group relocation. Anything else is an
4702 error. */
4703 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4704 {
4705 inst.error = _("unknown group relocation");
4706 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4707 }
4708
4709 /* We now have the group relocation table entry corresponding to
4710 the name in the assembler source. Next, we parse the
4711 expression. */
4712 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4713 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714
4715 /* Record the relocation type. */
4716 switch (group_type)
4717 {
4718 case GROUP_LDR:
4719 inst.reloc.type = entry->ldr_code;
4720 break;
4721
4722 case GROUP_LDRS:
4723 inst.reloc.type = entry->ldrs_code;
4724 break;
4725
4726 case GROUP_LDC:
4727 inst.reloc.type = entry->ldc_code;
4728 break;
4729
4730 default:
4731 assert (0);
4732 }
4733
4734 if (inst.reloc.type == 0)
4735 {
4736 inst.error = _("this group relocation is not allowed on this instruction");
4737 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4738 }
4739 }
4740 else
4741 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4742 return PARSE_OPERAND_FAIL;
4743 }
4744 }
4745
4746 if (skip_past_char (&p, ']') == FAIL)
4747 {
4748 inst.error = _("']' expected");
4749 return PARSE_OPERAND_FAIL;
4750 }
4751
4752 if (skip_past_char (&p, '!') == SUCCESS)
4753 inst.operands[i].writeback = 1;
4754
4755 else if (skip_past_comma (&p) == SUCCESS)
4756 {
4757 if (skip_past_char (&p, '{') == SUCCESS)
4758 {
4759 /* [Rn], {expr} - unindexed, with option */
4760 if (parse_immediate (&p, &inst.operands[i].imm,
4761 0, 255, TRUE) == FAIL)
4762 return PARSE_OPERAND_FAIL;
4763
4764 if (skip_past_char (&p, '}') == FAIL)
4765 {
4766 inst.error = _("'}' expected at end of 'option' field");
4767 return PARSE_OPERAND_FAIL;
4768 }
4769 if (inst.operands[i].preind)
4770 {
4771 inst.error = _("cannot combine index with option");
4772 return PARSE_OPERAND_FAIL;
4773 }
4774 *str = p;
4775 return PARSE_OPERAND_SUCCESS;
4776 }
4777 else
4778 {
4779 inst.operands[i].postind = 1;
4780 inst.operands[i].writeback = 1;
4781
4782 if (inst.operands[i].preind)
4783 {
4784 inst.error = _("cannot combine pre- and post-indexing");
4785 return PARSE_OPERAND_FAIL;
4786 }
4787
4788 if (*p == '+') p++;
4789 else if (*p == '-') p++, inst.operands[i].negative = 1;
4790
4791 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4792 {
4793 /* We might be using the immediate for alignment already. If we
4794 are, OR the register number into the low-order bits. */
4795 if (inst.operands[i].immisalign)
4796 inst.operands[i].imm |= reg;
4797 else
4798 inst.operands[i].imm = reg;
4799 inst.operands[i].immisreg = 1;
4800
4801 if (skip_past_comma (&p) == SUCCESS)
4802 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4803 return PARSE_OPERAND_FAIL;
4804 }
4805 else
4806 {
4807 if (inst.operands[i].negative)
4808 {
4809 inst.operands[i].negative = 0;
4810 p--;
4811 }
4812 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4813 return PARSE_OPERAND_FAIL;
4814 }
4815 }
4816 }
4817
4818 /* If at this point neither .preind nor .postind is set, we have a
4819 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4820 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4821 {
4822 inst.operands[i].preind = 1;
4823 inst.reloc.exp.X_op = O_constant;
4824 inst.reloc.exp.X_add_number = 0;
4825 }
4826 *str = p;
4827 return PARSE_OPERAND_SUCCESS;
4828 }
4829
4830 static int
4831 parse_address (char **str, int i)
4832 {
4833 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4834 ? SUCCESS : FAIL;
4835 }
4836
4837 static parse_operand_result
4838 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4839 {
4840 return parse_address_main (str, i, 1, type);
4841 }
4842
4843 /* Parse an operand for a MOVW or MOVT instruction. */
4844 static int
4845 parse_half (char **str)
4846 {
4847 char * p;
4848
4849 p = *str;
4850 skip_past_char (&p, '#');
4851 if (strncasecmp (p, ":lower16:", 9) == 0)
4852 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4853 else if (strncasecmp (p, ":upper16:", 9) == 0)
4854 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4855
4856 if (inst.reloc.type != BFD_RELOC_UNUSED)
4857 {
4858 p += 9;
4859 skip_whitespace (p);
4860 }
4861
4862 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4863 return FAIL;
4864
4865 if (inst.reloc.type == BFD_RELOC_UNUSED)
4866 {
4867 if (inst.reloc.exp.X_op != O_constant)
4868 {
4869 inst.error = _("constant expression expected");
4870 return FAIL;
4871 }
4872 if (inst.reloc.exp.X_add_number < 0
4873 || inst.reloc.exp.X_add_number > 0xffff)
4874 {
4875 inst.error = _("immediate value out of range");
4876 return FAIL;
4877 }
4878 }
4879 *str = p;
4880 return SUCCESS;
4881 }
4882
4883 /* Miscellaneous. */
4884
4885 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4886 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4887 static int
4888 parse_psr (char **str)
4889 {
4890 char *p;
4891 unsigned long psr_field;
4892 const struct asm_psr *psr;
4893 char *start;
4894
4895 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4896 feature for ease of use and backwards compatibility. */
4897 p = *str;
4898 if (strncasecmp (p, "SPSR", 4) == 0)
4899 psr_field = SPSR_BIT;
4900 else if (strncasecmp (p, "CPSR", 4) == 0)
4901 psr_field = 0;
4902 else
4903 {
4904 start = p;
4905 do
4906 p++;
4907 while (ISALNUM (*p) || *p == '_');
4908
4909 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4910 if (!psr)
4911 return FAIL;
4912
4913 *str = p;
4914 return psr->field;
4915 }
4916
4917 p += 4;
4918 if (*p == '_')
4919 {
4920 /* A suffix follows. */
4921 p++;
4922 start = p;
4923
4924 do
4925 p++;
4926 while (ISALNUM (*p) || *p == '_');
4927
4928 psr = hash_find_n (arm_psr_hsh, start, p - start);
4929 if (!psr)
4930 goto error;
4931
4932 psr_field |= psr->field;
4933 }
4934 else
4935 {
4936 if (ISALNUM (*p))
4937 goto error; /* Garbage after "[CS]PSR". */
4938
4939 psr_field |= (PSR_c | PSR_f);
4940 }
4941 *str = p;
4942 return psr_field;
4943
4944 error:
4945 inst.error = _("flag for {c}psr instruction expected");
4946 return FAIL;
4947 }
4948
4949 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4950 value suitable for splatting into the AIF field of the instruction. */
4951
4952 static int
4953 parse_cps_flags (char **str)
4954 {
4955 int val = 0;
4956 int saw_a_flag = 0;
4957 char *s = *str;
4958
4959 for (;;)
4960 switch (*s++)
4961 {
4962 case '\0': case ',':
4963 goto done;
4964
4965 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4966 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4967 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4968
4969 default:
4970 inst.error = _("unrecognized CPS flag");
4971 return FAIL;
4972 }
4973
4974 done:
4975 if (saw_a_flag == 0)
4976 {
4977 inst.error = _("missing CPS flags");
4978 return FAIL;
4979 }
4980
4981 *str = s - 1;
4982 return val;
4983 }
4984
4985 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4986 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4987
4988 static int
4989 parse_endian_specifier (char **str)
4990 {
4991 int little_endian;
4992 char *s = *str;
4993
4994 if (strncasecmp (s, "BE", 2))
4995 little_endian = 0;
4996 else if (strncasecmp (s, "LE", 2))
4997 little_endian = 1;
4998 else
4999 {
5000 inst.error = _("valid endian specifiers are be or le");
5001 return FAIL;
5002 }
5003
5004 if (ISALNUM (s[2]) || s[2] == '_')
5005 {
5006 inst.error = _("valid endian specifiers are be or le");
5007 return FAIL;
5008 }
5009
5010 *str = s + 2;
5011 return little_endian;
5012 }
5013
5014 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5015 value suitable for poking into the rotate field of an sxt or sxta
5016 instruction, or FAIL on error. */
5017
5018 static int
5019 parse_ror (char **str)
5020 {
5021 int rot;
5022 char *s = *str;
5023
5024 if (strncasecmp (s, "ROR", 3) == 0)
5025 s += 3;
5026 else
5027 {
5028 inst.error = _("missing rotation field after comma");
5029 return FAIL;
5030 }
5031
5032 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5033 return FAIL;
5034
5035 switch (rot)
5036 {
5037 case 0: *str = s; return 0x0;
5038 case 8: *str = s; return 0x1;
5039 case 16: *str = s; return 0x2;
5040 case 24: *str = s; return 0x3;
5041
5042 default:
5043 inst.error = _("rotation can only be 0, 8, 16, or 24");
5044 return FAIL;
5045 }
5046 }
5047
5048 /* Parse a conditional code (from conds[] below). The value returned is in the
5049 range 0 .. 14, or FAIL. */
5050 static int
5051 parse_cond (char **str)
5052 {
5053 char *q;
5054 const struct asm_cond *c;
5055 int n;
5056 /* Condition codes are always 2 characters, so matching up to
5057 3 characters is sufficient. */
5058 char cond[3];
5059
5060 q = *str;
5061 n = 0;
5062 while (ISALPHA (*q) && n < 3)
5063 {
5064 cond[n] = TOLOWER(*q);
5065 q++;
5066 n++;
5067 }
5068
5069 c = hash_find_n (arm_cond_hsh, cond, n);
5070 if (!c)
5071 {
5072 inst.error = _("condition required");
5073 return FAIL;
5074 }
5075
5076 *str = q;
5077 return c->value;
5078 }
5079
5080 /* Parse an option for a barrier instruction. Returns the encoding for the
5081 option, or FAIL. */
5082 static int
5083 parse_barrier (char **str)
5084 {
5085 char *p, *q;
5086 const struct asm_barrier_opt *o;
5087
5088 p = q = *str;
5089 while (ISALPHA (*q))
5090 q++;
5091
5092 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5093 if (!o)
5094 return FAIL;
5095
5096 *str = q;
5097 return o->value;
5098 }
5099
5100 /* Parse the operands of a table branch instruction. Similar to a memory
5101 operand. */
5102 static int
5103 parse_tb (char **str)
5104 {
5105 char * p = *str;
5106 int reg;
5107
5108 if (skip_past_char (&p, '[') == FAIL)
5109 {
5110 inst.error = _("'[' expected");
5111 return FAIL;
5112 }
5113
5114 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5115 {
5116 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5117 return FAIL;
5118 }
5119 inst.operands[0].reg = reg;
5120
5121 if (skip_past_comma (&p) == FAIL)
5122 {
5123 inst.error = _("',' expected");
5124 return FAIL;
5125 }
5126
5127 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5128 {
5129 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5130 return FAIL;
5131 }
5132 inst.operands[0].imm = reg;
5133
5134 if (skip_past_comma (&p) == SUCCESS)
5135 {
5136 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5137 return FAIL;
5138 if (inst.reloc.exp.X_add_number != 1)
5139 {
5140 inst.error = _("invalid shift");
5141 return FAIL;
5142 }
5143 inst.operands[0].shifted = 1;
5144 }
5145
5146 if (skip_past_char (&p, ']') == FAIL)
5147 {
5148 inst.error = _("']' expected");
5149 return FAIL;
5150 }
5151 *str = p;
5152 return SUCCESS;
5153 }
5154
5155 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5156 information on the types the operands can take and how they are encoded.
5157 Up to four operands may be read; this function handles setting the
5158 ".present" field for each read operand itself.
5159 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5160 else returns FAIL. */
5161
5162 static int
5163 parse_neon_mov (char **str, int *which_operand)
5164 {
5165 int i = *which_operand, val;
5166 enum arm_reg_type rtype;
5167 char *ptr = *str;
5168 struct neon_type_el optype;
5169
5170 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5171 {
5172 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isscalar = 1;
5175 inst.operands[i].vectype = optype;
5176 inst.operands[i++].present = 1;
5177
5178 if (skip_past_comma (&ptr) == FAIL)
5179 goto wanted_comma;
5180
5181 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5182 goto wanted_arm;
5183
5184 inst.operands[i].reg = val;
5185 inst.operands[i].isreg = 1;
5186 inst.operands[i].present = 1;
5187 }
5188 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5189 != FAIL)
5190 {
5191 /* Cases 0, 1, 2, 3, 5 (D only). */
5192 if (skip_past_comma (&ptr) == FAIL)
5193 goto wanted_comma;
5194
5195 inst.operands[i].reg = val;
5196 inst.operands[i].isreg = 1;
5197 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5198 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5199 inst.operands[i].isvec = 1;
5200 inst.operands[i].vectype = optype;
5201 inst.operands[i++].present = 1;
5202
5203 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5204 {
5205 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5206 Case 13: VMOV <Sd>, <Rm> */
5207 inst.operands[i].reg = val;
5208 inst.operands[i].isreg = 1;
5209 inst.operands[i].present = 1;
5210
5211 if (rtype == REG_TYPE_NQ)
5212 {
5213 first_error (_("can't use Neon quad register here"));
5214 return FAIL;
5215 }
5216 else if (rtype != REG_TYPE_VFS)
5217 {
5218 i++;
5219 if (skip_past_comma (&ptr) == FAIL)
5220 goto wanted_comma;
5221 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5222 goto wanted_arm;
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i].present = 1;
5226 }
5227 }
5228 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5229 &optype)) != FAIL)
5230 {
5231 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5232 Case 1: VMOV<c><q> <Dd>, <Dm>
5233 Case 8: VMOV.F32 <Sd>, <Sm>
5234 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5235
5236 inst.operands[i].reg = val;
5237 inst.operands[i].isreg = 1;
5238 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5239 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5240 inst.operands[i].isvec = 1;
5241 inst.operands[i].vectype = optype;
5242 inst.operands[i].present = 1;
5243
5244 if (skip_past_comma (&ptr) == SUCCESS)
5245 {
5246 /* Case 15. */
5247 i++;
5248
5249 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5250 goto wanted_arm;
5251
5252 inst.operands[i].reg = val;
5253 inst.operands[i].isreg = 1;
5254 inst.operands[i++].present = 1;
5255
5256 if (skip_past_comma (&ptr) == FAIL)
5257 goto wanted_comma;
5258
5259 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5260 goto wanted_arm;
5261
5262 inst.operands[i].reg = val;
5263 inst.operands[i].isreg = 1;
5264 inst.operands[i++].present = 1;
5265 }
5266 }
5267 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5268 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5269 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5270 Case 10: VMOV.F32 <Sd>, #<imm>
5271 Case 11: VMOV.F64 <Dd>, #<imm> */
5272 inst.operands[i].immisfloat = 1;
5273 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5274 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5275 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5276 ;
5277 else
5278 {
5279 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5280 return FAIL;
5281 }
5282 }
5283 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5284 {
5285 /* Cases 6, 7. */
5286 inst.operands[i].reg = val;
5287 inst.operands[i].isreg = 1;
5288 inst.operands[i++].present = 1;
5289
5290 if (skip_past_comma (&ptr) == FAIL)
5291 goto wanted_comma;
5292
5293 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5294 {
5295 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5296 inst.operands[i].reg = val;
5297 inst.operands[i].isscalar = 1;
5298 inst.operands[i].present = 1;
5299 inst.operands[i].vectype = optype;
5300 }
5301 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5302 {
5303 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5304 inst.operands[i].reg = val;
5305 inst.operands[i].isreg = 1;
5306 inst.operands[i++].present = 1;
5307
5308 if (skip_past_comma (&ptr) == FAIL)
5309 goto wanted_comma;
5310
5311 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5312 == FAIL)
5313 {
5314 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5315 return FAIL;
5316 }
5317
5318 inst.operands[i].reg = val;
5319 inst.operands[i].isreg = 1;
5320 inst.operands[i].isvec = 1;
5321 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5322 inst.operands[i].vectype = optype;
5323 inst.operands[i].present = 1;
5324
5325 if (rtype == REG_TYPE_VFS)
5326 {
5327 /* Case 14. */
5328 i++;
5329 if (skip_past_comma (&ptr) == FAIL)
5330 goto wanted_comma;
5331 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5332 &optype)) == FAIL)
5333 {
5334 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5335 return FAIL;
5336 }
5337 inst.operands[i].reg = val;
5338 inst.operands[i].isreg = 1;
5339 inst.operands[i].isvec = 1;
5340 inst.operands[i].issingle = 1;
5341 inst.operands[i].vectype = optype;
5342 inst.operands[i].present = 1;
5343 }
5344 }
5345 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5346 != FAIL)
5347 {
5348 /* Case 13. */
5349 inst.operands[i].reg = val;
5350 inst.operands[i].isreg = 1;
5351 inst.operands[i].isvec = 1;
5352 inst.operands[i].issingle = 1;
5353 inst.operands[i].vectype = optype;
5354 inst.operands[i++].present = 1;
5355 }
5356 }
5357 else
5358 {
5359 first_error (_("parse error"));
5360 return FAIL;
5361 }
5362
5363 /* Successfully parsed the operands. Update args. */
5364 *which_operand = i;
5365 *str = ptr;
5366 return SUCCESS;
5367
5368 wanted_comma:
5369 first_error (_("expected comma"));
5370 return FAIL;
5371
5372 wanted_arm:
5373 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5374 return FAIL;
5375 }
5376
5377 /* Matcher codes for parse_operands. */
5378 enum operand_parse_code
5379 {
5380 OP_stop, /* end of line */
5381
5382 OP_RR, /* ARM register */
5383 OP_RRnpc, /* ARM register, not r15 */
5384 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5385 OP_RRw, /* ARM register, not r15, optional trailing ! */
5386 OP_RCP, /* Coprocessor number */
5387 OP_RCN, /* Coprocessor register */
5388 OP_RF, /* FPA register */
5389 OP_RVS, /* VFP single precision register */
5390 OP_RVD, /* VFP double precision register (0..15) */
5391 OP_RND, /* Neon double precision register (0..31) */
5392 OP_RNQ, /* Neon quad precision register */
5393 OP_RVSD, /* VFP single or double precision register */
5394 OP_RNDQ, /* Neon double or quad precision register */
5395 OP_RNSDQ, /* Neon single, double or quad precision register */
5396 OP_RNSC, /* Neon scalar D[X] */
5397 OP_RVC, /* VFP control register */
5398 OP_RMF, /* Maverick F register */
5399 OP_RMD, /* Maverick D register */
5400 OP_RMFX, /* Maverick FX register */
5401 OP_RMDX, /* Maverick DX register */
5402 OP_RMAX, /* Maverick AX register */
5403 OP_RMDS, /* Maverick DSPSC register */
5404 OP_RIWR, /* iWMMXt wR register */
5405 OP_RIWC, /* iWMMXt wC register */
5406 OP_RIWG, /* iWMMXt wCG register */
5407 OP_RXA, /* XScale accumulator register */
5408
5409 OP_REGLST, /* ARM register list */
5410 OP_VRSLST, /* VFP single-precision register list */
5411 OP_VRDLST, /* VFP double-precision register list */
5412 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5413 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5414 OP_NSTRLST, /* Neon element/structure list */
5415
5416 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5417 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5418 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5419 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5420 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5421 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5422 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5423 OP_VMOV, /* Neon VMOV operands. */
5424 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5425 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5426 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5427
5428 OP_I0, /* immediate zero */
5429 OP_I7, /* immediate value 0 .. 7 */
5430 OP_I15, /* 0 .. 15 */
5431 OP_I16, /* 1 .. 16 */
5432 OP_I16z, /* 0 .. 16 */
5433 OP_I31, /* 0 .. 31 */
5434 OP_I31w, /* 0 .. 31, optional trailing ! */
5435 OP_I32, /* 1 .. 32 */
5436 OP_I32z, /* 0 .. 32 */
5437 OP_I63, /* 0 .. 63 */
5438 OP_I63s, /* -64 .. 63 */
5439 OP_I64, /* 1 .. 64 */
5440 OP_I64z, /* 0 .. 64 */
5441 OP_I255, /* 0 .. 255 */
5442
5443 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5444 OP_I7b, /* 0 .. 7 */
5445 OP_I15b, /* 0 .. 15 */
5446 OP_I31b, /* 0 .. 31 */
5447
5448 OP_SH, /* shifter operand */
5449 OP_SHG, /* shifter operand with possible group relocation */
5450 OP_ADDR, /* Memory address expression (any mode) */
5451 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5452 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5453 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5454 OP_EXP, /* arbitrary expression */
5455 OP_EXPi, /* same, with optional immediate prefix */
5456 OP_EXPr, /* same, with optional relocation suffix */
5457 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5458
5459 OP_CPSF, /* CPS flags */
5460 OP_ENDI, /* Endianness specifier */
5461 OP_PSR, /* CPSR/SPSR mask for msr */
5462 OP_COND, /* conditional code */
5463 OP_TB, /* Table branch. */
5464
5465 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5466 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5467
5468 OP_RRnpc_I0, /* ARM register or literal 0 */
5469 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5470 OP_RR_EXi, /* ARM register or expression with imm prefix */
5471 OP_RF_IF, /* FPA register or immediate */
5472 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5473 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5474
5475 /* Optional operands. */
5476 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5477 OP_oI31b, /* 0 .. 31 */
5478 OP_oI32b, /* 1 .. 32 */
5479 OP_oIffffb, /* 0 .. 65535 */
5480 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5481
5482 OP_oRR, /* ARM register */
5483 OP_oRRnpc, /* ARM register, not the PC */
5484 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5485 OP_oRND, /* Optional Neon double precision register */
5486 OP_oRNQ, /* Optional Neon quad precision register */
5487 OP_oRNDQ, /* Optional Neon double or quad precision register */
5488 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5489 OP_oSHll, /* LSL immediate */
5490 OP_oSHar, /* ASR immediate */
5491 OP_oSHllar, /* LSL or ASR immediate */
5492 OP_oROR, /* ROR 0/8/16/24 */
5493 OP_oBARRIER, /* Option argument for a barrier instruction. */
5494
5495 OP_FIRST_OPTIONAL = OP_oI7b
5496 };
5497
5498 /* Generic instruction operand parser. This does no encoding and no
5499 semantic validation; it merely squirrels values away in the inst
5500 structure. Returns SUCCESS or FAIL depending on whether the
5501 specified grammar matched. */
5502 static int
5503 parse_operands (char *str, const unsigned char *pattern)
5504 {
5505 unsigned const char *upat = pattern;
5506 char *backtrack_pos = 0;
5507 const char *backtrack_error = 0;
5508 int i, val, backtrack_index = 0;
5509 enum arm_reg_type rtype;
5510 parse_operand_result result;
5511
5512 #define po_char_or_fail(chr) do { \
5513 if (skip_past_char (&str, chr) == FAIL) \
5514 goto bad_args; \
5515 } while (0)
5516
5517 #define po_reg_or_fail(regtype) do { \
5518 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5519 &inst.operands[i].vectype); \
5520 if (val == FAIL) \
5521 { \
5522 first_error (_(reg_expected_msgs[regtype])); \
5523 goto failure; \
5524 } \
5525 inst.operands[i].reg = val; \
5526 inst.operands[i].isreg = 1; \
5527 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5528 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5529 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5530 || rtype == REG_TYPE_VFD \
5531 || rtype == REG_TYPE_NQ); \
5532 } while (0)
5533
5534 #define po_reg_or_goto(regtype, label) do { \
5535 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5536 &inst.operands[i].vectype); \
5537 if (val == FAIL) \
5538 goto label; \
5539 \
5540 inst.operands[i].reg = val; \
5541 inst.operands[i].isreg = 1; \
5542 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5543 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5544 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5545 || rtype == REG_TYPE_VFD \
5546 || rtype == REG_TYPE_NQ); \
5547 } while (0)
5548
5549 #define po_imm_or_fail(min, max, popt) do { \
5550 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5551 goto failure; \
5552 inst.operands[i].imm = val; \
5553 } while (0)
5554
5555 #define po_scalar_or_goto(elsz, label) do { \
5556 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5557 if (val == FAIL) \
5558 goto label; \
5559 inst.operands[i].reg = val; \
5560 inst.operands[i].isscalar = 1; \
5561 } while (0)
5562
5563 #define po_misc_or_fail(expr) do { \
5564 if (expr) \
5565 goto failure; \
5566 } while (0)
5567
5568 #define po_misc_or_fail_no_backtrack(expr) do { \
5569 result = expr; \
5570 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5571 backtrack_pos = 0; \
5572 if (result != PARSE_OPERAND_SUCCESS) \
5573 goto failure; \
5574 } while (0)
5575
5576 skip_whitespace (str);
5577
5578 for (i = 0; upat[i] != OP_stop; i++)
5579 {
5580 if (upat[i] >= OP_FIRST_OPTIONAL)
5581 {
5582 /* Remember where we are in case we need to backtrack. */
5583 assert (!backtrack_pos);
5584 backtrack_pos = str;
5585 backtrack_error = inst.error;
5586 backtrack_index = i;
5587 }
5588
5589 if (i > 0 && (i > 1 || inst.operands[0].present))
5590 po_char_or_fail (',');
5591
5592 switch (upat[i])
5593 {
5594 /* Registers */
5595 case OP_oRRnpc:
5596 case OP_RRnpc:
5597 case OP_oRR:
5598 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5599 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5600 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5601 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5602 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5603 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5604 case OP_oRND:
5605 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5606 case OP_RVC:
5607 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5608 break;
5609 /* Also accept generic coprocessor regs for unknown registers. */
5610 coproc_reg:
5611 po_reg_or_fail (REG_TYPE_CN);
5612 break;
5613 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5614 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5615 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5616 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5617 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5618 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5619 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5620 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5621 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5622 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5623 case OP_oRNQ:
5624 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5625 case OP_oRNDQ:
5626 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5627 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5628 case OP_oRNSDQ:
5629 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5630
5631 /* Neon scalar. Using an element size of 8 means that some invalid
5632 scalars are accepted here, so deal with those in later code. */
5633 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5634
5635 /* WARNING: We can expand to two operands here. This has the potential
5636 to totally confuse the backtracking mechanism! It will be OK at
5637 least as long as we don't try to use optional args as well,
5638 though. */
5639 case OP_NILO:
5640 {
5641 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5642 inst.operands[i].present = 1;
5643 i++;
5644 skip_past_comma (&str);
5645 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5646 break;
5647 one_reg_only:
5648 /* Optional register operand was omitted. Unfortunately, it's in
5649 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5650 here (this is a bit grotty). */
5651 inst.operands[i] = inst.operands[i-1];
5652 inst.operands[i-1].present = 0;
5653 break;
5654 try_imm:
5655 /* There's a possibility of getting a 64-bit immediate here, so
5656 we need special handling. */
5657 if (parse_big_immediate (&str, i) == FAIL)
5658 {
5659 inst.error = _("immediate value is out of range");
5660 goto failure;
5661 }
5662 }
5663 break;
5664
5665 case OP_RNDQ_I0:
5666 {
5667 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5668 break;
5669 try_imm0:
5670 po_imm_or_fail (0, 0, TRUE);
5671 }
5672 break;
5673
5674 case OP_RVSD_I0:
5675 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5676 break;
5677
5678 case OP_RR_RNSC:
5679 {
5680 po_scalar_or_goto (8, try_rr);
5681 break;
5682 try_rr:
5683 po_reg_or_fail (REG_TYPE_RN);
5684 }
5685 break;
5686
5687 case OP_RNSDQ_RNSC:
5688 {
5689 po_scalar_or_goto (8, try_nsdq);
5690 break;
5691 try_nsdq:
5692 po_reg_or_fail (REG_TYPE_NSDQ);
5693 }
5694 break;
5695
5696 case OP_RNDQ_RNSC:
5697 {
5698 po_scalar_or_goto (8, try_ndq);
5699 break;
5700 try_ndq:
5701 po_reg_or_fail (REG_TYPE_NDQ);
5702 }
5703 break;
5704
5705 case OP_RND_RNSC:
5706 {
5707 po_scalar_or_goto (8, try_vfd);
5708 break;
5709 try_vfd:
5710 po_reg_or_fail (REG_TYPE_VFD);
5711 }
5712 break;
5713
5714 case OP_VMOV:
5715 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5716 not careful then bad things might happen. */
5717 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5718 break;
5719
5720 case OP_RNDQ_IMVNb:
5721 {
5722 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5723 break;
5724 try_mvnimm:
5725 /* There's a possibility of getting a 64-bit immediate here, so
5726 we need special handling. */
5727 if (parse_big_immediate (&str, i) == FAIL)
5728 {
5729 inst.error = _("immediate value is out of range");
5730 goto failure;
5731 }
5732 }
5733 break;
5734
5735 case OP_RNDQ_I63b:
5736 {
5737 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5738 break;
5739 try_shimm:
5740 po_imm_or_fail (0, 63, TRUE);
5741 }
5742 break;
5743
5744 case OP_RRnpcb:
5745 po_char_or_fail ('[');
5746 po_reg_or_fail (REG_TYPE_RN);
5747 po_char_or_fail (']');
5748 break;
5749
5750 case OP_RRw:
5751 case OP_oRRw:
5752 po_reg_or_fail (REG_TYPE_RN);
5753 if (skip_past_char (&str, '!') == SUCCESS)
5754 inst.operands[i].writeback = 1;
5755 break;
5756
5757 /* Immediates */
5758 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5759 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5760 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5761 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5762 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5763 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5764 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5765 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5766 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5767 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5768 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5769 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5770
5771 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5772 case OP_oI7b:
5773 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5774 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5775 case OP_oI31b:
5776 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5777 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5778 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5779
5780 /* Immediate variants */
5781 case OP_oI255c:
5782 po_char_or_fail ('{');
5783 po_imm_or_fail (0, 255, TRUE);
5784 po_char_or_fail ('}');
5785 break;
5786
5787 case OP_I31w:
5788 /* The expression parser chokes on a trailing !, so we have
5789 to find it first and zap it. */
5790 {
5791 char *s = str;
5792 while (*s && *s != ',')
5793 s++;
5794 if (s[-1] == '!')
5795 {
5796 s[-1] = '\0';
5797 inst.operands[i].writeback = 1;
5798 }
5799 po_imm_or_fail (0, 31, TRUE);
5800 if (str == s - 1)
5801 str = s;
5802 }
5803 break;
5804
5805 /* Expressions */
5806 case OP_EXPi: EXPi:
5807 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5808 GE_OPT_PREFIX));
5809 break;
5810
5811 case OP_EXP:
5812 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5813 GE_NO_PREFIX));
5814 break;
5815
5816 case OP_EXPr: EXPr:
5817 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5818 GE_NO_PREFIX));
5819 if (inst.reloc.exp.X_op == O_symbol)
5820 {
5821 val = parse_reloc (&str);
5822 if (val == -1)
5823 {
5824 inst.error = _("unrecognized relocation suffix");
5825 goto failure;
5826 }
5827 else if (val != BFD_RELOC_UNUSED)
5828 {
5829 inst.operands[i].imm = val;
5830 inst.operands[i].hasreloc = 1;
5831 }
5832 }
5833 break;
5834
5835 /* Operand for MOVW or MOVT. */
5836 case OP_HALF:
5837 po_misc_or_fail (parse_half (&str));
5838 break;
5839
5840 /* Register or expression */
5841 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5842 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5843
5844 /* Register or immediate */
5845 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5846 I0: po_imm_or_fail (0, 0, FALSE); break;
5847
5848 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5849 IF:
5850 if (!is_immediate_prefix (*str))
5851 goto bad_args;
5852 str++;
5853 val = parse_fpa_immediate (&str);
5854 if (val == FAIL)
5855 goto failure;
5856 /* FPA immediates are encoded as registers 8-15.
5857 parse_fpa_immediate has already applied the offset. */
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 break;
5861
5862 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5863 I32z: po_imm_or_fail (0, 32, FALSE); break;
5864
5865 /* Two kinds of register */
5866 case OP_RIWR_RIWC:
5867 {
5868 struct reg_entry *rege = arm_reg_parse_multi (&str);
5869 if (!rege
5870 || (rege->type != REG_TYPE_MMXWR
5871 && rege->type != REG_TYPE_MMXWC
5872 && rege->type != REG_TYPE_MMXWCG))
5873 {
5874 inst.error = _("iWMMXt data or control register expected");
5875 goto failure;
5876 }
5877 inst.operands[i].reg = rege->number;
5878 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5879 }
5880 break;
5881
5882 case OP_RIWC_RIWG:
5883 {
5884 struct reg_entry *rege = arm_reg_parse_multi (&str);
5885 if (!rege
5886 || (rege->type != REG_TYPE_MMXWC
5887 && rege->type != REG_TYPE_MMXWCG))
5888 {
5889 inst.error = _("iWMMXt control register expected");
5890 goto failure;
5891 }
5892 inst.operands[i].reg = rege->number;
5893 inst.operands[i].isreg = 1;
5894 }
5895 break;
5896
5897 /* Misc */
5898 case OP_CPSF: val = parse_cps_flags (&str); break;
5899 case OP_ENDI: val = parse_endian_specifier (&str); break;
5900 case OP_oROR: val = parse_ror (&str); break;
5901 case OP_PSR: val = parse_psr (&str); break;
5902 case OP_COND: val = parse_cond (&str); break;
5903 case OP_oBARRIER:val = parse_barrier (&str); break;
5904
5905 case OP_RVC_PSR:
5906 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5907 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5908 break;
5909 try_psr:
5910 val = parse_psr (&str);
5911 break;
5912
5913 case OP_APSR_RR:
5914 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5915 break;
5916 try_apsr:
5917 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5918 instruction). */
5919 if (strncasecmp (str, "APSR_", 5) == 0)
5920 {
5921 unsigned found = 0;
5922 str += 5;
5923 while (found < 15)
5924 switch (*str++)
5925 {
5926 case 'c': found = (found & 1) ? 16 : found | 1; break;
5927 case 'n': found = (found & 2) ? 16 : found | 2; break;
5928 case 'z': found = (found & 4) ? 16 : found | 4; break;
5929 case 'v': found = (found & 8) ? 16 : found | 8; break;
5930 default: found = 16;
5931 }
5932 if (found != 15)
5933 goto failure;
5934 inst.operands[i].isvec = 1;
5935 }
5936 else
5937 goto failure;
5938 break;
5939
5940 case OP_TB:
5941 po_misc_or_fail (parse_tb (&str));
5942 break;
5943
5944 /* Register lists */
5945 case OP_REGLST:
5946 val = parse_reg_list (&str);
5947 if (*str == '^')
5948 {
5949 inst.operands[1].writeback = 1;
5950 str++;
5951 }
5952 break;
5953
5954 case OP_VRSLST:
5955 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5956 break;
5957
5958 case OP_VRDLST:
5959 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5960 break;
5961
5962 case OP_VRSDLST:
5963 /* Allow Q registers too. */
5964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5965 REGLIST_NEON_D);
5966 if (val == FAIL)
5967 {
5968 inst.error = NULL;
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_VFP_S);
5971 inst.operands[i].issingle = 1;
5972 }
5973 break;
5974
5975 case OP_NRDLST:
5976 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5977 REGLIST_NEON_D);
5978 break;
5979
5980 case OP_NSTRLST:
5981 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5982 &inst.operands[i].vectype);
5983 break;
5984
5985 /* Addressing modes */
5986 case OP_ADDR:
5987 po_misc_or_fail (parse_address (&str, i));
5988 break;
5989
5990 case OP_ADDRGLDR:
5991 po_misc_or_fail_no_backtrack (
5992 parse_address_group_reloc (&str, i, GROUP_LDR));
5993 break;
5994
5995 case OP_ADDRGLDRS:
5996 po_misc_or_fail_no_backtrack (
5997 parse_address_group_reloc (&str, i, GROUP_LDRS));
5998 break;
5999
6000 case OP_ADDRGLDC:
6001 po_misc_or_fail_no_backtrack (
6002 parse_address_group_reloc (&str, i, GROUP_LDC));
6003 break;
6004
6005 case OP_SH:
6006 po_misc_or_fail (parse_shifter_operand (&str, i));
6007 break;
6008
6009 case OP_SHG:
6010 po_misc_or_fail_no_backtrack (
6011 parse_shifter_operand_group_reloc (&str, i));
6012 break;
6013
6014 case OP_oSHll:
6015 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6016 break;
6017
6018 case OP_oSHar:
6019 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6020 break;
6021
6022 case OP_oSHllar:
6023 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6024 break;
6025
6026 default:
6027 as_fatal (_("unhandled operand code %d"), upat[i]);
6028 }
6029
6030 /* Various value-based sanity checks and shared operations. We
6031 do not signal immediate failures for the register constraints;
6032 this allows a syntax error to take precedence. */
6033 switch (upat[i])
6034 {
6035 case OP_oRRnpc:
6036 case OP_RRnpc:
6037 case OP_RRnpcb:
6038 case OP_RRw:
6039 case OP_oRRw:
6040 case OP_RRnpc_I0:
6041 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6042 inst.error = BAD_PC;
6043 break;
6044
6045 case OP_CPSF:
6046 case OP_ENDI:
6047 case OP_oROR:
6048 case OP_PSR:
6049 case OP_RVC_PSR:
6050 case OP_COND:
6051 case OP_oBARRIER:
6052 case OP_REGLST:
6053 case OP_VRSLST:
6054 case OP_VRDLST:
6055 case OP_VRSDLST:
6056 case OP_NRDLST:
6057 case OP_NSTRLST:
6058 if (val == FAIL)
6059 goto failure;
6060 inst.operands[i].imm = val;
6061 break;
6062
6063 default:
6064 break;
6065 }
6066
6067 /* If we get here, this operand was successfully parsed. */
6068 inst.operands[i].present = 1;
6069 continue;
6070
6071 bad_args:
6072 inst.error = BAD_ARGS;
6073
6074 failure:
6075 if (!backtrack_pos)
6076 {
6077 /* The parse routine should already have set inst.error, but set a
6078 default here just in case. */
6079 if (!inst.error)
6080 inst.error = _("syntax error");
6081 return FAIL;
6082 }
6083
6084 /* Do not backtrack over a trailing optional argument that
6085 absorbed some text. We will only fail again, with the
6086 'garbage following instruction' error message, which is
6087 probably less helpful than the current one. */
6088 if (backtrack_index == i && backtrack_pos != str
6089 && upat[i+1] == OP_stop)
6090 {
6091 if (!inst.error)
6092 inst.error = _("syntax error");
6093 return FAIL;
6094 }
6095
6096 /* Try again, skipping the optional argument at backtrack_pos. */
6097 str = backtrack_pos;
6098 inst.error = backtrack_error;
6099 inst.operands[backtrack_index].present = 0;
6100 i = backtrack_index;
6101 backtrack_pos = 0;
6102 }
6103
6104 /* Check that we have parsed all the arguments. */
6105 if (*str != '\0' && !inst.error)
6106 inst.error = _("garbage following instruction");
6107
6108 return inst.error ? FAIL : SUCCESS;
6109 }
6110
6111 #undef po_char_or_fail
6112 #undef po_reg_or_fail
6113 #undef po_reg_or_goto
6114 #undef po_imm_or_fail
6115 #undef po_scalar_or_fail
6116 \f
6117 /* Shorthand macro for instruction encoding functions issuing errors. */
6118 #define constraint(expr, err) do { \
6119 if (expr) \
6120 { \
6121 inst.error = err; \
6122 return; \
6123 } \
6124 } while (0)
6125
6126 /* Functions for operand encoding. ARM, then Thumb. */
6127
6128 #define rotate_left(v, n) (v << n | v >> (32 - n))
6129
6130 /* If VAL can be encoded in the immediate field of an ARM instruction,
6131 return the encoded form. Otherwise, return FAIL. */
6132
6133 static unsigned int
6134 encode_arm_immediate (unsigned int val)
6135 {
6136 unsigned int a, i;
6137
6138 for (i = 0; i < 32; i += 2)
6139 if ((a = rotate_left (val, i)) <= 0xff)
6140 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6141
6142 return FAIL;
6143 }
6144
6145 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6146 return the encoded form. Otherwise, return FAIL. */
6147 static unsigned int
6148 encode_thumb32_immediate (unsigned int val)
6149 {
6150 unsigned int a, i;
6151
6152 if (val <= 0xff)
6153 return val;
6154
6155 for (i = 1; i <= 24; i++)
6156 {
6157 a = val >> i;
6158 if ((val & ~(0xff << i)) == 0)
6159 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6160 }
6161
6162 a = val & 0xff;
6163 if (val == ((a << 16) | a))
6164 return 0x100 | a;
6165 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6166 return 0x300 | a;
6167
6168 a = val & 0xff00;
6169 if (val == ((a << 16) | a))
6170 return 0x200 | (a >> 8);
6171
6172 return FAIL;
6173 }
6174 /* Encode a VFP SP or DP register number into inst.instruction. */
6175
6176 static void
6177 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6178 {
6179 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6180 && reg > 15)
6181 {
6182 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6183 {
6184 if (thumb_mode)
6185 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6186 fpu_vfp_ext_d32);
6187 else
6188 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6189 fpu_vfp_ext_d32);
6190 }
6191 else
6192 {
6193 first_error (_("D register out of range for selected VFP version"));
6194 return;
6195 }
6196 }
6197
6198 switch (pos)
6199 {
6200 case VFP_REG_Sd:
6201 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6202 break;
6203
6204 case VFP_REG_Sn:
6205 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6206 break;
6207
6208 case VFP_REG_Sm:
6209 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6210 break;
6211
6212 case VFP_REG_Dd:
6213 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6214 break;
6215
6216 case VFP_REG_Dn:
6217 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6218 break;
6219
6220 case VFP_REG_Dm:
6221 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6222 break;
6223
6224 default:
6225 abort ();
6226 }
6227 }
6228
6229 /* Encode a <shift> in an ARM-format instruction. The immediate,
6230 if any, is handled by md_apply_fix. */
6231 static void
6232 encode_arm_shift (int i)
6233 {
6234 if (inst.operands[i].shift_kind == SHIFT_RRX)
6235 inst.instruction |= SHIFT_ROR << 5;
6236 else
6237 {
6238 inst.instruction |= inst.operands[i].shift_kind << 5;
6239 if (inst.operands[i].immisreg)
6240 {
6241 inst.instruction |= SHIFT_BY_REG;
6242 inst.instruction |= inst.operands[i].imm << 8;
6243 }
6244 else
6245 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6246 }
6247 }
6248
6249 static void
6250 encode_arm_shifter_operand (int i)
6251 {
6252 if (inst.operands[i].isreg)
6253 {
6254 inst.instruction |= inst.operands[i].reg;
6255 encode_arm_shift (i);
6256 }
6257 else
6258 inst.instruction |= INST_IMMEDIATE;
6259 }
6260
6261 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6262 static void
6263 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6264 {
6265 assert (inst.operands[i].isreg);
6266 inst.instruction |= inst.operands[i].reg << 16;
6267
6268 if (inst.operands[i].preind)
6269 {
6270 if (is_t)
6271 {
6272 inst.error = _("instruction does not accept preindexed addressing");
6273 return;
6274 }
6275 inst.instruction |= PRE_INDEX;
6276 if (inst.operands[i].writeback)
6277 inst.instruction |= WRITE_BACK;
6278
6279 }
6280 else if (inst.operands[i].postind)
6281 {
6282 assert (inst.operands[i].writeback);
6283 if (is_t)
6284 inst.instruction |= WRITE_BACK;
6285 }
6286 else /* unindexed - only for coprocessor */
6287 {
6288 inst.error = _("instruction does not accept unindexed addressing");
6289 return;
6290 }
6291
6292 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6293 && (((inst.instruction & 0x000f0000) >> 16)
6294 == ((inst.instruction & 0x0000f000) >> 12)))
6295 as_warn ((inst.instruction & LOAD_BIT)
6296 ? _("destination register same as write-back base")
6297 : _("source register same as write-back base"));
6298 }
6299
6300 /* inst.operands[i] was set up by parse_address. Encode it into an
6301 ARM-format mode 2 load or store instruction. If is_t is true,
6302 reject forms that cannot be used with a T instruction (i.e. not
6303 post-indexed). */
6304 static void
6305 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6306 {
6307 encode_arm_addr_mode_common (i, is_t);
6308
6309 if (inst.operands[i].immisreg)
6310 {
6311 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6312 inst.instruction |= inst.operands[i].imm;
6313 if (!inst.operands[i].negative)
6314 inst.instruction |= INDEX_UP;
6315 if (inst.operands[i].shifted)
6316 {
6317 if (inst.operands[i].shift_kind == SHIFT_RRX)
6318 inst.instruction |= SHIFT_ROR << 5;
6319 else
6320 {
6321 inst.instruction |= inst.operands[i].shift_kind << 5;
6322 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6323 }
6324 }
6325 }
6326 else /* immediate offset in inst.reloc */
6327 {
6328 if (inst.reloc.type == BFD_RELOC_UNUSED)
6329 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6330 }
6331 }
6332
6333 /* inst.operands[i] was set up by parse_address. Encode it into an
6334 ARM-format mode 3 load or store instruction. Reject forms that
6335 cannot be used with such instructions. If is_t is true, reject
6336 forms that cannot be used with a T instruction (i.e. not
6337 post-indexed). */
6338 static void
6339 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6340 {
6341 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6342 {
6343 inst.error = _("instruction does not accept scaled register index");
6344 return;
6345 }
6346
6347 encode_arm_addr_mode_common (i, is_t);
6348
6349 if (inst.operands[i].immisreg)
6350 {
6351 inst.instruction |= inst.operands[i].imm;
6352 if (!inst.operands[i].negative)
6353 inst.instruction |= INDEX_UP;
6354 }
6355 else /* immediate offset in inst.reloc */
6356 {
6357 inst.instruction |= HWOFFSET_IMM;
6358 if (inst.reloc.type == BFD_RELOC_UNUSED)
6359 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6360 }
6361 }
6362
6363 /* inst.operands[i] was set up by parse_address. Encode it into an
6364 ARM-format instruction. Reject all forms which cannot be encoded
6365 into a coprocessor load/store instruction. If wb_ok is false,
6366 reject use of writeback; if unind_ok is false, reject use of
6367 unindexed addressing. If reloc_override is not 0, use it instead
6368 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6369 (in which case it is preserved). */
6370
6371 static int
6372 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6373 {
6374 inst.instruction |= inst.operands[i].reg << 16;
6375
6376 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6377
6378 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6379 {
6380 assert (!inst.operands[i].writeback);
6381 if (!unind_ok)
6382 {
6383 inst.error = _("instruction does not support unindexed addressing");
6384 return FAIL;
6385 }
6386 inst.instruction |= inst.operands[i].imm;
6387 inst.instruction |= INDEX_UP;
6388 return SUCCESS;
6389 }
6390
6391 if (inst.operands[i].preind)
6392 inst.instruction |= PRE_INDEX;
6393
6394 if (inst.operands[i].writeback)
6395 {
6396 if (inst.operands[i].reg == REG_PC)
6397 {
6398 inst.error = _("pc may not be used with write-back");
6399 return FAIL;
6400 }
6401 if (!wb_ok)
6402 {
6403 inst.error = _("instruction does not support writeback");
6404 return FAIL;
6405 }
6406 inst.instruction |= WRITE_BACK;
6407 }
6408
6409 if (reloc_override)
6410 inst.reloc.type = reloc_override;
6411 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6412 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6413 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6414 {
6415 if (thumb_mode)
6416 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6417 else
6418 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6419 }
6420
6421 return SUCCESS;
6422 }
6423
6424 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6425 Determine whether it can be performed with a move instruction; if
6426 it can, convert inst.instruction to that move instruction and
6427 return 1; if it can't, convert inst.instruction to a literal-pool
6428 load and return 0. If this is not a valid thing to do in the
6429 current context, set inst.error and return 1.
6430
6431 inst.operands[i] describes the destination register. */
6432
6433 static int
6434 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6435 {
6436 unsigned long tbit;
6437
6438 if (thumb_p)
6439 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6440 else
6441 tbit = LOAD_BIT;
6442
6443 if ((inst.instruction & tbit) == 0)
6444 {
6445 inst.error = _("invalid pseudo operation");
6446 return 1;
6447 }
6448 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6449 {
6450 inst.error = _("constant expression expected");
6451 return 1;
6452 }
6453 if (inst.reloc.exp.X_op == O_constant)
6454 {
6455 if (thumb_p)
6456 {
6457 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6458 {
6459 /* This can be done with a mov(1) instruction. */
6460 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6461 inst.instruction |= inst.reloc.exp.X_add_number;
6462 return 1;
6463 }
6464 }
6465 else
6466 {
6467 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6468 if (value != FAIL)
6469 {
6470 /* This can be done with a mov instruction. */
6471 inst.instruction &= LITERAL_MASK;
6472 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6473 inst.instruction |= value & 0xfff;
6474 return 1;
6475 }
6476
6477 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6478 if (value != FAIL)
6479 {
6480 /* This can be done with a mvn instruction. */
6481 inst.instruction &= LITERAL_MASK;
6482 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6483 inst.instruction |= value & 0xfff;
6484 return 1;
6485 }
6486 }
6487 }
6488
6489 if (add_to_lit_pool () == FAIL)
6490 {
6491 inst.error = _("literal pool insertion failed");
6492 return 1;
6493 }
6494 inst.operands[1].reg = REG_PC;
6495 inst.operands[1].isreg = 1;
6496 inst.operands[1].preind = 1;
6497 inst.reloc.pc_rel = 1;
6498 inst.reloc.type = (thumb_p
6499 ? BFD_RELOC_ARM_THUMB_OFFSET
6500 : (mode_3
6501 ? BFD_RELOC_ARM_HWLITERAL
6502 : BFD_RELOC_ARM_LITERAL));
6503 return 0;
6504 }
6505
6506 /* Functions for instruction encoding, sorted by sub-architecture.
6507 First some generics; their names are taken from the conventional
6508 bit positions for register arguments in ARM format instructions. */
6509
6510 static void
6511 do_noargs (void)
6512 {
6513 }
6514
6515 static void
6516 do_rd (void)
6517 {
6518 inst.instruction |= inst.operands[0].reg << 12;
6519 }
6520
6521 static void
6522 do_rd_rm (void)
6523 {
6524 inst.instruction |= inst.operands[0].reg << 12;
6525 inst.instruction |= inst.operands[1].reg;
6526 }
6527
6528 static void
6529 do_rd_rn (void)
6530 {
6531 inst.instruction |= inst.operands[0].reg << 12;
6532 inst.instruction |= inst.operands[1].reg << 16;
6533 }
6534
6535 static void
6536 do_rn_rd (void)
6537 {
6538 inst.instruction |= inst.operands[0].reg << 16;
6539 inst.instruction |= inst.operands[1].reg << 12;
6540 }
6541
6542 static void
6543 do_rd_rm_rn (void)
6544 {
6545 unsigned Rn = inst.operands[2].reg;
6546 /* Enforce restrictions on SWP instruction. */
6547 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6548 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6549 _("Rn must not overlap other operands"));
6550 inst.instruction |= inst.operands[0].reg << 12;
6551 inst.instruction |= inst.operands[1].reg;
6552 inst.instruction |= Rn << 16;
6553 }
6554
6555 static void
6556 do_rd_rn_rm (void)
6557 {
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 inst.instruction |= inst.operands[1].reg << 16;
6560 inst.instruction |= inst.operands[2].reg;
6561 }
6562
6563 static void
6564 do_rm_rd_rn (void)
6565 {
6566 inst.instruction |= inst.operands[0].reg;
6567 inst.instruction |= inst.operands[1].reg << 12;
6568 inst.instruction |= inst.operands[2].reg << 16;
6569 }
6570
6571 static void
6572 do_imm0 (void)
6573 {
6574 inst.instruction |= inst.operands[0].imm;
6575 }
6576
6577 static void
6578 do_rd_cpaddr (void)
6579 {
6580 inst.instruction |= inst.operands[0].reg << 12;
6581 encode_arm_cp_address (1, TRUE, TRUE, 0);
6582 }
6583
6584 /* ARM instructions, in alphabetical order by function name (except
6585 that wrapper functions appear immediately after the function they
6586 wrap). */
6587
6588 /* This is a pseudo-op of the form "adr rd, label" to be converted
6589 into a relative address of the form "add rd, pc, #label-.-8". */
6590
6591 static void
6592 do_adr (void)
6593 {
6594 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6595
6596 /* Frag hacking will turn this into a sub instruction if the offset turns
6597 out to be negative. */
6598 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6599 inst.reloc.pc_rel = 1;
6600 inst.reloc.exp.X_add_number -= 8;
6601 }
6602
6603 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6604 into a relative address of the form:
6605 add rd, pc, #low(label-.-8)"
6606 add rd, rd, #high(label-.-8)" */
6607
6608 static void
6609 do_adrl (void)
6610 {
6611 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6612
6613 /* Frag hacking will turn this into a sub instruction if the offset turns
6614 out to be negative. */
6615 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6616 inst.reloc.pc_rel = 1;
6617 inst.size = INSN_SIZE * 2;
6618 inst.reloc.exp.X_add_number -= 8;
6619 }
6620
6621 static void
6622 do_arit (void)
6623 {
6624 if (!inst.operands[1].present)
6625 inst.operands[1].reg = inst.operands[0].reg;
6626 inst.instruction |= inst.operands[0].reg << 12;
6627 inst.instruction |= inst.operands[1].reg << 16;
6628 encode_arm_shifter_operand (2);
6629 }
6630
6631 static void
6632 do_barrier (void)
6633 {
6634 if (inst.operands[0].present)
6635 {
6636 constraint ((inst.instruction & 0xf0) != 0x40
6637 && inst.operands[0].imm != 0xf,
6638 _("bad barrier type"));
6639 inst.instruction |= inst.operands[0].imm;
6640 }
6641 else
6642 inst.instruction |= 0xf;
6643 }
6644
6645 static void
6646 do_bfc (void)
6647 {
6648 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6649 constraint (msb > 32, _("bit-field extends past end of register"));
6650 /* The instruction encoding stores the LSB and MSB,
6651 not the LSB and width. */
6652 inst.instruction |= inst.operands[0].reg << 12;
6653 inst.instruction |= inst.operands[1].imm << 7;
6654 inst.instruction |= (msb - 1) << 16;
6655 }
6656
6657 static void
6658 do_bfi (void)
6659 {
6660 unsigned int msb;
6661
6662 /* #0 in second position is alternative syntax for bfc, which is
6663 the same instruction but with REG_PC in the Rm field. */
6664 if (!inst.operands[1].isreg)
6665 inst.operands[1].reg = REG_PC;
6666
6667 msb = inst.operands[2].imm + inst.operands[3].imm;
6668 constraint (msb > 32, _("bit-field extends past end of register"));
6669 /* The instruction encoding stores the LSB and MSB,
6670 not the LSB and width. */
6671 inst.instruction |= inst.operands[0].reg << 12;
6672 inst.instruction |= inst.operands[1].reg;
6673 inst.instruction |= inst.operands[2].imm << 7;
6674 inst.instruction |= (msb - 1) << 16;
6675 }
6676
6677 static void
6678 do_bfx (void)
6679 {
6680 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6681 _("bit-field extends past end of register"));
6682 inst.instruction |= inst.operands[0].reg << 12;
6683 inst.instruction |= inst.operands[1].reg;
6684 inst.instruction |= inst.operands[2].imm << 7;
6685 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6686 }
6687
6688 /* ARM V5 breakpoint instruction (argument parse)
6689 BKPT <16 bit unsigned immediate>
6690 Instruction is not conditional.
6691 The bit pattern given in insns[] has the COND_ALWAYS condition,
6692 and it is an error if the caller tried to override that. */
6693
6694 static void
6695 do_bkpt (void)
6696 {
6697 /* Top 12 of 16 bits to bits 19:8. */
6698 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6699
6700 /* Bottom 4 of 16 bits to bits 3:0. */
6701 inst.instruction |= inst.operands[0].imm & 0xf;
6702 }
6703
6704 static void
6705 encode_branch (int default_reloc)
6706 {
6707 if (inst.operands[0].hasreloc)
6708 {
6709 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6710 _("the only suffix valid here is '(plt)'"));
6711 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6712 }
6713 else
6714 {
6715 inst.reloc.type = default_reloc;
6716 }
6717 inst.reloc.pc_rel = 1;
6718 }
6719
6720 static void
6721 do_branch (void)
6722 {
6723 #ifdef OBJ_ELF
6724 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6725 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6726 else
6727 #endif
6728 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6729 }
6730
6731 static void
6732 do_bl (void)
6733 {
6734 #ifdef OBJ_ELF
6735 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6736 {
6737 if (inst.cond == COND_ALWAYS)
6738 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6739 else
6740 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6741 }
6742 else
6743 #endif
6744 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6745 }
6746
6747 /* ARM V5 branch-link-exchange instruction (argument parse)
6748 BLX <target_addr> ie BLX(1)
6749 BLX{<condition>} <Rm> ie BLX(2)
6750 Unfortunately, there are two different opcodes for this mnemonic.
6751 So, the insns[].value is not used, and the code here zaps values
6752 into inst.instruction.
6753 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6754
6755 static void
6756 do_blx (void)
6757 {
6758 if (inst.operands[0].isreg)
6759 {
6760 /* Arg is a register; the opcode provided by insns[] is correct.
6761 It is not illegal to do "blx pc", just useless. */
6762 if (inst.operands[0].reg == REG_PC)
6763 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6764
6765 inst.instruction |= inst.operands[0].reg;
6766 }
6767 else
6768 {
6769 /* Arg is an address; this instruction cannot be executed
6770 conditionally, and the opcode must be adjusted. */
6771 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6772 inst.instruction = 0xfa000000;
6773 #ifdef OBJ_ELF
6774 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6775 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6776 else
6777 #endif
6778 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6779 }
6780 }
6781
6782 static void
6783 do_bx (void)
6784 {
6785 bfd_boolean want_reloc;
6786
6787 if (inst.operands[0].reg == REG_PC)
6788 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6789
6790 inst.instruction |= inst.operands[0].reg;
6791 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6792 it is for ARMv4t or earlier. */
6793 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6794 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6795 want_reloc = TRUE;
6796
6797 #ifdef OBJ_ELF
6798 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
6799 #endif
6800 want_reloc = FALSE;
6801
6802 if (want_reloc)
6803 inst.reloc.type = BFD_RELOC_ARM_V4BX;
6804 }
6805
6806
6807 /* ARM v5TEJ. Jump to Jazelle code. */
6808
6809 static void
6810 do_bxj (void)
6811 {
6812 if (inst.operands[0].reg == REG_PC)
6813 as_tsktsk (_("use of r15 in bxj is not really useful"));
6814
6815 inst.instruction |= inst.operands[0].reg;
6816 }
6817
6818 /* Co-processor data operation:
6819 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6820 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6821 static void
6822 do_cdp (void)
6823 {
6824 inst.instruction |= inst.operands[0].reg << 8;
6825 inst.instruction |= inst.operands[1].imm << 20;
6826 inst.instruction |= inst.operands[2].reg << 12;
6827 inst.instruction |= inst.operands[3].reg << 16;
6828 inst.instruction |= inst.operands[4].reg;
6829 inst.instruction |= inst.operands[5].imm << 5;
6830 }
6831
6832 static void
6833 do_cmp (void)
6834 {
6835 inst.instruction |= inst.operands[0].reg << 16;
6836 encode_arm_shifter_operand (1);
6837 }
6838
6839 /* Transfer between coprocessor and ARM registers.
6840 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6841 MRC2
6842 MCR{cond}
6843 MCR2
6844
6845 No special properties. */
6846
6847 static void
6848 do_co_reg (void)
6849 {
6850 inst.instruction |= inst.operands[0].reg << 8;
6851 inst.instruction |= inst.operands[1].imm << 21;
6852 inst.instruction |= inst.operands[2].reg << 12;
6853 inst.instruction |= inst.operands[3].reg << 16;
6854 inst.instruction |= inst.operands[4].reg;
6855 inst.instruction |= inst.operands[5].imm << 5;
6856 }
6857
6858 /* Transfer between coprocessor register and pair of ARM registers.
6859 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6860 MCRR2
6861 MRRC{cond}
6862 MRRC2
6863
6864 Two XScale instructions are special cases of these:
6865
6866 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6867 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6868
6869 Result unpredictable if Rd or Rn is R15. */
6870
6871 static void
6872 do_co_reg2c (void)
6873 {
6874 inst.instruction |= inst.operands[0].reg << 8;
6875 inst.instruction |= inst.operands[1].imm << 4;
6876 inst.instruction |= inst.operands[2].reg << 12;
6877 inst.instruction |= inst.operands[3].reg << 16;
6878 inst.instruction |= inst.operands[4].reg;
6879 }
6880
6881 static void
6882 do_cpsi (void)
6883 {
6884 inst.instruction |= inst.operands[0].imm << 6;
6885 if (inst.operands[1].present)
6886 {
6887 inst.instruction |= CPSI_MMOD;
6888 inst.instruction |= inst.operands[1].imm;
6889 }
6890 }
6891
6892 static void
6893 do_dbg (void)
6894 {
6895 inst.instruction |= inst.operands[0].imm;
6896 }
6897
6898 static void
6899 do_it (void)
6900 {
6901 /* There is no IT instruction in ARM mode. We
6902 process it but do not generate code for it. */
6903 inst.size = 0;
6904 }
6905
6906 static void
6907 do_ldmstm (void)
6908 {
6909 int base_reg = inst.operands[0].reg;
6910 int range = inst.operands[1].imm;
6911
6912 inst.instruction |= base_reg << 16;
6913 inst.instruction |= range;
6914
6915 if (inst.operands[1].writeback)
6916 inst.instruction |= LDM_TYPE_2_OR_3;
6917
6918 if (inst.operands[0].writeback)
6919 {
6920 inst.instruction |= WRITE_BACK;
6921 /* Check for unpredictable uses of writeback. */
6922 if (inst.instruction & LOAD_BIT)
6923 {
6924 /* Not allowed in LDM type 2. */
6925 if ((inst.instruction & LDM_TYPE_2_OR_3)
6926 && ((range & (1 << REG_PC)) == 0))
6927 as_warn (_("writeback of base register is UNPREDICTABLE"));
6928 /* Only allowed if base reg not in list for other types. */
6929 else if (range & (1 << base_reg))
6930 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6931 }
6932 else /* STM. */
6933 {
6934 /* Not allowed for type 2. */
6935 if (inst.instruction & LDM_TYPE_2_OR_3)
6936 as_warn (_("writeback of base register is UNPREDICTABLE"));
6937 /* Only allowed if base reg not in list, or first in list. */
6938 else if ((range & (1 << base_reg))
6939 && (range & ((1 << base_reg) - 1)))
6940 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6941 }
6942 }
6943 }
6944
6945 /* ARMv5TE load-consecutive (argument parse)
6946 Mode is like LDRH.
6947
6948 LDRccD R, mode
6949 STRccD R, mode. */
6950
6951 static void
6952 do_ldrd (void)
6953 {
6954 constraint (inst.operands[0].reg % 2 != 0,
6955 _("first destination register must be even"));
6956 constraint (inst.operands[1].present
6957 && inst.operands[1].reg != inst.operands[0].reg + 1,
6958 _("can only load two consecutive registers"));
6959 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6960 constraint (!inst.operands[2].isreg, _("'[' expected"));
6961
6962 if (!inst.operands[1].present)
6963 inst.operands[1].reg = inst.operands[0].reg + 1;
6964
6965 if (inst.instruction & LOAD_BIT)
6966 {
6967 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6968 register and the first register written; we have to diagnose
6969 overlap between the base and the second register written here. */
6970
6971 if (inst.operands[2].reg == inst.operands[1].reg
6972 && (inst.operands[2].writeback || inst.operands[2].postind))
6973 as_warn (_("base register written back, and overlaps "
6974 "second destination register"));
6975
6976 /* For an index-register load, the index register must not overlap the
6977 destination (even if not write-back). */
6978 else if (inst.operands[2].immisreg
6979 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6980 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6981 as_warn (_("index register overlaps destination register"));
6982 }
6983
6984 inst.instruction |= inst.operands[0].reg << 12;
6985 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6986 }
6987
6988 static void
6989 do_ldrex (void)
6990 {
6991 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6992 || inst.operands[1].postind || inst.operands[1].writeback
6993 || inst.operands[1].immisreg || inst.operands[1].shifted
6994 || inst.operands[1].negative
6995 /* This can arise if the programmer has written
6996 strex rN, rM, foo
6997 or if they have mistakenly used a register name as the last
6998 operand, eg:
6999 strex rN, rM, rX
7000 It is very difficult to distinguish between these two cases
7001 because "rX" might actually be a label. ie the register
7002 name has been occluded by a symbol of the same name. So we
7003 just generate a general 'bad addressing mode' type error
7004 message and leave it up to the programmer to discover the
7005 true cause and fix their mistake. */
7006 || (inst.operands[1].reg == REG_PC),
7007 BAD_ADDR_MODE);
7008
7009 constraint (inst.reloc.exp.X_op != O_constant
7010 || inst.reloc.exp.X_add_number != 0,
7011 _("offset must be zero in ARM encoding"));
7012
7013 inst.instruction |= inst.operands[0].reg << 12;
7014 inst.instruction |= inst.operands[1].reg << 16;
7015 inst.reloc.type = BFD_RELOC_UNUSED;
7016 }
7017
7018 static void
7019 do_ldrexd (void)
7020 {
7021 constraint (inst.operands[0].reg % 2 != 0,
7022 _("even register required"));
7023 constraint (inst.operands[1].present
7024 && inst.operands[1].reg != inst.operands[0].reg + 1,
7025 _("can only load two consecutive registers"));
7026 /* If op 1 were present and equal to PC, this function wouldn't
7027 have been called in the first place. */
7028 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7029
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 inst.instruction |= inst.operands[2].reg << 16;
7032 }
7033
7034 static void
7035 do_ldst (void)
7036 {
7037 inst.instruction |= inst.operands[0].reg << 12;
7038 if (!inst.operands[1].isreg)
7039 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7040 return;
7041 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7042 }
7043
7044 static void
7045 do_ldstt (void)
7046 {
7047 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7048 reject [Rn,...]. */
7049 if (inst.operands[1].preind)
7050 {
7051 constraint (inst.reloc.exp.X_op != O_constant
7052 || inst.reloc.exp.X_add_number != 0,
7053 _("this instruction requires a post-indexed address"));
7054
7055 inst.operands[1].preind = 0;
7056 inst.operands[1].postind = 1;
7057 inst.operands[1].writeback = 1;
7058 }
7059 inst.instruction |= inst.operands[0].reg << 12;
7060 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7061 }
7062
7063 /* Halfword and signed-byte load/store operations. */
7064
7065 static void
7066 do_ldstv4 (void)
7067 {
7068 inst.instruction |= inst.operands[0].reg << 12;
7069 if (!inst.operands[1].isreg)
7070 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7071 return;
7072 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7073 }
7074
7075 static void
7076 do_ldsttv4 (void)
7077 {
7078 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7079 reject [Rn,...]. */
7080 if (inst.operands[1].preind)
7081 {
7082 constraint (inst.reloc.exp.X_op != O_constant
7083 || inst.reloc.exp.X_add_number != 0,
7084 _("this instruction requires a post-indexed address"));
7085
7086 inst.operands[1].preind = 0;
7087 inst.operands[1].postind = 1;
7088 inst.operands[1].writeback = 1;
7089 }
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7092 }
7093
7094 /* Co-processor register load/store.
7095 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7096 static void
7097 do_lstc (void)
7098 {
7099 inst.instruction |= inst.operands[0].reg << 8;
7100 inst.instruction |= inst.operands[1].reg << 12;
7101 encode_arm_cp_address (2, TRUE, TRUE, 0);
7102 }
7103
7104 static void
7105 do_mlas (void)
7106 {
7107 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7108 if (inst.operands[0].reg == inst.operands[1].reg
7109 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7110 && !(inst.instruction & 0x00400000))
7111 as_tsktsk (_("Rd and Rm should be different in mla"));
7112
7113 inst.instruction |= inst.operands[0].reg << 16;
7114 inst.instruction |= inst.operands[1].reg;
7115 inst.instruction |= inst.operands[2].reg << 8;
7116 inst.instruction |= inst.operands[3].reg << 12;
7117 }
7118
7119 static void
7120 do_mov (void)
7121 {
7122 inst.instruction |= inst.operands[0].reg << 12;
7123 encode_arm_shifter_operand (1);
7124 }
7125
7126 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7127 static void
7128 do_mov16 (void)
7129 {
7130 bfd_vma imm;
7131 bfd_boolean top;
7132
7133 top = (inst.instruction & 0x00400000) != 0;
7134 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7135 _(":lower16: not allowed this instruction"));
7136 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7137 _(":upper16: not allowed instruction"));
7138 inst.instruction |= inst.operands[0].reg << 12;
7139 if (inst.reloc.type == BFD_RELOC_UNUSED)
7140 {
7141 imm = inst.reloc.exp.X_add_number;
7142 /* The value is in two pieces: 0:11, 16:19. */
7143 inst.instruction |= (imm & 0x00000fff);
7144 inst.instruction |= (imm & 0x0000f000) << 4;
7145 }
7146 }
7147
7148 static void do_vfp_nsyn_opcode (const char *);
7149
7150 static int
7151 do_vfp_nsyn_mrs (void)
7152 {
7153 if (inst.operands[0].isvec)
7154 {
7155 if (inst.operands[1].reg != 1)
7156 first_error (_("operand 1 must be FPSCR"));
7157 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7158 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7159 do_vfp_nsyn_opcode ("fmstat");
7160 }
7161 else if (inst.operands[1].isvec)
7162 do_vfp_nsyn_opcode ("fmrx");
7163 else
7164 return FAIL;
7165
7166 return SUCCESS;
7167 }
7168
7169 static int
7170 do_vfp_nsyn_msr (void)
7171 {
7172 if (inst.operands[0].isvec)
7173 do_vfp_nsyn_opcode ("fmxr");
7174 else
7175 return FAIL;
7176
7177 return SUCCESS;
7178 }
7179
7180 static void
7181 do_mrs (void)
7182 {
7183 if (do_vfp_nsyn_mrs () == SUCCESS)
7184 return;
7185
7186 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7187 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7188 != (PSR_c|PSR_f),
7189 _("'CPSR' or 'SPSR' expected"));
7190 inst.instruction |= inst.operands[0].reg << 12;
7191 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7192 }
7193
7194 /* Two possible forms:
7195 "{C|S}PSR_<field>, Rm",
7196 "{C|S}PSR_f, #expression". */
7197
7198 static void
7199 do_msr (void)
7200 {
7201 if (do_vfp_nsyn_msr () == SUCCESS)
7202 return;
7203
7204 inst.instruction |= inst.operands[0].imm;
7205 if (inst.operands[1].isreg)
7206 inst.instruction |= inst.operands[1].reg;
7207 else
7208 {
7209 inst.instruction |= INST_IMMEDIATE;
7210 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7211 inst.reloc.pc_rel = 0;
7212 }
7213 }
7214
7215 static void
7216 do_mul (void)
7217 {
7218 if (!inst.operands[2].present)
7219 inst.operands[2].reg = inst.operands[0].reg;
7220 inst.instruction |= inst.operands[0].reg << 16;
7221 inst.instruction |= inst.operands[1].reg;
7222 inst.instruction |= inst.operands[2].reg << 8;
7223
7224 if (inst.operands[0].reg == inst.operands[1].reg
7225 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7226 as_tsktsk (_("Rd and Rm should be different in mul"));
7227 }
7228
7229 /* Long Multiply Parser
7230 UMULL RdLo, RdHi, Rm, Rs
7231 SMULL RdLo, RdHi, Rm, Rs
7232 UMLAL RdLo, RdHi, Rm, Rs
7233 SMLAL RdLo, RdHi, Rm, Rs. */
7234
7235 static void
7236 do_mull (void)
7237 {
7238 inst.instruction |= inst.operands[0].reg << 12;
7239 inst.instruction |= inst.operands[1].reg << 16;
7240 inst.instruction |= inst.operands[2].reg;
7241 inst.instruction |= inst.operands[3].reg << 8;
7242
7243 /* rdhi and rdlo must be different. */
7244 if (inst.operands[0].reg == inst.operands[1].reg)
7245 as_tsktsk (_("rdhi and rdlo must be different"));
7246
7247 /* rdhi, rdlo and rm must all be different before armv6. */
7248 if ((inst.operands[0].reg == inst.operands[2].reg
7249 || inst.operands[1].reg == inst.operands[2].reg)
7250 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7251 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7252 }
7253
7254 static void
7255 do_nop (void)
7256 {
7257 if (inst.operands[0].present)
7258 {
7259 /* Architectural NOP hints are CPSR sets with no bits selected. */
7260 inst.instruction &= 0xf0000000;
7261 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7262 }
7263 }
7264
7265 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7266 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7267 Condition defaults to COND_ALWAYS.
7268 Error if Rd, Rn or Rm are R15. */
7269
7270 static void
7271 do_pkhbt (void)
7272 {
7273 inst.instruction |= inst.operands[0].reg << 12;
7274 inst.instruction |= inst.operands[1].reg << 16;
7275 inst.instruction |= inst.operands[2].reg;
7276 if (inst.operands[3].present)
7277 encode_arm_shift (3);
7278 }
7279
7280 /* ARM V6 PKHTB (Argument Parse). */
7281
7282 static void
7283 do_pkhtb (void)
7284 {
7285 if (!inst.operands[3].present)
7286 {
7287 /* If the shift specifier is omitted, turn the instruction
7288 into pkhbt rd, rm, rn. */
7289 inst.instruction &= 0xfff00010;
7290 inst.instruction |= inst.operands[0].reg << 12;
7291 inst.instruction |= inst.operands[1].reg;
7292 inst.instruction |= inst.operands[2].reg << 16;
7293 }
7294 else
7295 {
7296 inst.instruction |= inst.operands[0].reg << 12;
7297 inst.instruction |= inst.operands[1].reg << 16;
7298 inst.instruction |= inst.operands[2].reg;
7299 encode_arm_shift (3);
7300 }
7301 }
7302
7303 /* ARMv5TE: Preload-Cache
7304
7305 PLD <addr_mode>
7306
7307 Syntactically, like LDR with B=1, W=0, L=1. */
7308
7309 static void
7310 do_pld (void)
7311 {
7312 constraint (!inst.operands[0].isreg,
7313 _("'[' expected after PLD mnemonic"));
7314 constraint (inst.operands[0].postind,
7315 _("post-indexed expression used in preload instruction"));
7316 constraint (inst.operands[0].writeback,
7317 _("writeback used in preload instruction"));
7318 constraint (!inst.operands[0].preind,
7319 _("unindexed addressing used in preload instruction"));
7320 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7321 }
7322
7323 /* ARMv7: PLI <addr_mode> */
7324 static void
7325 do_pli (void)
7326 {
7327 constraint (!inst.operands[0].isreg,
7328 _("'[' expected after PLI mnemonic"));
7329 constraint (inst.operands[0].postind,
7330 _("post-indexed expression used in preload instruction"));
7331 constraint (inst.operands[0].writeback,
7332 _("writeback used in preload instruction"));
7333 constraint (!inst.operands[0].preind,
7334 _("unindexed addressing used in preload instruction"));
7335 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7336 inst.instruction &= ~PRE_INDEX;
7337 }
7338
7339 static void
7340 do_push_pop (void)
7341 {
7342 inst.operands[1] = inst.operands[0];
7343 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7344 inst.operands[0].isreg = 1;
7345 inst.operands[0].writeback = 1;
7346 inst.operands[0].reg = REG_SP;
7347 do_ldmstm ();
7348 }
7349
7350 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7351 word at the specified address and the following word
7352 respectively.
7353 Unconditionally executed.
7354 Error if Rn is R15. */
7355
7356 static void
7357 do_rfe (void)
7358 {
7359 inst.instruction |= inst.operands[0].reg << 16;
7360 if (inst.operands[0].writeback)
7361 inst.instruction |= WRITE_BACK;
7362 }
7363
7364 /* ARM V6 ssat (argument parse). */
7365
7366 static void
7367 do_ssat (void)
7368 {
7369 inst.instruction |= inst.operands[0].reg << 12;
7370 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7371 inst.instruction |= inst.operands[2].reg;
7372
7373 if (inst.operands[3].present)
7374 encode_arm_shift (3);
7375 }
7376
7377 /* ARM V6 usat (argument parse). */
7378
7379 static void
7380 do_usat (void)
7381 {
7382 inst.instruction |= inst.operands[0].reg << 12;
7383 inst.instruction |= inst.operands[1].imm << 16;
7384 inst.instruction |= inst.operands[2].reg;
7385
7386 if (inst.operands[3].present)
7387 encode_arm_shift (3);
7388 }
7389
7390 /* ARM V6 ssat16 (argument parse). */
7391
7392 static void
7393 do_ssat16 (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7397 inst.instruction |= inst.operands[2].reg;
7398 }
7399
7400 static void
7401 do_usat16 (void)
7402 {
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].imm << 16;
7405 inst.instruction |= inst.operands[2].reg;
7406 }
7407
7408 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7409 preserving the other bits.
7410
7411 setend <endian_specifier>, where <endian_specifier> is either
7412 BE or LE. */
7413
7414 static void
7415 do_setend (void)
7416 {
7417 if (inst.operands[0].imm)
7418 inst.instruction |= 0x200;
7419 }
7420
7421 static void
7422 do_shift (void)
7423 {
7424 unsigned int Rm = (inst.operands[1].present
7425 ? inst.operands[1].reg
7426 : inst.operands[0].reg);
7427
7428 inst.instruction |= inst.operands[0].reg << 12;
7429 inst.instruction |= Rm;
7430 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7431 {
7432 inst.instruction |= inst.operands[2].reg << 8;
7433 inst.instruction |= SHIFT_BY_REG;
7434 }
7435 else
7436 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7437 }
7438
7439 static void
7440 do_smc (void)
7441 {
7442 inst.reloc.type = BFD_RELOC_ARM_SMC;
7443 inst.reloc.pc_rel = 0;
7444 }
7445
7446 static void
7447 do_swi (void)
7448 {
7449 inst.reloc.type = BFD_RELOC_ARM_SWI;
7450 inst.reloc.pc_rel = 0;
7451 }
7452
7453 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7454 SMLAxy{cond} Rd,Rm,Rs,Rn
7455 SMLAWy{cond} Rd,Rm,Rs,Rn
7456 Error if any register is R15. */
7457
7458 static void
7459 do_smla (void)
7460 {
7461 inst.instruction |= inst.operands[0].reg << 16;
7462 inst.instruction |= inst.operands[1].reg;
7463 inst.instruction |= inst.operands[2].reg << 8;
7464 inst.instruction |= inst.operands[3].reg << 12;
7465 }
7466
7467 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7468 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7469 Error if any register is R15.
7470 Warning if Rdlo == Rdhi. */
7471
7472 static void
7473 do_smlal (void)
7474 {
7475 inst.instruction |= inst.operands[0].reg << 12;
7476 inst.instruction |= inst.operands[1].reg << 16;
7477 inst.instruction |= inst.operands[2].reg;
7478 inst.instruction |= inst.operands[3].reg << 8;
7479
7480 if (inst.operands[0].reg == inst.operands[1].reg)
7481 as_tsktsk (_("rdhi and rdlo must be different"));
7482 }
7483
7484 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7485 SMULxy{cond} Rd,Rm,Rs
7486 Error if any register is R15. */
7487
7488 static void
7489 do_smul (void)
7490 {
7491 inst.instruction |= inst.operands[0].reg << 16;
7492 inst.instruction |= inst.operands[1].reg;
7493 inst.instruction |= inst.operands[2].reg << 8;
7494 }
7495
7496 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7497 the same for both ARM and Thumb-2. */
7498
7499 static void
7500 do_srs (void)
7501 {
7502 int reg;
7503
7504 if (inst.operands[0].present)
7505 {
7506 reg = inst.operands[0].reg;
7507 constraint (reg != 13, _("SRS base register must be r13"));
7508 }
7509 else
7510 reg = 13;
7511
7512 inst.instruction |= reg << 16;
7513 inst.instruction |= inst.operands[1].imm;
7514 if (inst.operands[0].writeback || inst.operands[1].writeback)
7515 inst.instruction |= WRITE_BACK;
7516 }
7517
7518 /* ARM V6 strex (argument parse). */
7519
7520 static void
7521 do_strex (void)
7522 {
7523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7524 || inst.operands[2].postind || inst.operands[2].writeback
7525 || inst.operands[2].immisreg || inst.operands[2].shifted
7526 || inst.operands[2].negative
7527 /* See comment in do_ldrex(). */
7528 || (inst.operands[2].reg == REG_PC),
7529 BAD_ADDR_MODE);
7530
7531 constraint (inst.operands[0].reg == inst.operands[1].reg
7532 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7533
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
7536 _("offset must be zero in ARM encoding"));
7537
7538 inst.instruction |= inst.operands[0].reg << 12;
7539 inst.instruction |= inst.operands[1].reg;
7540 inst.instruction |= inst.operands[2].reg << 16;
7541 inst.reloc.type = BFD_RELOC_UNUSED;
7542 }
7543
7544 static void
7545 do_strexd (void)
7546 {
7547 constraint (inst.operands[1].reg % 2 != 0,
7548 _("even register required"));
7549 constraint (inst.operands[2].present
7550 && inst.operands[2].reg != inst.operands[1].reg + 1,
7551 _("can only store two consecutive registers"));
7552 /* If op 2 were present and equal to PC, this function wouldn't
7553 have been called in the first place. */
7554 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7555
7556 constraint (inst.operands[0].reg == inst.operands[1].reg
7557 || inst.operands[0].reg == inst.operands[1].reg + 1
7558 || inst.operands[0].reg == inst.operands[3].reg,
7559 BAD_OVERLAP);
7560
7561 inst.instruction |= inst.operands[0].reg << 12;
7562 inst.instruction |= inst.operands[1].reg;
7563 inst.instruction |= inst.operands[3].reg << 16;
7564 }
7565
7566 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7567 extends it to 32-bits, and adds the result to a value in another
7568 register. You can specify a rotation by 0, 8, 16, or 24 bits
7569 before extracting the 16-bit value.
7570 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7571 Condition defaults to COND_ALWAYS.
7572 Error if any register uses R15. */
7573
7574 static void
7575 do_sxtah (void)
7576 {
7577 inst.instruction |= inst.operands[0].reg << 12;
7578 inst.instruction |= inst.operands[1].reg << 16;
7579 inst.instruction |= inst.operands[2].reg;
7580 inst.instruction |= inst.operands[3].imm << 10;
7581 }
7582
7583 /* ARM V6 SXTH.
7584
7585 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7586 Condition defaults to COND_ALWAYS.
7587 Error if any register uses R15. */
7588
7589 static void
7590 do_sxth (void)
7591 {
7592 inst.instruction |= inst.operands[0].reg << 12;
7593 inst.instruction |= inst.operands[1].reg;
7594 inst.instruction |= inst.operands[2].imm << 10;
7595 }
7596 \f
7597 /* VFP instructions. In a logical order: SP variant first, monad
7598 before dyad, arithmetic then move then load/store. */
7599
7600 static void
7601 do_vfp_sp_monadic (void)
7602 {
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7605 }
7606
7607 static void
7608 do_vfp_sp_dyadic (void)
7609 {
7610 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7611 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7612 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7613 }
7614
7615 static void
7616 do_vfp_sp_compare_z (void)
7617 {
7618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7619 }
7620
7621 static void
7622 do_vfp_dp_sp_cvt (void)
7623 {
7624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7626 }
7627
7628 static void
7629 do_vfp_sp_dp_cvt (void)
7630 {
7631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7633 }
7634
7635 static void
7636 do_vfp_reg_from_sp (void)
7637 {
7638 inst.instruction |= inst.operands[0].reg << 12;
7639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7640 }
7641
7642 static void
7643 do_vfp_reg2_from_sp2 (void)
7644 {
7645 constraint (inst.operands[2].imm != 2,
7646 _("only two consecutive VFP SP registers allowed here"));
7647 inst.instruction |= inst.operands[0].reg << 12;
7648 inst.instruction |= inst.operands[1].reg << 16;
7649 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7650 }
7651
7652 static void
7653 do_vfp_sp_from_reg (void)
7654 {
7655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7656 inst.instruction |= inst.operands[1].reg << 12;
7657 }
7658
7659 static void
7660 do_vfp_sp2_from_reg2 (void)
7661 {
7662 constraint (inst.operands[0].imm != 2,
7663 _("only two consecutive VFP SP registers allowed here"));
7664 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7665 inst.instruction |= inst.operands[1].reg << 12;
7666 inst.instruction |= inst.operands[2].reg << 16;
7667 }
7668
7669 static void
7670 do_vfp_sp_ldst (void)
7671 {
7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7673 encode_arm_cp_address (1, FALSE, TRUE, 0);
7674 }
7675
7676 static void
7677 do_vfp_dp_ldst (void)
7678 {
7679 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7680 encode_arm_cp_address (1, FALSE, TRUE, 0);
7681 }
7682
7683
7684 static void
7685 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7686 {
7687 if (inst.operands[0].writeback)
7688 inst.instruction |= WRITE_BACK;
7689 else
7690 constraint (ldstm_type != VFP_LDSTMIA,
7691 _("this addressing mode requires base-register writeback"));
7692 inst.instruction |= inst.operands[0].reg << 16;
7693 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7694 inst.instruction |= inst.operands[1].imm;
7695 }
7696
7697 static void
7698 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7699 {
7700 int count;
7701
7702 if (inst.operands[0].writeback)
7703 inst.instruction |= WRITE_BACK;
7704 else
7705 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7706 _("this addressing mode requires base-register writeback"));
7707
7708 inst.instruction |= inst.operands[0].reg << 16;
7709 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7710
7711 count = inst.operands[1].imm << 1;
7712 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7713 count += 1;
7714
7715 inst.instruction |= count;
7716 }
7717
7718 static void
7719 do_vfp_sp_ldstmia (void)
7720 {
7721 vfp_sp_ldstm (VFP_LDSTMIA);
7722 }
7723
7724 static void
7725 do_vfp_sp_ldstmdb (void)
7726 {
7727 vfp_sp_ldstm (VFP_LDSTMDB);
7728 }
7729
7730 static void
7731 do_vfp_dp_ldstmia (void)
7732 {
7733 vfp_dp_ldstm (VFP_LDSTMIA);
7734 }
7735
7736 static void
7737 do_vfp_dp_ldstmdb (void)
7738 {
7739 vfp_dp_ldstm (VFP_LDSTMDB);
7740 }
7741
7742 static void
7743 do_vfp_xp_ldstmia (void)
7744 {
7745 vfp_dp_ldstm (VFP_LDSTMIAX);
7746 }
7747
7748 static void
7749 do_vfp_xp_ldstmdb (void)
7750 {
7751 vfp_dp_ldstm (VFP_LDSTMDBX);
7752 }
7753
7754 static void
7755 do_vfp_dp_rd_rm (void)
7756 {
7757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7759 }
7760
7761 static void
7762 do_vfp_dp_rn_rd (void)
7763 {
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7766 }
7767
7768 static void
7769 do_vfp_dp_rd_rn (void)
7770 {
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7772 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7773 }
7774
7775 static void
7776 do_vfp_dp_rd_rn_rm (void)
7777 {
7778 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7779 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7780 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7781 }
7782
7783 static void
7784 do_vfp_dp_rd (void)
7785 {
7786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7787 }
7788
7789 static void
7790 do_vfp_dp_rm_rd_rn (void)
7791 {
7792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7793 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7794 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7795 }
7796
7797 /* VFPv3 instructions. */
7798 static void
7799 do_vfp_sp_const (void)
7800 {
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7802 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7803 inst.instruction |= (inst.operands[1].imm & 0x0f);
7804 }
7805
7806 static void
7807 do_vfp_dp_const (void)
7808 {
7809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7810 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7811 inst.instruction |= (inst.operands[1].imm & 0x0f);
7812 }
7813
7814 static void
7815 vfp_conv (int srcsize)
7816 {
7817 unsigned immbits = srcsize - inst.operands[1].imm;
7818 inst.instruction |= (immbits & 1) << 5;
7819 inst.instruction |= (immbits >> 1);
7820 }
7821
7822 static void
7823 do_vfp_sp_conv_16 (void)
7824 {
7825 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7826 vfp_conv (16);
7827 }
7828
7829 static void
7830 do_vfp_dp_conv_16 (void)
7831 {
7832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7833 vfp_conv (16);
7834 }
7835
7836 static void
7837 do_vfp_sp_conv_32 (void)
7838 {
7839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7840 vfp_conv (32);
7841 }
7842
7843 static void
7844 do_vfp_dp_conv_32 (void)
7845 {
7846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7847 vfp_conv (32);
7848 }
7849 \f
7850 /* FPA instructions. Also in a logical order. */
7851
7852 static void
7853 do_fpa_cmp (void)
7854 {
7855 inst.instruction |= inst.operands[0].reg << 16;
7856 inst.instruction |= inst.operands[1].reg;
7857 }
7858
7859 static void
7860 do_fpa_ldmstm (void)
7861 {
7862 inst.instruction |= inst.operands[0].reg << 12;
7863 switch (inst.operands[1].imm)
7864 {
7865 case 1: inst.instruction |= CP_T_X; break;
7866 case 2: inst.instruction |= CP_T_Y; break;
7867 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7868 case 4: break;
7869 default: abort ();
7870 }
7871
7872 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7873 {
7874 /* The instruction specified "ea" or "fd", so we can only accept
7875 [Rn]{!}. The instruction does not really support stacking or
7876 unstacking, so we have to emulate these by setting appropriate
7877 bits and offsets. */
7878 constraint (inst.reloc.exp.X_op != O_constant
7879 || inst.reloc.exp.X_add_number != 0,
7880 _("this instruction does not support indexing"));
7881
7882 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7883 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7884
7885 if (!(inst.instruction & INDEX_UP))
7886 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7887
7888 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7889 {
7890 inst.operands[2].preind = 0;
7891 inst.operands[2].postind = 1;
7892 }
7893 }
7894
7895 encode_arm_cp_address (2, TRUE, TRUE, 0);
7896 }
7897 \f
7898 /* iWMMXt instructions: strictly in alphabetical order. */
7899
7900 static void
7901 do_iwmmxt_tandorc (void)
7902 {
7903 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7904 }
7905
7906 static void
7907 do_iwmmxt_textrc (void)
7908 {
7909 inst.instruction |= inst.operands[0].reg << 12;
7910 inst.instruction |= inst.operands[1].imm;
7911 }
7912
7913 static void
7914 do_iwmmxt_textrm (void)
7915 {
7916 inst.instruction |= inst.operands[0].reg << 12;
7917 inst.instruction |= inst.operands[1].reg << 16;
7918 inst.instruction |= inst.operands[2].imm;
7919 }
7920
7921 static void
7922 do_iwmmxt_tinsr (void)
7923 {
7924 inst.instruction |= inst.operands[0].reg << 16;
7925 inst.instruction |= inst.operands[1].reg << 12;
7926 inst.instruction |= inst.operands[2].imm;
7927 }
7928
7929 static void
7930 do_iwmmxt_tmia (void)
7931 {
7932 inst.instruction |= inst.operands[0].reg << 5;
7933 inst.instruction |= inst.operands[1].reg;
7934 inst.instruction |= inst.operands[2].reg << 12;
7935 }
7936
7937 static void
7938 do_iwmmxt_waligni (void)
7939 {
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 inst.instruction |= inst.operands[1].reg << 16;
7942 inst.instruction |= inst.operands[2].reg;
7943 inst.instruction |= inst.operands[3].imm << 20;
7944 }
7945
7946 static void
7947 do_iwmmxt_wmerge (void)
7948 {
7949 inst.instruction |= inst.operands[0].reg << 12;
7950 inst.instruction |= inst.operands[1].reg << 16;
7951 inst.instruction |= inst.operands[2].reg;
7952 inst.instruction |= inst.operands[3].imm << 21;
7953 }
7954
7955 static void
7956 do_iwmmxt_wmov (void)
7957 {
7958 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7959 inst.instruction |= inst.operands[0].reg << 12;
7960 inst.instruction |= inst.operands[1].reg << 16;
7961 inst.instruction |= inst.operands[1].reg;
7962 }
7963
7964 static void
7965 do_iwmmxt_wldstbh (void)
7966 {
7967 int reloc;
7968 inst.instruction |= inst.operands[0].reg << 12;
7969 if (thumb_mode)
7970 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7971 else
7972 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7973 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7974 }
7975
7976 static void
7977 do_iwmmxt_wldstw (void)
7978 {
7979 /* RIWR_RIWC clears .isreg for a control register. */
7980 if (!inst.operands[0].isreg)
7981 {
7982 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7983 inst.instruction |= 0xf0000000;
7984 }
7985
7986 inst.instruction |= inst.operands[0].reg << 12;
7987 encode_arm_cp_address (1, TRUE, TRUE, 0);
7988 }
7989
7990 static void
7991 do_iwmmxt_wldstd (void)
7992 {
7993 inst.instruction |= inst.operands[0].reg << 12;
7994 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7995 && inst.operands[1].immisreg)
7996 {
7997 inst.instruction &= ~0x1a000ff;
7998 inst.instruction |= (0xf << 28);
7999 if (inst.operands[1].preind)
8000 inst.instruction |= PRE_INDEX;
8001 if (!inst.operands[1].negative)
8002 inst.instruction |= INDEX_UP;
8003 if (inst.operands[1].writeback)
8004 inst.instruction |= WRITE_BACK;
8005 inst.instruction |= inst.operands[1].reg << 16;
8006 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8007 inst.instruction |= inst.operands[1].imm;
8008 }
8009 else
8010 encode_arm_cp_address (1, TRUE, FALSE, 0);
8011 }
8012
8013 static void
8014 do_iwmmxt_wshufh (void)
8015 {
8016 inst.instruction |= inst.operands[0].reg << 12;
8017 inst.instruction |= inst.operands[1].reg << 16;
8018 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8019 inst.instruction |= (inst.operands[2].imm & 0x0f);
8020 }
8021
8022 static void
8023 do_iwmmxt_wzero (void)
8024 {
8025 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8026 inst.instruction |= inst.operands[0].reg;
8027 inst.instruction |= inst.operands[0].reg << 12;
8028 inst.instruction |= inst.operands[0].reg << 16;
8029 }
8030
8031 static void
8032 do_iwmmxt_wrwrwr_or_imm5 (void)
8033 {
8034 if (inst.operands[2].isreg)
8035 do_rd_rn_rm ();
8036 else {
8037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8038 _("immediate operand requires iWMMXt2"));
8039 do_rd_rn ();
8040 if (inst.operands[2].imm == 0)
8041 {
8042 switch ((inst.instruction >> 20) & 0xf)
8043 {
8044 case 4:
8045 case 5:
8046 case 6:
8047 case 7:
8048 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8049 inst.operands[2].imm = 16;
8050 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8051 break;
8052 case 8:
8053 case 9:
8054 case 10:
8055 case 11:
8056 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8057 inst.operands[2].imm = 32;
8058 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8059 break;
8060 case 12:
8061 case 13:
8062 case 14:
8063 case 15:
8064 {
8065 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8066 unsigned long wrn;
8067 wrn = (inst.instruction >> 16) & 0xf;
8068 inst.instruction &= 0xff0fff0f;
8069 inst.instruction |= wrn;
8070 /* Bail out here; the instruction is now assembled. */
8071 return;
8072 }
8073 }
8074 }
8075 /* Map 32 -> 0, etc. */
8076 inst.operands[2].imm &= 0x1f;
8077 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8078 }
8079 }
8080 \f
8081 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8082 operations first, then control, shift, and load/store. */
8083
8084 /* Insns like "foo X,Y,Z". */
8085
8086 static void
8087 do_mav_triple (void)
8088 {
8089 inst.instruction |= inst.operands[0].reg << 16;
8090 inst.instruction |= inst.operands[1].reg;
8091 inst.instruction |= inst.operands[2].reg << 12;
8092 }
8093
8094 /* Insns like "foo W,X,Y,Z".
8095 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8096
8097 static void
8098 do_mav_quad (void)
8099 {
8100 inst.instruction |= inst.operands[0].reg << 5;
8101 inst.instruction |= inst.operands[1].reg << 12;
8102 inst.instruction |= inst.operands[2].reg << 16;
8103 inst.instruction |= inst.operands[3].reg;
8104 }
8105
8106 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8107 static void
8108 do_mav_dspsc (void)
8109 {
8110 inst.instruction |= inst.operands[1].reg << 12;
8111 }
8112
8113 /* Maverick shift immediate instructions.
8114 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8115 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8116
8117 static void
8118 do_mav_shift (void)
8119 {
8120 int imm = inst.operands[2].imm;
8121
8122 inst.instruction |= inst.operands[0].reg << 12;
8123 inst.instruction |= inst.operands[1].reg << 16;
8124
8125 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8126 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8127 Bit 4 should be 0. */
8128 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8129
8130 inst.instruction |= imm;
8131 }
8132 \f
8133 /* XScale instructions. Also sorted arithmetic before move. */
8134
8135 /* Xscale multiply-accumulate (argument parse)
8136 MIAcc acc0,Rm,Rs
8137 MIAPHcc acc0,Rm,Rs
8138 MIAxycc acc0,Rm,Rs. */
8139
8140 static void
8141 do_xsc_mia (void)
8142 {
8143 inst.instruction |= inst.operands[1].reg;
8144 inst.instruction |= inst.operands[2].reg << 12;
8145 }
8146
8147 /* Xscale move-accumulator-register (argument parse)
8148
8149 MARcc acc0,RdLo,RdHi. */
8150
8151 static void
8152 do_xsc_mar (void)
8153 {
8154 inst.instruction |= inst.operands[1].reg << 12;
8155 inst.instruction |= inst.operands[2].reg << 16;
8156 }
8157
8158 /* Xscale move-register-accumulator (argument parse)
8159
8160 MRAcc RdLo,RdHi,acc0. */
8161
8162 static void
8163 do_xsc_mra (void)
8164 {
8165 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8166 inst.instruction |= inst.operands[0].reg << 12;
8167 inst.instruction |= inst.operands[1].reg << 16;
8168 }
8169 \f
8170 /* Encoding functions relevant only to Thumb. */
8171
8172 /* inst.operands[i] is a shifted-register operand; encode
8173 it into inst.instruction in the format used by Thumb32. */
8174
8175 static void
8176 encode_thumb32_shifted_operand (int i)
8177 {
8178 unsigned int value = inst.reloc.exp.X_add_number;
8179 unsigned int shift = inst.operands[i].shift_kind;
8180
8181 constraint (inst.operands[i].immisreg,
8182 _("shift by register not allowed in thumb mode"));
8183 inst.instruction |= inst.operands[i].reg;
8184 if (shift == SHIFT_RRX)
8185 inst.instruction |= SHIFT_ROR << 4;
8186 else
8187 {
8188 constraint (inst.reloc.exp.X_op != O_constant,
8189 _("expression too complex"));
8190
8191 constraint (value > 32
8192 || (value == 32 && (shift == SHIFT_LSL
8193 || shift == SHIFT_ROR)),
8194 _("shift expression is too large"));
8195
8196 if (value == 0)
8197 shift = SHIFT_LSL;
8198 else if (value == 32)
8199 value = 0;
8200
8201 inst.instruction |= shift << 4;
8202 inst.instruction |= (value & 0x1c) << 10;
8203 inst.instruction |= (value & 0x03) << 6;
8204 }
8205 }
8206
8207
8208 /* inst.operands[i] was set up by parse_address. Encode it into a
8209 Thumb32 format load or store instruction. Reject forms that cannot
8210 be used with such instructions. If is_t is true, reject forms that
8211 cannot be used with a T instruction; if is_d is true, reject forms
8212 that cannot be used with a D instruction. */
8213
8214 static void
8215 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8216 {
8217 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8218
8219 constraint (!inst.operands[i].isreg,
8220 _("Instruction does not support =N addresses"));
8221
8222 inst.instruction |= inst.operands[i].reg << 16;
8223 if (inst.operands[i].immisreg)
8224 {
8225 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8226 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8227 constraint (inst.operands[i].negative,
8228 _("Thumb does not support negative register indexing"));
8229 constraint (inst.operands[i].postind,
8230 _("Thumb does not support register post-indexing"));
8231 constraint (inst.operands[i].writeback,
8232 _("Thumb does not support register indexing with writeback"));
8233 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8234 _("Thumb supports only LSL in shifted register indexing"));
8235
8236 inst.instruction |= inst.operands[i].imm;
8237 if (inst.operands[i].shifted)
8238 {
8239 constraint (inst.reloc.exp.X_op != O_constant,
8240 _("expression too complex"));
8241 constraint (inst.reloc.exp.X_add_number < 0
8242 || inst.reloc.exp.X_add_number > 3,
8243 _("shift out of range"));
8244 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8245 }
8246 inst.reloc.type = BFD_RELOC_UNUSED;
8247 }
8248 else if (inst.operands[i].preind)
8249 {
8250 constraint (is_pc && inst.operands[i].writeback,
8251 _("cannot use writeback with PC-relative addressing"));
8252 constraint (is_t && inst.operands[i].writeback,
8253 _("cannot use writeback with this instruction"));
8254
8255 if (is_d)
8256 {
8257 inst.instruction |= 0x01000000;
8258 if (inst.operands[i].writeback)
8259 inst.instruction |= 0x00200000;
8260 }
8261 else
8262 {
8263 inst.instruction |= 0x00000c00;
8264 if (inst.operands[i].writeback)
8265 inst.instruction |= 0x00000100;
8266 }
8267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8268 }
8269 else if (inst.operands[i].postind)
8270 {
8271 assert (inst.operands[i].writeback);
8272 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8273 constraint (is_t, _("cannot use post-indexing with this instruction"));
8274
8275 if (is_d)
8276 inst.instruction |= 0x00200000;
8277 else
8278 inst.instruction |= 0x00000900;
8279 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8280 }
8281 else /* unindexed - only for coprocessor */
8282 inst.error = _("instruction does not accept unindexed addressing");
8283 }
8284
8285 /* Table of Thumb instructions which exist in both 16- and 32-bit
8286 encodings (the latter only in post-V6T2 cores). The index is the
8287 value used in the insns table below. When there is more than one
8288 possible 16-bit encoding for the instruction, this table always
8289 holds variant (1).
8290 Also contains several pseudo-instructions used during relaxation. */
8291 #define T16_32_TAB \
8292 X(adc, 4140, eb400000), \
8293 X(adcs, 4140, eb500000), \
8294 X(add, 1c00, eb000000), \
8295 X(adds, 1c00, eb100000), \
8296 X(addi, 0000, f1000000), \
8297 X(addis, 0000, f1100000), \
8298 X(add_pc,000f, f20f0000), \
8299 X(add_sp,000d, f10d0000), \
8300 X(adr, 000f, f20f0000), \
8301 X(and, 4000, ea000000), \
8302 X(ands, 4000, ea100000), \
8303 X(asr, 1000, fa40f000), \
8304 X(asrs, 1000, fa50f000), \
8305 X(b, e000, f000b000), \
8306 X(bcond, d000, f0008000), \
8307 X(bic, 4380, ea200000), \
8308 X(bics, 4380, ea300000), \
8309 X(cmn, 42c0, eb100f00), \
8310 X(cmp, 2800, ebb00f00), \
8311 X(cpsie, b660, f3af8400), \
8312 X(cpsid, b670, f3af8600), \
8313 X(cpy, 4600, ea4f0000), \
8314 X(dec_sp,80dd, f1ad0d00), \
8315 X(eor, 4040, ea800000), \
8316 X(eors, 4040, ea900000), \
8317 X(inc_sp,00dd, f10d0d00), \
8318 X(ldmia, c800, e8900000), \
8319 X(ldr, 6800, f8500000), \
8320 X(ldrb, 7800, f8100000), \
8321 X(ldrh, 8800, f8300000), \
8322 X(ldrsb, 5600, f9100000), \
8323 X(ldrsh, 5e00, f9300000), \
8324 X(ldr_pc,4800, f85f0000), \
8325 X(ldr_pc2,4800, f85f0000), \
8326 X(ldr_sp,9800, f85d0000), \
8327 X(lsl, 0000, fa00f000), \
8328 X(lsls, 0000, fa10f000), \
8329 X(lsr, 0800, fa20f000), \
8330 X(lsrs, 0800, fa30f000), \
8331 X(mov, 2000, ea4f0000), \
8332 X(movs, 2000, ea5f0000), \
8333 X(mul, 4340, fb00f000), \
8334 X(muls, 4340, ffffffff), /* no 32b muls */ \
8335 X(mvn, 43c0, ea6f0000), \
8336 X(mvns, 43c0, ea7f0000), \
8337 X(neg, 4240, f1c00000), /* rsb #0 */ \
8338 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8339 X(orr, 4300, ea400000), \
8340 X(orrs, 4300, ea500000), \
8341 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8342 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8343 X(rev, ba00, fa90f080), \
8344 X(rev16, ba40, fa90f090), \
8345 X(revsh, bac0, fa90f0b0), \
8346 X(ror, 41c0, fa60f000), \
8347 X(rors, 41c0, fa70f000), \
8348 X(sbc, 4180, eb600000), \
8349 X(sbcs, 4180, eb700000), \
8350 X(stmia, c000, e8800000), \
8351 X(str, 6000, f8400000), \
8352 X(strb, 7000, f8000000), \
8353 X(strh, 8000, f8200000), \
8354 X(str_sp,9000, f84d0000), \
8355 X(sub, 1e00, eba00000), \
8356 X(subs, 1e00, ebb00000), \
8357 X(subi, 8000, f1a00000), \
8358 X(subis, 8000, f1b00000), \
8359 X(sxtb, b240, fa4ff080), \
8360 X(sxth, b200, fa0ff080), \
8361 X(tst, 4200, ea100f00), \
8362 X(uxtb, b2c0, fa5ff080), \
8363 X(uxth, b280, fa1ff080), \
8364 X(nop, bf00, f3af8000), \
8365 X(yield, bf10, f3af8001), \
8366 X(wfe, bf20, f3af8002), \
8367 X(wfi, bf30, f3af8003), \
8368 X(sev, bf40, f3af9004), /* typo, 8004? */
8369
8370 /* To catch errors in encoding functions, the codes are all offset by
8371 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8372 as 16-bit instructions. */
8373 #define X(a,b,c) T_MNEM_##a
8374 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8375 #undef X
8376
8377 #define X(a,b,c) 0x##b
8378 static const unsigned short thumb_op16[] = { T16_32_TAB };
8379 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8380 #undef X
8381
8382 #define X(a,b,c) 0x##c
8383 static const unsigned int thumb_op32[] = { T16_32_TAB };
8384 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8385 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8386 #undef X
8387 #undef T16_32_TAB
8388
8389 /* Thumb instruction encoders, in alphabetical order. */
8390
8391 /* ADDW or SUBW. */
8392 static void
8393 do_t_add_sub_w (void)
8394 {
8395 int Rd, Rn;
8396
8397 Rd = inst.operands[0].reg;
8398 Rn = inst.operands[1].reg;
8399
8400 constraint (Rd == 15, _("PC not allowed as destination"));
8401 inst.instruction |= (Rn << 16) | (Rd << 8);
8402 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8403 }
8404
8405 /* Parse an add or subtract instruction. We get here with inst.instruction
8406 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8407
8408 static void
8409 do_t_add_sub (void)
8410 {
8411 int Rd, Rs, Rn;
8412
8413 Rd = inst.operands[0].reg;
8414 Rs = (inst.operands[1].present
8415 ? inst.operands[1].reg /* Rd, Rs, foo */
8416 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8417
8418 if (unified_syntax)
8419 {
8420 bfd_boolean flags;
8421 bfd_boolean narrow;
8422 int opcode;
8423
8424 flags = (inst.instruction == T_MNEM_adds
8425 || inst.instruction == T_MNEM_subs);
8426 if (flags)
8427 narrow = (current_it_mask == 0);
8428 else
8429 narrow = (current_it_mask != 0);
8430 if (!inst.operands[2].isreg)
8431 {
8432 int add;
8433
8434 add = (inst.instruction == T_MNEM_add
8435 || inst.instruction == T_MNEM_adds);
8436 opcode = 0;
8437 if (inst.size_req != 4)
8438 {
8439 /* Attempt to use a narrow opcode, with relaxation if
8440 appropriate. */
8441 if (Rd == REG_SP && Rs == REG_SP && !flags)
8442 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8443 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8444 opcode = T_MNEM_add_sp;
8445 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8446 opcode = T_MNEM_add_pc;
8447 else if (Rd <= 7 && Rs <= 7 && narrow)
8448 {
8449 if (flags)
8450 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8451 else
8452 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8453 }
8454 if (opcode)
8455 {
8456 inst.instruction = THUMB_OP16(opcode);
8457 inst.instruction |= (Rd << 4) | Rs;
8458 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8459 if (inst.size_req != 2)
8460 inst.relax = opcode;
8461 }
8462 else
8463 constraint (inst.size_req == 2, BAD_HIREG);
8464 }
8465 if (inst.size_req == 4
8466 || (inst.size_req != 2 && !opcode))
8467 {
8468 if (Rd == REG_PC)
8469 {
8470 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8471 _("only SUBS PC, LR, #const allowed"));
8472 constraint (inst.reloc.exp.X_op != O_constant,
8473 _("expression too complex"));
8474 constraint (inst.reloc.exp.X_add_number < 0
8475 || inst.reloc.exp.X_add_number > 0xff,
8476 _("immediate value out of range"));
8477 inst.instruction = T2_SUBS_PC_LR
8478 | inst.reloc.exp.X_add_number;
8479 inst.reloc.type = BFD_RELOC_UNUSED;
8480 return;
8481 }
8482 else if (Rs == REG_PC)
8483 {
8484 /* Always use addw/subw. */
8485 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8486 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8487 }
8488 else
8489 {
8490 inst.instruction = THUMB_OP32 (inst.instruction);
8491 inst.instruction = (inst.instruction & 0xe1ffffff)
8492 | 0x10000000;
8493 if (flags)
8494 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8495 else
8496 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8497 }
8498 inst.instruction |= Rd << 8;
8499 inst.instruction |= Rs << 16;
8500 }
8501 }
8502 else
8503 {
8504 Rn = inst.operands[2].reg;
8505 /* See if we can do this with a 16-bit instruction. */
8506 if (!inst.operands[2].shifted && inst.size_req != 4)
8507 {
8508 if (Rd > 7 || Rs > 7 || Rn > 7)
8509 narrow = FALSE;
8510
8511 if (narrow)
8512 {
8513 inst.instruction = ((inst.instruction == T_MNEM_adds
8514 || inst.instruction == T_MNEM_add)
8515 ? T_OPCODE_ADD_R3
8516 : T_OPCODE_SUB_R3);
8517 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8518 return;
8519 }
8520
8521 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8522 {
8523 /* Thumb-1 cores (except v6-M) require at least one high
8524 register in a narrow non flag setting add. */
8525 if (Rd > 7 || Rn > 7
8526 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8527 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8528 {
8529 if (Rd == Rn)
8530 {
8531 Rn = Rs;
8532 Rs = Rd;
8533 }
8534 inst.instruction = T_OPCODE_ADD_HI;
8535 inst.instruction |= (Rd & 8) << 4;
8536 inst.instruction |= (Rd & 7);
8537 inst.instruction |= Rn << 3;
8538 return;
8539 }
8540 }
8541 }
8542 /* If we get here, it can't be done in 16 bits. */
8543 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8544 _("shift must be constant"));
8545 inst.instruction = THUMB_OP32 (inst.instruction);
8546 inst.instruction |= Rd << 8;
8547 inst.instruction |= Rs << 16;
8548 encode_thumb32_shifted_operand (2);
8549 }
8550 }
8551 else
8552 {
8553 constraint (inst.instruction == T_MNEM_adds
8554 || inst.instruction == T_MNEM_subs,
8555 BAD_THUMB32);
8556
8557 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8558 {
8559 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8560 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8561 BAD_HIREG);
8562
8563 inst.instruction = (inst.instruction == T_MNEM_add
8564 ? 0x0000 : 0x8000);
8565 inst.instruction |= (Rd << 4) | Rs;
8566 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8567 return;
8568 }
8569
8570 Rn = inst.operands[2].reg;
8571 constraint (inst.operands[2].shifted, _("unshifted register required"));
8572
8573 /* We now have Rd, Rs, and Rn set to registers. */
8574 if (Rd > 7 || Rs > 7 || Rn > 7)
8575 {
8576 /* Can't do this for SUB. */
8577 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8578 inst.instruction = T_OPCODE_ADD_HI;
8579 inst.instruction |= (Rd & 8) << 4;
8580 inst.instruction |= (Rd & 7);
8581 if (Rs == Rd)
8582 inst.instruction |= Rn << 3;
8583 else if (Rn == Rd)
8584 inst.instruction |= Rs << 3;
8585 else
8586 constraint (1, _("dest must overlap one source register"));
8587 }
8588 else
8589 {
8590 inst.instruction = (inst.instruction == T_MNEM_add
8591 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8592 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8593 }
8594 }
8595 }
8596
8597 static void
8598 do_t_adr (void)
8599 {
8600 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8601 {
8602 /* Defer to section relaxation. */
8603 inst.relax = inst.instruction;
8604 inst.instruction = THUMB_OP16 (inst.instruction);
8605 inst.instruction |= inst.operands[0].reg << 4;
8606 }
8607 else if (unified_syntax && inst.size_req != 2)
8608 {
8609 /* Generate a 32-bit opcode. */
8610 inst.instruction = THUMB_OP32 (inst.instruction);
8611 inst.instruction |= inst.operands[0].reg << 8;
8612 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8613 inst.reloc.pc_rel = 1;
8614 }
8615 else
8616 {
8617 /* Generate a 16-bit opcode. */
8618 inst.instruction = THUMB_OP16 (inst.instruction);
8619 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8620 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8621 inst.reloc.pc_rel = 1;
8622
8623 inst.instruction |= inst.operands[0].reg << 4;
8624 }
8625 }
8626
8627 /* Arithmetic instructions for which there is just one 16-bit
8628 instruction encoding, and it allows only two low registers.
8629 For maximal compatibility with ARM syntax, we allow three register
8630 operands even when Thumb-32 instructions are not available, as long
8631 as the first two are identical. For instance, both "sbc r0,r1" and
8632 "sbc r0,r0,r1" are allowed. */
8633 static void
8634 do_t_arit3 (void)
8635 {
8636 int Rd, Rs, Rn;
8637
8638 Rd = inst.operands[0].reg;
8639 Rs = (inst.operands[1].present
8640 ? inst.operands[1].reg /* Rd, Rs, foo */
8641 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8642 Rn = inst.operands[2].reg;
8643
8644 if (unified_syntax)
8645 {
8646 if (!inst.operands[2].isreg)
8647 {
8648 /* For an immediate, we always generate a 32-bit opcode;
8649 section relaxation will shrink it later if possible. */
8650 inst.instruction = THUMB_OP32 (inst.instruction);
8651 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8652 inst.instruction |= Rd << 8;
8653 inst.instruction |= Rs << 16;
8654 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8655 }
8656 else
8657 {
8658 bfd_boolean narrow;
8659
8660 /* See if we can do this with a 16-bit instruction. */
8661 if (THUMB_SETS_FLAGS (inst.instruction))
8662 narrow = current_it_mask == 0;
8663 else
8664 narrow = current_it_mask != 0;
8665
8666 if (Rd > 7 || Rn > 7 || Rs > 7)
8667 narrow = FALSE;
8668 if (inst.operands[2].shifted)
8669 narrow = FALSE;
8670 if (inst.size_req == 4)
8671 narrow = FALSE;
8672
8673 if (narrow
8674 && Rd == Rs)
8675 {
8676 inst.instruction = THUMB_OP16 (inst.instruction);
8677 inst.instruction |= Rd;
8678 inst.instruction |= Rn << 3;
8679 return;
8680 }
8681
8682 /* If we get here, it can't be done in 16 bits. */
8683 constraint (inst.operands[2].shifted
8684 && inst.operands[2].immisreg,
8685 _("shift must be constant"));
8686 inst.instruction = THUMB_OP32 (inst.instruction);
8687 inst.instruction |= Rd << 8;
8688 inst.instruction |= Rs << 16;
8689 encode_thumb32_shifted_operand (2);
8690 }
8691 }
8692 else
8693 {
8694 /* On its face this is a lie - the instruction does set the
8695 flags. However, the only supported mnemonic in this mode
8696 says it doesn't. */
8697 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8698
8699 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8700 _("unshifted register required"));
8701 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8702 constraint (Rd != Rs,
8703 _("dest and source1 must be the same register"));
8704
8705 inst.instruction = THUMB_OP16 (inst.instruction);
8706 inst.instruction |= Rd;
8707 inst.instruction |= Rn << 3;
8708 }
8709 }
8710
8711 /* Similarly, but for instructions where the arithmetic operation is
8712 commutative, so we can allow either of them to be different from
8713 the destination operand in a 16-bit instruction. For instance, all
8714 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8715 accepted. */
8716 static void
8717 do_t_arit3c (void)
8718 {
8719 int Rd, Rs, Rn;
8720
8721 Rd = inst.operands[0].reg;
8722 Rs = (inst.operands[1].present
8723 ? inst.operands[1].reg /* Rd, Rs, foo */
8724 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8725 Rn = inst.operands[2].reg;
8726
8727 if (unified_syntax)
8728 {
8729 if (!inst.operands[2].isreg)
8730 {
8731 /* For an immediate, we always generate a 32-bit opcode;
8732 section relaxation will shrink it later if possible. */
8733 inst.instruction = THUMB_OP32 (inst.instruction);
8734 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8735 inst.instruction |= Rd << 8;
8736 inst.instruction |= Rs << 16;
8737 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8738 }
8739 else
8740 {
8741 bfd_boolean narrow;
8742
8743 /* See if we can do this with a 16-bit instruction. */
8744 if (THUMB_SETS_FLAGS (inst.instruction))
8745 narrow = current_it_mask == 0;
8746 else
8747 narrow = current_it_mask != 0;
8748
8749 if (Rd > 7 || Rn > 7 || Rs > 7)
8750 narrow = FALSE;
8751 if (inst.operands[2].shifted)
8752 narrow = FALSE;
8753 if (inst.size_req == 4)
8754 narrow = FALSE;
8755
8756 if (narrow)
8757 {
8758 if (Rd == Rs)
8759 {
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rn << 3;
8763 return;
8764 }
8765 if (Rd == Rn)
8766 {
8767 inst.instruction = THUMB_OP16 (inst.instruction);
8768 inst.instruction |= Rd;
8769 inst.instruction |= Rs << 3;
8770 return;
8771 }
8772 }
8773
8774 /* If we get here, it can't be done in 16 bits. */
8775 constraint (inst.operands[2].shifted
8776 && inst.operands[2].immisreg,
8777 _("shift must be constant"));
8778 inst.instruction = THUMB_OP32 (inst.instruction);
8779 inst.instruction |= Rd << 8;
8780 inst.instruction |= Rs << 16;
8781 encode_thumb32_shifted_operand (2);
8782 }
8783 }
8784 else
8785 {
8786 /* On its face this is a lie - the instruction does set the
8787 flags. However, the only supported mnemonic in this mode
8788 says it doesn't. */
8789 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8790
8791 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8792 _("unshifted register required"));
8793 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8794
8795 inst.instruction = THUMB_OP16 (inst.instruction);
8796 inst.instruction |= Rd;
8797
8798 if (Rd == Rs)
8799 inst.instruction |= Rn << 3;
8800 else if (Rd == Rn)
8801 inst.instruction |= Rs << 3;
8802 else
8803 constraint (1, _("dest must overlap one source register"));
8804 }
8805 }
8806
8807 static void
8808 do_t_barrier (void)
8809 {
8810 if (inst.operands[0].present)
8811 {
8812 constraint ((inst.instruction & 0xf0) != 0x40
8813 && inst.operands[0].imm != 0xf,
8814 _("bad barrier type"));
8815 inst.instruction |= inst.operands[0].imm;
8816 }
8817 else
8818 inst.instruction |= 0xf;
8819 }
8820
8821 static void
8822 do_t_bfc (void)
8823 {
8824 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8825 constraint (msb > 32, _("bit-field extends past end of register"));
8826 /* The instruction encoding stores the LSB and MSB,
8827 not the LSB and width. */
8828 inst.instruction |= inst.operands[0].reg << 8;
8829 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8830 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8831 inst.instruction |= msb - 1;
8832 }
8833
8834 static void
8835 do_t_bfi (void)
8836 {
8837 unsigned int msb;
8838
8839 /* #0 in second position is alternative syntax for bfc, which is
8840 the same instruction but with REG_PC in the Rm field. */
8841 if (!inst.operands[1].isreg)
8842 inst.operands[1].reg = REG_PC;
8843
8844 msb = inst.operands[2].imm + inst.operands[3].imm;
8845 constraint (msb > 32, _("bit-field extends past end of register"));
8846 /* The instruction encoding stores the LSB and MSB,
8847 not the LSB and width. */
8848 inst.instruction |= inst.operands[0].reg << 8;
8849 inst.instruction |= inst.operands[1].reg << 16;
8850 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8851 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8852 inst.instruction |= msb - 1;
8853 }
8854
8855 static void
8856 do_t_bfx (void)
8857 {
8858 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8859 _("bit-field extends past end of register"));
8860 inst.instruction |= inst.operands[0].reg << 8;
8861 inst.instruction |= inst.operands[1].reg << 16;
8862 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8863 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8864 inst.instruction |= inst.operands[3].imm - 1;
8865 }
8866
8867 /* ARM V5 Thumb BLX (argument parse)
8868 BLX <target_addr> which is BLX(1)
8869 BLX <Rm> which is BLX(2)
8870 Unfortunately, there are two different opcodes for this mnemonic.
8871 So, the insns[].value is not used, and the code here zaps values
8872 into inst.instruction.
8873
8874 ??? How to take advantage of the additional two bits of displacement
8875 available in Thumb32 mode? Need new relocation? */
8876
8877 static void
8878 do_t_blx (void)
8879 {
8880 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8881 if (inst.operands[0].isreg)
8882 /* We have a register, so this is BLX(2). */
8883 inst.instruction |= inst.operands[0].reg << 3;
8884 else
8885 {
8886 /* No register. This must be BLX(1). */
8887 inst.instruction = 0xf000e800;
8888 #ifdef OBJ_ELF
8889 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8890 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8891 else
8892 #endif
8893 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8894 inst.reloc.pc_rel = 1;
8895 }
8896 }
8897
8898 static void
8899 do_t_branch (void)
8900 {
8901 int opcode;
8902 int cond;
8903
8904 if (current_it_mask)
8905 {
8906 /* Conditional branches inside IT blocks are encoded as unconditional
8907 branches. */
8908 cond = COND_ALWAYS;
8909 /* A branch must be the last instruction in an IT block. */
8910 constraint (current_it_mask != 0x10, BAD_BRANCH);
8911 }
8912 else
8913 cond = inst.cond;
8914
8915 if (cond != COND_ALWAYS)
8916 opcode = T_MNEM_bcond;
8917 else
8918 opcode = inst.instruction;
8919
8920 if (unified_syntax && inst.size_req == 4)
8921 {
8922 inst.instruction = THUMB_OP32(opcode);
8923 if (cond == COND_ALWAYS)
8924 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8925 else
8926 {
8927 assert (cond != 0xF);
8928 inst.instruction |= cond << 22;
8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8930 }
8931 }
8932 else
8933 {
8934 inst.instruction = THUMB_OP16(opcode);
8935 if (cond == COND_ALWAYS)
8936 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8937 else
8938 {
8939 inst.instruction |= cond << 8;
8940 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8941 }
8942 /* Allow section relaxation. */
8943 if (unified_syntax && inst.size_req != 2)
8944 inst.relax = opcode;
8945 }
8946
8947 inst.reloc.pc_rel = 1;
8948 }
8949
8950 static void
8951 do_t_bkpt (void)
8952 {
8953 constraint (inst.cond != COND_ALWAYS,
8954 _("instruction is always unconditional"));
8955 if (inst.operands[0].present)
8956 {
8957 constraint (inst.operands[0].imm > 255,
8958 _("immediate value out of range"));
8959 inst.instruction |= inst.operands[0].imm;
8960 }
8961 }
8962
8963 static void
8964 do_t_branch23 (void)
8965 {
8966 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8967 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8968 inst.reloc.pc_rel = 1;
8969
8970 /* If the destination of the branch is a defined symbol which does not have
8971 the THUMB_FUNC attribute, then we must be calling a function which has
8972 the (interfacearm) attribute. We look for the Thumb entry point to that
8973 function and change the branch to refer to that function instead. */
8974 if ( inst.reloc.exp.X_op == O_symbol
8975 && inst.reloc.exp.X_add_symbol != NULL
8976 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8977 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8978 inst.reloc.exp.X_add_symbol =
8979 find_real_start (inst.reloc.exp.X_add_symbol);
8980 }
8981
8982 static void
8983 do_t_bx (void)
8984 {
8985 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8986 inst.instruction |= inst.operands[0].reg << 3;
8987 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8988 should cause the alignment to be checked once it is known. This is
8989 because BX PC only works if the instruction is word aligned. */
8990 }
8991
8992 static void
8993 do_t_bxj (void)
8994 {
8995 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8996 if (inst.operands[0].reg == REG_PC)
8997 as_tsktsk (_("use of r15 in bxj is not really useful"));
8998
8999 inst.instruction |= inst.operands[0].reg << 16;
9000 }
9001
9002 static void
9003 do_t_clz (void)
9004 {
9005 inst.instruction |= inst.operands[0].reg << 8;
9006 inst.instruction |= inst.operands[1].reg << 16;
9007 inst.instruction |= inst.operands[1].reg;
9008 }
9009
9010 static void
9011 do_t_cps (void)
9012 {
9013 constraint (current_it_mask, BAD_NOT_IT);
9014 inst.instruction |= inst.operands[0].imm;
9015 }
9016
9017 static void
9018 do_t_cpsi (void)
9019 {
9020 constraint (current_it_mask, BAD_NOT_IT);
9021 if (unified_syntax
9022 && (inst.operands[1].present || inst.size_req == 4)
9023 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9024 {
9025 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9026 inst.instruction = 0xf3af8000;
9027 inst.instruction |= imod << 9;
9028 inst.instruction |= inst.operands[0].imm << 5;
9029 if (inst.operands[1].present)
9030 inst.instruction |= 0x100 | inst.operands[1].imm;
9031 }
9032 else
9033 {
9034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9035 && (inst.operands[0].imm & 4),
9036 _("selected processor does not support 'A' form "
9037 "of this instruction"));
9038 constraint (inst.operands[1].present || inst.size_req == 4,
9039 _("Thumb does not support the 2-argument "
9040 "form of this instruction"));
9041 inst.instruction |= inst.operands[0].imm;
9042 }
9043 }
9044
9045 /* THUMB CPY instruction (argument parse). */
9046
9047 static void
9048 do_t_cpy (void)
9049 {
9050 if (inst.size_req == 4)
9051 {
9052 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9053 inst.instruction |= inst.operands[0].reg << 8;
9054 inst.instruction |= inst.operands[1].reg;
9055 }
9056 else
9057 {
9058 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9059 inst.instruction |= (inst.operands[0].reg & 0x7);
9060 inst.instruction |= inst.operands[1].reg << 3;
9061 }
9062 }
9063
9064 static void
9065 do_t_cbz (void)
9066 {
9067 constraint (current_it_mask, BAD_NOT_IT);
9068 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9069 inst.instruction |= inst.operands[0].reg;
9070 inst.reloc.pc_rel = 1;
9071 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9072 }
9073
9074 static void
9075 do_t_dbg (void)
9076 {
9077 inst.instruction |= inst.operands[0].imm;
9078 }
9079
9080 static void
9081 do_t_div (void)
9082 {
9083 if (!inst.operands[1].present)
9084 inst.operands[1].reg = inst.operands[0].reg;
9085 inst.instruction |= inst.operands[0].reg << 8;
9086 inst.instruction |= inst.operands[1].reg << 16;
9087 inst.instruction |= inst.operands[2].reg;
9088 }
9089
9090 static void
9091 do_t_hint (void)
9092 {
9093 if (unified_syntax && inst.size_req == 4)
9094 inst.instruction = THUMB_OP32 (inst.instruction);
9095 else
9096 inst.instruction = THUMB_OP16 (inst.instruction);
9097 }
9098
9099 static void
9100 do_t_it (void)
9101 {
9102 unsigned int cond = inst.operands[0].imm;
9103
9104 constraint (current_it_mask, BAD_NOT_IT);
9105 current_it_mask = (inst.instruction & 0xf) | 0x10;
9106 current_cc = cond;
9107
9108 /* If the condition is a negative condition, invert the mask. */
9109 if ((cond & 0x1) == 0x0)
9110 {
9111 unsigned int mask = inst.instruction & 0x000f;
9112
9113 if ((mask & 0x7) == 0)
9114 /* no conversion needed */;
9115 else if ((mask & 0x3) == 0)
9116 mask ^= 0x8;
9117 else if ((mask & 0x1) == 0)
9118 mask ^= 0xC;
9119 else
9120 mask ^= 0xE;
9121
9122 inst.instruction &= 0xfff0;
9123 inst.instruction |= mask;
9124 }
9125
9126 inst.instruction |= cond << 4;
9127 }
9128
9129 /* Helper function used for both push/pop and ldm/stm. */
9130 static void
9131 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9132 {
9133 bfd_boolean load;
9134
9135 load = (inst.instruction & (1 << 20)) != 0;
9136
9137 if (mask & (1 << 13))
9138 inst.error = _("SP not allowed in register list");
9139 if (load)
9140 {
9141 if (mask & (1 << 14)
9142 && mask & (1 << 15))
9143 inst.error = _("LR and PC should not both be in register list");
9144
9145 if ((mask & (1 << base)) != 0
9146 && writeback)
9147 as_warn (_("base register should not be in register list "
9148 "when written back"));
9149 }
9150 else
9151 {
9152 if (mask & (1 << 15))
9153 inst.error = _("PC not allowed in register list");
9154
9155 if (mask & (1 << base))
9156 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9157 }
9158
9159 if ((mask & (mask - 1)) == 0)
9160 {
9161 /* Single register transfers implemented as str/ldr. */
9162 if (writeback)
9163 {
9164 if (inst.instruction & (1 << 23))
9165 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9166 else
9167 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9168 }
9169 else
9170 {
9171 if (inst.instruction & (1 << 23))
9172 inst.instruction = 0x00800000; /* ia -> [base] */
9173 else
9174 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9175 }
9176
9177 inst.instruction |= 0xf8400000;
9178 if (load)
9179 inst.instruction |= 0x00100000;
9180
9181 mask = ffs (mask) - 1;
9182 mask <<= 12;
9183 }
9184 else if (writeback)
9185 inst.instruction |= WRITE_BACK;
9186
9187 inst.instruction |= mask;
9188 inst.instruction |= base << 16;
9189 }
9190
9191 static void
9192 do_t_ldmstm (void)
9193 {
9194 /* This really doesn't seem worth it. */
9195 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9196 _("expression too complex"));
9197 constraint (inst.operands[1].writeback,
9198 _("Thumb load/store multiple does not support {reglist}^"));
9199
9200 if (unified_syntax)
9201 {
9202 bfd_boolean narrow;
9203 unsigned mask;
9204
9205 narrow = FALSE;
9206 /* See if we can use a 16-bit instruction. */
9207 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9208 && inst.size_req != 4
9209 && !(inst.operands[1].imm & ~0xff))
9210 {
9211 mask = 1 << inst.operands[0].reg;
9212
9213 if (inst.operands[0].reg <= 7
9214 && (inst.instruction == T_MNEM_stmia
9215 ? inst.operands[0].writeback
9216 : (inst.operands[0].writeback
9217 == !(inst.operands[1].imm & mask))))
9218 {
9219 if (inst.instruction == T_MNEM_stmia
9220 && (inst.operands[1].imm & mask)
9221 && (inst.operands[1].imm & (mask - 1)))
9222 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9223 inst.operands[0].reg);
9224
9225 inst.instruction = THUMB_OP16 (inst.instruction);
9226 inst.instruction |= inst.operands[0].reg << 8;
9227 inst.instruction |= inst.operands[1].imm;
9228 narrow = TRUE;
9229 }
9230 else if (inst.operands[0] .reg == REG_SP
9231 && inst.operands[0].writeback)
9232 {
9233 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9234 ? T_MNEM_push : T_MNEM_pop);
9235 inst.instruction |= inst.operands[1].imm;
9236 narrow = TRUE;
9237 }
9238 }
9239
9240 if (!narrow)
9241 {
9242 if (inst.instruction < 0xffff)
9243 inst.instruction = THUMB_OP32 (inst.instruction);
9244
9245 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9246 inst.operands[0].writeback);
9247 }
9248 }
9249 else
9250 {
9251 constraint (inst.operands[0].reg > 7
9252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9253 constraint (inst.instruction != T_MNEM_ldmia
9254 && inst.instruction != T_MNEM_stmia,
9255 _("Thumb-2 instruction only valid in unified syntax"));
9256 if (inst.instruction == T_MNEM_stmia)
9257 {
9258 if (!inst.operands[0].writeback)
9259 as_warn (_("this instruction will write back the base register"));
9260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9262 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9263 inst.operands[0].reg);
9264 }
9265 else
9266 {
9267 if (!inst.operands[0].writeback
9268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9269 as_warn (_("this instruction will write back the base register"));
9270 else if (inst.operands[0].writeback
9271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9272 as_warn (_("this instruction will not write back the base register"));
9273 }
9274
9275 inst.instruction = THUMB_OP16 (inst.instruction);
9276 inst.instruction |= inst.operands[0].reg << 8;
9277 inst.instruction |= inst.operands[1].imm;
9278 }
9279 }
9280
9281 static void
9282 do_t_ldrex (void)
9283 {
9284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9285 || inst.operands[1].postind || inst.operands[1].writeback
9286 || inst.operands[1].immisreg || inst.operands[1].shifted
9287 || inst.operands[1].negative,
9288 BAD_ADDR_MODE);
9289
9290 inst.instruction |= inst.operands[0].reg << 12;
9291 inst.instruction |= inst.operands[1].reg << 16;
9292 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9293 }
9294
9295 static void
9296 do_t_ldrexd (void)
9297 {
9298 if (!inst.operands[1].present)
9299 {
9300 constraint (inst.operands[0].reg == REG_LR,
9301 _("r14 not allowed as first register "
9302 "when second register is omitted"));
9303 inst.operands[1].reg = inst.operands[0].reg + 1;
9304 }
9305 constraint (inst.operands[0].reg == inst.operands[1].reg,
9306 BAD_OVERLAP);
9307
9308 inst.instruction |= inst.operands[0].reg << 12;
9309 inst.instruction |= inst.operands[1].reg << 8;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 }
9312
9313 static void
9314 do_t_ldst (void)
9315 {
9316 unsigned long opcode;
9317 int Rn;
9318
9319 opcode = inst.instruction;
9320 if (unified_syntax)
9321 {
9322 if (!inst.operands[1].isreg)
9323 {
9324 if (opcode <= 0xffff)
9325 inst.instruction = THUMB_OP32 (opcode);
9326 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9327 return;
9328 }
9329 if (inst.operands[1].isreg
9330 && !inst.operands[1].writeback
9331 && !inst.operands[1].shifted && !inst.operands[1].postind
9332 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9333 && opcode <= 0xffff
9334 && inst.size_req != 4)
9335 {
9336 /* Insn may have a 16-bit form. */
9337 Rn = inst.operands[1].reg;
9338 if (inst.operands[1].immisreg)
9339 {
9340 inst.instruction = THUMB_OP16 (opcode);
9341 /* [Rn, Rik] */
9342 if (Rn <= 7 && inst.operands[1].imm <= 7)
9343 goto op16;
9344 }
9345 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9346 && opcode != T_MNEM_ldrsb)
9347 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9348 || (Rn == REG_SP && opcode == T_MNEM_str))
9349 {
9350 /* [Rn, #const] */
9351 if (Rn > 7)
9352 {
9353 if (Rn == REG_PC)
9354 {
9355 if (inst.reloc.pc_rel)
9356 opcode = T_MNEM_ldr_pc2;
9357 else
9358 opcode = T_MNEM_ldr_pc;
9359 }
9360 else
9361 {
9362 if (opcode == T_MNEM_ldr)
9363 opcode = T_MNEM_ldr_sp;
9364 else
9365 opcode = T_MNEM_str_sp;
9366 }
9367 inst.instruction = inst.operands[0].reg << 8;
9368 }
9369 else
9370 {
9371 inst.instruction = inst.operands[0].reg;
9372 inst.instruction |= inst.operands[1].reg << 3;
9373 }
9374 inst.instruction |= THUMB_OP16 (opcode);
9375 if (inst.size_req == 2)
9376 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9377 else
9378 inst.relax = opcode;
9379 return;
9380 }
9381 }
9382 /* Definitely a 32-bit variant. */
9383 inst.instruction = THUMB_OP32 (opcode);
9384 inst.instruction |= inst.operands[0].reg << 12;
9385 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9386 return;
9387 }
9388
9389 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9390
9391 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9392 {
9393 /* Only [Rn,Rm] is acceptable. */
9394 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9395 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9396 || inst.operands[1].postind || inst.operands[1].shifted
9397 || inst.operands[1].negative,
9398 _("Thumb does not support this addressing mode"));
9399 inst.instruction = THUMB_OP16 (inst.instruction);
9400 goto op16;
9401 }
9402
9403 inst.instruction = THUMB_OP16 (inst.instruction);
9404 if (!inst.operands[1].isreg)
9405 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9406 return;
9407
9408 constraint (!inst.operands[1].preind
9409 || inst.operands[1].shifted
9410 || inst.operands[1].writeback,
9411 _("Thumb does not support this addressing mode"));
9412 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9413 {
9414 constraint (inst.instruction & 0x0600,
9415 _("byte or halfword not valid for base register"));
9416 constraint (inst.operands[1].reg == REG_PC
9417 && !(inst.instruction & THUMB_LOAD_BIT),
9418 _("r15 based store not allowed"));
9419 constraint (inst.operands[1].immisreg,
9420 _("invalid base register for register offset"));
9421
9422 if (inst.operands[1].reg == REG_PC)
9423 inst.instruction = T_OPCODE_LDR_PC;
9424 else if (inst.instruction & THUMB_LOAD_BIT)
9425 inst.instruction = T_OPCODE_LDR_SP;
9426 else
9427 inst.instruction = T_OPCODE_STR_SP;
9428
9429 inst.instruction |= inst.operands[0].reg << 8;
9430 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9431 return;
9432 }
9433
9434 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9435 if (!inst.operands[1].immisreg)
9436 {
9437 /* Immediate offset. */
9438 inst.instruction |= inst.operands[0].reg;
9439 inst.instruction |= inst.operands[1].reg << 3;
9440 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9441 return;
9442 }
9443
9444 /* Register offset. */
9445 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9446 constraint (inst.operands[1].negative,
9447 _("Thumb does not support this addressing mode"));
9448
9449 op16:
9450 switch (inst.instruction)
9451 {
9452 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9453 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9454 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9455 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9456 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9457 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9458 case 0x5600 /* ldrsb */:
9459 case 0x5e00 /* ldrsh */: break;
9460 default: abort ();
9461 }
9462
9463 inst.instruction |= inst.operands[0].reg;
9464 inst.instruction |= inst.operands[1].reg << 3;
9465 inst.instruction |= inst.operands[1].imm << 6;
9466 }
9467
9468 static void
9469 do_t_ldstd (void)
9470 {
9471 if (!inst.operands[1].present)
9472 {
9473 inst.operands[1].reg = inst.operands[0].reg + 1;
9474 constraint (inst.operands[0].reg == REG_LR,
9475 _("r14 not allowed here"));
9476 }
9477 inst.instruction |= inst.operands[0].reg << 12;
9478 inst.instruction |= inst.operands[1].reg << 8;
9479 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9480 }
9481
9482 static void
9483 do_t_ldstt (void)
9484 {
9485 inst.instruction |= inst.operands[0].reg << 12;
9486 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9487 }
9488
9489 static void
9490 do_t_mla (void)
9491 {
9492 inst.instruction |= inst.operands[0].reg << 8;
9493 inst.instruction |= inst.operands[1].reg << 16;
9494 inst.instruction |= inst.operands[2].reg;
9495 inst.instruction |= inst.operands[3].reg << 12;
9496 }
9497
9498 static void
9499 do_t_mlal (void)
9500 {
9501 inst.instruction |= inst.operands[0].reg << 12;
9502 inst.instruction |= inst.operands[1].reg << 8;
9503 inst.instruction |= inst.operands[2].reg << 16;
9504 inst.instruction |= inst.operands[3].reg;
9505 }
9506
9507 static void
9508 do_t_mov_cmp (void)
9509 {
9510 if (unified_syntax)
9511 {
9512 int r0off = (inst.instruction == T_MNEM_mov
9513 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9514 unsigned long opcode;
9515 bfd_boolean narrow;
9516 bfd_boolean low_regs;
9517
9518 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9519 opcode = inst.instruction;
9520 if (current_it_mask)
9521 narrow = opcode != T_MNEM_movs;
9522 else
9523 narrow = opcode != T_MNEM_movs || low_regs;
9524 if (inst.size_req == 4
9525 || inst.operands[1].shifted)
9526 narrow = FALSE;
9527
9528 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9529 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9530 && !inst.operands[1].shifted
9531 && inst.operands[0].reg == REG_PC
9532 && inst.operands[1].reg == REG_LR)
9533 {
9534 inst.instruction = T2_SUBS_PC_LR;
9535 return;
9536 }
9537
9538 if (!inst.operands[1].isreg)
9539 {
9540 /* Immediate operand. */
9541 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9542 narrow = 0;
9543 if (low_regs && narrow)
9544 {
9545 inst.instruction = THUMB_OP16 (opcode);
9546 inst.instruction |= inst.operands[0].reg << 8;
9547 if (inst.size_req == 2)
9548 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9549 else
9550 inst.relax = opcode;
9551 }
9552 else
9553 {
9554 inst.instruction = THUMB_OP32 (inst.instruction);
9555 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9556 inst.instruction |= inst.operands[0].reg << r0off;
9557 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9558 }
9559 }
9560 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9561 && (inst.instruction == T_MNEM_mov
9562 || inst.instruction == T_MNEM_movs))
9563 {
9564 /* Register shifts are encoded as separate shift instructions. */
9565 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9566
9567 if (current_it_mask)
9568 narrow = !flags;
9569 else
9570 narrow = flags;
9571
9572 if (inst.size_req == 4)
9573 narrow = FALSE;
9574
9575 if (!low_regs || inst.operands[1].imm > 7)
9576 narrow = FALSE;
9577
9578 if (inst.operands[0].reg != inst.operands[1].reg)
9579 narrow = FALSE;
9580
9581 switch (inst.operands[1].shift_kind)
9582 {
9583 case SHIFT_LSL:
9584 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9585 break;
9586 case SHIFT_ASR:
9587 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9588 break;
9589 case SHIFT_LSR:
9590 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9591 break;
9592 case SHIFT_ROR:
9593 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9594 break;
9595 default:
9596 abort ();
9597 }
9598
9599 inst.instruction = opcode;
9600 if (narrow)
9601 {
9602 inst.instruction |= inst.operands[0].reg;
9603 inst.instruction |= inst.operands[1].imm << 3;
9604 }
9605 else
9606 {
9607 if (flags)
9608 inst.instruction |= CONDS_BIT;
9609
9610 inst.instruction |= inst.operands[0].reg << 8;
9611 inst.instruction |= inst.operands[1].reg << 16;
9612 inst.instruction |= inst.operands[1].imm;
9613 }
9614 }
9615 else if (!narrow)
9616 {
9617 /* Some mov with immediate shift have narrow variants.
9618 Register shifts are handled above. */
9619 if (low_regs && inst.operands[1].shifted
9620 && (inst.instruction == T_MNEM_mov
9621 || inst.instruction == T_MNEM_movs))
9622 {
9623 if (current_it_mask)
9624 narrow = (inst.instruction == T_MNEM_mov);
9625 else
9626 narrow = (inst.instruction == T_MNEM_movs);
9627 }
9628
9629 if (narrow)
9630 {
9631 switch (inst.operands[1].shift_kind)
9632 {
9633 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9634 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9635 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9636 default: narrow = FALSE; break;
9637 }
9638 }
9639
9640 if (narrow)
9641 {
9642 inst.instruction |= inst.operands[0].reg;
9643 inst.instruction |= inst.operands[1].reg << 3;
9644 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9645 }
9646 else
9647 {
9648 inst.instruction = THUMB_OP32 (inst.instruction);
9649 inst.instruction |= inst.operands[0].reg << r0off;
9650 encode_thumb32_shifted_operand (1);
9651 }
9652 }
9653 else
9654 switch (inst.instruction)
9655 {
9656 case T_MNEM_mov:
9657 inst.instruction = T_OPCODE_MOV_HR;
9658 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9659 inst.instruction |= (inst.operands[0].reg & 0x7);
9660 inst.instruction |= inst.operands[1].reg << 3;
9661 break;
9662
9663 case T_MNEM_movs:
9664 /* We know we have low registers at this point.
9665 Generate ADD Rd, Rs, #0. */
9666 inst.instruction = T_OPCODE_ADD_I3;
9667 inst.instruction |= inst.operands[0].reg;
9668 inst.instruction |= inst.operands[1].reg << 3;
9669 break;
9670
9671 case T_MNEM_cmp:
9672 if (low_regs)
9673 {
9674 inst.instruction = T_OPCODE_CMP_LR;
9675 inst.instruction |= inst.operands[0].reg;
9676 inst.instruction |= inst.operands[1].reg << 3;
9677 }
9678 else
9679 {
9680 inst.instruction = T_OPCODE_CMP_HR;
9681 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9682 inst.instruction |= (inst.operands[0].reg & 0x7);
9683 inst.instruction |= inst.operands[1].reg << 3;
9684 }
9685 break;
9686 }
9687 return;
9688 }
9689
9690 inst.instruction = THUMB_OP16 (inst.instruction);
9691 if (inst.operands[1].isreg)
9692 {
9693 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9694 {
9695 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9696 since a MOV instruction produces unpredictable results. */
9697 if (inst.instruction == T_OPCODE_MOV_I8)
9698 inst.instruction = T_OPCODE_ADD_I3;
9699 else
9700 inst.instruction = T_OPCODE_CMP_LR;
9701
9702 inst.instruction |= inst.operands[0].reg;
9703 inst.instruction |= inst.operands[1].reg << 3;
9704 }
9705 else
9706 {
9707 if (inst.instruction == T_OPCODE_MOV_I8)
9708 inst.instruction = T_OPCODE_MOV_HR;
9709 else
9710 inst.instruction = T_OPCODE_CMP_HR;
9711 do_t_cpy ();
9712 }
9713 }
9714 else
9715 {
9716 constraint (inst.operands[0].reg > 7,
9717 _("only lo regs allowed with immediate"));
9718 inst.instruction |= inst.operands[0].reg << 8;
9719 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9720 }
9721 }
9722
9723 static void
9724 do_t_mov16 (void)
9725 {
9726 bfd_vma imm;
9727 bfd_boolean top;
9728
9729 top = (inst.instruction & 0x00800000) != 0;
9730 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9731 {
9732 constraint (top, _(":lower16: not allowed this instruction"));
9733 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9734 }
9735 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9736 {
9737 constraint (!top, _(":upper16: not allowed this instruction"));
9738 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9739 }
9740
9741 inst.instruction |= inst.operands[0].reg << 8;
9742 if (inst.reloc.type == BFD_RELOC_UNUSED)
9743 {
9744 imm = inst.reloc.exp.X_add_number;
9745 inst.instruction |= (imm & 0xf000) << 4;
9746 inst.instruction |= (imm & 0x0800) << 15;
9747 inst.instruction |= (imm & 0x0700) << 4;
9748 inst.instruction |= (imm & 0x00ff);
9749 }
9750 }
9751
9752 static void
9753 do_t_mvn_tst (void)
9754 {
9755 if (unified_syntax)
9756 {
9757 int r0off = (inst.instruction == T_MNEM_mvn
9758 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9759 bfd_boolean narrow;
9760
9761 if (inst.size_req == 4
9762 || inst.instruction > 0xffff
9763 || inst.operands[1].shifted
9764 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9765 narrow = FALSE;
9766 else if (inst.instruction == T_MNEM_cmn)
9767 narrow = TRUE;
9768 else if (THUMB_SETS_FLAGS (inst.instruction))
9769 narrow = (current_it_mask == 0);
9770 else
9771 narrow = (current_it_mask != 0);
9772
9773 if (!inst.operands[1].isreg)
9774 {
9775 /* For an immediate, we always generate a 32-bit opcode;
9776 section relaxation will shrink it later if possible. */
9777 if (inst.instruction < 0xffff)
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9780 inst.instruction |= inst.operands[0].reg << r0off;
9781 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9782 }
9783 else
9784 {
9785 /* See if we can do this with a 16-bit instruction. */
9786 if (narrow)
9787 {
9788 inst.instruction = THUMB_OP16 (inst.instruction);
9789 inst.instruction |= inst.operands[0].reg;
9790 inst.instruction |= inst.operands[1].reg << 3;
9791 }
9792 else
9793 {
9794 constraint (inst.operands[1].shifted
9795 && inst.operands[1].immisreg,
9796 _("shift must be constant"));
9797 if (inst.instruction < 0xffff)
9798 inst.instruction = THUMB_OP32 (inst.instruction);
9799 inst.instruction |= inst.operands[0].reg << r0off;
9800 encode_thumb32_shifted_operand (1);
9801 }
9802 }
9803 }
9804 else
9805 {
9806 constraint (inst.instruction > 0xffff
9807 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9808 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9809 _("unshifted register required"));
9810 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9811 BAD_HIREG);
9812
9813 inst.instruction = THUMB_OP16 (inst.instruction);
9814 inst.instruction |= inst.operands[0].reg;
9815 inst.instruction |= inst.operands[1].reg << 3;
9816 }
9817 }
9818
9819 static void
9820 do_t_mrs (void)
9821 {
9822 int flags;
9823
9824 if (do_vfp_nsyn_mrs () == SUCCESS)
9825 return;
9826
9827 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9828 if (flags == 0)
9829 {
9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
9831 _("selected processor does not support "
9832 "requested special purpose register"));
9833 }
9834 else
9835 {
9836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9837 _("selected processor does not support "
9838 "requested special purpose register"));
9839 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9840 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9841 _("'CPSR' or 'SPSR' expected"));
9842 }
9843
9844 inst.instruction |= inst.operands[0].reg << 8;
9845 inst.instruction |= (flags & SPSR_BIT) >> 2;
9846 inst.instruction |= inst.operands[1].imm & 0xff;
9847 }
9848
9849 static void
9850 do_t_msr (void)
9851 {
9852 int flags;
9853
9854 if (do_vfp_nsyn_msr () == SUCCESS)
9855 return;
9856
9857 constraint (!inst.operands[1].isreg,
9858 _("Thumb encoding does not support an immediate here"));
9859 flags = inst.operands[0].imm;
9860 if (flags & ~0xff)
9861 {
9862 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9863 _("selected processor does not support "
9864 "requested special purpose register"));
9865 }
9866 else
9867 {
9868 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
9869 _("selected processor does not support "
9870 "requested special purpose register"));
9871 flags |= PSR_f;
9872 }
9873 inst.instruction |= (flags & SPSR_BIT) >> 2;
9874 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9875 inst.instruction |= (flags & 0xff);
9876 inst.instruction |= inst.operands[1].reg << 16;
9877 }
9878
9879 static void
9880 do_t_mul (void)
9881 {
9882 if (!inst.operands[2].present)
9883 inst.operands[2].reg = inst.operands[0].reg;
9884
9885 /* There is no 32-bit MULS and no 16-bit MUL. */
9886 if (unified_syntax && inst.instruction == T_MNEM_mul)
9887 {
9888 inst.instruction = THUMB_OP32 (inst.instruction);
9889 inst.instruction |= inst.operands[0].reg << 8;
9890 inst.instruction |= inst.operands[1].reg << 16;
9891 inst.instruction |= inst.operands[2].reg << 0;
9892 }
9893 else
9894 {
9895 constraint (!unified_syntax
9896 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9897 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9898 BAD_HIREG);
9899
9900 inst.instruction = THUMB_OP16 (inst.instruction);
9901 inst.instruction |= inst.operands[0].reg;
9902
9903 if (inst.operands[0].reg == inst.operands[1].reg)
9904 inst.instruction |= inst.operands[2].reg << 3;
9905 else if (inst.operands[0].reg == inst.operands[2].reg)
9906 inst.instruction |= inst.operands[1].reg << 3;
9907 else
9908 constraint (1, _("dest must overlap one source register"));
9909 }
9910 }
9911
9912 static void
9913 do_t_mull (void)
9914 {
9915 inst.instruction |= inst.operands[0].reg << 12;
9916 inst.instruction |= inst.operands[1].reg << 8;
9917 inst.instruction |= inst.operands[2].reg << 16;
9918 inst.instruction |= inst.operands[3].reg;
9919
9920 if (inst.operands[0].reg == inst.operands[1].reg)
9921 as_tsktsk (_("rdhi and rdlo must be different"));
9922 }
9923
9924 static void
9925 do_t_nop (void)
9926 {
9927 if (unified_syntax)
9928 {
9929 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9930 {
9931 inst.instruction = THUMB_OP32 (inst.instruction);
9932 inst.instruction |= inst.operands[0].imm;
9933 }
9934 else
9935 {
9936 /* PR9722: Check for Thumb2 availability before
9937 generating a thumb2 nop instruction. */
9938 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
9939 {
9940 inst.instruction = THUMB_OP16 (inst.instruction);
9941 inst.instruction |= inst.operands[0].imm << 4;
9942 }
9943 else
9944 inst.instruction = 0x46c0;
9945 }
9946 }
9947 else
9948 {
9949 constraint (inst.operands[0].present,
9950 _("Thumb does not support NOP with hints"));
9951 inst.instruction = 0x46c0;
9952 }
9953 }
9954
9955 static void
9956 do_t_neg (void)
9957 {
9958 if (unified_syntax)
9959 {
9960 bfd_boolean narrow;
9961
9962 if (THUMB_SETS_FLAGS (inst.instruction))
9963 narrow = (current_it_mask == 0);
9964 else
9965 narrow = (current_it_mask != 0);
9966 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9967 narrow = FALSE;
9968 if (inst.size_req == 4)
9969 narrow = FALSE;
9970
9971 if (!narrow)
9972 {
9973 inst.instruction = THUMB_OP32 (inst.instruction);
9974 inst.instruction |= inst.operands[0].reg << 8;
9975 inst.instruction |= inst.operands[1].reg << 16;
9976 }
9977 else
9978 {
9979 inst.instruction = THUMB_OP16 (inst.instruction);
9980 inst.instruction |= inst.operands[0].reg;
9981 inst.instruction |= inst.operands[1].reg << 3;
9982 }
9983 }
9984 else
9985 {
9986 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9987 BAD_HIREG);
9988 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9989
9990 inst.instruction = THUMB_OP16 (inst.instruction);
9991 inst.instruction |= inst.operands[0].reg;
9992 inst.instruction |= inst.operands[1].reg << 3;
9993 }
9994 }
9995
9996 static void
9997 do_t_pkhbt (void)
9998 {
9999 inst.instruction |= inst.operands[0].reg << 8;
10000 inst.instruction |= inst.operands[1].reg << 16;
10001 inst.instruction |= inst.operands[2].reg;
10002 if (inst.operands[3].present)
10003 {
10004 unsigned int val = inst.reloc.exp.X_add_number;
10005 constraint (inst.reloc.exp.X_op != O_constant,
10006 _("expression too complex"));
10007 inst.instruction |= (val & 0x1c) << 10;
10008 inst.instruction |= (val & 0x03) << 6;
10009 }
10010 }
10011
10012 static void
10013 do_t_pkhtb (void)
10014 {
10015 if (!inst.operands[3].present)
10016 inst.instruction &= ~0x00000020;
10017 do_t_pkhbt ();
10018 }
10019
10020 static void
10021 do_t_pld (void)
10022 {
10023 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10024 }
10025
10026 static void
10027 do_t_push_pop (void)
10028 {
10029 unsigned mask;
10030
10031 constraint (inst.operands[0].writeback,
10032 _("push/pop do not support {reglist}^"));
10033 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10034 _("expression too complex"));
10035
10036 mask = inst.operands[0].imm;
10037 if ((mask & ~0xff) == 0)
10038 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10039 else if ((inst.instruction == T_MNEM_push
10040 && (mask & ~0xff) == 1 << REG_LR)
10041 || (inst.instruction == T_MNEM_pop
10042 && (mask & ~0xff) == 1 << REG_PC))
10043 {
10044 inst.instruction = THUMB_OP16 (inst.instruction);
10045 inst.instruction |= THUMB_PP_PC_LR;
10046 inst.instruction |= mask & 0xff;
10047 }
10048 else if (unified_syntax)
10049 {
10050 inst.instruction = THUMB_OP32 (inst.instruction);
10051 encode_thumb2_ldmstm (13, mask, TRUE);
10052 }
10053 else
10054 {
10055 inst.error = _("invalid register list to push/pop instruction");
10056 return;
10057 }
10058 }
10059
10060 static void
10061 do_t_rbit (void)
10062 {
10063 inst.instruction |= inst.operands[0].reg << 8;
10064 inst.instruction |= inst.operands[1].reg << 16;
10065 inst.instruction |= inst.operands[1].reg;
10066 }
10067
10068 static void
10069 do_t_rev (void)
10070 {
10071 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10072 && inst.size_req != 4)
10073 {
10074 inst.instruction = THUMB_OP16 (inst.instruction);
10075 inst.instruction |= inst.operands[0].reg;
10076 inst.instruction |= inst.operands[1].reg << 3;
10077 }
10078 else if (unified_syntax)
10079 {
10080 inst.instruction = THUMB_OP32 (inst.instruction);
10081 inst.instruction |= inst.operands[0].reg << 8;
10082 inst.instruction |= inst.operands[1].reg << 16;
10083 inst.instruction |= inst.operands[1].reg;
10084 }
10085 else
10086 inst.error = BAD_HIREG;
10087 }
10088
10089 static void
10090 do_t_rsb (void)
10091 {
10092 int Rd, Rs;
10093
10094 Rd = inst.operands[0].reg;
10095 Rs = (inst.operands[1].present
10096 ? inst.operands[1].reg /* Rd, Rs, foo */
10097 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10098
10099 inst.instruction |= Rd << 8;
10100 inst.instruction |= Rs << 16;
10101 if (!inst.operands[2].isreg)
10102 {
10103 bfd_boolean narrow;
10104
10105 if ((inst.instruction & 0x00100000) != 0)
10106 narrow = (current_it_mask == 0);
10107 else
10108 narrow = (current_it_mask != 0);
10109
10110 if (Rd > 7 || Rs > 7)
10111 narrow = FALSE;
10112
10113 if (inst.size_req == 4 || !unified_syntax)
10114 narrow = FALSE;
10115
10116 if (inst.reloc.exp.X_op != O_constant
10117 || inst.reloc.exp.X_add_number != 0)
10118 narrow = FALSE;
10119
10120 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10121 relaxation, but it doesn't seem worth the hassle. */
10122 if (narrow)
10123 {
10124 inst.reloc.type = BFD_RELOC_UNUSED;
10125 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10126 inst.instruction |= Rs << 3;
10127 inst.instruction |= Rd;
10128 }
10129 else
10130 {
10131 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10132 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10133 }
10134 }
10135 else
10136 encode_thumb32_shifted_operand (2);
10137 }
10138
10139 static void
10140 do_t_setend (void)
10141 {
10142 constraint (current_it_mask, BAD_NOT_IT);
10143 if (inst.operands[0].imm)
10144 inst.instruction |= 0x8;
10145 }
10146
10147 static void
10148 do_t_shift (void)
10149 {
10150 if (!inst.operands[1].present)
10151 inst.operands[1].reg = inst.operands[0].reg;
10152
10153 if (unified_syntax)
10154 {
10155 bfd_boolean narrow;
10156 int shift_kind;
10157
10158 switch (inst.instruction)
10159 {
10160 case T_MNEM_asr:
10161 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10162 case T_MNEM_lsl:
10163 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10164 case T_MNEM_lsr:
10165 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10166 case T_MNEM_ror:
10167 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10168 default: abort ();
10169 }
10170
10171 if (THUMB_SETS_FLAGS (inst.instruction))
10172 narrow = (current_it_mask == 0);
10173 else
10174 narrow = (current_it_mask != 0);
10175 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10176 narrow = FALSE;
10177 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10178 narrow = FALSE;
10179 if (inst.operands[2].isreg
10180 && (inst.operands[1].reg != inst.operands[0].reg
10181 || inst.operands[2].reg > 7))
10182 narrow = FALSE;
10183 if (inst.size_req == 4)
10184 narrow = FALSE;
10185
10186 if (!narrow)
10187 {
10188 if (inst.operands[2].isreg)
10189 {
10190 inst.instruction = THUMB_OP32 (inst.instruction);
10191 inst.instruction |= inst.operands[0].reg << 8;
10192 inst.instruction |= inst.operands[1].reg << 16;
10193 inst.instruction |= inst.operands[2].reg;
10194 }
10195 else
10196 {
10197 inst.operands[1].shifted = 1;
10198 inst.operands[1].shift_kind = shift_kind;
10199 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10200 ? T_MNEM_movs : T_MNEM_mov);
10201 inst.instruction |= inst.operands[0].reg << 8;
10202 encode_thumb32_shifted_operand (1);
10203 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10204 inst.reloc.type = BFD_RELOC_UNUSED;
10205 }
10206 }
10207 else
10208 {
10209 if (inst.operands[2].isreg)
10210 {
10211 switch (shift_kind)
10212 {
10213 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10214 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10215 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10216 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10217 default: abort ();
10218 }
10219
10220 inst.instruction |= inst.operands[0].reg;
10221 inst.instruction |= inst.operands[2].reg << 3;
10222 }
10223 else
10224 {
10225 switch (shift_kind)
10226 {
10227 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10228 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10229 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10230 default: abort ();
10231 }
10232 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10233 inst.instruction |= inst.operands[0].reg;
10234 inst.instruction |= inst.operands[1].reg << 3;
10235 }
10236 }
10237 }
10238 else
10239 {
10240 constraint (inst.operands[0].reg > 7
10241 || inst.operands[1].reg > 7, BAD_HIREG);
10242 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10243
10244 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10245 {
10246 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10247 constraint (inst.operands[0].reg != inst.operands[1].reg,
10248 _("source1 and dest must be same register"));
10249
10250 switch (inst.instruction)
10251 {
10252 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10253 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10254 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10255 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10256 default: abort ();
10257 }
10258
10259 inst.instruction |= inst.operands[0].reg;
10260 inst.instruction |= inst.operands[2].reg << 3;
10261 }
10262 else
10263 {
10264 switch (inst.instruction)
10265 {
10266 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10267 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10268 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10269 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10270 default: abort ();
10271 }
10272 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10273 inst.instruction |= inst.operands[0].reg;
10274 inst.instruction |= inst.operands[1].reg << 3;
10275 }
10276 }
10277 }
10278
10279 static void
10280 do_t_simd (void)
10281 {
10282 inst.instruction |= inst.operands[0].reg << 8;
10283 inst.instruction |= inst.operands[1].reg << 16;
10284 inst.instruction |= inst.operands[2].reg;
10285 }
10286
10287 static void
10288 do_t_smc (void)
10289 {
10290 unsigned int value = inst.reloc.exp.X_add_number;
10291 constraint (inst.reloc.exp.X_op != O_constant,
10292 _("expression too complex"));
10293 inst.reloc.type = BFD_RELOC_UNUSED;
10294 inst.instruction |= (value & 0xf000) >> 12;
10295 inst.instruction |= (value & 0x0ff0);
10296 inst.instruction |= (value & 0x000f) << 16;
10297 }
10298
10299 static void
10300 do_t_ssat (void)
10301 {
10302 inst.instruction |= inst.operands[0].reg << 8;
10303 inst.instruction |= inst.operands[1].imm - 1;
10304 inst.instruction |= inst.operands[2].reg << 16;
10305
10306 if (inst.operands[3].present)
10307 {
10308 constraint (inst.reloc.exp.X_op != O_constant,
10309 _("expression too complex"));
10310
10311 if (inst.reloc.exp.X_add_number != 0)
10312 {
10313 if (inst.operands[3].shift_kind == SHIFT_ASR)
10314 inst.instruction |= 0x00200000; /* sh bit */
10315 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10316 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10317 }
10318 inst.reloc.type = BFD_RELOC_UNUSED;
10319 }
10320 }
10321
10322 static void
10323 do_t_ssat16 (void)
10324 {
10325 inst.instruction |= inst.operands[0].reg << 8;
10326 inst.instruction |= inst.operands[1].imm - 1;
10327 inst.instruction |= inst.operands[2].reg << 16;
10328 }
10329
10330 static void
10331 do_t_strex (void)
10332 {
10333 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10334 || inst.operands[2].postind || inst.operands[2].writeback
10335 || inst.operands[2].immisreg || inst.operands[2].shifted
10336 || inst.operands[2].negative,
10337 BAD_ADDR_MODE);
10338
10339 inst.instruction |= inst.operands[0].reg << 8;
10340 inst.instruction |= inst.operands[1].reg << 12;
10341 inst.instruction |= inst.operands[2].reg << 16;
10342 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10343 }
10344
10345 static void
10346 do_t_strexd (void)
10347 {
10348 if (!inst.operands[2].present)
10349 inst.operands[2].reg = inst.operands[1].reg + 1;
10350
10351 constraint (inst.operands[0].reg == inst.operands[1].reg
10352 || inst.operands[0].reg == inst.operands[2].reg
10353 || inst.operands[0].reg == inst.operands[3].reg
10354 || inst.operands[1].reg == inst.operands[2].reg,
10355 BAD_OVERLAP);
10356
10357 inst.instruction |= inst.operands[0].reg;
10358 inst.instruction |= inst.operands[1].reg << 12;
10359 inst.instruction |= inst.operands[2].reg << 8;
10360 inst.instruction |= inst.operands[3].reg << 16;
10361 }
10362
10363 static void
10364 do_t_sxtah (void)
10365 {
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg << 16;
10368 inst.instruction |= inst.operands[2].reg;
10369 inst.instruction |= inst.operands[3].imm << 4;
10370 }
10371
10372 static void
10373 do_t_sxth (void)
10374 {
10375 if (inst.instruction <= 0xffff && inst.size_req != 4
10376 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10377 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10378 {
10379 inst.instruction = THUMB_OP16 (inst.instruction);
10380 inst.instruction |= inst.operands[0].reg;
10381 inst.instruction |= inst.operands[1].reg << 3;
10382 }
10383 else if (unified_syntax)
10384 {
10385 if (inst.instruction <= 0xffff)
10386 inst.instruction = THUMB_OP32 (inst.instruction);
10387 inst.instruction |= inst.operands[0].reg << 8;
10388 inst.instruction |= inst.operands[1].reg;
10389 inst.instruction |= inst.operands[2].imm << 4;
10390 }
10391 else
10392 {
10393 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10394 _("Thumb encoding does not support rotation"));
10395 constraint (1, BAD_HIREG);
10396 }
10397 }
10398
10399 static void
10400 do_t_swi (void)
10401 {
10402 inst.reloc.type = BFD_RELOC_ARM_SWI;
10403 }
10404
10405 static void
10406 do_t_tb (void)
10407 {
10408 int half;
10409
10410 half = (inst.instruction & 0x10) != 0;
10411 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10412 constraint (inst.operands[0].immisreg,
10413 _("instruction requires register index"));
10414 constraint (inst.operands[0].imm == 15,
10415 _("PC is not a valid index register"));
10416 constraint (!half && inst.operands[0].shifted,
10417 _("instruction does not allow shifted index"));
10418 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10419 }
10420
10421 static void
10422 do_t_usat (void)
10423 {
10424 inst.instruction |= inst.operands[0].reg << 8;
10425 inst.instruction |= inst.operands[1].imm;
10426 inst.instruction |= inst.operands[2].reg << 16;
10427
10428 if (inst.operands[3].present)
10429 {
10430 constraint (inst.reloc.exp.X_op != O_constant,
10431 _("expression too complex"));
10432 if (inst.reloc.exp.X_add_number != 0)
10433 {
10434 if (inst.operands[3].shift_kind == SHIFT_ASR)
10435 inst.instruction |= 0x00200000; /* sh bit */
10436
10437 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10438 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10439 }
10440 inst.reloc.type = BFD_RELOC_UNUSED;
10441 }
10442 }
10443
10444 static void
10445 do_t_usat16 (void)
10446 {
10447 inst.instruction |= inst.operands[0].reg << 8;
10448 inst.instruction |= inst.operands[1].imm;
10449 inst.instruction |= inst.operands[2].reg << 16;
10450 }
10451
10452 /* Neon instruction encoder helpers. */
10453
10454 /* Encodings for the different types for various Neon opcodes. */
10455
10456 /* An "invalid" code for the following tables. */
10457 #define N_INV -1u
10458
10459 struct neon_tab_entry
10460 {
10461 unsigned integer;
10462 unsigned float_or_poly;
10463 unsigned scalar_or_imm;
10464 };
10465
10466 /* Map overloaded Neon opcodes to their respective encodings. */
10467 #define NEON_ENC_TAB \
10468 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10469 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10470 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10471 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10472 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10473 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10474 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10475 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10476 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10477 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10478 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10479 /* Register variants of the following two instructions are encoded as
10480 vcge / vcgt with the operands reversed. */ \
10481 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10482 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10483 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10484 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10485 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10486 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10487 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10488 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10489 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10490 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10491 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10492 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10493 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10494 X(vshl, 0x0000400, N_INV, 0x0800510), \
10495 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10496 X(vand, 0x0000110, N_INV, 0x0800030), \
10497 X(vbic, 0x0100110, N_INV, 0x0800030), \
10498 X(veor, 0x1000110, N_INV, N_INV), \
10499 X(vorn, 0x0300110, N_INV, 0x0800010), \
10500 X(vorr, 0x0200110, N_INV, 0x0800010), \
10501 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10502 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10503 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10504 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10505 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10506 X(vst1, 0x0000000, 0x0800000, N_INV), \
10507 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10508 X(vst2, 0x0000100, 0x0800100, N_INV), \
10509 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10510 X(vst3, 0x0000200, 0x0800200, N_INV), \
10511 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10512 X(vst4, 0x0000300, 0x0800300, N_INV), \
10513 X(vmovn, 0x1b20200, N_INV, N_INV), \
10514 X(vtrn, 0x1b20080, N_INV, N_INV), \
10515 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10516 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10517 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10518 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10519 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10520 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10521 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10522 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10523 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10524
10525 enum neon_opc
10526 {
10527 #define X(OPC,I,F,S) N_MNEM_##OPC
10528 NEON_ENC_TAB
10529 #undef X
10530 };
10531
10532 static const struct neon_tab_entry neon_enc_tab[] =
10533 {
10534 #define X(OPC,I,F,S) { (I), (F), (S) }
10535 NEON_ENC_TAB
10536 #undef X
10537 };
10538
10539 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10540 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10541 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10542 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10543 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10544 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10545 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10546 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10547 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10548 #define NEON_ENC_SINGLE(X) \
10549 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10550 #define NEON_ENC_DOUBLE(X) \
10551 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10552
10553 /* Define shapes for instruction operands. The following mnemonic characters
10554 are used in this table:
10555
10556 F - VFP S<n> register
10557 D - Neon D<n> register
10558 Q - Neon Q<n> register
10559 I - Immediate
10560 S - Scalar
10561 R - ARM register
10562 L - D<n> register list
10563
10564 This table is used to generate various data:
10565 - enumerations of the form NS_DDR to be used as arguments to
10566 neon_select_shape.
10567 - a table classifying shapes into single, double, quad, mixed.
10568 - a table used to drive neon_select_shape. */
10569
10570 #define NEON_SHAPE_DEF \
10571 X(3, (D, D, D), DOUBLE), \
10572 X(3, (Q, Q, Q), QUAD), \
10573 X(3, (D, D, I), DOUBLE), \
10574 X(3, (Q, Q, I), QUAD), \
10575 X(3, (D, D, S), DOUBLE), \
10576 X(3, (Q, Q, S), QUAD), \
10577 X(2, (D, D), DOUBLE), \
10578 X(2, (Q, Q), QUAD), \
10579 X(2, (D, S), DOUBLE), \
10580 X(2, (Q, S), QUAD), \
10581 X(2, (D, R), DOUBLE), \
10582 X(2, (Q, R), QUAD), \
10583 X(2, (D, I), DOUBLE), \
10584 X(2, (Q, I), QUAD), \
10585 X(3, (D, L, D), DOUBLE), \
10586 X(2, (D, Q), MIXED), \
10587 X(2, (Q, D), MIXED), \
10588 X(3, (D, Q, I), MIXED), \
10589 X(3, (Q, D, I), MIXED), \
10590 X(3, (Q, D, D), MIXED), \
10591 X(3, (D, Q, Q), MIXED), \
10592 X(3, (Q, Q, D), MIXED), \
10593 X(3, (Q, D, S), MIXED), \
10594 X(3, (D, Q, S), MIXED), \
10595 X(4, (D, D, D, I), DOUBLE), \
10596 X(4, (Q, Q, Q, I), QUAD), \
10597 X(2, (F, F), SINGLE), \
10598 X(3, (F, F, F), SINGLE), \
10599 X(2, (F, I), SINGLE), \
10600 X(2, (F, D), MIXED), \
10601 X(2, (D, F), MIXED), \
10602 X(3, (F, F, I), MIXED), \
10603 X(4, (R, R, F, F), SINGLE), \
10604 X(4, (F, F, R, R), SINGLE), \
10605 X(3, (D, R, R), DOUBLE), \
10606 X(3, (R, R, D), DOUBLE), \
10607 X(2, (S, R), SINGLE), \
10608 X(2, (R, S), SINGLE), \
10609 X(2, (F, R), SINGLE), \
10610 X(2, (R, F), SINGLE)
10611
10612 #define S2(A,B) NS_##A##B
10613 #define S3(A,B,C) NS_##A##B##C
10614 #define S4(A,B,C,D) NS_##A##B##C##D
10615
10616 #define X(N, L, C) S##N L
10617
10618 enum neon_shape
10619 {
10620 NEON_SHAPE_DEF,
10621 NS_NULL
10622 };
10623
10624 #undef X
10625 #undef S2
10626 #undef S3
10627 #undef S4
10628
10629 enum neon_shape_class
10630 {
10631 SC_SINGLE,
10632 SC_DOUBLE,
10633 SC_QUAD,
10634 SC_MIXED
10635 };
10636
10637 #define X(N, L, C) SC_##C
10638
10639 static enum neon_shape_class neon_shape_class[] =
10640 {
10641 NEON_SHAPE_DEF
10642 };
10643
10644 #undef X
10645
10646 enum neon_shape_el
10647 {
10648 SE_F,
10649 SE_D,
10650 SE_Q,
10651 SE_I,
10652 SE_S,
10653 SE_R,
10654 SE_L
10655 };
10656
10657 /* Register widths of above. */
10658 static unsigned neon_shape_el_size[] =
10659 {
10660 32,
10661 64,
10662 128,
10663 0,
10664 32,
10665 32,
10666 0
10667 };
10668
10669 struct neon_shape_info
10670 {
10671 unsigned els;
10672 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10673 };
10674
10675 #define S2(A,B) { SE_##A, SE_##B }
10676 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10677 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10678
10679 #define X(N, L, C) { N, S##N L }
10680
10681 static struct neon_shape_info neon_shape_tab[] =
10682 {
10683 NEON_SHAPE_DEF
10684 };
10685
10686 #undef X
10687 #undef S2
10688 #undef S3
10689 #undef S4
10690
10691 /* Bit masks used in type checking given instructions.
10692 'N_EQK' means the type must be the same as (or based on in some way) the key
10693 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10694 set, various other bits can be set as well in order to modify the meaning of
10695 the type constraint. */
10696
10697 enum neon_type_mask
10698 {
10699 N_S8 = 0x0000001,
10700 N_S16 = 0x0000002,
10701 N_S32 = 0x0000004,
10702 N_S64 = 0x0000008,
10703 N_U8 = 0x0000010,
10704 N_U16 = 0x0000020,
10705 N_U32 = 0x0000040,
10706 N_U64 = 0x0000080,
10707 N_I8 = 0x0000100,
10708 N_I16 = 0x0000200,
10709 N_I32 = 0x0000400,
10710 N_I64 = 0x0000800,
10711 N_8 = 0x0001000,
10712 N_16 = 0x0002000,
10713 N_32 = 0x0004000,
10714 N_64 = 0x0008000,
10715 N_P8 = 0x0010000,
10716 N_P16 = 0x0020000,
10717 N_F16 = 0x0040000,
10718 N_F32 = 0x0080000,
10719 N_F64 = 0x0100000,
10720 N_KEY = 0x1000000, /* key element (main type specifier). */
10721 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
10722 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
10723 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
10724 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
10725 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
10726 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
10727 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
10728 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
10729 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
10730 N_UTYP = 0,
10731 N_MAX_NONSPECIAL = N_F64
10732 };
10733
10734 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10735
10736 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10737 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10738 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10739 #define N_SUF_32 (N_SU_32 | N_F32)
10740 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10741 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10742
10743 /* Pass this as the first type argument to neon_check_type to ignore types
10744 altogether. */
10745 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10746
10747 /* Select a "shape" for the current instruction (describing register types or
10748 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10749 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10750 function of operand parsing, so this function doesn't need to be called.
10751 Shapes should be listed in order of decreasing length. */
10752
10753 static enum neon_shape
10754 neon_select_shape (enum neon_shape shape, ...)
10755 {
10756 va_list ap;
10757 enum neon_shape first_shape = shape;
10758
10759 /* Fix missing optional operands. FIXME: we don't know at this point how
10760 many arguments we should have, so this makes the assumption that we have
10761 > 1. This is true of all current Neon opcodes, I think, but may not be
10762 true in the future. */
10763 if (!inst.operands[1].present)
10764 inst.operands[1] = inst.operands[0];
10765
10766 va_start (ap, shape);
10767
10768 for (; shape != NS_NULL; shape = va_arg (ap, int))
10769 {
10770 unsigned j;
10771 int matches = 1;
10772
10773 for (j = 0; j < neon_shape_tab[shape].els; j++)
10774 {
10775 if (!inst.operands[j].present)
10776 {
10777 matches = 0;
10778 break;
10779 }
10780
10781 switch (neon_shape_tab[shape].el[j])
10782 {
10783 case SE_F:
10784 if (!(inst.operands[j].isreg
10785 && inst.operands[j].isvec
10786 && inst.operands[j].issingle
10787 && !inst.operands[j].isquad))
10788 matches = 0;
10789 break;
10790
10791 case SE_D:
10792 if (!(inst.operands[j].isreg
10793 && inst.operands[j].isvec
10794 && !inst.operands[j].isquad
10795 && !inst.operands[j].issingle))
10796 matches = 0;
10797 break;
10798
10799 case SE_R:
10800 if (!(inst.operands[j].isreg
10801 && !inst.operands[j].isvec))
10802 matches = 0;
10803 break;
10804
10805 case SE_Q:
10806 if (!(inst.operands[j].isreg
10807 && inst.operands[j].isvec
10808 && inst.operands[j].isquad
10809 && !inst.operands[j].issingle))
10810 matches = 0;
10811 break;
10812
10813 case SE_I:
10814 if (!(!inst.operands[j].isreg
10815 && !inst.operands[j].isscalar))
10816 matches = 0;
10817 break;
10818
10819 case SE_S:
10820 if (!(!inst.operands[j].isreg
10821 && inst.operands[j].isscalar))
10822 matches = 0;
10823 break;
10824
10825 case SE_L:
10826 break;
10827 }
10828 }
10829 if (matches)
10830 break;
10831 }
10832
10833 va_end (ap);
10834
10835 if (shape == NS_NULL && first_shape != NS_NULL)
10836 first_error (_("invalid instruction shape"));
10837
10838 return shape;
10839 }
10840
10841 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10842 means the Q bit should be set). */
10843
10844 static int
10845 neon_quad (enum neon_shape shape)
10846 {
10847 return neon_shape_class[shape] == SC_QUAD;
10848 }
10849
10850 static void
10851 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10852 unsigned *g_size)
10853 {
10854 /* Allow modification to be made to types which are constrained to be
10855 based on the key element, based on bits set alongside N_EQK. */
10856 if ((typebits & N_EQK) != 0)
10857 {
10858 if ((typebits & N_HLF) != 0)
10859 *g_size /= 2;
10860 else if ((typebits & N_DBL) != 0)
10861 *g_size *= 2;
10862 if ((typebits & N_SGN) != 0)
10863 *g_type = NT_signed;
10864 else if ((typebits & N_UNS) != 0)
10865 *g_type = NT_unsigned;
10866 else if ((typebits & N_INT) != 0)
10867 *g_type = NT_integer;
10868 else if ((typebits & N_FLT) != 0)
10869 *g_type = NT_float;
10870 else if ((typebits & N_SIZ) != 0)
10871 *g_type = NT_untyped;
10872 }
10873 }
10874
10875 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10876 operand type, i.e. the single type specified in a Neon instruction when it
10877 is the only one given. */
10878
10879 static struct neon_type_el
10880 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10881 {
10882 struct neon_type_el dest = *key;
10883
10884 assert ((thisarg & N_EQK) != 0);
10885
10886 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10887
10888 return dest;
10889 }
10890
10891 /* Convert Neon type and size into compact bitmask representation. */
10892
10893 static enum neon_type_mask
10894 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10895 {
10896 switch (type)
10897 {
10898 case NT_untyped:
10899 switch (size)
10900 {
10901 case 8: return N_8;
10902 case 16: return N_16;
10903 case 32: return N_32;
10904 case 64: return N_64;
10905 default: ;
10906 }
10907 break;
10908
10909 case NT_integer:
10910 switch (size)
10911 {
10912 case 8: return N_I8;
10913 case 16: return N_I16;
10914 case 32: return N_I32;
10915 case 64: return N_I64;
10916 default: ;
10917 }
10918 break;
10919
10920 case NT_float:
10921 switch (size)
10922 {
10923 case 16: return N_F16;
10924 case 32: return N_F32;
10925 case 64: return N_F64;
10926 default: ;
10927 }
10928 break;
10929
10930 case NT_poly:
10931 switch (size)
10932 {
10933 case 8: return N_P8;
10934 case 16: return N_P16;
10935 default: ;
10936 }
10937 break;
10938
10939 case NT_signed:
10940 switch (size)
10941 {
10942 case 8: return N_S8;
10943 case 16: return N_S16;
10944 case 32: return N_S32;
10945 case 64: return N_S64;
10946 default: ;
10947 }
10948 break;
10949
10950 case NT_unsigned:
10951 switch (size)
10952 {
10953 case 8: return N_U8;
10954 case 16: return N_U16;
10955 case 32: return N_U32;
10956 case 64: return N_U64;
10957 default: ;
10958 }
10959 break;
10960
10961 default: ;
10962 }
10963
10964 return N_UTYP;
10965 }
10966
10967 /* Convert compact Neon bitmask type representation to a type and size. Only
10968 handles the case where a single bit is set in the mask. */
10969
10970 static int
10971 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10972 enum neon_type_mask mask)
10973 {
10974 if ((mask & N_EQK) != 0)
10975 return FAIL;
10976
10977 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10978 *size = 8;
10979 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10980 *size = 16;
10981 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10982 *size = 32;
10983 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10984 *size = 64;
10985 else
10986 return FAIL;
10987
10988 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10989 *type = NT_signed;
10990 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10991 *type = NT_unsigned;
10992 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10993 *type = NT_integer;
10994 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10995 *type = NT_untyped;
10996 else if ((mask & (N_P8 | N_P16)) != 0)
10997 *type = NT_poly;
10998 else if ((mask & (N_F32 | N_F64)) != 0)
10999 *type = NT_float;
11000 else
11001 return FAIL;
11002
11003 return SUCCESS;
11004 }
11005
11006 /* Modify a bitmask of allowed types. This is only needed for type
11007 relaxation. */
11008
11009 static unsigned
11010 modify_types_allowed (unsigned allowed, unsigned mods)
11011 {
11012 unsigned size;
11013 enum neon_el_type type;
11014 unsigned destmask;
11015 int i;
11016
11017 destmask = 0;
11018
11019 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11020 {
11021 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11022 {
11023 neon_modify_type_size (mods, &type, &size);
11024 destmask |= type_chk_of_el_type (type, size);
11025 }
11026 }
11027
11028 return destmask;
11029 }
11030
11031 /* Check type and return type classification.
11032 The manual states (paraphrase): If one datatype is given, it indicates the
11033 type given in:
11034 - the second operand, if there is one
11035 - the operand, if there is no second operand
11036 - the result, if there are no operands.
11037 This isn't quite good enough though, so we use a concept of a "key" datatype
11038 which is set on a per-instruction basis, which is the one which matters when
11039 only one data type is written.
11040 Note: this function has side-effects (e.g. filling in missing operands). All
11041 Neon instructions should call it before performing bit encoding. */
11042
11043 static struct neon_type_el
11044 neon_check_type (unsigned els, enum neon_shape ns, ...)
11045 {
11046 va_list ap;
11047 unsigned i, pass, key_el = 0;
11048 unsigned types[NEON_MAX_TYPE_ELS];
11049 enum neon_el_type k_type = NT_invtype;
11050 unsigned k_size = -1u;
11051 struct neon_type_el badtype = {NT_invtype, -1};
11052 unsigned key_allowed = 0;
11053
11054 /* Optional registers in Neon instructions are always (not) in operand 1.
11055 Fill in the missing operand here, if it was omitted. */
11056 if (els > 1 && !inst.operands[1].present)
11057 inst.operands[1] = inst.operands[0];
11058
11059 /* Suck up all the varargs. */
11060 va_start (ap, ns);
11061 for (i = 0; i < els; i++)
11062 {
11063 unsigned thisarg = va_arg (ap, unsigned);
11064 if (thisarg == N_IGNORE_TYPE)
11065 {
11066 va_end (ap);
11067 return badtype;
11068 }
11069 types[i] = thisarg;
11070 if ((thisarg & N_KEY) != 0)
11071 key_el = i;
11072 }
11073 va_end (ap);
11074
11075 if (inst.vectype.elems > 0)
11076 for (i = 0; i < els; i++)
11077 if (inst.operands[i].vectype.type != NT_invtype)
11078 {
11079 first_error (_("types specified in both the mnemonic and operands"));
11080 return badtype;
11081 }
11082
11083 /* Duplicate inst.vectype elements here as necessary.
11084 FIXME: No idea if this is exactly the same as the ARM assembler,
11085 particularly when an insn takes one register and one non-register
11086 operand. */
11087 if (inst.vectype.elems == 1 && els > 1)
11088 {
11089 unsigned j;
11090 inst.vectype.elems = els;
11091 inst.vectype.el[key_el] = inst.vectype.el[0];
11092 for (j = 0; j < els; j++)
11093 if (j != key_el)
11094 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11095 types[j]);
11096 }
11097 else if (inst.vectype.elems == 0 && els > 0)
11098 {
11099 unsigned j;
11100 /* No types were given after the mnemonic, so look for types specified
11101 after each operand. We allow some flexibility here; as long as the
11102 "key" operand has a type, we can infer the others. */
11103 for (j = 0; j < els; j++)
11104 if (inst.operands[j].vectype.type != NT_invtype)
11105 inst.vectype.el[j] = inst.operands[j].vectype;
11106
11107 if (inst.operands[key_el].vectype.type != NT_invtype)
11108 {
11109 for (j = 0; j < els; j++)
11110 if (inst.operands[j].vectype.type == NT_invtype)
11111 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11112 types[j]);
11113 }
11114 else
11115 {
11116 first_error (_("operand types can't be inferred"));
11117 return badtype;
11118 }
11119 }
11120 else if (inst.vectype.elems != els)
11121 {
11122 first_error (_("type specifier has the wrong number of parts"));
11123 return badtype;
11124 }
11125
11126 for (pass = 0; pass < 2; pass++)
11127 {
11128 for (i = 0; i < els; i++)
11129 {
11130 unsigned thisarg = types[i];
11131 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11132 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11133 enum neon_el_type g_type = inst.vectype.el[i].type;
11134 unsigned g_size = inst.vectype.el[i].size;
11135
11136 /* Decay more-specific signed & unsigned types to sign-insensitive
11137 integer types if sign-specific variants are unavailable. */
11138 if ((g_type == NT_signed || g_type == NT_unsigned)
11139 && (types_allowed & N_SU_ALL) == 0)
11140 g_type = NT_integer;
11141
11142 /* If only untyped args are allowed, decay any more specific types to
11143 them. Some instructions only care about signs for some element
11144 sizes, so handle that properly. */
11145 if ((g_size == 8 && (types_allowed & N_8) != 0)
11146 || (g_size == 16 && (types_allowed & N_16) != 0)
11147 || (g_size == 32 && (types_allowed & N_32) != 0)
11148 || (g_size == 64 && (types_allowed & N_64) != 0))
11149 g_type = NT_untyped;
11150
11151 if (pass == 0)
11152 {
11153 if ((thisarg & N_KEY) != 0)
11154 {
11155 k_type = g_type;
11156 k_size = g_size;
11157 key_allowed = thisarg & ~N_KEY;
11158 }
11159 }
11160 else
11161 {
11162 if ((thisarg & N_VFP) != 0)
11163 {
11164 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11165 unsigned regwidth = neon_shape_el_size[regshape], match;
11166
11167 /* In VFP mode, operands must match register widths. If we
11168 have a key operand, use its width, else use the width of
11169 the current operand. */
11170 if (k_size != -1u)
11171 match = k_size;
11172 else
11173 match = g_size;
11174
11175 if (regwidth != match)
11176 {
11177 first_error (_("operand size must match register width"));
11178 return badtype;
11179 }
11180 }
11181
11182 if ((thisarg & N_EQK) == 0)
11183 {
11184 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11185
11186 if ((given_type & types_allowed) == 0)
11187 {
11188 first_error (_("bad type in Neon instruction"));
11189 return badtype;
11190 }
11191 }
11192 else
11193 {
11194 enum neon_el_type mod_k_type = k_type;
11195 unsigned mod_k_size = k_size;
11196 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11197 if (g_type != mod_k_type || g_size != mod_k_size)
11198 {
11199 first_error (_("inconsistent types in Neon instruction"));
11200 return badtype;
11201 }
11202 }
11203 }
11204 }
11205 }
11206
11207 return inst.vectype.el[key_el];
11208 }
11209
11210 /* Neon-style VFP instruction forwarding. */
11211
11212 /* Thumb VFP instructions have 0xE in the condition field. */
11213
11214 static void
11215 do_vfp_cond_or_thumb (void)
11216 {
11217 if (thumb_mode)
11218 inst.instruction |= 0xe0000000;
11219 else
11220 inst.instruction |= inst.cond << 28;
11221 }
11222
11223 /* Look up and encode a simple mnemonic, for use as a helper function for the
11224 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11225 etc. It is assumed that operand parsing has already been done, and that the
11226 operands are in the form expected by the given opcode (this isn't necessarily
11227 the same as the form in which they were parsed, hence some massaging must
11228 take place before this function is called).
11229 Checks current arch version against that in the looked-up opcode. */
11230
11231 static void
11232 do_vfp_nsyn_opcode (const char *opname)
11233 {
11234 const struct asm_opcode *opcode;
11235
11236 opcode = hash_find (arm_ops_hsh, opname);
11237
11238 if (!opcode)
11239 abort ();
11240
11241 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11242 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11243 _(BAD_FPU));
11244
11245 if (thumb_mode)
11246 {
11247 inst.instruction = opcode->tvalue;
11248 opcode->tencode ();
11249 }
11250 else
11251 {
11252 inst.instruction = (inst.cond << 28) | opcode->avalue;
11253 opcode->aencode ();
11254 }
11255 }
11256
11257 static void
11258 do_vfp_nsyn_add_sub (enum neon_shape rs)
11259 {
11260 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11261
11262 if (rs == NS_FFF)
11263 {
11264 if (is_add)
11265 do_vfp_nsyn_opcode ("fadds");
11266 else
11267 do_vfp_nsyn_opcode ("fsubs");
11268 }
11269 else
11270 {
11271 if (is_add)
11272 do_vfp_nsyn_opcode ("faddd");
11273 else
11274 do_vfp_nsyn_opcode ("fsubd");
11275 }
11276 }
11277
11278 /* Check operand types to see if this is a VFP instruction, and if so call
11279 PFN (). */
11280
11281 static int
11282 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11283 {
11284 enum neon_shape rs;
11285 struct neon_type_el et;
11286
11287 switch (args)
11288 {
11289 case 2:
11290 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11291 et = neon_check_type (2, rs,
11292 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11293 break;
11294
11295 case 3:
11296 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11297 et = neon_check_type (3, rs,
11298 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11299 break;
11300
11301 default:
11302 abort ();
11303 }
11304
11305 if (et.type != NT_invtype)
11306 {
11307 pfn (rs);
11308 return SUCCESS;
11309 }
11310 else
11311 inst.error = NULL;
11312
11313 return FAIL;
11314 }
11315
11316 static void
11317 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11318 {
11319 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11320
11321 if (rs == NS_FFF)
11322 {
11323 if (is_mla)
11324 do_vfp_nsyn_opcode ("fmacs");
11325 else
11326 do_vfp_nsyn_opcode ("fmscs");
11327 }
11328 else
11329 {
11330 if (is_mla)
11331 do_vfp_nsyn_opcode ("fmacd");
11332 else
11333 do_vfp_nsyn_opcode ("fmscd");
11334 }
11335 }
11336
11337 static void
11338 do_vfp_nsyn_mul (enum neon_shape rs)
11339 {
11340 if (rs == NS_FFF)
11341 do_vfp_nsyn_opcode ("fmuls");
11342 else
11343 do_vfp_nsyn_opcode ("fmuld");
11344 }
11345
11346 static void
11347 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11348 {
11349 int is_neg = (inst.instruction & 0x80) != 0;
11350 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11351
11352 if (rs == NS_FF)
11353 {
11354 if (is_neg)
11355 do_vfp_nsyn_opcode ("fnegs");
11356 else
11357 do_vfp_nsyn_opcode ("fabss");
11358 }
11359 else
11360 {
11361 if (is_neg)
11362 do_vfp_nsyn_opcode ("fnegd");
11363 else
11364 do_vfp_nsyn_opcode ("fabsd");
11365 }
11366 }
11367
11368 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11369 insns belong to Neon, and are handled elsewhere. */
11370
11371 static void
11372 do_vfp_nsyn_ldm_stm (int is_dbmode)
11373 {
11374 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11375 if (is_ldm)
11376 {
11377 if (is_dbmode)
11378 do_vfp_nsyn_opcode ("fldmdbs");
11379 else
11380 do_vfp_nsyn_opcode ("fldmias");
11381 }
11382 else
11383 {
11384 if (is_dbmode)
11385 do_vfp_nsyn_opcode ("fstmdbs");
11386 else
11387 do_vfp_nsyn_opcode ("fstmias");
11388 }
11389 }
11390
11391 static void
11392 do_vfp_nsyn_sqrt (void)
11393 {
11394 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11395 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11396
11397 if (rs == NS_FF)
11398 do_vfp_nsyn_opcode ("fsqrts");
11399 else
11400 do_vfp_nsyn_opcode ("fsqrtd");
11401 }
11402
11403 static void
11404 do_vfp_nsyn_div (void)
11405 {
11406 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11407 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11408 N_F32 | N_F64 | N_KEY | N_VFP);
11409
11410 if (rs == NS_FFF)
11411 do_vfp_nsyn_opcode ("fdivs");
11412 else
11413 do_vfp_nsyn_opcode ("fdivd");
11414 }
11415
11416 static void
11417 do_vfp_nsyn_nmul (void)
11418 {
11419 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11420 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11421 N_F32 | N_F64 | N_KEY | N_VFP);
11422
11423 if (rs == NS_FFF)
11424 {
11425 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11426 do_vfp_sp_dyadic ();
11427 }
11428 else
11429 {
11430 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11431 do_vfp_dp_rd_rn_rm ();
11432 }
11433 do_vfp_cond_or_thumb ();
11434 }
11435
11436 static void
11437 do_vfp_nsyn_cmp (void)
11438 {
11439 if (inst.operands[1].isreg)
11440 {
11441 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11442 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11443
11444 if (rs == NS_FF)
11445 {
11446 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11447 do_vfp_sp_monadic ();
11448 }
11449 else
11450 {
11451 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11452 do_vfp_dp_rd_rm ();
11453 }
11454 }
11455 else
11456 {
11457 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11458 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11459
11460 switch (inst.instruction & 0x0fffffff)
11461 {
11462 case N_MNEM_vcmp:
11463 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11464 break;
11465 case N_MNEM_vcmpe:
11466 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11467 break;
11468 default:
11469 abort ();
11470 }
11471
11472 if (rs == NS_FI)
11473 {
11474 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11475 do_vfp_sp_compare_z ();
11476 }
11477 else
11478 {
11479 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11480 do_vfp_dp_rd ();
11481 }
11482 }
11483 do_vfp_cond_or_thumb ();
11484 }
11485
11486 static void
11487 nsyn_insert_sp (void)
11488 {
11489 inst.operands[1] = inst.operands[0];
11490 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11491 inst.operands[0].reg = 13;
11492 inst.operands[0].isreg = 1;
11493 inst.operands[0].writeback = 1;
11494 inst.operands[0].present = 1;
11495 }
11496
11497 static void
11498 do_vfp_nsyn_push (void)
11499 {
11500 nsyn_insert_sp ();
11501 if (inst.operands[1].issingle)
11502 do_vfp_nsyn_opcode ("fstmdbs");
11503 else
11504 do_vfp_nsyn_opcode ("fstmdbd");
11505 }
11506
11507 static void
11508 do_vfp_nsyn_pop (void)
11509 {
11510 nsyn_insert_sp ();
11511 if (inst.operands[1].issingle)
11512 do_vfp_nsyn_opcode ("fldmias");
11513 else
11514 do_vfp_nsyn_opcode ("fldmiad");
11515 }
11516
11517 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11518 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11519
11520 static unsigned
11521 neon_dp_fixup (unsigned i)
11522 {
11523 if (thumb_mode)
11524 {
11525 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11526 if (i & (1 << 24))
11527 i |= 1 << 28;
11528
11529 i &= ~(1 << 24);
11530
11531 i |= 0xef000000;
11532 }
11533 else
11534 i |= 0xf2000000;
11535
11536 return i;
11537 }
11538
11539 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11540 (0, 1, 2, 3). */
11541
11542 static unsigned
11543 neon_logbits (unsigned x)
11544 {
11545 return ffs (x) - 4;
11546 }
11547
11548 #define LOW4(R) ((R) & 0xf)
11549 #define HI1(R) (((R) >> 4) & 1)
11550
11551 /* Encode insns with bit pattern:
11552
11553 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11554 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11555
11556 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11557 different meaning for some instruction. */
11558
11559 static void
11560 neon_three_same (int isquad, int ubit, int size)
11561 {
11562 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11563 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11564 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11565 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11566 inst.instruction |= LOW4 (inst.operands[2].reg);
11567 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11568 inst.instruction |= (isquad != 0) << 6;
11569 inst.instruction |= (ubit != 0) << 24;
11570 if (size != -1)
11571 inst.instruction |= neon_logbits (size) << 20;
11572
11573 inst.instruction = neon_dp_fixup (inst.instruction);
11574 }
11575
11576 /* Encode instructions of the form:
11577
11578 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11579 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11580
11581 Don't write size if SIZE == -1. */
11582
11583 static void
11584 neon_two_same (int qbit, int ubit, int size)
11585 {
11586 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11587 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11588 inst.instruction |= LOW4 (inst.operands[1].reg);
11589 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11590 inst.instruction |= (qbit != 0) << 6;
11591 inst.instruction |= (ubit != 0) << 24;
11592
11593 if (size != -1)
11594 inst.instruction |= neon_logbits (size) << 18;
11595
11596 inst.instruction = neon_dp_fixup (inst.instruction);
11597 }
11598
11599 /* Neon instruction encoders, in approximate order of appearance. */
11600
11601 static void
11602 do_neon_dyadic_i_su (void)
11603 {
11604 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11605 struct neon_type_el et = neon_check_type (3, rs,
11606 N_EQK, N_EQK, N_SU_32 | N_KEY);
11607 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11608 }
11609
11610 static void
11611 do_neon_dyadic_i64_su (void)
11612 {
11613 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11614 struct neon_type_el et = neon_check_type (3, rs,
11615 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11616 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11617 }
11618
11619 static void
11620 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11621 unsigned immbits)
11622 {
11623 unsigned size = et.size >> 3;
11624 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11625 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11626 inst.instruction |= LOW4 (inst.operands[1].reg);
11627 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11628 inst.instruction |= (isquad != 0) << 6;
11629 inst.instruction |= immbits << 16;
11630 inst.instruction |= (size >> 3) << 7;
11631 inst.instruction |= (size & 0x7) << 19;
11632 if (write_ubit)
11633 inst.instruction |= (uval != 0) << 24;
11634
11635 inst.instruction = neon_dp_fixup (inst.instruction);
11636 }
11637
11638 static void
11639 do_neon_shl_imm (void)
11640 {
11641 if (!inst.operands[2].isreg)
11642 {
11643 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11644 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11645 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11646 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11647 }
11648 else
11649 {
11650 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11651 struct neon_type_el et = neon_check_type (3, rs,
11652 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11653 unsigned int tmp;
11654
11655 /* VSHL/VQSHL 3-register variants have syntax such as:
11656 vshl.xx Dd, Dm, Dn
11657 whereas other 3-register operations encoded by neon_three_same have
11658 syntax like:
11659 vadd.xx Dd, Dn, Dm
11660 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11661 here. */
11662 tmp = inst.operands[2].reg;
11663 inst.operands[2].reg = inst.operands[1].reg;
11664 inst.operands[1].reg = tmp;
11665 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11666 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11667 }
11668 }
11669
11670 static void
11671 do_neon_qshl_imm (void)
11672 {
11673 if (!inst.operands[2].isreg)
11674 {
11675 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11676 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11677
11678 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11679 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11680 inst.operands[2].imm);
11681 }
11682 else
11683 {
11684 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11685 struct neon_type_el et = neon_check_type (3, rs,
11686 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11687 unsigned int tmp;
11688
11689 /* See note in do_neon_shl_imm. */
11690 tmp = inst.operands[2].reg;
11691 inst.operands[2].reg = inst.operands[1].reg;
11692 inst.operands[1].reg = tmp;
11693 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11694 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11695 }
11696 }
11697
11698 static void
11699 do_neon_rshl (void)
11700 {
11701 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11702 struct neon_type_el et = neon_check_type (3, rs,
11703 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11704 unsigned int tmp;
11705
11706 tmp = inst.operands[2].reg;
11707 inst.operands[2].reg = inst.operands[1].reg;
11708 inst.operands[1].reg = tmp;
11709 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11710 }
11711
11712 static int
11713 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11714 {
11715 /* Handle .I8 pseudo-instructions. */
11716 if (size == 8)
11717 {
11718 /* Unfortunately, this will make everything apart from zero out-of-range.
11719 FIXME is this the intended semantics? There doesn't seem much point in
11720 accepting .I8 if so. */
11721 immediate |= immediate << 8;
11722 size = 16;
11723 }
11724
11725 if (size >= 32)
11726 {
11727 if (immediate == (immediate & 0x000000ff))
11728 {
11729 *immbits = immediate;
11730 return 0x1;
11731 }
11732 else if (immediate == (immediate & 0x0000ff00))
11733 {
11734 *immbits = immediate >> 8;
11735 return 0x3;
11736 }
11737 else if (immediate == (immediate & 0x00ff0000))
11738 {
11739 *immbits = immediate >> 16;
11740 return 0x5;
11741 }
11742 else if (immediate == (immediate & 0xff000000))
11743 {
11744 *immbits = immediate >> 24;
11745 return 0x7;
11746 }
11747 if ((immediate & 0xffff) != (immediate >> 16))
11748 goto bad_immediate;
11749 immediate &= 0xffff;
11750 }
11751
11752 if (immediate == (immediate & 0x000000ff))
11753 {
11754 *immbits = immediate;
11755 return 0x9;
11756 }
11757 else if (immediate == (immediate & 0x0000ff00))
11758 {
11759 *immbits = immediate >> 8;
11760 return 0xb;
11761 }
11762
11763 bad_immediate:
11764 first_error (_("immediate value out of range"));
11765 return FAIL;
11766 }
11767
11768 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11769 A, B, C, D. */
11770
11771 static int
11772 neon_bits_same_in_bytes (unsigned imm)
11773 {
11774 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11775 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11776 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11777 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11778 }
11779
11780 /* For immediate of above form, return 0bABCD. */
11781
11782 static unsigned
11783 neon_squash_bits (unsigned imm)
11784 {
11785 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11786 | ((imm & 0x01000000) >> 21);
11787 }
11788
11789 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11790
11791 static unsigned
11792 neon_qfloat_bits (unsigned imm)
11793 {
11794 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11795 }
11796
11797 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11798 the instruction. *OP is passed as the initial value of the op field, and
11799 may be set to a different value depending on the constant (i.e.
11800 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11801 MVN). If the immediate looks like a repeated pattern then also
11802 try smaller element sizes. */
11803
11804 static int
11805 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11806 unsigned *immbits, int *op, int size,
11807 enum neon_el_type type)
11808 {
11809 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11810 float. */
11811 if (type == NT_float && !float_p)
11812 return FAIL;
11813
11814 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11815 {
11816 if (size != 32 || *op == 1)
11817 return FAIL;
11818 *immbits = neon_qfloat_bits (immlo);
11819 return 0xf;
11820 }
11821
11822 if (size == 64)
11823 {
11824 if (neon_bits_same_in_bytes (immhi)
11825 && neon_bits_same_in_bytes (immlo))
11826 {
11827 if (*op == 1)
11828 return FAIL;
11829 *immbits = (neon_squash_bits (immhi) << 4)
11830 | neon_squash_bits (immlo);
11831 *op = 1;
11832 return 0xe;
11833 }
11834
11835 if (immhi != immlo)
11836 return FAIL;
11837 }
11838
11839 if (size >= 32)
11840 {
11841 if (immlo == (immlo & 0x000000ff))
11842 {
11843 *immbits = immlo;
11844 return 0x0;
11845 }
11846 else if (immlo == (immlo & 0x0000ff00))
11847 {
11848 *immbits = immlo >> 8;
11849 return 0x2;
11850 }
11851 else if (immlo == (immlo & 0x00ff0000))
11852 {
11853 *immbits = immlo >> 16;
11854 return 0x4;
11855 }
11856 else if (immlo == (immlo & 0xff000000))
11857 {
11858 *immbits = immlo >> 24;
11859 return 0x6;
11860 }
11861 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11862 {
11863 *immbits = (immlo >> 8) & 0xff;
11864 return 0xc;
11865 }
11866 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11867 {
11868 *immbits = (immlo >> 16) & 0xff;
11869 return 0xd;
11870 }
11871
11872 if ((immlo & 0xffff) != (immlo >> 16))
11873 return FAIL;
11874 immlo &= 0xffff;
11875 }
11876
11877 if (size >= 16)
11878 {
11879 if (immlo == (immlo & 0x000000ff))
11880 {
11881 *immbits = immlo;
11882 return 0x8;
11883 }
11884 else if (immlo == (immlo & 0x0000ff00))
11885 {
11886 *immbits = immlo >> 8;
11887 return 0xa;
11888 }
11889
11890 if ((immlo & 0xff) != (immlo >> 8))
11891 return FAIL;
11892 immlo &= 0xff;
11893 }
11894
11895 if (immlo == (immlo & 0x000000ff))
11896 {
11897 /* Don't allow MVN with 8-bit immediate. */
11898 if (*op == 1)
11899 return FAIL;
11900 *immbits = immlo;
11901 return 0xe;
11902 }
11903
11904 return FAIL;
11905 }
11906
11907 /* Write immediate bits [7:0] to the following locations:
11908
11909 |28/24|23 19|18 16|15 4|3 0|
11910 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11911
11912 This function is used by VMOV/VMVN/VORR/VBIC. */
11913
11914 static void
11915 neon_write_immbits (unsigned immbits)
11916 {
11917 inst.instruction |= immbits & 0xf;
11918 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11919 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11920 }
11921
11922 /* Invert low-order SIZE bits of XHI:XLO. */
11923
11924 static void
11925 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11926 {
11927 unsigned immlo = xlo ? *xlo : 0;
11928 unsigned immhi = xhi ? *xhi : 0;
11929
11930 switch (size)
11931 {
11932 case 8:
11933 immlo = (~immlo) & 0xff;
11934 break;
11935
11936 case 16:
11937 immlo = (~immlo) & 0xffff;
11938 break;
11939
11940 case 64:
11941 immhi = (~immhi) & 0xffffffff;
11942 /* fall through. */
11943
11944 case 32:
11945 immlo = (~immlo) & 0xffffffff;
11946 break;
11947
11948 default:
11949 abort ();
11950 }
11951
11952 if (xlo)
11953 *xlo = immlo;
11954
11955 if (xhi)
11956 *xhi = immhi;
11957 }
11958
11959 static void
11960 do_neon_logic (void)
11961 {
11962 if (inst.operands[2].present && inst.operands[2].isreg)
11963 {
11964 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11965 neon_check_type (3, rs, N_IGNORE_TYPE);
11966 /* U bit and size field were set as part of the bitmask. */
11967 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11968 neon_three_same (neon_quad (rs), 0, -1);
11969 }
11970 else
11971 {
11972 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11973 struct neon_type_el et = neon_check_type (2, rs,
11974 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11975 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11976 unsigned immbits;
11977 int cmode;
11978
11979 if (et.type == NT_invtype)
11980 return;
11981
11982 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11983
11984 immbits = inst.operands[1].imm;
11985 if (et.size == 64)
11986 {
11987 /* .i64 is a pseudo-op, so the immediate must be a repeating
11988 pattern. */
11989 if (immbits != (inst.operands[1].regisimm ?
11990 inst.operands[1].reg : 0))
11991 {
11992 /* Set immbits to an invalid constant. */
11993 immbits = 0xdeadbeef;
11994 }
11995 }
11996
11997 switch (opcode)
11998 {
11999 case N_MNEM_vbic:
12000 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12001 break;
12002
12003 case N_MNEM_vorr:
12004 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12005 break;
12006
12007 case N_MNEM_vand:
12008 /* Pseudo-instruction for VBIC. */
12009 neon_invert_size (&immbits, 0, et.size);
12010 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12011 break;
12012
12013 case N_MNEM_vorn:
12014 /* Pseudo-instruction for VORR. */
12015 neon_invert_size (&immbits, 0, et.size);
12016 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12017 break;
12018
12019 default:
12020 abort ();
12021 }
12022
12023 if (cmode == FAIL)
12024 return;
12025
12026 inst.instruction |= neon_quad (rs) << 6;
12027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12029 inst.instruction |= cmode << 8;
12030 neon_write_immbits (immbits);
12031
12032 inst.instruction = neon_dp_fixup (inst.instruction);
12033 }
12034 }
12035
12036 static void
12037 do_neon_bitfield (void)
12038 {
12039 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12040 neon_check_type (3, rs, N_IGNORE_TYPE);
12041 neon_three_same (neon_quad (rs), 0, -1);
12042 }
12043
12044 static void
12045 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12046 unsigned destbits)
12047 {
12048 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12049 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12050 types | N_KEY);
12051 if (et.type == NT_float)
12052 {
12053 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12054 neon_three_same (neon_quad (rs), 0, -1);
12055 }
12056 else
12057 {
12058 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12059 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12060 }
12061 }
12062
12063 static void
12064 do_neon_dyadic_if_su (void)
12065 {
12066 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12067 }
12068
12069 static void
12070 do_neon_dyadic_if_su_d (void)
12071 {
12072 /* This version only allow D registers, but that constraint is enforced during
12073 operand parsing so we don't need to do anything extra here. */
12074 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12075 }
12076
12077 static void
12078 do_neon_dyadic_if_i_d (void)
12079 {
12080 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12081 affected if we specify unsigned args. */
12082 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12083 }
12084
12085 enum vfp_or_neon_is_neon_bits
12086 {
12087 NEON_CHECK_CC = 1,
12088 NEON_CHECK_ARCH = 2
12089 };
12090
12091 /* Call this function if an instruction which may have belonged to the VFP or
12092 Neon instruction sets, but turned out to be a Neon instruction (due to the
12093 operand types involved, etc.). We have to check and/or fix-up a couple of
12094 things:
12095
12096 - Make sure the user hasn't attempted to make a Neon instruction
12097 conditional.
12098 - Alter the value in the condition code field if necessary.
12099 - Make sure that the arch supports Neon instructions.
12100
12101 Which of these operations take place depends on bits from enum
12102 vfp_or_neon_is_neon_bits.
12103
12104 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12105 current instruction's condition is COND_ALWAYS, the condition field is
12106 changed to inst.uncond_value. This is necessary because instructions shared
12107 between VFP and Neon may be conditional for the VFP variants only, and the
12108 unconditional Neon version must have, e.g., 0xF in the condition field. */
12109
12110 static int
12111 vfp_or_neon_is_neon (unsigned check)
12112 {
12113 /* Conditions are always legal in Thumb mode (IT blocks). */
12114 if (!thumb_mode && (check & NEON_CHECK_CC))
12115 {
12116 if (inst.cond != COND_ALWAYS)
12117 {
12118 first_error (_(BAD_COND));
12119 return FAIL;
12120 }
12121 if (inst.uncond_value != -1)
12122 inst.instruction |= inst.uncond_value << 28;
12123 }
12124
12125 if ((check & NEON_CHECK_ARCH)
12126 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12127 {
12128 first_error (_(BAD_FPU));
12129 return FAIL;
12130 }
12131
12132 return SUCCESS;
12133 }
12134
12135 static void
12136 do_neon_addsub_if_i (void)
12137 {
12138 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12139 return;
12140
12141 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12142 return;
12143
12144 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12145 affected if we specify unsigned args. */
12146 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12147 }
12148
12149 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12150 result to be:
12151 V<op> A,B (A is operand 0, B is operand 2)
12152 to mean:
12153 V<op> A,B,A
12154 not:
12155 V<op> A,B,B
12156 so handle that case specially. */
12157
12158 static void
12159 neon_exchange_operands (void)
12160 {
12161 void *scratch = alloca (sizeof (inst.operands[0]));
12162 if (inst.operands[1].present)
12163 {
12164 /* Swap operands[1] and operands[2]. */
12165 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12166 inst.operands[1] = inst.operands[2];
12167 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12168 }
12169 else
12170 {
12171 inst.operands[1] = inst.operands[2];
12172 inst.operands[2] = inst.operands[0];
12173 }
12174 }
12175
12176 static void
12177 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12178 {
12179 if (inst.operands[2].isreg)
12180 {
12181 if (invert)
12182 neon_exchange_operands ();
12183 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12184 }
12185 else
12186 {
12187 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12188 struct neon_type_el et = neon_check_type (2, rs,
12189 N_EQK | N_SIZ, immtypes | N_KEY);
12190
12191 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12192 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12193 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12194 inst.instruction |= LOW4 (inst.operands[1].reg);
12195 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12196 inst.instruction |= neon_quad (rs) << 6;
12197 inst.instruction |= (et.type == NT_float) << 10;
12198 inst.instruction |= neon_logbits (et.size) << 18;
12199
12200 inst.instruction = neon_dp_fixup (inst.instruction);
12201 }
12202 }
12203
12204 static void
12205 do_neon_cmp (void)
12206 {
12207 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12208 }
12209
12210 static void
12211 do_neon_cmp_inv (void)
12212 {
12213 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12214 }
12215
12216 static void
12217 do_neon_ceq (void)
12218 {
12219 neon_compare (N_IF_32, N_IF_32, FALSE);
12220 }
12221
12222 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12223 scalars, which are encoded in 5 bits, M : Rm.
12224 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12225 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12226 index in M. */
12227
12228 static unsigned
12229 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12230 {
12231 unsigned regno = NEON_SCALAR_REG (scalar);
12232 unsigned elno = NEON_SCALAR_INDEX (scalar);
12233
12234 switch (elsize)
12235 {
12236 case 16:
12237 if (regno > 7 || elno > 3)
12238 goto bad_scalar;
12239 return regno | (elno << 3);
12240
12241 case 32:
12242 if (regno > 15 || elno > 1)
12243 goto bad_scalar;
12244 return regno | (elno << 4);
12245
12246 default:
12247 bad_scalar:
12248 first_error (_("scalar out of range for multiply instruction"));
12249 }
12250
12251 return 0;
12252 }
12253
12254 /* Encode multiply / multiply-accumulate scalar instructions. */
12255
12256 static void
12257 neon_mul_mac (struct neon_type_el et, int ubit)
12258 {
12259 unsigned scalar;
12260
12261 /* Give a more helpful error message if we have an invalid type. */
12262 if (et.type == NT_invtype)
12263 return;
12264
12265 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12266 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12267 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12268 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12269 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12270 inst.instruction |= LOW4 (scalar);
12271 inst.instruction |= HI1 (scalar) << 5;
12272 inst.instruction |= (et.type == NT_float) << 8;
12273 inst.instruction |= neon_logbits (et.size) << 20;
12274 inst.instruction |= (ubit != 0) << 24;
12275
12276 inst.instruction = neon_dp_fixup (inst.instruction);
12277 }
12278
12279 static void
12280 do_neon_mac_maybe_scalar (void)
12281 {
12282 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12283 return;
12284
12285 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12286 return;
12287
12288 if (inst.operands[2].isscalar)
12289 {
12290 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12291 struct neon_type_el et = neon_check_type (3, rs,
12292 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12293 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12294 neon_mul_mac (et, neon_quad (rs));
12295 }
12296 else
12297 {
12298 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12299 affected if we specify unsigned args. */
12300 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12301 }
12302 }
12303
12304 static void
12305 do_neon_tst (void)
12306 {
12307 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12308 struct neon_type_el et = neon_check_type (3, rs,
12309 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12310 neon_three_same (neon_quad (rs), 0, et.size);
12311 }
12312
12313 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12314 same types as the MAC equivalents. The polynomial type for this instruction
12315 is encoded the same as the integer type. */
12316
12317 static void
12318 do_neon_mul (void)
12319 {
12320 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12321 return;
12322
12323 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12324 return;
12325
12326 if (inst.operands[2].isscalar)
12327 do_neon_mac_maybe_scalar ();
12328 else
12329 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12330 }
12331
12332 static void
12333 do_neon_qdmulh (void)
12334 {
12335 if (inst.operands[2].isscalar)
12336 {
12337 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12338 struct neon_type_el et = neon_check_type (3, rs,
12339 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12340 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12341 neon_mul_mac (et, neon_quad (rs));
12342 }
12343 else
12344 {
12345 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12346 struct neon_type_el et = neon_check_type (3, rs,
12347 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12348 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12349 /* The U bit (rounding) comes from bit mask. */
12350 neon_three_same (neon_quad (rs), 0, et.size);
12351 }
12352 }
12353
12354 static void
12355 do_neon_fcmp_absolute (void)
12356 {
12357 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12358 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12359 /* Size field comes from bit mask. */
12360 neon_three_same (neon_quad (rs), 1, -1);
12361 }
12362
12363 static void
12364 do_neon_fcmp_absolute_inv (void)
12365 {
12366 neon_exchange_operands ();
12367 do_neon_fcmp_absolute ();
12368 }
12369
12370 static void
12371 do_neon_step (void)
12372 {
12373 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12374 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12375 neon_three_same (neon_quad (rs), 0, -1);
12376 }
12377
12378 static void
12379 do_neon_abs_neg (void)
12380 {
12381 enum neon_shape rs;
12382 struct neon_type_el et;
12383
12384 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12385 return;
12386
12387 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12388 return;
12389
12390 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12391 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12392
12393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12395 inst.instruction |= LOW4 (inst.operands[1].reg);
12396 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12397 inst.instruction |= neon_quad (rs) << 6;
12398 inst.instruction |= (et.type == NT_float) << 10;
12399 inst.instruction |= neon_logbits (et.size) << 18;
12400
12401 inst.instruction = neon_dp_fixup (inst.instruction);
12402 }
12403
12404 static void
12405 do_neon_sli (void)
12406 {
12407 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12408 struct neon_type_el et = neon_check_type (2, rs,
12409 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12410 int imm = inst.operands[2].imm;
12411 constraint (imm < 0 || (unsigned)imm >= et.size,
12412 _("immediate out of range for insert"));
12413 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12414 }
12415
12416 static void
12417 do_neon_sri (void)
12418 {
12419 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12420 struct neon_type_el et = neon_check_type (2, rs,
12421 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12422 int imm = inst.operands[2].imm;
12423 constraint (imm < 1 || (unsigned)imm > et.size,
12424 _("immediate out of range for insert"));
12425 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12426 }
12427
12428 static void
12429 do_neon_qshlu_imm (void)
12430 {
12431 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12432 struct neon_type_el et = neon_check_type (2, rs,
12433 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12434 int imm = inst.operands[2].imm;
12435 constraint (imm < 0 || (unsigned)imm >= et.size,
12436 _("immediate out of range for shift"));
12437 /* Only encodes the 'U present' variant of the instruction.
12438 In this case, signed types have OP (bit 8) set to 0.
12439 Unsigned types have OP set to 1. */
12440 inst.instruction |= (et.type == NT_unsigned) << 8;
12441 /* The rest of the bits are the same as other immediate shifts. */
12442 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12443 }
12444
12445 static void
12446 do_neon_qmovn (void)
12447 {
12448 struct neon_type_el et = neon_check_type (2, NS_DQ,
12449 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12450 /* Saturating move where operands can be signed or unsigned, and the
12451 destination has the same signedness. */
12452 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12453 if (et.type == NT_unsigned)
12454 inst.instruction |= 0xc0;
12455 else
12456 inst.instruction |= 0x80;
12457 neon_two_same (0, 1, et.size / 2);
12458 }
12459
12460 static void
12461 do_neon_qmovun (void)
12462 {
12463 struct neon_type_el et = neon_check_type (2, NS_DQ,
12464 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12465 /* Saturating move with unsigned results. Operands must be signed. */
12466 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12467 neon_two_same (0, 1, et.size / 2);
12468 }
12469
12470 static void
12471 do_neon_rshift_sat_narrow (void)
12472 {
12473 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12474 or unsigned. If operands are unsigned, results must also be unsigned. */
12475 struct neon_type_el et = neon_check_type (2, NS_DQI,
12476 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12477 int imm = inst.operands[2].imm;
12478 /* This gets the bounds check, size encoding and immediate bits calculation
12479 right. */
12480 et.size /= 2;
12481
12482 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12483 VQMOVN.I<size> <Dd>, <Qm>. */
12484 if (imm == 0)
12485 {
12486 inst.operands[2].present = 0;
12487 inst.instruction = N_MNEM_vqmovn;
12488 do_neon_qmovn ();
12489 return;
12490 }
12491
12492 constraint (imm < 1 || (unsigned)imm > et.size,
12493 _("immediate out of range"));
12494 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12495 }
12496
12497 static void
12498 do_neon_rshift_sat_narrow_u (void)
12499 {
12500 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12501 or unsigned. If operands are unsigned, results must also be unsigned. */
12502 struct neon_type_el et = neon_check_type (2, NS_DQI,
12503 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12504 int imm = inst.operands[2].imm;
12505 /* This gets the bounds check, size encoding and immediate bits calculation
12506 right. */
12507 et.size /= 2;
12508
12509 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12510 VQMOVUN.I<size> <Dd>, <Qm>. */
12511 if (imm == 0)
12512 {
12513 inst.operands[2].present = 0;
12514 inst.instruction = N_MNEM_vqmovun;
12515 do_neon_qmovun ();
12516 return;
12517 }
12518
12519 constraint (imm < 1 || (unsigned)imm > et.size,
12520 _("immediate out of range"));
12521 /* FIXME: The manual is kind of unclear about what value U should have in
12522 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12523 must be 1. */
12524 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12525 }
12526
12527 static void
12528 do_neon_movn (void)
12529 {
12530 struct neon_type_el et = neon_check_type (2, NS_DQ,
12531 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12532 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12533 neon_two_same (0, 1, et.size / 2);
12534 }
12535
12536 static void
12537 do_neon_rshift_narrow (void)
12538 {
12539 struct neon_type_el et = neon_check_type (2, NS_DQI,
12540 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12541 int imm = inst.operands[2].imm;
12542 /* This gets the bounds check, size encoding and immediate bits calculation
12543 right. */
12544 et.size /= 2;
12545
12546 /* If immediate is zero then we are a pseudo-instruction for
12547 VMOVN.I<size> <Dd>, <Qm> */
12548 if (imm == 0)
12549 {
12550 inst.operands[2].present = 0;
12551 inst.instruction = N_MNEM_vmovn;
12552 do_neon_movn ();
12553 return;
12554 }
12555
12556 constraint (imm < 1 || (unsigned)imm > et.size,
12557 _("immediate out of range for narrowing operation"));
12558 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12559 }
12560
12561 static void
12562 do_neon_shll (void)
12563 {
12564 /* FIXME: Type checking when lengthening. */
12565 struct neon_type_el et = neon_check_type (2, NS_QDI,
12566 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12567 unsigned imm = inst.operands[2].imm;
12568
12569 if (imm == et.size)
12570 {
12571 /* Maximum shift variant. */
12572 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12575 inst.instruction |= LOW4 (inst.operands[1].reg);
12576 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12577 inst.instruction |= neon_logbits (et.size) << 18;
12578
12579 inst.instruction = neon_dp_fixup (inst.instruction);
12580 }
12581 else
12582 {
12583 /* A more-specific type check for non-max versions. */
12584 et = neon_check_type (2, NS_QDI,
12585 N_EQK | N_DBL, N_SU_32 | N_KEY);
12586 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12587 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12588 }
12589 }
12590
12591 /* Check the various types for the VCVT instruction, and return which version
12592 the current instruction is. */
12593
12594 static int
12595 neon_cvt_flavour (enum neon_shape rs)
12596 {
12597 #define CVT_VAR(C,X,Y) \
12598 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12599 if (et.type != NT_invtype) \
12600 { \
12601 inst.error = NULL; \
12602 return (C); \
12603 }
12604 struct neon_type_el et;
12605 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12606 || rs == NS_FF) ? N_VFP : 0;
12607 /* The instruction versions which take an immediate take one register
12608 argument, which is extended to the width of the full register. Thus the
12609 "source" and "destination" registers must have the same width. Hack that
12610 here by making the size equal to the key (wider, in this case) operand. */
12611 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12612
12613 CVT_VAR (0, N_S32, N_F32);
12614 CVT_VAR (1, N_U32, N_F32);
12615 CVT_VAR (2, N_F32, N_S32);
12616 CVT_VAR (3, N_F32, N_U32);
12617 /* Half-precision conversions. */
12618 CVT_VAR (4, N_F32, N_F16);
12619 CVT_VAR (5, N_F16, N_F32);
12620
12621 whole_reg = N_VFP;
12622
12623 /* VFP instructions. */
12624 CVT_VAR (6, N_F32, N_F64);
12625 CVT_VAR (7, N_F64, N_F32);
12626 CVT_VAR (8, N_S32, N_F64 | key);
12627 CVT_VAR (9, N_U32, N_F64 | key);
12628 CVT_VAR (10, N_F64 | key, N_S32);
12629 CVT_VAR (11, N_F64 | key, N_U32);
12630 /* VFP instructions with bitshift. */
12631 CVT_VAR (12, N_F32 | key, N_S16);
12632 CVT_VAR (13, N_F32 | key, N_U16);
12633 CVT_VAR (14, N_F64 | key, N_S16);
12634 CVT_VAR (15, N_F64 | key, N_U16);
12635 CVT_VAR (16, N_S16, N_F32 | key);
12636 CVT_VAR (17, N_U16, N_F32 | key);
12637 CVT_VAR (18, N_S16, N_F64 | key);
12638 CVT_VAR (19, N_U16, N_F64 | key);
12639
12640 return -1;
12641 #undef CVT_VAR
12642 }
12643
12644 /* Neon-syntax VFP conversions. */
12645
12646 static void
12647 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12648 {
12649 const char *opname = 0;
12650
12651 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12652 {
12653 /* Conversions with immediate bitshift. */
12654 const char *enc[] =
12655 {
12656 "ftosls",
12657 "ftouls",
12658 "fsltos",
12659 "fultos",
12660 NULL,
12661 NULL,
12662 NULL,
12663 NULL,
12664 "ftosld",
12665 "ftould",
12666 "fsltod",
12667 "fultod",
12668 "fshtos",
12669 "fuhtos",
12670 "fshtod",
12671 "fuhtod",
12672 "ftoshs",
12673 "ftouhs",
12674 "ftoshd",
12675 "ftouhd"
12676 };
12677
12678 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12679 {
12680 opname = enc[flavour];
12681 constraint (inst.operands[0].reg != inst.operands[1].reg,
12682 _("operands 0 and 1 must be the same register"));
12683 inst.operands[1] = inst.operands[2];
12684 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12685 }
12686 }
12687 else
12688 {
12689 /* Conversions without bitshift. */
12690 const char *enc[] =
12691 {
12692 "ftosis",
12693 "ftouis",
12694 "fsitos",
12695 "fuitos",
12696 "NULL",
12697 "NULL",
12698 "fcvtsd",
12699 "fcvtds",
12700 "ftosid",
12701 "ftouid",
12702 "fsitod",
12703 "fuitod"
12704 };
12705
12706 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12707 opname = enc[flavour];
12708 }
12709
12710 if (opname)
12711 do_vfp_nsyn_opcode (opname);
12712 }
12713
12714 static void
12715 do_vfp_nsyn_cvtz (void)
12716 {
12717 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12718 int flavour = neon_cvt_flavour (rs);
12719 const char *enc[] =
12720 {
12721 "ftosizs",
12722 "ftouizs",
12723 NULL,
12724 NULL,
12725 NULL,
12726 NULL,
12727 NULL,
12728 NULL,
12729 "ftosizd",
12730 "ftouizd"
12731 };
12732
12733 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12734 do_vfp_nsyn_opcode (enc[flavour]);
12735 }
12736
12737 static void
12738 do_neon_cvt (void)
12739 {
12740 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12741 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
12742 int flavour = neon_cvt_flavour (rs);
12743
12744 /* VFP rather than Neon conversions. */
12745 if (flavour >= 6)
12746 {
12747 do_vfp_nsyn_cvt (rs, flavour);
12748 return;
12749 }
12750
12751 switch (rs)
12752 {
12753 case NS_DDI:
12754 case NS_QQI:
12755 {
12756 unsigned immbits;
12757 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12758
12759 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12760 return;
12761
12762 /* Fixed-point conversion with #0 immediate is encoded as an
12763 integer conversion. */
12764 if (inst.operands[2].present && inst.operands[2].imm == 0)
12765 goto int_encode;
12766 immbits = 32 - inst.operands[2].imm;
12767 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12768 if (flavour != -1)
12769 inst.instruction |= enctab[flavour];
12770 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12771 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12772 inst.instruction |= LOW4 (inst.operands[1].reg);
12773 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12774 inst.instruction |= neon_quad (rs) << 6;
12775 inst.instruction |= 1 << 21;
12776 inst.instruction |= immbits << 16;
12777
12778 inst.instruction = neon_dp_fixup (inst.instruction);
12779 }
12780 break;
12781
12782 case NS_DD:
12783 case NS_QQ:
12784 int_encode:
12785 {
12786 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12787
12788 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12789
12790 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12791 return;
12792
12793 if (flavour != -1)
12794 inst.instruction |= enctab[flavour];
12795
12796 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12797 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12798 inst.instruction |= LOW4 (inst.operands[1].reg);
12799 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12800 inst.instruction |= neon_quad (rs) << 6;
12801 inst.instruction |= 2 << 18;
12802
12803 inst.instruction = neon_dp_fixup (inst.instruction);
12804 }
12805 break;
12806
12807 /* Half-precision conversions for Advanced SIMD -- neon. */
12808 case NS_QD:
12809 case NS_DQ:
12810
12811 if ((rs == NS_DQ)
12812 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
12813 {
12814 as_bad (_("operand size must match register width"));
12815 break;
12816 }
12817
12818 if ((rs == NS_QD)
12819 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
12820 {
12821 as_bad (_("operand size must match register width"));
12822 break;
12823 }
12824
12825 if (rs == NS_DQ)
12826 inst.instruction = 0x3b60600;
12827 else
12828 inst.instruction = 0x3b60700;
12829
12830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12832 inst.instruction |= LOW4 (inst.operands[1].reg);
12833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12834 inst.instruction = neon_dp_fixup (inst.instruction);
12835 break;
12836
12837 default:
12838 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12839 do_vfp_nsyn_cvt (rs, flavour);
12840 }
12841 }
12842
12843 static void
12844 do_neon_cvtb (void)
12845 {
12846 inst.instruction = 0xeb20a40;
12847
12848 /* The sizes are attached to the mnemonic. */
12849 if (inst.vectype.el[0].type != NT_invtype
12850 && inst.vectype.el[0].size == 16)
12851 inst.instruction |= 0x00010000;
12852
12853 /* Programmer's syntax: the sizes are attached to the operands. */
12854 else if (inst.operands[0].vectype.type != NT_invtype
12855 && inst.operands[0].vectype.size == 16)
12856 inst.instruction |= 0x00010000;
12857
12858 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
12859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
12860 do_vfp_cond_or_thumb ();
12861 }
12862
12863
12864 static void
12865 do_neon_cvtt (void)
12866 {
12867 do_neon_cvtb ();
12868 inst.instruction |= 0x80;
12869 }
12870
12871 static void
12872 neon_move_immediate (void)
12873 {
12874 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12875 struct neon_type_el et = neon_check_type (2, rs,
12876 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12877 unsigned immlo, immhi = 0, immbits;
12878 int op, cmode, float_p;
12879
12880 constraint (et.type == NT_invtype,
12881 _("operand size must be specified for immediate VMOV"));
12882
12883 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12884 op = (inst.instruction & (1 << 5)) != 0;
12885
12886 immlo = inst.operands[1].imm;
12887 if (inst.operands[1].regisimm)
12888 immhi = inst.operands[1].reg;
12889
12890 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12891 _("immediate has bits set outside the operand size"));
12892
12893 float_p = inst.operands[1].immisfloat;
12894
12895 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12896 et.size, et.type)) == FAIL)
12897 {
12898 /* Invert relevant bits only. */
12899 neon_invert_size (&immlo, &immhi, et.size);
12900 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12901 with one or the other; those cases are caught by
12902 neon_cmode_for_move_imm. */
12903 op = !op;
12904 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12905 &op, et.size, et.type)) == FAIL)
12906 {
12907 first_error (_("immediate out of range"));
12908 return;
12909 }
12910 }
12911
12912 inst.instruction &= ~(1 << 5);
12913 inst.instruction |= op << 5;
12914
12915 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12916 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12917 inst.instruction |= neon_quad (rs) << 6;
12918 inst.instruction |= cmode << 8;
12919
12920 neon_write_immbits (immbits);
12921 }
12922
12923 static void
12924 do_neon_mvn (void)
12925 {
12926 if (inst.operands[1].isreg)
12927 {
12928 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12929
12930 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12931 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12932 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12933 inst.instruction |= LOW4 (inst.operands[1].reg);
12934 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12935 inst.instruction |= neon_quad (rs) << 6;
12936 }
12937 else
12938 {
12939 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12940 neon_move_immediate ();
12941 }
12942
12943 inst.instruction = neon_dp_fixup (inst.instruction);
12944 }
12945
12946 /* Encode instructions of form:
12947
12948 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12949 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
12950
12951 static void
12952 neon_mixed_length (struct neon_type_el et, unsigned size)
12953 {
12954 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12955 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12956 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12957 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12958 inst.instruction |= LOW4 (inst.operands[2].reg);
12959 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12960 inst.instruction |= (et.type == NT_unsigned) << 24;
12961 inst.instruction |= neon_logbits (size) << 20;
12962
12963 inst.instruction = neon_dp_fixup (inst.instruction);
12964 }
12965
12966 static void
12967 do_neon_dyadic_long (void)
12968 {
12969 /* FIXME: Type checking for lengthening op. */
12970 struct neon_type_el et = neon_check_type (3, NS_QDD,
12971 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12972 neon_mixed_length (et, et.size);
12973 }
12974
12975 static void
12976 do_neon_abal (void)
12977 {
12978 struct neon_type_el et = neon_check_type (3, NS_QDD,
12979 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12980 neon_mixed_length (et, et.size);
12981 }
12982
12983 static void
12984 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12985 {
12986 if (inst.operands[2].isscalar)
12987 {
12988 struct neon_type_el et = neon_check_type (3, NS_QDS,
12989 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12990 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12991 neon_mul_mac (et, et.type == NT_unsigned);
12992 }
12993 else
12994 {
12995 struct neon_type_el et = neon_check_type (3, NS_QDD,
12996 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12997 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12998 neon_mixed_length (et, et.size);
12999 }
13000 }
13001
13002 static void
13003 do_neon_mac_maybe_scalar_long (void)
13004 {
13005 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13006 }
13007
13008 static void
13009 do_neon_dyadic_wide (void)
13010 {
13011 struct neon_type_el et = neon_check_type (3, NS_QQD,
13012 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13013 neon_mixed_length (et, et.size);
13014 }
13015
13016 static void
13017 do_neon_dyadic_narrow (void)
13018 {
13019 struct neon_type_el et = neon_check_type (3, NS_QDD,
13020 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13021 /* Operand sign is unimportant, and the U bit is part of the opcode,
13022 so force the operand type to integer. */
13023 et.type = NT_integer;
13024 neon_mixed_length (et, et.size / 2);
13025 }
13026
13027 static void
13028 do_neon_mul_sat_scalar_long (void)
13029 {
13030 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13031 }
13032
13033 static void
13034 do_neon_vmull (void)
13035 {
13036 if (inst.operands[2].isscalar)
13037 do_neon_mac_maybe_scalar_long ();
13038 else
13039 {
13040 struct neon_type_el et = neon_check_type (3, NS_QDD,
13041 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13042 if (et.type == NT_poly)
13043 inst.instruction = NEON_ENC_POLY (inst.instruction);
13044 else
13045 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13046 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13047 zero. Should be OK as-is. */
13048 neon_mixed_length (et, et.size);
13049 }
13050 }
13051
13052 static void
13053 do_neon_ext (void)
13054 {
13055 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13056 struct neon_type_el et = neon_check_type (3, rs,
13057 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13058 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13059
13060 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13061 _("shift out of range"));
13062 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13063 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13064 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13065 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13066 inst.instruction |= LOW4 (inst.operands[2].reg);
13067 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13068 inst.instruction |= neon_quad (rs) << 6;
13069 inst.instruction |= imm << 8;
13070
13071 inst.instruction = neon_dp_fixup (inst.instruction);
13072 }
13073
13074 static void
13075 do_neon_rev (void)
13076 {
13077 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13078 struct neon_type_el et = neon_check_type (2, rs,
13079 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13080 unsigned op = (inst.instruction >> 7) & 3;
13081 /* N (width of reversed regions) is encoded as part of the bitmask. We
13082 extract it here to check the elements to be reversed are smaller.
13083 Otherwise we'd get a reserved instruction. */
13084 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13085 assert (elsize != 0);
13086 constraint (et.size >= elsize,
13087 _("elements must be smaller than reversal region"));
13088 neon_two_same (neon_quad (rs), 1, et.size);
13089 }
13090
13091 static void
13092 do_neon_dup (void)
13093 {
13094 if (inst.operands[1].isscalar)
13095 {
13096 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13097 struct neon_type_el et = neon_check_type (2, rs,
13098 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13099 unsigned sizebits = et.size >> 3;
13100 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13101 int logsize = neon_logbits (et.size);
13102 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13103
13104 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13105 return;
13106
13107 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13110 inst.instruction |= LOW4 (dm);
13111 inst.instruction |= HI1 (dm) << 5;
13112 inst.instruction |= neon_quad (rs) << 6;
13113 inst.instruction |= x << 17;
13114 inst.instruction |= sizebits << 16;
13115
13116 inst.instruction = neon_dp_fixup (inst.instruction);
13117 }
13118 else
13119 {
13120 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13121 struct neon_type_el et = neon_check_type (2, rs,
13122 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13123 /* Duplicate ARM register to lanes of vector. */
13124 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13125 switch (et.size)
13126 {
13127 case 8: inst.instruction |= 0x400000; break;
13128 case 16: inst.instruction |= 0x000020; break;
13129 case 32: inst.instruction |= 0x000000; break;
13130 default: break;
13131 }
13132 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13133 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13134 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13135 inst.instruction |= neon_quad (rs) << 21;
13136 /* The encoding for this instruction is identical for the ARM and Thumb
13137 variants, except for the condition field. */
13138 do_vfp_cond_or_thumb ();
13139 }
13140 }
13141
13142 /* VMOV has particularly many variations. It can be one of:
13143 0. VMOV<c><q> <Qd>, <Qm>
13144 1. VMOV<c><q> <Dd>, <Dm>
13145 (Register operations, which are VORR with Rm = Rn.)
13146 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13147 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13148 (Immediate loads.)
13149 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13150 (ARM register to scalar.)
13151 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13152 (Two ARM registers to vector.)
13153 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13154 (Scalar to ARM register.)
13155 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13156 (Vector to two ARM registers.)
13157 8. VMOV.F32 <Sd>, <Sm>
13158 9. VMOV.F64 <Dd>, <Dm>
13159 (VFP register moves.)
13160 10. VMOV.F32 <Sd>, #imm
13161 11. VMOV.F64 <Dd>, #imm
13162 (VFP float immediate load.)
13163 12. VMOV <Rd>, <Sm>
13164 (VFP single to ARM reg.)
13165 13. VMOV <Sd>, <Rm>
13166 (ARM reg to VFP single.)
13167 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13168 (Two ARM regs to two VFP singles.)
13169 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13170 (Two VFP singles to two ARM regs.)
13171
13172 These cases can be disambiguated using neon_select_shape, except cases 1/9
13173 and 3/11 which depend on the operand type too.
13174
13175 All the encoded bits are hardcoded by this function.
13176
13177 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13178 Cases 5, 7 may be used with VFPv2 and above.
13179
13180 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13181 can specify a type where it doesn't make sense to, and is ignored). */
13182
13183 static void
13184 do_neon_mov (void)
13185 {
13186 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13187 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13188 NS_NULL);
13189 struct neon_type_el et;
13190 const char *ldconst = 0;
13191
13192 switch (rs)
13193 {
13194 case NS_DD: /* case 1/9. */
13195 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13196 /* It is not an error here if no type is given. */
13197 inst.error = NULL;
13198 if (et.type == NT_float && et.size == 64)
13199 {
13200 do_vfp_nsyn_opcode ("fcpyd");
13201 break;
13202 }
13203 /* fall through. */
13204
13205 case NS_QQ: /* case 0/1. */
13206 {
13207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13208 return;
13209 /* The architecture manual I have doesn't explicitly state which
13210 value the U bit should have for register->register moves, but
13211 the equivalent VORR instruction has U = 0, so do that. */
13212 inst.instruction = 0x0200110;
13213 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13214 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13215 inst.instruction |= LOW4 (inst.operands[1].reg);
13216 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13217 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13218 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13219 inst.instruction |= neon_quad (rs) << 6;
13220
13221 inst.instruction = neon_dp_fixup (inst.instruction);
13222 }
13223 break;
13224
13225 case NS_DI: /* case 3/11. */
13226 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13227 inst.error = NULL;
13228 if (et.type == NT_float && et.size == 64)
13229 {
13230 /* case 11 (fconstd). */
13231 ldconst = "fconstd";
13232 goto encode_fconstd;
13233 }
13234 /* fall through. */
13235
13236 case NS_QI: /* case 2/3. */
13237 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13238 return;
13239 inst.instruction = 0x0800010;
13240 neon_move_immediate ();
13241 inst.instruction = neon_dp_fixup (inst.instruction);
13242 break;
13243
13244 case NS_SR: /* case 4. */
13245 {
13246 unsigned bcdebits = 0;
13247 struct neon_type_el et = neon_check_type (2, NS_NULL,
13248 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13249 int logsize = neon_logbits (et.size);
13250 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13251 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13252
13253 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13254 _(BAD_FPU));
13255 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13256 && et.size != 32, _(BAD_FPU));
13257 constraint (et.type == NT_invtype, _("bad type for scalar"));
13258 constraint (x >= 64 / et.size, _("scalar index out of range"));
13259
13260 switch (et.size)
13261 {
13262 case 8: bcdebits = 0x8; break;
13263 case 16: bcdebits = 0x1; break;
13264 case 32: bcdebits = 0x0; break;
13265 default: ;
13266 }
13267
13268 bcdebits |= x << logsize;
13269
13270 inst.instruction = 0xe000b10;
13271 do_vfp_cond_or_thumb ();
13272 inst.instruction |= LOW4 (dn) << 16;
13273 inst.instruction |= HI1 (dn) << 7;
13274 inst.instruction |= inst.operands[1].reg << 12;
13275 inst.instruction |= (bcdebits & 3) << 5;
13276 inst.instruction |= (bcdebits >> 2) << 21;
13277 }
13278 break;
13279
13280 case NS_DRR: /* case 5 (fmdrr). */
13281 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13282 _(BAD_FPU));
13283
13284 inst.instruction = 0xc400b10;
13285 do_vfp_cond_or_thumb ();
13286 inst.instruction |= LOW4 (inst.operands[0].reg);
13287 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13288 inst.instruction |= inst.operands[1].reg << 12;
13289 inst.instruction |= inst.operands[2].reg << 16;
13290 break;
13291
13292 case NS_RS: /* case 6. */
13293 {
13294 struct neon_type_el et = neon_check_type (2, NS_NULL,
13295 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13296 unsigned logsize = neon_logbits (et.size);
13297 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13298 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13299 unsigned abcdebits = 0;
13300
13301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13302 _(BAD_FPU));
13303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13304 && et.size != 32, _(BAD_FPU));
13305 constraint (et.type == NT_invtype, _("bad type for scalar"));
13306 constraint (x >= 64 / et.size, _("scalar index out of range"));
13307
13308 switch (et.size)
13309 {
13310 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13311 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13312 case 32: abcdebits = 0x00; break;
13313 default: ;
13314 }
13315
13316 abcdebits |= x << logsize;
13317 inst.instruction = 0xe100b10;
13318 do_vfp_cond_or_thumb ();
13319 inst.instruction |= LOW4 (dn) << 16;
13320 inst.instruction |= HI1 (dn) << 7;
13321 inst.instruction |= inst.operands[0].reg << 12;
13322 inst.instruction |= (abcdebits & 3) << 5;
13323 inst.instruction |= (abcdebits >> 2) << 21;
13324 }
13325 break;
13326
13327 case NS_RRD: /* case 7 (fmrrd). */
13328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13329 _(BAD_FPU));
13330
13331 inst.instruction = 0xc500b10;
13332 do_vfp_cond_or_thumb ();
13333 inst.instruction |= inst.operands[0].reg << 12;
13334 inst.instruction |= inst.operands[1].reg << 16;
13335 inst.instruction |= LOW4 (inst.operands[2].reg);
13336 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13337 break;
13338
13339 case NS_FF: /* case 8 (fcpys). */
13340 do_vfp_nsyn_opcode ("fcpys");
13341 break;
13342
13343 case NS_FI: /* case 10 (fconsts). */
13344 ldconst = "fconsts";
13345 encode_fconstd:
13346 if (is_quarter_float (inst.operands[1].imm))
13347 {
13348 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13349 do_vfp_nsyn_opcode (ldconst);
13350 }
13351 else
13352 first_error (_("immediate out of range"));
13353 break;
13354
13355 case NS_RF: /* case 12 (fmrs). */
13356 do_vfp_nsyn_opcode ("fmrs");
13357 break;
13358
13359 case NS_FR: /* case 13 (fmsr). */
13360 do_vfp_nsyn_opcode ("fmsr");
13361 break;
13362
13363 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13364 (one of which is a list), but we have parsed four. Do some fiddling to
13365 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13366 expect. */
13367 case NS_RRFF: /* case 14 (fmrrs). */
13368 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13369 _("VFP registers must be adjacent"));
13370 inst.operands[2].imm = 2;
13371 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13372 do_vfp_nsyn_opcode ("fmrrs");
13373 break;
13374
13375 case NS_FFRR: /* case 15 (fmsrr). */
13376 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13377 _("VFP registers must be adjacent"));
13378 inst.operands[1] = inst.operands[2];
13379 inst.operands[2] = inst.operands[3];
13380 inst.operands[0].imm = 2;
13381 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13382 do_vfp_nsyn_opcode ("fmsrr");
13383 break;
13384
13385 default:
13386 abort ();
13387 }
13388 }
13389
13390 static void
13391 do_neon_rshift_round_imm (void)
13392 {
13393 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13394 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13395 int imm = inst.operands[2].imm;
13396
13397 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13398 if (imm == 0)
13399 {
13400 inst.operands[2].present = 0;
13401 do_neon_mov ();
13402 return;
13403 }
13404
13405 constraint (imm < 1 || (unsigned)imm > et.size,
13406 _("immediate out of range for shift"));
13407 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13408 et.size - imm);
13409 }
13410
13411 static void
13412 do_neon_movl (void)
13413 {
13414 struct neon_type_el et = neon_check_type (2, NS_QD,
13415 N_EQK | N_DBL, N_SU_32 | N_KEY);
13416 unsigned sizebits = et.size >> 3;
13417 inst.instruction |= sizebits << 19;
13418 neon_two_same (0, et.type == NT_unsigned, -1);
13419 }
13420
13421 static void
13422 do_neon_trn (void)
13423 {
13424 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13425 struct neon_type_el et = neon_check_type (2, rs,
13426 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13427 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13428 neon_two_same (neon_quad (rs), 1, et.size);
13429 }
13430
13431 static void
13432 do_neon_zip_uzp (void)
13433 {
13434 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13435 struct neon_type_el et = neon_check_type (2, rs,
13436 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13437 if (rs == NS_DD && et.size == 32)
13438 {
13439 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13440 inst.instruction = N_MNEM_vtrn;
13441 do_neon_trn ();
13442 return;
13443 }
13444 neon_two_same (neon_quad (rs), 1, et.size);
13445 }
13446
13447 static void
13448 do_neon_sat_abs_neg (void)
13449 {
13450 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13451 struct neon_type_el et = neon_check_type (2, rs,
13452 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13453 neon_two_same (neon_quad (rs), 1, et.size);
13454 }
13455
13456 static void
13457 do_neon_pair_long (void)
13458 {
13459 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13460 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13461 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13462 inst.instruction |= (et.type == NT_unsigned) << 7;
13463 neon_two_same (neon_quad (rs), 1, et.size);
13464 }
13465
13466 static void
13467 do_neon_recip_est (void)
13468 {
13469 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13470 struct neon_type_el et = neon_check_type (2, rs,
13471 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13472 inst.instruction |= (et.type == NT_float) << 8;
13473 neon_two_same (neon_quad (rs), 1, et.size);
13474 }
13475
13476 static void
13477 do_neon_cls (void)
13478 {
13479 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13480 struct neon_type_el et = neon_check_type (2, rs,
13481 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13482 neon_two_same (neon_quad (rs), 1, et.size);
13483 }
13484
13485 static void
13486 do_neon_clz (void)
13487 {
13488 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13489 struct neon_type_el et = neon_check_type (2, rs,
13490 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13491 neon_two_same (neon_quad (rs), 1, et.size);
13492 }
13493
13494 static void
13495 do_neon_cnt (void)
13496 {
13497 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13498 struct neon_type_el et = neon_check_type (2, rs,
13499 N_EQK | N_INT, N_8 | N_KEY);
13500 neon_two_same (neon_quad (rs), 1, et.size);
13501 }
13502
13503 static void
13504 do_neon_swp (void)
13505 {
13506 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13507 neon_two_same (neon_quad (rs), 1, -1);
13508 }
13509
13510 static void
13511 do_neon_tbl_tbx (void)
13512 {
13513 unsigned listlenbits;
13514 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13515
13516 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13517 {
13518 first_error (_("bad list length for table lookup"));
13519 return;
13520 }
13521
13522 listlenbits = inst.operands[1].imm - 1;
13523 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13524 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13525 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13526 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13527 inst.instruction |= LOW4 (inst.operands[2].reg);
13528 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13529 inst.instruction |= listlenbits << 8;
13530
13531 inst.instruction = neon_dp_fixup (inst.instruction);
13532 }
13533
13534 static void
13535 do_neon_ldm_stm (void)
13536 {
13537 /* P, U and L bits are part of bitmask. */
13538 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13539 unsigned offsetbits = inst.operands[1].imm * 2;
13540
13541 if (inst.operands[1].issingle)
13542 {
13543 do_vfp_nsyn_ldm_stm (is_dbmode);
13544 return;
13545 }
13546
13547 constraint (is_dbmode && !inst.operands[0].writeback,
13548 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13549
13550 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13551 _("register list must contain at least 1 and at most 16 "
13552 "registers"));
13553
13554 inst.instruction |= inst.operands[0].reg << 16;
13555 inst.instruction |= inst.operands[0].writeback << 21;
13556 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13557 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13558
13559 inst.instruction |= offsetbits;
13560
13561 do_vfp_cond_or_thumb ();
13562 }
13563
13564 static void
13565 do_neon_ldr_str (void)
13566 {
13567 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13568
13569 if (inst.operands[0].issingle)
13570 {
13571 if (is_ldr)
13572 do_vfp_nsyn_opcode ("flds");
13573 else
13574 do_vfp_nsyn_opcode ("fsts");
13575 }
13576 else
13577 {
13578 if (is_ldr)
13579 do_vfp_nsyn_opcode ("fldd");
13580 else
13581 do_vfp_nsyn_opcode ("fstd");
13582 }
13583 }
13584
13585 /* "interleave" version also handles non-interleaving register VLD1/VST1
13586 instructions. */
13587
13588 static void
13589 do_neon_ld_st_interleave (void)
13590 {
13591 struct neon_type_el et = neon_check_type (1, NS_NULL,
13592 N_8 | N_16 | N_32 | N_64);
13593 unsigned alignbits = 0;
13594 unsigned idx;
13595 /* The bits in this table go:
13596 0: register stride of one (0) or two (1)
13597 1,2: register list length, minus one (1, 2, 3, 4).
13598 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13599 We use -1 for invalid entries. */
13600 const int typetable[] =
13601 {
13602 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13603 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13604 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13605 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13606 };
13607 int typebits;
13608
13609 if (et.type == NT_invtype)
13610 return;
13611
13612 if (inst.operands[1].immisalign)
13613 switch (inst.operands[1].imm >> 8)
13614 {
13615 case 64: alignbits = 1; break;
13616 case 128:
13617 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13618 goto bad_alignment;
13619 alignbits = 2;
13620 break;
13621 case 256:
13622 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13623 goto bad_alignment;
13624 alignbits = 3;
13625 break;
13626 default:
13627 bad_alignment:
13628 first_error (_("bad alignment"));
13629 return;
13630 }
13631
13632 inst.instruction |= alignbits << 4;
13633 inst.instruction |= neon_logbits (et.size) << 6;
13634
13635 /* Bits [4:6] of the immediate in a list specifier encode register stride
13636 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13637 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13638 up the right value for "type" in a table based on this value and the given
13639 list style, then stick it back. */
13640 idx = ((inst.operands[0].imm >> 4) & 7)
13641 | (((inst.instruction >> 8) & 3) << 3);
13642
13643 typebits = typetable[idx];
13644
13645 constraint (typebits == -1, _("bad list type for instruction"));
13646
13647 inst.instruction &= ~0xf00;
13648 inst.instruction |= typebits << 8;
13649 }
13650
13651 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13652 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13653 otherwise. The variable arguments are a list of pairs of legal (size, align)
13654 values, terminated with -1. */
13655
13656 static int
13657 neon_alignment_bit (int size, int align, int *do_align, ...)
13658 {
13659 va_list ap;
13660 int result = FAIL, thissize, thisalign;
13661
13662 if (!inst.operands[1].immisalign)
13663 {
13664 *do_align = 0;
13665 return SUCCESS;
13666 }
13667
13668 va_start (ap, do_align);
13669
13670 do
13671 {
13672 thissize = va_arg (ap, int);
13673 if (thissize == -1)
13674 break;
13675 thisalign = va_arg (ap, int);
13676
13677 if (size == thissize && align == thisalign)
13678 result = SUCCESS;
13679 }
13680 while (result != SUCCESS);
13681
13682 va_end (ap);
13683
13684 if (result == SUCCESS)
13685 *do_align = 1;
13686 else
13687 first_error (_("unsupported alignment for instruction"));
13688
13689 return result;
13690 }
13691
13692 static void
13693 do_neon_ld_st_lane (void)
13694 {
13695 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13696 int align_good, do_align = 0;
13697 int logsize = neon_logbits (et.size);
13698 int align = inst.operands[1].imm >> 8;
13699 int n = (inst.instruction >> 8) & 3;
13700 int max_el = 64 / et.size;
13701
13702 if (et.type == NT_invtype)
13703 return;
13704
13705 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13706 _("bad list length"));
13707 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13708 _("scalar index out of range"));
13709 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13710 && et.size == 8,
13711 _("stride of 2 unavailable when element size is 8"));
13712
13713 switch (n)
13714 {
13715 case 0: /* VLD1 / VST1. */
13716 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13717 32, 32, -1);
13718 if (align_good == FAIL)
13719 return;
13720 if (do_align)
13721 {
13722 unsigned alignbits = 0;
13723 switch (et.size)
13724 {
13725 case 16: alignbits = 0x1; break;
13726 case 32: alignbits = 0x3; break;
13727 default: ;
13728 }
13729 inst.instruction |= alignbits << 4;
13730 }
13731 break;
13732
13733 case 1: /* VLD2 / VST2. */
13734 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13735 32, 64, -1);
13736 if (align_good == FAIL)
13737 return;
13738 if (do_align)
13739 inst.instruction |= 1 << 4;
13740 break;
13741
13742 case 2: /* VLD3 / VST3. */
13743 constraint (inst.operands[1].immisalign,
13744 _("can't use alignment with this instruction"));
13745 break;
13746
13747 case 3: /* VLD4 / VST4. */
13748 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13749 16, 64, 32, 64, 32, 128, -1);
13750 if (align_good == FAIL)
13751 return;
13752 if (do_align)
13753 {
13754 unsigned alignbits = 0;
13755 switch (et.size)
13756 {
13757 case 8: alignbits = 0x1; break;
13758 case 16: alignbits = 0x1; break;
13759 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13760 default: ;
13761 }
13762 inst.instruction |= alignbits << 4;
13763 }
13764 break;
13765
13766 default: ;
13767 }
13768
13769 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13770 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13771 inst.instruction |= 1 << (4 + logsize);
13772
13773 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13774 inst.instruction |= logsize << 10;
13775 }
13776
13777 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13778
13779 static void
13780 do_neon_ld_dup (void)
13781 {
13782 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13783 int align_good, do_align = 0;
13784
13785 if (et.type == NT_invtype)
13786 return;
13787
13788 switch ((inst.instruction >> 8) & 3)
13789 {
13790 case 0: /* VLD1. */
13791 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13792 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13793 &do_align, 16, 16, 32, 32, -1);
13794 if (align_good == FAIL)
13795 return;
13796 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13797 {
13798 case 1: break;
13799 case 2: inst.instruction |= 1 << 5; break;
13800 default: first_error (_("bad list length")); return;
13801 }
13802 inst.instruction |= neon_logbits (et.size) << 6;
13803 break;
13804
13805 case 1: /* VLD2. */
13806 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13807 &do_align, 8, 16, 16, 32, 32, 64, -1);
13808 if (align_good == FAIL)
13809 return;
13810 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13811 _("bad list length"));
13812 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13813 inst.instruction |= 1 << 5;
13814 inst.instruction |= neon_logbits (et.size) << 6;
13815 break;
13816
13817 case 2: /* VLD3. */
13818 constraint (inst.operands[1].immisalign,
13819 _("can't use alignment with this instruction"));
13820 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13821 _("bad list length"));
13822 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13823 inst.instruction |= 1 << 5;
13824 inst.instruction |= neon_logbits (et.size) << 6;
13825 break;
13826
13827 case 3: /* VLD4. */
13828 {
13829 int align = inst.operands[1].imm >> 8;
13830 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13831 16, 64, 32, 64, 32, 128, -1);
13832 if (align_good == FAIL)
13833 return;
13834 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13835 _("bad list length"));
13836 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13837 inst.instruction |= 1 << 5;
13838 if (et.size == 32 && align == 128)
13839 inst.instruction |= 0x3 << 6;
13840 else
13841 inst.instruction |= neon_logbits (et.size) << 6;
13842 }
13843 break;
13844
13845 default: ;
13846 }
13847
13848 inst.instruction |= do_align << 4;
13849 }
13850
13851 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13852 apart from bits [11:4]. */
13853
13854 static void
13855 do_neon_ldx_stx (void)
13856 {
13857 switch (NEON_LANE (inst.operands[0].imm))
13858 {
13859 case NEON_INTERLEAVE_LANES:
13860 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13861 do_neon_ld_st_interleave ();
13862 break;
13863
13864 case NEON_ALL_LANES:
13865 inst.instruction = NEON_ENC_DUP (inst.instruction);
13866 do_neon_ld_dup ();
13867 break;
13868
13869 default:
13870 inst.instruction = NEON_ENC_LANE (inst.instruction);
13871 do_neon_ld_st_lane ();
13872 }
13873
13874 /* L bit comes from bit mask. */
13875 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13876 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13877 inst.instruction |= inst.operands[1].reg << 16;
13878
13879 if (inst.operands[1].postind)
13880 {
13881 int postreg = inst.operands[1].imm & 0xf;
13882 constraint (!inst.operands[1].immisreg,
13883 _("post-index must be a register"));
13884 constraint (postreg == 0xd || postreg == 0xf,
13885 _("bad register for post-index"));
13886 inst.instruction |= postreg;
13887 }
13888 else if (inst.operands[1].writeback)
13889 {
13890 inst.instruction |= 0xd;
13891 }
13892 else
13893 inst.instruction |= 0xf;
13894
13895 if (thumb_mode)
13896 inst.instruction |= 0xf9000000;
13897 else
13898 inst.instruction |= 0xf4000000;
13899 }
13900 \f
13901 /* Overall per-instruction processing. */
13902
13903 /* We need to be able to fix up arbitrary expressions in some statements.
13904 This is so that we can handle symbols that are an arbitrary distance from
13905 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13906 which returns part of an address in a form which will be valid for
13907 a data instruction. We do this by pushing the expression into a symbol
13908 in the expr_section, and creating a fix for that. */
13909
13910 static void
13911 fix_new_arm (fragS * frag,
13912 int where,
13913 short int size,
13914 expressionS * exp,
13915 int pc_rel,
13916 int reloc)
13917 {
13918 fixS * new_fix;
13919
13920 switch (exp->X_op)
13921 {
13922 case O_constant:
13923 case O_symbol:
13924 case O_add:
13925 case O_subtract:
13926 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13927 break;
13928
13929 default:
13930 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13931 pc_rel, reloc);
13932 break;
13933 }
13934
13935 /* Mark whether the fix is to a THUMB instruction, or an ARM
13936 instruction. */
13937 new_fix->tc_fix_data = thumb_mode;
13938 }
13939
13940 /* Create a frg for an instruction requiring relaxation. */
13941 static void
13942 output_relax_insn (void)
13943 {
13944 char * to;
13945 symbolS *sym;
13946 int offset;
13947
13948 /* The size of the instruction is unknown, so tie the debug info to the
13949 start of the instruction. */
13950 dwarf2_emit_insn (0);
13951
13952 switch (inst.reloc.exp.X_op)
13953 {
13954 case O_symbol:
13955 sym = inst.reloc.exp.X_add_symbol;
13956 offset = inst.reloc.exp.X_add_number;
13957 break;
13958 case O_constant:
13959 sym = NULL;
13960 offset = inst.reloc.exp.X_add_number;
13961 break;
13962 default:
13963 sym = make_expr_symbol (&inst.reloc.exp);
13964 offset = 0;
13965 break;
13966 }
13967 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13968 inst.relax, sym, offset, NULL/*offset, opcode*/);
13969 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13970 }
13971
13972 /* Write a 32-bit thumb instruction to buf. */
13973 static void
13974 put_thumb32_insn (char * buf, unsigned long insn)
13975 {
13976 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13977 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13978 }
13979
13980 static void
13981 output_inst (const char * str)
13982 {
13983 char * to = NULL;
13984
13985 if (inst.error)
13986 {
13987 as_bad ("%s -- `%s'", inst.error, str);
13988 return;
13989 }
13990 if (inst.relax)
13991 {
13992 output_relax_insn ();
13993 return;
13994 }
13995 if (inst.size == 0)
13996 return;
13997
13998 to = frag_more (inst.size);
13999
14000 if (thumb_mode && (inst.size > THUMB_SIZE))
14001 {
14002 assert (inst.size == (2 * THUMB_SIZE));
14003 put_thumb32_insn (to, inst.instruction);
14004 }
14005 else if (inst.size > INSN_SIZE)
14006 {
14007 assert (inst.size == (2 * INSN_SIZE));
14008 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14009 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14010 }
14011 else
14012 md_number_to_chars (to, inst.instruction, inst.size);
14013
14014 if (inst.reloc.type != BFD_RELOC_UNUSED)
14015 fix_new_arm (frag_now, to - frag_now->fr_literal,
14016 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14017 inst.reloc.type);
14018
14019 dwarf2_emit_insn (inst.size);
14020 }
14021
14022 /* Tag values used in struct asm_opcode's tag field. */
14023 enum opcode_tag
14024 {
14025 OT_unconditional, /* Instruction cannot be conditionalized.
14026 The ARM condition field is still 0xE. */
14027 OT_unconditionalF, /* Instruction cannot be conditionalized
14028 and carries 0xF in its ARM condition field. */
14029 OT_csuffix, /* Instruction takes a conditional suffix. */
14030 OT_csuffixF, /* Some forms of the instruction take a conditional
14031 suffix, others place 0xF where the condition field
14032 would be. */
14033 OT_cinfix3, /* Instruction takes a conditional infix,
14034 beginning at character index 3. (In
14035 unified mode, it becomes a suffix.) */
14036 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14037 tsts, cmps, cmns, and teqs. */
14038 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14039 character index 3, even in unified mode. Used for
14040 legacy instructions where suffix and infix forms
14041 may be ambiguous. */
14042 OT_csuf_or_in3, /* Instruction takes either a conditional
14043 suffix or an infix at character index 3. */
14044 OT_odd_infix_unc, /* This is the unconditional variant of an
14045 instruction that takes a conditional infix
14046 at an unusual position. In unified mode,
14047 this variant will accept a suffix. */
14048 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14049 are the conditional variants of instructions that
14050 take conditional infixes in unusual positions.
14051 The infix appears at character index
14052 (tag - OT_odd_infix_0). These are not accepted
14053 in unified mode. */
14054 };
14055
14056 /* Subroutine of md_assemble, responsible for looking up the primary
14057 opcode from the mnemonic the user wrote. STR points to the
14058 beginning of the mnemonic.
14059
14060 This is not simply a hash table lookup, because of conditional
14061 variants. Most instructions have conditional variants, which are
14062 expressed with a _conditional affix_ to the mnemonic. If we were
14063 to encode each conditional variant as a literal string in the opcode
14064 table, it would have approximately 20,000 entries.
14065
14066 Most mnemonics take this affix as a suffix, and in unified syntax,
14067 'most' is upgraded to 'all'. However, in the divided syntax, some
14068 instructions take the affix as an infix, notably the s-variants of
14069 the arithmetic instructions. Of those instructions, all but six
14070 have the infix appear after the third character of the mnemonic.
14071
14072 Accordingly, the algorithm for looking up primary opcodes given
14073 an identifier is:
14074
14075 1. Look up the identifier in the opcode table.
14076 If we find a match, go to step U.
14077
14078 2. Look up the last two characters of the identifier in the
14079 conditions table. If we find a match, look up the first N-2
14080 characters of the identifier in the opcode table. If we
14081 find a match, go to step CE.
14082
14083 3. Look up the fourth and fifth characters of the identifier in
14084 the conditions table. If we find a match, extract those
14085 characters from the identifier, and look up the remaining
14086 characters in the opcode table. If we find a match, go
14087 to step CM.
14088
14089 4. Fail.
14090
14091 U. Examine the tag field of the opcode structure, in case this is
14092 one of the six instructions with its conditional infix in an
14093 unusual place. If it is, the tag tells us where to find the
14094 infix; look it up in the conditions table and set inst.cond
14095 accordingly. Otherwise, this is an unconditional instruction.
14096 Again set inst.cond accordingly. Return the opcode structure.
14097
14098 CE. Examine the tag field to make sure this is an instruction that
14099 should receive a conditional suffix. If it is not, fail.
14100 Otherwise, set inst.cond from the suffix we already looked up,
14101 and return the opcode structure.
14102
14103 CM. Examine the tag field to make sure this is an instruction that
14104 should receive a conditional infix after the third character.
14105 If it is not, fail. Otherwise, undo the edits to the current
14106 line of input and proceed as for case CE. */
14107
14108 static const struct asm_opcode *
14109 opcode_lookup (char **str)
14110 {
14111 char *end, *base;
14112 char *affix;
14113 const struct asm_opcode *opcode;
14114 const struct asm_cond *cond;
14115 char save[2];
14116 bfd_boolean neon_supported;
14117
14118 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14119
14120 /* Scan up to the end of the mnemonic, which must end in white space,
14121 '.' (in unified mode, or for Neon instructions), or end of string. */
14122 for (base = end = *str; *end != '\0'; end++)
14123 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14124 break;
14125
14126 if (end == base)
14127 return 0;
14128
14129 /* Handle a possible width suffix and/or Neon type suffix. */
14130 if (end[0] == '.')
14131 {
14132 int offset = 2;
14133
14134 /* The .w and .n suffixes are only valid if the unified syntax is in
14135 use. */
14136 if (unified_syntax && end[1] == 'w')
14137 inst.size_req = 4;
14138 else if (unified_syntax && end[1] == 'n')
14139 inst.size_req = 2;
14140 else
14141 offset = 0;
14142
14143 inst.vectype.elems = 0;
14144
14145 *str = end + offset;
14146
14147 if (end[offset] == '.')
14148 {
14149 /* See if we have a Neon type suffix (possible in either unified or
14150 non-unified ARM syntax mode). */
14151 if (parse_neon_type (&inst.vectype, str) == FAIL)
14152 return 0;
14153 }
14154 else if (end[offset] != '\0' && end[offset] != ' ')
14155 return 0;
14156 }
14157 else
14158 *str = end;
14159
14160 /* Look for unaffixed or special-case affixed mnemonic. */
14161 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14162 if (opcode)
14163 {
14164 /* step U */
14165 if (opcode->tag < OT_odd_infix_0)
14166 {
14167 inst.cond = COND_ALWAYS;
14168 return opcode;
14169 }
14170
14171 if (warn_on_deprecated && unified_syntax)
14172 as_warn (_("conditional infixes are deprecated in unified syntax"));
14173 affix = base + (opcode->tag - OT_odd_infix_0);
14174 cond = hash_find_n (arm_cond_hsh, affix, 2);
14175 assert (cond);
14176
14177 inst.cond = cond->value;
14178 return opcode;
14179 }
14180
14181 /* Cannot have a conditional suffix on a mnemonic of less than two
14182 characters. */
14183 if (end - base < 3)
14184 return 0;
14185
14186 /* Look for suffixed mnemonic. */
14187 affix = end - 2;
14188 cond = hash_find_n (arm_cond_hsh, affix, 2);
14189 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14190 if (opcode && cond)
14191 {
14192 /* step CE */
14193 switch (opcode->tag)
14194 {
14195 case OT_cinfix3_legacy:
14196 /* Ignore conditional suffixes matched on infix only mnemonics. */
14197 break;
14198
14199 case OT_cinfix3:
14200 case OT_cinfix3_deprecated:
14201 case OT_odd_infix_unc:
14202 if (!unified_syntax)
14203 return 0;
14204 /* else fall through */
14205
14206 case OT_csuffix:
14207 case OT_csuffixF:
14208 case OT_csuf_or_in3:
14209 inst.cond = cond->value;
14210 return opcode;
14211
14212 case OT_unconditional:
14213 case OT_unconditionalF:
14214 if (thumb_mode)
14215 {
14216 inst.cond = cond->value;
14217 }
14218 else
14219 {
14220 /* delayed diagnostic */
14221 inst.error = BAD_COND;
14222 inst.cond = COND_ALWAYS;
14223 }
14224 return opcode;
14225
14226 default:
14227 return 0;
14228 }
14229 }
14230
14231 /* Cannot have a usual-position infix on a mnemonic of less than
14232 six characters (five would be a suffix). */
14233 if (end - base < 6)
14234 return 0;
14235
14236 /* Look for infixed mnemonic in the usual position. */
14237 affix = base + 3;
14238 cond = hash_find_n (arm_cond_hsh, affix, 2);
14239 if (!cond)
14240 return 0;
14241
14242 memcpy (save, affix, 2);
14243 memmove (affix, affix + 2, (end - affix) - 2);
14244 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14245 memmove (affix + 2, affix, (end - affix) - 2);
14246 memcpy (affix, save, 2);
14247
14248 if (opcode
14249 && (opcode->tag == OT_cinfix3
14250 || opcode->tag == OT_cinfix3_deprecated
14251 || opcode->tag == OT_csuf_or_in3
14252 || opcode->tag == OT_cinfix3_legacy))
14253 {
14254 /* step CM */
14255 if (warn_on_deprecated && unified_syntax
14256 && (opcode->tag == OT_cinfix3
14257 || opcode->tag == OT_cinfix3_deprecated))
14258 as_warn (_("conditional infixes are deprecated in unified syntax"));
14259
14260 inst.cond = cond->value;
14261 return opcode;
14262 }
14263
14264 return 0;
14265 }
14266
14267 void
14268 md_assemble (char *str)
14269 {
14270 char *p = str;
14271 const struct asm_opcode * opcode;
14272
14273 /* Align the previous label if needed. */
14274 if (last_label_seen != NULL)
14275 {
14276 symbol_set_frag (last_label_seen, frag_now);
14277 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14278 S_SET_SEGMENT (last_label_seen, now_seg);
14279 }
14280
14281 memset (&inst, '\0', sizeof (inst));
14282 inst.reloc.type = BFD_RELOC_UNUSED;
14283
14284 opcode = opcode_lookup (&p);
14285 if (!opcode)
14286 {
14287 /* It wasn't an instruction, but it might be a register alias of
14288 the form alias .req reg, or a Neon .dn/.qn directive. */
14289 if (!create_register_alias (str, p)
14290 && !create_neon_reg_alias (str, p))
14291 as_bad (_("bad instruction `%s'"), str);
14292
14293 return;
14294 }
14295
14296 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
14297 as_warn (_("s suffix on comparison instruction is deprecated"));
14298
14299 /* The value which unconditional instructions should have in place of the
14300 condition field. */
14301 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14302
14303 if (thumb_mode)
14304 {
14305 arm_feature_set variant;
14306
14307 variant = cpu_variant;
14308 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14309 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14310 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14311 /* Check that this instruction is supported for this CPU. */
14312 if (!opcode->tvariant
14313 || (thumb_mode == 1
14314 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14315 {
14316 as_bad (_("selected processor does not support `%s'"), str);
14317 return;
14318 }
14319 if (inst.cond != COND_ALWAYS && !unified_syntax
14320 && opcode->tencode != do_t_branch)
14321 {
14322 as_bad (_("Thumb does not support conditional execution"));
14323 return;
14324 }
14325
14326 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14327 {
14328 /* Implicit require narrow instructions on Thumb-1. This avoids
14329 relaxation accidentally introducing Thumb-2 instructions. */
14330 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14331 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14332 inst.size_req = 2;
14333 }
14334
14335 /* Check conditional suffixes. */
14336 if (current_it_mask)
14337 {
14338 int cond;
14339 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14340 current_it_mask <<= 1;
14341 current_it_mask &= 0x1f;
14342 /* The BKPT instruction is unconditional even in an IT block. */
14343 if (!inst.error
14344 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14345 {
14346 as_bad (_("incorrect condition in IT block"));
14347 return;
14348 }
14349 }
14350 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14351 {
14352 as_bad (_("thumb conditional instruction not in IT block"));
14353 return;
14354 }
14355
14356 mapping_state (MAP_THUMB);
14357 inst.instruction = opcode->tvalue;
14358
14359 if (!parse_operands (p, opcode->operands))
14360 opcode->tencode ();
14361
14362 /* Clear current_it_mask at the end of an IT block. */
14363 if (current_it_mask == 0x10)
14364 current_it_mask = 0;
14365
14366 if (!(inst.error || inst.relax))
14367 {
14368 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14369 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14370 if (inst.size_req && inst.size_req != inst.size)
14371 {
14372 as_bad (_("cannot honor width suffix -- `%s'"), str);
14373 return;
14374 }
14375 }
14376
14377 /* Something has gone badly wrong if we try to relax a fixed size
14378 instruction. */
14379 assert (inst.size_req == 0 || !inst.relax);
14380
14381 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14382 *opcode->tvariant);
14383 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14384 set those bits when Thumb-2 32-bit instructions are seen. ie.
14385 anything other than bl/blx and v6-M instructions.
14386 This is overly pessimistic for relaxable instructions. */
14387 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14388 || inst.relax)
14389 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14390 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14391 arm_ext_v6t2);
14392 }
14393 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14394 {
14395 bfd_boolean is_bx;
14396
14397 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14398 is_bx = (opcode->aencode == do_bx);
14399
14400 /* Check that this instruction is supported for this CPU. */
14401 if (!(is_bx && fix_v4bx)
14402 && !(opcode->avariant &&
14403 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
14404 {
14405 as_bad (_("selected processor does not support `%s'"), str);
14406 return;
14407 }
14408 if (inst.size_req)
14409 {
14410 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14411 return;
14412 }
14413
14414 mapping_state (MAP_ARM);
14415 inst.instruction = opcode->avalue;
14416 if (opcode->tag == OT_unconditionalF)
14417 inst.instruction |= 0xF << 28;
14418 else
14419 inst.instruction |= inst.cond << 28;
14420 inst.size = INSN_SIZE;
14421 if (!parse_operands (p, opcode->operands))
14422 opcode->aencode ();
14423 /* Arm mode bx is marked as both v4T and v5 because it's still required
14424 on a hypothetical non-thumb v5 core. */
14425 if (is_bx)
14426 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14427 else
14428 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14429 *opcode->avariant);
14430 }
14431 else
14432 {
14433 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14434 "-- `%s'"), str);
14435 return;
14436 }
14437 output_inst (str);
14438 }
14439
14440 /* Various frobbings of labels and their addresses. */
14441
14442 void
14443 arm_start_line_hook (void)
14444 {
14445 last_label_seen = NULL;
14446 }
14447
14448 void
14449 arm_frob_label (symbolS * sym)
14450 {
14451 last_label_seen = sym;
14452
14453 ARM_SET_THUMB (sym, thumb_mode);
14454
14455 #if defined OBJ_COFF || defined OBJ_ELF
14456 ARM_SET_INTERWORK (sym, support_interwork);
14457 #endif
14458
14459 /* Note - do not allow local symbols (.Lxxx) to be labelled
14460 as Thumb functions. This is because these labels, whilst
14461 they exist inside Thumb code, are not the entry points for
14462 possible ARM->Thumb calls. Also, these labels can be used
14463 as part of a computed goto or switch statement. eg gcc
14464 can generate code that looks like this:
14465
14466 ldr r2, [pc, .Laaa]
14467 lsl r3, r3, #2
14468 ldr r2, [r3, r2]
14469 mov pc, r2
14470
14471 .Lbbb: .word .Lxxx
14472 .Lccc: .word .Lyyy
14473 ..etc...
14474 .Laaa: .word Lbbb
14475
14476 The first instruction loads the address of the jump table.
14477 The second instruction converts a table index into a byte offset.
14478 The third instruction gets the jump address out of the table.
14479 The fourth instruction performs the jump.
14480
14481 If the address stored at .Laaa is that of a symbol which has the
14482 Thumb_Func bit set, then the linker will arrange for this address
14483 to have the bottom bit set, which in turn would mean that the
14484 address computation performed by the third instruction would end
14485 up with the bottom bit set. Since the ARM is capable of unaligned
14486 word loads, the instruction would then load the incorrect address
14487 out of the jump table, and chaos would ensue. */
14488 if (label_is_thumb_function_name
14489 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14490 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14491 {
14492 /* When the address of a Thumb function is taken the bottom
14493 bit of that address should be set. This will allow
14494 interworking between Arm and Thumb functions to work
14495 correctly. */
14496
14497 THUMB_SET_FUNC (sym, 1);
14498
14499 label_is_thumb_function_name = FALSE;
14500 }
14501
14502 dwarf2_emit_label (sym);
14503 }
14504
14505 int
14506 arm_data_in_code (void)
14507 {
14508 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14509 {
14510 *input_line_pointer = '/';
14511 input_line_pointer += 5;
14512 *input_line_pointer = 0;
14513 return 1;
14514 }
14515
14516 return 0;
14517 }
14518
14519 char *
14520 arm_canonicalize_symbol_name (char * name)
14521 {
14522 int len;
14523
14524 if (thumb_mode && (len = strlen (name)) > 5
14525 && streq (name + len - 5, "/data"))
14526 *(name + len - 5) = 0;
14527
14528 return name;
14529 }
14530 \f
14531 /* Table of all register names defined by default. The user can
14532 define additional names with .req. Note that all register names
14533 should appear in both upper and lowercase variants. Some registers
14534 also have mixed-case names. */
14535
14536 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14537 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14538 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14539 #define REGSET(p,t) \
14540 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14541 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14542 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14543 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14544 #define REGSETH(p,t) \
14545 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14546 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14547 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14548 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14549 #define REGSET2(p,t) \
14550 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14551 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14552 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14553 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14554
14555 static const struct reg_entry reg_names[] =
14556 {
14557 /* ARM integer registers. */
14558 REGSET(r, RN), REGSET(R, RN),
14559
14560 /* ATPCS synonyms. */
14561 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14562 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14563 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14564
14565 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14566 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14567 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14568
14569 /* Well-known aliases. */
14570 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14571 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14572
14573 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14574 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14575
14576 /* Coprocessor numbers. */
14577 REGSET(p, CP), REGSET(P, CP),
14578
14579 /* Coprocessor register numbers. The "cr" variants are for backward
14580 compatibility. */
14581 REGSET(c, CN), REGSET(C, CN),
14582 REGSET(cr, CN), REGSET(CR, CN),
14583
14584 /* FPA registers. */
14585 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14586 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14587
14588 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14589 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14590
14591 /* VFP SP registers. */
14592 REGSET(s,VFS), REGSET(S,VFS),
14593 REGSETH(s,VFS), REGSETH(S,VFS),
14594
14595 /* VFP DP Registers. */
14596 REGSET(d,VFD), REGSET(D,VFD),
14597 /* Extra Neon DP registers. */
14598 REGSETH(d,VFD), REGSETH(D,VFD),
14599
14600 /* Neon QP registers. */
14601 REGSET2(q,NQ), REGSET2(Q,NQ),
14602
14603 /* VFP control registers. */
14604 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14605 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14606 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14607 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14608 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14609 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
14610
14611 /* Maverick DSP coprocessor registers. */
14612 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14613 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14614
14615 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14616 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14617 REGDEF(dspsc,0,DSPSC),
14618
14619 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14620 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14621 REGDEF(DSPSC,0,DSPSC),
14622
14623 /* iWMMXt data registers - p0, c0-15. */
14624 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14625
14626 /* iWMMXt control registers - p1, c0-3. */
14627 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14628 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14629 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14630 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14631
14632 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14633 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14634 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14635 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14636 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14637
14638 /* XScale accumulator registers. */
14639 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14640 };
14641 #undef REGDEF
14642 #undef REGNUM
14643 #undef REGSET
14644
14645 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14646 within psr_required_here. */
14647 static const struct asm_psr psrs[] =
14648 {
14649 /* Backward compatibility notation. Note that "all" is no longer
14650 truly all possible PSR bits. */
14651 {"all", PSR_c | PSR_f},
14652 {"flg", PSR_f},
14653 {"ctl", PSR_c},
14654
14655 /* Individual flags. */
14656 {"f", PSR_f},
14657 {"c", PSR_c},
14658 {"x", PSR_x},
14659 {"s", PSR_s},
14660 /* Combinations of flags. */
14661 {"fs", PSR_f | PSR_s},
14662 {"fx", PSR_f | PSR_x},
14663 {"fc", PSR_f | PSR_c},
14664 {"sf", PSR_s | PSR_f},
14665 {"sx", PSR_s | PSR_x},
14666 {"sc", PSR_s | PSR_c},
14667 {"xf", PSR_x | PSR_f},
14668 {"xs", PSR_x | PSR_s},
14669 {"xc", PSR_x | PSR_c},
14670 {"cf", PSR_c | PSR_f},
14671 {"cs", PSR_c | PSR_s},
14672 {"cx", PSR_c | PSR_x},
14673 {"fsx", PSR_f | PSR_s | PSR_x},
14674 {"fsc", PSR_f | PSR_s | PSR_c},
14675 {"fxs", PSR_f | PSR_x | PSR_s},
14676 {"fxc", PSR_f | PSR_x | PSR_c},
14677 {"fcs", PSR_f | PSR_c | PSR_s},
14678 {"fcx", PSR_f | PSR_c | PSR_x},
14679 {"sfx", PSR_s | PSR_f | PSR_x},
14680 {"sfc", PSR_s | PSR_f | PSR_c},
14681 {"sxf", PSR_s | PSR_x | PSR_f},
14682 {"sxc", PSR_s | PSR_x | PSR_c},
14683 {"scf", PSR_s | PSR_c | PSR_f},
14684 {"scx", PSR_s | PSR_c | PSR_x},
14685 {"xfs", PSR_x | PSR_f | PSR_s},
14686 {"xfc", PSR_x | PSR_f | PSR_c},
14687 {"xsf", PSR_x | PSR_s | PSR_f},
14688 {"xsc", PSR_x | PSR_s | PSR_c},
14689 {"xcf", PSR_x | PSR_c | PSR_f},
14690 {"xcs", PSR_x | PSR_c | PSR_s},
14691 {"cfs", PSR_c | PSR_f | PSR_s},
14692 {"cfx", PSR_c | PSR_f | PSR_x},
14693 {"csf", PSR_c | PSR_s | PSR_f},
14694 {"csx", PSR_c | PSR_s | PSR_x},
14695 {"cxf", PSR_c | PSR_x | PSR_f},
14696 {"cxs", PSR_c | PSR_x | PSR_s},
14697 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14698 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14699 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14700 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14701 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14702 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14703 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14704 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14705 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14706 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14707 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14708 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14709 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14710 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14711 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14712 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14713 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14714 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14715 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14716 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14717 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14718 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14719 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14720 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14721 };
14722
14723 /* Table of V7M psr names. */
14724 static const struct asm_psr v7m_psrs[] =
14725 {
14726 {"apsr", 0 }, {"APSR", 0 },
14727 {"iapsr", 1 }, {"IAPSR", 1 },
14728 {"eapsr", 2 }, {"EAPSR", 2 },
14729 {"psr", 3 }, {"PSR", 3 },
14730 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14731 {"ipsr", 5 }, {"IPSR", 5 },
14732 {"epsr", 6 }, {"EPSR", 6 },
14733 {"iepsr", 7 }, {"IEPSR", 7 },
14734 {"msp", 8 }, {"MSP", 8 },
14735 {"psp", 9 }, {"PSP", 9 },
14736 {"primask", 16}, {"PRIMASK", 16},
14737 {"basepri", 17}, {"BASEPRI", 17},
14738 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14739 {"faultmask", 19}, {"FAULTMASK", 19},
14740 {"control", 20}, {"CONTROL", 20}
14741 };
14742
14743 /* Table of all shift-in-operand names. */
14744 static const struct asm_shift_name shift_names [] =
14745 {
14746 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14747 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14748 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14749 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14750 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14751 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14752 };
14753
14754 /* Table of all explicit relocation names. */
14755 #ifdef OBJ_ELF
14756 static struct reloc_entry reloc_names[] =
14757 {
14758 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14759 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14760 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14761 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14762 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14763 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14764 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14765 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14766 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14767 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14768 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14769 };
14770 #endif
14771
14772 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14773 static const struct asm_cond conds[] =
14774 {
14775 {"eq", 0x0},
14776 {"ne", 0x1},
14777 {"cs", 0x2}, {"hs", 0x2},
14778 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14779 {"mi", 0x4},
14780 {"pl", 0x5},
14781 {"vs", 0x6},
14782 {"vc", 0x7},
14783 {"hi", 0x8},
14784 {"ls", 0x9},
14785 {"ge", 0xa},
14786 {"lt", 0xb},
14787 {"gt", 0xc},
14788 {"le", 0xd},
14789 {"al", 0xe}
14790 };
14791
14792 static struct asm_barrier_opt barrier_opt_names[] =
14793 {
14794 { "sy", 0xf },
14795 { "un", 0x7 },
14796 { "st", 0xe },
14797 { "unst", 0x6 }
14798 };
14799
14800 /* Table of ARM-format instructions. */
14801
14802 /* Macros for gluing together operand strings. N.B. In all cases
14803 other than OPS0, the trailing OP_stop comes from default
14804 zero-initialization of the unspecified elements of the array. */
14805 #define OPS0() { OP_stop, }
14806 #define OPS1(a) { OP_##a, }
14807 #define OPS2(a,b) { OP_##a,OP_##b, }
14808 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14809 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14810 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14811 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14812
14813 /* These macros abstract out the exact format of the mnemonic table and
14814 save some repeated characters. */
14815
14816 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14817 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14818 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14819 THUMB_VARIANT, do_##ae, do_##te }
14820
14821 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14822 a T_MNEM_xyz enumerator. */
14823 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14824 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14825 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14826 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14827
14828 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14829 infix after the third character. */
14830 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14831 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14832 THUMB_VARIANT, do_##ae, do_##te }
14833 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14834 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14835 THUMB_VARIANT, do_##ae, do_##te }
14836 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14837 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14838 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14839 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14840 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14841 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14842 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14843 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14844
14845 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14846 appear in the condition table. */
14847 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14848 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14849 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14850
14851 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14852 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14853 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14854 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14855 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14856 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14857 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14858 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14859 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14860 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14861 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14862 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14863 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14864 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14865 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14866 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14867 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14868 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14869 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14870 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14871
14872 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14873 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14874 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14875 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14876
14877 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14878 field is still 0xE. Many of the Thumb variants can be executed
14879 conditionally, so this is checked separately. */
14880 #define TUE(mnem, op, top, nops, ops, ae, te) \
14881 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14882 THUMB_VARIANT, do_##ae, do_##te }
14883
14884 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14885 condition code field. */
14886 #define TUF(mnem, op, top, nops, ops, ae, te) \
14887 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14888 THUMB_VARIANT, do_##ae, do_##te }
14889
14890 /* ARM-only variants of all the above. */
14891 #define CE(mnem, op, nops, ops, ae) \
14892 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14893
14894 #define C3(mnem, op, nops, ops, ae) \
14895 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14896
14897 /* Legacy mnemonics that always have conditional infix after the third
14898 character. */
14899 #define CL(mnem, op, nops, ops, ae) \
14900 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14901 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14902
14903 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14904 #define cCE(mnem, op, nops, ops, ae) \
14905 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14906
14907 /* Legacy coprocessor instructions where conditional infix and conditional
14908 suffix are ambiguous. For consistency this includes all FPA instructions,
14909 not just the potentially ambiguous ones. */
14910 #define cCL(mnem, op, nops, ops, ae) \
14911 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14912 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14913
14914 /* Coprocessor, takes either a suffix or a position-3 infix
14915 (for an FPA corner case). */
14916 #define C3E(mnem, op, nops, ops, ae) \
14917 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14918 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14919
14920 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14921 { #m1 #m2 #m3, OPS##nops ops, \
14922 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14923 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14924
14925 #define CM(m1, m2, op, nops, ops, ae) \
14926 xCM_(m1, , m2, op, nops, ops, ae), \
14927 xCM_(m1, eq, m2, op, nops, ops, ae), \
14928 xCM_(m1, ne, m2, op, nops, ops, ae), \
14929 xCM_(m1, cs, m2, op, nops, ops, ae), \
14930 xCM_(m1, hs, m2, op, nops, ops, ae), \
14931 xCM_(m1, cc, m2, op, nops, ops, ae), \
14932 xCM_(m1, ul, m2, op, nops, ops, ae), \
14933 xCM_(m1, lo, m2, op, nops, ops, ae), \
14934 xCM_(m1, mi, m2, op, nops, ops, ae), \
14935 xCM_(m1, pl, m2, op, nops, ops, ae), \
14936 xCM_(m1, vs, m2, op, nops, ops, ae), \
14937 xCM_(m1, vc, m2, op, nops, ops, ae), \
14938 xCM_(m1, hi, m2, op, nops, ops, ae), \
14939 xCM_(m1, ls, m2, op, nops, ops, ae), \
14940 xCM_(m1, ge, m2, op, nops, ops, ae), \
14941 xCM_(m1, lt, m2, op, nops, ops, ae), \
14942 xCM_(m1, gt, m2, op, nops, ops, ae), \
14943 xCM_(m1, le, m2, op, nops, ops, ae), \
14944 xCM_(m1, al, m2, op, nops, ops, ae)
14945
14946 #define UE(mnem, op, nops, ops, ae) \
14947 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14948
14949 #define UF(mnem, op, nops, ops, ae) \
14950 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14951
14952 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14953 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14954 use the same encoding function for each. */
14955 #define NUF(mnem, op, nops, ops, enc) \
14956 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14957 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14958
14959 /* Neon data processing, version which indirects through neon_enc_tab for
14960 the various overloaded versions of opcodes. */
14961 #define nUF(mnem, op, nops, ops, enc) \
14962 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14963 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14964
14965 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14966 version. */
14967 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14968 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14969 THUMB_VARIANT, do_##enc, do_##enc }
14970
14971 #define NCE(mnem, op, nops, ops, enc) \
14972 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14973
14974 #define NCEF(mnem, op, nops, ops, enc) \
14975 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14976
14977 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14978 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14979 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14980 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14981
14982 #define nCE(mnem, op, nops, ops, enc) \
14983 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14984
14985 #define nCEF(mnem, op, nops, ops, enc) \
14986 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14987
14988 #define do_0 0
14989
14990 /* Thumb-only, unconditional. */
14991 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14992
14993 static const struct asm_opcode insns[] =
14994 {
14995 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14996 #define THUMB_VARIANT &arm_ext_v4t
14997 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14998 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14999 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15000 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15001 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15002 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
15003 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15004 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
15005 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15006 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15007 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15008 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15009 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15010 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15011 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15012 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15013
15014 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15015 for setting PSR flag bits. They are obsolete in V6 and do not
15016 have Thumb equivalents. */
15017 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15018 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15019 CL(tstp, 110f000, 2, (RR, SH), cmp),
15020 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15021 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15022 CL(cmpp, 150f000, 2, (RR, SH), cmp),
15023 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15024 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15025 CL(cmnp, 170f000, 2, (RR, SH), cmp),
15026
15027 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15028 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15029 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15030 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15031
15032 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15033 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15034 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15035 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15036
15037 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15038 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15039 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15040 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15041 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15042 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15043
15044 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
15045 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
15046 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
15047 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
15048
15049 /* Pseudo ops. */
15050 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
15051 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15052 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
15053
15054 /* Thumb-compatibility pseudo ops. */
15055 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15056 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15057 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15058 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15059 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
15060 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
15061 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15062 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15063 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15064 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15065 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15066 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15067
15068 /* These may simplify to neg. */
15069 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15070 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15071
15072 #undef THUMB_VARIANT
15073 #define THUMB_VARIANT &arm_ext_v6
15074 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
15075
15076 /* V1 instructions with no Thumb analogue prior to V6T2. */
15077 #undef THUMB_VARIANT
15078 #define THUMB_VARIANT &arm_ext_v6t2
15079 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15080 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15081 CL(teqp, 130f000, 2, (RR, SH), cmp),
15082
15083 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
15084 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
15085 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
15086 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
15087
15088 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15089 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15090
15091 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15092 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15093
15094 /* V1 instructions with no Thumb analogue at all. */
15095 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15096 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15097
15098 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15099 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15100 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15101 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15102 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15103 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15104 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15105 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15106
15107 #undef ARM_VARIANT
15108 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
15109 #undef THUMB_VARIANT
15110 #define THUMB_VARIANT &arm_ext_v4t
15111 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15112 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15113
15114 #undef THUMB_VARIANT
15115 #define THUMB_VARIANT &arm_ext_v6t2
15116 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15117 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15118
15119 /* Generic coprocessor instructions. */
15120 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15121 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15122 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15123 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15124 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15125 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15126 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15127
15128 #undef ARM_VARIANT
15129 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15130 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15131 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15132
15133 #undef ARM_VARIANT
15134 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15135 #undef THUMB_VARIANT
15136 #define THUMB_VARIANT &arm_ext_msr
15137 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15138 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15139
15140 #undef ARM_VARIANT
15141 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15142 #undef THUMB_VARIANT
15143 #define THUMB_VARIANT &arm_ext_v6t2
15144 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15145 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15146 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15147 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15148 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15149 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15150 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15151 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15152
15153 #undef ARM_VARIANT
15154 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15155 #undef THUMB_VARIANT
15156 #define THUMB_VARIANT &arm_ext_v4t
15157 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15158 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15159 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15160 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15161 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15162 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15163
15164 #undef ARM_VARIANT
15165 #define ARM_VARIANT &arm_ext_v4t_5
15166 /* ARM Architecture 4T. */
15167 /* Note: bx (and blx) are required on V5, even if the processor does
15168 not support Thumb. */
15169 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15170
15171 #undef ARM_VARIANT
15172 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15173 #undef THUMB_VARIANT
15174 #define THUMB_VARIANT &arm_ext_v5t
15175 /* Note: blx has 2 variants; the .value coded here is for
15176 BLX(2). Only this variant has conditional execution. */
15177 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15178 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15179
15180 #undef THUMB_VARIANT
15181 #define THUMB_VARIANT &arm_ext_v6t2
15182 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15183 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15184 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15185 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15186 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15187 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15188 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15189 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15190
15191 #undef ARM_VARIANT
15192 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15193 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15194 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15195 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15196 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15197
15198 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15199 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15200
15201 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15202 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15203 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15204 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15205
15206 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15207 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15208 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15209 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15210
15211 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15212 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15213
15214 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15215 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15216 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15217 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15218
15219 #undef ARM_VARIANT
15220 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15221 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15222 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15223 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15224
15225 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15226 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15227
15228 #undef ARM_VARIANT
15229 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15230 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15231
15232 #undef ARM_VARIANT
15233 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15234 #undef THUMB_VARIANT
15235 #define THUMB_VARIANT &arm_ext_v6
15236 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15237 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15238 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15239 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15240 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15241 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15242 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15243 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15244 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15245 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15246
15247 #undef THUMB_VARIANT
15248 #define THUMB_VARIANT &arm_ext_v6t2
15249 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15250 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15251 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15252 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15253
15254 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15255 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15256
15257 /* ARM V6 not included in V7M (eg. integer SIMD). */
15258 #undef THUMB_VARIANT
15259 #define THUMB_VARIANT &arm_ext_v6_notm
15260 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15261 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15262 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15263 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15264 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15265 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15266 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15267 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15268 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15269 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15270 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15271 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15272 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15273 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15274 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15275 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15276 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15277 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15278 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15279 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15280 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15281 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15282 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15283 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15284 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15285 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15286 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15287 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15288 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15289 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15290 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15291 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15292 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15293 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15294 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15295 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15296 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15297 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15298 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15299 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15300 UF(rfeib, 9900a00, 1, (RRw), rfe),
15301 UF(rfeda, 8100a00, 1, (RRw), rfe),
15302 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15303 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15304 UF(rfefa, 9900a00, 1, (RRw), rfe),
15305 UF(rfeea, 8100a00, 1, (RRw), rfe),
15306 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15307 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15308 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15309 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15310 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15311 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15312 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15313 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15314 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15315 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15316 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15317 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15318 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15319 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15320 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15321 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15322 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15323 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15324 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15325 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15326 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15327 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15328 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15329 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15330 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15331 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15332 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15333 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15334 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15335 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15336 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15337 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15338 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15339 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15340 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15341 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15342 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15343
15344 #undef ARM_VARIANT
15345 #define ARM_VARIANT &arm_ext_v6k
15346 #undef THUMB_VARIANT
15347 #define THUMB_VARIANT &arm_ext_v6k
15348 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15349 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15350 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15351 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15352
15353 #undef THUMB_VARIANT
15354 #define THUMB_VARIANT &arm_ext_v6_notm
15355 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15356 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15357
15358 #undef THUMB_VARIANT
15359 #define THUMB_VARIANT &arm_ext_v6t2
15360 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15361 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15362 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15363 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15364 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15365
15366 #undef ARM_VARIANT
15367 #define ARM_VARIANT &arm_ext_v6z
15368 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15369
15370 #undef ARM_VARIANT
15371 #define ARM_VARIANT &arm_ext_v6t2
15372 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15373 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15374 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15375 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15376
15377 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15378 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15379 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15380 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15381
15382 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15383 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15384 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15385 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15386
15387 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15388 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15389 /* ARM does not really have an IT instruction, so always allow it. */
15390 #undef ARM_VARIANT
15391 #define ARM_VARIANT &arm_ext_v1
15392 TUE(it, 0, bf08, 1, (COND), it, t_it),
15393 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15394 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15395 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15396 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15397 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15398 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15399 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15400 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15401 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15402 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15403 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15404 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15405 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15406 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15407
15408 /* Thumb2 only instructions. */
15409 #undef ARM_VARIANT
15410 #define ARM_VARIANT NULL
15411
15412 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15413 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15414 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15415 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15416
15417 /* Thumb-2 hardware division instructions (R and M profiles only). */
15418 #undef THUMB_VARIANT
15419 #define THUMB_VARIANT &arm_ext_div
15420 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15421 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15422
15423 /* ARM V6M/V7 instructions. */
15424 #undef ARM_VARIANT
15425 #define ARM_VARIANT &arm_ext_barrier
15426 #undef THUMB_VARIANT
15427 #define THUMB_VARIANT &arm_ext_barrier
15428 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15429 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15430 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15431
15432 /* ARM V7 instructions. */
15433 #undef ARM_VARIANT
15434 #define ARM_VARIANT &arm_ext_v7
15435 #undef THUMB_VARIANT
15436 #define THUMB_VARIANT &arm_ext_v7
15437 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15438 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15439
15440 #undef ARM_VARIANT
15441 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15442 cCE(wfs, e200110, 1, (RR), rd),
15443 cCE(rfs, e300110, 1, (RR), rd),
15444 cCE(wfc, e400110, 1, (RR), rd),
15445 cCE(rfc, e500110, 1, (RR), rd),
15446
15447 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15448 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15449 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15450 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15451
15452 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15453 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15454 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15455 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15456
15457 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15458 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15459 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15460 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15461 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15462 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15463 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15464 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15465 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15466 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15467 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15468 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15469
15470 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15471 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15472 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15473 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15474 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15475 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15476 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15477 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15478 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15479 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15480 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15481 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15482
15483 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15484 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15485 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15486 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15487 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15488 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15489 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15490 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15491 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15492 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15493 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15494 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15495
15496 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15497 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15498 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15499 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15500 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15501 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15502 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15503 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15504 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15505 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15506 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15507 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15508
15509 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15510 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15511 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15512 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15513 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15514 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15515 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15516 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15517 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15518 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15519 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15520 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15521
15522 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15523 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15524 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15525 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15526 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15527 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15528 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15529 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15530 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15531 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15532 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15533 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15534
15535 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15536 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15537 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15538 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15539 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15540 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15541 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15542 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15543 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15544 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15545 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15546 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15547
15548 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15549 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15550 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15551 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15552 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15553 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15554 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15555 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15556 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15557 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15558 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15559 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15560
15561 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15562 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15563 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15564 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15565 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15566 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15567 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15568 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15569 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15570 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15571 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15572 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15573
15574 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15575 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15576 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15577 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15578 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15579 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15580 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15581 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15582 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15583 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15584 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15585 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15586
15587 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15588 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15589 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15590 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15591 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15592 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15593 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15594 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15595 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15596 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15597 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15598 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15599
15600 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15601 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15602 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15603 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15604 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15605 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15606 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15607 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15608 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15609 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15610 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15611 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15612
15613 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15614 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15615 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15616 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15617 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15618 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15619 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15620 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15621 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15622 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15623 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15624 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15625
15626 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15627 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15628 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15629 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15630 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15631 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15632 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15633 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15634 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15635 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15636 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15637 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15638
15639 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15640 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15641 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15642 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15643 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15644 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15645 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15646 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15647 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15648 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15649 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15650 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15651
15652 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15653 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15654 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15655 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15656 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15657 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15658 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15659 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15660 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15661 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15662 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15663 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15664
15665 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15671 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15672 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15677
15678 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15684 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15685 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15690
15691 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15697 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15698 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15699 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15700 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15701 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15702 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15703
15704 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15705 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15706 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15707 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15708 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15709 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15710 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15711 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15712 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15713 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15714 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15715 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15716
15717 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15718 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15719 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15720 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15721 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15722 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15723 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15724 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15725 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15726 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15727 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15728 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15729
15730 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15731 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15732 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15733 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15734 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15735 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15736 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15737 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15738 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15739 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15740 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15741 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15742
15743 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15744 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15745 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15746 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15747 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15748 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15749 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15750 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15751 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15752 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15753 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15754 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15755
15756 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15757 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15758 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15759 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15760 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15761 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15762 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15763 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15764 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15765 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15766 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15767 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15768
15769 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15770 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15771 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15772 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15773 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15774 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15775 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15776 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15777 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15778 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15779 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15780 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15781
15782 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15783 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15784 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15785 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15786 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15787 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15788 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15789 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15790 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15791 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15792 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15793 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15794
15795 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15796 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15797 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15798 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15799 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15800 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15801 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15802 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15803 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15804 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15805 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15806 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15807
15808 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15809 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15810 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15811 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15812 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15813 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15814 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15815 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15816 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15817 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15818 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15819 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15820
15821 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15822 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15823 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15824 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15825 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15826 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15827 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15828 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15829 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15830 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15831 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15832 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15833
15834 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15835 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15836 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15837 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15838
15839 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15840 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15841 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15842 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15843 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15844 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15845 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15846 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15847 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15848 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15849 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15850 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15851
15852 /* The implementation of the FIX instruction is broken on some
15853 assemblers, in that it accepts a precision specifier as well as a
15854 rounding specifier, despite the fact that this is meaningless.
15855 To be more compatible, we accept it as well, though of course it
15856 does not set any bits. */
15857 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15858 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15859 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15860 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15861 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15862 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15863 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15864 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15865 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15866 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15867 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15868 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15869 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15870
15871 /* Instructions that were new with the real FPA, call them V2. */
15872 #undef ARM_VARIANT
15873 #define ARM_VARIANT &fpu_fpa_ext_v2
15874 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15875 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15876 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15877 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15878 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15879 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15880
15881 #undef ARM_VARIANT
15882 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15883 /* Moves and type conversions. */
15884 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15885 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15886 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15887 cCE(fmstat, ef1fa10, 0, (), noargs),
15888 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15889 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15890 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15891 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15892 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15893 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15894 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15895 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15896
15897 /* Memory operations. */
15898 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15899 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15900 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15901 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15902 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15903 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15904 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15905 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15906 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15907 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15908 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15909 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15910 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15911 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15912 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15913 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15914 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15915 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15916
15917 /* Monadic operations. */
15918 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15919 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15920 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15921
15922 /* Dyadic operations. */
15923 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15924 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15925 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15926 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15927 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15928 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15929 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15930 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15931 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15932
15933 /* Comparisons. */
15934 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15935 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15936 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15937 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15938
15939 #undef ARM_VARIANT
15940 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15941 /* Moves and type conversions. */
15942 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15943 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15944 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15945 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15946 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15947 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15948 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15949 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15950 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15951 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15952 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15953 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15954 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15955
15956 /* Memory operations. */
15957 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15958 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15959 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15960 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15961 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15962 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15963 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15964 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15965 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15966 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15967
15968 /* Monadic operations. */
15969 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15970 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15971 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15972
15973 /* Dyadic operations. */
15974 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15975 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15976 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15977 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15978 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15979 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15980 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15981 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15982 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15983
15984 /* Comparisons. */
15985 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15986 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15987 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15988 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15989
15990 #undef ARM_VARIANT
15991 #define ARM_VARIANT &fpu_vfp_ext_v2
15992 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15993 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15994 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15995 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15996
15997 /* Instructions which may belong to either the Neon or VFP instruction sets.
15998 Individual encoder functions perform additional architecture checks. */
15999 #undef ARM_VARIANT
16000 #define ARM_VARIANT &fpu_vfp_ext_v1xd
16001 #undef THUMB_VARIANT
16002 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
16003 /* These mnemonics are unique to VFP. */
16004 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16005 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16006 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16007 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16008 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16009 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16010 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16011 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16012 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16013 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16014
16015 /* Mnemonics shared by Neon and VFP. */
16016 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16017 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16018 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16019
16020 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16021 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16022
16023 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16024 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16025
16026 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16027 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16028 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16029 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16030 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16031 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16032 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16033 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16034
16035 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
16036 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16037 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
16038
16039
16040 /* NOTE: All VMOV encoding is special-cased! */
16041 NCE(vmov, 0, 1, (VMOV), neon_mov),
16042 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16043
16044 #undef THUMB_VARIANT
16045 #define THUMB_VARIANT &fpu_neon_ext_v1
16046 #undef ARM_VARIANT
16047 #define ARM_VARIANT &fpu_neon_ext_v1
16048 /* Data processing with three registers of the same length. */
16049 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16050 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16051 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16052 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16053 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16054 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16055 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16056 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16057 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16058 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16059 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16060 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16061 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16062 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16063 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16064 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16065 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16066 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16067 /* If not immediate, fall back to neon_dyadic_i64_su.
16068 shl_imm should accept I8 I16 I32 I64,
16069 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16070 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16071 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16072 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16073 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16074 /* Logic ops, types optional & ignored. */
16075 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16076 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16077 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16078 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16079 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16080 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16081 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16082 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16083 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16084 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16085 /* Bitfield ops, untyped. */
16086 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16087 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16088 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16089 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16090 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16091 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16092 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16093 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16094 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16095 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16096 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16097 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16098 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16099 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16100 back to neon_dyadic_if_su. */
16101 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16102 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16103 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16104 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16105 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16106 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16107 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16108 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16109 /* Comparison. Type I8 I16 I32 F32. */
16110 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16111 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16112 /* As above, D registers only. */
16113 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16114 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16115 /* Int and float variants, signedness unimportant. */
16116 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16117 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16118 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16119 /* Add/sub take types I8 I16 I32 I64 F32. */
16120 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16121 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16122 /* vtst takes sizes 8, 16, 32. */
16123 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16124 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16125 /* VMUL takes I8 I16 I32 F32 P8. */
16126 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
16127 /* VQD{R}MULH takes S16 S32. */
16128 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16129 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16130 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16131 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16132 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16133 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16134 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16135 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16136 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16137 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16138 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16139 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16140 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16141 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16142 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16143 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16144
16145 /* Two address, int/float. Types S8 S16 S32 F32. */
16146 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16147 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16148
16149 /* Data processing with two registers and a shift amount. */
16150 /* Right shifts, and variants with rounding.
16151 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16152 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16153 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16154 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16155 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16156 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16157 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16158 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16159 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16160 /* Shift and insert. Sizes accepted 8 16 32 64. */
16161 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16162 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16163 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16164 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16165 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16166 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16167 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16168 /* Right shift immediate, saturating & narrowing, with rounding variants.
16169 Types accepted S16 S32 S64 U16 U32 U64. */
16170 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16171 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16172 /* As above, unsigned. Types accepted S16 S32 S64. */
16173 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16174 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16175 /* Right shift narrowing. Types accepted I16 I32 I64. */
16176 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16177 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16178 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16179 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16180 /* CVT with optional immediate for fixed-point variant. */
16181 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16182
16183 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16184 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16185
16186 /* Data processing, three registers of different lengths. */
16187 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16188 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16189 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16190 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16191 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16192 /* If not scalar, fall back to neon_dyadic_long.
16193 Vector types as above, scalar types S16 S32 U16 U32. */
16194 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16195 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16196 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16197 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16198 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16199 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16200 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16201 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16202 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16203 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16204 /* Saturating doubling multiplies. Types S16 S32. */
16205 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16206 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16207 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16208 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16209 S16 S32 U16 U32. */
16210 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16211
16212 /* Extract. Size 8. */
16213 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16214 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16215
16216 /* Two registers, miscellaneous. */
16217 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16218 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16219 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16220 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16221 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16222 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16223 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16224 /* Vector replicate. Sizes 8 16 32. */
16225 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16226 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16227 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16228 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16229 /* VMOVN. Types I16 I32 I64. */
16230 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16231 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16232 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16233 /* VQMOVUN. Types S16 S32 S64. */
16234 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16235 /* VZIP / VUZP. Sizes 8 16 32. */
16236 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16237 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16238 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16239 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16240 /* VQABS / VQNEG. Types S8 S16 S32. */
16241 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16242 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16243 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16244 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16245 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16246 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16247 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16248 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16249 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16250 /* Reciprocal estimates. Types U32 F32. */
16251 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16252 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16253 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16254 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16255 /* VCLS. Types S8 S16 S32. */
16256 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16257 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16258 /* VCLZ. Types I8 I16 I32. */
16259 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16260 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16261 /* VCNT. Size 8. */
16262 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16263 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16264 /* Two address, untyped. */
16265 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16266 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16267 /* VTRN. Sizes 8 16 32. */
16268 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16269 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16270
16271 /* Table lookup. Size 8. */
16272 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16273 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16274
16275 #undef THUMB_VARIANT
16276 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16277 #undef ARM_VARIANT
16278 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16279 /* Neon element/structure load/store. */
16280 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16281 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16282 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16283 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16284 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16285 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16286 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16287 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16288
16289 #undef THUMB_VARIANT
16290 #define THUMB_VARIANT &fpu_vfp_ext_v3
16291 #undef ARM_VARIANT
16292 #define ARM_VARIANT &fpu_vfp_ext_v3
16293 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16294 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16295 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16296 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16297 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16298 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16299 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16300 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16301 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16302 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16303 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16304 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16305 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16306 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16307 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16308 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16309 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16310 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16311
16312 #undef THUMB_VARIANT
16313 #undef ARM_VARIANT
16314 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16315 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16316 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16317 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16318 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16319 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16320 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16321 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16322 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16323
16324 #undef ARM_VARIANT
16325 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16326 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16327 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16328 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16329 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16330 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16331 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16332 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16333 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16334 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16335 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16336 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16337 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16338 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16339 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16340 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16341 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16342 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16343 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16344 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16345 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16346 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16347 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16348 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16349 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16350 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16351 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16352 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16353 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16354 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16355 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16356 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16357 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16358 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16359 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16360 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16361 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16362 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16363 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16364 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16365 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16373 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16393 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16394 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16395 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16396 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16410 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16415 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16417 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16418 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16419 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16420 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16421 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16422 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16423 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16424 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16425 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16426 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16427 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16428 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16429 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16430 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16431 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16432 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16433 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16434 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16435 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16436 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16437 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16438 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16439 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16440 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16441 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16442 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16443 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16444 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16445 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16446 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16447 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16448 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16449 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16450 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16451 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16452 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16453 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16454 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16455 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16456 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16457 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16458 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16459 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16460 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16461 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16462 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16463 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16464 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16465 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16466 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16467 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16468 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16469 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16470 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16471 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16472 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16473 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16474 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16475 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16476 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16477 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16478 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16479 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16480 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16481 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16482 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16483 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16484 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16485 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16486 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16487 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16488
16489 #undef ARM_VARIANT
16490 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16491 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16492 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16493 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16494 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16495 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16496 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16497 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16498 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16499 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16500 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16501 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16502 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16503 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16504 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16505 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16506 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16507 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16508 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16509 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16510 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16511 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16512 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16513 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16514 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16515 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16516 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16517 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16518 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16519 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16520 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16521 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16522 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16523 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16524 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16525 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16526 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16527 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16528 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16529 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16530 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16531 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16532 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16533 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16534 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16535 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16536 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16537 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16538 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16539 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16540 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16541 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16542 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16543 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16544 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16545 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16546 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16547 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16548
16549 #undef ARM_VARIANT
16550 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16551 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16552 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16553 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16554 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16555 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16556 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16557 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16558 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16559 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16560 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16561 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16562 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16563 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16564 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16565 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16566 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16567 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16568 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16569 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16570 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16571 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16572 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16573 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16574 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16575 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16576 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16577 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16578 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16579 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16580 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16581 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16582 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16583 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16584 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16585 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16586 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16587 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16588 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16589 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16590 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16591 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16592 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16593 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16594 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16595 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16596 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16597 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16598 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16599 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16600 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16601 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16602 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16603 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16604 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16605 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16606 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16607 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16608 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16609 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16610 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16611 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16612 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16613 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16614 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16615 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16616 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16617 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16618 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16619 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16620 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16621 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16622 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16623 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16624 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16625 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16626 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16627 };
16628 #undef ARM_VARIANT
16629 #undef THUMB_VARIANT
16630 #undef TCE
16631 #undef TCM
16632 #undef TUE
16633 #undef TUF
16634 #undef TCC
16635 #undef cCE
16636 #undef cCL
16637 #undef C3E
16638 #undef CE
16639 #undef CM
16640 #undef UE
16641 #undef UF
16642 #undef UT
16643 #undef NUF
16644 #undef nUF
16645 #undef NCE
16646 #undef nCE
16647 #undef OPS0
16648 #undef OPS1
16649 #undef OPS2
16650 #undef OPS3
16651 #undef OPS4
16652 #undef OPS5
16653 #undef OPS6
16654 #undef do_0
16655 \f
16656 /* MD interface: bits in the object file. */
16657
16658 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16659 for use in the a.out file, and stores them in the array pointed to by buf.
16660 This knows about the endian-ness of the target machine and does
16661 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16662 2 (short) and 4 (long) Floating numbers are put out as a series of
16663 LITTLENUMS (shorts, here at least). */
16664
16665 void
16666 md_number_to_chars (char * buf, valueT val, int n)
16667 {
16668 if (target_big_endian)
16669 number_to_chars_bigendian (buf, val, n);
16670 else
16671 number_to_chars_littleendian (buf, val, n);
16672 }
16673
16674 static valueT
16675 md_chars_to_number (char * buf, int n)
16676 {
16677 valueT result = 0;
16678 unsigned char * where = (unsigned char *) buf;
16679
16680 if (target_big_endian)
16681 {
16682 while (n--)
16683 {
16684 result <<= 8;
16685 result |= (*where++ & 255);
16686 }
16687 }
16688 else
16689 {
16690 while (n--)
16691 {
16692 result <<= 8;
16693 result |= (where[n] & 255);
16694 }
16695 }
16696
16697 return result;
16698 }
16699
16700 /* MD interface: Sections. */
16701
16702 /* Estimate the size of a frag before relaxing. Assume everything fits in
16703 2 bytes. */
16704
16705 int
16706 md_estimate_size_before_relax (fragS * fragp,
16707 segT segtype ATTRIBUTE_UNUSED)
16708 {
16709 fragp->fr_var = 2;
16710 return 2;
16711 }
16712
16713 /* Convert a machine dependent frag. */
16714
16715 void
16716 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16717 {
16718 unsigned long insn;
16719 unsigned long old_op;
16720 char *buf;
16721 expressionS exp;
16722 fixS *fixp;
16723 int reloc_type;
16724 int pc_rel;
16725 int opcode;
16726
16727 buf = fragp->fr_literal + fragp->fr_fix;
16728
16729 old_op = bfd_get_16(abfd, buf);
16730 if (fragp->fr_symbol)
16731 {
16732 exp.X_op = O_symbol;
16733 exp.X_add_symbol = fragp->fr_symbol;
16734 }
16735 else
16736 {
16737 exp.X_op = O_constant;
16738 }
16739 exp.X_add_number = fragp->fr_offset;
16740 opcode = fragp->fr_subtype;
16741 switch (opcode)
16742 {
16743 case T_MNEM_ldr_pc:
16744 case T_MNEM_ldr_pc2:
16745 case T_MNEM_ldr_sp:
16746 case T_MNEM_str_sp:
16747 case T_MNEM_ldr:
16748 case T_MNEM_ldrb:
16749 case T_MNEM_ldrh:
16750 case T_MNEM_str:
16751 case T_MNEM_strb:
16752 case T_MNEM_strh:
16753 if (fragp->fr_var == 4)
16754 {
16755 insn = THUMB_OP32 (opcode);
16756 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16757 {
16758 insn |= (old_op & 0x700) << 4;
16759 }
16760 else
16761 {
16762 insn |= (old_op & 7) << 12;
16763 insn |= (old_op & 0x38) << 13;
16764 }
16765 insn |= 0x00000c00;
16766 put_thumb32_insn (buf, insn);
16767 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16768 }
16769 else
16770 {
16771 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16772 }
16773 pc_rel = (opcode == T_MNEM_ldr_pc2);
16774 break;
16775 case T_MNEM_adr:
16776 if (fragp->fr_var == 4)
16777 {
16778 insn = THUMB_OP32 (opcode);
16779 insn |= (old_op & 0xf0) << 4;
16780 put_thumb32_insn (buf, insn);
16781 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16782 }
16783 else
16784 {
16785 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16786 exp.X_add_number -= 4;
16787 }
16788 pc_rel = 1;
16789 break;
16790 case T_MNEM_mov:
16791 case T_MNEM_movs:
16792 case T_MNEM_cmp:
16793 case T_MNEM_cmn:
16794 if (fragp->fr_var == 4)
16795 {
16796 int r0off = (opcode == T_MNEM_mov
16797 || opcode == T_MNEM_movs) ? 0 : 8;
16798 insn = THUMB_OP32 (opcode);
16799 insn = (insn & 0xe1ffffff) | 0x10000000;
16800 insn |= (old_op & 0x700) << r0off;
16801 put_thumb32_insn (buf, insn);
16802 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16803 }
16804 else
16805 {
16806 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16807 }
16808 pc_rel = 0;
16809 break;
16810 case T_MNEM_b:
16811 if (fragp->fr_var == 4)
16812 {
16813 insn = THUMB_OP32(opcode);
16814 put_thumb32_insn (buf, insn);
16815 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16816 }
16817 else
16818 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16819 pc_rel = 1;
16820 break;
16821 case T_MNEM_bcond:
16822 if (fragp->fr_var == 4)
16823 {
16824 insn = THUMB_OP32(opcode);
16825 insn |= (old_op & 0xf00) << 14;
16826 put_thumb32_insn (buf, insn);
16827 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16828 }
16829 else
16830 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16831 pc_rel = 1;
16832 break;
16833 case T_MNEM_add_sp:
16834 case T_MNEM_add_pc:
16835 case T_MNEM_inc_sp:
16836 case T_MNEM_dec_sp:
16837 if (fragp->fr_var == 4)
16838 {
16839 /* ??? Choose between add and addw. */
16840 insn = THUMB_OP32 (opcode);
16841 insn |= (old_op & 0xf0) << 4;
16842 put_thumb32_insn (buf, insn);
16843 if (opcode == T_MNEM_add_pc)
16844 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16845 else
16846 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16847 }
16848 else
16849 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16850 pc_rel = 0;
16851 break;
16852
16853 case T_MNEM_addi:
16854 case T_MNEM_addis:
16855 case T_MNEM_subi:
16856 case T_MNEM_subis:
16857 if (fragp->fr_var == 4)
16858 {
16859 insn = THUMB_OP32 (opcode);
16860 insn |= (old_op & 0xf0) << 4;
16861 insn |= (old_op & 0xf) << 16;
16862 put_thumb32_insn (buf, insn);
16863 if (insn & (1 << 20))
16864 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16865 else
16866 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16867 }
16868 else
16869 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16870 pc_rel = 0;
16871 break;
16872 default:
16873 abort ();
16874 }
16875 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16876 reloc_type);
16877 fixp->fx_file = fragp->fr_file;
16878 fixp->fx_line = fragp->fr_line;
16879 fragp->fr_fix += fragp->fr_var;
16880 }
16881
16882 /* Return the size of a relaxable immediate operand instruction.
16883 SHIFT and SIZE specify the form of the allowable immediate. */
16884 static int
16885 relax_immediate (fragS *fragp, int size, int shift)
16886 {
16887 offsetT offset;
16888 offsetT mask;
16889 offsetT low;
16890
16891 /* ??? Should be able to do better than this. */
16892 if (fragp->fr_symbol)
16893 return 4;
16894
16895 low = (1 << shift) - 1;
16896 mask = (1 << (shift + size)) - (1 << shift);
16897 offset = fragp->fr_offset;
16898 /* Force misaligned offsets to 32-bit variant. */
16899 if (offset & low)
16900 return 4;
16901 if (offset & ~mask)
16902 return 4;
16903 return 2;
16904 }
16905
16906 /* Get the address of a symbol during relaxation. */
16907 static addressT
16908 relaxed_symbol_addr (fragS *fragp, long stretch)
16909 {
16910 fragS *sym_frag;
16911 addressT addr;
16912 symbolS *sym;
16913
16914 sym = fragp->fr_symbol;
16915 sym_frag = symbol_get_frag (sym);
16916 know (S_GET_SEGMENT (sym) != absolute_section
16917 || sym_frag == &zero_address_frag);
16918 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16919
16920 /* If frag has yet to be reached on this pass, assume it will
16921 move by STRETCH just as we did. If this is not so, it will
16922 be because some frag between grows, and that will force
16923 another pass. */
16924
16925 if (stretch != 0
16926 && sym_frag->relax_marker != fragp->relax_marker)
16927 {
16928 fragS *f;
16929
16930 /* Adjust stretch for any alignment frag. Note that if have
16931 been expanding the earlier code, the symbol may be
16932 defined in what appears to be an earlier frag. FIXME:
16933 This doesn't handle the fr_subtype field, which specifies
16934 a maximum number of bytes to skip when doing an
16935 alignment. */
16936 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16937 {
16938 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16939 {
16940 if (stretch < 0)
16941 stretch = - ((- stretch)
16942 & ~ ((1 << (int) f->fr_offset) - 1));
16943 else
16944 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16945 if (stretch == 0)
16946 break;
16947 }
16948 }
16949 if (f != NULL)
16950 addr += stretch;
16951 }
16952
16953 return addr;
16954 }
16955
16956 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16957 load. */
16958 static int
16959 relax_adr (fragS *fragp, asection *sec, long stretch)
16960 {
16961 addressT addr;
16962 offsetT val;
16963
16964 /* Assume worst case for symbols not known to be in the same section. */
16965 if (!S_IS_DEFINED (fragp->fr_symbol)
16966 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16967 return 4;
16968
16969 val = relaxed_symbol_addr (fragp, stretch);
16970 addr = fragp->fr_address + fragp->fr_fix;
16971 addr = (addr + 4) & ~3;
16972 /* Force misaligned targets to 32-bit variant. */
16973 if (val & 3)
16974 return 4;
16975 val -= addr;
16976 if (val < 0 || val > 1020)
16977 return 4;
16978 return 2;
16979 }
16980
16981 /* Return the size of a relaxable add/sub immediate instruction. */
16982 static int
16983 relax_addsub (fragS *fragp, asection *sec)
16984 {
16985 char *buf;
16986 int op;
16987
16988 buf = fragp->fr_literal + fragp->fr_fix;
16989 op = bfd_get_16(sec->owner, buf);
16990 if ((op & 0xf) == ((op >> 4) & 0xf))
16991 return relax_immediate (fragp, 8, 0);
16992 else
16993 return relax_immediate (fragp, 3, 0);
16994 }
16995
16996
16997 /* Return the size of a relaxable branch instruction. BITS is the
16998 size of the offset field in the narrow instruction. */
16999
17000 static int
17001 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
17002 {
17003 addressT addr;
17004 offsetT val;
17005 offsetT limit;
17006
17007 /* Assume worst case for symbols not known to be in the same section. */
17008 if (!S_IS_DEFINED (fragp->fr_symbol)
17009 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17010 return 4;
17011
17012 val = relaxed_symbol_addr (fragp, stretch);
17013 addr = fragp->fr_address + fragp->fr_fix + 4;
17014 val -= addr;
17015
17016 /* Offset is a signed value *2 */
17017 limit = 1 << bits;
17018 if (val >= limit || val < -limit)
17019 return 4;
17020 return 2;
17021 }
17022
17023
17024 /* Relax a machine dependent frag. This returns the amount by which
17025 the current size of the frag should change. */
17026
17027 int
17028 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
17029 {
17030 int oldsize;
17031 int newsize;
17032
17033 oldsize = fragp->fr_var;
17034 switch (fragp->fr_subtype)
17035 {
17036 case T_MNEM_ldr_pc2:
17037 newsize = relax_adr (fragp, sec, stretch);
17038 break;
17039 case T_MNEM_ldr_pc:
17040 case T_MNEM_ldr_sp:
17041 case T_MNEM_str_sp:
17042 newsize = relax_immediate (fragp, 8, 2);
17043 break;
17044 case T_MNEM_ldr:
17045 case T_MNEM_str:
17046 newsize = relax_immediate (fragp, 5, 2);
17047 break;
17048 case T_MNEM_ldrh:
17049 case T_MNEM_strh:
17050 newsize = relax_immediate (fragp, 5, 1);
17051 break;
17052 case T_MNEM_ldrb:
17053 case T_MNEM_strb:
17054 newsize = relax_immediate (fragp, 5, 0);
17055 break;
17056 case T_MNEM_adr:
17057 newsize = relax_adr (fragp, sec, stretch);
17058 break;
17059 case T_MNEM_mov:
17060 case T_MNEM_movs:
17061 case T_MNEM_cmp:
17062 case T_MNEM_cmn:
17063 newsize = relax_immediate (fragp, 8, 0);
17064 break;
17065 case T_MNEM_b:
17066 newsize = relax_branch (fragp, sec, 11, stretch);
17067 break;
17068 case T_MNEM_bcond:
17069 newsize = relax_branch (fragp, sec, 8, stretch);
17070 break;
17071 case T_MNEM_add_sp:
17072 case T_MNEM_add_pc:
17073 newsize = relax_immediate (fragp, 8, 2);
17074 break;
17075 case T_MNEM_inc_sp:
17076 case T_MNEM_dec_sp:
17077 newsize = relax_immediate (fragp, 7, 2);
17078 break;
17079 case T_MNEM_addi:
17080 case T_MNEM_addis:
17081 case T_MNEM_subi:
17082 case T_MNEM_subis:
17083 newsize = relax_addsub (fragp, sec);
17084 break;
17085 default:
17086 abort ();
17087 }
17088
17089 fragp->fr_var = newsize;
17090 /* Freeze wide instructions that are at or before the same location as
17091 in the previous pass. This avoids infinite loops.
17092 Don't freeze them unconditionally because targets may be artificially
17093 misaligned by the expansion of preceding frags. */
17094 if (stretch <= 0 && newsize > 2)
17095 {
17096 md_convert_frag (sec->owner, sec, fragp);
17097 frag_wane (fragp);
17098 }
17099
17100 return newsize - oldsize;
17101 }
17102
17103 /* Round up a section size to the appropriate boundary. */
17104
17105 valueT
17106 md_section_align (segT segment ATTRIBUTE_UNUSED,
17107 valueT size)
17108 {
17109 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17110 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17111 {
17112 /* For a.out, force the section size to be aligned. If we don't do
17113 this, BFD will align it for us, but it will not write out the
17114 final bytes of the section. This may be a bug in BFD, but it is
17115 easier to fix it here since that is how the other a.out targets
17116 work. */
17117 int align;
17118
17119 align = bfd_get_section_alignment (stdoutput, segment);
17120 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17121 }
17122 #endif
17123
17124 return size;
17125 }
17126
17127 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17128 of an rs_align_code fragment. */
17129
17130 void
17131 arm_handle_align (fragS * fragP)
17132 {
17133 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17134 static char const thumb_noop[2] = { 0xc0, 0x46 };
17135 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17136 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17137
17138 int bytes, fix, noop_size;
17139 char * p;
17140 const char * noop;
17141
17142 if (fragP->fr_type != rs_align_code)
17143 return;
17144
17145 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17146 p = fragP->fr_literal + fragP->fr_fix;
17147 fix = 0;
17148
17149 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17150 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17151
17152 if (fragP->tc_frag_data)
17153 {
17154 if (target_big_endian)
17155 noop = thumb_bigend_noop;
17156 else
17157 noop = thumb_noop;
17158 noop_size = sizeof (thumb_noop);
17159 }
17160 else
17161 {
17162 if (target_big_endian)
17163 noop = arm_bigend_noop;
17164 else
17165 noop = arm_noop;
17166 noop_size = sizeof (arm_noop);
17167 }
17168
17169 if (bytes & (noop_size - 1))
17170 {
17171 fix = bytes & (noop_size - 1);
17172 memset (p, 0, fix);
17173 p += fix;
17174 bytes -= fix;
17175 }
17176
17177 while (bytes >= noop_size)
17178 {
17179 memcpy (p, noop, noop_size);
17180 p += noop_size;
17181 bytes -= noop_size;
17182 fix += noop_size;
17183 }
17184
17185 fragP->fr_fix += fix;
17186 fragP->fr_var = noop_size;
17187 }
17188
17189 /* Called from md_do_align. Used to create an alignment
17190 frag in a code section. */
17191
17192 void
17193 arm_frag_align_code (int n, int max)
17194 {
17195 char * p;
17196
17197 /* We assume that there will never be a requirement
17198 to support alignments greater than 32 bytes. */
17199 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17200 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17201
17202 p = frag_var (rs_align_code,
17203 MAX_MEM_FOR_RS_ALIGN_CODE,
17204 1,
17205 (relax_substateT) max,
17206 (symbolS *) NULL,
17207 (offsetT) n,
17208 (char *) NULL);
17209 *p = 0;
17210 }
17211
17212 /* Perform target specific initialisation of a frag. */
17213
17214 void
17215 arm_init_frag (fragS * fragP)
17216 {
17217 /* Record whether this frag is in an ARM or a THUMB area. */
17218 fragP->tc_frag_data = thumb_mode;
17219 }
17220
17221 #ifdef OBJ_ELF
17222 /* When we change sections we need to issue a new mapping symbol. */
17223
17224 void
17225 arm_elf_change_section (void)
17226 {
17227 flagword flags;
17228 segment_info_type *seginfo;
17229
17230 /* Link an unlinked unwind index table section to the .text section. */
17231 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17232 && elf_linked_to_section (now_seg) == NULL)
17233 elf_linked_to_section (now_seg) = text_section;
17234
17235 if (!SEG_NORMAL (now_seg))
17236 return;
17237
17238 flags = bfd_get_section_flags (stdoutput, now_seg);
17239
17240 /* We can ignore sections that only contain debug info. */
17241 if ((flags & SEC_ALLOC) == 0)
17242 return;
17243
17244 seginfo = seg_info (now_seg);
17245 mapstate = seginfo->tc_segment_info_data.mapstate;
17246 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17247 }
17248
17249 int
17250 arm_elf_section_type (const char * str, size_t len)
17251 {
17252 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17253 return SHT_ARM_EXIDX;
17254
17255 return -1;
17256 }
17257 \f
17258 /* Code to deal with unwinding tables. */
17259
17260 static void add_unwind_adjustsp (offsetT);
17261
17262 /* Generate any deferred unwind frame offset. */
17263
17264 static void
17265 flush_pending_unwind (void)
17266 {
17267 offsetT offset;
17268
17269 offset = unwind.pending_offset;
17270 unwind.pending_offset = 0;
17271 if (offset != 0)
17272 add_unwind_adjustsp (offset);
17273 }
17274
17275 /* Add an opcode to this list for this function. Two-byte opcodes should
17276 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17277 order. */
17278
17279 static void
17280 add_unwind_opcode (valueT op, int length)
17281 {
17282 /* Add any deferred stack adjustment. */
17283 if (unwind.pending_offset)
17284 flush_pending_unwind ();
17285
17286 unwind.sp_restored = 0;
17287
17288 if (unwind.opcode_count + length > unwind.opcode_alloc)
17289 {
17290 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17291 if (unwind.opcodes)
17292 unwind.opcodes = xrealloc (unwind.opcodes,
17293 unwind.opcode_alloc);
17294 else
17295 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17296 }
17297 while (length > 0)
17298 {
17299 length--;
17300 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17301 op >>= 8;
17302 unwind.opcode_count++;
17303 }
17304 }
17305
17306 /* Add unwind opcodes to adjust the stack pointer. */
17307
17308 static void
17309 add_unwind_adjustsp (offsetT offset)
17310 {
17311 valueT op;
17312
17313 if (offset > 0x200)
17314 {
17315 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17316 char bytes[5];
17317 int n;
17318 valueT o;
17319
17320 /* Long form: 0xb2, uleb128. */
17321 /* This might not fit in a word so add the individual bytes,
17322 remembering the list is built in reverse order. */
17323 o = (valueT) ((offset - 0x204) >> 2);
17324 if (o == 0)
17325 add_unwind_opcode (0, 1);
17326
17327 /* Calculate the uleb128 encoding of the offset. */
17328 n = 0;
17329 while (o)
17330 {
17331 bytes[n] = o & 0x7f;
17332 o >>= 7;
17333 if (o)
17334 bytes[n] |= 0x80;
17335 n++;
17336 }
17337 /* Add the insn. */
17338 for (; n; n--)
17339 add_unwind_opcode (bytes[n - 1], 1);
17340 add_unwind_opcode (0xb2, 1);
17341 }
17342 else if (offset > 0x100)
17343 {
17344 /* Two short opcodes. */
17345 add_unwind_opcode (0x3f, 1);
17346 op = (offset - 0x104) >> 2;
17347 add_unwind_opcode (op, 1);
17348 }
17349 else if (offset > 0)
17350 {
17351 /* Short opcode. */
17352 op = (offset - 4) >> 2;
17353 add_unwind_opcode (op, 1);
17354 }
17355 else if (offset < 0)
17356 {
17357 offset = -offset;
17358 while (offset > 0x100)
17359 {
17360 add_unwind_opcode (0x7f, 1);
17361 offset -= 0x100;
17362 }
17363 op = ((offset - 4) >> 2) | 0x40;
17364 add_unwind_opcode (op, 1);
17365 }
17366 }
17367
17368 /* Finish the list of unwind opcodes for this function. */
17369 static void
17370 finish_unwind_opcodes (void)
17371 {
17372 valueT op;
17373
17374 if (unwind.fp_used)
17375 {
17376 /* Adjust sp as necessary. */
17377 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17378 flush_pending_unwind ();
17379
17380 /* After restoring sp from the frame pointer. */
17381 op = 0x90 | unwind.fp_reg;
17382 add_unwind_opcode (op, 1);
17383 }
17384 else
17385 flush_pending_unwind ();
17386 }
17387
17388
17389 /* Start an exception table entry. If idx is nonzero this is an index table
17390 entry. */
17391
17392 static void
17393 start_unwind_section (const segT text_seg, int idx)
17394 {
17395 const char * text_name;
17396 const char * prefix;
17397 const char * prefix_once;
17398 const char * group_name;
17399 size_t prefix_len;
17400 size_t text_len;
17401 char * sec_name;
17402 size_t sec_name_len;
17403 int type;
17404 int flags;
17405 int linkonce;
17406
17407 if (idx)
17408 {
17409 prefix = ELF_STRING_ARM_unwind;
17410 prefix_once = ELF_STRING_ARM_unwind_once;
17411 type = SHT_ARM_EXIDX;
17412 }
17413 else
17414 {
17415 prefix = ELF_STRING_ARM_unwind_info;
17416 prefix_once = ELF_STRING_ARM_unwind_info_once;
17417 type = SHT_PROGBITS;
17418 }
17419
17420 text_name = segment_name (text_seg);
17421 if (streq (text_name, ".text"))
17422 text_name = "";
17423
17424 if (strncmp (text_name, ".gnu.linkonce.t.",
17425 strlen (".gnu.linkonce.t.")) == 0)
17426 {
17427 prefix = prefix_once;
17428 text_name += strlen (".gnu.linkonce.t.");
17429 }
17430
17431 prefix_len = strlen (prefix);
17432 text_len = strlen (text_name);
17433 sec_name_len = prefix_len + text_len;
17434 sec_name = xmalloc (sec_name_len + 1);
17435 memcpy (sec_name, prefix, prefix_len);
17436 memcpy (sec_name + prefix_len, text_name, text_len);
17437 sec_name[prefix_len + text_len] = '\0';
17438
17439 flags = SHF_ALLOC;
17440 linkonce = 0;
17441 group_name = 0;
17442
17443 /* Handle COMDAT group. */
17444 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17445 {
17446 group_name = elf_group_name (text_seg);
17447 if (group_name == NULL)
17448 {
17449 as_bad (_("Group section `%s' has no group signature"),
17450 segment_name (text_seg));
17451 ignore_rest_of_line ();
17452 return;
17453 }
17454 flags |= SHF_GROUP;
17455 linkonce = 1;
17456 }
17457
17458 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17459
17460 /* Set the section link for index tables. */
17461 if (idx)
17462 elf_linked_to_section (now_seg) = text_seg;
17463 }
17464
17465
17466 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17467 personality routine data. Returns zero, or the index table value for
17468 and inline entry. */
17469
17470 static valueT
17471 create_unwind_entry (int have_data)
17472 {
17473 int size;
17474 addressT where;
17475 char *ptr;
17476 /* The current word of data. */
17477 valueT data;
17478 /* The number of bytes left in this word. */
17479 int n;
17480
17481 finish_unwind_opcodes ();
17482
17483 /* Remember the current text section. */
17484 unwind.saved_seg = now_seg;
17485 unwind.saved_subseg = now_subseg;
17486
17487 start_unwind_section (now_seg, 0);
17488
17489 if (unwind.personality_routine == NULL)
17490 {
17491 if (unwind.personality_index == -2)
17492 {
17493 if (have_data)
17494 as_bad (_("handlerdata in cantunwind frame"));
17495 return 1; /* EXIDX_CANTUNWIND. */
17496 }
17497
17498 /* Use a default personality routine if none is specified. */
17499 if (unwind.personality_index == -1)
17500 {
17501 if (unwind.opcode_count > 3)
17502 unwind.personality_index = 1;
17503 else
17504 unwind.personality_index = 0;
17505 }
17506
17507 /* Space for the personality routine entry. */
17508 if (unwind.personality_index == 0)
17509 {
17510 if (unwind.opcode_count > 3)
17511 as_bad (_("too many unwind opcodes for personality routine 0"));
17512
17513 if (!have_data)
17514 {
17515 /* All the data is inline in the index table. */
17516 data = 0x80;
17517 n = 3;
17518 while (unwind.opcode_count > 0)
17519 {
17520 unwind.opcode_count--;
17521 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17522 n--;
17523 }
17524
17525 /* Pad with "finish" opcodes. */
17526 while (n--)
17527 data = (data << 8) | 0xb0;
17528
17529 return data;
17530 }
17531 size = 0;
17532 }
17533 else
17534 /* We get two opcodes "free" in the first word. */
17535 size = unwind.opcode_count - 2;
17536 }
17537 else
17538 /* An extra byte is required for the opcode count. */
17539 size = unwind.opcode_count + 1;
17540
17541 size = (size + 3) >> 2;
17542 if (size > 0xff)
17543 as_bad (_("too many unwind opcodes"));
17544
17545 frag_align (2, 0, 0);
17546 record_alignment (now_seg, 2);
17547 unwind.table_entry = expr_build_dot ();
17548
17549 /* Allocate the table entry. */
17550 ptr = frag_more ((size << 2) + 4);
17551 where = frag_now_fix () - ((size << 2) + 4);
17552
17553 switch (unwind.personality_index)
17554 {
17555 case -1:
17556 /* ??? Should this be a PLT generating relocation? */
17557 /* Custom personality routine. */
17558 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17559 BFD_RELOC_ARM_PREL31);
17560
17561 where += 4;
17562 ptr += 4;
17563
17564 /* Set the first byte to the number of additional words. */
17565 data = size - 1;
17566 n = 3;
17567 break;
17568
17569 /* ABI defined personality routines. */
17570 case 0:
17571 /* Three opcodes bytes are packed into the first word. */
17572 data = 0x80;
17573 n = 3;
17574 break;
17575
17576 case 1:
17577 case 2:
17578 /* The size and first two opcode bytes go in the first word. */
17579 data = ((0x80 + unwind.personality_index) << 8) | size;
17580 n = 2;
17581 break;
17582
17583 default:
17584 /* Should never happen. */
17585 abort ();
17586 }
17587
17588 /* Pack the opcodes into words (MSB first), reversing the list at the same
17589 time. */
17590 while (unwind.opcode_count > 0)
17591 {
17592 if (n == 0)
17593 {
17594 md_number_to_chars (ptr, data, 4);
17595 ptr += 4;
17596 n = 4;
17597 data = 0;
17598 }
17599 unwind.opcode_count--;
17600 n--;
17601 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17602 }
17603
17604 /* Finish off the last word. */
17605 if (n < 4)
17606 {
17607 /* Pad with "finish" opcodes. */
17608 while (n--)
17609 data = (data << 8) | 0xb0;
17610
17611 md_number_to_chars (ptr, data, 4);
17612 }
17613
17614 if (!have_data)
17615 {
17616 /* Add an empty descriptor if there is no user-specified data. */
17617 ptr = frag_more (4);
17618 md_number_to_chars (ptr, 0, 4);
17619 }
17620
17621 return 0;
17622 }
17623
17624
17625 /* Initialize the DWARF-2 unwind information for this procedure. */
17626
17627 void
17628 tc_arm_frame_initial_instructions (void)
17629 {
17630 cfi_add_CFA_def_cfa (REG_SP, 0);
17631 }
17632 #endif /* OBJ_ELF */
17633
17634 /* Convert REGNAME to a DWARF-2 register number. */
17635
17636 int
17637 tc_arm_regname_to_dw2regnum (char *regname)
17638 {
17639 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17640
17641 if (reg == FAIL)
17642 return -1;
17643
17644 return reg;
17645 }
17646
17647 #ifdef TE_PE
17648 void
17649 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17650 {
17651 expressionS expr;
17652
17653 expr.X_op = O_secrel;
17654 expr.X_add_symbol = symbol;
17655 expr.X_add_number = 0;
17656 emit_expr (&expr, size);
17657 }
17658 #endif
17659
17660 /* MD interface: Symbol and relocation handling. */
17661
17662 /* Return the address within the segment that a PC-relative fixup is
17663 relative to. For ARM, PC-relative fixups applied to instructions
17664 are generally relative to the location of the fixup plus 8 bytes.
17665 Thumb branches are offset by 4, and Thumb loads relative to PC
17666 require special handling. */
17667
17668 long
17669 md_pcrel_from_section (fixS * fixP, segT seg)
17670 {
17671 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17672
17673 /* If this is pc-relative and we are going to emit a relocation
17674 then we just want to put out any pipeline compensation that the linker
17675 will need. Otherwise we want to use the calculated base.
17676 For WinCE we skip the bias for externals as well, since this
17677 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17678 if (fixP->fx_pcrel
17679 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17680 || (arm_force_relocation (fixP)
17681 #ifdef TE_WINCE
17682 && !S_IS_EXTERNAL (fixP->fx_addsy)
17683 #endif
17684 )))
17685 base = 0;
17686
17687 switch (fixP->fx_r_type)
17688 {
17689 /* PC relative addressing on the Thumb is slightly odd as the
17690 bottom two bits of the PC are forced to zero for the
17691 calculation. This happens *after* application of the
17692 pipeline offset. However, Thumb adrl already adjusts for
17693 this, so we need not do it again. */
17694 case BFD_RELOC_ARM_THUMB_ADD:
17695 return base & ~3;
17696
17697 case BFD_RELOC_ARM_THUMB_OFFSET:
17698 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17699 case BFD_RELOC_ARM_T32_ADD_PC12:
17700 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17701 return (base + 4) & ~3;
17702
17703 /* Thumb branches are simply offset by +4. */
17704 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17705 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17706 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17707 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17708 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17709 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17710 case BFD_RELOC_THUMB_PCREL_BLX:
17711 return base + 4;
17712
17713 /* ARM mode branches are offset by +8. However, the Windows CE
17714 loader expects the relocation not to take this into account. */
17715 case BFD_RELOC_ARM_PCREL_BRANCH:
17716 case BFD_RELOC_ARM_PCREL_CALL:
17717 case BFD_RELOC_ARM_PCREL_JUMP:
17718 case BFD_RELOC_ARM_PCREL_BLX:
17719 case BFD_RELOC_ARM_PLT32:
17720 #ifdef TE_WINCE
17721 /* When handling fixups immediately, because we have already
17722 discovered the value of a symbol, or the address of the frag involved
17723 we must account for the offset by +8, as the OS loader will never see the reloc.
17724 see fixup_segment() in write.c
17725 The S_IS_EXTERNAL test handles the case of global symbols.
17726 Those need the calculated base, not just the pipe compensation the linker will need. */
17727 if (fixP->fx_pcrel
17728 && fixP->fx_addsy != NULL
17729 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17730 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17731 return base + 8;
17732 return base;
17733 #else
17734 return base + 8;
17735 #endif
17736
17737 /* ARM mode loads relative to PC are also offset by +8. Unlike
17738 branches, the Windows CE loader *does* expect the relocation
17739 to take this into account. */
17740 case BFD_RELOC_ARM_OFFSET_IMM:
17741 case BFD_RELOC_ARM_OFFSET_IMM8:
17742 case BFD_RELOC_ARM_HWLITERAL:
17743 case BFD_RELOC_ARM_LITERAL:
17744 case BFD_RELOC_ARM_CP_OFF_IMM:
17745 return base + 8;
17746
17747
17748 /* Other PC-relative relocations are un-offset. */
17749 default:
17750 return base;
17751 }
17752 }
17753
17754 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17755 Otherwise we have no need to default values of symbols. */
17756
17757 symbolS *
17758 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17759 {
17760 #ifdef OBJ_ELF
17761 if (name[0] == '_' && name[1] == 'G'
17762 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17763 {
17764 if (!GOT_symbol)
17765 {
17766 if (symbol_find (name))
17767 as_bad (_("GOT already in the symbol table"));
17768
17769 GOT_symbol = symbol_new (name, undefined_section,
17770 (valueT) 0, & zero_address_frag);
17771 }
17772
17773 return GOT_symbol;
17774 }
17775 #endif
17776
17777 return 0;
17778 }
17779
17780 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17781 computed as two separate immediate values, added together. We
17782 already know that this value cannot be computed by just one ARM
17783 instruction. */
17784
17785 static unsigned int
17786 validate_immediate_twopart (unsigned int val,
17787 unsigned int * highpart)
17788 {
17789 unsigned int a;
17790 unsigned int i;
17791
17792 for (i = 0; i < 32; i += 2)
17793 if (((a = rotate_left (val, i)) & 0xff) != 0)
17794 {
17795 if (a & 0xff00)
17796 {
17797 if (a & ~ 0xffff)
17798 continue;
17799 * highpart = (a >> 8) | ((i + 24) << 7);
17800 }
17801 else if (a & 0xff0000)
17802 {
17803 if (a & 0xff000000)
17804 continue;
17805 * highpart = (a >> 16) | ((i + 16) << 7);
17806 }
17807 else
17808 {
17809 assert (a & 0xff000000);
17810 * highpart = (a >> 24) | ((i + 8) << 7);
17811 }
17812
17813 return (a & 0xff) | (i << 7);
17814 }
17815
17816 return FAIL;
17817 }
17818
17819 static int
17820 validate_offset_imm (unsigned int val, int hwse)
17821 {
17822 if ((hwse && val > 255) || val > 4095)
17823 return FAIL;
17824 return val;
17825 }
17826
17827 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17828 negative immediate constant by altering the instruction. A bit of
17829 a hack really.
17830 MOV <-> MVN
17831 AND <-> BIC
17832 ADC <-> SBC
17833 by inverting the second operand, and
17834 ADD <-> SUB
17835 CMP <-> CMN
17836 by negating the second operand. */
17837
17838 static int
17839 negate_data_op (unsigned long * instruction,
17840 unsigned long value)
17841 {
17842 int op, new_inst;
17843 unsigned long negated, inverted;
17844
17845 negated = encode_arm_immediate (-value);
17846 inverted = encode_arm_immediate (~value);
17847
17848 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17849 switch (op)
17850 {
17851 /* First negates. */
17852 case OPCODE_SUB: /* ADD <-> SUB */
17853 new_inst = OPCODE_ADD;
17854 value = negated;
17855 break;
17856
17857 case OPCODE_ADD:
17858 new_inst = OPCODE_SUB;
17859 value = negated;
17860 break;
17861
17862 case OPCODE_CMP: /* CMP <-> CMN */
17863 new_inst = OPCODE_CMN;
17864 value = negated;
17865 break;
17866
17867 case OPCODE_CMN:
17868 new_inst = OPCODE_CMP;
17869 value = negated;
17870 break;
17871
17872 /* Now Inverted ops. */
17873 case OPCODE_MOV: /* MOV <-> MVN */
17874 new_inst = OPCODE_MVN;
17875 value = inverted;
17876 break;
17877
17878 case OPCODE_MVN:
17879 new_inst = OPCODE_MOV;
17880 value = inverted;
17881 break;
17882
17883 case OPCODE_AND: /* AND <-> BIC */
17884 new_inst = OPCODE_BIC;
17885 value = inverted;
17886 break;
17887
17888 case OPCODE_BIC:
17889 new_inst = OPCODE_AND;
17890 value = inverted;
17891 break;
17892
17893 case OPCODE_ADC: /* ADC <-> SBC */
17894 new_inst = OPCODE_SBC;
17895 value = inverted;
17896 break;
17897
17898 case OPCODE_SBC:
17899 new_inst = OPCODE_ADC;
17900 value = inverted;
17901 break;
17902
17903 /* We cannot do anything. */
17904 default:
17905 return FAIL;
17906 }
17907
17908 if (value == (unsigned) FAIL)
17909 return FAIL;
17910
17911 *instruction &= OPCODE_MASK;
17912 *instruction |= new_inst << DATA_OP_SHIFT;
17913 return value;
17914 }
17915
17916 /* Like negate_data_op, but for Thumb-2. */
17917
17918 static unsigned int
17919 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17920 {
17921 int op, new_inst;
17922 int rd;
17923 unsigned int negated, inverted;
17924
17925 negated = encode_thumb32_immediate (-value);
17926 inverted = encode_thumb32_immediate (~value);
17927
17928 rd = (*instruction >> 8) & 0xf;
17929 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17930 switch (op)
17931 {
17932 /* ADD <-> SUB. Includes CMP <-> CMN. */
17933 case T2_OPCODE_SUB:
17934 new_inst = T2_OPCODE_ADD;
17935 value = negated;
17936 break;
17937
17938 case T2_OPCODE_ADD:
17939 new_inst = T2_OPCODE_SUB;
17940 value = negated;
17941 break;
17942
17943 /* ORR <-> ORN. Includes MOV <-> MVN. */
17944 case T2_OPCODE_ORR:
17945 new_inst = T2_OPCODE_ORN;
17946 value = inverted;
17947 break;
17948
17949 case T2_OPCODE_ORN:
17950 new_inst = T2_OPCODE_ORR;
17951 value = inverted;
17952 break;
17953
17954 /* AND <-> BIC. TST has no inverted equivalent. */
17955 case T2_OPCODE_AND:
17956 new_inst = T2_OPCODE_BIC;
17957 if (rd == 15)
17958 value = FAIL;
17959 else
17960 value = inverted;
17961 break;
17962
17963 case T2_OPCODE_BIC:
17964 new_inst = T2_OPCODE_AND;
17965 value = inverted;
17966 break;
17967
17968 /* ADC <-> SBC */
17969 case T2_OPCODE_ADC:
17970 new_inst = T2_OPCODE_SBC;
17971 value = inverted;
17972 break;
17973
17974 case T2_OPCODE_SBC:
17975 new_inst = T2_OPCODE_ADC;
17976 value = inverted;
17977 break;
17978
17979 /* We cannot do anything. */
17980 default:
17981 return FAIL;
17982 }
17983
17984 if (value == (unsigned int)FAIL)
17985 return FAIL;
17986
17987 *instruction &= T2_OPCODE_MASK;
17988 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17989 return value;
17990 }
17991
17992 /* Read a 32-bit thumb instruction from buf. */
17993 static unsigned long
17994 get_thumb32_insn (char * buf)
17995 {
17996 unsigned long insn;
17997 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17998 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17999
18000 return insn;
18001 }
18002
18003
18004 /* We usually want to set the low bit on the address of thumb function
18005 symbols. In particular .word foo - . should have the low bit set.
18006 Generic code tries to fold the difference of two symbols to
18007 a constant. Prevent this and force a relocation when the first symbols
18008 is a thumb function. */
18009 int
18010 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18011 {
18012 if (op == O_subtract
18013 && l->X_op == O_symbol
18014 && r->X_op == O_symbol
18015 && THUMB_IS_FUNC (l->X_add_symbol))
18016 {
18017 l->X_op = O_subtract;
18018 l->X_op_symbol = r->X_add_symbol;
18019 l->X_add_number -= r->X_add_number;
18020 return 1;
18021 }
18022 /* Process as normal. */
18023 return 0;
18024 }
18025
18026 void
18027 md_apply_fix (fixS * fixP,
18028 valueT * valP,
18029 segT seg)
18030 {
18031 offsetT value = * valP;
18032 offsetT newval;
18033 unsigned int newimm;
18034 unsigned long temp;
18035 int sign;
18036 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
18037
18038 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
18039
18040 /* Note whether this will delete the relocation. */
18041
18042 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18043 fixP->fx_done = 1;
18044
18045 /* On a 64-bit host, silently truncate 'value' to 32 bits for
18046 consistency with the behaviour on 32-bit hosts. Remember value
18047 for emit_reloc. */
18048 value &= 0xffffffff;
18049 value ^= 0x80000000;
18050 value -= 0x80000000;
18051
18052 *valP = value;
18053 fixP->fx_addnumber = value;
18054
18055 /* Same treatment for fixP->fx_offset. */
18056 fixP->fx_offset &= 0xffffffff;
18057 fixP->fx_offset ^= 0x80000000;
18058 fixP->fx_offset -= 0x80000000;
18059
18060 switch (fixP->fx_r_type)
18061 {
18062 case BFD_RELOC_NONE:
18063 /* This will need to go in the object file. */
18064 fixP->fx_done = 0;
18065 break;
18066
18067 case BFD_RELOC_ARM_IMMEDIATE:
18068 /* We claim that this fixup has been processed here,
18069 even if in fact we generate an error because we do
18070 not have a reloc for it, so tc_gen_reloc will reject it. */
18071 fixP->fx_done = 1;
18072
18073 if (fixP->fx_addsy
18074 && ! S_IS_DEFINED (fixP->fx_addsy))
18075 {
18076 as_bad_where (fixP->fx_file, fixP->fx_line,
18077 _("undefined symbol %s used as an immediate value"),
18078 S_GET_NAME (fixP->fx_addsy));
18079 break;
18080 }
18081
18082 newimm = encode_arm_immediate (value);
18083 temp = md_chars_to_number (buf, INSN_SIZE);
18084
18085 /* If the instruction will fail, see if we can fix things up by
18086 changing the opcode. */
18087 if (newimm == (unsigned int) FAIL
18088 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
18089 {
18090 as_bad_where (fixP->fx_file, fixP->fx_line,
18091 _("invalid constant (%lx) after fixup"),
18092 (unsigned long) value);
18093 break;
18094 }
18095
18096 newimm |= (temp & 0xfffff000);
18097 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18098 break;
18099
18100 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18101 {
18102 unsigned int highpart = 0;
18103 unsigned int newinsn = 0xe1a00000; /* nop. */
18104
18105 newimm = encode_arm_immediate (value);
18106 temp = md_chars_to_number (buf, INSN_SIZE);
18107
18108 /* If the instruction will fail, see if we can fix things up by
18109 changing the opcode. */
18110 if (newimm == (unsigned int) FAIL
18111 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18112 {
18113 /* No ? OK - try using two ADD instructions to generate
18114 the value. */
18115 newimm = validate_immediate_twopart (value, & highpart);
18116
18117 /* Yes - then make sure that the second instruction is
18118 also an add. */
18119 if (newimm != (unsigned int) FAIL)
18120 newinsn = temp;
18121 /* Still No ? Try using a negated value. */
18122 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18123 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18124 /* Otherwise - give up. */
18125 else
18126 {
18127 as_bad_where (fixP->fx_file, fixP->fx_line,
18128 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18129 (long) value);
18130 break;
18131 }
18132
18133 /* Replace the first operand in the 2nd instruction (which
18134 is the PC) with the destination register. We have
18135 already added in the PC in the first instruction and we
18136 do not want to do it again. */
18137 newinsn &= ~ 0xf0000;
18138 newinsn |= ((newinsn & 0x0f000) << 4);
18139 }
18140
18141 newimm |= (temp & 0xfffff000);
18142 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18143
18144 highpart |= (newinsn & 0xfffff000);
18145 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18146 }
18147 break;
18148
18149 case BFD_RELOC_ARM_OFFSET_IMM:
18150 if (!fixP->fx_done && seg->use_rela_p)
18151 value = 0;
18152
18153 case BFD_RELOC_ARM_LITERAL:
18154 sign = value >= 0;
18155
18156 if (value < 0)
18157 value = - value;
18158
18159 if (validate_offset_imm (value, 0) == FAIL)
18160 {
18161 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18162 as_bad_where (fixP->fx_file, fixP->fx_line,
18163 _("invalid literal constant: pool needs to be closer"));
18164 else
18165 as_bad_where (fixP->fx_file, fixP->fx_line,
18166 _("bad immediate value for offset (%ld)"),
18167 (long) value);
18168 break;
18169 }
18170
18171 newval = md_chars_to_number (buf, INSN_SIZE);
18172 newval &= 0xff7ff000;
18173 newval |= value | (sign ? INDEX_UP : 0);
18174 md_number_to_chars (buf, newval, INSN_SIZE);
18175 break;
18176
18177 case BFD_RELOC_ARM_OFFSET_IMM8:
18178 case BFD_RELOC_ARM_HWLITERAL:
18179 sign = value >= 0;
18180
18181 if (value < 0)
18182 value = - value;
18183
18184 if (validate_offset_imm (value, 1) == FAIL)
18185 {
18186 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18187 as_bad_where (fixP->fx_file, fixP->fx_line,
18188 _("invalid literal constant: pool needs to be closer"));
18189 else
18190 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18191 (long) value);
18192 break;
18193 }
18194
18195 newval = md_chars_to_number (buf, INSN_SIZE);
18196 newval &= 0xff7ff0f0;
18197 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18198 md_number_to_chars (buf, newval, INSN_SIZE);
18199 break;
18200
18201 case BFD_RELOC_ARM_T32_OFFSET_U8:
18202 if (value < 0 || value > 1020 || value % 4 != 0)
18203 as_bad_where (fixP->fx_file, fixP->fx_line,
18204 _("bad immediate value for offset (%ld)"), (long) value);
18205 value /= 4;
18206
18207 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18208 newval |= value;
18209 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18210 break;
18211
18212 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18213 /* This is a complicated relocation used for all varieties of Thumb32
18214 load/store instruction with immediate offset:
18215
18216 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18217 *4, optional writeback(W)
18218 (doubleword load/store)
18219
18220 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18221 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18222 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18223 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18224 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18225
18226 Uppercase letters indicate bits that are already encoded at
18227 this point. Lowercase letters are our problem. For the
18228 second block of instructions, the secondary opcode nybble
18229 (bits 8..11) is present, and bit 23 is zero, even if this is
18230 a PC-relative operation. */
18231 newval = md_chars_to_number (buf, THUMB_SIZE);
18232 newval <<= 16;
18233 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18234
18235 if ((newval & 0xf0000000) == 0xe0000000)
18236 {
18237 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18238 if (value >= 0)
18239 newval |= (1 << 23);
18240 else
18241 value = -value;
18242 if (value % 4 != 0)
18243 {
18244 as_bad_where (fixP->fx_file, fixP->fx_line,
18245 _("offset not a multiple of 4"));
18246 break;
18247 }
18248 value /= 4;
18249 if (value > 0xff)
18250 {
18251 as_bad_where (fixP->fx_file, fixP->fx_line,
18252 _("offset out of range"));
18253 break;
18254 }
18255 newval &= ~0xff;
18256 }
18257 else if ((newval & 0x000f0000) == 0x000f0000)
18258 {
18259 /* PC-relative, 12-bit offset. */
18260 if (value >= 0)
18261 newval |= (1 << 23);
18262 else
18263 value = -value;
18264 if (value > 0xfff)
18265 {
18266 as_bad_where (fixP->fx_file, fixP->fx_line,
18267 _("offset out of range"));
18268 break;
18269 }
18270 newval &= ~0xfff;
18271 }
18272 else if ((newval & 0x00000100) == 0x00000100)
18273 {
18274 /* Writeback: 8-bit, +/- offset. */
18275 if (value >= 0)
18276 newval |= (1 << 9);
18277 else
18278 value = -value;
18279 if (value > 0xff)
18280 {
18281 as_bad_where (fixP->fx_file, fixP->fx_line,
18282 _("offset out of range"));
18283 break;
18284 }
18285 newval &= ~0xff;
18286 }
18287 else if ((newval & 0x00000f00) == 0x00000e00)
18288 {
18289 /* T-instruction: positive 8-bit offset. */
18290 if (value < 0 || value > 0xff)
18291 {
18292 as_bad_where (fixP->fx_file, fixP->fx_line,
18293 _("offset out of range"));
18294 break;
18295 }
18296 newval &= ~0xff;
18297 newval |= value;
18298 }
18299 else
18300 {
18301 /* Positive 12-bit or negative 8-bit offset. */
18302 int limit;
18303 if (value >= 0)
18304 {
18305 newval |= (1 << 23);
18306 limit = 0xfff;
18307 }
18308 else
18309 {
18310 value = -value;
18311 limit = 0xff;
18312 }
18313 if (value > limit)
18314 {
18315 as_bad_where (fixP->fx_file, fixP->fx_line,
18316 _("offset out of range"));
18317 break;
18318 }
18319 newval &= ~limit;
18320 }
18321
18322 newval |= value;
18323 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18324 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18325 break;
18326
18327 case BFD_RELOC_ARM_SHIFT_IMM:
18328 newval = md_chars_to_number (buf, INSN_SIZE);
18329 if (((unsigned long) value) > 32
18330 || (value == 32
18331 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18332 {
18333 as_bad_where (fixP->fx_file, fixP->fx_line,
18334 _("shift expression is too large"));
18335 break;
18336 }
18337
18338 if (value == 0)
18339 /* Shifts of zero must be done as lsl. */
18340 newval &= ~0x60;
18341 else if (value == 32)
18342 value = 0;
18343 newval &= 0xfffff07f;
18344 newval |= (value & 0x1f) << 7;
18345 md_number_to_chars (buf, newval, INSN_SIZE);
18346 break;
18347
18348 case BFD_RELOC_ARM_T32_IMMEDIATE:
18349 case BFD_RELOC_ARM_T32_ADD_IMM:
18350 case BFD_RELOC_ARM_T32_IMM12:
18351 case BFD_RELOC_ARM_T32_ADD_PC12:
18352 /* We claim that this fixup has been processed here,
18353 even if in fact we generate an error because we do
18354 not have a reloc for it, so tc_gen_reloc will reject it. */
18355 fixP->fx_done = 1;
18356
18357 if (fixP->fx_addsy
18358 && ! S_IS_DEFINED (fixP->fx_addsy))
18359 {
18360 as_bad_where (fixP->fx_file, fixP->fx_line,
18361 _("undefined symbol %s used as an immediate value"),
18362 S_GET_NAME (fixP->fx_addsy));
18363 break;
18364 }
18365
18366 newval = md_chars_to_number (buf, THUMB_SIZE);
18367 newval <<= 16;
18368 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18369
18370 newimm = FAIL;
18371 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18372 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18373 {
18374 newimm = encode_thumb32_immediate (value);
18375 if (newimm == (unsigned int) FAIL)
18376 newimm = thumb32_negate_data_op (&newval, value);
18377 }
18378 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18379 && newimm == (unsigned int) FAIL)
18380 {
18381 /* Turn add/sum into addw/subw. */
18382 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18383 newval = (newval & 0xfeffffff) | 0x02000000;
18384
18385 /* 12 bit immediate for addw/subw. */
18386 if (value < 0)
18387 {
18388 value = -value;
18389 newval ^= 0x00a00000;
18390 }
18391 if (value > 0xfff)
18392 newimm = (unsigned int) FAIL;
18393 else
18394 newimm = value;
18395 }
18396
18397 if (newimm == (unsigned int)FAIL)
18398 {
18399 as_bad_where (fixP->fx_file, fixP->fx_line,
18400 _("invalid constant (%lx) after fixup"),
18401 (unsigned long) value);
18402 break;
18403 }
18404
18405 newval |= (newimm & 0x800) << 15;
18406 newval |= (newimm & 0x700) << 4;
18407 newval |= (newimm & 0x0ff);
18408
18409 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18410 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18411 break;
18412
18413 case BFD_RELOC_ARM_SMC:
18414 if (((unsigned long) value) > 0xffff)
18415 as_bad_where (fixP->fx_file, fixP->fx_line,
18416 _("invalid smc expression"));
18417 newval = md_chars_to_number (buf, INSN_SIZE);
18418 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18419 md_number_to_chars (buf, newval, INSN_SIZE);
18420 break;
18421
18422 case BFD_RELOC_ARM_SWI:
18423 if (fixP->tc_fix_data != 0)
18424 {
18425 if (((unsigned long) value) > 0xff)
18426 as_bad_where (fixP->fx_file, fixP->fx_line,
18427 _("invalid swi expression"));
18428 newval = md_chars_to_number (buf, THUMB_SIZE);
18429 newval |= value;
18430 md_number_to_chars (buf, newval, THUMB_SIZE);
18431 }
18432 else
18433 {
18434 if (((unsigned long) value) > 0x00ffffff)
18435 as_bad_where (fixP->fx_file, fixP->fx_line,
18436 _("invalid swi expression"));
18437 newval = md_chars_to_number (buf, INSN_SIZE);
18438 newval |= value;
18439 md_number_to_chars (buf, newval, INSN_SIZE);
18440 }
18441 break;
18442
18443 case BFD_RELOC_ARM_MULTI:
18444 if (((unsigned long) value) > 0xffff)
18445 as_bad_where (fixP->fx_file, fixP->fx_line,
18446 _("invalid expression in load/store multiple"));
18447 newval = value | md_chars_to_number (buf, INSN_SIZE);
18448 md_number_to_chars (buf, newval, INSN_SIZE);
18449 break;
18450
18451 #ifdef OBJ_ELF
18452 case BFD_RELOC_ARM_PCREL_CALL:
18453 newval = md_chars_to_number (buf, INSN_SIZE);
18454 if ((newval & 0xf0000000) == 0xf0000000)
18455 temp = 1;
18456 else
18457 temp = 3;
18458 goto arm_branch_common;
18459
18460 case BFD_RELOC_ARM_PCREL_JUMP:
18461 case BFD_RELOC_ARM_PLT32:
18462 #endif
18463 case BFD_RELOC_ARM_PCREL_BRANCH:
18464 temp = 3;
18465 goto arm_branch_common;
18466
18467 case BFD_RELOC_ARM_PCREL_BLX:
18468 temp = 1;
18469 arm_branch_common:
18470 /* We are going to store value (shifted right by two) in the
18471 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18472 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18473 also be be clear. */
18474 if (value & temp)
18475 as_bad_where (fixP->fx_file, fixP->fx_line,
18476 _("misaligned branch destination"));
18477 if ((value & (offsetT)0xfe000000) != (offsetT)0
18478 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18479 as_bad_where (fixP->fx_file, fixP->fx_line,
18480 _("branch out of range"));
18481
18482 if (fixP->fx_done || !seg->use_rela_p)
18483 {
18484 newval = md_chars_to_number (buf, INSN_SIZE);
18485 newval |= (value >> 2) & 0x00ffffff;
18486 /* Set the H bit on BLX instructions. */
18487 if (temp == 1)
18488 {
18489 if (value & 2)
18490 newval |= 0x01000000;
18491 else
18492 newval &= ~0x01000000;
18493 }
18494 md_number_to_chars (buf, newval, INSN_SIZE);
18495 }
18496 break;
18497
18498 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18499 /* CBZ can only branch forward. */
18500
18501 /* Attempts to use CBZ to branch to the next instruction
18502 (which, strictly speaking, are prohibited) will be turned into
18503 no-ops.
18504
18505 FIXME: It may be better to remove the instruction completely and
18506 perform relaxation. */
18507 if (value == -2)
18508 {
18509 newval = md_chars_to_number (buf, THUMB_SIZE);
18510 newval = 0xbf00; /* NOP encoding T1 */
18511 md_number_to_chars (buf, newval, THUMB_SIZE);
18512 }
18513 else
18514 {
18515 if (value & ~0x7e)
18516 as_bad_where (fixP->fx_file, fixP->fx_line,
18517 _("branch out of range"));
18518
18519 if (fixP->fx_done || !seg->use_rela_p)
18520 {
18521 newval = md_chars_to_number (buf, THUMB_SIZE);
18522 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18523 md_number_to_chars (buf, newval, THUMB_SIZE);
18524 }
18525 }
18526 break;
18527
18528 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18529 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18530 as_bad_where (fixP->fx_file, fixP->fx_line,
18531 _("branch out of range"));
18532
18533 if (fixP->fx_done || !seg->use_rela_p)
18534 {
18535 newval = md_chars_to_number (buf, THUMB_SIZE);
18536 newval |= (value & 0x1ff) >> 1;
18537 md_number_to_chars (buf, newval, THUMB_SIZE);
18538 }
18539 break;
18540
18541 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18542 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18543 as_bad_where (fixP->fx_file, fixP->fx_line,
18544 _("branch out of range"));
18545
18546 if (fixP->fx_done || !seg->use_rela_p)
18547 {
18548 newval = md_chars_to_number (buf, THUMB_SIZE);
18549 newval |= (value & 0xfff) >> 1;
18550 md_number_to_chars (buf, newval, THUMB_SIZE);
18551 }
18552 break;
18553
18554 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18555 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18556 as_bad_where (fixP->fx_file, fixP->fx_line,
18557 _("conditional branch out of range"));
18558
18559 if (fixP->fx_done || !seg->use_rela_p)
18560 {
18561 offsetT newval2;
18562 addressT S, J1, J2, lo, hi;
18563
18564 S = (value & 0x00100000) >> 20;
18565 J2 = (value & 0x00080000) >> 19;
18566 J1 = (value & 0x00040000) >> 18;
18567 hi = (value & 0x0003f000) >> 12;
18568 lo = (value & 0x00000ffe) >> 1;
18569
18570 newval = md_chars_to_number (buf, THUMB_SIZE);
18571 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18572 newval |= (S << 10) | hi;
18573 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18574 md_number_to_chars (buf, newval, THUMB_SIZE);
18575 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18576 }
18577 break;
18578
18579 case BFD_RELOC_THUMB_PCREL_BLX:
18580 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18581 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18582 as_bad_where (fixP->fx_file, fixP->fx_line,
18583 _("branch out of range"));
18584
18585 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18586 /* For a BLX instruction, make sure that the relocation is rounded up
18587 to a word boundary. This follows the semantics of the instruction
18588 which specifies that bit 1 of the target address will come from bit
18589 1 of the base address. */
18590 value = (value + 1) & ~ 1;
18591
18592 if (fixP->fx_done || !seg->use_rela_p)
18593 {
18594 offsetT newval2;
18595
18596 newval = md_chars_to_number (buf, THUMB_SIZE);
18597 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18598 newval |= (value & 0x7fffff) >> 12;
18599 newval2 |= (value & 0xfff) >> 1;
18600 md_number_to_chars (buf, newval, THUMB_SIZE);
18601 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18602 }
18603 break;
18604
18605 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18606 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18607 as_bad_where (fixP->fx_file, fixP->fx_line,
18608 _("branch out of range"));
18609
18610 if (fixP->fx_done || !seg->use_rela_p)
18611 {
18612 offsetT newval2;
18613 addressT S, I1, I2, lo, hi;
18614
18615 S = (value & 0x01000000) >> 24;
18616 I1 = (value & 0x00800000) >> 23;
18617 I2 = (value & 0x00400000) >> 22;
18618 hi = (value & 0x003ff000) >> 12;
18619 lo = (value & 0x00000ffe) >> 1;
18620
18621 I1 = !(I1 ^ S);
18622 I2 = !(I2 ^ S);
18623
18624 newval = md_chars_to_number (buf, THUMB_SIZE);
18625 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18626 newval |= (S << 10) | hi;
18627 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18628 md_number_to_chars (buf, newval, THUMB_SIZE);
18629 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18630 }
18631 break;
18632
18633 case BFD_RELOC_8:
18634 if (fixP->fx_done || !seg->use_rela_p)
18635 md_number_to_chars (buf, value, 1);
18636 break;
18637
18638 case BFD_RELOC_16:
18639 if (fixP->fx_done || !seg->use_rela_p)
18640 md_number_to_chars (buf, value, 2);
18641 break;
18642
18643 #ifdef OBJ_ELF
18644 case BFD_RELOC_ARM_TLS_GD32:
18645 case BFD_RELOC_ARM_TLS_LE32:
18646 case BFD_RELOC_ARM_TLS_IE32:
18647 case BFD_RELOC_ARM_TLS_LDM32:
18648 case BFD_RELOC_ARM_TLS_LDO32:
18649 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18650 /* fall through */
18651
18652 case BFD_RELOC_ARM_GOT32:
18653 case BFD_RELOC_ARM_GOTOFF:
18654 case BFD_RELOC_ARM_TARGET2:
18655 if (fixP->fx_done || !seg->use_rela_p)
18656 md_number_to_chars (buf, 0, 4);
18657 break;
18658 #endif
18659
18660 case BFD_RELOC_RVA:
18661 case BFD_RELOC_32:
18662 case BFD_RELOC_ARM_TARGET1:
18663 case BFD_RELOC_ARM_ROSEGREL32:
18664 case BFD_RELOC_ARM_SBREL32:
18665 case BFD_RELOC_32_PCREL:
18666 #ifdef TE_PE
18667 case BFD_RELOC_32_SECREL:
18668 #endif
18669 if (fixP->fx_done || !seg->use_rela_p)
18670 #ifdef TE_WINCE
18671 /* For WinCE we only do this for pcrel fixups. */
18672 if (fixP->fx_done || fixP->fx_pcrel)
18673 #endif
18674 md_number_to_chars (buf, value, 4);
18675 break;
18676
18677 #ifdef OBJ_ELF
18678 case BFD_RELOC_ARM_PREL31:
18679 if (fixP->fx_done || !seg->use_rela_p)
18680 {
18681 newval = md_chars_to_number (buf, 4) & 0x80000000;
18682 if ((value ^ (value >> 1)) & 0x40000000)
18683 {
18684 as_bad_where (fixP->fx_file, fixP->fx_line,
18685 _("rel31 relocation overflow"));
18686 }
18687 newval |= value & 0x7fffffff;
18688 md_number_to_chars (buf, newval, 4);
18689 }
18690 break;
18691 #endif
18692
18693 case BFD_RELOC_ARM_CP_OFF_IMM:
18694 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18695 if (value < -1023 || value > 1023 || (value & 3))
18696 as_bad_where (fixP->fx_file, fixP->fx_line,
18697 _("co-processor offset out of range"));
18698 cp_off_common:
18699 sign = value >= 0;
18700 if (value < 0)
18701 value = -value;
18702 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18703 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18704 newval = md_chars_to_number (buf, INSN_SIZE);
18705 else
18706 newval = get_thumb32_insn (buf);
18707 newval &= 0xff7fff00;
18708 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18709 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18710 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18711 md_number_to_chars (buf, newval, INSN_SIZE);
18712 else
18713 put_thumb32_insn (buf, newval);
18714 break;
18715
18716 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18717 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18718 if (value < -255 || value > 255)
18719 as_bad_where (fixP->fx_file, fixP->fx_line,
18720 _("co-processor offset out of range"));
18721 value *= 4;
18722 goto cp_off_common;
18723
18724 case BFD_RELOC_ARM_THUMB_OFFSET:
18725 newval = md_chars_to_number (buf, THUMB_SIZE);
18726 /* Exactly what ranges, and where the offset is inserted depends
18727 on the type of instruction, we can establish this from the
18728 top 4 bits. */
18729 switch (newval >> 12)
18730 {
18731 case 4: /* PC load. */
18732 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18733 forced to zero for these loads; md_pcrel_from has already
18734 compensated for this. */
18735 if (value & 3)
18736 as_bad_where (fixP->fx_file, fixP->fx_line,
18737 _("invalid offset, target not word aligned (0x%08lX)"),
18738 (((unsigned long) fixP->fx_frag->fr_address
18739 + (unsigned long) fixP->fx_where) & ~3)
18740 + (unsigned long) value);
18741
18742 if (value & ~0x3fc)
18743 as_bad_where (fixP->fx_file, fixP->fx_line,
18744 _("invalid offset, value too big (0x%08lX)"),
18745 (long) value);
18746
18747 newval |= value >> 2;
18748 break;
18749
18750 case 9: /* SP load/store. */
18751 if (value & ~0x3fc)
18752 as_bad_where (fixP->fx_file, fixP->fx_line,
18753 _("invalid offset, value too big (0x%08lX)"),
18754 (long) value);
18755 newval |= value >> 2;
18756 break;
18757
18758 case 6: /* Word load/store. */
18759 if (value & ~0x7c)
18760 as_bad_where (fixP->fx_file, fixP->fx_line,
18761 _("invalid offset, value too big (0x%08lX)"),
18762 (long) value);
18763 newval |= value << 4; /* 6 - 2. */
18764 break;
18765
18766 case 7: /* Byte load/store. */
18767 if (value & ~0x1f)
18768 as_bad_where (fixP->fx_file, fixP->fx_line,
18769 _("invalid offset, value too big (0x%08lX)"),
18770 (long) value);
18771 newval |= value << 6;
18772 break;
18773
18774 case 8: /* Halfword load/store. */
18775 if (value & ~0x3e)
18776 as_bad_where (fixP->fx_file, fixP->fx_line,
18777 _("invalid offset, value too big (0x%08lX)"),
18778 (long) value);
18779 newval |= value << 5; /* 6 - 1. */
18780 break;
18781
18782 default:
18783 as_bad_where (fixP->fx_file, fixP->fx_line,
18784 "Unable to process relocation for thumb opcode: %lx",
18785 (unsigned long) newval);
18786 break;
18787 }
18788 md_number_to_chars (buf, newval, THUMB_SIZE);
18789 break;
18790
18791 case BFD_RELOC_ARM_THUMB_ADD:
18792 /* This is a complicated relocation, since we use it for all of
18793 the following immediate relocations:
18794
18795 3bit ADD/SUB
18796 8bit ADD/SUB
18797 9bit ADD/SUB SP word-aligned
18798 10bit ADD PC/SP word-aligned
18799
18800 The type of instruction being processed is encoded in the
18801 instruction field:
18802
18803 0x8000 SUB
18804 0x00F0 Rd
18805 0x000F Rs
18806 */
18807 newval = md_chars_to_number (buf, THUMB_SIZE);
18808 {
18809 int rd = (newval >> 4) & 0xf;
18810 int rs = newval & 0xf;
18811 int subtract = !!(newval & 0x8000);
18812
18813 /* Check for HI regs, only very restricted cases allowed:
18814 Adjusting SP, and using PC or SP to get an address. */
18815 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18816 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18817 as_bad_where (fixP->fx_file, fixP->fx_line,
18818 _("invalid Hi register with immediate"));
18819
18820 /* If value is negative, choose the opposite instruction. */
18821 if (value < 0)
18822 {
18823 value = -value;
18824 subtract = !subtract;
18825 if (value < 0)
18826 as_bad_where (fixP->fx_file, fixP->fx_line,
18827 _("immediate value out of range"));
18828 }
18829
18830 if (rd == REG_SP)
18831 {
18832 if (value & ~0x1fc)
18833 as_bad_where (fixP->fx_file, fixP->fx_line,
18834 _("invalid immediate for stack address calculation"));
18835 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18836 newval |= value >> 2;
18837 }
18838 else if (rs == REG_PC || rs == REG_SP)
18839 {
18840 if (subtract || value & ~0x3fc)
18841 as_bad_where (fixP->fx_file, fixP->fx_line,
18842 _("invalid immediate for address calculation (value = 0x%08lX)"),
18843 (unsigned long) value);
18844 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18845 newval |= rd << 8;
18846 newval |= value >> 2;
18847 }
18848 else if (rs == rd)
18849 {
18850 if (value & ~0xff)
18851 as_bad_where (fixP->fx_file, fixP->fx_line,
18852 _("immediate value out of range"));
18853 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18854 newval |= (rd << 8) | value;
18855 }
18856 else
18857 {
18858 if (value & ~0x7)
18859 as_bad_where (fixP->fx_file, fixP->fx_line,
18860 _("immediate value out of range"));
18861 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18862 newval |= rd | (rs << 3) | (value << 6);
18863 }
18864 }
18865 md_number_to_chars (buf, newval, THUMB_SIZE);
18866 break;
18867
18868 case BFD_RELOC_ARM_THUMB_IMM:
18869 newval = md_chars_to_number (buf, THUMB_SIZE);
18870 if (value < 0 || value > 255)
18871 as_bad_where (fixP->fx_file, fixP->fx_line,
18872 _("invalid immediate: %ld is out of range"),
18873 (long) value);
18874 newval |= value;
18875 md_number_to_chars (buf, newval, THUMB_SIZE);
18876 break;
18877
18878 case BFD_RELOC_ARM_THUMB_SHIFT:
18879 /* 5bit shift value (0..32). LSL cannot take 32. */
18880 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18881 temp = newval & 0xf800;
18882 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18883 as_bad_where (fixP->fx_file, fixP->fx_line,
18884 _("invalid shift value: %ld"), (long) value);
18885 /* Shifts of zero must be encoded as LSL. */
18886 if (value == 0)
18887 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18888 /* Shifts of 32 are encoded as zero. */
18889 else if (value == 32)
18890 value = 0;
18891 newval |= value << 6;
18892 md_number_to_chars (buf, newval, THUMB_SIZE);
18893 break;
18894
18895 case BFD_RELOC_VTABLE_INHERIT:
18896 case BFD_RELOC_VTABLE_ENTRY:
18897 fixP->fx_done = 0;
18898 return;
18899
18900 case BFD_RELOC_ARM_MOVW:
18901 case BFD_RELOC_ARM_MOVT:
18902 case BFD_RELOC_ARM_THUMB_MOVW:
18903 case BFD_RELOC_ARM_THUMB_MOVT:
18904 if (fixP->fx_done || !seg->use_rela_p)
18905 {
18906 /* REL format relocations are limited to a 16-bit addend. */
18907 if (!fixP->fx_done)
18908 {
18909 if (value < -0x8000 || value > 0x7fff)
18910 as_bad_where (fixP->fx_file, fixP->fx_line,
18911 _("offset out of range"));
18912 }
18913 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18914 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18915 {
18916 value >>= 16;
18917 }
18918
18919 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18921 {
18922 newval = get_thumb32_insn (buf);
18923 newval &= 0xfbf08f00;
18924 newval |= (value & 0xf000) << 4;
18925 newval |= (value & 0x0800) << 15;
18926 newval |= (value & 0x0700) << 4;
18927 newval |= (value & 0x00ff);
18928 put_thumb32_insn (buf, newval);
18929 }
18930 else
18931 {
18932 newval = md_chars_to_number (buf, 4);
18933 newval &= 0xfff0f000;
18934 newval |= value & 0x0fff;
18935 newval |= (value & 0xf000) << 4;
18936 md_number_to_chars (buf, newval, 4);
18937 }
18938 }
18939 return;
18940
18941 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18942 case BFD_RELOC_ARM_ALU_PC_G0:
18943 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18944 case BFD_RELOC_ARM_ALU_PC_G1:
18945 case BFD_RELOC_ARM_ALU_PC_G2:
18946 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18947 case BFD_RELOC_ARM_ALU_SB_G0:
18948 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18949 case BFD_RELOC_ARM_ALU_SB_G1:
18950 case BFD_RELOC_ARM_ALU_SB_G2:
18951 assert (!fixP->fx_done);
18952 if (!seg->use_rela_p)
18953 {
18954 bfd_vma insn;
18955 bfd_vma encoded_addend;
18956 bfd_vma addend_abs = abs (value);
18957
18958 /* Check that the absolute value of the addend can be
18959 expressed as an 8-bit constant plus a rotation. */
18960 encoded_addend = encode_arm_immediate (addend_abs);
18961 if (encoded_addend == (unsigned int) FAIL)
18962 as_bad_where (fixP->fx_file, fixP->fx_line,
18963 _("the offset 0x%08lX is not representable"),
18964 (unsigned long) addend_abs);
18965
18966 /* Extract the instruction. */
18967 insn = md_chars_to_number (buf, INSN_SIZE);
18968
18969 /* If the addend is positive, use an ADD instruction.
18970 Otherwise use a SUB. Take care not to destroy the S bit. */
18971 insn &= 0xff1fffff;
18972 if (value < 0)
18973 insn |= 1 << 22;
18974 else
18975 insn |= 1 << 23;
18976
18977 /* Place the encoded addend into the first 12 bits of the
18978 instruction. */
18979 insn &= 0xfffff000;
18980 insn |= encoded_addend;
18981
18982 /* Update the instruction. */
18983 md_number_to_chars (buf, insn, INSN_SIZE);
18984 }
18985 break;
18986
18987 case BFD_RELOC_ARM_LDR_PC_G0:
18988 case BFD_RELOC_ARM_LDR_PC_G1:
18989 case BFD_RELOC_ARM_LDR_PC_G2:
18990 case BFD_RELOC_ARM_LDR_SB_G0:
18991 case BFD_RELOC_ARM_LDR_SB_G1:
18992 case BFD_RELOC_ARM_LDR_SB_G2:
18993 assert (!fixP->fx_done);
18994 if (!seg->use_rela_p)
18995 {
18996 bfd_vma insn;
18997 bfd_vma addend_abs = abs (value);
18998
18999 /* Check that the absolute value of the addend can be
19000 encoded in 12 bits. */
19001 if (addend_abs >= 0x1000)
19002 as_bad_where (fixP->fx_file, fixP->fx_line,
19003 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
19004 (unsigned long) addend_abs);
19005
19006 /* Extract the instruction. */
19007 insn = md_chars_to_number (buf, INSN_SIZE);
19008
19009 /* If the addend is negative, clear bit 23 of the instruction.
19010 Otherwise set it. */
19011 if (value < 0)
19012 insn &= ~(1 << 23);
19013 else
19014 insn |= 1 << 23;
19015
19016 /* Place the absolute value of the addend into the first 12 bits
19017 of the instruction. */
19018 insn &= 0xfffff000;
19019 insn |= addend_abs;
19020
19021 /* Update the instruction. */
19022 md_number_to_chars (buf, insn, INSN_SIZE);
19023 }
19024 break;
19025
19026 case BFD_RELOC_ARM_LDRS_PC_G0:
19027 case BFD_RELOC_ARM_LDRS_PC_G1:
19028 case BFD_RELOC_ARM_LDRS_PC_G2:
19029 case BFD_RELOC_ARM_LDRS_SB_G0:
19030 case BFD_RELOC_ARM_LDRS_SB_G1:
19031 case BFD_RELOC_ARM_LDRS_SB_G2:
19032 assert (!fixP->fx_done);
19033 if (!seg->use_rela_p)
19034 {
19035 bfd_vma insn;
19036 bfd_vma addend_abs = abs (value);
19037
19038 /* Check that the absolute value of the addend can be
19039 encoded in 8 bits. */
19040 if (addend_abs >= 0x100)
19041 as_bad_where (fixP->fx_file, fixP->fx_line,
19042 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
19043 (unsigned long) addend_abs);
19044
19045 /* Extract the instruction. */
19046 insn = md_chars_to_number (buf, INSN_SIZE);
19047
19048 /* If the addend is negative, clear bit 23 of the instruction.
19049 Otherwise set it. */
19050 if (value < 0)
19051 insn &= ~(1 << 23);
19052 else
19053 insn |= 1 << 23;
19054
19055 /* Place the first four bits of the absolute value of the addend
19056 into the first 4 bits of the instruction, and the remaining
19057 four into bits 8 .. 11. */
19058 insn &= 0xfffff0f0;
19059 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
19060
19061 /* Update the instruction. */
19062 md_number_to_chars (buf, insn, INSN_SIZE);
19063 }
19064 break;
19065
19066 case BFD_RELOC_ARM_LDC_PC_G0:
19067 case BFD_RELOC_ARM_LDC_PC_G1:
19068 case BFD_RELOC_ARM_LDC_PC_G2:
19069 case BFD_RELOC_ARM_LDC_SB_G0:
19070 case BFD_RELOC_ARM_LDC_SB_G1:
19071 case BFD_RELOC_ARM_LDC_SB_G2:
19072 assert (!fixP->fx_done);
19073 if (!seg->use_rela_p)
19074 {
19075 bfd_vma insn;
19076 bfd_vma addend_abs = abs (value);
19077
19078 /* Check that the absolute value of the addend is a multiple of
19079 four and, when divided by four, fits in 8 bits. */
19080 if (addend_abs & 0x3)
19081 as_bad_where (fixP->fx_file, fixP->fx_line,
19082 _("bad offset 0x%08lX (must be word-aligned)"),
19083 (unsigned long) addend_abs);
19084
19085 if ((addend_abs >> 2) > 0xff)
19086 as_bad_where (fixP->fx_file, fixP->fx_line,
19087 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
19088 (unsigned long) addend_abs);
19089
19090 /* Extract the instruction. */
19091 insn = md_chars_to_number (buf, INSN_SIZE);
19092
19093 /* If the addend is negative, clear bit 23 of the instruction.
19094 Otherwise set it. */
19095 if (value < 0)
19096 insn &= ~(1 << 23);
19097 else
19098 insn |= 1 << 23;
19099
19100 /* Place the addend (divided by four) into the first eight
19101 bits of the instruction. */
19102 insn &= 0xfffffff0;
19103 insn |= addend_abs >> 2;
19104
19105 /* Update the instruction. */
19106 md_number_to_chars (buf, insn, INSN_SIZE);
19107 }
19108 break;
19109
19110 case BFD_RELOC_ARM_V4BX:
19111 /* This will need to go in the object file. */
19112 fixP->fx_done = 0;
19113 break;
19114
19115 case BFD_RELOC_UNUSED:
19116 default:
19117 as_bad_where (fixP->fx_file, fixP->fx_line,
19118 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19119 }
19120 }
19121
19122 /* Translate internal representation of relocation info to BFD target
19123 format. */
19124
19125 arelent *
19126 tc_gen_reloc (asection *section, fixS *fixp)
19127 {
19128 arelent * reloc;
19129 bfd_reloc_code_real_type code;
19130
19131 reloc = xmalloc (sizeof (arelent));
19132
19133 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19134 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19135 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
19136
19137 if (fixp->fx_pcrel)
19138 {
19139 if (section->use_rela_p)
19140 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19141 else
19142 fixp->fx_offset = reloc->address;
19143 }
19144 reloc->addend = fixp->fx_offset;
19145
19146 switch (fixp->fx_r_type)
19147 {
19148 case BFD_RELOC_8:
19149 if (fixp->fx_pcrel)
19150 {
19151 code = BFD_RELOC_8_PCREL;
19152 break;
19153 }
19154
19155 case BFD_RELOC_16:
19156 if (fixp->fx_pcrel)
19157 {
19158 code = BFD_RELOC_16_PCREL;
19159 break;
19160 }
19161
19162 case BFD_RELOC_32:
19163 if (fixp->fx_pcrel)
19164 {
19165 code = BFD_RELOC_32_PCREL;
19166 break;
19167 }
19168
19169 case BFD_RELOC_ARM_MOVW:
19170 if (fixp->fx_pcrel)
19171 {
19172 code = BFD_RELOC_ARM_MOVW_PCREL;
19173 break;
19174 }
19175
19176 case BFD_RELOC_ARM_MOVT:
19177 if (fixp->fx_pcrel)
19178 {
19179 code = BFD_RELOC_ARM_MOVT_PCREL;
19180 break;
19181 }
19182
19183 case BFD_RELOC_ARM_THUMB_MOVW:
19184 if (fixp->fx_pcrel)
19185 {
19186 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19187 break;
19188 }
19189
19190 case BFD_RELOC_ARM_THUMB_MOVT:
19191 if (fixp->fx_pcrel)
19192 {
19193 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19194 break;
19195 }
19196
19197 case BFD_RELOC_NONE:
19198 case BFD_RELOC_ARM_PCREL_BRANCH:
19199 case BFD_RELOC_ARM_PCREL_BLX:
19200 case BFD_RELOC_RVA:
19201 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19202 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19203 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19204 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19205 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19206 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19207 case BFD_RELOC_THUMB_PCREL_BLX:
19208 case BFD_RELOC_VTABLE_ENTRY:
19209 case BFD_RELOC_VTABLE_INHERIT:
19210 #ifdef TE_PE
19211 case BFD_RELOC_32_SECREL:
19212 #endif
19213 code = fixp->fx_r_type;
19214 break;
19215
19216 case BFD_RELOC_ARM_LITERAL:
19217 case BFD_RELOC_ARM_HWLITERAL:
19218 /* If this is called then the a literal has
19219 been referenced across a section boundary. */
19220 as_bad_where (fixp->fx_file, fixp->fx_line,
19221 _("literal referenced across section boundary"));
19222 return NULL;
19223
19224 #ifdef OBJ_ELF
19225 case BFD_RELOC_ARM_GOT32:
19226 case BFD_RELOC_ARM_GOTOFF:
19227 case BFD_RELOC_ARM_PLT32:
19228 case BFD_RELOC_ARM_TARGET1:
19229 case BFD_RELOC_ARM_ROSEGREL32:
19230 case BFD_RELOC_ARM_SBREL32:
19231 case BFD_RELOC_ARM_PREL31:
19232 case BFD_RELOC_ARM_TARGET2:
19233 case BFD_RELOC_ARM_TLS_LE32:
19234 case BFD_RELOC_ARM_TLS_LDO32:
19235 case BFD_RELOC_ARM_PCREL_CALL:
19236 case BFD_RELOC_ARM_PCREL_JUMP:
19237 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19238 case BFD_RELOC_ARM_ALU_PC_G0:
19239 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19240 case BFD_RELOC_ARM_ALU_PC_G1:
19241 case BFD_RELOC_ARM_ALU_PC_G2:
19242 case BFD_RELOC_ARM_LDR_PC_G0:
19243 case BFD_RELOC_ARM_LDR_PC_G1:
19244 case BFD_RELOC_ARM_LDR_PC_G2:
19245 case BFD_RELOC_ARM_LDRS_PC_G0:
19246 case BFD_RELOC_ARM_LDRS_PC_G1:
19247 case BFD_RELOC_ARM_LDRS_PC_G2:
19248 case BFD_RELOC_ARM_LDC_PC_G0:
19249 case BFD_RELOC_ARM_LDC_PC_G1:
19250 case BFD_RELOC_ARM_LDC_PC_G2:
19251 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19252 case BFD_RELOC_ARM_ALU_SB_G0:
19253 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19254 case BFD_RELOC_ARM_ALU_SB_G1:
19255 case BFD_RELOC_ARM_ALU_SB_G2:
19256 case BFD_RELOC_ARM_LDR_SB_G0:
19257 case BFD_RELOC_ARM_LDR_SB_G1:
19258 case BFD_RELOC_ARM_LDR_SB_G2:
19259 case BFD_RELOC_ARM_LDRS_SB_G0:
19260 case BFD_RELOC_ARM_LDRS_SB_G1:
19261 case BFD_RELOC_ARM_LDRS_SB_G2:
19262 case BFD_RELOC_ARM_LDC_SB_G0:
19263 case BFD_RELOC_ARM_LDC_SB_G1:
19264 case BFD_RELOC_ARM_LDC_SB_G2:
19265 case BFD_RELOC_ARM_V4BX:
19266 code = fixp->fx_r_type;
19267 break;
19268
19269 case BFD_RELOC_ARM_TLS_GD32:
19270 case BFD_RELOC_ARM_TLS_IE32:
19271 case BFD_RELOC_ARM_TLS_LDM32:
19272 /* BFD will include the symbol's address in the addend.
19273 But we don't want that, so subtract it out again here. */
19274 if (!S_IS_COMMON (fixp->fx_addsy))
19275 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19276 code = fixp->fx_r_type;
19277 break;
19278 #endif
19279
19280 case BFD_RELOC_ARM_IMMEDIATE:
19281 as_bad_where (fixp->fx_file, fixp->fx_line,
19282 _("internal relocation (type: IMMEDIATE) not fixed up"));
19283 return NULL;
19284
19285 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19286 as_bad_where (fixp->fx_file, fixp->fx_line,
19287 _("ADRL used for a symbol not defined in the same file"));
19288 return NULL;
19289
19290 case BFD_RELOC_ARM_OFFSET_IMM:
19291 if (section->use_rela_p)
19292 {
19293 code = fixp->fx_r_type;
19294 break;
19295 }
19296
19297 if (fixp->fx_addsy != NULL
19298 && !S_IS_DEFINED (fixp->fx_addsy)
19299 && S_IS_LOCAL (fixp->fx_addsy))
19300 {
19301 as_bad_where (fixp->fx_file, fixp->fx_line,
19302 _("undefined local label `%s'"),
19303 S_GET_NAME (fixp->fx_addsy));
19304 return NULL;
19305 }
19306
19307 as_bad_where (fixp->fx_file, fixp->fx_line,
19308 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19309 return NULL;
19310
19311 default:
19312 {
19313 char * type;
19314
19315 switch (fixp->fx_r_type)
19316 {
19317 case BFD_RELOC_NONE: type = "NONE"; break;
19318 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19319 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19320 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19321 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19322 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19323 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19324 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19325 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19326 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19327 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19328 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19329 default: type = _("<unknown>"); break;
19330 }
19331 as_bad_where (fixp->fx_file, fixp->fx_line,
19332 _("cannot represent %s relocation in this object file format"),
19333 type);
19334 return NULL;
19335 }
19336 }
19337
19338 #ifdef OBJ_ELF
19339 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19340 && GOT_symbol
19341 && fixp->fx_addsy == GOT_symbol)
19342 {
19343 code = BFD_RELOC_ARM_GOTPC;
19344 reloc->addend = fixp->fx_offset = reloc->address;
19345 }
19346 #endif
19347
19348 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19349
19350 if (reloc->howto == NULL)
19351 {
19352 as_bad_where (fixp->fx_file, fixp->fx_line,
19353 _("cannot represent %s relocation in this object file format"),
19354 bfd_get_reloc_code_name (code));
19355 return NULL;
19356 }
19357
19358 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19359 vtable entry to be used in the relocation's section offset. */
19360 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19361 reloc->address = fixp->fx_offset;
19362
19363 return reloc;
19364 }
19365
19366 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19367
19368 void
19369 cons_fix_new_arm (fragS * frag,
19370 int where,
19371 int size,
19372 expressionS * exp)
19373 {
19374 bfd_reloc_code_real_type type;
19375 int pcrel = 0;
19376
19377 /* Pick a reloc.
19378 FIXME: @@ Should look at CPU word size. */
19379 switch (size)
19380 {
19381 case 1:
19382 type = BFD_RELOC_8;
19383 break;
19384 case 2:
19385 type = BFD_RELOC_16;
19386 break;
19387 case 4:
19388 default:
19389 type = BFD_RELOC_32;
19390 break;
19391 case 8:
19392 type = BFD_RELOC_64;
19393 break;
19394 }
19395
19396 #ifdef TE_PE
19397 if (exp->X_op == O_secrel)
19398 {
19399 exp->X_op = O_symbol;
19400 type = BFD_RELOC_32_SECREL;
19401 }
19402 #endif
19403
19404 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19405 }
19406
19407 #if defined OBJ_COFF || defined OBJ_ELF
19408 void
19409 arm_validate_fix (fixS * fixP)
19410 {
19411 /* If the destination of the branch is a defined symbol which does not have
19412 the THUMB_FUNC attribute, then we must be calling a function which has
19413 the (interfacearm) attribute. We look for the Thumb entry point to that
19414 function and change the branch to refer to that function instead. */
19415 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19416 && fixP->fx_addsy != NULL
19417 && S_IS_DEFINED (fixP->fx_addsy)
19418 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19419 {
19420 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19421 }
19422 }
19423 #endif
19424
19425 int
19426 arm_force_relocation (struct fix * fixp)
19427 {
19428 #if defined (OBJ_COFF) && defined (TE_PE)
19429 if (fixp->fx_r_type == BFD_RELOC_RVA)
19430 return 1;
19431 #endif
19432
19433 /* Resolve these relocations even if the symbol is extern or weak. */
19434 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19435 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19436 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19437 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19438 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19439 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19440 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19441 return 0;
19442
19443 /* Always leave these relocations for the linker. */
19444 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19445 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19446 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19447 return 1;
19448
19449 /* Always generate relocations against function symbols. */
19450 if (fixp->fx_r_type == BFD_RELOC_32
19451 && fixp->fx_addsy
19452 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19453 return 1;
19454
19455 return generic_force_reloc (fixp);
19456 }
19457
19458 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19459 /* Relocations against function names must be left unadjusted,
19460 so that the linker can use this information to generate interworking
19461 stubs. The MIPS version of this function
19462 also prevents relocations that are mips-16 specific, but I do not
19463 know why it does this.
19464
19465 FIXME:
19466 There is one other problem that ought to be addressed here, but
19467 which currently is not: Taking the address of a label (rather
19468 than a function) and then later jumping to that address. Such
19469 addresses also ought to have their bottom bit set (assuming that
19470 they reside in Thumb code), but at the moment they will not. */
19471
19472 bfd_boolean
19473 arm_fix_adjustable (fixS * fixP)
19474 {
19475 if (fixP->fx_addsy == NULL)
19476 return 1;
19477
19478 /* Preserve relocations against symbols with function type. */
19479 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19480 return 0;
19481
19482 if (THUMB_IS_FUNC (fixP->fx_addsy)
19483 && fixP->fx_subsy == NULL)
19484 return 0;
19485
19486 /* We need the symbol name for the VTABLE entries. */
19487 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19488 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19489 return 0;
19490
19491 /* Don't allow symbols to be discarded on GOT related relocs. */
19492 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19493 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19494 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19495 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19496 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19497 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19498 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19499 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19500 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19501 return 0;
19502
19503 /* Similarly for group relocations. */
19504 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19505 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19506 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19507 return 0;
19508
19509 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
19510 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
19511 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19512 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
19513 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
19514 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19515 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
19516 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
19517 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
19518 return 0;
19519
19520 return 1;
19521 }
19522 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19523
19524 #ifdef OBJ_ELF
19525
19526 const char *
19527 elf32_arm_target_format (void)
19528 {
19529 #ifdef TE_SYMBIAN
19530 return (target_big_endian
19531 ? "elf32-bigarm-symbian"
19532 : "elf32-littlearm-symbian");
19533 #elif defined (TE_VXWORKS)
19534 return (target_big_endian
19535 ? "elf32-bigarm-vxworks"
19536 : "elf32-littlearm-vxworks");
19537 #else
19538 if (target_big_endian)
19539 return "elf32-bigarm";
19540 else
19541 return "elf32-littlearm";
19542 #endif
19543 }
19544
19545 void
19546 armelf_frob_symbol (symbolS * symp,
19547 int * puntp)
19548 {
19549 elf_frob_symbol (symp, puntp);
19550 }
19551 #endif
19552
19553 /* MD interface: Finalization. */
19554
19555 /* A good place to do this, although this was probably not intended
19556 for this kind of use. We need to dump the literal pool before
19557 references are made to a null symbol pointer. */
19558
19559 void
19560 arm_cleanup (void)
19561 {
19562 literal_pool * pool;
19563
19564 for (pool = list_of_pools; pool; pool = pool->next)
19565 {
19566 /* Put it at the end of the relevant section. */
19567 subseg_set (pool->section, pool->sub_section);
19568 #ifdef OBJ_ELF
19569 arm_elf_change_section ();
19570 #endif
19571 s_ltorg (0);
19572 }
19573 }
19574
19575 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19576 ARM ones. */
19577
19578 void
19579 arm_adjust_symtab (void)
19580 {
19581 #ifdef OBJ_COFF
19582 symbolS * sym;
19583
19584 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19585 {
19586 if (ARM_IS_THUMB (sym))
19587 {
19588 if (THUMB_IS_FUNC (sym))
19589 {
19590 /* Mark the symbol as a Thumb function. */
19591 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19592 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19593 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19594
19595 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19596 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19597 else
19598 as_bad (_("%s: unexpected function type: %d"),
19599 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19600 }
19601 else switch (S_GET_STORAGE_CLASS (sym))
19602 {
19603 case C_EXT:
19604 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19605 break;
19606 case C_STAT:
19607 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19608 break;
19609 case C_LABEL:
19610 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19611 break;
19612 default:
19613 /* Do nothing. */
19614 break;
19615 }
19616 }
19617
19618 if (ARM_IS_INTERWORK (sym))
19619 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19620 }
19621 #endif
19622 #ifdef OBJ_ELF
19623 symbolS * sym;
19624 char bind;
19625
19626 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19627 {
19628 if (ARM_IS_THUMB (sym))
19629 {
19630 elf_symbol_type * elf_sym;
19631
19632 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19633 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19634
19635 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19636 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19637 {
19638 /* If it's a .thumb_func, declare it as so,
19639 otherwise tag label as .code 16. */
19640 if (THUMB_IS_FUNC (sym))
19641 elf_sym->internal_elf_sym.st_info =
19642 ELF_ST_INFO (bind, STT_ARM_TFUNC);
19643 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19644 elf_sym->internal_elf_sym.st_info =
19645 ELF_ST_INFO (bind, STT_ARM_16BIT);
19646 }
19647 }
19648 }
19649 #endif
19650 }
19651
19652 /* MD interface: Initialization. */
19653
19654 static void
19655 set_constant_flonums (void)
19656 {
19657 int i;
19658
19659 for (i = 0; i < NUM_FLOAT_VALS; i++)
19660 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19661 abort ();
19662 }
19663
19664 /* Auto-select Thumb mode if it's the only available instruction set for the
19665 given architecture. */
19666
19667 static void
19668 autoselect_thumb_from_cpu_variant (void)
19669 {
19670 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19671 opcode_select (16);
19672 }
19673
19674 void
19675 md_begin (void)
19676 {
19677 unsigned mach;
19678 unsigned int i;
19679
19680 if ( (arm_ops_hsh = hash_new ()) == NULL
19681 || (arm_cond_hsh = hash_new ()) == NULL
19682 || (arm_shift_hsh = hash_new ()) == NULL
19683 || (arm_psr_hsh = hash_new ()) == NULL
19684 || (arm_v7m_psr_hsh = hash_new ()) == NULL
19685 || (arm_reg_hsh = hash_new ()) == NULL
19686 || (arm_reloc_hsh = hash_new ()) == NULL
19687 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19688 as_fatal (_("virtual memory exhausted"));
19689
19690 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19691 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
19692 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19693 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
19694 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19695 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
19696 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19697 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
19698 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19699 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
19700 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19701 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
19702 for (i = 0;
19703 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19704 i++)
19705 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19706 (void *) (barrier_opt_names + i));
19707 #ifdef OBJ_ELF
19708 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19709 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
19710 #endif
19711
19712 set_constant_flonums ();
19713
19714 /* Set the cpu variant based on the command-line options. We prefer
19715 -mcpu= over -march= if both are set (as for GCC); and we prefer
19716 -mfpu= over any other way of setting the floating point unit.
19717 Use of legacy options with new options are faulted. */
19718 if (legacy_cpu)
19719 {
19720 if (mcpu_cpu_opt || march_cpu_opt)
19721 as_bad (_("use of old and new-style options to set CPU type"));
19722
19723 mcpu_cpu_opt = legacy_cpu;
19724 }
19725 else if (!mcpu_cpu_opt)
19726 mcpu_cpu_opt = march_cpu_opt;
19727
19728 if (legacy_fpu)
19729 {
19730 if (mfpu_opt)
19731 as_bad (_("use of old and new-style options to set FPU type"));
19732
19733 mfpu_opt = legacy_fpu;
19734 }
19735 else if (!mfpu_opt)
19736 {
19737 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19738 /* Some environments specify a default FPU. If they don't, infer it
19739 from the processor. */
19740 if (mcpu_fpu_opt)
19741 mfpu_opt = mcpu_fpu_opt;
19742 else
19743 mfpu_opt = march_fpu_opt;
19744 #else
19745 mfpu_opt = &fpu_default;
19746 #endif
19747 }
19748
19749 if (!mfpu_opt)
19750 {
19751 if (mcpu_cpu_opt != NULL)
19752 mfpu_opt = &fpu_default;
19753 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19754 mfpu_opt = &fpu_arch_vfp_v2;
19755 else
19756 mfpu_opt = &fpu_arch_fpa;
19757 }
19758
19759 #ifdef CPU_DEFAULT
19760 if (!mcpu_cpu_opt)
19761 {
19762 mcpu_cpu_opt = &cpu_default;
19763 selected_cpu = cpu_default;
19764 }
19765 #else
19766 if (mcpu_cpu_opt)
19767 selected_cpu = *mcpu_cpu_opt;
19768 else
19769 mcpu_cpu_opt = &arm_arch_any;
19770 #endif
19771
19772 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19773
19774 autoselect_thumb_from_cpu_variant ();
19775
19776 arm_arch_used = thumb_arch_used = arm_arch_none;
19777
19778 #if defined OBJ_COFF || defined OBJ_ELF
19779 {
19780 unsigned int flags = 0;
19781
19782 #if defined OBJ_ELF
19783 flags = meabi_flags;
19784
19785 switch (meabi_flags)
19786 {
19787 case EF_ARM_EABI_UNKNOWN:
19788 #endif
19789 /* Set the flags in the private structure. */
19790 if (uses_apcs_26) flags |= F_APCS26;
19791 if (support_interwork) flags |= F_INTERWORK;
19792 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19793 if (pic_code) flags |= F_PIC;
19794 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19795 flags |= F_SOFT_FLOAT;
19796
19797 switch (mfloat_abi_opt)
19798 {
19799 case ARM_FLOAT_ABI_SOFT:
19800 case ARM_FLOAT_ABI_SOFTFP:
19801 flags |= F_SOFT_FLOAT;
19802 break;
19803
19804 case ARM_FLOAT_ABI_HARD:
19805 if (flags & F_SOFT_FLOAT)
19806 as_bad (_("hard-float conflicts with specified fpu"));
19807 break;
19808 }
19809
19810 /* Using pure-endian doubles (even if soft-float). */
19811 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19812 flags |= F_VFP_FLOAT;
19813
19814 #if defined OBJ_ELF
19815 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19816 flags |= EF_ARM_MAVERICK_FLOAT;
19817 break;
19818
19819 case EF_ARM_EABI_VER4:
19820 case EF_ARM_EABI_VER5:
19821 /* No additional flags to set. */
19822 break;
19823
19824 default:
19825 abort ();
19826 }
19827 #endif
19828 bfd_set_private_flags (stdoutput, flags);
19829
19830 /* We have run out flags in the COFF header to encode the
19831 status of ATPCS support, so instead we create a dummy,
19832 empty, debug section called .arm.atpcs. */
19833 if (atpcs)
19834 {
19835 asection * sec;
19836
19837 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19838
19839 if (sec != NULL)
19840 {
19841 bfd_set_section_flags
19842 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19843 bfd_set_section_size (stdoutput, sec, 0);
19844 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19845 }
19846 }
19847 }
19848 #endif
19849
19850 /* Record the CPU type as well. */
19851 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19852 mach = bfd_mach_arm_iWMMXt2;
19853 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19854 mach = bfd_mach_arm_iWMMXt;
19855 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19856 mach = bfd_mach_arm_XScale;
19857 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19858 mach = bfd_mach_arm_ep9312;
19859 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19860 mach = bfd_mach_arm_5TE;
19861 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19862 {
19863 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19864 mach = bfd_mach_arm_5T;
19865 else
19866 mach = bfd_mach_arm_5;
19867 }
19868 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19869 {
19870 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19871 mach = bfd_mach_arm_4T;
19872 else
19873 mach = bfd_mach_arm_4;
19874 }
19875 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19876 mach = bfd_mach_arm_3M;
19877 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19878 mach = bfd_mach_arm_3;
19879 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19880 mach = bfd_mach_arm_2a;
19881 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19882 mach = bfd_mach_arm_2;
19883 else
19884 mach = bfd_mach_arm_unknown;
19885
19886 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19887 }
19888
19889 /* Command line processing. */
19890
19891 /* md_parse_option
19892 Invocation line includes a switch not recognized by the base assembler.
19893 See if it's a processor-specific option.
19894
19895 This routine is somewhat complicated by the need for backwards
19896 compatibility (since older releases of gcc can't be changed).
19897 The new options try to make the interface as compatible as
19898 possible with GCC.
19899
19900 New options (supported) are:
19901
19902 -mcpu=<cpu name> Assemble for selected processor
19903 -march=<architecture name> Assemble for selected architecture
19904 -mfpu=<fpu architecture> Assemble for selected FPU.
19905 -EB/-mbig-endian Big-endian
19906 -EL/-mlittle-endian Little-endian
19907 -k Generate PIC code
19908 -mthumb Start in Thumb mode
19909 -mthumb-interwork Code supports ARM/Thumb interworking
19910
19911 -m[no-]warn-deprecated Warn about deprecated features
19912
19913 For now we will also provide support for:
19914
19915 -mapcs-32 32-bit Program counter
19916 -mapcs-26 26-bit Program counter
19917 -macps-float Floats passed in FP registers
19918 -mapcs-reentrant Reentrant code
19919 -matpcs
19920 (sometime these will probably be replaced with -mapcs=<list of options>
19921 and -matpcs=<list of options>)
19922
19923 The remaining options are only supported for back-wards compatibility.
19924 Cpu variants, the arm part is optional:
19925 -m[arm]1 Currently not supported.
19926 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19927 -m[arm]3 Arm 3 processor
19928 -m[arm]6[xx], Arm 6 processors
19929 -m[arm]7[xx][t][[d]m] Arm 7 processors
19930 -m[arm]8[10] Arm 8 processors
19931 -m[arm]9[20][tdmi] Arm 9 processors
19932 -mstrongarm[110[0]] StrongARM processors
19933 -mxscale XScale processors
19934 -m[arm]v[2345[t[e]]] Arm architectures
19935 -mall All (except the ARM1)
19936 FP variants:
19937 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19938 -mfpe-old (No float load/store multiples)
19939 -mvfpxd VFP Single precision
19940 -mvfp All VFP
19941 -mno-fpu Disable all floating point instructions
19942
19943 The following CPU names are recognized:
19944 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19945 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19946 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19947 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19948 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19949 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19950 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19951
19952 */
19953
19954 const char * md_shortopts = "m:k";
19955
19956 #ifdef ARM_BI_ENDIAN
19957 #define OPTION_EB (OPTION_MD_BASE + 0)
19958 #define OPTION_EL (OPTION_MD_BASE + 1)
19959 #else
19960 #if TARGET_BYTES_BIG_ENDIAN
19961 #define OPTION_EB (OPTION_MD_BASE + 0)
19962 #else
19963 #define OPTION_EL (OPTION_MD_BASE + 1)
19964 #endif
19965 #endif
19966 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
19967
19968 struct option md_longopts[] =
19969 {
19970 #ifdef OPTION_EB
19971 {"EB", no_argument, NULL, OPTION_EB},
19972 #endif
19973 #ifdef OPTION_EL
19974 {"EL", no_argument, NULL, OPTION_EL},
19975 #endif
19976 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
19977 {NULL, no_argument, NULL, 0}
19978 };
19979
19980 size_t md_longopts_size = sizeof (md_longopts);
19981
19982 struct arm_option_table
19983 {
19984 char *option; /* Option name to match. */
19985 char *help; /* Help information. */
19986 int *var; /* Variable to change. */
19987 int value; /* What to change it to. */
19988 char *deprecated; /* If non-null, print this message. */
19989 };
19990
19991 struct arm_option_table arm_opts[] =
19992 {
19993 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19994 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19995 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19996 &support_interwork, 1, NULL},
19997 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19998 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19999 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20000 1, NULL},
20001 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20002 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20003 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20004 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20005 NULL},
20006
20007 /* These are recognized by the assembler, but have no affect on code. */
20008 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20009 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
20010
20011 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20012 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20013 &warn_on_deprecated, 0, NULL},
20014 {NULL, NULL, NULL, 0, NULL}
20015 };
20016
20017 struct arm_legacy_option_table
20018 {
20019 char *option; /* Option name to match. */
20020 const arm_feature_set **var; /* Variable to change. */
20021 const arm_feature_set value; /* What to change it to. */
20022 char *deprecated; /* If non-null, print this message. */
20023 };
20024
20025 const struct arm_legacy_option_table arm_legacy_opts[] =
20026 {
20027 /* DON'T add any new processors to this list -- we want the whole list
20028 to go away... Add them to the processors table instead. */
20029 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20030 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20031 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20032 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20033 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20034 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20035 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20036 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20037 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20038 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20039 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20040 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20041 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20042 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20043 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20044 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20045 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20046 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20047 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20048 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20049 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20050 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20051 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20052 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20053 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20054 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20055 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20056 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20057 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20058 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20059 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20060 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20061 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20062 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20063 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20064 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20065 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20066 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20067 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20068 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20069 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20070 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20071 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20072 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20073 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20074 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20075 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20076 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20077 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20078 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20079 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20080 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20081 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20082 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20083 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20084 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20085 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20086 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20087 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20088 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20089 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20090 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20091 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20092 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20093 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20094 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20095 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20096 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20097 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20098 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
20099 N_("use -mcpu=strongarm110")},
20100 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
20101 N_("use -mcpu=strongarm1100")},
20102 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
20103 N_("use -mcpu=strongarm1110")},
20104 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20105 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20106 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
20107
20108 /* Architecture variants -- don't add any more to this list either. */
20109 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20110 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20111 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20112 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20113 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20114 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20115 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20116 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20117 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20118 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20119 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20120 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20121 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20122 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20123 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20124 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20125 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20126 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20127
20128 /* Floating point variants -- don't add any more to this list either. */
20129 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20130 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20131 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20132 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
20133 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
20134
20135 {NULL, NULL, ARM_ARCH_NONE, NULL}
20136 };
20137
20138 struct arm_cpu_option_table
20139 {
20140 char *name;
20141 const arm_feature_set value;
20142 /* For some CPUs we assume an FPU unless the user explicitly sets
20143 -mfpu=... */
20144 const arm_feature_set default_fpu;
20145 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20146 case. */
20147 const char *canonical_name;
20148 };
20149
20150 /* This list should, at a minimum, contain all the cpu names
20151 recognized by GCC. */
20152 static const struct arm_cpu_option_table arm_cpus[] =
20153 {
20154 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20155 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20156 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20157 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20158 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20159 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20160 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20161 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20162 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20163 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20164 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20165 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20166 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20167 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20168 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20169 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20170 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20171 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20172 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20173 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20174 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20175 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20176 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20177 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20178 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20179 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20180 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20181 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20182 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20183 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20184 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20185 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20186 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20187 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20188 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20189 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20190 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20191 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20192 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20193 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20194 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20195 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20196 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20197 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20198 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20199 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20200 /* For V5 or later processors we default to using VFP; but the user
20201 should really set the FPU type explicitly. */
20202 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20203 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20204 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20205 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20206 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20207 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20208 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20209 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20210 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20211 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20212 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20213 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20214 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20215 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20216 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20217 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20218 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20219 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20220 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20221 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20222 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20223 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20224 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20225 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20226 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20227 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20228 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20229 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20230 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20231 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20232 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20233 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20234 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20235 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20236 | FPU_NEON_EXT_V1),
20237 NULL},
20238 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20239 | FPU_NEON_EXT_V1),
20240 NULL},
20241 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20242 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20243 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
20244 /* ??? XSCALE is really an architecture. */
20245 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20246 /* ??? iwmmxt is not a processor. */
20247 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20248 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20249 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20250 /* Maverick */
20251 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20252 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20253 };
20254
20255 struct arm_arch_option_table
20256 {
20257 char *name;
20258 const arm_feature_set value;
20259 const arm_feature_set default_fpu;
20260 };
20261
20262 /* This list should, at a minimum, contain all the architecture names
20263 recognized by GCC. */
20264 static const struct arm_arch_option_table arm_archs[] =
20265 {
20266 {"all", ARM_ANY, FPU_ARCH_FPA},
20267 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20268 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20269 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20270 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20271 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20272 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20273 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20274 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20275 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20276 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20277 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20278 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20279 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20280 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20281 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20282 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20283 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20284 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20285 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20286 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20287 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20288 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20289 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20290 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20291 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20292 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
20293 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20294 /* The official spelling of the ARMv7 profile variants is the dashed form.
20295 Accept the non-dashed form for compatibility with old toolchains. */
20296 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20297 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20298 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20299 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20300 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20301 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20302 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20303 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20304 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20305 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20306 };
20307
20308 /* ISA extensions in the co-processor space. */
20309 struct arm_option_cpu_value_table
20310 {
20311 char *name;
20312 const arm_feature_set value;
20313 };
20314
20315 static const struct arm_option_cpu_value_table arm_extensions[] =
20316 {
20317 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20318 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20319 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20320 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20321 {NULL, ARM_ARCH_NONE}
20322 };
20323
20324 /* This list should, at a minimum, contain all the fpu names
20325 recognized by GCC. */
20326 static const struct arm_option_cpu_value_table arm_fpus[] =
20327 {
20328 {"softfpa", FPU_NONE},
20329 {"fpe", FPU_ARCH_FPE},
20330 {"fpe2", FPU_ARCH_FPE},
20331 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20332 {"fpa", FPU_ARCH_FPA},
20333 {"fpa10", FPU_ARCH_FPA},
20334 {"fpa11", FPU_ARCH_FPA},
20335 {"arm7500fe", FPU_ARCH_FPA},
20336 {"softvfp", FPU_ARCH_VFP},
20337 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20338 {"vfp", FPU_ARCH_VFP_V2},
20339 {"vfp9", FPU_ARCH_VFP_V2},
20340 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
20341 {"vfp10", FPU_ARCH_VFP_V2},
20342 {"vfp10-r0", FPU_ARCH_VFP_V1},
20343 {"vfpxd", FPU_ARCH_VFP_V1xD},
20344 {"vfpv2", FPU_ARCH_VFP_V2},
20345 {"vfpv3", FPU_ARCH_VFP_V3},
20346 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
20347 {"arm1020t", FPU_ARCH_VFP_V1},
20348 {"arm1020e", FPU_ARCH_VFP_V2},
20349 {"arm1136jfs", FPU_ARCH_VFP_V2},
20350 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20351 {"maverick", FPU_ARCH_MAVERICK},
20352 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20353 {"neon-fp16", FPU_ARCH_NEON_FP16},
20354 {NULL, ARM_ARCH_NONE}
20355 };
20356
20357 struct arm_option_value_table
20358 {
20359 char *name;
20360 long value;
20361 };
20362
20363 static const struct arm_option_value_table arm_float_abis[] =
20364 {
20365 {"hard", ARM_FLOAT_ABI_HARD},
20366 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20367 {"soft", ARM_FLOAT_ABI_SOFT},
20368 {NULL, 0}
20369 };
20370
20371 #ifdef OBJ_ELF
20372 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20373 static const struct arm_option_value_table arm_eabis[] =
20374 {
20375 {"gnu", EF_ARM_EABI_UNKNOWN},
20376 {"4", EF_ARM_EABI_VER4},
20377 {"5", EF_ARM_EABI_VER5},
20378 {NULL, 0}
20379 };
20380 #endif
20381
20382 struct arm_long_option_table
20383 {
20384 char * option; /* Substring to match. */
20385 char * help; /* Help information. */
20386 int (* func) (char * subopt); /* Function to decode sub-option. */
20387 char * deprecated; /* If non-null, print this message. */
20388 };
20389
20390 static int
20391 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20392 {
20393 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20394
20395 /* Copy the feature set, so that we can modify it. */
20396 *ext_set = **opt_p;
20397 *opt_p = ext_set;
20398
20399 while (str != NULL && *str != 0)
20400 {
20401 const struct arm_option_cpu_value_table * opt;
20402 char * ext;
20403 int optlen;
20404
20405 if (*str != '+')
20406 {
20407 as_bad (_("invalid architectural extension"));
20408 return 0;
20409 }
20410
20411 str++;
20412 ext = strchr (str, '+');
20413
20414 if (ext != NULL)
20415 optlen = ext - str;
20416 else
20417 optlen = strlen (str);
20418
20419 if (optlen == 0)
20420 {
20421 as_bad (_("missing architectural extension"));
20422 return 0;
20423 }
20424
20425 for (opt = arm_extensions; opt->name != NULL; opt++)
20426 if (strncmp (opt->name, str, optlen) == 0)
20427 {
20428 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20429 break;
20430 }
20431
20432 if (opt->name == NULL)
20433 {
20434 as_bad (_("unknown architectural extension `%s'"), str);
20435 return 0;
20436 }
20437
20438 str = ext;
20439 };
20440
20441 return 1;
20442 }
20443
20444 static int
20445 arm_parse_cpu (char * str)
20446 {
20447 const struct arm_cpu_option_table * opt;
20448 char * ext = strchr (str, '+');
20449 int optlen;
20450
20451 if (ext != NULL)
20452 optlen = ext - str;
20453 else
20454 optlen = strlen (str);
20455
20456 if (optlen == 0)
20457 {
20458 as_bad (_("missing cpu name `%s'"), str);
20459 return 0;
20460 }
20461
20462 for (opt = arm_cpus; opt->name != NULL; opt++)
20463 if (strncmp (opt->name, str, optlen) == 0)
20464 {
20465 mcpu_cpu_opt = &opt->value;
20466 mcpu_fpu_opt = &opt->default_fpu;
20467 if (opt->canonical_name)
20468 strcpy (selected_cpu_name, opt->canonical_name);
20469 else
20470 {
20471 int i;
20472 for (i = 0; i < optlen; i++)
20473 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20474 selected_cpu_name[i] = 0;
20475 }
20476
20477 if (ext != NULL)
20478 return arm_parse_extension (ext, &mcpu_cpu_opt);
20479
20480 return 1;
20481 }
20482
20483 as_bad (_("unknown cpu `%s'"), str);
20484 return 0;
20485 }
20486
20487 static int
20488 arm_parse_arch (char * str)
20489 {
20490 const struct arm_arch_option_table *opt;
20491 char *ext = strchr (str, '+');
20492 int optlen;
20493
20494 if (ext != NULL)
20495 optlen = ext - str;
20496 else
20497 optlen = strlen (str);
20498
20499 if (optlen == 0)
20500 {
20501 as_bad (_("missing architecture name `%s'"), str);
20502 return 0;
20503 }
20504
20505 for (opt = arm_archs; opt->name != NULL; opt++)
20506 if (streq (opt->name, str))
20507 {
20508 march_cpu_opt = &opt->value;
20509 march_fpu_opt = &opt->default_fpu;
20510 strcpy (selected_cpu_name, opt->name);
20511
20512 if (ext != NULL)
20513 return arm_parse_extension (ext, &march_cpu_opt);
20514
20515 return 1;
20516 }
20517
20518 as_bad (_("unknown architecture `%s'\n"), str);
20519 return 0;
20520 }
20521
20522 static int
20523 arm_parse_fpu (char * str)
20524 {
20525 const struct arm_option_cpu_value_table * opt;
20526
20527 for (opt = arm_fpus; opt->name != NULL; opt++)
20528 if (streq (opt->name, str))
20529 {
20530 mfpu_opt = &opt->value;
20531 return 1;
20532 }
20533
20534 as_bad (_("unknown floating point format `%s'\n"), str);
20535 return 0;
20536 }
20537
20538 static int
20539 arm_parse_float_abi (char * str)
20540 {
20541 const struct arm_option_value_table * opt;
20542
20543 for (opt = arm_float_abis; opt->name != NULL; opt++)
20544 if (streq (opt->name, str))
20545 {
20546 mfloat_abi_opt = opt->value;
20547 return 1;
20548 }
20549
20550 as_bad (_("unknown floating point abi `%s'\n"), str);
20551 return 0;
20552 }
20553
20554 #ifdef OBJ_ELF
20555 static int
20556 arm_parse_eabi (char * str)
20557 {
20558 const struct arm_option_value_table *opt;
20559
20560 for (opt = arm_eabis; opt->name != NULL; opt++)
20561 if (streq (opt->name, str))
20562 {
20563 meabi_flags = opt->value;
20564 return 1;
20565 }
20566 as_bad (_("unknown EABI `%s'\n"), str);
20567 return 0;
20568 }
20569 #endif
20570
20571 struct arm_long_option_table arm_long_opts[] =
20572 {
20573 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20574 arm_parse_cpu, NULL},
20575 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20576 arm_parse_arch, NULL},
20577 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20578 arm_parse_fpu, NULL},
20579 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20580 arm_parse_float_abi, NULL},
20581 #ifdef OBJ_ELF
20582 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
20583 arm_parse_eabi, NULL},
20584 #endif
20585 {NULL, NULL, 0, NULL}
20586 };
20587
20588 int
20589 md_parse_option (int c, char * arg)
20590 {
20591 struct arm_option_table *opt;
20592 const struct arm_legacy_option_table *fopt;
20593 struct arm_long_option_table *lopt;
20594
20595 switch (c)
20596 {
20597 #ifdef OPTION_EB
20598 case OPTION_EB:
20599 target_big_endian = 1;
20600 break;
20601 #endif
20602
20603 #ifdef OPTION_EL
20604 case OPTION_EL:
20605 target_big_endian = 0;
20606 break;
20607 #endif
20608
20609 case OPTION_FIX_V4BX:
20610 fix_v4bx = TRUE;
20611 break;
20612
20613 case 'a':
20614 /* Listing option. Just ignore these, we don't support additional
20615 ones. */
20616 return 0;
20617
20618 default:
20619 for (opt = arm_opts; opt->option != NULL; opt++)
20620 {
20621 if (c == opt->option[0]
20622 && ((arg == NULL && opt->option[1] == 0)
20623 || streq (arg, opt->option + 1)))
20624 {
20625 /* If the option is deprecated, tell the user. */
20626 if (warn_on_deprecated && opt->deprecated != NULL)
20627 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20628 arg ? arg : "", _(opt->deprecated));
20629
20630 if (opt->var != NULL)
20631 *opt->var = opt->value;
20632
20633 return 1;
20634 }
20635 }
20636
20637 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20638 {
20639 if (c == fopt->option[0]
20640 && ((arg == NULL && fopt->option[1] == 0)
20641 || streq (arg, fopt->option + 1)))
20642 {
20643 /* If the option is deprecated, tell the user. */
20644 if (warn_on_deprecated && fopt->deprecated != NULL)
20645 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20646 arg ? arg : "", _(fopt->deprecated));
20647
20648 if (fopt->var != NULL)
20649 *fopt->var = &fopt->value;
20650
20651 return 1;
20652 }
20653 }
20654
20655 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20656 {
20657 /* These options are expected to have an argument. */
20658 if (c == lopt->option[0]
20659 && arg != NULL
20660 && strncmp (arg, lopt->option + 1,
20661 strlen (lopt->option + 1)) == 0)
20662 {
20663 /* If the option is deprecated, tell the user. */
20664 if (warn_on_deprecated && lopt->deprecated != NULL)
20665 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20666 _(lopt->deprecated));
20667
20668 /* Call the sup-option parser. */
20669 return lopt->func (arg + strlen (lopt->option) - 1);
20670 }
20671 }
20672
20673 return 0;
20674 }
20675
20676 return 1;
20677 }
20678
20679 void
20680 md_show_usage (FILE * fp)
20681 {
20682 struct arm_option_table *opt;
20683 struct arm_long_option_table *lopt;
20684
20685 fprintf (fp, _(" ARM-specific assembler options:\n"));
20686
20687 for (opt = arm_opts; opt->option != NULL; opt++)
20688 if (opt->help != NULL)
20689 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
20690
20691 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20692 if (lopt->help != NULL)
20693 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
20694
20695 #ifdef OPTION_EB
20696 fprintf (fp, _("\
20697 -EB assemble code for a big-endian cpu\n"));
20698 #endif
20699
20700 #ifdef OPTION_EL
20701 fprintf (fp, _("\
20702 -EL assemble code for a little-endian cpu\n"));
20703 #endif
20704
20705 fprintf (fp, _("\
20706 --fix-v4bx Allow BX in ARMv4 code\n"));
20707 }
20708
20709
20710 #ifdef OBJ_ELF
20711 typedef struct
20712 {
20713 int val;
20714 arm_feature_set flags;
20715 } cpu_arch_ver_table;
20716
20717 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20718 least features first. */
20719 static const cpu_arch_ver_table cpu_arch_ver[] =
20720 {
20721 {1, ARM_ARCH_V4},
20722 {2, ARM_ARCH_V4T},
20723 {3, ARM_ARCH_V5},
20724 {3, ARM_ARCH_V5T},
20725 {4, ARM_ARCH_V5TE},
20726 {5, ARM_ARCH_V5TEJ},
20727 {6, ARM_ARCH_V6},
20728 {7, ARM_ARCH_V6Z},
20729 {9, ARM_ARCH_V6K},
20730 {11, ARM_ARCH_V6M},
20731 {8, ARM_ARCH_V6T2},
20732 {10, ARM_ARCH_V7A},
20733 {10, ARM_ARCH_V7R},
20734 {10, ARM_ARCH_V7M},
20735 {0, ARM_ARCH_NONE}
20736 };
20737
20738 /* Set an attribute if it has not already been set by the user. */
20739 static void
20740 aeabi_set_attribute_int (int tag, int value)
20741 {
20742 if (tag < 1
20743 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20744 || !attributes_set_explicitly[tag])
20745 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
20746 }
20747
20748 static void
20749 aeabi_set_attribute_string (int tag, const char *value)
20750 {
20751 if (tag < 1
20752 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20753 || !attributes_set_explicitly[tag])
20754 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
20755 }
20756
20757 /* Set the public EABI object attributes. */
20758 static void
20759 aeabi_set_public_attributes (void)
20760 {
20761 int arch;
20762 arm_feature_set flags;
20763 arm_feature_set tmp;
20764 const cpu_arch_ver_table *p;
20765
20766 /* Choose the architecture based on the capabilities of the requested cpu
20767 (if any) and/or the instructions actually used. */
20768 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20769 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20770 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20771 /*Allow the user to override the reported architecture. */
20772 if (object_arch)
20773 {
20774 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20775 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20776 }
20777
20778 tmp = flags;
20779 arch = 0;
20780 for (p = cpu_arch_ver; p->val; p++)
20781 {
20782 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20783 {
20784 arch = p->val;
20785 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20786 }
20787 }
20788
20789 /* Tag_CPU_name. */
20790 if (selected_cpu_name[0])
20791 {
20792 char *p;
20793
20794 p = selected_cpu_name;
20795 if (strncmp (p, "armv", 4) == 0)
20796 {
20797 int i;
20798
20799 p += 4;
20800 for (i = 0; p[i]; i++)
20801 p[i] = TOUPPER (p[i]);
20802 }
20803 aeabi_set_attribute_string (Tag_CPU_name, p);
20804 }
20805 /* Tag_CPU_arch. */
20806 aeabi_set_attribute_int (Tag_CPU_arch, arch);
20807 /* Tag_CPU_arch_profile. */
20808 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20809 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
20810 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20811 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
20812 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
20813 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
20814 /* Tag_ARM_ISA_use. */
20815 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
20816 || arch == 0)
20817 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
20818 /* Tag_THUMB_ISA_use. */
20819 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
20820 || arch == 0)
20821 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
20822 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
20823 /* Tag_VFP_arch. */
20824 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
20825 aeabi_set_attribute_int (Tag_VFP_arch, 3);
20826 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
20827 aeabi_set_attribute_int (Tag_VFP_arch, 4);
20828 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
20829 aeabi_set_attribute_int (Tag_VFP_arch, 2);
20830 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
20831 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
20832 aeabi_set_attribute_int (Tag_VFP_arch, 1);
20833 /* Tag_WMMX_arch. */
20834 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
20835 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
20836 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
20837 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
20838 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
20839 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
20840 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
20841 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
20842 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
20843 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
20844 }
20845
20846 /* Add the default contents for the .ARM.attributes section. */
20847 void
20848 arm_md_end (void)
20849 {
20850 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20851 return;
20852
20853 aeabi_set_public_attributes ();
20854 }
20855 #endif /* OBJ_ELF */
20856
20857
20858 /* Parse a .cpu directive. */
20859
20860 static void
20861 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20862 {
20863 const struct arm_cpu_option_table *opt;
20864 char *name;
20865 char saved_char;
20866
20867 name = input_line_pointer;
20868 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20869 input_line_pointer++;
20870 saved_char = *input_line_pointer;
20871 *input_line_pointer = 0;
20872
20873 /* Skip the first "all" entry. */
20874 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20875 if (streq (opt->name, name))
20876 {
20877 mcpu_cpu_opt = &opt->value;
20878 selected_cpu = opt->value;
20879 if (opt->canonical_name)
20880 strcpy (selected_cpu_name, opt->canonical_name);
20881 else
20882 {
20883 int i;
20884 for (i = 0; opt->name[i]; i++)
20885 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20886 selected_cpu_name[i] = 0;
20887 }
20888 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20889 *input_line_pointer = saved_char;
20890 demand_empty_rest_of_line ();
20891 return;
20892 }
20893 as_bad (_("unknown cpu `%s'"), name);
20894 *input_line_pointer = saved_char;
20895 ignore_rest_of_line ();
20896 }
20897
20898
20899 /* Parse a .arch directive. */
20900
20901 static void
20902 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20903 {
20904 const struct arm_arch_option_table *opt;
20905 char saved_char;
20906 char *name;
20907
20908 name = input_line_pointer;
20909 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20910 input_line_pointer++;
20911 saved_char = *input_line_pointer;
20912 *input_line_pointer = 0;
20913
20914 /* Skip the first "all" entry. */
20915 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20916 if (streq (opt->name, name))
20917 {
20918 mcpu_cpu_opt = &opt->value;
20919 selected_cpu = opt->value;
20920 strcpy (selected_cpu_name, opt->name);
20921 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20922 *input_line_pointer = saved_char;
20923 demand_empty_rest_of_line ();
20924 return;
20925 }
20926
20927 as_bad (_("unknown architecture `%s'\n"), name);
20928 *input_line_pointer = saved_char;
20929 ignore_rest_of_line ();
20930 }
20931
20932
20933 /* Parse a .object_arch directive. */
20934
20935 static void
20936 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20937 {
20938 const struct arm_arch_option_table *opt;
20939 char saved_char;
20940 char *name;
20941
20942 name = input_line_pointer;
20943 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20944 input_line_pointer++;
20945 saved_char = *input_line_pointer;
20946 *input_line_pointer = 0;
20947
20948 /* Skip the first "all" entry. */
20949 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20950 if (streq (opt->name, name))
20951 {
20952 object_arch = &opt->value;
20953 *input_line_pointer = saved_char;
20954 demand_empty_rest_of_line ();
20955 return;
20956 }
20957
20958 as_bad (_("unknown architecture `%s'\n"), name);
20959 *input_line_pointer = saved_char;
20960 ignore_rest_of_line ();
20961 }
20962
20963 /* Parse a .fpu directive. */
20964
20965 static void
20966 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20967 {
20968 const struct arm_option_cpu_value_table *opt;
20969 char saved_char;
20970 char *name;
20971
20972 name = input_line_pointer;
20973 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20974 input_line_pointer++;
20975 saved_char = *input_line_pointer;
20976 *input_line_pointer = 0;
20977
20978 for (opt = arm_fpus; opt->name != NULL; opt++)
20979 if (streq (opt->name, name))
20980 {
20981 mfpu_opt = &opt->value;
20982 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20983 *input_line_pointer = saved_char;
20984 demand_empty_rest_of_line ();
20985 return;
20986 }
20987
20988 as_bad (_("unknown floating point format `%s'\n"), name);
20989 *input_line_pointer = saved_char;
20990 ignore_rest_of_line ();
20991 }
20992
20993 /* Copy symbol information. */
20994
20995 void
20996 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20997 {
20998 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20999 }
21000
21001 #ifdef OBJ_ELF
21002 /* Given a symbolic attribute NAME, return the proper integer value.
21003 Returns -1 if the attribute is not known. */
21004
21005 int
21006 arm_convert_symbolic_attribute (const char *name)
21007 {
21008 static const struct
21009 {
21010 const char * name;
21011 const int tag;
21012 }
21013 attribute_table[] =
21014 {
21015 /* When you modify this table you should
21016 also modify the list in doc/c-arm.texi. */
21017 #define T(tag) {#tag, tag}
21018 T (Tag_CPU_raw_name),
21019 T (Tag_CPU_name),
21020 T (Tag_CPU_arch),
21021 T (Tag_CPU_arch_profile),
21022 T (Tag_ARM_ISA_use),
21023 T (Tag_THUMB_ISA_use),
21024 T (Tag_VFP_arch),
21025 T (Tag_WMMX_arch),
21026 T (Tag_Advanced_SIMD_arch),
21027 T (Tag_PCS_config),
21028 T (Tag_ABI_PCS_R9_use),
21029 T (Tag_ABI_PCS_RW_data),
21030 T (Tag_ABI_PCS_RO_data),
21031 T (Tag_ABI_PCS_GOT_use),
21032 T (Tag_ABI_PCS_wchar_t),
21033 T (Tag_ABI_FP_rounding),
21034 T (Tag_ABI_FP_denormal),
21035 T (Tag_ABI_FP_exceptions),
21036 T (Tag_ABI_FP_user_exceptions),
21037 T (Tag_ABI_FP_number_model),
21038 T (Tag_ABI_align8_needed),
21039 T (Tag_ABI_align8_preserved),
21040 T (Tag_ABI_enum_size),
21041 T (Tag_ABI_HardFP_use),
21042 T (Tag_ABI_VFP_args),
21043 T (Tag_ABI_WMMX_args),
21044 T (Tag_ABI_optimization_goals),
21045 T (Tag_ABI_FP_optimization_goals),
21046 T (Tag_compatibility),
21047 T (Tag_CPU_unaligned_access),
21048 T (Tag_VFP_HP_extension),
21049 T (Tag_ABI_FP_16bit_format),
21050 T (Tag_nodefaults),
21051 T (Tag_also_compatible_with),
21052 T (Tag_conformance),
21053 T (Tag_T2EE_use),
21054 T (Tag_Virtualization_use),
21055 T (Tag_MPextension_use)
21056 #undef T
21057 };
21058 unsigned int i;
21059
21060 if (name == NULL)
21061 return -1;
21062
21063 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
21064 if (strcmp (name, attribute_table[i].name) == 0)
21065 return attribute_table[i].tag;
21066
21067 return -1;
21068 }
21069 #endif /* OBJ_ELF */
This page took 0.523272 seconds and 4 git commands to generate.