gas/
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994-2013 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140
141 /* Variables that we set while parsing command-line options. Once all
142 options have been read we re-process these values to set the real
143 assembly flags. */
144 static const arm_feature_set *legacy_cpu = NULL;
145 static const arm_feature_set *legacy_fpu = NULL;
146
147 static const arm_feature_set *mcpu_cpu_opt = NULL;
148 static const arm_feature_set *mcpu_fpu_opt = NULL;
149 static const arm_feature_set *march_cpu_opt = NULL;
150 static const arm_feature_set *march_fpu_opt = NULL;
151 static const arm_feature_set *mfpu_opt = NULL;
152 static const arm_feature_set *object_arch = NULL;
153
154 /* Constants for known architecture features. */
155 static const arm_feature_set fpu_default = FPU_DEFAULT;
156 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
157 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
158 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
159 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
160 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
161 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
162 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
163 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
164
165 #ifdef CPU_DEFAULT
166 static const arm_feature_set cpu_default = CPU_DEFAULT;
167 #endif
168
169 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
170 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
171 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
172 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
173 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
174 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
175 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
176 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
177 static const arm_feature_set arm_ext_v4t_5 =
178 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
180 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
181 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
182 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
183 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
184 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
185 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
186 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
187 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
188 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
189 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
190 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
191 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
192 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
193 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
194 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
195 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
196 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
197 static const arm_feature_set arm_ext_m =
198 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
199 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
200 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
201 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
202 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
203 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
204
205 static const arm_feature_set arm_arch_any = ARM_ANY;
206 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
210
211 static const arm_feature_set arm_cext_iwmmxt2 =
212 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
213 static const arm_feature_set arm_cext_iwmmxt =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
215 static const arm_feature_set arm_cext_xscale =
216 ARM_FEATURE (0, ARM_CEXT_XSCALE);
217 static const arm_feature_set arm_cext_maverick =
218 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
219 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
220 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
221 static const arm_feature_set fpu_vfp_ext_v1xd =
222 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
223 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
224 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
225 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
226 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_ext_d32 =
228 ARM_FEATURE (0, FPU_VFP_EXT_D32);
229 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
230 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
231 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
232 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
233 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
234 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_armv8 =
236 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
237 static const arm_feature_set fpu_neon_ext_armv8 =
238 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
239 static const arm_feature_set fpu_crypto_ext_armv8 =
240 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
241 static const arm_feature_set crc_ext_armv8 =
242 ARM_FEATURE (0, CRC_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 /* An immediate operand can start with #, and ld*, st*, pld operands
325 can contain [ and ]. We need to tell APP not to elide whitespace
326 before a [, which can appear as the first operand for pld. */
327 const char arm_symbol_chars[] = "#[]";
328
329 enum neon_el_type
330 {
331 NT_invtype,
332 NT_untyped,
333 NT_integer,
334 NT_float,
335 NT_poly,
336 NT_signed,
337 NT_unsigned
338 };
339
340 struct neon_type_el
341 {
342 enum neon_el_type type;
343 unsigned size;
344 };
345
346 #define NEON_MAX_TYPE_ELS 4
347
348 struct neon_type
349 {
350 struct neon_type_el el[NEON_MAX_TYPE_ELS];
351 unsigned elems;
352 };
353
354 enum it_instruction_type
355 {
356 OUTSIDE_IT_INSN,
357 INSIDE_IT_INSN,
358 INSIDE_IT_LAST_INSN,
359 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
360 if inside, should be the last one. */
361 NEUTRAL_IT_INSN, /* This could be either inside or outside,
362 i.e. BKPT and NOP. */
363 IT_INSN /* The IT insn has been parsed. */
364 };
365
366 /* The maximum number of operands we need. */
367 #define ARM_IT_MAX_OPERANDS 6
368
369 struct arm_it
370 {
371 const char * error;
372 unsigned long instruction;
373 int size;
374 int size_req;
375 int cond;
376 /* "uncond_value" is set to the value in place of the conditional field in
377 unconditional versions of the instruction, or -1 if nothing is
378 appropriate. */
379 int uncond_value;
380 struct neon_type vectype;
381 /* This does not indicate an actual NEON instruction, only that
382 the mnemonic accepts neon-style type suffixes. */
383 int is_neon;
384 /* Set to the opcode if the instruction needs relaxation.
385 Zero if the instruction is not relaxed. */
386 unsigned long relax;
387 struct
388 {
389 bfd_reloc_code_real_type type;
390 expressionS exp;
391 int pc_rel;
392 } reloc;
393
394 enum it_instruction_type it_insn_type;
395
396 struct
397 {
398 unsigned reg;
399 signed int imm;
400 struct neon_type_el vectype;
401 unsigned present : 1; /* Operand present. */
402 unsigned isreg : 1; /* Operand was a register. */
403 unsigned immisreg : 1; /* .imm field is a second register. */
404 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
405 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
406 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
407 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
408 instructions. This allows us to disambiguate ARM <-> vector insns. */
409 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
410 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
411 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
412 unsigned issingle : 1; /* Operand is VFP single-precision register. */
413 unsigned hasreloc : 1; /* Operand has relocation suffix. */
414 unsigned writeback : 1; /* Operand has trailing ! */
415 unsigned preind : 1; /* Preindexed address. */
416 unsigned postind : 1; /* Postindexed address. */
417 unsigned negative : 1; /* Index register was negated. */
418 unsigned shifted : 1; /* Shift applied to operation. */
419 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
420 } operands[ARM_IT_MAX_OPERANDS];
421 };
422
423 static struct arm_it inst;
424
425 #define NUM_FLOAT_VALS 8
426
427 const char * fp_const[] =
428 {
429 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
430 };
431
432 /* Number of littlenums required to hold an extended precision number. */
433 #define MAX_LITTLENUMS 6
434
435 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
436
437 #define FAIL (-1)
438 #define SUCCESS (0)
439
440 #define SUFF_S 1
441 #define SUFF_D 2
442 #define SUFF_E 3
443 #define SUFF_P 4
444
445 #define CP_T_X 0x00008000
446 #define CP_T_Y 0x00400000
447
448 #define CONDS_BIT 0x00100000
449 #define LOAD_BIT 0x00100000
450
451 #define DOUBLE_LOAD_FLAG 0x00000001
452
453 struct asm_cond
454 {
455 const char * template_name;
456 unsigned long value;
457 };
458
459 #define COND_ALWAYS 0xE
460
461 struct asm_psr
462 {
463 const char * template_name;
464 unsigned long field;
465 };
466
467 struct asm_barrier_opt
468 {
469 const char * template_name;
470 unsigned long value;
471 const arm_feature_set arch;
472 };
473
474 /* The bit that distinguishes CPSR and SPSR. */
475 #define SPSR_BIT (1 << 22)
476
477 /* The individual PSR flag bits. */
478 #define PSR_c (1 << 16)
479 #define PSR_x (1 << 17)
480 #define PSR_s (1 << 18)
481 #define PSR_f (1 << 19)
482
483 struct reloc_entry
484 {
485 char * name;
486 bfd_reloc_code_real_type reloc;
487 };
488
489 enum vfp_reg_pos
490 {
491 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
492 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
493 };
494
495 enum vfp_ldstm_type
496 {
497 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
498 };
499
500 /* Bits for DEFINED field in neon_typed_alias. */
501 #define NTA_HASTYPE 1
502 #define NTA_HASINDEX 2
503
504 struct neon_typed_alias
505 {
506 unsigned char defined;
507 unsigned char index;
508 struct neon_type_el eltype;
509 };
510
511 /* ARM register categories. This includes coprocessor numbers and various
512 architecture extensions' registers. */
513 enum arm_reg_type
514 {
515 REG_TYPE_RN,
516 REG_TYPE_CP,
517 REG_TYPE_CN,
518 REG_TYPE_FN,
519 REG_TYPE_VFS,
520 REG_TYPE_VFD,
521 REG_TYPE_NQ,
522 REG_TYPE_VFSD,
523 REG_TYPE_NDQ,
524 REG_TYPE_NSDQ,
525 REG_TYPE_VFC,
526 REG_TYPE_MVF,
527 REG_TYPE_MVD,
528 REG_TYPE_MVFX,
529 REG_TYPE_MVDX,
530 REG_TYPE_MVAX,
531 REG_TYPE_DSPSC,
532 REG_TYPE_MMXWR,
533 REG_TYPE_MMXWC,
534 REG_TYPE_MMXWCG,
535 REG_TYPE_XSCALE,
536 REG_TYPE_RNB
537 };
538
539 /* Structure for a hash table entry for a register.
540 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
541 information which states whether a vector type or index is specified (for a
542 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
543 struct reg_entry
544 {
545 const char * name;
546 unsigned int number;
547 unsigned char type;
548 unsigned char builtin;
549 struct neon_typed_alias * neon;
550 };
551
552 /* Diagnostics used when we don't get a register of the expected type. */
553 const char * const reg_expected_msgs[] =
554 {
555 N_("ARM register expected"),
556 N_("bad or missing co-processor number"),
557 N_("co-processor register expected"),
558 N_("FPA register expected"),
559 N_("VFP single precision register expected"),
560 N_("VFP/Neon double precision register expected"),
561 N_("Neon quad precision register expected"),
562 N_("VFP single or double precision register expected"),
563 N_("Neon double or quad precision register expected"),
564 N_("VFP single, double or Neon quad precision register expected"),
565 N_("VFP system register expected"),
566 N_("Maverick MVF register expected"),
567 N_("Maverick MVD register expected"),
568 N_("Maverick MVFX register expected"),
569 N_("Maverick MVDX register expected"),
570 N_("Maverick MVAX register expected"),
571 N_("Maverick DSPSC register expected"),
572 N_("iWMMXt data register expected"),
573 N_("iWMMXt control register expected"),
574 N_("iWMMXt scalar register expected"),
575 N_("XScale accumulator register expected"),
576 };
577
578 /* Some well known registers that we refer to directly elsewhere. */
579 #define REG_R12 12
580 #define REG_SP 13
581 #define REG_LR 14
582 #define REG_PC 15
583
584 /* ARM instructions take 4bytes in the object file, Thumb instructions
585 take 2: */
586 #define INSN_SIZE 4
587
588 struct asm_opcode
589 {
590 /* Basic string to match. */
591 const char * template_name;
592
593 /* Parameters to instruction. */
594 unsigned int operands[8];
595
596 /* Conditional tag - see opcode_lookup. */
597 unsigned int tag : 4;
598
599 /* Basic instruction code. */
600 unsigned int avalue : 28;
601
602 /* Thumb-format instruction code. */
603 unsigned int tvalue;
604
605 /* Which architecture variant provides this instruction. */
606 const arm_feature_set * avariant;
607 const arm_feature_set * tvariant;
608
609 /* Function to call to encode instruction in ARM format. */
610 void (* aencode) (void);
611
612 /* Function to call to encode instruction in Thumb format. */
613 void (* tencode) (void);
614 };
615
616 /* Defines for various bits that we will want to toggle. */
617 #define INST_IMMEDIATE 0x02000000
618 #define OFFSET_REG 0x02000000
619 #define HWOFFSET_IMM 0x00400000
620 #define SHIFT_BY_REG 0x00000010
621 #define PRE_INDEX 0x01000000
622 #define INDEX_UP 0x00800000
623 #define WRITE_BACK 0x00200000
624 #define LDM_TYPE_2_OR_3 0x00400000
625 #define CPSI_MMOD 0x00020000
626
627 #define LITERAL_MASK 0xf000f000
628 #define OPCODE_MASK 0xfe1fffff
629 #define V4_STR_BIT 0x00000020
630
631 #define T2_SUBS_PC_LR 0xf3de8f00
632
633 #define DATA_OP_SHIFT 21
634
635 #define T2_OPCODE_MASK 0xfe1fffff
636 #define T2_DATA_OP_SHIFT 21
637
638 #define A_COND_MASK 0xf0000000
639 #define A_PUSH_POP_OP_MASK 0x0fff0000
640
641 /* Opcodes for pushing/poping registers to/from the stack. */
642 #define A1_OPCODE_PUSH 0x092d0000
643 #define A2_OPCODE_PUSH 0x052d0004
644 #define A2_OPCODE_POP 0x049d0004
645
646 /* Codes to distinguish the arithmetic instructions. */
647 #define OPCODE_AND 0
648 #define OPCODE_EOR 1
649 #define OPCODE_SUB 2
650 #define OPCODE_RSB 3
651 #define OPCODE_ADD 4
652 #define OPCODE_ADC 5
653 #define OPCODE_SBC 6
654 #define OPCODE_RSC 7
655 #define OPCODE_TST 8
656 #define OPCODE_TEQ 9
657 #define OPCODE_CMP 10
658 #define OPCODE_CMN 11
659 #define OPCODE_ORR 12
660 #define OPCODE_MOV 13
661 #define OPCODE_BIC 14
662 #define OPCODE_MVN 15
663
664 #define T2_OPCODE_AND 0
665 #define T2_OPCODE_BIC 1
666 #define T2_OPCODE_ORR 2
667 #define T2_OPCODE_ORN 3
668 #define T2_OPCODE_EOR 4
669 #define T2_OPCODE_ADD 8
670 #define T2_OPCODE_ADC 10
671 #define T2_OPCODE_SBC 11
672 #define T2_OPCODE_SUB 13
673 #define T2_OPCODE_RSB 14
674
675 #define T_OPCODE_MUL 0x4340
676 #define T_OPCODE_TST 0x4200
677 #define T_OPCODE_CMN 0x42c0
678 #define T_OPCODE_NEG 0x4240
679 #define T_OPCODE_MVN 0x43c0
680
681 #define T_OPCODE_ADD_R3 0x1800
682 #define T_OPCODE_SUB_R3 0x1a00
683 #define T_OPCODE_ADD_HI 0x4400
684 #define T_OPCODE_ADD_ST 0xb000
685 #define T_OPCODE_SUB_ST 0xb080
686 #define T_OPCODE_ADD_SP 0xa800
687 #define T_OPCODE_ADD_PC 0xa000
688 #define T_OPCODE_ADD_I8 0x3000
689 #define T_OPCODE_SUB_I8 0x3800
690 #define T_OPCODE_ADD_I3 0x1c00
691 #define T_OPCODE_SUB_I3 0x1e00
692
693 #define T_OPCODE_ASR_R 0x4100
694 #define T_OPCODE_LSL_R 0x4080
695 #define T_OPCODE_LSR_R 0x40c0
696 #define T_OPCODE_ROR_R 0x41c0
697 #define T_OPCODE_ASR_I 0x1000
698 #define T_OPCODE_LSL_I 0x0000
699 #define T_OPCODE_LSR_I 0x0800
700
701 #define T_OPCODE_MOV_I8 0x2000
702 #define T_OPCODE_CMP_I8 0x2800
703 #define T_OPCODE_CMP_LR 0x4280
704 #define T_OPCODE_MOV_HR 0x4600
705 #define T_OPCODE_CMP_HR 0x4500
706
707 #define T_OPCODE_LDR_PC 0x4800
708 #define T_OPCODE_LDR_SP 0x9800
709 #define T_OPCODE_STR_SP 0x9000
710 #define T_OPCODE_LDR_IW 0x6800
711 #define T_OPCODE_STR_IW 0x6000
712 #define T_OPCODE_LDR_IH 0x8800
713 #define T_OPCODE_STR_IH 0x8000
714 #define T_OPCODE_LDR_IB 0x7800
715 #define T_OPCODE_STR_IB 0x7000
716 #define T_OPCODE_LDR_RW 0x5800
717 #define T_OPCODE_STR_RW 0x5000
718 #define T_OPCODE_LDR_RH 0x5a00
719 #define T_OPCODE_STR_RH 0x5200
720 #define T_OPCODE_LDR_RB 0x5c00
721 #define T_OPCODE_STR_RB 0x5400
722
723 #define T_OPCODE_PUSH 0xb400
724 #define T_OPCODE_POP 0xbc00
725
726 #define T_OPCODE_BRANCH 0xe000
727
728 #define THUMB_SIZE 2 /* Size of thumb instruction. */
729 #define THUMB_PP_PC_LR 0x0100
730 #define THUMB_LOAD_BIT 0x0800
731 #define THUMB2_LOAD_BIT 0x00100000
732
733 #define BAD_ARGS _("bad arguments to instruction")
734 #define BAD_SP _("r13 not allowed here")
735 #define BAD_PC _("r15 not allowed here")
736 #define BAD_COND _("instruction cannot be conditional")
737 #define BAD_OVERLAP _("registers may not be the same")
738 #define BAD_HIREG _("lo register required")
739 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
740 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
741 #define BAD_BRANCH _("branch must be last instruction in IT block")
742 #define BAD_NOT_IT _("instruction not allowed in IT block")
743 #define BAD_FPU _("selected FPU does not support instruction")
744 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
745 #define BAD_IT_COND _("incorrect condition in IT block")
746 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
747 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
748 #define BAD_PC_ADDRESSING \
749 _("cannot use register index with PC-relative addressing")
750 #define BAD_PC_WRITEBACK \
751 _("cannot use writeback with PC-relative addressing")
752 #define BAD_RANGE _("branch out of range")
753 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
754
755 static struct hash_control * arm_ops_hsh;
756 static struct hash_control * arm_cond_hsh;
757 static struct hash_control * arm_shift_hsh;
758 static struct hash_control * arm_psr_hsh;
759 static struct hash_control * arm_v7m_psr_hsh;
760 static struct hash_control * arm_reg_hsh;
761 static struct hash_control * arm_reloc_hsh;
762 static struct hash_control * arm_barrier_opt_hsh;
763
764 /* Stuff needed to resolve the label ambiguity
765 As:
766 ...
767 label: <insn>
768 may differ from:
769 ...
770 label:
771 <insn> */
772
773 symbolS * last_label_seen;
774 static int label_is_thumb_function_name = FALSE;
775
776 /* Literal pool structure. Held on a per-section
777 and per-sub-section basis. */
778
779 #define MAX_LITERAL_POOL_SIZE 1024
780 typedef struct literal_pool
781 {
782 expressionS literals [MAX_LITERAL_POOL_SIZE];
783 unsigned int next_free_entry;
784 unsigned int id;
785 symbolS * symbol;
786 segT section;
787 subsegT sub_section;
788 #ifdef OBJ_ELF
789 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
790 #endif
791 struct literal_pool * next;
792 } literal_pool;
793
794 /* Pointer to a linked list of literal pools. */
795 literal_pool * list_of_pools = NULL;
796
797 #ifdef OBJ_ELF
798 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
799 #else
800 static struct current_it now_it;
801 #endif
802
803 static inline int
804 now_it_compatible (int cond)
805 {
806 return (cond & ~1) == (now_it.cc & ~1);
807 }
808
809 static inline int
810 conditional_insn (void)
811 {
812 return inst.cond != COND_ALWAYS;
813 }
814
815 static int in_it_block (void);
816
817 static int handle_it_state (void);
818
819 static void force_automatic_it_block_close (void);
820
821 static void it_fsm_post_encode (void);
822
823 #define set_it_insn_type(type) \
824 do \
825 { \
826 inst.it_insn_type = type; \
827 if (handle_it_state () == FAIL) \
828 return; \
829 } \
830 while (0)
831
832 #define set_it_insn_type_nonvoid(type, failret) \
833 do \
834 { \
835 inst.it_insn_type = type; \
836 if (handle_it_state () == FAIL) \
837 return failret; \
838 } \
839 while(0)
840
841 #define set_it_insn_type_last() \
842 do \
843 { \
844 if (inst.cond == COND_ALWAYS) \
845 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
846 else \
847 set_it_insn_type (INSIDE_IT_LAST_INSN); \
848 } \
849 while (0)
850
851 /* Pure syntax. */
852
853 /* This array holds the chars that always start a comment. If the
854 pre-processor is disabled, these aren't very useful. */
855 const char comment_chars[] = "@";
856
857 /* This array holds the chars that only start a comment at the beginning of
858 a line. If the line seems to have the form '# 123 filename'
859 .line and .file directives will appear in the pre-processed output. */
860 /* Note that input_file.c hand checks for '#' at the beginning of the
861 first line of the input file. This is because the compiler outputs
862 #NO_APP at the beginning of its output. */
863 /* Also note that comments like this one will always work. */
864 const char line_comment_chars[] = "#";
865
866 const char line_separator_chars[] = ";";
867
868 /* Chars that can be used to separate mant
869 from exp in floating point numbers. */
870 const char EXP_CHARS[] = "eE";
871
872 /* Chars that mean this number is a floating point constant. */
873 /* As in 0f12.456 */
874 /* or 0d1.2345e12 */
875
876 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
877
878 /* Prefix characters that indicate the start of an immediate
879 value. */
880 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
881
882 /* Separator character handling. */
883
884 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
885
886 static inline int
887 skip_past_char (char ** str, char c)
888 {
889 /* PR gas/14987: Allow for whitespace before the expected character. */
890 skip_whitespace (*str);
891
892 if (**str == c)
893 {
894 (*str)++;
895 return SUCCESS;
896 }
897 else
898 return FAIL;
899 }
900
901 #define skip_past_comma(str) skip_past_char (str, ',')
902
903 /* Arithmetic expressions (possibly involving symbols). */
904
905 /* Return TRUE if anything in the expression is a bignum. */
906
907 static int
908 walk_no_bignums (symbolS * sp)
909 {
910 if (symbol_get_value_expression (sp)->X_op == O_big)
911 return 1;
912
913 if (symbol_get_value_expression (sp)->X_add_symbol)
914 {
915 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
916 || (symbol_get_value_expression (sp)->X_op_symbol
917 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
918 }
919
920 return 0;
921 }
922
923 static int in_my_get_expression = 0;
924
925 /* Third argument to my_get_expression. */
926 #define GE_NO_PREFIX 0
927 #define GE_IMM_PREFIX 1
928 #define GE_OPT_PREFIX 2
929 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
930 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
931 #define GE_OPT_PREFIX_BIG 3
932
933 static int
934 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
935 {
936 char * save_in;
937 segT seg;
938
939 /* In unified syntax, all prefixes are optional. */
940 if (unified_syntax)
941 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
942 : GE_OPT_PREFIX;
943
944 switch (prefix_mode)
945 {
946 case GE_NO_PREFIX: break;
947 case GE_IMM_PREFIX:
948 if (!is_immediate_prefix (**str))
949 {
950 inst.error = _("immediate expression requires a # prefix");
951 return FAIL;
952 }
953 (*str)++;
954 break;
955 case GE_OPT_PREFIX:
956 case GE_OPT_PREFIX_BIG:
957 if (is_immediate_prefix (**str))
958 (*str)++;
959 break;
960 default: abort ();
961 }
962
963 memset (ep, 0, sizeof (expressionS));
964
965 save_in = input_line_pointer;
966 input_line_pointer = *str;
967 in_my_get_expression = 1;
968 seg = expression (ep);
969 in_my_get_expression = 0;
970
971 if (ep->X_op == O_illegal || ep->X_op == O_absent)
972 {
973 /* We found a bad or missing expression in md_operand(). */
974 *str = input_line_pointer;
975 input_line_pointer = save_in;
976 if (inst.error == NULL)
977 inst.error = (ep->X_op == O_absent
978 ? _("missing expression") :_("bad expression"));
979 return 1;
980 }
981
982 #ifdef OBJ_AOUT
983 if (seg != absolute_section
984 && seg != text_section
985 && seg != data_section
986 && seg != bss_section
987 && seg != undefined_section)
988 {
989 inst.error = _("bad segment");
990 *str = input_line_pointer;
991 input_line_pointer = save_in;
992 return 1;
993 }
994 #else
995 (void) seg;
996 #endif
997
998 /* Get rid of any bignums now, so that we don't generate an error for which
999 we can't establish a line number later on. Big numbers are never valid
1000 in instructions, which is where this routine is always called. */
1001 if (prefix_mode != GE_OPT_PREFIX_BIG
1002 && (ep->X_op == O_big
1003 || (ep->X_add_symbol
1004 && (walk_no_bignums (ep->X_add_symbol)
1005 || (ep->X_op_symbol
1006 && walk_no_bignums (ep->X_op_symbol))))))
1007 {
1008 inst.error = _("invalid constant");
1009 *str = input_line_pointer;
1010 input_line_pointer = save_in;
1011 return 1;
1012 }
1013
1014 *str = input_line_pointer;
1015 input_line_pointer = save_in;
1016 return 0;
1017 }
1018
1019 /* Turn a string in input_line_pointer into a floating point constant
1020 of type TYPE, and store the appropriate bytes in *LITP. The number
1021 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1022 returned, or NULL on OK.
1023
1024 Note that fp constants aren't represent in the normal way on the ARM.
1025 In big endian mode, things are as expected. However, in little endian
1026 mode fp constants are big-endian word-wise, and little-endian byte-wise
1027 within the words. For example, (double) 1.1 in big endian mode is
1028 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1029 the byte sequence 99 99 f1 3f 9a 99 99 99.
1030
1031 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1032
1033 char *
1034 md_atof (int type, char * litP, int * sizeP)
1035 {
1036 int prec;
1037 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1038 char *t;
1039 int i;
1040
1041 switch (type)
1042 {
1043 case 'f':
1044 case 'F':
1045 case 's':
1046 case 'S':
1047 prec = 2;
1048 break;
1049
1050 case 'd':
1051 case 'D':
1052 case 'r':
1053 case 'R':
1054 prec = 4;
1055 break;
1056
1057 case 'x':
1058 case 'X':
1059 prec = 5;
1060 break;
1061
1062 case 'p':
1063 case 'P':
1064 prec = 5;
1065 break;
1066
1067 default:
1068 *sizeP = 0;
1069 return _("Unrecognized or unsupported floating point constant");
1070 }
1071
1072 t = atof_ieee (input_line_pointer, type, words);
1073 if (t)
1074 input_line_pointer = t;
1075 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1076
1077 if (target_big_endian)
1078 {
1079 for (i = 0; i < prec; i++)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 }
1085 else
1086 {
1087 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1088 for (i = prec - 1; i >= 0; i--)
1089 {
1090 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1091 litP += sizeof (LITTLENUM_TYPE);
1092 }
1093 else
1094 /* For a 4 byte float the order of elements in `words' is 1 0.
1095 For an 8 byte float the order is 1 0 3 2. */
1096 for (i = 0; i < prec; i += 2)
1097 {
1098 md_number_to_chars (litP, (valueT) words[i + 1],
1099 sizeof (LITTLENUM_TYPE));
1100 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1101 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1102 litP += 2 * sizeof (LITTLENUM_TYPE);
1103 }
1104 }
1105
1106 return NULL;
1107 }
1108
1109 /* We handle all bad expressions here, so that we can report the faulty
1110 instruction in the error message. */
1111 void
1112 md_operand (expressionS * exp)
1113 {
1114 if (in_my_get_expression)
1115 exp->X_op = O_illegal;
1116 }
1117
1118 /* Immediate values. */
1119
1120 /* Generic immediate-value read function for use in directives.
1121 Accepts anything that 'expression' can fold to a constant.
1122 *val receives the number. */
1123 #ifdef OBJ_ELF
1124 static int
1125 immediate_for_directive (int *val)
1126 {
1127 expressionS exp;
1128 exp.X_op = O_illegal;
1129
1130 if (is_immediate_prefix (*input_line_pointer))
1131 {
1132 input_line_pointer++;
1133 expression (&exp);
1134 }
1135
1136 if (exp.X_op != O_constant)
1137 {
1138 as_bad (_("expected #constant"));
1139 ignore_rest_of_line ();
1140 return FAIL;
1141 }
1142 *val = exp.X_add_number;
1143 return SUCCESS;
1144 }
1145 #endif
1146
1147 /* Register parsing. */
1148
1149 /* Generic register parser. CCP points to what should be the
1150 beginning of a register name. If it is indeed a valid register
1151 name, advance CCP over it and return the reg_entry structure;
1152 otherwise return NULL. Does not issue diagnostics. */
1153
1154 static struct reg_entry *
1155 arm_reg_parse_multi (char **ccp)
1156 {
1157 char *start = *ccp;
1158 char *p;
1159 struct reg_entry *reg;
1160
1161 #ifdef REGISTER_PREFIX
1162 if (*start != REGISTER_PREFIX)
1163 return NULL;
1164 start++;
1165 #endif
1166 #ifdef OPTIONAL_REGISTER_PREFIX
1167 if (*start == OPTIONAL_REGISTER_PREFIX)
1168 start++;
1169 #endif
1170
1171 p = start;
1172 if (!ISALPHA (*p) || !is_name_beginner (*p))
1173 return NULL;
1174
1175 do
1176 p++;
1177 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1178
1179 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1180
1181 if (!reg)
1182 return NULL;
1183
1184 *ccp = p;
1185 return reg;
1186 }
1187
1188 static int
1189 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1190 enum arm_reg_type type)
1191 {
1192 /* Alternative syntaxes are accepted for a few register classes. */
1193 switch (type)
1194 {
1195 case REG_TYPE_MVF:
1196 case REG_TYPE_MVD:
1197 case REG_TYPE_MVFX:
1198 case REG_TYPE_MVDX:
1199 /* Generic coprocessor register names are allowed for these. */
1200 if (reg && reg->type == REG_TYPE_CN)
1201 return reg->number;
1202 break;
1203
1204 case REG_TYPE_CP:
1205 /* For backward compatibility, a bare number is valid here. */
1206 {
1207 unsigned long processor = strtoul (start, ccp, 10);
1208 if (*ccp != start && processor <= 15)
1209 return processor;
1210 }
1211
1212 case REG_TYPE_MMXWC:
1213 /* WC includes WCG. ??? I'm not sure this is true for all
1214 instructions that take WC registers. */
1215 if (reg && reg->type == REG_TYPE_MMXWCG)
1216 return reg->number;
1217 break;
1218
1219 default:
1220 break;
1221 }
1222
1223 return FAIL;
1224 }
1225
1226 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1227 return value is the register number or FAIL. */
1228
1229 static int
1230 arm_reg_parse (char **ccp, enum arm_reg_type type)
1231 {
1232 char *start = *ccp;
1233 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1234 int ret;
1235
1236 /* Do not allow a scalar (reg+index) to parse as a register. */
1237 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1238 return FAIL;
1239
1240 if (reg && reg->type == type)
1241 return reg->number;
1242
1243 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1244 return ret;
1245
1246 *ccp = start;
1247 return FAIL;
1248 }
1249
1250 /* Parse a Neon type specifier. *STR should point at the leading '.'
1251 character. Does no verification at this stage that the type fits the opcode
1252 properly. E.g.,
1253
1254 .i32.i32.s16
1255 .s32.f32
1256 .u16
1257
1258 Can all be legally parsed by this function.
1259
1260 Fills in neon_type struct pointer with parsed information, and updates STR
1261 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1262 type, FAIL if not. */
1263
1264 static int
1265 parse_neon_type (struct neon_type *type, char **str)
1266 {
1267 char *ptr = *str;
1268
1269 if (type)
1270 type->elems = 0;
1271
1272 while (type->elems < NEON_MAX_TYPE_ELS)
1273 {
1274 enum neon_el_type thistype = NT_untyped;
1275 unsigned thissize = -1u;
1276
1277 if (*ptr != '.')
1278 break;
1279
1280 ptr++;
1281
1282 /* Just a size without an explicit type. */
1283 if (ISDIGIT (*ptr))
1284 goto parsesize;
1285
1286 switch (TOLOWER (*ptr))
1287 {
1288 case 'i': thistype = NT_integer; break;
1289 case 'f': thistype = NT_float; break;
1290 case 'p': thistype = NT_poly; break;
1291 case 's': thistype = NT_signed; break;
1292 case 'u': thistype = NT_unsigned; break;
1293 case 'd':
1294 thistype = NT_float;
1295 thissize = 64;
1296 ptr++;
1297 goto done;
1298 default:
1299 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1300 return FAIL;
1301 }
1302
1303 ptr++;
1304
1305 /* .f is an abbreviation for .f32. */
1306 if (thistype == NT_float && !ISDIGIT (*ptr))
1307 thissize = 32;
1308 else
1309 {
1310 parsesize:
1311 thissize = strtoul (ptr, &ptr, 10);
1312
1313 if (thissize != 8 && thissize != 16 && thissize != 32
1314 && thissize != 64)
1315 {
1316 as_bad (_("bad size %d in type specifier"), thissize);
1317 return FAIL;
1318 }
1319 }
1320
1321 done:
1322 if (type)
1323 {
1324 type->el[type->elems].type = thistype;
1325 type->el[type->elems].size = thissize;
1326 type->elems++;
1327 }
1328 }
1329
1330 /* Empty/missing type is not a successful parse. */
1331 if (type->elems == 0)
1332 return FAIL;
1333
1334 *str = ptr;
1335
1336 return SUCCESS;
1337 }
1338
1339 /* Errors may be set multiple times during parsing or bit encoding
1340 (particularly in the Neon bits), but usually the earliest error which is set
1341 will be the most meaningful. Avoid overwriting it with later (cascading)
1342 errors by calling this function. */
1343
1344 static void
1345 first_error (const char *err)
1346 {
1347 if (!inst.error)
1348 inst.error = err;
1349 }
1350
1351 /* Parse a single type, e.g. ".s32", leading period included. */
1352 static int
1353 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1354 {
1355 char *str = *ccp;
1356 struct neon_type optype;
1357
1358 if (*str == '.')
1359 {
1360 if (parse_neon_type (&optype, &str) == SUCCESS)
1361 {
1362 if (optype.elems == 1)
1363 *vectype = optype.el[0];
1364 else
1365 {
1366 first_error (_("only one type should be specified for operand"));
1367 return FAIL;
1368 }
1369 }
1370 else
1371 {
1372 first_error (_("vector type expected"));
1373 return FAIL;
1374 }
1375 }
1376 else
1377 return FAIL;
1378
1379 *ccp = str;
1380
1381 return SUCCESS;
1382 }
1383
1384 /* Special meanings for indices (which have a range of 0-7), which will fit into
1385 a 4-bit integer. */
1386
1387 #define NEON_ALL_LANES 15
1388 #define NEON_INTERLEAVE_LANES 14
1389
1390 /* Parse either a register or a scalar, with an optional type. Return the
1391 register number, and optionally fill in the actual type of the register
1392 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1393 type/index information in *TYPEINFO. */
1394
1395 static int
1396 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1397 enum arm_reg_type *rtype,
1398 struct neon_typed_alias *typeinfo)
1399 {
1400 char *str = *ccp;
1401 struct reg_entry *reg = arm_reg_parse_multi (&str);
1402 struct neon_typed_alias atype;
1403 struct neon_type_el parsetype;
1404
1405 atype.defined = 0;
1406 atype.index = -1;
1407 atype.eltype.type = NT_invtype;
1408 atype.eltype.size = -1;
1409
1410 /* Try alternate syntax for some types of register. Note these are mutually
1411 exclusive with the Neon syntax extensions. */
1412 if (reg == NULL)
1413 {
1414 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1415 if (altreg != FAIL)
1416 *ccp = str;
1417 if (typeinfo)
1418 *typeinfo = atype;
1419 return altreg;
1420 }
1421
1422 /* Undo polymorphism when a set of register types may be accepted. */
1423 if ((type == REG_TYPE_NDQ
1424 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1425 || (type == REG_TYPE_VFSD
1426 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1427 || (type == REG_TYPE_NSDQ
1428 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1429 || reg->type == REG_TYPE_NQ))
1430 || (type == REG_TYPE_MMXWC
1431 && (reg->type == REG_TYPE_MMXWCG)))
1432 type = (enum arm_reg_type) reg->type;
1433
1434 if (type != reg->type)
1435 return FAIL;
1436
1437 if (reg->neon)
1438 atype = *reg->neon;
1439
1440 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1441 {
1442 if ((atype.defined & NTA_HASTYPE) != 0)
1443 {
1444 first_error (_("can't redefine type for operand"));
1445 return FAIL;
1446 }
1447 atype.defined |= NTA_HASTYPE;
1448 atype.eltype = parsetype;
1449 }
1450
1451 if (skip_past_char (&str, '[') == SUCCESS)
1452 {
1453 if (type != REG_TYPE_VFD)
1454 {
1455 first_error (_("only D registers may be indexed"));
1456 return FAIL;
1457 }
1458
1459 if ((atype.defined & NTA_HASINDEX) != 0)
1460 {
1461 first_error (_("can't change index for operand"));
1462 return FAIL;
1463 }
1464
1465 atype.defined |= NTA_HASINDEX;
1466
1467 if (skip_past_char (&str, ']') == SUCCESS)
1468 atype.index = NEON_ALL_LANES;
1469 else
1470 {
1471 expressionS exp;
1472
1473 my_get_expression (&exp, &str, GE_NO_PREFIX);
1474
1475 if (exp.X_op != O_constant)
1476 {
1477 first_error (_("constant expression required"));
1478 return FAIL;
1479 }
1480
1481 if (skip_past_char (&str, ']') == FAIL)
1482 return FAIL;
1483
1484 atype.index = exp.X_add_number;
1485 }
1486 }
1487
1488 if (typeinfo)
1489 *typeinfo = atype;
1490
1491 if (rtype)
1492 *rtype = type;
1493
1494 *ccp = str;
1495
1496 return reg->number;
1497 }
1498
1499 /* Like arm_reg_parse, but allow allow the following extra features:
1500 - If RTYPE is non-zero, return the (possibly restricted) type of the
1501 register (e.g. Neon double or quad reg when either has been requested).
1502 - If this is a Neon vector type with additional type information, fill
1503 in the struct pointed to by VECTYPE (if non-NULL).
1504 This function will fault on encountering a scalar. */
1505
1506 static int
1507 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1508 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1509 {
1510 struct neon_typed_alias atype;
1511 char *str = *ccp;
1512 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1513
1514 if (reg == FAIL)
1515 return FAIL;
1516
1517 /* Do not allow regname(... to parse as a register. */
1518 if (*str == '(')
1519 return FAIL;
1520
1521 /* Do not allow a scalar (reg+index) to parse as a register. */
1522 if ((atype.defined & NTA_HASINDEX) != 0)
1523 {
1524 first_error (_("register operand expected, but got scalar"));
1525 return FAIL;
1526 }
1527
1528 if (vectype)
1529 *vectype = atype.eltype;
1530
1531 *ccp = str;
1532
1533 return reg;
1534 }
1535
1536 #define NEON_SCALAR_REG(X) ((X) >> 4)
1537 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1538
1539 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1540 have enough information to be able to do a good job bounds-checking. So, we
1541 just do easy checks here, and do further checks later. */
1542
1543 static int
1544 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1545 {
1546 int reg;
1547 char *str = *ccp;
1548 struct neon_typed_alias atype;
1549
1550 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1551
1552 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1553 return FAIL;
1554
1555 if (atype.index == NEON_ALL_LANES)
1556 {
1557 first_error (_("scalar must have an index"));
1558 return FAIL;
1559 }
1560 else if (atype.index >= 64 / elsize)
1561 {
1562 first_error (_("scalar index out of range"));
1563 return FAIL;
1564 }
1565
1566 if (type)
1567 *type = atype.eltype;
1568
1569 *ccp = str;
1570
1571 return reg * 16 + atype.index;
1572 }
1573
1574 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1575
1576 static long
1577 parse_reg_list (char ** strp)
1578 {
1579 char * str = * strp;
1580 long range = 0;
1581 int another_range;
1582
1583 /* We come back here if we get ranges concatenated by '+' or '|'. */
1584 do
1585 {
1586 another_range = 0;
1587
1588 if (*str == '{')
1589 {
1590 int in_range = 0;
1591 int cur_reg = -1;
1592
1593 str++;
1594 do
1595 {
1596 int reg;
1597
1598 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1599 {
1600 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1601 return FAIL;
1602 }
1603
1604 if (in_range)
1605 {
1606 int i;
1607
1608 if (reg <= cur_reg)
1609 {
1610 first_error (_("bad range in register list"));
1611 return FAIL;
1612 }
1613
1614 for (i = cur_reg + 1; i < reg; i++)
1615 {
1616 if (range & (1 << i))
1617 as_tsktsk
1618 (_("Warning: duplicated register (r%d) in register list"),
1619 i);
1620 else
1621 range |= 1 << i;
1622 }
1623 in_range = 0;
1624 }
1625
1626 if (range & (1 << reg))
1627 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1628 reg);
1629 else if (reg <= cur_reg)
1630 as_tsktsk (_("Warning: register range not in ascending order"));
1631
1632 range |= 1 << reg;
1633 cur_reg = reg;
1634 }
1635 while (skip_past_comma (&str) != FAIL
1636 || (in_range = 1, *str++ == '-'));
1637 str--;
1638
1639 if (*str++ != '}')
1640 {
1641 first_error (_("missing `}'"));
1642 return FAIL;
1643 }
1644 }
1645 else
1646 {
1647 expressionS exp;
1648
1649 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1650 return FAIL;
1651
1652 if (exp.X_op == O_constant)
1653 {
1654 if (exp.X_add_number
1655 != (exp.X_add_number & 0x0000ffff))
1656 {
1657 inst.error = _("invalid register mask");
1658 return FAIL;
1659 }
1660
1661 if ((range & exp.X_add_number) != 0)
1662 {
1663 int regno = range & exp.X_add_number;
1664
1665 regno &= -regno;
1666 regno = (1 << regno) - 1;
1667 as_tsktsk
1668 (_("Warning: duplicated register (r%d) in register list"),
1669 regno);
1670 }
1671
1672 range |= exp.X_add_number;
1673 }
1674 else
1675 {
1676 if (inst.reloc.type != 0)
1677 {
1678 inst.error = _("expression too complex");
1679 return FAIL;
1680 }
1681
1682 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1683 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1684 inst.reloc.pc_rel = 0;
1685 }
1686 }
1687
1688 if (*str == '|' || *str == '+')
1689 {
1690 str++;
1691 another_range = 1;
1692 }
1693 }
1694 while (another_range);
1695
1696 *strp = str;
1697 return range;
1698 }
1699
1700 /* Types of registers in a list. */
1701
1702 enum reg_list_els
1703 {
1704 REGLIST_VFP_S,
1705 REGLIST_VFP_D,
1706 REGLIST_NEON_D
1707 };
1708
1709 /* Parse a VFP register list. If the string is invalid return FAIL.
1710 Otherwise return the number of registers, and set PBASE to the first
1711 register. Parses registers of type ETYPE.
1712 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1713 - Q registers can be used to specify pairs of D registers
1714 - { } can be omitted from around a singleton register list
1715 FIXME: This is not implemented, as it would require backtracking in
1716 some cases, e.g.:
1717 vtbl.8 d3,d4,d5
1718 This could be done (the meaning isn't really ambiguous), but doesn't
1719 fit in well with the current parsing framework.
1720 - 32 D registers may be used (also true for VFPv3).
1721 FIXME: Types are ignored in these register lists, which is probably a
1722 bug. */
1723
1724 static int
1725 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1726 {
1727 char *str = *ccp;
1728 int base_reg;
1729 int new_base;
1730 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1731 int max_regs = 0;
1732 int count = 0;
1733 int warned = 0;
1734 unsigned long mask = 0;
1735 int i;
1736
1737 if (*str != '{')
1738 {
1739 inst.error = _("expecting {");
1740 return FAIL;
1741 }
1742
1743 str++;
1744
1745 switch (etype)
1746 {
1747 case REGLIST_VFP_S:
1748 regtype = REG_TYPE_VFS;
1749 max_regs = 32;
1750 break;
1751
1752 case REGLIST_VFP_D:
1753 regtype = REG_TYPE_VFD;
1754 break;
1755
1756 case REGLIST_NEON_D:
1757 regtype = REG_TYPE_NDQ;
1758 break;
1759 }
1760
1761 if (etype != REGLIST_VFP_S)
1762 {
1763 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1764 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1765 {
1766 max_regs = 32;
1767 if (thumb_mode)
1768 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1769 fpu_vfp_ext_d32);
1770 else
1771 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1772 fpu_vfp_ext_d32);
1773 }
1774 else
1775 max_regs = 16;
1776 }
1777
1778 base_reg = max_regs;
1779
1780 do
1781 {
1782 int setmask = 1, addregs = 1;
1783
1784 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1785
1786 if (new_base == FAIL)
1787 {
1788 first_error (_(reg_expected_msgs[regtype]));
1789 return FAIL;
1790 }
1791
1792 if (new_base >= max_regs)
1793 {
1794 first_error (_("register out of range in list"));
1795 return FAIL;
1796 }
1797
1798 /* Note: a value of 2 * n is returned for the register Q<n>. */
1799 if (regtype == REG_TYPE_NQ)
1800 {
1801 setmask = 3;
1802 addregs = 2;
1803 }
1804
1805 if (new_base < base_reg)
1806 base_reg = new_base;
1807
1808 if (mask & (setmask << new_base))
1809 {
1810 first_error (_("invalid register list"));
1811 return FAIL;
1812 }
1813
1814 if ((mask >> new_base) != 0 && ! warned)
1815 {
1816 as_tsktsk (_("register list not in ascending order"));
1817 warned = 1;
1818 }
1819
1820 mask |= setmask << new_base;
1821 count += addregs;
1822
1823 if (*str == '-') /* We have the start of a range expression */
1824 {
1825 int high_range;
1826
1827 str++;
1828
1829 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1830 == FAIL)
1831 {
1832 inst.error = gettext (reg_expected_msgs[regtype]);
1833 return FAIL;
1834 }
1835
1836 if (high_range >= max_regs)
1837 {
1838 first_error (_("register out of range in list"));
1839 return FAIL;
1840 }
1841
1842 if (regtype == REG_TYPE_NQ)
1843 high_range = high_range + 1;
1844
1845 if (high_range <= new_base)
1846 {
1847 inst.error = _("register range not in ascending order");
1848 return FAIL;
1849 }
1850
1851 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1852 {
1853 if (mask & (setmask << new_base))
1854 {
1855 inst.error = _("invalid register list");
1856 return FAIL;
1857 }
1858
1859 mask |= setmask << new_base;
1860 count += addregs;
1861 }
1862 }
1863 }
1864 while (skip_past_comma (&str) != FAIL);
1865
1866 str++;
1867
1868 /* Sanity check -- should have raised a parse error above. */
1869 if (count == 0 || count > max_regs)
1870 abort ();
1871
1872 *pbase = base_reg;
1873
1874 /* Final test -- the registers must be consecutive. */
1875 mask >>= base_reg;
1876 for (i = 0; i < count; i++)
1877 {
1878 if ((mask & (1u << i)) == 0)
1879 {
1880 inst.error = _("non-contiguous register range");
1881 return FAIL;
1882 }
1883 }
1884
1885 *ccp = str;
1886
1887 return count;
1888 }
1889
1890 /* True if two alias types are the same. */
1891
1892 static bfd_boolean
1893 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1894 {
1895 if (!a && !b)
1896 return TRUE;
1897
1898 if (!a || !b)
1899 return FALSE;
1900
1901 if (a->defined != b->defined)
1902 return FALSE;
1903
1904 if ((a->defined & NTA_HASTYPE) != 0
1905 && (a->eltype.type != b->eltype.type
1906 || a->eltype.size != b->eltype.size))
1907 return FALSE;
1908
1909 if ((a->defined & NTA_HASINDEX) != 0
1910 && (a->index != b->index))
1911 return FALSE;
1912
1913 return TRUE;
1914 }
1915
1916 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1917 The base register is put in *PBASE.
1918 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1919 the return value.
1920 The register stride (minus one) is put in bit 4 of the return value.
1921 Bits [6:5] encode the list length (minus one).
1922 The type of the list elements is put in *ELTYPE, if non-NULL. */
1923
1924 #define NEON_LANE(X) ((X) & 0xf)
1925 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1926 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1927
1928 static int
1929 parse_neon_el_struct_list (char **str, unsigned *pbase,
1930 struct neon_type_el *eltype)
1931 {
1932 char *ptr = *str;
1933 int base_reg = -1;
1934 int reg_incr = -1;
1935 int count = 0;
1936 int lane = -1;
1937 int leading_brace = 0;
1938 enum arm_reg_type rtype = REG_TYPE_NDQ;
1939 const char *const incr_error = _("register stride must be 1 or 2");
1940 const char *const type_error = _("mismatched element/structure types in list");
1941 struct neon_typed_alias firsttype;
1942
1943 if (skip_past_char (&ptr, '{') == SUCCESS)
1944 leading_brace = 1;
1945
1946 do
1947 {
1948 struct neon_typed_alias atype;
1949 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1950
1951 if (getreg == FAIL)
1952 {
1953 first_error (_(reg_expected_msgs[rtype]));
1954 return FAIL;
1955 }
1956
1957 if (base_reg == -1)
1958 {
1959 base_reg = getreg;
1960 if (rtype == REG_TYPE_NQ)
1961 {
1962 reg_incr = 1;
1963 }
1964 firsttype = atype;
1965 }
1966 else if (reg_incr == -1)
1967 {
1968 reg_incr = getreg - base_reg;
1969 if (reg_incr < 1 || reg_incr > 2)
1970 {
1971 first_error (_(incr_error));
1972 return FAIL;
1973 }
1974 }
1975 else if (getreg != base_reg + reg_incr * count)
1976 {
1977 first_error (_(incr_error));
1978 return FAIL;
1979 }
1980
1981 if (! neon_alias_types_same (&atype, &firsttype))
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986
1987 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1988 modes. */
1989 if (ptr[0] == '-')
1990 {
1991 struct neon_typed_alias htype;
1992 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1993 if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
1995 else if (lane != NEON_INTERLEAVE_LANES)
1996 {
1997 first_error (_(type_error));
1998 return FAIL;
1999 }
2000 if (reg_incr == -1)
2001 reg_incr = 1;
2002 else if (reg_incr != 1)
2003 {
2004 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2005 return FAIL;
2006 }
2007 ptr++;
2008 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2009 if (hireg == FAIL)
2010 {
2011 first_error (_(reg_expected_msgs[rtype]));
2012 return FAIL;
2013 }
2014 if (! neon_alias_types_same (&htype, &firsttype))
2015 {
2016 first_error (_(type_error));
2017 return FAIL;
2018 }
2019 count += hireg + dregs - getreg;
2020 continue;
2021 }
2022
2023 /* If we're using Q registers, we can't use [] or [n] syntax. */
2024 if (rtype == REG_TYPE_NQ)
2025 {
2026 count += 2;
2027 continue;
2028 }
2029
2030 if ((atype.defined & NTA_HASINDEX) != 0)
2031 {
2032 if (lane == -1)
2033 lane = atype.index;
2034 else if (lane != atype.index)
2035 {
2036 first_error (_(type_error));
2037 return FAIL;
2038 }
2039 }
2040 else if (lane == -1)
2041 lane = NEON_INTERLEAVE_LANES;
2042 else if (lane != NEON_INTERLEAVE_LANES)
2043 {
2044 first_error (_(type_error));
2045 return FAIL;
2046 }
2047 count++;
2048 }
2049 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2050
2051 /* No lane set by [x]. We must be interleaving structures. */
2052 if (lane == -1)
2053 lane = NEON_INTERLEAVE_LANES;
2054
2055 /* Sanity check. */
2056 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2057 || (count > 1 && reg_incr == -1))
2058 {
2059 first_error (_("error parsing element/structure list"));
2060 return FAIL;
2061 }
2062
2063 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2064 {
2065 first_error (_("expected }"));
2066 return FAIL;
2067 }
2068
2069 if (reg_incr == -1)
2070 reg_incr = 1;
2071
2072 if (eltype)
2073 *eltype = firsttype.eltype;
2074
2075 *pbase = base_reg;
2076 *str = ptr;
2077
2078 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2079 }
2080
2081 /* Parse an explicit relocation suffix on an expression. This is
2082 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2083 arm_reloc_hsh contains no entries, so this function can only
2084 succeed if there is no () after the word. Returns -1 on error,
2085 BFD_RELOC_UNUSED if there wasn't any suffix. */
2086
2087 static int
2088 parse_reloc (char **str)
2089 {
2090 struct reloc_entry *r;
2091 char *p, *q;
2092
2093 if (**str != '(')
2094 return BFD_RELOC_UNUSED;
2095
2096 p = *str + 1;
2097 q = p;
2098
2099 while (*q && *q != ')' && *q != ',')
2100 q++;
2101 if (*q != ')')
2102 return -1;
2103
2104 if ((r = (struct reloc_entry *)
2105 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2106 return -1;
2107
2108 *str = q + 1;
2109 return r->reloc;
2110 }
2111
2112 /* Directives: register aliases. */
2113
2114 static struct reg_entry *
2115 insert_reg_alias (char *str, unsigned number, int type)
2116 {
2117 struct reg_entry *new_reg;
2118 const char *name;
2119
2120 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2121 {
2122 if (new_reg->builtin)
2123 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2124
2125 /* Only warn about a redefinition if it's not defined as the
2126 same register. */
2127 else if (new_reg->number != number || new_reg->type != type)
2128 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2129
2130 return NULL;
2131 }
2132
2133 name = xstrdup (str);
2134 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2135
2136 new_reg->name = name;
2137 new_reg->number = number;
2138 new_reg->type = type;
2139 new_reg->builtin = FALSE;
2140 new_reg->neon = NULL;
2141
2142 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2143 abort ();
2144
2145 return new_reg;
2146 }
2147
2148 static void
2149 insert_neon_reg_alias (char *str, int number, int type,
2150 struct neon_typed_alias *atype)
2151 {
2152 struct reg_entry *reg = insert_reg_alias (str, number, type);
2153
2154 if (!reg)
2155 {
2156 first_error (_("attempt to redefine typed alias"));
2157 return;
2158 }
2159
2160 if (atype)
2161 {
2162 reg->neon = (struct neon_typed_alias *)
2163 xmalloc (sizeof (struct neon_typed_alias));
2164 *reg->neon = *atype;
2165 }
2166 }
2167
2168 /* Look for the .req directive. This is of the form:
2169
2170 new_register_name .req existing_register_name
2171
2172 If we find one, or if it looks sufficiently like one that we want to
2173 handle any error here, return TRUE. Otherwise return FALSE. */
2174
2175 static bfd_boolean
2176 create_register_alias (char * newname, char *p)
2177 {
2178 struct reg_entry *old;
2179 char *oldname, *nbuf;
2180 size_t nlen;
2181
2182 /* The input scrubber ensures that whitespace after the mnemonic is
2183 collapsed to single spaces. */
2184 oldname = p;
2185 if (strncmp (oldname, " .req ", 6) != 0)
2186 return FALSE;
2187
2188 oldname += 6;
2189 if (*oldname == '\0')
2190 return FALSE;
2191
2192 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2193 if (!old)
2194 {
2195 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2196 return TRUE;
2197 }
2198
2199 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2200 the desired alias name, and p points to its end. If not, then
2201 the desired alias name is in the global original_case_string. */
2202 #ifdef TC_CASE_SENSITIVE
2203 nlen = p - newname;
2204 #else
2205 newname = original_case_string;
2206 nlen = strlen (newname);
2207 #endif
2208
2209 nbuf = (char *) alloca (nlen + 1);
2210 memcpy (nbuf, newname, nlen);
2211 nbuf[nlen] = '\0';
2212
2213 /* Create aliases under the new name as stated; an all-lowercase
2214 version of the new name; and an all-uppercase version of the new
2215 name. */
2216 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2217 {
2218 for (p = nbuf; *p; p++)
2219 *p = TOUPPER (*p);
2220
2221 if (strncmp (nbuf, newname, nlen))
2222 {
2223 /* If this attempt to create an additional alias fails, do not bother
2224 trying to create the all-lower case alias. We will fail and issue
2225 a second, duplicate error message. This situation arises when the
2226 programmer does something like:
2227 foo .req r0
2228 Foo .req r1
2229 The second .req creates the "Foo" alias but then fails to create
2230 the artificial FOO alias because it has already been created by the
2231 first .req. */
2232 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2233 return TRUE;
2234 }
2235
2236 for (p = nbuf; *p; p++)
2237 *p = TOLOWER (*p);
2238
2239 if (strncmp (nbuf, newname, nlen))
2240 insert_reg_alias (nbuf, old->number, old->type);
2241 }
2242
2243 return TRUE;
2244 }
2245
2246 /* Create a Neon typed/indexed register alias using directives, e.g.:
2247 X .dn d5.s32[1]
2248 Y .qn 6.s16
2249 Z .dn d7
2250 T .dn Z[0]
2251 These typed registers can be used instead of the types specified after the
2252 Neon mnemonic, so long as all operands given have types. Types can also be
2253 specified directly, e.g.:
2254 vadd d0.s32, d1.s32, d2.s32 */
2255
2256 static bfd_boolean
2257 create_neon_reg_alias (char *newname, char *p)
2258 {
2259 enum arm_reg_type basetype;
2260 struct reg_entry *basereg;
2261 struct reg_entry mybasereg;
2262 struct neon_type ntype;
2263 struct neon_typed_alias typeinfo;
2264 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2265 int namelen;
2266
2267 typeinfo.defined = 0;
2268 typeinfo.eltype.type = NT_invtype;
2269 typeinfo.eltype.size = -1;
2270 typeinfo.index = -1;
2271
2272 nameend = p;
2273
2274 if (strncmp (p, " .dn ", 5) == 0)
2275 basetype = REG_TYPE_VFD;
2276 else if (strncmp (p, " .qn ", 5) == 0)
2277 basetype = REG_TYPE_NQ;
2278 else
2279 return FALSE;
2280
2281 p += 5;
2282
2283 if (*p == '\0')
2284 return FALSE;
2285
2286 basereg = arm_reg_parse_multi (&p);
2287
2288 if (basereg && basereg->type != basetype)
2289 {
2290 as_bad (_("bad type for register"));
2291 return FALSE;
2292 }
2293
2294 if (basereg == NULL)
2295 {
2296 expressionS exp;
2297 /* Try parsing as an integer. */
2298 my_get_expression (&exp, &p, GE_NO_PREFIX);
2299 if (exp.X_op != O_constant)
2300 {
2301 as_bad (_("expression must be constant"));
2302 return FALSE;
2303 }
2304 basereg = &mybasereg;
2305 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2306 : exp.X_add_number;
2307 basereg->neon = 0;
2308 }
2309
2310 if (basereg->neon)
2311 typeinfo = *basereg->neon;
2312
2313 if (parse_neon_type (&ntype, &p) == SUCCESS)
2314 {
2315 /* We got a type. */
2316 if (typeinfo.defined & NTA_HASTYPE)
2317 {
2318 as_bad (_("can't redefine the type of a register alias"));
2319 return FALSE;
2320 }
2321
2322 typeinfo.defined |= NTA_HASTYPE;
2323 if (ntype.elems != 1)
2324 {
2325 as_bad (_("you must specify a single type only"));
2326 return FALSE;
2327 }
2328 typeinfo.eltype = ntype.el[0];
2329 }
2330
2331 if (skip_past_char (&p, '[') == SUCCESS)
2332 {
2333 expressionS exp;
2334 /* We got a scalar index. */
2335
2336 if (typeinfo.defined & NTA_HASINDEX)
2337 {
2338 as_bad (_("can't redefine the index of a scalar alias"));
2339 return FALSE;
2340 }
2341
2342 my_get_expression (&exp, &p, GE_NO_PREFIX);
2343
2344 if (exp.X_op != O_constant)
2345 {
2346 as_bad (_("scalar index must be constant"));
2347 return FALSE;
2348 }
2349
2350 typeinfo.defined |= NTA_HASINDEX;
2351 typeinfo.index = exp.X_add_number;
2352
2353 if (skip_past_char (&p, ']') == FAIL)
2354 {
2355 as_bad (_("expecting ]"));
2356 return FALSE;
2357 }
2358 }
2359
2360 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2361 the desired alias name, and p points to its end. If not, then
2362 the desired alias name is in the global original_case_string. */
2363 #ifdef TC_CASE_SENSITIVE
2364 namelen = nameend - newname;
2365 #else
2366 newname = original_case_string;
2367 namelen = strlen (newname);
2368 #endif
2369
2370 namebuf = (char *) alloca (namelen + 1);
2371 strncpy (namebuf, newname, namelen);
2372 namebuf[namelen] = '\0';
2373
2374 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2375 typeinfo.defined != 0 ? &typeinfo : NULL);
2376
2377 /* Insert name in all uppercase. */
2378 for (p = namebuf; *p; p++)
2379 *p = TOUPPER (*p);
2380
2381 if (strncmp (namebuf, newname, namelen))
2382 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2383 typeinfo.defined != 0 ? &typeinfo : NULL);
2384
2385 /* Insert name in all lowercase. */
2386 for (p = namebuf; *p; p++)
2387 *p = TOLOWER (*p);
2388
2389 if (strncmp (namebuf, newname, namelen))
2390 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2391 typeinfo.defined != 0 ? &typeinfo : NULL);
2392
2393 return TRUE;
2394 }
2395
2396 /* Should never be called, as .req goes between the alias and the
2397 register name, not at the beginning of the line. */
2398
2399 static void
2400 s_req (int a ATTRIBUTE_UNUSED)
2401 {
2402 as_bad (_("invalid syntax for .req directive"));
2403 }
2404
2405 static void
2406 s_dn (int a ATTRIBUTE_UNUSED)
2407 {
2408 as_bad (_("invalid syntax for .dn directive"));
2409 }
2410
2411 static void
2412 s_qn (int a ATTRIBUTE_UNUSED)
2413 {
2414 as_bad (_("invalid syntax for .qn directive"));
2415 }
2416
2417 /* The .unreq directive deletes an alias which was previously defined
2418 by .req. For example:
2419
2420 my_alias .req r11
2421 .unreq my_alias */
2422
2423 static void
2424 s_unreq (int a ATTRIBUTE_UNUSED)
2425 {
2426 char * name;
2427 char saved_char;
2428
2429 name = input_line_pointer;
2430
2431 while (*input_line_pointer != 0
2432 && *input_line_pointer != ' '
2433 && *input_line_pointer != '\n')
2434 ++input_line_pointer;
2435
2436 saved_char = *input_line_pointer;
2437 *input_line_pointer = 0;
2438
2439 if (!*name)
2440 as_bad (_("invalid syntax for .unreq directive"));
2441 else
2442 {
2443 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2444 name);
2445
2446 if (!reg)
2447 as_bad (_("unknown register alias '%s'"), name);
2448 else if (reg->builtin)
2449 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2450 name);
2451 else
2452 {
2453 char * p;
2454 char * nbuf;
2455
2456 hash_delete (arm_reg_hsh, name, FALSE);
2457 free ((char *) reg->name);
2458 if (reg->neon)
2459 free (reg->neon);
2460 free (reg);
2461
2462 /* Also locate the all upper case and all lower case versions.
2463 Do not complain if we cannot find one or the other as it
2464 was probably deleted above. */
2465
2466 nbuf = strdup (name);
2467 for (p = nbuf; *p; p++)
2468 *p = TOUPPER (*p);
2469 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2470 if (reg)
2471 {
2472 hash_delete (arm_reg_hsh, nbuf, FALSE);
2473 free ((char *) reg->name);
2474 if (reg->neon)
2475 free (reg->neon);
2476 free (reg);
2477 }
2478
2479 for (p = nbuf; *p; p++)
2480 *p = TOLOWER (*p);
2481 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2482 if (reg)
2483 {
2484 hash_delete (arm_reg_hsh, nbuf, FALSE);
2485 free ((char *) reg->name);
2486 if (reg->neon)
2487 free (reg->neon);
2488 free (reg);
2489 }
2490
2491 free (nbuf);
2492 }
2493 }
2494
2495 *input_line_pointer = saved_char;
2496 demand_empty_rest_of_line ();
2497 }
2498
2499 /* Directives: Instruction set selection. */
2500
2501 #ifdef OBJ_ELF
2502 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2503 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2504 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2505 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2506
2507 /* Create a new mapping symbol for the transition to STATE. */
2508
2509 static void
2510 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2511 {
2512 symbolS * symbolP;
2513 const char * symname;
2514 int type;
2515
2516 switch (state)
2517 {
2518 case MAP_DATA:
2519 symname = "$d";
2520 type = BSF_NO_FLAGS;
2521 break;
2522 case MAP_ARM:
2523 symname = "$a";
2524 type = BSF_NO_FLAGS;
2525 break;
2526 case MAP_THUMB:
2527 symname = "$t";
2528 type = BSF_NO_FLAGS;
2529 break;
2530 default:
2531 abort ();
2532 }
2533
2534 symbolP = symbol_new (symname, now_seg, value, frag);
2535 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2536
2537 switch (state)
2538 {
2539 case MAP_ARM:
2540 THUMB_SET_FUNC (symbolP, 0);
2541 ARM_SET_THUMB (symbolP, 0);
2542 ARM_SET_INTERWORK (symbolP, support_interwork);
2543 break;
2544
2545 case MAP_THUMB:
2546 THUMB_SET_FUNC (symbolP, 1);
2547 ARM_SET_THUMB (symbolP, 1);
2548 ARM_SET_INTERWORK (symbolP, support_interwork);
2549 break;
2550
2551 case MAP_DATA:
2552 default:
2553 break;
2554 }
2555
2556 /* Save the mapping symbols for future reference. Also check that
2557 we do not place two mapping symbols at the same offset within a
2558 frag. We'll handle overlap between frags in
2559 check_mapping_symbols.
2560
2561 If .fill or other data filling directive generates zero sized data,
2562 the mapping symbol for the following code will have the same value
2563 as the one generated for the data filling directive. In this case,
2564 we replace the old symbol with the new one at the same address. */
2565 if (value == 0)
2566 {
2567 if (frag->tc_frag_data.first_map != NULL)
2568 {
2569 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2570 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2571 }
2572 frag->tc_frag_data.first_map = symbolP;
2573 }
2574 if (frag->tc_frag_data.last_map != NULL)
2575 {
2576 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2577 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2578 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2579 }
2580 frag->tc_frag_data.last_map = symbolP;
2581 }
2582
2583 /* We must sometimes convert a region marked as code to data during
2584 code alignment, if an odd number of bytes have to be padded. The
2585 code mapping symbol is pushed to an aligned address. */
2586
2587 static void
2588 insert_data_mapping_symbol (enum mstate state,
2589 valueT value, fragS *frag, offsetT bytes)
2590 {
2591 /* If there was already a mapping symbol, remove it. */
2592 if (frag->tc_frag_data.last_map != NULL
2593 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2594 {
2595 symbolS *symp = frag->tc_frag_data.last_map;
2596
2597 if (value == 0)
2598 {
2599 know (frag->tc_frag_data.first_map == symp);
2600 frag->tc_frag_data.first_map = NULL;
2601 }
2602 frag->tc_frag_data.last_map = NULL;
2603 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2604 }
2605
2606 make_mapping_symbol (MAP_DATA, value, frag);
2607 make_mapping_symbol (state, value + bytes, frag);
2608 }
2609
2610 static void mapping_state_2 (enum mstate state, int max_chars);
2611
2612 /* Set the mapping state to STATE. Only call this when about to
2613 emit some STATE bytes to the file. */
2614
2615 void
2616 mapping_state (enum mstate state)
2617 {
2618 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2619
2620 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2621
2622 if (mapstate == state)
2623 /* The mapping symbol has already been emitted.
2624 There is nothing else to do. */
2625 return;
2626
2627 if (state == MAP_ARM || state == MAP_THUMB)
2628 /* PR gas/12931
2629 All ARM instructions require 4-byte alignment.
2630 (Almost) all Thumb instructions require 2-byte alignment.
2631
2632 When emitting instructions into any section, mark the section
2633 appropriately.
2634
2635 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2636 but themselves require 2-byte alignment; this applies to some
2637 PC- relative forms. However, these cases will invovle implicit
2638 literal pool generation or an explicit .align >=2, both of
2639 which will cause the section to me marked with sufficient
2640 alignment. Thus, we don't handle those cases here. */
2641 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2642
2643 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2644 /* This case will be evaluated later in the next else. */
2645 return;
2646 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2647 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2648 {
2649 /* Only add the symbol if the offset is > 0:
2650 if we're at the first frag, check it's size > 0;
2651 if we're not at the first frag, then for sure
2652 the offset is > 0. */
2653 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2654 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2655
2656 if (add_symbol)
2657 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2658 }
2659
2660 mapping_state_2 (state, 0);
2661 #undef TRANSITION
2662 }
2663
2664 /* Same as mapping_state, but MAX_CHARS bytes have already been
2665 allocated. Put the mapping symbol that far back. */
2666
2667 static void
2668 mapping_state_2 (enum mstate state, int max_chars)
2669 {
2670 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2671
2672 if (!SEG_NORMAL (now_seg))
2673 return;
2674
2675 if (mapstate == state)
2676 /* The mapping symbol has already been emitted.
2677 There is nothing else to do. */
2678 return;
2679
2680 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2681 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2682 }
2683 #else
2684 #define mapping_state(x) ((void)0)
2685 #define mapping_state_2(x, y) ((void)0)
2686 #endif
2687
2688 /* Find the real, Thumb encoded start of a Thumb function. */
2689
2690 #ifdef OBJ_COFF
2691 static symbolS *
2692 find_real_start (symbolS * symbolP)
2693 {
2694 char * real_start;
2695 const char * name = S_GET_NAME (symbolP);
2696 symbolS * new_target;
2697
2698 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2699 #define STUB_NAME ".real_start_of"
2700
2701 if (name == NULL)
2702 abort ();
2703
2704 /* The compiler may generate BL instructions to local labels because
2705 it needs to perform a branch to a far away location. These labels
2706 do not have a corresponding ".real_start_of" label. We check
2707 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2708 the ".real_start_of" convention for nonlocal branches. */
2709 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2710 return symbolP;
2711
2712 real_start = ACONCAT ((STUB_NAME, name, NULL));
2713 new_target = symbol_find (real_start);
2714
2715 if (new_target == NULL)
2716 {
2717 as_warn (_("Failed to find real start of function: %s\n"), name);
2718 new_target = symbolP;
2719 }
2720
2721 return new_target;
2722 }
2723 #endif
2724
2725 static void
2726 opcode_select (int width)
2727 {
2728 switch (width)
2729 {
2730 case 16:
2731 if (! thumb_mode)
2732 {
2733 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2734 as_bad (_("selected processor does not support THUMB opcodes"));
2735
2736 thumb_mode = 1;
2737 /* No need to force the alignment, since we will have been
2738 coming from ARM mode, which is word-aligned. */
2739 record_alignment (now_seg, 1);
2740 }
2741 break;
2742
2743 case 32:
2744 if (thumb_mode)
2745 {
2746 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2747 as_bad (_("selected processor does not support ARM opcodes"));
2748
2749 thumb_mode = 0;
2750
2751 if (!need_pass_2)
2752 frag_align (2, 0, 0);
2753
2754 record_alignment (now_seg, 1);
2755 }
2756 break;
2757
2758 default:
2759 as_bad (_("invalid instruction size selected (%d)"), width);
2760 }
2761 }
2762
2763 static void
2764 s_arm (int ignore ATTRIBUTE_UNUSED)
2765 {
2766 opcode_select (32);
2767 demand_empty_rest_of_line ();
2768 }
2769
2770 static void
2771 s_thumb (int ignore ATTRIBUTE_UNUSED)
2772 {
2773 opcode_select (16);
2774 demand_empty_rest_of_line ();
2775 }
2776
2777 static void
2778 s_code (int unused ATTRIBUTE_UNUSED)
2779 {
2780 int temp;
2781
2782 temp = get_absolute_expression ();
2783 switch (temp)
2784 {
2785 case 16:
2786 case 32:
2787 opcode_select (temp);
2788 break;
2789
2790 default:
2791 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2792 }
2793 }
2794
2795 static void
2796 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2797 {
2798 /* If we are not already in thumb mode go into it, EVEN if
2799 the target processor does not support thumb instructions.
2800 This is used by gcc/config/arm/lib1funcs.asm for example
2801 to compile interworking support functions even if the
2802 target processor should not support interworking. */
2803 if (! thumb_mode)
2804 {
2805 thumb_mode = 2;
2806 record_alignment (now_seg, 1);
2807 }
2808
2809 demand_empty_rest_of_line ();
2810 }
2811
2812 static void
2813 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2814 {
2815 s_thumb (0);
2816
2817 /* The following label is the name/address of the start of a Thumb function.
2818 We need to know this for the interworking support. */
2819 label_is_thumb_function_name = TRUE;
2820 }
2821
2822 /* Perform a .set directive, but also mark the alias as
2823 being a thumb function. */
2824
2825 static void
2826 s_thumb_set (int equiv)
2827 {
2828 /* XXX the following is a duplicate of the code for s_set() in read.c
2829 We cannot just call that code as we need to get at the symbol that
2830 is created. */
2831 char * name;
2832 char delim;
2833 char * end_name;
2834 symbolS * symbolP;
2835
2836 /* Especial apologies for the random logic:
2837 This just grew, and could be parsed much more simply!
2838 Dean - in haste. */
2839 name = input_line_pointer;
2840 delim = get_symbol_end ();
2841 end_name = input_line_pointer;
2842 *end_name = delim;
2843
2844 if (*input_line_pointer != ',')
2845 {
2846 *end_name = 0;
2847 as_bad (_("expected comma after name \"%s\""), name);
2848 *end_name = delim;
2849 ignore_rest_of_line ();
2850 return;
2851 }
2852
2853 input_line_pointer++;
2854 *end_name = 0;
2855
2856 if (name[0] == '.' && name[1] == '\0')
2857 {
2858 /* XXX - this should not happen to .thumb_set. */
2859 abort ();
2860 }
2861
2862 if ((symbolP = symbol_find (name)) == NULL
2863 && (symbolP = md_undefined_symbol (name)) == NULL)
2864 {
2865 #ifndef NO_LISTING
2866 /* When doing symbol listings, play games with dummy fragments living
2867 outside the normal fragment chain to record the file and line info
2868 for this symbol. */
2869 if (listing & LISTING_SYMBOLS)
2870 {
2871 extern struct list_info_struct * listing_tail;
2872 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2873
2874 memset (dummy_frag, 0, sizeof (fragS));
2875 dummy_frag->fr_type = rs_fill;
2876 dummy_frag->line = listing_tail;
2877 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2878 dummy_frag->fr_symbol = symbolP;
2879 }
2880 else
2881 #endif
2882 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2883
2884 #ifdef OBJ_COFF
2885 /* "set" symbols are local unless otherwise specified. */
2886 SF_SET_LOCAL (symbolP);
2887 #endif /* OBJ_COFF */
2888 } /* Make a new symbol. */
2889
2890 symbol_table_insert (symbolP);
2891
2892 * end_name = delim;
2893
2894 if (equiv
2895 && S_IS_DEFINED (symbolP)
2896 && S_GET_SEGMENT (symbolP) != reg_section)
2897 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2898
2899 pseudo_set (symbolP);
2900
2901 demand_empty_rest_of_line ();
2902
2903 /* XXX Now we come to the Thumb specific bit of code. */
2904
2905 THUMB_SET_FUNC (symbolP, 1);
2906 ARM_SET_THUMB (symbolP, 1);
2907 #if defined OBJ_ELF || defined OBJ_COFF
2908 ARM_SET_INTERWORK (symbolP, support_interwork);
2909 #endif
2910 }
2911
2912 /* Directives: Mode selection. */
2913
2914 /* .syntax [unified|divided] - choose the new unified syntax
2915 (same for Arm and Thumb encoding, modulo slight differences in what
2916 can be represented) or the old divergent syntax for each mode. */
2917 static void
2918 s_syntax (int unused ATTRIBUTE_UNUSED)
2919 {
2920 char *name, delim;
2921
2922 name = input_line_pointer;
2923 delim = get_symbol_end ();
2924
2925 if (!strcasecmp (name, "unified"))
2926 unified_syntax = TRUE;
2927 else if (!strcasecmp (name, "divided"))
2928 unified_syntax = FALSE;
2929 else
2930 {
2931 as_bad (_("unrecognized syntax mode \"%s\""), name);
2932 return;
2933 }
2934 *input_line_pointer = delim;
2935 demand_empty_rest_of_line ();
2936 }
2937
2938 /* Directives: sectioning and alignment. */
2939
2940 /* Same as s_align_ptwo but align 0 => align 2. */
2941
2942 static void
2943 s_align (int unused ATTRIBUTE_UNUSED)
2944 {
2945 int temp;
2946 bfd_boolean fill_p;
2947 long temp_fill;
2948 long max_alignment = 15;
2949
2950 temp = get_absolute_expression ();
2951 if (temp > max_alignment)
2952 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2953 else if (temp < 0)
2954 {
2955 as_bad (_("alignment negative. 0 assumed."));
2956 temp = 0;
2957 }
2958
2959 if (*input_line_pointer == ',')
2960 {
2961 input_line_pointer++;
2962 temp_fill = get_absolute_expression ();
2963 fill_p = TRUE;
2964 }
2965 else
2966 {
2967 fill_p = FALSE;
2968 temp_fill = 0;
2969 }
2970
2971 if (!temp)
2972 temp = 2;
2973
2974 /* Only make a frag if we HAVE to. */
2975 if (temp && !need_pass_2)
2976 {
2977 if (!fill_p && subseg_text_p (now_seg))
2978 frag_align_code (temp, 0);
2979 else
2980 frag_align (temp, (int) temp_fill, 0);
2981 }
2982 demand_empty_rest_of_line ();
2983
2984 record_alignment (now_seg, temp);
2985 }
2986
2987 static void
2988 s_bss (int ignore ATTRIBUTE_UNUSED)
2989 {
2990 /* We don't support putting frags in the BSS segment, we fake it by
2991 marking in_bss, then looking at s_skip for clues. */
2992 subseg_set (bss_section, 0);
2993 demand_empty_rest_of_line ();
2994
2995 #ifdef md_elf_section_change_hook
2996 md_elf_section_change_hook ();
2997 #endif
2998 }
2999
3000 static void
3001 s_even (int ignore ATTRIBUTE_UNUSED)
3002 {
3003 /* Never make frag if expect extra pass. */
3004 if (!need_pass_2)
3005 frag_align (1, 0, 0);
3006
3007 record_alignment (now_seg, 1);
3008
3009 demand_empty_rest_of_line ();
3010 }
3011
3012 /* Directives: Literal pools. */
3013
3014 static literal_pool *
3015 find_literal_pool (void)
3016 {
3017 literal_pool * pool;
3018
3019 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3020 {
3021 if (pool->section == now_seg
3022 && pool->sub_section == now_subseg)
3023 break;
3024 }
3025
3026 return pool;
3027 }
3028
3029 static literal_pool *
3030 find_or_make_literal_pool (void)
3031 {
3032 /* Next literal pool ID number. */
3033 static unsigned int latest_pool_num = 1;
3034 literal_pool * pool;
3035
3036 pool = find_literal_pool ();
3037
3038 if (pool == NULL)
3039 {
3040 /* Create a new pool. */
3041 pool = (literal_pool *) xmalloc (sizeof (* pool));
3042 if (! pool)
3043 return NULL;
3044
3045 pool->next_free_entry = 0;
3046 pool->section = now_seg;
3047 pool->sub_section = now_subseg;
3048 pool->next = list_of_pools;
3049 pool->symbol = NULL;
3050
3051 /* Add it to the list. */
3052 list_of_pools = pool;
3053 }
3054
3055 /* New pools, and emptied pools, will have a NULL symbol. */
3056 if (pool->symbol == NULL)
3057 {
3058 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3059 (valueT) 0, &zero_address_frag);
3060 pool->id = latest_pool_num ++;
3061 }
3062
3063 /* Done. */
3064 return pool;
3065 }
3066
3067 /* Add the literal in the global 'inst'
3068 structure to the relevant literal pool. */
3069
3070 static int
3071 add_to_lit_pool (void)
3072 {
3073 literal_pool * pool;
3074 unsigned int entry;
3075
3076 pool = find_or_make_literal_pool ();
3077
3078 /* Check if this literal value is already in the pool. */
3079 for (entry = 0; entry < pool->next_free_entry; entry ++)
3080 {
3081 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3082 && (inst.reloc.exp.X_op == O_constant)
3083 && (pool->literals[entry].X_add_number
3084 == inst.reloc.exp.X_add_number)
3085 && (pool->literals[entry].X_unsigned
3086 == inst.reloc.exp.X_unsigned))
3087 break;
3088
3089 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3090 && (inst.reloc.exp.X_op == O_symbol)
3091 && (pool->literals[entry].X_add_number
3092 == inst.reloc.exp.X_add_number)
3093 && (pool->literals[entry].X_add_symbol
3094 == inst.reloc.exp.X_add_symbol)
3095 && (pool->literals[entry].X_op_symbol
3096 == inst.reloc.exp.X_op_symbol))
3097 break;
3098 }
3099
3100 /* Do we need to create a new entry? */
3101 if (entry == pool->next_free_entry)
3102 {
3103 if (entry >= MAX_LITERAL_POOL_SIZE)
3104 {
3105 inst.error = _("literal pool overflow");
3106 return FAIL;
3107 }
3108
3109 pool->literals[entry] = inst.reloc.exp;
3110 #ifdef OBJ_ELF
3111 /* PR ld/12974: Record the location of the first source line to reference
3112 this entry in the literal pool. If it turns out during linking that the
3113 symbol does not exist we will be able to give an accurate line number for
3114 the (first use of the) missing reference. */
3115 if (debug_type == DEBUG_DWARF2)
3116 dwarf2_where (pool->locs + entry);
3117 #endif
3118 pool->next_free_entry += 1;
3119 }
3120
3121 inst.reloc.exp.X_op = O_symbol;
3122 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3123 inst.reloc.exp.X_add_symbol = pool->symbol;
3124
3125 return SUCCESS;
3126 }
3127
3128 /* Can't use symbol_new here, so have to create a symbol and then at
3129 a later date assign it a value. Thats what these functions do. */
3130
3131 static void
3132 symbol_locate (symbolS * symbolP,
3133 const char * name, /* It is copied, the caller can modify. */
3134 segT segment, /* Segment identifier (SEG_<something>). */
3135 valueT valu, /* Symbol value. */
3136 fragS * frag) /* Associated fragment. */
3137 {
3138 unsigned int name_length;
3139 char * preserved_copy_of_name;
3140
3141 name_length = strlen (name) + 1; /* +1 for \0. */
3142 obstack_grow (&notes, name, name_length);
3143 preserved_copy_of_name = (char *) obstack_finish (&notes);
3144
3145 #ifdef tc_canonicalize_symbol_name
3146 preserved_copy_of_name =
3147 tc_canonicalize_symbol_name (preserved_copy_of_name);
3148 #endif
3149
3150 S_SET_NAME (symbolP, preserved_copy_of_name);
3151
3152 S_SET_SEGMENT (symbolP, segment);
3153 S_SET_VALUE (symbolP, valu);
3154 symbol_clear_list_pointers (symbolP);
3155
3156 symbol_set_frag (symbolP, frag);
3157
3158 /* Link to end of symbol chain. */
3159 {
3160 extern int symbol_table_frozen;
3161
3162 if (symbol_table_frozen)
3163 abort ();
3164 }
3165
3166 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3167
3168 obj_symbol_new_hook (symbolP);
3169
3170 #ifdef tc_symbol_new_hook
3171 tc_symbol_new_hook (symbolP);
3172 #endif
3173
3174 #ifdef DEBUG_SYMS
3175 verify_symbol_chain (symbol_rootP, symbol_lastP);
3176 #endif /* DEBUG_SYMS */
3177 }
3178
3179
3180 static void
3181 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3182 {
3183 unsigned int entry;
3184 literal_pool * pool;
3185 char sym_name[20];
3186
3187 pool = find_literal_pool ();
3188 if (pool == NULL
3189 || pool->symbol == NULL
3190 || pool->next_free_entry == 0)
3191 return;
3192
3193 mapping_state (MAP_DATA);
3194
3195 /* Align pool as you have word accesses.
3196 Only make a frag if we have to. */
3197 if (!need_pass_2)
3198 frag_align (2, 0, 0);
3199
3200 record_alignment (now_seg, 2);
3201
3202 sprintf (sym_name, "$$lit_\002%x", pool->id);
3203
3204 symbol_locate (pool->symbol, sym_name, now_seg,
3205 (valueT) frag_now_fix (), frag_now);
3206 symbol_table_insert (pool->symbol);
3207
3208 ARM_SET_THUMB (pool->symbol, thumb_mode);
3209
3210 #if defined OBJ_COFF || defined OBJ_ELF
3211 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3212 #endif
3213
3214 for (entry = 0; entry < pool->next_free_entry; entry ++)
3215 {
3216 #ifdef OBJ_ELF
3217 if (debug_type == DEBUG_DWARF2)
3218 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3219 #endif
3220 /* First output the expression in the instruction to the pool. */
3221 emit_expr (&(pool->literals[entry]), 4); /* .word */
3222 }
3223
3224 /* Mark the pool as empty. */
3225 pool->next_free_entry = 0;
3226 pool->symbol = NULL;
3227 }
3228
3229 #ifdef OBJ_ELF
3230 /* Forward declarations for functions below, in the MD interface
3231 section. */
3232 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3233 static valueT create_unwind_entry (int);
3234 static void start_unwind_section (const segT, int);
3235 static void add_unwind_opcode (valueT, int);
3236 static void flush_pending_unwind (void);
3237
3238 /* Directives: Data. */
3239
3240 static void
3241 s_arm_elf_cons (int nbytes)
3242 {
3243 expressionS exp;
3244
3245 #ifdef md_flush_pending_output
3246 md_flush_pending_output ();
3247 #endif
3248
3249 if (is_it_end_of_statement ())
3250 {
3251 demand_empty_rest_of_line ();
3252 return;
3253 }
3254
3255 #ifdef md_cons_align
3256 md_cons_align (nbytes);
3257 #endif
3258
3259 mapping_state (MAP_DATA);
3260 do
3261 {
3262 int reloc;
3263 char *base = input_line_pointer;
3264
3265 expression (& exp);
3266
3267 if (exp.X_op != O_symbol)
3268 emit_expr (&exp, (unsigned int) nbytes);
3269 else
3270 {
3271 char *before_reloc = input_line_pointer;
3272 reloc = parse_reloc (&input_line_pointer);
3273 if (reloc == -1)
3274 {
3275 as_bad (_("unrecognized relocation suffix"));
3276 ignore_rest_of_line ();
3277 return;
3278 }
3279 else if (reloc == BFD_RELOC_UNUSED)
3280 emit_expr (&exp, (unsigned int) nbytes);
3281 else
3282 {
3283 reloc_howto_type *howto = (reloc_howto_type *)
3284 bfd_reloc_type_lookup (stdoutput,
3285 (bfd_reloc_code_real_type) reloc);
3286 int size = bfd_get_reloc_size (howto);
3287
3288 if (reloc == BFD_RELOC_ARM_PLT32)
3289 {
3290 as_bad (_("(plt) is only valid on branch targets"));
3291 reloc = BFD_RELOC_UNUSED;
3292 size = 0;
3293 }
3294
3295 if (size > nbytes)
3296 as_bad (_("%s relocations do not fit in %d bytes"),
3297 howto->name, nbytes);
3298 else
3299 {
3300 /* We've parsed an expression stopping at O_symbol.
3301 But there may be more expression left now that we
3302 have parsed the relocation marker. Parse it again.
3303 XXX Surely there is a cleaner way to do this. */
3304 char *p = input_line_pointer;
3305 int offset;
3306 char *save_buf = (char *) alloca (input_line_pointer - base);
3307 memcpy (save_buf, base, input_line_pointer - base);
3308 memmove (base + (input_line_pointer - before_reloc),
3309 base, before_reloc - base);
3310
3311 input_line_pointer = base + (input_line_pointer-before_reloc);
3312 expression (&exp);
3313 memcpy (base, save_buf, p - base);
3314
3315 offset = nbytes - size;
3316 p = frag_more ((int) nbytes);
3317 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3318 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3319 }
3320 }
3321 }
3322 }
3323 while (*input_line_pointer++ == ',');
3324
3325 /* Put terminator back into stream. */
3326 input_line_pointer --;
3327 demand_empty_rest_of_line ();
3328 }
3329
3330 /* Emit an expression containing a 32-bit thumb instruction.
3331 Implementation based on put_thumb32_insn. */
3332
3333 static void
3334 emit_thumb32_expr (expressionS * exp)
3335 {
3336 expressionS exp_high = *exp;
3337
3338 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3339 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3340 exp->X_add_number &= 0xffff;
3341 emit_expr (exp, (unsigned int) THUMB_SIZE);
3342 }
3343
3344 /* Guess the instruction size based on the opcode. */
3345
3346 static int
3347 thumb_insn_size (int opcode)
3348 {
3349 if ((unsigned int) opcode < 0xe800u)
3350 return 2;
3351 else if ((unsigned int) opcode >= 0xe8000000u)
3352 return 4;
3353 else
3354 return 0;
3355 }
3356
3357 static bfd_boolean
3358 emit_insn (expressionS *exp, int nbytes)
3359 {
3360 int size = 0;
3361
3362 if (exp->X_op == O_constant)
3363 {
3364 size = nbytes;
3365
3366 if (size == 0)
3367 size = thumb_insn_size (exp->X_add_number);
3368
3369 if (size != 0)
3370 {
3371 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3372 {
3373 as_bad (_(".inst.n operand too big. "\
3374 "Use .inst.w instead"));
3375 size = 0;
3376 }
3377 else
3378 {
3379 if (now_it.state == AUTOMATIC_IT_BLOCK)
3380 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3381 else
3382 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3383
3384 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3385 emit_thumb32_expr (exp);
3386 else
3387 emit_expr (exp, (unsigned int) size);
3388
3389 it_fsm_post_encode ();
3390 }
3391 }
3392 else
3393 as_bad (_("cannot determine Thumb instruction size. " \
3394 "Use .inst.n/.inst.w instead"));
3395 }
3396 else
3397 as_bad (_("constant expression required"));
3398
3399 return (size != 0);
3400 }
3401
3402 /* Like s_arm_elf_cons but do not use md_cons_align and
3403 set the mapping state to MAP_ARM/MAP_THUMB. */
3404
3405 static void
3406 s_arm_elf_inst (int nbytes)
3407 {
3408 if (is_it_end_of_statement ())
3409 {
3410 demand_empty_rest_of_line ();
3411 return;
3412 }
3413
3414 /* Calling mapping_state () here will not change ARM/THUMB,
3415 but will ensure not to be in DATA state. */
3416
3417 if (thumb_mode)
3418 mapping_state (MAP_THUMB);
3419 else
3420 {
3421 if (nbytes != 0)
3422 {
3423 as_bad (_("width suffixes are invalid in ARM mode"));
3424 ignore_rest_of_line ();
3425 return;
3426 }
3427
3428 nbytes = 4;
3429
3430 mapping_state (MAP_ARM);
3431 }
3432
3433 do
3434 {
3435 expressionS exp;
3436
3437 expression (& exp);
3438
3439 if (! emit_insn (& exp, nbytes))
3440 {
3441 ignore_rest_of_line ();
3442 return;
3443 }
3444 }
3445 while (*input_line_pointer++ == ',');
3446
3447 /* Put terminator back into stream. */
3448 input_line_pointer --;
3449 demand_empty_rest_of_line ();
3450 }
3451
3452 /* Parse a .rel31 directive. */
3453
3454 static void
3455 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3456 {
3457 expressionS exp;
3458 char *p;
3459 valueT highbit;
3460
3461 highbit = 0;
3462 if (*input_line_pointer == '1')
3463 highbit = 0x80000000;
3464 else if (*input_line_pointer != '0')
3465 as_bad (_("expected 0 or 1"));
3466
3467 input_line_pointer++;
3468 if (*input_line_pointer != ',')
3469 as_bad (_("missing comma"));
3470 input_line_pointer++;
3471
3472 #ifdef md_flush_pending_output
3473 md_flush_pending_output ();
3474 #endif
3475
3476 #ifdef md_cons_align
3477 md_cons_align (4);
3478 #endif
3479
3480 mapping_state (MAP_DATA);
3481
3482 expression (&exp);
3483
3484 p = frag_more (4);
3485 md_number_to_chars (p, highbit, 4);
3486 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3487 BFD_RELOC_ARM_PREL31);
3488
3489 demand_empty_rest_of_line ();
3490 }
3491
3492 /* Directives: AEABI stack-unwind tables. */
3493
3494 /* Parse an unwind_fnstart directive. Simply records the current location. */
3495
3496 static void
3497 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3498 {
3499 demand_empty_rest_of_line ();
3500 if (unwind.proc_start)
3501 {
3502 as_bad (_("duplicate .fnstart directive"));
3503 return;
3504 }
3505
3506 /* Mark the start of the function. */
3507 unwind.proc_start = expr_build_dot ();
3508
3509 /* Reset the rest of the unwind info. */
3510 unwind.opcode_count = 0;
3511 unwind.table_entry = NULL;
3512 unwind.personality_routine = NULL;
3513 unwind.personality_index = -1;
3514 unwind.frame_size = 0;
3515 unwind.fp_offset = 0;
3516 unwind.fp_reg = REG_SP;
3517 unwind.fp_used = 0;
3518 unwind.sp_restored = 0;
3519 }
3520
3521
3522 /* Parse a handlerdata directive. Creates the exception handling table entry
3523 for the function. */
3524
3525 static void
3526 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3527 {
3528 demand_empty_rest_of_line ();
3529 if (!unwind.proc_start)
3530 as_bad (MISSING_FNSTART);
3531
3532 if (unwind.table_entry)
3533 as_bad (_("duplicate .handlerdata directive"));
3534
3535 create_unwind_entry (1);
3536 }
3537
3538 /* Parse an unwind_fnend directive. Generates the index table entry. */
3539
3540 static void
3541 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3542 {
3543 long where;
3544 char *ptr;
3545 valueT val;
3546 unsigned int marked_pr_dependency;
3547
3548 demand_empty_rest_of_line ();
3549
3550 if (!unwind.proc_start)
3551 {
3552 as_bad (_(".fnend directive without .fnstart"));
3553 return;
3554 }
3555
3556 /* Add eh table entry. */
3557 if (unwind.table_entry == NULL)
3558 val = create_unwind_entry (0);
3559 else
3560 val = 0;
3561
3562 /* Add index table entry. This is two words. */
3563 start_unwind_section (unwind.saved_seg, 1);
3564 frag_align (2, 0, 0);
3565 record_alignment (now_seg, 2);
3566
3567 ptr = frag_more (8);
3568 memset (ptr, 0, 8);
3569 where = frag_now_fix () - 8;
3570
3571 /* Self relative offset of the function start. */
3572 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3573 BFD_RELOC_ARM_PREL31);
3574
3575 /* Indicate dependency on EHABI-defined personality routines to the
3576 linker, if it hasn't been done already. */
3577 marked_pr_dependency
3578 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3579 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3580 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3581 {
3582 static const char *const name[] =
3583 {
3584 "__aeabi_unwind_cpp_pr0",
3585 "__aeabi_unwind_cpp_pr1",
3586 "__aeabi_unwind_cpp_pr2"
3587 };
3588 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3589 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3590 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3591 |= 1 << unwind.personality_index;
3592 }
3593
3594 if (val)
3595 /* Inline exception table entry. */
3596 md_number_to_chars (ptr + 4, val, 4);
3597 else
3598 /* Self relative offset of the table entry. */
3599 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3600 BFD_RELOC_ARM_PREL31);
3601
3602 /* Restore the original section. */
3603 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3604
3605 unwind.proc_start = NULL;
3606 }
3607
3608
3609 /* Parse an unwind_cantunwind directive. */
3610
3611 static void
3612 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3613 {
3614 demand_empty_rest_of_line ();
3615 if (!unwind.proc_start)
3616 as_bad (MISSING_FNSTART);
3617
3618 if (unwind.personality_routine || unwind.personality_index != -1)
3619 as_bad (_("personality routine specified for cantunwind frame"));
3620
3621 unwind.personality_index = -2;
3622 }
3623
3624
3625 /* Parse a personalityindex directive. */
3626
3627 static void
3628 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3629 {
3630 expressionS exp;
3631
3632 if (!unwind.proc_start)
3633 as_bad (MISSING_FNSTART);
3634
3635 if (unwind.personality_routine || unwind.personality_index != -1)
3636 as_bad (_("duplicate .personalityindex directive"));
3637
3638 expression (&exp);
3639
3640 if (exp.X_op != O_constant
3641 || exp.X_add_number < 0 || exp.X_add_number > 15)
3642 {
3643 as_bad (_("bad personality routine number"));
3644 ignore_rest_of_line ();
3645 return;
3646 }
3647
3648 unwind.personality_index = exp.X_add_number;
3649
3650 demand_empty_rest_of_line ();
3651 }
3652
3653
3654 /* Parse a personality directive. */
3655
3656 static void
3657 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3658 {
3659 char *name, *p, c;
3660
3661 if (!unwind.proc_start)
3662 as_bad (MISSING_FNSTART);
3663
3664 if (unwind.personality_routine || unwind.personality_index != -1)
3665 as_bad (_("duplicate .personality directive"));
3666
3667 name = input_line_pointer;
3668 c = get_symbol_end ();
3669 p = input_line_pointer;
3670 unwind.personality_routine = symbol_find_or_make (name);
3671 *p = c;
3672 demand_empty_rest_of_line ();
3673 }
3674
3675
3676 /* Parse a directive saving core registers. */
3677
3678 static void
3679 s_arm_unwind_save_core (void)
3680 {
3681 valueT op;
3682 long range;
3683 int n;
3684
3685 range = parse_reg_list (&input_line_pointer);
3686 if (range == FAIL)
3687 {
3688 as_bad (_("expected register list"));
3689 ignore_rest_of_line ();
3690 return;
3691 }
3692
3693 demand_empty_rest_of_line ();
3694
3695 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3696 into .unwind_save {..., sp...}. We aren't bothered about the value of
3697 ip because it is clobbered by calls. */
3698 if (unwind.sp_restored && unwind.fp_reg == 12
3699 && (range & 0x3000) == 0x1000)
3700 {
3701 unwind.opcode_count--;
3702 unwind.sp_restored = 0;
3703 range = (range | 0x2000) & ~0x1000;
3704 unwind.pending_offset = 0;
3705 }
3706
3707 /* Pop r4-r15. */
3708 if (range & 0xfff0)
3709 {
3710 /* See if we can use the short opcodes. These pop a block of up to 8
3711 registers starting with r4, plus maybe r14. */
3712 for (n = 0; n < 8; n++)
3713 {
3714 /* Break at the first non-saved register. */
3715 if ((range & (1 << (n + 4))) == 0)
3716 break;
3717 }
3718 /* See if there are any other bits set. */
3719 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3720 {
3721 /* Use the long form. */
3722 op = 0x8000 | ((range >> 4) & 0xfff);
3723 add_unwind_opcode (op, 2);
3724 }
3725 else
3726 {
3727 /* Use the short form. */
3728 if (range & 0x4000)
3729 op = 0xa8; /* Pop r14. */
3730 else
3731 op = 0xa0; /* Do not pop r14. */
3732 op |= (n - 1);
3733 add_unwind_opcode (op, 1);
3734 }
3735 }
3736
3737 /* Pop r0-r3. */
3738 if (range & 0xf)
3739 {
3740 op = 0xb100 | (range & 0xf);
3741 add_unwind_opcode (op, 2);
3742 }
3743
3744 /* Record the number of bytes pushed. */
3745 for (n = 0; n < 16; n++)
3746 {
3747 if (range & (1 << n))
3748 unwind.frame_size += 4;
3749 }
3750 }
3751
3752
3753 /* Parse a directive saving FPA registers. */
3754
3755 static void
3756 s_arm_unwind_save_fpa (int reg)
3757 {
3758 expressionS exp;
3759 int num_regs;
3760 valueT op;
3761
3762 /* Get Number of registers to transfer. */
3763 if (skip_past_comma (&input_line_pointer) != FAIL)
3764 expression (&exp);
3765 else
3766 exp.X_op = O_illegal;
3767
3768 if (exp.X_op != O_constant)
3769 {
3770 as_bad (_("expected , <constant>"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 num_regs = exp.X_add_number;
3776
3777 if (num_regs < 1 || num_regs > 4)
3778 {
3779 as_bad (_("number of registers must be in the range [1:4]"));
3780 ignore_rest_of_line ();
3781 return;
3782 }
3783
3784 demand_empty_rest_of_line ();
3785
3786 if (reg == 4)
3787 {
3788 /* Short form. */
3789 op = 0xb4 | (num_regs - 1);
3790 add_unwind_opcode (op, 1);
3791 }
3792 else
3793 {
3794 /* Long form. */
3795 op = 0xc800 | (reg << 4) | (num_regs - 1);
3796 add_unwind_opcode (op, 2);
3797 }
3798 unwind.frame_size += num_regs * 12;
3799 }
3800
3801
3802 /* Parse a directive saving VFP registers for ARMv6 and above. */
3803
3804 static void
3805 s_arm_unwind_save_vfp_armv6 (void)
3806 {
3807 int count;
3808 unsigned int start;
3809 valueT op;
3810 int num_vfpv3_regs = 0;
3811 int num_regs_below_16;
3812
3813 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3814 if (count == FAIL)
3815 {
3816 as_bad (_("expected register list"));
3817 ignore_rest_of_line ();
3818 return;
3819 }
3820
3821 demand_empty_rest_of_line ();
3822
3823 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3824 than FSTMX/FLDMX-style ones). */
3825
3826 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3827 if (start >= 16)
3828 num_vfpv3_regs = count;
3829 else if (start + count > 16)
3830 num_vfpv3_regs = start + count - 16;
3831
3832 if (num_vfpv3_regs > 0)
3833 {
3834 int start_offset = start > 16 ? start - 16 : 0;
3835 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 /* Generate opcode for registers numbered in the range 0 .. 15. */
3840 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3841 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3842 if (num_regs_below_16 > 0)
3843 {
3844 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3845 add_unwind_opcode (op, 2);
3846 }
3847
3848 unwind.frame_size += count * 8;
3849 }
3850
3851
3852 /* Parse a directive saving VFP registers for pre-ARMv6. */
3853
3854 static void
3855 s_arm_unwind_save_vfp (void)
3856 {
3857 int count;
3858 unsigned int reg;
3859 valueT op;
3860
3861 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3862 if (count == FAIL)
3863 {
3864 as_bad (_("expected register list"));
3865 ignore_rest_of_line ();
3866 return;
3867 }
3868
3869 demand_empty_rest_of_line ();
3870
3871 if (reg == 8)
3872 {
3873 /* Short form. */
3874 op = 0xb8 | (count - 1);
3875 add_unwind_opcode (op, 1);
3876 }
3877 else
3878 {
3879 /* Long form. */
3880 op = 0xb300 | (reg << 4) | (count - 1);
3881 add_unwind_opcode (op, 2);
3882 }
3883 unwind.frame_size += count * 8 + 4;
3884 }
3885
3886
3887 /* Parse a directive saving iWMMXt data registers. */
3888
3889 static void
3890 s_arm_unwind_save_mmxwr (void)
3891 {
3892 int reg;
3893 int hi_reg;
3894 int i;
3895 unsigned mask = 0;
3896 valueT op;
3897
3898 if (*input_line_pointer == '{')
3899 input_line_pointer++;
3900
3901 do
3902 {
3903 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3904
3905 if (reg == FAIL)
3906 {
3907 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3908 goto error;
3909 }
3910
3911 if (mask >> reg)
3912 as_tsktsk (_("register list not in ascending order"));
3913 mask |= 1 << reg;
3914
3915 if (*input_line_pointer == '-')
3916 {
3917 input_line_pointer++;
3918 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3919 if (hi_reg == FAIL)
3920 {
3921 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3922 goto error;
3923 }
3924 else if (reg >= hi_reg)
3925 {
3926 as_bad (_("bad register range"));
3927 goto error;
3928 }
3929 for (; reg < hi_reg; reg++)
3930 mask |= 1 << reg;
3931 }
3932 }
3933 while (skip_past_comma (&input_line_pointer) != FAIL);
3934
3935 if (*input_line_pointer == '}')
3936 input_line_pointer++;
3937
3938 demand_empty_rest_of_line ();
3939
3940 /* Generate any deferred opcodes because we're going to be looking at
3941 the list. */
3942 flush_pending_unwind ();
3943
3944 for (i = 0; i < 16; i++)
3945 {
3946 if (mask & (1 << i))
3947 unwind.frame_size += 8;
3948 }
3949
3950 /* Attempt to combine with a previous opcode. We do this because gcc
3951 likes to output separate unwind directives for a single block of
3952 registers. */
3953 if (unwind.opcode_count > 0)
3954 {
3955 i = unwind.opcodes[unwind.opcode_count - 1];
3956 if ((i & 0xf8) == 0xc0)
3957 {
3958 i &= 7;
3959 /* Only merge if the blocks are contiguous. */
3960 if (i < 6)
3961 {
3962 if ((mask & 0xfe00) == (1 << 9))
3963 {
3964 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3965 unwind.opcode_count--;
3966 }
3967 }
3968 else if (i == 6 && unwind.opcode_count >= 2)
3969 {
3970 i = unwind.opcodes[unwind.opcode_count - 2];
3971 reg = i >> 4;
3972 i &= 0xf;
3973
3974 op = 0xffff << (reg - 1);
3975 if (reg > 0
3976 && ((mask & op) == (1u << (reg - 1))))
3977 {
3978 op = (1 << (reg + i + 1)) - 1;
3979 op &= ~((1 << reg) - 1);
3980 mask |= op;
3981 unwind.opcode_count -= 2;
3982 }
3983 }
3984 }
3985 }
3986
3987 hi_reg = 15;
3988 /* We want to generate opcodes in the order the registers have been
3989 saved, ie. descending order. */
3990 for (reg = 15; reg >= -1; reg--)
3991 {
3992 /* Save registers in blocks. */
3993 if (reg < 0
3994 || !(mask & (1 << reg)))
3995 {
3996 /* We found an unsaved reg. Generate opcodes to save the
3997 preceding block. */
3998 if (reg != hi_reg)
3999 {
4000 if (reg == 9)
4001 {
4002 /* Short form. */
4003 op = 0xc0 | (hi_reg - 10);
4004 add_unwind_opcode (op, 1);
4005 }
4006 else
4007 {
4008 /* Long form. */
4009 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4010 add_unwind_opcode (op, 2);
4011 }
4012 }
4013 hi_reg = reg - 1;
4014 }
4015 }
4016
4017 return;
4018 error:
4019 ignore_rest_of_line ();
4020 }
4021
4022 static void
4023 s_arm_unwind_save_mmxwcg (void)
4024 {
4025 int reg;
4026 int hi_reg;
4027 unsigned mask = 0;
4028 valueT op;
4029
4030 if (*input_line_pointer == '{')
4031 input_line_pointer++;
4032
4033 do
4034 {
4035 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4036
4037 if (reg == FAIL)
4038 {
4039 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4040 goto error;
4041 }
4042
4043 reg -= 8;
4044 if (mask >> reg)
4045 as_tsktsk (_("register list not in ascending order"));
4046 mask |= 1 << reg;
4047
4048 if (*input_line_pointer == '-')
4049 {
4050 input_line_pointer++;
4051 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4052 if (hi_reg == FAIL)
4053 {
4054 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4055 goto error;
4056 }
4057 else if (reg >= hi_reg)
4058 {
4059 as_bad (_("bad register range"));
4060 goto error;
4061 }
4062 for (; reg < hi_reg; reg++)
4063 mask |= 1 << reg;
4064 }
4065 }
4066 while (skip_past_comma (&input_line_pointer) != FAIL);
4067
4068 if (*input_line_pointer == '}')
4069 input_line_pointer++;
4070
4071 demand_empty_rest_of_line ();
4072
4073 /* Generate any deferred opcodes because we're going to be looking at
4074 the list. */
4075 flush_pending_unwind ();
4076
4077 for (reg = 0; reg < 16; reg++)
4078 {
4079 if (mask & (1 << reg))
4080 unwind.frame_size += 4;
4081 }
4082 op = 0xc700 | mask;
4083 add_unwind_opcode (op, 2);
4084 return;
4085 error:
4086 ignore_rest_of_line ();
4087 }
4088
4089
4090 /* Parse an unwind_save directive.
4091 If the argument is non-zero, this is a .vsave directive. */
4092
4093 static void
4094 s_arm_unwind_save (int arch_v6)
4095 {
4096 char *peek;
4097 struct reg_entry *reg;
4098 bfd_boolean had_brace = FALSE;
4099
4100 if (!unwind.proc_start)
4101 as_bad (MISSING_FNSTART);
4102
4103 /* Figure out what sort of save we have. */
4104 peek = input_line_pointer;
4105
4106 if (*peek == '{')
4107 {
4108 had_brace = TRUE;
4109 peek++;
4110 }
4111
4112 reg = arm_reg_parse_multi (&peek);
4113
4114 if (!reg)
4115 {
4116 as_bad (_("register expected"));
4117 ignore_rest_of_line ();
4118 return;
4119 }
4120
4121 switch (reg->type)
4122 {
4123 case REG_TYPE_FN:
4124 if (had_brace)
4125 {
4126 as_bad (_("FPA .unwind_save does not take a register list"));
4127 ignore_rest_of_line ();
4128 return;
4129 }
4130 input_line_pointer = peek;
4131 s_arm_unwind_save_fpa (reg->number);
4132 return;
4133
4134 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4135 case REG_TYPE_VFD:
4136 if (arch_v6)
4137 s_arm_unwind_save_vfp_armv6 ();
4138 else
4139 s_arm_unwind_save_vfp ();
4140 return;
4141 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4142 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4143
4144 default:
4145 as_bad (_(".unwind_save does not support this kind of register"));
4146 ignore_rest_of_line ();
4147 }
4148 }
4149
4150
4151 /* Parse an unwind_movsp directive. */
4152
4153 static void
4154 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4155 {
4156 int reg;
4157 valueT op;
4158 int offset;
4159
4160 if (!unwind.proc_start)
4161 as_bad (MISSING_FNSTART);
4162
4163 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4164 if (reg == FAIL)
4165 {
4166 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4167 ignore_rest_of_line ();
4168 return;
4169 }
4170
4171 /* Optional constant. */
4172 if (skip_past_comma (&input_line_pointer) != FAIL)
4173 {
4174 if (immediate_for_directive (&offset) == FAIL)
4175 return;
4176 }
4177 else
4178 offset = 0;
4179
4180 demand_empty_rest_of_line ();
4181
4182 if (reg == REG_SP || reg == REG_PC)
4183 {
4184 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4185 return;
4186 }
4187
4188 if (unwind.fp_reg != REG_SP)
4189 as_bad (_("unexpected .unwind_movsp directive"));
4190
4191 /* Generate opcode to restore the value. */
4192 op = 0x90 | reg;
4193 add_unwind_opcode (op, 1);
4194
4195 /* Record the information for later. */
4196 unwind.fp_reg = reg;
4197 unwind.fp_offset = unwind.frame_size - offset;
4198 unwind.sp_restored = 1;
4199 }
4200
4201 /* Parse an unwind_pad directive. */
4202
4203 static void
4204 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4205 {
4206 int offset;
4207
4208 if (!unwind.proc_start)
4209 as_bad (MISSING_FNSTART);
4210
4211 if (immediate_for_directive (&offset) == FAIL)
4212 return;
4213
4214 if (offset & 3)
4215 {
4216 as_bad (_("stack increment must be multiple of 4"));
4217 ignore_rest_of_line ();
4218 return;
4219 }
4220
4221 /* Don't generate any opcodes, just record the details for later. */
4222 unwind.frame_size += offset;
4223 unwind.pending_offset += offset;
4224
4225 demand_empty_rest_of_line ();
4226 }
4227
4228 /* Parse an unwind_setfp directive. */
4229
4230 static void
4231 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4232 {
4233 int sp_reg;
4234 int fp_reg;
4235 int offset;
4236
4237 if (!unwind.proc_start)
4238 as_bad (MISSING_FNSTART);
4239
4240 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4241 if (skip_past_comma (&input_line_pointer) == FAIL)
4242 sp_reg = FAIL;
4243 else
4244 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4245
4246 if (fp_reg == FAIL || sp_reg == FAIL)
4247 {
4248 as_bad (_("expected <reg>, <reg>"));
4249 ignore_rest_of_line ();
4250 return;
4251 }
4252
4253 /* Optional constant. */
4254 if (skip_past_comma (&input_line_pointer) != FAIL)
4255 {
4256 if (immediate_for_directive (&offset) == FAIL)
4257 return;
4258 }
4259 else
4260 offset = 0;
4261
4262 demand_empty_rest_of_line ();
4263
4264 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4265 {
4266 as_bad (_("register must be either sp or set by a previous"
4267 "unwind_movsp directive"));
4268 return;
4269 }
4270
4271 /* Don't generate any opcodes, just record the information for later. */
4272 unwind.fp_reg = fp_reg;
4273 unwind.fp_used = 1;
4274 if (sp_reg == REG_SP)
4275 unwind.fp_offset = unwind.frame_size - offset;
4276 else
4277 unwind.fp_offset -= offset;
4278 }
4279
4280 /* Parse an unwind_raw directive. */
4281
4282 static void
4283 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4284 {
4285 expressionS exp;
4286 /* This is an arbitrary limit. */
4287 unsigned char op[16];
4288 int count;
4289
4290 if (!unwind.proc_start)
4291 as_bad (MISSING_FNSTART);
4292
4293 expression (&exp);
4294 if (exp.X_op == O_constant
4295 && skip_past_comma (&input_line_pointer) != FAIL)
4296 {
4297 unwind.frame_size += exp.X_add_number;
4298 expression (&exp);
4299 }
4300 else
4301 exp.X_op = O_illegal;
4302
4303 if (exp.X_op != O_constant)
4304 {
4305 as_bad (_("expected <offset>, <opcode>"));
4306 ignore_rest_of_line ();
4307 return;
4308 }
4309
4310 count = 0;
4311
4312 /* Parse the opcode. */
4313 for (;;)
4314 {
4315 if (count >= 16)
4316 {
4317 as_bad (_("unwind opcode too long"));
4318 ignore_rest_of_line ();
4319 }
4320 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4321 {
4322 as_bad (_("invalid unwind opcode"));
4323 ignore_rest_of_line ();
4324 return;
4325 }
4326 op[count++] = exp.X_add_number;
4327
4328 /* Parse the next byte. */
4329 if (skip_past_comma (&input_line_pointer) == FAIL)
4330 break;
4331
4332 expression (&exp);
4333 }
4334
4335 /* Add the opcode bytes in reverse order. */
4336 while (count--)
4337 add_unwind_opcode (op[count], 1);
4338
4339 demand_empty_rest_of_line ();
4340 }
4341
4342
4343 /* Parse a .eabi_attribute directive. */
4344
4345 static void
4346 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4347 {
4348 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4349
4350 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4351 attributes_set_explicitly[tag] = 1;
4352 }
4353
4354 /* Emit a tls fix for the symbol. */
4355
4356 static void
4357 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4358 {
4359 char *p;
4360 expressionS exp;
4361 #ifdef md_flush_pending_output
4362 md_flush_pending_output ();
4363 #endif
4364
4365 #ifdef md_cons_align
4366 md_cons_align (4);
4367 #endif
4368
4369 /* Since we're just labelling the code, there's no need to define a
4370 mapping symbol. */
4371 expression (&exp);
4372 p = obstack_next_free (&frchain_now->frch_obstack);
4373 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4374 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4375 : BFD_RELOC_ARM_TLS_DESCSEQ);
4376 }
4377 #endif /* OBJ_ELF */
4378
4379 static void s_arm_arch (int);
4380 static void s_arm_object_arch (int);
4381 static void s_arm_cpu (int);
4382 static void s_arm_fpu (int);
4383 static void s_arm_arch_extension (int);
4384
4385 #ifdef TE_PE
4386
4387 static void
4388 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4389 {
4390 expressionS exp;
4391
4392 do
4393 {
4394 expression (&exp);
4395 if (exp.X_op == O_symbol)
4396 exp.X_op = O_secrel;
4397
4398 emit_expr (&exp, 4);
4399 }
4400 while (*input_line_pointer++ == ',');
4401
4402 input_line_pointer--;
4403 demand_empty_rest_of_line ();
4404 }
4405 #endif /* TE_PE */
4406
4407 /* This table describes all the machine specific pseudo-ops the assembler
4408 has to support. The fields are:
4409 pseudo-op name without dot
4410 function to call to execute this pseudo-op
4411 Integer arg to pass to the function. */
4412
4413 const pseudo_typeS md_pseudo_table[] =
4414 {
4415 /* Never called because '.req' does not start a line. */
4416 { "req", s_req, 0 },
4417 /* Following two are likewise never called. */
4418 { "dn", s_dn, 0 },
4419 { "qn", s_qn, 0 },
4420 { "unreq", s_unreq, 0 },
4421 { "bss", s_bss, 0 },
4422 { "align", s_align, 0 },
4423 { "arm", s_arm, 0 },
4424 { "thumb", s_thumb, 0 },
4425 { "code", s_code, 0 },
4426 { "force_thumb", s_force_thumb, 0 },
4427 { "thumb_func", s_thumb_func, 0 },
4428 { "thumb_set", s_thumb_set, 0 },
4429 { "even", s_even, 0 },
4430 { "ltorg", s_ltorg, 0 },
4431 { "pool", s_ltorg, 0 },
4432 { "syntax", s_syntax, 0 },
4433 { "cpu", s_arm_cpu, 0 },
4434 { "arch", s_arm_arch, 0 },
4435 { "object_arch", s_arm_object_arch, 0 },
4436 { "fpu", s_arm_fpu, 0 },
4437 { "arch_extension", s_arm_arch_extension, 0 },
4438 #ifdef OBJ_ELF
4439 { "word", s_arm_elf_cons, 4 },
4440 { "long", s_arm_elf_cons, 4 },
4441 { "inst.n", s_arm_elf_inst, 2 },
4442 { "inst.w", s_arm_elf_inst, 4 },
4443 { "inst", s_arm_elf_inst, 0 },
4444 { "rel31", s_arm_rel31, 0 },
4445 { "fnstart", s_arm_unwind_fnstart, 0 },
4446 { "fnend", s_arm_unwind_fnend, 0 },
4447 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4448 { "personality", s_arm_unwind_personality, 0 },
4449 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4450 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4451 { "save", s_arm_unwind_save, 0 },
4452 { "vsave", s_arm_unwind_save, 1 },
4453 { "movsp", s_arm_unwind_movsp, 0 },
4454 { "pad", s_arm_unwind_pad, 0 },
4455 { "setfp", s_arm_unwind_setfp, 0 },
4456 { "unwind_raw", s_arm_unwind_raw, 0 },
4457 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4458 { "tlsdescseq", s_arm_tls_descseq, 0 },
4459 #else
4460 { "word", cons, 4},
4461
4462 /* These are used for dwarf. */
4463 {"2byte", cons, 2},
4464 {"4byte", cons, 4},
4465 {"8byte", cons, 8},
4466 /* These are used for dwarf2. */
4467 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4468 { "loc", dwarf2_directive_loc, 0 },
4469 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4470 #endif
4471 { "extend", float_cons, 'x' },
4472 { "ldouble", float_cons, 'x' },
4473 { "packed", float_cons, 'p' },
4474 #ifdef TE_PE
4475 {"secrel32", pe_directive_secrel, 0},
4476 #endif
4477 { 0, 0, 0 }
4478 };
4479 \f
4480 /* Parser functions used exclusively in instruction operands. */
4481
4482 /* Generic immediate-value read function for use in insn parsing.
4483 STR points to the beginning of the immediate (the leading #);
4484 VAL receives the value; if the value is outside [MIN, MAX]
4485 issue an error. PREFIX_OPT is true if the immediate prefix is
4486 optional. */
4487
4488 static int
4489 parse_immediate (char **str, int *val, int min, int max,
4490 bfd_boolean prefix_opt)
4491 {
4492 expressionS exp;
4493 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4494 if (exp.X_op != O_constant)
4495 {
4496 inst.error = _("constant expression required");
4497 return FAIL;
4498 }
4499
4500 if (exp.X_add_number < min || exp.X_add_number > max)
4501 {
4502 inst.error = _("immediate value out of range");
4503 return FAIL;
4504 }
4505
4506 *val = exp.X_add_number;
4507 return SUCCESS;
4508 }
4509
4510 /* Less-generic immediate-value read function with the possibility of loading a
4511 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4512 instructions. Puts the result directly in inst.operands[i]. */
4513
4514 static int
4515 parse_big_immediate (char **str, int i)
4516 {
4517 expressionS exp;
4518 char *ptr = *str;
4519
4520 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4521
4522 if (exp.X_op == O_constant)
4523 {
4524 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4525 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4526 O_constant. We have to be careful not to break compilation for
4527 32-bit X_add_number, though. */
4528 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4529 {
4530 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4531 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4532 inst.operands[i].regisimm = 1;
4533 }
4534 }
4535 else if (exp.X_op == O_big
4536 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4537 {
4538 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4539
4540 /* Bignums have their least significant bits in
4541 generic_bignum[0]. Make sure we put 32 bits in imm and
4542 32 bits in reg, in a (hopefully) portable way. */
4543 gas_assert (parts != 0);
4544
4545 /* Make sure that the number is not too big.
4546 PR 11972: Bignums can now be sign-extended to the
4547 size of a .octa so check that the out of range bits
4548 are all zero or all one. */
4549 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4550 {
4551 LITTLENUM_TYPE m = -1;
4552
4553 if (generic_bignum[parts * 2] != 0
4554 && generic_bignum[parts * 2] != m)
4555 return FAIL;
4556
4557 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4558 if (generic_bignum[j] != generic_bignum[j-1])
4559 return FAIL;
4560 }
4561
4562 inst.operands[i].imm = 0;
4563 for (j = 0; j < parts; j++, idx++)
4564 inst.operands[i].imm |= generic_bignum[idx]
4565 << (LITTLENUM_NUMBER_OF_BITS * j);
4566 inst.operands[i].reg = 0;
4567 for (j = 0; j < parts; j++, idx++)
4568 inst.operands[i].reg |= generic_bignum[idx]
4569 << (LITTLENUM_NUMBER_OF_BITS * j);
4570 inst.operands[i].regisimm = 1;
4571 }
4572 else
4573 return FAIL;
4574
4575 *str = ptr;
4576
4577 return SUCCESS;
4578 }
4579
4580 /* Returns the pseudo-register number of an FPA immediate constant,
4581 or FAIL if there isn't a valid constant here. */
4582
4583 static int
4584 parse_fpa_immediate (char ** str)
4585 {
4586 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4587 char * save_in;
4588 expressionS exp;
4589 int i;
4590 int j;
4591
4592 /* First try and match exact strings, this is to guarantee
4593 that some formats will work even for cross assembly. */
4594
4595 for (i = 0; fp_const[i]; i++)
4596 {
4597 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4598 {
4599 char *start = *str;
4600
4601 *str += strlen (fp_const[i]);
4602 if (is_end_of_line[(unsigned char) **str])
4603 return i + 8;
4604 *str = start;
4605 }
4606 }
4607
4608 /* Just because we didn't get a match doesn't mean that the constant
4609 isn't valid, just that it is in a format that we don't
4610 automatically recognize. Try parsing it with the standard
4611 expression routines. */
4612
4613 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4614
4615 /* Look for a raw floating point number. */
4616 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4617 && is_end_of_line[(unsigned char) *save_in])
4618 {
4619 for (i = 0; i < NUM_FLOAT_VALS; i++)
4620 {
4621 for (j = 0; j < MAX_LITTLENUMS; j++)
4622 {
4623 if (words[j] != fp_values[i][j])
4624 break;
4625 }
4626
4627 if (j == MAX_LITTLENUMS)
4628 {
4629 *str = save_in;
4630 return i + 8;
4631 }
4632 }
4633 }
4634
4635 /* Try and parse a more complex expression, this will probably fail
4636 unless the code uses a floating point prefix (eg "0f"). */
4637 save_in = input_line_pointer;
4638 input_line_pointer = *str;
4639 if (expression (&exp) == absolute_section
4640 && exp.X_op == O_big
4641 && exp.X_add_number < 0)
4642 {
4643 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4644 Ditto for 15. */
4645 if (gen_to_words (words, 5, (long) 15) == 0)
4646 {
4647 for (i = 0; i < NUM_FLOAT_VALS; i++)
4648 {
4649 for (j = 0; j < MAX_LITTLENUMS; j++)
4650 {
4651 if (words[j] != fp_values[i][j])
4652 break;
4653 }
4654
4655 if (j == MAX_LITTLENUMS)
4656 {
4657 *str = input_line_pointer;
4658 input_line_pointer = save_in;
4659 return i + 8;
4660 }
4661 }
4662 }
4663 }
4664
4665 *str = input_line_pointer;
4666 input_line_pointer = save_in;
4667 inst.error = _("invalid FPA immediate expression");
4668 return FAIL;
4669 }
4670
4671 /* Returns 1 if a number has "quarter-precision" float format
4672 0baBbbbbbc defgh000 00000000 00000000. */
4673
4674 static int
4675 is_quarter_float (unsigned imm)
4676 {
4677 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4678 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4679 }
4680
4681 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4682 0baBbbbbbc defgh000 00000000 00000000.
4683 The zero and minus-zero cases need special handling, since they can't be
4684 encoded in the "quarter-precision" float format, but can nonetheless be
4685 loaded as integer constants. */
4686
4687 static unsigned
4688 parse_qfloat_immediate (char **ccp, int *immed)
4689 {
4690 char *str = *ccp;
4691 char *fpnum;
4692 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4693 int found_fpchar = 0;
4694
4695 skip_past_char (&str, '#');
4696
4697 /* We must not accidentally parse an integer as a floating-point number. Make
4698 sure that the value we parse is not an integer by checking for special
4699 characters '.' or 'e'.
4700 FIXME: This is a horrible hack, but doing better is tricky because type
4701 information isn't in a very usable state at parse time. */
4702 fpnum = str;
4703 skip_whitespace (fpnum);
4704
4705 if (strncmp (fpnum, "0x", 2) == 0)
4706 return FAIL;
4707 else
4708 {
4709 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4710 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4711 {
4712 found_fpchar = 1;
4713 break;
4714 }
4715
4716 if (!found_fpchar)
4717 return FAIL;
4718 }
4719
4720 if ((str = atof_ieee (str, 's', words)) != NULL)
4721 {
4722 unsigned fpword = 0;
4723 int i;
4724
4725 /* Our FP word must be 32 bits (single-precision FP). */
4726 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4727 {
4728 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4729 fpword |= words[i];
4730 }
4731
4732 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4733 *immed = fpword;
4734 else
4735 return FAIL;
4736
4737 *ccp = str;
4738
4739 return SUCCESS;
4740 }
4741
4742 return FAIL;
4743 }
4744
4745 /* Shift operands. */
4746 enum shift_kind
4747 {
4748 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4749 };
4750
4751 struct asm_shift_name
4752 {
4753 const char *name;
4754 enum shift_kind kind;
4755 };
4756
4757 /* Third argument to parse_shift. */
4758 enum parse_shift_mode
4759 {
4760 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4761 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4762 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4763 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4764 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4765 };
4766
4767 /* Parse a <shift> specifier on an ARM data processing instruction.
4768 This has three forms:
4769
4770 (LSL|LSR|ASL|ASR|ROR) Rs
4771 (LSL|LSR|ASL|ASR|ROR) #imm
4772 RRX
4773
4774 Note that ASL is assimilated to LSL in the instruction encoding, and
4775 RRX to ROR #0 (which cannot be written as such). */
4776
4777 static int
4778 parse_shift (char **str, int i, enum parse_shift_mode mode)
4779 {
4780 const struct asm_shift_name *shift_name;
4781 enum shift_kind shift;
4782 char *s = *str;
4783 char *p = s;
4784 int reg;
4785
4786 for (p = *str; ISALPHA (*p); p++)
4787 ;
4788
4789 if (p == *str)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4796 p - *str);
4797
4798 if (shift_name == NULL)
4799 {
4800 inst.error = _("shift expression expected");
4801 return FAIL;
4802 }
4803
4804 shift = shift_name->kind;
4805
4806 switch (mode)
4807 {
4808 case NO_SHIFT_RESTRICT:
4809 case SHIFT_IMMEDIATE: break;
4810
4811 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4812 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4813 {
4814 inst.error = _("'LSL' or 'ASR' required");
4815 return FAIL;
4816 }
4817 break;
4818
4819 case SHIFT_LSL_IMMEDIATE:
4820 if (shift != SHIFT_LSL)
4821 {
4822 inst.error = _("'LSL' required");
4823 return FAIL;
4824 }
4825 break;
4826
4827 case SHIFT_ASR_IMMEDIATE:
4828 if (shift != SHIFT_ASR)
4829 {
4830 inst.error = _("'ASR' required");
4831 return FAIL;
4832 }
4833 break;
4834
4835 default: abort ();
4836 }
4837
4838 if (shift != SHIFT_RRX)
4839 {
4840 /* Whitespace can appear here if the next thing is a bare digit. */
4841 skip_whitespace (p);
4842
4843 if (mode == NO_SHIFT_RESTRICT
4844 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4845 {
4846 inst.operands[i].imm = reg;
4847 inst.operands[i].immisreg = 1;
4848 }
4849 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4850 return FAIL;
4851 }
4852 inst.operands[i].shift_kind = shift;
4853 inst.operands[i].shifted = 1;
4854 *str = p;
4855 return SUCCESS;
4856 }
4857
4858 /* Parse a <shifter_operand> for an ARM data processing instruction:
4859
4860 #<immediate>
4861 #<immediate>, <rotate>
4862 <Rm>
4863 <Rm>, <shift>
4864
4865 where <shift> is defined by parse_shift above, and <rotate> is a
4866 multiple of 2 between 0 and 30. Validation of immediate operands
4867 is deferred to md_apply_fix. */
4868
4869 static int
4870 parse_shifter_operand (char **str, int i)
4871 {
4872 int value;
4873 expressionS exp;
4874
4875 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4876 {
4877 inst.operands[i].reg = value;
4878 inst.operands[i].isreg = 1;
4879
4880 /* parse_shift will override this if appropriate */
4881 inst.reloc.exp.X_op = O_constant;
4882 inst.reloc.exp.X_add_number = 0;
4883
4884 if (skip_past_comma (str) == FAIL)
4885 return SUCCESS;
4886
4887 /* Shift operation on register. */
4888 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4889 }
4890
4891 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4892 return FAIL;
4893
4894 if (skip_past_comma (str) == SUCCESS)
4895 {
4896 /* #x, y -- ie explicit rotation by Y. */
4897 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4898 return FAIL;
4899
4900 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4901 {
4902 inst.error = _("constant expression expected");
4903 return FAIL;
4904 }
4905
4906 value = exp.X_add_number;
4907 if (value < 0 || value > 30 || value % 2 != 0)
4908 {
4909 inst.error = _("invalid rotation");
4910 return FAIL;
4911 }
4912 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4913 {
4914 inst.error = _("invalid constant");
4915 return FAIL;
4916 }
4917
4918 /* Encode as specified. */
4919 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4920 return SUCCESS;
4921 }
4922
4923 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4924 inst.reloc.pc_rel = 0;
4925 return SUCCESS;
4926 }
4927
4928 /* Group relocation information. Each entry in the table contains the
4929 textual name of the relocation as may appear in assembler source
4930 and must end with a colon.
4931 Along with this textual name are the relocation codes to be used if
4932 the corresponding instruction is an ALU instruction (ADD or SUB only),
4933 an LDR, an LDRS, or an LDC. */
4934
4935 struct group_reloc_table_entry
4936 {
4937 const char *name;
4938 int alu_code;
4939 int ldr_code;
4940 int ldrs_code;
4941 int ldc_code;
4942 };
4943
4944 typedef enum
4945 {
4946 /* Varieties of non-ALU group relocation. */
4947
4948 GROUP_LDR,
4949 GROUP_LDRS,
4950 GROUP_LDC
4951 } group_reloc_type;
4952
4953 static struct group_reloc_table_entry group_reloc_table[] =
4954 { /* Program counter relative: */
4955 { "pc_g0_nc",
4956 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4957 0, /* LDR */
4958 0, /* LDRS */
4959 0 }, /* LDC */
4960 { "pc_g0",
4961 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4962 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4963 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4964 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4965 { "pc_g1_nc",
4966 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4967 0, /* LDR */
4968 0, /* LDRS */
4969 0 }, /* LDC */
4970 { "pc_g1",
4971 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4972 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4973 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4974 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4975 { "pc_g2",
4976 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4977 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4978 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4979 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4980 /* Section base relative */
4981 { "sb_g0_nc",
4982 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4983 0, /* LDR */
4984 0, /* LDRS */
4985 0 }, /* LDC */
4986 { "sb_g0",
4987 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4988 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4989 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4990 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4991 { "sb_g1_nc",
4992 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4993 0, /* LDR */
4994 0, /* LDRS */
4995 0 }, /* LDC */
4996 { "sb_g1",
4997 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4998 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4999 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5000 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5001 { "sb_g2",
5002 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5003 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5004 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5005 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
5006
5007 /* Given the address of a pointer pointing to the textual name of a group
5008 relocation as may appear in assembler source, attempt to find its details
5009 in group_reloc_table. The pointer will be updated to the character after
5010 the trailing colon. On failure, FAIL will be returned; SUCCESS
5011 otherwise. On success, *entry will be updated to point at the relevant
5012 group_reloc_table entry. */
5013
5014 static int
5015 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5016 {
5017 unsigned int i;
5018 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5019 {
5020 int length = strlen (group_reloc_table[i].name);
5021
5022 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5023 && (*str)[length] == ':')
5024 {
5025 *out = &group_reloc_table[i];
5026 *str += (length + 1);
5027 return SUCCESS;
5028 }
5029 }
5030
5031 return FAIL;
5032 }
5033
5034 /* Parse a <shifter_operand> for an ARM data processing instruction
5035 (as for parse_shifter_operand) where group relocations are allowed:
5036
5037 #<immediate>
5038 #<immediate>, <rotate>
5039 #:<group_reloc>:<expression>
5040 <Rm>
5041 <Rm>, <shift>
5042
5043 where <group_reloc> is one of the strings defined in group_reloc_table.
5044 The hashes are optional.
5045
5046 Everything else is as for parse_shifter_operand. */
5047
5048 static parse_operand_result
5049 parse_shifter_operand_group_reloc (char **str, int i)
5050 {
5051 /* Determine if we have the sequence of characters #: or just :
5052 coming next. If we do, then we check for a group relocation.
5053 If we don't, punt the whole lot to parse_shifter_operand. */
5054
5055 if (((*str)[0] == '#' && (*str)[1] == ':')
5056 || (*str)[0] == ':')
5057 {
5058 struct group_reloc_table_entry *entry;
5059
5060 if ((*str)[0] == '#')
5061 (*str) += 2;
5062 else
5063 (*str)++;
5064
5065 /* Try to parse a group relocation. Anything else is an error. */
5066 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5067 {
5068 inst.error = _("unknown group relocation");
5069 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5070 }
5071
5072 /* We now have the group relocation table entry corresponding to
5073 the name in the assembler source. Next, we parse the expression. */
5074 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5075 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5076
5077 /* Record the relocation type (always the ALU variant here). */
5078 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5079 gas_assert (inst.reloc.type != 0);
5080
5081 return PARSE_OPERAND_SUCCESS;
5082 }
5083 else
5084 return parse_shifter_operand (str, i) == SUCCESS
5085 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5086
5087 /* Never reached. */
5088 }
5089
5090 /* Parse a Neon alignment expression. Information is written to
5091 inst.operands[i]. We assume the initial ':' has been skipped.
5092
5093 align .imm = align << 8, .immisalign=1, .preind=0 */
5094 static parse_operand_result
5095 parse_neon_alignment (char **str, int i)
5096 {
5097 char *p = *str;
5098 expressionS exp;
5099
5100 my_get_expression (&exp, &p, GE_NO_PREFIX);
5101
5102 if (exp.X_op != O_constant)
5103 {
5104 inst.error = _("alignment must be constant");
5105 return PARSE_OPERAND_FAIL;
5106 }
5107
5108 inst.operands[i].imm = exp.X_add_number << 8;
5109 inst.operands[i].immisalign = 1;
5110 /* Alignments are not pre-indexes. */
5111 inst.operands[i].preind = 0;
5112
5113 *str = p;
5114 return PARSE_OPERAND_SUCCESS;
5115 }
5116
5117 /* Parse all forms of an ARM address expression. Information is written
5118 to inst.operands[i] and/or inst.reloc.
5119
5120 Preindexed addressing (.preind=1):
5121
5122 [Rn, #offset] .reg=Rn .reloc.exp=offset
5123 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 These three may have a trailing ! which causes .writeback to be set also.
5128
5129 Postindexed addressing (.postind=1, .writeback=1):
5130
5131 [Rn], #offset .reg=Rn .reloc.exp=offset
5132 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5133 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5134 .shift_kind=shift .reloc.exp=shift_imm
5135
5136 Unindexed addressing (.preind=0, .postind=0):
5137
5138 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5139
5140 Other:
5141
5142 [Rn]{!} shorthand for [Rn,#0]{!}
5143 =immediate .isreg=0 .reloc.exp=immediate
5144 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5145
5146 It is the caller's responsibility to check for addressing modes not
5147 supported by the instruction, and to set inst.reloc.type. */
5148
5149 static parse_operand_result
5150 parse_address_main (char **str, int i, int group_relocations,
5151 group_reloc_type group_type)
5152 {
5153 char *p = *str;
5154 int reg;
5155
5156 if (skip_past_char (&p, '[') == FAIL)
5157 {
5158 if (skip_past_char (&p, '=') == FAIL)
5159 {
5160 /* Bare address - translate to PC-relative offset. */
5161 inst.reloc.pc_rel = 1;
5162 inst.operands[i].reg = REG_PC;
5163 inst.operands[i].isreg = 1;
5164 inst.operands[i].preind = 1;
5165 }
5166 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5167
5168 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5169 return PARSE_OPERAND_FAIL;
5170
5171 *str = p;
5172 return PARSE_OPERAND_SUCCESS;
5173 }
5174
5175 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5176 skip_whitespace (p);
5177
5178 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5179 {
5180 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5181 return PARSE_OPERAND_FAIL;
5182 }
5183 inst.operands[i].reg = reg;
5184 inst.operands[i].isreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 {
5188 inst.operands[i].preind = 1;
5189
5190 if (*p == '+') p++;
5191 else if (*p == '-') p++, inst.operands[i].negative = 1;
5192
5193 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5194 {
5195 inst.operands[i].imm = reg;
5196 inst.operands[i].immisreg = 1;
5197
5198 if (skip_past_comma (&p) == SUCCESS)
5199 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5200 return PARSE_OPERAND_FAIL;
5201 }
5202 else if (skip_past_char (&p, ':') == SUCCESS)
5203 {
5204 /* FIXME: '@' should be used here, but it's filtered out by generic
5205 code before we get to see it here. This may be subject to
5206 change. */
5207 parse_operand_result result = parse_neon_alignment (&p, i);
5208
5209 if (result != PARSE_OPERAND_SUCCESS)
5210 return result;
5211 }
5212 else
5213 {
5214 if (inst.operands[i].negative)
5215 {
5216 inst.operands[i].negative = 0;
5217 p--;
5218 }
5219
5220 if (group_relocations
5221 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5222 {
5223 struct group_reloc_table_entry *entry;
5224
5225 /* Skip over the #: or : sequence. */
5226 if (*p == '#')
5227 p += 2;
5228 else
5229 p++;
5230
5231 /* Try to parse a group relocation. Anything else is an
5232 error. */
5233 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5234 {
5235 inst.error = _("unknown group relocation");
5236 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5237 }
5238
5239 /* We now have the group relocation table entry corresponding to
5240 the name in the assembler source. Next, we parse the
5241 expression. */
5242 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5243 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5244
5245 /* Record the relocation type. */
5246 switch (group_type)
5247 {
5248 case GROUP_LDR:
5249 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5250 break;
5251
5252 case GROUP_LDRS:
5253 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5254 break;
5255
5256 case GROUP_LDC:
5257 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5258 break;
5259
5260 default:
5261 gas_assert (0);
5262 }
5263
5264 if (inst.reloc.type == 0)
5265 {
5266 inst.error = _("this group relocation is not allowed on this instruction");
5267 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5268 }
5269 }
5270 else
5271 {
5272 char *q = p;
5273 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5274 return PARSE_OPERAND_FAIL;
5275 /* If the offset is 0, find out if it's a +0 or -0. */
5276 if (inst.reloc.exp.X_op == O_constant
5277 && inst.reloc.exp.X_add_number == 0)
5278 {
5279 skip_whitespace (q);
5280 if (*q == '#')
5281 {
5282 q++;
5283 skip_whitespace (q);
5284 }
5285 if (*q == '-')
5286 inst.operands[i].negative = 1;
5287 }
5288 }
5289 }
5290 }
5291 else if (skip_past_char (&p, ':') == SUCCESS)
5292 {
5293 /* FIXME: '@' should be used here, but it's filtered out by generic code
5294 before we get to see it here. This may be subject to change. */
5295 parse_operand_result result = parse_neon_alignment (&p, i);
5296
5297 if (result != PARSE_OPERAND_SUCCESS)
5298 return result;
5299 }
5300
5301 if (skip_past_char (&p, ']') == FAIL)
5302 {
5303 inst.error = _("']' expected");
5304 return PARSE_OPERAND_FAIL;
5305 }
5306
5307 if (skip_past_char (&p, '!') == SUCCESS)
5308 inst.operands[i].writeback = 1;
5309
5310 else if (skip_past_comma (&p) == SUCCESS)
5311 {
5312 if (skip_past_char (&p, '{') == SUCCESS)
5313 {
5314 /* [Rn], {expr} - unindexed, with option */
5315 if (parse_immediate (&p, &inst.operands[i].imm,
5316 0, 255, TRUE) == FAIL)
5317 return PARSE_OPERAND_FAIL;
5318
5319 if (skip_past_char (&p, '}') == FAIL)
5320 {
5321 inst.error = _("'}' expected at end of 'option' field");
5322 return PARSE_OPERAND_FAIL;
5323 }
5324 if (inst.operands[i].preind)
5325 {
5326 inst.error = _("cannot combine index with option");
5327 return PARSE_OPERAND_FAIL;
5328 }
5329 *str = p;
5330 return PARSE_OPERAND_SUCCESS;
5331 }
5332 else
5333 {
5334 inst.operands[i].postind = 1;
5335 inst.operands[i].writeback = 1;
5336
5337 if (inst.operands[i].preind)
5338 {
5339 inst.error = _("cannot combine pre- and post-indexing");
5340 return PARSE_OPERAND_FAIL;
5341 }
5342
5343 if (*p == '+') p++;
5344 else if (*p == '-') p++, inst.operands[i].negative = 1;
5345
5346 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5347 {
5348 /* We might be using the immediate for alignment already. If we
5349 are, OR the register number into the low-order bits. */
5350 if (inst.operands[i].immisalign)
5351 inst.operands[i].imm |= reg;
5352 else
5353 inst.operands[i].imm = reg;
5354 inst.operands[i].immisreg = 1;
5355
5356 if (skip_past_comma (&p) == SUCCESS)
5357 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5358 return PARSE_OPERAND_FAIL;
5359 }
5360 else
5361 {
5362 char *q = p;
5363 if (inst.operands[i].negative)
5364 {
5365 inst.operands[i].negative = 0;
5366 p--;
5367 }
5368 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5369 return PARSE_OPERAND_FAIL;
5370 /* If the offset is 0, find out if it's a +0 or -0. */
5371 if (inst.reloc.exp.X_op == O_constant
5372 && inst.reloc.exp.X_add_number == 0)
5373 {
5374 skip_whitespace (q);
5375 if (*q == '#')
5376 {
5377 q++;
5378 skip_whitespace (q);
5379 }
5380 if (*q == '-')
5381 inst.operands[i].negative = 1;
5382 }
5383 }
5384 }
5385 }
5386
5387 /* If at this point neither .preind nor .postind is set, we have a
5388 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5389 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5390 {
5391 inst.operands[i].preind = 1;
5392 inst.reloc.exp.X_op = O_constant;
5393 inst.reloc.exp.X_add_number = 0;
5394 }
5395 *str = p;
5396 return PARSE_OPERAND_SUCCESS;
5397 }
5398
5399 static int
5400 parse_address (char **str, int i)
5401 {
5402 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5403 ? SUCCESS : FAIL;
5404 }
5405
5406 static parse_operand_result
5407 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5408 {
5409 return parse_address_main (str, i, 1, type);
5410 }
5411
5412 /* Parse an operand for a MOVW or MOVT instruction. */
5413 static int
5414 parse_half (char **str)
5415 {
5416 char * p;
5417
5418 p = *str;
5419 skip_past_char (&p, '#');
5420 if (strncasecmp (p, ":lower16:", 9) == 0)
5421 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5422 else if (strncasecmp (p, ":upper16:", 9) == 0)
5423 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5424
5425 if (inst.reloc.type != BFD_RELOC_UNUSED)
5426 {
5427 p += 9;
5428 skip_whitespace (p);
5429 }
5430
5431 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5432 return FAIL;
5433
5434 if (inst.reloc.type == BFD_RELOC_UNUSED)
5435 {
5436 if (inst.reloc.exp.X_op != O_constant)
5437 {
5438 inst.error = _("constant expression expected");
5439 return FAIL;
5440 }
5441 if (inst.reloc.exp.X_add_number < 0
5442 || inst.reloc.exp.X_add_number > 0xffff)
5443 {
5444 inst.error = _("immediate value out of range");
5445 return FAIL;
5446 }
5447 }
5448 *str = p;
5449 return SUCCESS;
5450 }
5451
5452 /* Miscellaneous. */
5453
5454 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5455 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5456 static int
5457 parse_psr (char **str, bfd_boolean lhs)
5458 {
5459 char *p;
5460 unsigned long psr_field;
5461 const struct asm_psr *psr;
5462 char *start;
5463 bfd_boolean is_apsr = FALSE;
5464 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5465
5466 /* PR gas/12698: If the user has specified -march=all then m_profile will
5467 be TRUE, but we want to ignore it in this case as we are building for any
5468 CPU type, including non-m variants. */
5469 if (selected_cpu.core == arm_arch_any.core)
5470 m_profile = FALSE;
5471
5472 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5473 feature for ease of use and backwards compatibility. */
5474 p = *str;
5475 if (strncasecmp (p, "SPSR", 4) == 0)
5476 {
5477 if (m_profile)
5478 goto unsupported_psr;
5479
5480 psr_field = SPSR_BIT;
5481 }
5482 else if (strncasecmp (p, "CPSR", 4) == 0)
5483 {
5484 if (m_profile)
5485 goto unsupported_psr;
5486
5487 psr_field = 0;
5488 }
5489 else if (strncasecmp (p, "APSR", 4) == 0)
5490 {
5491 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5492 and ARMv7-R architecture CPUs. */
5493 is_apsr = TRUE;
5494 psr_field = 0;
5495 }
5496 else if (m_profile)
5497 {
5498 start = p;
5499 do
5500 p++;
5501 while (ISALNUM (*p) || *p == '_');
5502
5503 if (strncasecmp (start, "iapsr", 5) == 0
5504 || strncasecmp (start, "eapsr", 5) == 0
5505 || strncasecmp (start, "xpsr", 4) == 0
5506 || strncasecmp (start, "psr", 3) == 0)
5507 p = start + strcspn (start, "rR") + 1;
5508
5509 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5510 p - start);
5511
5512 if (!psr)
5513 return FAIL;
5514
5515 /* If APSR is being written, a bitfield may be specified. Note that
5516 APSR itself is handled above. */
5517 if (psr->field <= 3)
5518 {
5519 psr_field = psr->field;
5520 is_apsr = TRUE;
5521 goto check_suffix;
5522 }
5523
5524 *str = p;
5525 /* M-profile MSR instructions have the mask field set to "10", except
5526 *PSR variants which modify APSR, which may use a different mask (and
5527 have been handled already). Do that by setting the PSR_f field
5528 here. */
5529 return psr->field | (lhs ? PSR_f : 0);
5530 }
5531 else
5532 goto unsupported_psr;
5533
5534 p += 4;
5535 check_suffix:
5536 if (*p == '_')
5537 {
5538 /* A suffix follows. */
5539 p++;
5540 start = p;
5541
5542 do
5543 p++;
5544 while (ISALNUM (*p) || *p == '_');
5545
5546 if (is_apsr)
5547 {
5548 /* APSR uses a notation for bits, rather than fields. */
5549 unsigned int nzcvq_bits = 0;
5550 unsigned int g_bit = 0;
5551 char *bit;
5552
5553 for (bit = start; bit != p; bit++)
5554 {
5555 switch (TOLOWER (*bit))
5556 {
5557 case 'n':
5558 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5559 break;
5560
5561 case 'z':
5562 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5563 break;
5564
5565 case 'c':
5566 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5567 break;
5568
5569 case 'v':
5570 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5571 break;
5572
5573 case 'q':
5574 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5575 break;
5576
5577 case 'g':
5578 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5579 break;
5580
5581 default:
5582 inst.error = _("unexpected bit specified after APSR");
5583 return FAIL;
5584 }
5585 }
5586
5587 if (nzcvq_bits == 0x1f)
5588 psr_field |= PSR_f;
5589
5590 if (g_bit == 0x1)
5591 {
5592 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5593 {
5594 inst.error = _("selected processor does not "
5595 "support DSP extension");
5596 return FAIL;
5597 }
5598
5599 psr_field |= PSR_s;
5600 }
5601
5602 if ((nzcvq_bits & 0x20) != 0
5603 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5604 || (g_bit & 0x2) != 0)
5605 {
5606 inst.error = _("bad bitmask specified after APSR");
5607 return FAIL;
5608 }
5609 }
5610 else
5611 {
5612 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5613 p - start);
5614 if (!psr)
5615 goto error;
5616
5617 psr_field |= psr->field;
5618 }
5619 }
5620 else
5621 {
5622 if (ISALNUM (*p))
5623 goto error; /* Garbage after "[CS]PSR". */
5624
5625 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5626 is deprecated, but allow it anyway. */
5627 if (is_apsr && lhs)
5628 {
5629 psr_field |= PSR_f;
5630 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5631 "deprecated"));
5632 }
5633 else if (!m_profile)
5634 /* These bits are never right for M-profile devices: don't set them
5635 (only code paths which read/write APSR reach here). */
5636 psr_field |= (PSR_c | PSR_f);
5637 }
5638 *str = p;
5639 return psr_field;
5640
5641 unsupported_psr:
5642 inst.error = _("selected processor does not support requested special "
5643 "purpose register");
5644 return FAIL;
5645
5646 error:
5647 inst.error = _("flag for {c}psr instruction expected");
5648 return FAIL;
5649 }
5650
5651 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5652 value suitable for splatting into the AIF field of the instruction. */
5653
5654 static int
5655 parse_cps_flags (char **str)
5656 {
5657 int val = 0;
5658 int saw_a_flag = 0;
5659 char *s = *str;
5660
5661 for (;;)
5662 switch (*s++)
5663 {
5664 case '\0': case ',':
5665 goto done;
5666
5667 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5668 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5669 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5670
5671 default:
5672 inst.error = _("unrecognized CPS flag");
5673 return FAIL;
5674 }
5675
5676 done:
5677 if (saw_a_flag == 0)
5678 {
5679 inst.error = _("missing CPS flags");
5680 return FAIL;
5681 }
5682
5683 *str = s - 1;
5684 return val;
5685 }
5686
5687 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5688 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5689
5690 static int
5691 parse_endian_specifier (char **str)
5692 {
5693 int little_endian;
5694 char *s = *str;
5695
5696 if (strncasecmp (s, "BE", 2))
5697 little_endian = 0;
5698 else if (strncasecmp (s, "LE", 2))
5699 little_endian = 1;
5700 else
5701 {
5702 inst.error = _("valid endian specifiers are be or le");
5703 return FAIL;
5704 }
5705
5706 if (ISALNUM (s[2]) || s[2] == '_')
5707 {
5708 inst.error = _("valid endian specifiers are be or le");
5709 return FAIL;
5710 }
5711
5712 *str = s + 2;
5713 return little_endian;
5714 }
5715
5716 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5717 value suitable for poking into the rotate field of an sxt or sxta
5718 instruction, or FAIL on error. */
5719
5720 static int
5721 parse_ror (char **str)
5722 {
5723 int rot;
5724 char *s = *str;
5725
5726 if (strncasecmp (s, "ROR", 3) == 0)
5727 s += 3;
5728 else
5729 {
5730 inst.error = _("missing rotation field after comma");
5731 return FAIL;
5732 }
5733
5734 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5735 return FAIL;
5736
5737 switch (rot)
5738 {
5739 case 0: *str = s; return 0x0;
5740 case 8: *str = s; return 0x1;
5741 case 16: *str = s; return 0x2;
5742 case 24: *str = s; return 0x3;
5743
5744 default:
5745 inst.error = _("rotation can only be 0, 8, 16, or 24");
5746 return FAIL;
5747 }
5748 }
5749
5750 /* Parse a conditional code (from conds[] below). The value returned is in the
5751 range 0 .. 14, or FAIL. */
5752 static int
5753 parse_cond (char **str)
5754 {
5755 char *q;
5756 const struct asm_cond *c;
5757 int n;
5758 /* Condition codes are always 2 characters, so matching up to
5759 3 characters is sufficient. */
5760 char cond[3];
5761
5762 q = *str;
5763 n = 0;
5764 while (ISALPHA (*q) && n < 3)
5765 {
5766 cond[n] = TOLOWER (*q);
5767 q++;
5768 n++;
5769 }
5770
5771 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5772 if (!c)
5773 {
5774 inst.error = _("condition required");
5775 return FAIL;
5776 }
5777
5778 *str = q;
5779 return c->value;
5780 }
5781
5782 /* If the given feature available in the selected CPU, mark it as used.
5783 Returns TRUE iff feature is available. */
5784 static bfd_boolean
5785 mark_feature_used (const arm_feature_set *feature)
5786 {
5787 /* Ensure the option is valid on the current architecture. */
5788 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5789 return FALSE;
5790
5791 /* Add the appropriate architecture feature for the barrier option used.
5792 */
5793 if (thumb_mode)
5794 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5795 else
5796 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5797
5798 return TRUE;
5799 }
5800
5801 /* Parse an option for a barrier instruction. Returns the encoding for the
5802 option, or FAIL. */
5803 static int
5804 parse_barrier (char **str)
5805 {
5806 char *p, *q;
5807 const struct asm_barrier_opt *o;
5808
5809 p = q = *str;
5810 while (ISALPHA (*q))
5811 q++;
5812
5813 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5814 q - p);
5815 if (!o)
5816 return FAIL;
5817
5818 if (!mark_feature_used (&o->arch))
5819 return FAIL;
5820
5821 *str = q;
5822 return o->value;
5823 }
5824
5825 /* Parse the operands of a table branch instruction. Similar to a memory
5826 operand. */
5827 static int
5828 parse_tb (char **str)
5829 {
5830 char * p = *str;
5831 int reg;
5832
5833 if (skip_past_char (&p, '[') == FAIL)
5834 {
5835 inst.error = _("'[' expected");
5836 return FAIL;
5837 }
5838
5839 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5840 {
5841 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5842 return FAIL;
5843 }
5844 inst.operands[0].reg = reg;
5845
5846 if (skip_past_comma (&p) == FAIL)
5847 {
5848 inst.error = _("',' expected");
5849 return FAIL;
5850 }
5851
5852 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5853 {
5854 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5855 return FAIL;
5856 }
5857 inst.operands[0].imm = reg;
5858
5859 if (skip_past_comma (&p) == SUCCESS)
5860 {
5861 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5862 return FAIL;
5863 if (inst.reloc.exp.X_add_number != 1)
5864 {
5865 inst.error = _("invalid shift");
5866 return FAIL;
5867 }
5868 inst.operands[0].shifted = 1;
5869 }
5870
5871 if (skip_past_char (&p, ']') == FAIL)
5872 {
5873 inst.error = _("']' expected");
5874 return FAIL;
5875 }
5876 *str = p;
5877 return SUCCESS;
5878 }
5879
5880 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5881 information on the types the operands can take and how they are encoded.
5882 Up to four operands may be read; this function handles setting the
5883 ".present" field for each read operand itself.
5884 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5885 else returns FAIL. */
5886
5887 static int
5888 parse_neon_mov (char **str, int *which_operand)
5889 {
5890 int i = *which_operand, val;
5891 enum arm_reg_type rtype;
5892 char *ptr = *str;
5893 struct neon_type_el optype;
5894
5895 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5896 {
5897 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5898 inst.operands[i].reg = val;
5899 inst.operands[i].isscalar = 1;
5900 inst.operands[i].vectype = optype;
5901 inst.operands[i++].present = 1;
5902
5903 if (skip_past_comma (&ptr) == FAIL)
5904 goto wanted_comma;
5905
5906 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5907 goto wanted_arm;
5908
5909 inst.operands[i].reg = val;
5910 inst.operands[i].isreg = 1;
5911 inst.operands[i].present = 1;
5912 }
5913 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5914 != FAIL)
5915 {
5916 /* Cases 0, 1, 2, 3, 5 (D only). */
5917 if (skip_past_comma (&ptr) == FAIL)
5918 goto wanted_comma;
5919
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5923 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5924 inst.operands[i].isvec = 1;
5925 inst.operands[i].vectype = optype;
5926 inst.operands[i++].present = 1;
5927
5928 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5929 {
5930 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5931 Case 13: VMOV <Sd>, <Rm> */
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
5934 inst.operands[i].present = 1;
5935
5936 if (rtype == REG_TYPE_NQ)
5937 {
5938 first_error (_("can't use Neon quad register here"));
5939 return FAIL;
5940 }
5941 else if (rtype != REG_TYPE_VFS)
5942 {
5943 i++;
5944 if (skip_past_comma (&ptr) == FAIL)
5945 goto wanted_comma;
5946 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5947 goto wanted_arm;
5948 inst.operands[i].reg = val;
5949 inst.operands[i].isreg = 1;
5950 inst.operands[i].present = 1;
5951 }
5952 }
5953 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5954 &optype)) != FAIL)
5955 {
5956 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5957 Case 1: VMOV<c><q> <Dd>, <Dm>
5958 Case 8: VMOV.F32 <Sd>, <Sm>
5959 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5960
5961 inst.operands[i].reg = val;
5962 inst.operands[i].isreg = 1;
5963 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5964 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5965 inst.operands[i].isvec = 1;
5966 inst.operands[i].vectype = optype;
5967 inst.operands[i].present = 1;
5968
5969 if (skip_past_comma (&ptr) == SUCCESS)
5970 {
5971 /* Case 15. */
5972 i++;
5973
5974 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5975 goto wanted_arm;
5976
5977 inst.operands[i].reg = val;
5978 inst.operands[i].isreg = 1;
5979 inst.operands[i++].present = 1;
5980
5981 if (skip_past_comma (&ptr) == FAIL)
5982 goto wanted_comma;
5983
5984 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5985 goto wanted_arm;
5986
5987 inst.operands[i].reg = val;
5988 inst.operands[i].isreg = 1;
5989 inst.operands[i].present = 1;
5990 }
5991 }
5992 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5993 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5994 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5995 Case 10: VMOV.F32 <Sd>, #<imm>
5996 Case 11: VMOV.F64 <Dd>, #<imm> */
5997 inst.operands[i].immisfloat = 1;
5998 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5999 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6000 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6001 ;
6002 else
6003 {
6004 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6005 return FAIL;
6006 }
6007 }
6008 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6009 {
6010 /* Cases 6, 7. */
6011 inst.operands[i].reg = val;
6012 inst.operands[i].isreg = 1;
6013 inst.operands[i++].present = 1;
6014
6015 if (skip_past_comma (&ptr) == FAIL)
6016 goto wanted_comma;
6017
6018 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6019 {
6020 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6021 inst.operands[i].reg = val;
6022 inst.operands[i].isscalar = 1;
6023 inst.operands[i].present = 1;
6024 inst.operands[i].vectype = optype;
6025 }
6026 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6027 {
6028 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6029 inst.operands[i].reg = val;
6030 inst.operands[i].isreg = 1;
6031 inst.operands[i++].present = 1;
6032
6033 if (skip_past_comma (&ptr) == FAIL)
6034 goto wanted_comma;
6035
6036 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6037 == FAIL)
6038 {
6039 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6040 return FAIL;
6041 }
6042
6043 inst.operands[i].reg = val;
6044 inst.operands[i].isreg = 1;
6045 inst.operands[i].isvec = 1;
6046 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6047 inst.operands[i].vectype = optype;
6048 inst.operands[i].present = 1;
6049
6050 if (rtype == REG_TYPE_VFS)
6051 {
6052 /* Case 14. */
6053 i++;
6054 if (skip_past_comma (&ptr) == FAIL)
6055 goto wanted_comma;
6056 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6057 &optype)) == FAIL)
6058 {
6059 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6060 return FAIL;
6061 }
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6071 != FAIL)
6072 {
6073 /* Case 13. */
6074 inst.operands[i].reg = val;
6075 inst.operands[i].isreg = 1;
6076 inst.operands[i].isvec = 1;
6077 inst.operands[i].issingle = 1;
6078 inst.operands[i].vectype = optype;
6079 inst.operands[i].present = 1;
6080 }
6081 }
6082 else
6083 {
6084 first_error (_("parse error"));
6085 return FAIL;
6086 }
6087
6088 /* Successfully parsed the operands. Update args. */
6089 *which_operand = i;
6090 *str = ptr;
6091 return SUCCESS;
6092
6093 wanted_comma:
6094 first_error (_("expected comma"));
6095 return FAIL;
6096
6097 wanted_arm:
6098 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6099 return FAIL;
6100 }
6101
6102 /* Use this macro when the operand constraints are different
6103 for ARM and THUMB (e.g. ldrd). */
6104 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6105 ((arm_operand) | ((thumb_operand) << 16))
6106
6107 /* Matcher codes for parse_operands. */
6108 enum operand_parse_code
6109 {
6110 OP_stop, /* end of line */
6111
6112 OP_RR, /* ARM register */
6113 OP_RRnpc, /* ARM register, not r15 */
6114 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6115 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6116 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6117 optional trailing ! */
6118 OP_RRw, /* ARM register, not r15, optional trailing ! */
6119 OP_RCP, /* Coprocessor number */
6120 OP_RCN, /* Coprocessor register */
6121 OP_RF, /* FPA register */
6122 OP_RVS, /* VFP single precision register */
6123 OP_RVD, /* VFP double precision register (0..15) */
6124 OP_RND, /* Neon double precision register (0..31) */
6125 OP_RNQ, /* Neon quad precision register */
6126 OP_RVSD, /* VFP single or double precision register */
6127 OP_RNDQ, /* Neon double or quad precision register */
6128 OP_RNSDQ, /* Neon single, double or quad precision register */
6129 OP_RNSC, /* Neon scalar D[X] */
6130 OP_RVC, /* VFP control register */
6131 OP_RMF, /* Maverick F register */
6132 OP_RMD, /* Maverick D register */
6133 OP_RMFX, /* Maverick FX register */
6134 OP_RMDX, /* Maverick DX register */
6135 OP_RMAX, /* Maverick AX register */
6136 OP_RMDS, /* Maverick DSPSC register */
6137 OP_RIWR, /* iWMMXt wR register */
6138 OP_RIWC, /* iWMMXt wC register */
6139 OP_RIWG, /* iWMMXt wCG register */
6140 OP_RXA, /* XScale accumulator register */
6141
6142 OP_REGLST, /* ARM register list */
6143 OP_VRSLST, /* VFP single-precision register list */
6144 OP_VRDLST, /* VFP double-precision register list */
6145 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6146 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6147 OP_NSTRLST, /* Neon element/structure list */
6148
6149 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6150 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6151 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6152 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6153 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6154 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6155 OP_VMOV, /* Neon VMOV operands. */
6156 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6157 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6158 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6159
6160 OP_I0, /* immediate zero */
6161 OP_I7, /* immediate value 0 .. 7 */
6162 OP_I15, /* 0 .. 15 */
6163 OP_I16, /* 1 .. 16 */
6164 OP_I16z, /* 0 .. 16 */
6165 OP_I31, /* 0 .. 31 */
6166 OP_I31w, /* 0 .. 31, optional trailing ! */
6167 OP_I32, /* 1 .. 32 */
6168 OP_I32z, /* 0 .. 32 */
6169 OP_I63, /* 0 .. 63 */
6170 OP_I63s, /* -64 .. 63 */
6171 OP_I64, /* 1 .. 64 */
6172 OP_I64z, /* 0 .. 64 */
6173 OP_I255, /* 0 .. 255 */
6174
6175 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6176 OP_I7b, /* 0 .. 7 */
6177 OP_I15b, /* 0 .. 15 */
6178 OP_I31b, /* 0 .. 31 */
6179
6180 OP_SH, /* shifter operand */
6181 OP_SHG, /* shifter operand with possible group relocation */
6182 OP_ADDR, /* Memory address expression (any mode) */
6183 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6184 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6185 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6186 OP_EXP, /* arbitrary expression */
6187 OP_EXPi, /* same, with optional immediate prefix */
6188 OP_EXPr, /* same, with optional relocation suffix */
6189 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6190
6191 OP_CPSF, /* CPS flags */
6192 OP_ENDI, /* Endianness specifier */
6193 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6194 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6195 OP_COND, /* conditional code */
6196 OP_TB, /* Table branch. */
6197
6198 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6199
6200 OP_RRnpc_I0, /* ARM register or literal 0 */
6201 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6202 OP_RR_EXi, /* ARM register or expression with imm prefix */
6203 OP_RF_IF, /* FPA register or immediate */
6204 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6205 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6206
6207 /* Optional operands. */
6208 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6209 OP_oI31b, /* 0 .. 31 */
6210 OP_oI32b, /* 1 .. 32 */
6211 OP_oI32z, /* 0 .. 32 */
6212 OP_oIffffb, /* 0 .. 65535 */
6213 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6214
6215 OP_oRR, /* ARM register */
6216 OP_oRRnpc, /* ARM register, not the PC */
6217 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6218 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6219 OP_oRND, /* Optional Neon double precision register */
6220 OP_oRNQ, /* Optional Neon quad precision register */
6221 OP_oRNDQ, /* Optional Neon double or quad precision register */
6222 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6223 OP_oSHll, /* LSL immediate */
6224 OP_oSHar, /* ASR immediate */
6225 OP_oSHllar, /* LSL or ASR immediate */
6226 OP_oROR, /* ROR 0/8/16/24 */
6227 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6228
6229 /* Some pre-defined mixed (ARM/THUMB) operands. */
6230 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6231 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6232 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6233
6234 OP_FIRST_OPTIONAL = OP_oI7b
6235 };
6236
6237 /* Generic instruction operand parser. This does no encoding and no
6238 semantic validation; it merely squirrels values away in the inst
6239 structure. Returns SUCCESS or FAIL depending on whether the
6240 specified grammar matched. */
6241 static int
6242 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6243 {
6244 unsigned const int *upat = pattern;
6245 char *backtrack_pos = 0;
6246 const char *backtrack_error = 0;
6247 int i, val = 0, backtrack_index = 0;
6248 enum arm_reg_type rtype;
6249 parse_operand_result result;
6250 unsigned int op_parse_code;
6251
6252 #define po_char_or_fail(chr) \
6253 do \
6254 { \
6255 if (skip_past_char (&str, chr) == FAIL) \
6256 goto bad_args; \
6257 } \
6258 while (0)
6259
6260 #define po_reg_or_fail(regtype) \
6261 do \
6262 { \
6263 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6264 & inst.operands[i].vectype); \
6265 if (val == FAIL) \
6266 { \
6267 first_error (_(reg_expected_msgs[regtype])); \
6268 goto failure; \
6269 } \
6270 inst.operands[i].reg = val; \
6271 inst.operands[i].isreg = 1; \
6272 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6273 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6274 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6275 || rtype == REG_TYPE_VFD \
6276 || rtype == REG_TYPE_NQ); \
6277 } \
6278 while (0)
6279
6280 #define po_reg_or_goto(regtype, label) \
6281 do \
6282 { \
6283 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6284 & inst.operands[i].vectype); \
6285 if (val == FAIL) \
6286 goto label; \
6287 \
6288 inst.operands[i].reg = val; \
6289 inst.operands[i].isreg = 1; \
6290 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6291 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6292 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6293 || rtype == REG_TYPE_VFD \
6294 || rtype == REG_TYPE_NQ); \
6295 } \
6296 while (0)
6297
6298 #define po_imm_or_fail(min, max, popt) \
6299 do \
6300 { \
6301 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6302 goto failure; \
6303 inst.operands[i].imm = val; \
6304 } \
6305 while (0)
6306
6307 #define po_scalar_or_goto(elsz, label) \
6308 do \
6309 { \
6310 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6311 if (val == FAIL) \
6312 goto label; \
6313 inst.operands[i].reg = val; \
6314 inst.operands[i].isscalar = 1; \
6315 } \
6316 while (0)
6317
6318 #define po_misc_or_fail(expr) \
6319 do \
6320 { \
6321 if (expr) \
6322 goto failure; \
6323 } \
6324 while (0)
6325
6326 #define po_misc_or_fail_no_backtrack(expr) \
6327 do \
6328 { \
6329 result = expr; \
6330 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6331 backtrack_pos = 0; \
6332 if (result != PARSE_OPERAND_SUCCESS) \
6333 goto failure; \
6334 } \
6335 while (0)
6336
6337 #define po_barrier_or_imm(str) \
6338 do \
6339 { \
6340 val = parse_barrier (&str); \
6341 if (val == FAIL && ! ISALPHA (*str)) \
6342 goto immediate; \
6343 if (val == FAIL \
6344 /* ISB can only take SY as an option. */ \
6345 || ((inst.instruction & 0xf0) == 0x60 \
6346 && val != 0xf)) \
6347 { \
6348 inst.error = _("invalid barrier type"); \
6349 backtrack_pos = 0; \
6350 goto failure; \
6351 } \
6352 } \
6353 while (0)
6354
6355 skip_whitespace (str);
6356
6357 for (i = 0; upat[i] != OP_stop; i++)
6358 {
6359 op_parse_code = upat[i];
6360 if (op_parse_code >= 1<<16)
6361 op_parse_code = thumb ? (op_parse_code >> 16)
6362 : (op_parse_code & ((1<<16)-1));
6363
6364 if (op_parse_code >= OP_FIRST_OPTIONAL)
6365 {
6366 /* Remember where we are in case we need to backtrack. */
6367 gas_assert (!backtrack_pos);
6368 backtrack_pos = str;
6369 backtrack_error = inst.error;
6370 backtrack_index = i;
6371 }
6372
6373 if (i > 0 && (i > 1 || inst.operands[0].present))
6374 po_char_or_fail (',');
6375
6376 switch (op_parse_code)
6377 {
6378 /* Registers */
6379 case OP_oRRnpc:
6380 case OP_oRRnpcsp:
6381 case OP_RRnpc:
6382 case OP_RRnpcsp:
6383 case OP_oRR:
6384 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6385 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6386 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6387 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6388 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6389 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6390 case OP_oRND:
6391 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6392 case OP_RVC:
6393 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6394 break;
6395 /* Also accept generic coprocessor regs for unknown registers. */
6396 coproc_reg:
6397 po_reg_or_fail (REG_TYPE_CN);
6398 break;
6399 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6400 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6401 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6402 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6403 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6404 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6405 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6406 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6407 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6408 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6409 case OP_oRNQ:
6410 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6411 case OP_oRNDQ:
6412 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6413 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6414 case OP_oRNSDQ:
6415 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6416
6417 /* Neon scalar. Using an element size of 8 means that some invalid
6418 scalars are accepted here, so deal with those in later code. */
6419 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6420
6421 case OP_RNDQ_I0:
6422 {
6423 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6424 break;
6425 try_imm0:
6426 po_imm_or_fail (0, 0, TRUE);
6427 }
6428 break;
6429
6430 case OP_RVSD_I0:
6431 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6432 break;
6433
6434 case OP_RR_RNSC:
6435 {
6436 po_scalar_or_goto (8, try_rr);
6437 break;
6438 try_rr:
6439 po_reg_or_fail (REG_TYPE_RN);
6440 }
6441 break;
6442
6443 case OP_RNSDQ_RNSC:
6444 {
6445 po_scalar_or_goto (8, try_nsdq);
6446 break;
6447 try_nsdq:
6448 po_reg_or_fail (REG_TYPE_NSDQ);
6449 }
6450 break;
6451
6452 case OP_RNDQ_RNSC:
6453 {
6454 po_scalar_or_goto (8, try_ndq);
6455 break;
6456 try_ndq:
6457 po_reg_or_fail (REG_TYPE_NDQ);
6458 }
6459 break;
6460
6461 case OP_RND_RNSC:
6462 {
6463 po_scalar_or_goto (8, try_vfd);
6464 break;
6465 try_vfd:
6466 po_reg_or_fail (REG_TYPE_VFD);
6467 }
6468 break;
6469
6470 case OP_VMOV:
6471 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6472 not careful then bad things might happen. */
6473 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6474 break;
6475
6476 case OP_RNDQ_Ibig:
6477 {
6478 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6479 break;
6480 try_immbig:
6481 /* There's a possibility of getting a 64-bit immediate here, so
6482 we need special handling. */
6483 if (parse_big_immediate (&str, i) == FAIL)
6484 {
6485 inst.error = _("immediate value is out of range");
6486 goto failure;
6487 }
6488 }
6489 break;
6490
6491 case OP_RNDQ_I63b:
6492 {
6493 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6494 break;
6495 try_shimm:
6496 po_imm_or_fail (0, 63, TRUE);
6497 }
6498 break;
6499
6500 case OP_RRnpcb:
6501 po_char_or_fail ('[');
6502 po_reg_or_fail (REG_TYPE_RN);
6503 po_char_or_fail (']');
6504 break;
6505
6506 case OP_RRnpctw:
6507 case OP_RRw:
6508 case OP_oRRw:
6509 po_reg_or_fail (REG_TYPE_RN);
6510 if (skip_past_char (&str, '!') == SUCCESS)
6511 inst.operands[i].writeback = 1;
6512 break;
6513
6514 /* Immediates */
6515 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6516 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6517 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6518 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6519 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6520 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6521 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6522 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6523 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6524 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6525 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6526 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6527
6528 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6529 case OP_oI7b:
6530 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6531 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6532 case OP_oI31b:
6533 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6534 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6535 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6536 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6537
6538 /* Immediate variants */
6539 case OP_oI255c:
6540 po_char_or_fail ('{');
6541 po_imm_or_fail (0, 255, TRUE);
6542 po_char_or_fail ('}');
6543 break;
6544
6545 case OP_I31w:
6546 /* The expression parser chokes on a trailing !, so we have
6547 to find it first and zap it. */
6548 {
6549 char *s = str;
6550 while (*s && *s != ',')
6551 s++;
6552 if (s[-1] == '!')
6553 {
6554 s[-1] = '\0';
6555 inst.operands[i].writeback = 1;
6556 }
6557 po_imm_or_fail (0, 31, TRUE);
6558 if (str == s - 1)
6559 str = s;
6560 }
6561 break;
6562
6563 /* Expressions */
6564 case OP_EXPi: EXPi:
6565 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6566 GE_OPT_PREFIX));
6567 break;
6568
6569 case OP_EXP:
6570 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6571 GE_NO_PREFIX));
6572 break;
6573
6574 case OP_EXPr: EXPr:
6575 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6576 GE_NO_PREFIX));
6577 if (inst.reloc.exp.X_op == O_symbol)
6578 {
6579 val = parse_reloc (&str);
6580 if (val == -1)
6581 {
6582 inst.error = _("unrecognized relocation suffix");
6583 goto failure;
6584 }
6585 else if (val != BFD_RELOC_UNUSED)
6586 {
6587 inst.operands[i].imm = val;
6588 inst.operands[i].hasreloc = 1;
6589 }
6590 }
6591 break;
6592
6593 /* Operand for MOVW or MOVT. */
6594 case OP_HALF:
6595 po_misc_or_fail (parse_half (&str));
6596 break;
6597
6598 /* Register or expression. */
6599 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6600 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6601
6602 /* Register or immediate. */
6603 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6604 I0: po_imm_or_fail (0, 0, FALSE); break;
6605
6606 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6607 IF:
6608 if (!is_immediate_prefix (*str))
6609 goto bad_args;
6610 str++;
6611 val = parse_fpa_immediate (&str);
6612 if (val == FAIL)
6613 goto failure;
6614 /* FPA immediates are encoded as registers 8-15.
6615 parse_fpa_immediate has already applied the offset. */
6616 inst.operands[i].reg = val;
6617 inst.operands[i].isreg = 1;
6618 break;
6619
6620 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6621 I32z: po_imm_or_fail (0, 32, FALSE); break;
6622
6623 /* Two kinds of register. */
6624 case OP_RIWR_RIWC:
6625 {
6626 struct reg_entry *rege = arm_reg_parse_multi (&str);
6627 if (!rege
6628 || (rege->type != REG_TYPE_MMXWR
6629 && rege->type != REG_TYPE_MMXWC
6630 && rege->type != REG_TYPE_MMXWCG))
6631 {
6632 inst.error = _("iWMMXt data or control register expected");
6633 goto failure;
6634 }
6635 inst.operands[i].reg = rege->number;
6636 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6637 }
6638 break;
6639
6640 case OP_RIWC_RIWG:
6641 {
6642 struct reg_entry *rege = arm_reg_parse_multi (&str);
6643 if (!rege
6644 || (rege->type != REG_TYPE_MMXWC
6645 && rege->type != REG_TYPE_MMXWCG))
6646 {
6647 inst.error = _("iWMMXt control register expected");
6648 goto failure;
6649 }
6650 inst.operands[i].reg = rege->number;
6651 inst.operands[i].isreg = 1;
6652 }
6653 break;
6654
6655 /* Misc */
6656 case OP_CPSF: val = parse_cps_flags (&str); break;
6657 case OP_ENDI: val = parse_endian_specifier (&str); break;
6658 case OP_oROR: val = parse_ror (&str); break;
6659 case OP_COND: val = parse_cond (&str); break;
6660 case OP_oBARRIER_I15:
6661 po_barrier_or_imm (str); break;
6662 immediate:
6663 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6664 goto failure;
6665 break;
6666
6667 case OP_wPSR:
6668 case OP_rPSR:
6669 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6670 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6671 {
6672 inst.error = _("Banked registers are not available with this "
6673 "architecture.");
6674 goto failure;
6675 }
6676 break;
6677 try_psr:
6678 val = parse_psr (&str, op_parse_code == OP_wPSR);
6679 break;
6680
6681 case OP_APSR_RR:
6682 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6683 break;
6684 try_apsr:
6685 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6686 instruction). */
6687 if (strncasecmp (str, "APSR_", 5) == 0)
6688 {
6689 unsigned found = 0;
6690 str += 5;
6691 while (found < 15)
6692 switch (*str++)
6693 {
6694 case 'c': found = (found & 1) ? 16 : found | 1; break;
6695 case 'n': found = (found & 2) ? 16 : found | 2; break;
6696 case 'z': found = (found & 4) ? 16 : found | 4; break;
6697 case 'v': found = (found & 8) ? 16 : found | 8; break;
6698 default: found = 16;
6699 }
6700 if (found != 15)
6701 goto failure;
6702 inst.operands[i].isvec = 1;
6703 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6704 inst.operands[i].reg = REG_PC;
6705 }
6706 else
6707 goto failure;
6708 break;
6709
6710 case OP_TB:
6711 po_misc_or_fail (parse_tb (&str));
6712 break;
6713
6714 /* Register lists. */
6715 case OP_REGLST:
6716 val = parse_reg_list (&str);
6717 if (*str == '^')
6718 {
6719 inst.operands[1].writeback = 1;
6720 str++;
6721 }
6722 break;
6723
6724 case OP_VRSLST:
6725 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6726 break;
6727
6728 case OP_VRDLST:
6729 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6730 break;
6731
6732 case OP_VRSDLST:
6733 /* Allow Q registers too. */
6734 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6735 REGLIST_NEON_D);
6736 if (val == FAIL)
6737 {
6738 inst.error = NULL;
6739 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6740 REGLIST_VFP_S);
6741 inst.operands[i].issingle = 1;
6742 }
6743 break;
6744
6745 case OP_NRDLST:
6746 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6747 REGLIST_NEON_D);
6748 break;
6749
6750 case OP_NSTRLST:
6751 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6752 &inst.operands[i].vectype);
6753 break;
6754
6755 /* Addressing modes */
6756 case OP_ADDR:
6757 po_misc_or_fail (parse_address (&str, i));
6758 break;
6759
6760 case OP_ADDRGLDR:
6761 po_misc_or_fail_no_backtrack (
6762 parse_address_group_reloc (&str, i, GROUP_LDR));
6763 break;
6764
6765 case OP_ADDRGLDRS:
6766 po_misc_or_fail_no_backtrack (
6767 parse_address_group_reloc (&str, i, GROUP_LDRS));
6768 break;
6769
6770 case OP_ADDRGLDC:
6771 po_misc_or_fail_no_backtrack (
6772 parse_address_group_reloc (&str, i, GROUP_LDC));
6773 break;
6774
6775 case OP_SH:
6776 po_misc_or_fail (parse_shifter_operand (&str, i));
6777 break;
6778
6779 case OP_SHG:
6780 po_misc_or_fail_no_backtrack (
6781 parse_shifter_operand_group_reloc (&str, i));
6782 break;
6783
6784 case OP_oSHll:
6785 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6786 break;
6787
6788 case OP_oSHar:
6789 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6790 break;
6791
6792 case OP_oSHllar:
6793 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6794 break;
6795
6796 default:
6797 as_fatal (_("unhandled operand code %d"), op_parse_code);
6798 }
6799
6800 /* Various value-based sanity checks and shared operations. We
6801 do not signal immediate failures for the register constraints;
6802 this allows a syntax error to take precedence. */
6803 switch (op_parse_code)
6804 {
6805 case OP_oRRnpc:
6806 case OP_RRnpc:
6807 case OP_RRnpcb:
6808 case OP_RRw:
6809 case OP_oRRw:
6810 case OP_RRnpc_I0:
6811 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6812 inst.error = BAD_PC;
6813 break;
6814
6815 case OP_oRRnpcsp:
6816 case OP_RRnpcsp:
6817 if (inst.operands[i].isreg)
6818 {
6819 if (inst.operands[i].reg == REG_PC)
6820 inst.error = BAD_PC;
6821 else if (inst.operands[i].reg == REG_SP)
6822 inst.error = BAD_SP;
6823 }
6824 break;
6825
6826 case OP_RRnpctw:
6827 if (inst.operands[i].isreg
6828 && inst.operands[i].reg == REG_PC
6829 && (inst.operands[i].writeback || thumb))
6830 inst.error = BAD_PC;
6831 break;
6832
6833 case OP_CPSF:
6834 case OP_ENDI:
6835 case OP_oROR:
6836 case OP_wPSR:
6837 case OP_rPSR:
6838 case OP_COND:
6839 case OP_oBARRIER_I15:
6840 case OP_REGLST:
6841 case OP_VRSLST:
6842 case OP_VRDLST:
6843 case OP_VRSDLST:
6844 case OP_NRDLST:
6845 case OP_NSTRLST:
6846 if (val == FAIL)
6847 goto failure;
6848 inst.operands[i].imm = val;
6849 break;
6850
6851 default:
6852 break;
6853 }
6854
6855 /* If we get here, this operand was successfully parsed. */
6856 inst.operands[i].present = 1;
6857 continue;
6858
6859 bad_args:
6860 inst.error = BAD_ARGS;
6861
6862 failure:
6863 if (!backtrack_pos)
6864 {
6865 /* The parse routine should already have set inst.error, but set a
6866 default here just in case. */
6867 if (!inst.error)
6868 inst.error = _("syntax error");
6869 return FAIL;
6870 }
6871
6872 /* Do not backtrack over a trailing optional argument that
6873 absorbed some text. We will only fail again, with the
6874 'garbage following instruction' error message, which is
6875 probably less helpful than the current one. */
6876 if (backtrack_index == i && backtrack_pos != str
6877 && upat[i+1] == OP_stop)
6878 {
6879 if (!inst.error)
6880 inst.error = _("syntax error");
6881 return FAIL;
6882 }
6883
6884 /* Try again, skipping the optional argument at backtrack_pos. */
6885 str = backtrack_pos;
6886 inst.error = backtrack_error;
6887 inst.operands[backtrack_index].present = 0;
6888 i = backtrack_index;
6889 backtrack_pos = 0;
6890 }
6891
6892 /* Check that we have parsed all the arguments. */
6893 if (*str != '\0' && !inst.error)
6894 inst.error = _("garbage following instruction");
6895
6896 return inst.error ? FAIL : SUCCESS;
6897 }
6898
6899 #undef po_char_or_fail
6900 #undef po_reg_or_fail
6901 #undef po_reg_or_goto
6902 #undef po_imm_or_fail
6903 #undef po_scalar_or_fail
6904 #undef po_barrier_or_imm
6905
6906 /* Shorthand macro for instruction encoding functions issuing errors. */
6907 #define constraint(expr, err) \
6908 do \
6909 { \
6910 if (expr) \
6911 { \
6912 inst.error = err; \
6913 return; \
6914 } \
6915 } \
6916 while (0)
6917
6918 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6919 instructions are unpredictable if these registers are used. This
6920 is the BadReg predicate in ARM's Thumb-2 documentation. */
6921 #define reject_bad_reg(reg) \
6922 do \
6923 if (reg == REG_SP || reg == REG_PC) \
6924 { \
6925 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6926 return; \
6927 } \
6928 while (0)
6929
6930 /* If REG is R13 (the stack pointer), warn that its use is
6931 deprecated. */
6932 #define warn_deprecated_sp(reg) \
6933 do \
6934 if (warn_on_deprecated && reg == REG_SP) \
6935 as_warn (_("use of r13 is deprecated")); \
6936 while (0)
6937
6938 /* Functions for operand encoding. ARM, then Thumb. */
6939
6940 #define rotate_left(v, n) (v << n | v >> (32 - n))
6941
6942 /* If VAL can be encoded in the immediate field of an ARM instruction,
6943 return the encoded form. Otherwise, return FAIL. */
6944
6945 static unsigned int
6946 encode_arm_immediate (unsigned int val)
6947 {
6948 unsigned int a, i;
6949
6950 for (i = 0; i < 32; i += 2)
6951 if ((a = rotate_left (val, i)) <= 0xff)
6952 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6953
6954 return FAIL;
6955 }
6956
6957 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6958 return the encoded form. Otherwise, return FAIL. */
6959 static unsigned int
6960 encode_thumb32_immediate (unsigned int val)
6961 {
6962 unsigned int a, i;
6963
6964 if (val <= 0xff)
6965 return val;
6966
6967 for (i = 1; i <= 24; i++)
6968 {
6969 a = val >> i;
6970 if ((val & ~(0xff << i)) == 0)
6971 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6972 }
6973
6974 a = val & 0xff;
6975 if (val == ((a << 16) | a))
6976 return 0x100 | a;
6977 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6978 return 0x300 | a;
6979
6980 a = val & 0xff00;
6981 if (val == ((a << 16) | a))
6982 return 0x200 | (a >> 8);
6983
6984 return FAIL;
6985 }
6986 /* Encode a VFP SP or DP register number into inst.instruction. */
6987
6988 static void
6989 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6990 {
6991 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6992 && reg > 15)
6993 {
6994 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6995 {
6996 if (thumb_mode)
6997 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6998 fpu_vfp_ext_d32);
6999 else
7000 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7001 fpu_vfp_ext_d32);
7002 }
7003 else
7004 {
7005 first_error (_("D register out of range for selected VFP version"));
7006 return;
7007 }
7008 }
7009
7010 switch (pos)
7011 {
7012 case VFP_REG_Sd:
7013 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7014 break;
7015
7016 case VFP_REG_Sn:
7017 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7018 break;
7019
7020 case VFP_REG_Sm:
7021 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7022 break;
7023
7024 case VFP_REG_Dd:
7025 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7026 break;
7027
7028 case VFP_REG_Dn:
7029 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7030 break;
7031
7032 case VFP_REG_Dm:
7033 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7034 break;
7035
7036 default:
7037 abort ();
7038 }
7039 }
7040
7041 /* Encode a <shift> in an ARM-format instruction. The immediate,
7042 if any, is handled by md_apply_fix. */
7043 static void
7044 encode_arm_shift (int i)
7045 {
7046 if (inst.operands[i].shift_kind == SHIFT_RRX)
7047 inst.instruction |= SHIFT_ROR << 5;
7048 else
7049 {
7050 inst.instruction |= inst.operands[i].shift_kind << 5;
7051 if (inst.operands[i].immisreg)
7052 {
7053 inst.instruction |= SHIFT_BY_REG;
7054 inst.instruction |= inst.operands[i].imm << 8;
7055 }
7056 else
7057 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7058 }
7059 }
7060
7061 static void
7062 encode_arm_shifter_operand (int i)
7063 {
7064 if (inst.operands[i].isreg)
7065 {
7066 inst.instruction |= inst.operands[i].reg;
7067 encode_arm_shift (i);
7068 }
7069 else
7070 {
7071 inst.instruction |= INST_IMMEDIATE;
7072 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7073 inst.instruction |= inst.operands[i].imm;
7074 }
7075 }
7076
7077 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7078 static void
7079 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7080 {
7081 /* PR 14260:
7082 Generate an error if the operand is not a register. */
7083 constraint (!inst.operands[i].isreg,
7084 _("Instruction does not support =N addresses"));
7085
7086 inst.instruction |= inst.operands[i].reg << 16;
7087
7088 if (inst.operands[i].preind)
7089 {
7090 if (is_t)
7091 {
7092 inst.error = _("instruction does not accept preindexed addressing");
7093 return;
7094 }
7095 inst.instruction |= PRE_INDEX;
7096 if (inst.operands[i].writeback)
7097 inst.instruction |= WRITE_BACK;
7098
7099 }
7100 else if (inst.operands[i].postind)
7101 {
7102 gas_assert (inst.operands[i].writeback);
7103 if (is_t)
7104 inst.instruction |= WRITE_BACK;
7105 }
7106 else /* unindexed - only for coprocessor */
7107 {
7108 inst.error = _("instruction does not accept unindexed addressing");
7109 return;
7110 }
7111
7112 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7113 && (((inst.instruction & 0x000f0000) >> 16)
7114 == ((inst.instruction & 0x0000f000) >> 12)))
7115 as_warn ((inst.instruction & LOAD_BIT)
7116 ? _("destination register same as write-back base")
7117 : _("source register same as write-back base"));
7118 }
7119
7120 /* inst.operands[i] was set up by parse_address. Encode it into an
7121 ARM-format mode 2 load or store instruction. If is_t is true,
7122 reject forms that cannot be used with a T instruction (i.e. not
7123 post-indexed). */
7124 static void
7125 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7126 {
7127 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7128
7129 encode_arm_addr_mode_common (i, is_t);
7130
7131 if (inst.operands[i].immisreg)
7132 {
7133 constraint ((inst.operands[i].imm == REG_PC
7134 || (is_pc && inst.operands[i].writeback)),
7135 BAD_PC_ADDRESSING);
7136 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7137 inst.instruction |= inst.operands[i].imm;
7138 if (!inst.operands[i].negative)
7139 inst.instruction |= INDEX_UP;
7140 if (inst.operands[i].shifted)
7141 {
7142 if (inst.operands[i].shift_kind == SHIFT_RRX)
7143 inst.instruction |= SHIFT_ROR << 5;
7144 else
7145 {
7146 inst.instruction |= inst.operands[i].shift_kind << 5;
7147 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7148 }
7149 }
7150 }
7151 else /* immediate offset in inst.reloc */
7152 {
7153 if (is_pc && !inst.reloc.pc_rel)
7154 {
7155 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7156
7157 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7158 cannot use PC in addressing.
7159 PC cannot be used in writeback addressing, either. */
7160 constraint ((is_t || inst.operands[i].writeback),
7161 BAD_PC_ADDRESSING);
7162
7163 /* Use of PC in str is deprecated for ARMv7. */
7164 if (warn_on_deprecated
7165 && !is_load
7166 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7167 as_warn (_("use of PC in this instruction is deprecated"));
7168 }
7169
7170 if (inst.reloc.type == BFD_RELOC_UNUSED)
7171 {
7172 /* Prefer + for zero encoded value. */
7173 if (!inst.operands[i].negative)
7174 inst.instruction |= INDEX_UP;
7175 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7176 }
7177 }
7178 }
7179
7180 /* inst.operands[i] was set up by parse_address. Encode it into an
7181 ARM-format mode 3 load or store instruction. Reject forms that
7182 cannot be used with such instructions. If is_t is true, reject
7183 forms that cannot be used with a T instruction (i.e. not
7184 post-indexed). */
7185 static void
7186 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7187 {
7188 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7189 {
7190 inst.error = _("instruction does not accept scaled register index");
7191 return;
7192 }
7193
7194 encode_arm_addr_mode_common (i, is_t);
7195
7196 if (inst.operands[i].immisreg)
7197 {
7198 constraint ((inst.operands[i].imm == REG_PC
7199 || (is_t && inst.operands[i].reg == REG_PC)),
7200 BAD_PC_ADDRESSING);
7201 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7202 BAD_PC_WRITEBACK);
7203 inst.instruction |= inst.operands[i].imm;
7204 if (!inst.operands[i].negative)
7205 inst.instruction |= INDEX_UP;
7206 }
7207 else /* immediate offset in inst.reloc */
7208 {
7209 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7210 && inst.operands[i].writeback),
7211 BAD_PC_WRITEBACK);
7212 inst.instruction |= HWOFFSET_IMM;
7213 if (inst.reloc.type == BFD_RELOC_UNUSED)
7214 {
7215 /* Prefer + for zero encoded value. */
7216 if (!inst.operands[i].negative)
7217 inst.instruction |= INDEX_UP;
7218
7219 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7220 }
7221 }
7222 }
7223
7224 /* inst.operands[i] was set up by parse_address. Encode it into an
7225 ARM-format instruction. Reject all forms which cannot be encoded
7226 into a coprocessor load/store instruction. If wb_ok is false,
7227 reject use of writeback; if unind_ok is false, reject use of
7228 unindexed addressing. If reloc_override is not 0, use it instead
7229 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7230 (in which case it is preserved). */
7231
7232 static int
7233 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7234 {
7235 inst.instruction |= inst.operands[i].reg << 16;
7236
7237 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7238
7239 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7240 {
7241 gas_assert (!inst.operands[i].writeback);
7242 if (!unind_ok)
7243 {
7244 inst.error = _("instruction does not support unindexed addressing");
7245 return FAIL;
7246 }
7247 inst.instruction |= inst.operands[i].imm;
7248 inst.instruction |= INDEX_UP;
7249 return SUCCESS;
7250 }
7251
7252 if (inst.operands[i].preind)
7253 inst.instruction |= PRE_INDEX;
7254
7255 if (inst.operands[i].writeback)
7256 {
7257 if (inst.operands[i].reg == REG_PC)
7258 {
7259 inst.error = _("pc may not be used with write-back");
7260 return FAIL;
7261 }
7262 if (!wb_ok)
7263 {
7264 inst.error = _("instruction does not support writeback");
7265 return FAIL;
7266 }
7267 inst.instruction |= WRITE_BACK;
7268 }
7269
7270 if (reloc_override)
7271 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7272 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7273 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7274 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7275 {
7276 if (thumb_mode)
7277 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7278 else
7279 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7280 }
7281
7282 /* Prefer + for zero encoded value. */
7283 if (!inst.operands[i].negative)
7284 inst.instruction |= INDEX_UP;
7285
7286 return SUCCESS;
7287 }
7288
7289 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7290 Determine whether it can be performed with a move instruction; if
7291 it can, convert inst.instruction to that move instruction and
7292 return TRUE; if it can't, convert inst.instruction to a literal-pool
7293 load and return FALSE. If this is not a valid thing to do in the
7294 current context, set inst.error and return TRUE.
7295
7296 inst.operands[i] describes the destination register. */
7297
7298 static bfd_boolean
7299 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7300 {
7301 unsigned long tbit;
7302
7303 if (thumb_p)
7304 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7305 else
7306 tbit = LOAD_BIT;
7307
7308 if ((inst.instruction & tbit) == 0)
7309 {
7310 inst.error = _("invalid pseudo operation");
7311 return TRUE;
7312 }
7313 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7314 {
7315 inst.error = _("constant expression expected");
7316 return TRUE;
7317 }
7318 if (inst.reloc.exp.X_op == O_constant)
7319 {
7320 if (thumb_p)
7321 {
7322 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7323 {
7324 /* This can be done with a mov(1) instruction. */
7325 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7326 inst.instruction |= inst.reloc.exp.X_add_number;
7327 return TRUE;
7328 }
7329 }
7330 else
7331 {
7332 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7333 if (value != FAIL)
7334 {
7335 /* This can be done with a mov instruction. */
7336 inst.instruction &= LITERAL_MASK;
7337 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7338 inst.instruction |= value & 0xfff;
7339 return TRUE;
7340 }
7341
7342 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7343 if (value != FAIL)
7344 {
7345 /* This can be done with a mvn instruction. */
7346 inst.instruction &= LITERAL_MASK;
7347 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7348 inst.instruction |= value & 0xfff;
7349 return TRUE;
7350 }
7351 }
7352 }
7353
7354 if (add_to_lit_pool () == FAIL)
7355 {
7356 inst.error = _("literal pool insertion failed");
7357 return TRUE;
7358 }
7359 inst.operands[1].reg = REG_PC;
7360 inst.operands[1].isreg = 1;
7361 inst.operands[1].preind = 1;
7362 inst.reloc.pc_rel = 1;
7363 inst.reloc.type = (thumb_p
7364 ? BFD_RELOC_ARM_THUMB_OFFSET
7365 : (mode_3
7366 ? BFD_RELOC_ARM_HWLITERAL
7367 : BFD_RELOC_ARM_LITERAL));
7368 return FALSE;
7369 }
7370
7371 /* Functions for instruction encoding, sorted by sub-architecture.
7372 First some generics; their names are taken from the conventional
7373 bit positions for register arguments in ARM format instructions. */
7374
7375 static void
7376 do_noargs (void)
7377 {
7378 }
7379
7380 static void
7381 do_rd (void)
7382 {
7383 inst.instruction |= inst.operands[0].reg << 12;
7384 }
7385
7386 static void
7387 do_rd_rm (void)
7388 {
7389 inst.instruction |= inst.operands[0].reg << 12;
7390 inst.instruction |= inst.operands[1].reg;
7391 }
7392
7393 static void
7394 do_rm_rn (void)
7395 {
7396 inst.instruction |= inst.operands[0].reg;
7397 inst.instruction |= inst.operands[1].reg << 16;
7398 }
7399
7400 static void
7401 do_rd_rn (void)
7402 {
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].reg << 16;
7405 }
7406
7407 static void
7408 do_rn_rd (void)
7409 {
7410 inst.instruction |= inst.operands[0].reg << 16;
7411 inst.instruction |= inst.operands[1].reg << 12;
7412 }
7413
7414 static bfd_boolean
7415 check_obsolete (const arm_feature_set *feature, const char *msg)
7416 {
7417 if (ARM_CPU_IS_ANY (cpu_variant))
7418 {
7419 as_warn ("%s", msg);
7420 return TRUE;
7421 }
7422 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7423 {
7424 as_bad ("%s", msg);
7425 return TRUE;
7426 }
7427
7428 return FALSE;
7429 }
7430
7431 static void
7432 do_rd_rm_rn (void)
7433 {
7434 unsigned Rn = inst.operands[2].reg;
7435 /* Enforce restrictions on SWP instruction. */
7436 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7437 {
7438 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7439 _("Rn must not overlap other operands"));
7440
7441 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7442 */
7443 if (!check_obsolete (&arm_ext_v8,
7444 _("swp{b} use is obsoleted for ARMv8 and later"))
7445 && warn_on_deprecated
7446 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7447 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7448 }
7449
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg;
7452 inst.instruction |= Rn << 16;
7453 }
7454
7455 static void
7456 do_rd_rn_rm (void)
7457 {
7458 inst.instruction |= inst.operands[0].reg << 12;
7459 inst.instruction |= inst.operands[1].reg << 16;
7460 inst.instruction |= inst.operands[2].reg;
7461 }
7462
7463 static void
7464 do_rm_rd_rn (void)
7465 {
7466 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7467 constraint (((inst.reloc.exp.X_op != O_constant
7468 && inst.reloc.exp.X_op != O_illegal)
7469 || inst.reloc.exp.X_add_number != 0),
7470 BAD_ADDR_MODE);
7471 inst.instruction |= inst.operands[0].reg;
7472 inst.instruction |= inst.operands[1].reg << 12;
7473 inst.instruction |= inst.operands[2].reg << 16;
7474 }
7475
7476 static void
7477 do_imm0 (void)
7478 {
7479 inst.instruction |= inst.operands[0].imm;
7480 }
7481
7482 static void
7483 do_rd_cpaddr (void)
7484 {
7485 inst.instruction |= inst.operands[0].reg << 12;
7486 encode_arm_cp_address (1, TRUE, TRUE, 0);
7487 }
7488
7489 /* ARM instructions, in alphabetical order by function name (except
7490 that wrapper functions appear immediately after the function they
7491 wrap). */
7492
7493 /* This is a pseudo-op of the form "adr rd, label" to be converted
7494 into a relative address of the form "add rd, pc, #label-.-8". */
7495
7496 static void
7497 do_adr (void)
7498 {
7499 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7500
7501 /* Frag hacking will turn this into a sub instruction if the offset turns
7502 out to be negative. */
7503 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7504 inst.reloc.pc_rel = 1;
7505 inst.reloc.exp.X_add_number -= 8;
7506 }
7507
7508 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7509 into a relative address of the form:
7510 add rd, pc, #low(label-.-8)"
7511 add rd, rd, #high(label-.-8)" */
7512
7513 static void
7514 do_adrl (void)
7515 {
7516 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7517
7518 /* Frag hacking will turn this into a sub instruction if the offset turns
7519 out to be negative. */
7520 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7521 inst.reloc.pc_rel = 1;
7522 inst.size = INSN_SIZE * 2;
7523 inst.reloc.exp.X_add_number -= 8;
7524 }
7525
7526 static void
7527 do_arit (void)
7528 {
7529 if (!inst.operands[1].present)
7530 inst.operands[1].reg = inst.operands[0].reg;
7531 inst.instruction |= inst.operands[0].reg << 12;
7532 inst.instruction |= inst.operands[1].reg << 16;
7533 encode_arm_shifter_operand (2);
7534 }
7535
7536 static void
7537 do_barrier (void)
7538 {
7539 if (inst.operands[0].present)
7540 inst.instruction |= inst.operands[0].imm;
7541 else
7542 inst.instruction |= 0xf;
7543 }
7544
7545 static void
7546 do_bfc (void)
7547 {
7548 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7549 constraint (msb > 32, _("bit-field extends past end of register"));
7550 /* The instruction encoding stores the LSB and MSB,
7551 not the LSB and width. */
7552 inst.instruction |= inst.operands[0].reg << 12;
7553 inst.instruction |= inst.operands[1].imm << 7;
7554 inst.instruction |= (msb - 1) << 16;
7555 }
7556
7557 static void
7558 do_bfi (void)
7559 {
7560 unsigned int msb;
7561
7562 /* #0 in second position is alternative syntax for bfc, which is
7563 the same instruction but with REG_PC in the Rm field. */
7564 if (!inst.operands[1].isreg)
7565 inst.operands[1].reg = REG_PC;
7566
7567 msb = inst.operands[2].imm + inst.operands[3].imm;
7568 constraint (msb > 32, _("bit-field extends past end of register"));
7569 /* The instruction encoding stores the LSB and MSB,
7570 not the LSB and width. */
7571 inst.instruction |= inst.operands[0].reg << 12;
7572 inst.instruction |= inst.operands[1].reg;
7573 inst.instruction |= inst.operands[2].imm << 7;
7574 inst.instruction |= (msb - 1) << 16;
7575 }
7576
7577 static void
7578 do_bfx (void)
7579 {
7580 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7581 _("bit-field extends past end of register"));
7582 inst.instruction |= inst.operands[0].reg << 12;
7583 inst.instruction |= inst.operands[1].reg;
7584 inst.instruction |= inst.operands[2].imm << 7;
7585 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7586 }
7587
7588 /* ARM V5 breakpoint instruction (argument parse)
7589 BKPT <16 bit unsigned immediate>
7590 Instruction is not conditional.
7591 The bit pattern given in insns[] has the COND_ALWAYS condition,
7592 and it is an error if the caller tried to override that. */
7593
7594 static void
7595 do_bkpt (void)
7596 {
7597 /* Top 12 of 16 bits to bits 19:8. */
7598 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7599
7600 /* Bottom 4 of 16 bits to bits 3:0. */
7601 inst.instruction |= inst.operands[0].imm & 0xf;
7602 }
7603
7604 static void
7605 encode_branch (int default_reloc)
7606 {
7607 if (inst.operands[0].hasreloc)
7608 {
7609 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7610 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7611 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7612 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7613 ? BFD_RELOC_ARM_PLT32
7614 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7615 }
7616 else
7617 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7618 inst.reloc.pc_rel = 1;
7619 }
7620
7621 static void
7622 do_branch (void)
7623 {
7624 #ifdef OBJ_ELF
7625 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7626 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7627 else
7628 #endif
7629 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7630 }
7631
7632 static void
7633 do_bl (void)
7634 {
7635 #ifdef OBJ_ELF
7636 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7637 {
7638 if (inst.cond == COND_ALWAYS)
7639 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7640 else
7641 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7642 }
7643 else
7644 #endif
7645 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7646 }
7647
7648 /* ARM V5 branch-link-exchange instruction (argument parse)
7649 BLX <target_addr> ie BLX(1)
7650 BLX{<condition>} <Rm> ie BLX(2)
7651 Unfortunately, there are two different opcodes for this mnemonic.
7652 So, the insns[].value is not used, and the code here zaps values
7653 into inst.instruction.
7654 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7655
7656 static void
7657 do_blx (void)
7658 {
7659 if (inst.operands[0].isreg)
7660 {
7661 /* Arg is a register; the opcode provided by insns[] is correct.
7662 It is not illegal to do "blx pc", just useless. */
7663 if (inst.operands[0].reg == REG_PC)
7664 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7665
7666 inst.instruction |= inst.operands[0].reg;
7667 }
7668 else
7669 {
7670 /* Arg is an address; this instruction cannot be executed
7671 conditionally, and the opcode must be adjusted.
7672 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7673 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7674 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7675 inst.instruction = 0xfa000000;
7676 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7677 }
7678 }
7679
7680 static void
7681 do_bx (void)
7682 {
7683 bfd_boolean want_reloc;
7684
7685 if (inst.operands[0].reg == REG_PC)
7686 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7687
7688 inst.instruction |= inst.operands[0].reg;
7689 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7690 it is for ARMv4t or earlier. */
7691 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7692 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7693 want_reloc = TRUE;
7694
7695 #ifdef OBJ_ELF
7696 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7697 #endif
7698 want_reloc = FALSE;
7699
7700 if (want_reloc)
7701 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7702 }
7703
7704
7705 /* ARM v5TEJ. Jump to Jazelle code. */
7706
7707 static void
7708 do_bxj (void)
7709 {
7710 if (inst.operands[0].reg == REG_PC)
7711 as_tsktsk (_("use of r15 in bxj is not really useful"));
7712
7713 inst.instruction |= inst.operands[0].reg;
7714 }
7715
7716 /* Co-processor data operation:
7717 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7718 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7719 static void
7720 do_cdp (void)
7721 {
7722 inst.instruction |= inst.operands[0].reg << 8;
7723 inst.instruction |= inst.operands[1].imm << 20;
7724 inst.instruction |= inst.operands[2].reg << 12;
7725 inst.instruction |= inst.operands[3].reg << 16;
7726 inst.instruction |= inst.operands[4].reg;
7727 inst.instruction |= inst.operands[5].imm << 5;
7728 }
7729
7730 static void
7731 do_cmp (void)
7732 {
7733 inst.instruction |= inst.operands[0].reg << 16;
7734 encode_arm_shifter_operand (1);
7735 }
7736
7737 /* Transfer between coprocessor and ARM registers.
7738 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7739 MRC2
7740 MCR{cond}
7741 MCR2
7742
7743 No special properties. */
7744
7745 struct deprecated_coproc_regs_s
7746 {
7747 unsigned cp;
7748 int opc1;
7749 unsigned crn;
7750 unsigned crm;
7751 int opc2;
7752 arm_feature_set deprecated;
7753 arm_feature_set obsoleted;
7754 const char *dep_msg;
7755 const char *obs_msg;
7756 };
7757
7758 #define DEPR_ACCESS_V8 \
7759 N_("This coprocessor register access is deprecated in ARMv8")
7760
7761 /* Table of all deprecated coprocessor registers. */
7762 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7763 {
7764 {15, 0, 7, 10, 5, /* CP15DMB. */
7765 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7766 DEPR_ACCESS_V8, NULL},
7767 {15, 0, 7, 10, 4, /* CP15DSB. */
7768 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7769 DEPR_ACCESS_V8, NULL},
7770 {15, 0, 7, 5, 4, /* CP15ISB. */
7771 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7772 DEPR_ACCESS_V8, NULL},
7773 {14, 6, 1, 0, 0, /* TEEHBR. */
7774 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7775 DEPR_ACCESS_V8, NULL},
7776 {14, 6, 0, 0, 0, /* TEECR. */
7777 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7778 DEPR_ACCESS_V8, NULL},
7779 };
7780
7781 #undef DEPR_ACCESS_V8
7782
7783 static const size_t deprecated_coproc_reg_count =
7784 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7785
7786 static void
7787 do_co_reg (void)
7788 {
7789 unsigned Rd;
7790 size_t i;
7791
7792 Rd = inst.operands[2].reg;
7793 if (thumb_mode)
7794 {
7795 if (inst.instruction == 0xee000010
7796 || inst.instruction == 0xfe000010)
7797 /* MCR, MCR2 */
7798 reject_bad_reg (Rd);
7799 else
7800 /* MRC, MRC2 */
7801 constraint (Rd == REG_SP, BAD_SP);
7802 }
7803 else
7804 {
7805 /* MCR */
7806 if (inst.instruction == 0xe000010)
7807 constraint (Rd == REG_PC, BAD_PC);
7808 }
7809
7810 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7811 {
7812 const struct deprecated_coproc_regs_s *r =
7813 deprecated_coproc_regs + i;
7814
7815 if (inst.operands[0].reg == r->cp
7816 && inst.operands[1].imm == r->opc1
7817 && inst.operands[3].reg == r->crn
7818 && inst.operands[4].reg == r->crm
7819 && inst.operands[5].imm == r->opc2)
7820 {
7821 if (! ARM_CPU_IS_ANY (cpu_variant)
7822 && warn_on_deprecated
7823 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7824 as_warn ("%s", r->dep_msg);
7825 }
7826 }
7827
7828 inst.instruction |= inst.operands[0].reg << 8;
7829 inst.instruction |= inst.operands[1].imm << 21;
7830 inst.instruction |= Rd << 12;
7831 inst.instruction |= inst.operands[3].reg << 16;
7832 inst.instruction |= inst.operands[4].reg;
7833 inst.instruction |= inst.operands[5].imm << 5;
7834 }
7835
7836 /* Transfer between coprocessor register and pair of ARM registers.
7837 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7838 MCRR2
7839 MRRC{cond}
7840 MRRC2
7841
7842 Two XScale instructions are special cases of these:
7843
7844 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7845 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7846
7847 Result unpredictable if Rd or Rn is R15. */
7848
7849 static void
7850 do_co_reg2c (void)
7851 {
7852 unsigned Rd, Rn;
7853
7854 Rd = inst.operands[2].reg;
7855 Rn = inst.operands[3].reg;
7856
7857 if (thumb_mode)
7858 {
7859 reject_bad_reg (Rd);
7860 reject_bad_reg (Rn);
7861 }
7862 else
7863 {
7864 constraint (Rd == REG_PC, BAD_PC);
7865 constraint (Rn == REG_PC, BAD_PC);
7866 }
7867
7868 inst.instruction |= inst.operands[0].reg << 8;
7869 inst.instruction |= inst.operands[1].imm << 4;
7870 inst.instruction |= Rd << 12;
7871 inst.instruction |= Rn << 16;
7872 inst.instruction |= inst.operands[4].reg;
7873 }
7874
7875 static void
7876 do_cpsi (void)
7877 {
7878 inst.instruction |= inst.operands[0].imm << 6;
7879 if (inst.operands[1].present)
7880 {
7881 inst.instruction |= CPSI_MMOD;
7882 inst.instruction |= inst.operands[1].imm;
7883 }
7884 }
7885
7886 static void
7887 do_dbg (void)
7888 {
7889 inst.instruction |= inst.operands[0].imm;
7890 }
7891
7892 static void
7893 do_div (void)
7894 {
7895 unsigned Rd, Rn, Rm;
7896
7897 Rd = inst.operands[0].reg;
7898 Rn = (inst.operands[1].present
7899 ? inst.operands[1].reg : Rd);
7900 Rm = inst.operands[2].reg;
7901
7902 constraint ((Rd == REG_PC), BAD_PC);
7903 constraint ((Rn == REG_PC), BAD_PC);
7904 constraint ((Rm == REG_PC), BAD_PC);
7905
7906 inst.instruction |= Rd << 16;
7907 inst.instruction |= Rn << 0;
7908 inst.instruction |= Rm << 8;
7909 }
7910
7911 static void
7912 do_it (void)
7913 {
7914 /* There is no IT instruction in ARM mode. We
7915 process it to do the validation as if in
7916 thumb mode, just in case the code gets
7917 assembled for thumb using the unified syntax. */
7918
7919 inst.size = 0;
7920 if (unified_syntax)
7921 {
7922 set_it_insn_type (IT_INSN);
7923 now_it.mask = (inst.instruction & 0xf) | 0x10;
7924 now_it.cc = inst.operands[0].imm;
7925 }
7926 }
7927
7928 /* If there is only one register in the register list,
7929 then return its register number. Otherwise return -1. */
7930 static int
7931 only_one_reg_in_list (int range)
7932 {
7933 int i = ffs (range) - 1;
7934 return (i > 15 || range != (1 << i)) ? -1 : i;
7935 }
7936
7937 static void
7938 encode_ldmstm(int from_push_pop_mnem)
7939 {
7940 int base_reg = inst.operands[0].reg;
7941 int range = inst.operands[1].imm;
7942 int one_reg;
7943
7944 inst.instruction |= base_reg << 16;
7945 inst.instruction |= range;
7946
7947 if (inst.operands[1].writeback)
7948 inst.instruction |= LDM_TYPE_2_OR_3;
7949
7950 if (inst.operands[0].writeback)
7951 {
7952 inst.instruction |= WRITE_BACK;
7953 /* Check for unpredictable uses of writeback. */
7954 if (inst.instruction & LOAD_BIT)
7955 {
7956 /* Not allowed in LDM type 2. */
7957 if ((inst.instruction & LDM_TYPE_2_OR_3)
7958 && ((range & (1 << REG_PC)) == 0))
7959 as_warn (_("writeback of base register is UNPREDICTABLE"));
7960 /* Only allowed if base reg not in list for other types. */
7961 else if (range & (1 << base_reg))
7962 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7963 }
7964 else /* STM. */
7965 {
7966 /* Not allowed for type 2. */
7967 if (inst.instruction & LDM_TYPE_2_OR_3)
7968 as_warn (_("writeback of base register is UNPREDICTABLE"));
7969 /* Only allowed if base reg not in list, or first in list. */
7970 else if ((range & (1 << base_reg))
7971 && (range & ((1 << base_reg) - 1)))
7972 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7973 }
7974 }
7975
7976 /* If PUSH/POP has only one register, then use the A2 encoding. */
7977 one_reg = only_one_reg_in_list (range);
7978 if (from_push_pop_mnem && one_reg >= 0)
7979 {
7980 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7981
7982 inst.instruction &= A_COND_MASK;
7983 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7984 inst.instruction |= one_reg << 12;
7985 }
7986 }
7987
7988 static void
7989 do_ldmstm (void)
7990 {
7991 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7992 }
7993
7994 /* ARMv5TE load-consecutive (argument parse)
7995 Mode is like LDRH.
7996
7997 LDRccD R, mode
7998 STRccD R, mode. */
7999
8000 static void
8001 do_ldrd (void)
8002 {
8003 constraint (inst.operands[0].reg % 2 != 0,
8004 _("first transfer register must be even"));
8005 constraint (inst.operands[1].present
8006 && inst.operands[1].reg != inst.operands[0].reg + 1,
8007 _("can only transfer two consecutive registers"));
8008 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8009 constraint (!inst.operands[2].isreg, _("'[' expected"));
8010
8011 if (!inst.operands[1].present)
8012 inst.operands[1].reg = inst.operands[0].reg + 1;
8013
8014 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8015 register and the first register written; we have to diagnose
8016 overlap between the base and the second register written here. */
8017
8018 if (inst.operands[2].reg == inst.operands[1].reg
8019 && (inst.operands[2].writeback || inst.operands[2].postind))
8020 as_warn (_("base register written back, and overlaps "
8021 "second transfer register"));
8022
8023 if (!(inst.instruction & V4_STR_BIT))
8024 {
8025 /* For an index-register load, the index register must not overlap the
8026 destination (even if not write-back). */
8027 if (inst.operands[2].immisreg
8028 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8029 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8030 as_warn (_("index register overlaps transfer register"));
8031 }
8032 inst.instruction |= inst.operands[0].reg << 12;
8033 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8034 }
8035
8036 static void
8037 do_ldrex (void)
8038 {
8039 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8040 || inst.operands[1].postind || inst.operands[1].writeback
8041 || inst.operands[1].immisreg || inst.operands[1].shifted
8042 || inst.operands[1].negative
8043 /* This can arise if the programmer has written
8044 strex rN, rM, foo
8045 or if they have mistakenly used a register name as the last
8046 operand, eg:
8047 strex rN, rM, rX
8048 It is very difficult to distinguish between these two cases
8049 because "rX" might actually be a label. ie the register
8050 name has been occluded by a symbol of the same name. So we
8051 just generate a general 'bad addressing mode' type error
8052 message and leave it up to the programmer to discover the
8053 true cause and fix their mistake. */
8054 || (inst.operands[1].reg == REG_PC),
8055 BAD_ADDR_MODE);
8056
8057 constraint (inst.reloc.exp.X_op != O_constant
8058 || inst.reloc.exp.X_add_number != 0,
8059 _("offset must be zero in ARM encoding"));
8060
8061 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8062
8063 inst.instruction |= inst.operands[0].reg << 12;
8064 inst.instruction |= inst.operands[1].reg << 16;
8065 inst.reloc.type = BFD_RELOC_UNUSED;
8066 }
8067
8068 static void
8069 do_ldrexd (void)
8070 {
8071 constraint (inst.operands[0].reg % 2 != 0,
8072 _("even register required"));
8073 constraint (inst.operands[1].present
8074 && inst.operands[1].reg != inst.operands[0].reg + 1,
8075 _("can only load two consecutive registers"));
8076 /* If op 1 were present and equal to PC, this function wouldn't
8077 have been called in the first place. */
8078 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8079
8080 inst.instruction |= inst.operands[0].reg << 12;
8081 inst.instruction |= inst.operands[2].reg << 16;
8082 }
8083
8084 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8085 which is not a multiple of four is UNPREDICTABLE. */
8086 static void
8087 check_ldr_r15_aligned (void)
8088 {
8089 constraint (!(inst.operands[1].immisreg)
8090 && (inst.operands[0].reg == REG_PC
8091 && inst.operands[1].reg == REG_PC
8092 && (inst.reloc.exp.X_add_number & 0x3)),
8093 _("ldr to register 15 must be 4-byte alligned"));
8094 }
8095
8096 static void
8097 do_ldst (void)
8098 {
8099 inst.instruction |= inst.operands[0].reg << 12;
8100 if (!inst.operands[1].isreg)
8101 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8102 return;
8103 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8104 check_ldr_r15_aligned ();
8105 }
8106
8107 static void
8108 do_ldstt (void)
8109 {
8110 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8111 reject [Rn,...]. */
8112 if (inst.operands[1].preind)
8113 {
8114 constraint (inst.reloc.exp.X_op != O_constant
8115 || inst.reloc.exp.X_add_number != 0,
8116 _("this instruction requires a post-indexed address"));
8117
8118 inst.operands[1].preind = 0;
8119 inst.operands[1].postind = 1;
8120 inst.operands[1].writeback = 1;
8121 }
8122 inst.instruction |= inst.operands[0].reg << 12;
8123 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8124 }
8125
8126 /* Halfword and signed-byte load/store operations. */
8127
8128 static void
8129 do_ldstv4 (void)
8130 {
8131 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8132 inst.instruction |= inst.operands[0].reg << 12;
8133 if (!inst.operands[1].isreg)
8134 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8135 return;
8136 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8137 }
8138
8139 static void
8140 do_ldsttv4 (void)
8141 {
8142 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8143 reject [Rn,...]. */
8144 if (inst.operands[1].preind)
8145 {
8146 constraint (inst.reloc.exp.X_op != O_constant
8147 || inst.reloc.exp.X_add_number != 0,
8148 _("this instruction requires a post-indexed address"));
8149
8150 inst.operands[1].preind = 0;
8151 inst.operands[1].postind = 1;
8152 inst.operands[1].writeback = 1;
8153 }
8154 inst.instruction |= inst.operands[0].reg << 12;
8155 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8156 }
8157
8158 /* Co-processor register load/store.
8159 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8160 static void
8161 do_lstc (void)
8162 {
8163 inst.instruction |= inst.operands[0].reg << 8;
8164 inst.instruction |= inst.operands[1].reg << 12;
8165 encode_arm_cp_address (2, TRUE, TRUE, 0);
8166 }
8167
8168 static void
8169 do_mlas (void)
8170 {
8171 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8172 if (inst.operands[0].reg == inst.operands[1].reg
8173 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8174 && !(inst.instruction & 0x00400000))
8175 as_tsktsk (_("Rd and Rm should be different in mla"));
8176
8177 inst.instruction |= inst.operands[0].reg << 16;
8178 inst.instruction |= inst.operands[1].reg;
8179 inst.instruction |= inst.operands[2].reg << 8;
8180 inst.instruction |= inst.operands[3].reg << 12;
8181 }
8182
8183 static void
8184 do_mov (void)
8185 {
8186 inst.instruction |= inst.operands[0].reg << 12;
8187 encode_arm_shifter_operand (1);
8188 }
8189
8190 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8191 static void
8192 do_mov16 (void)
8193 {
8194 bfd_vma imm;
8195 bfd_boolean top;
8196
8197 top = (inst.instruction & 0x00400000) != 0;
8198 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8199 _(":lower16: not allowed this instruction"));
8200 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8201 _(":upper16: not allowed instruction"));
8202 inst.instruction |= inst.operands[0].reg << 12;
8203 if (inst.reloc.type == BFD_RELOC_UNUSED)
8204 {
8205 imm = inst.reloc.exp.X_add_number;
8206 /* The value is in two pieces: 0:11, 16:19. */
8207 inst.instruction |= (imm & 0x00000fff);
8208 inst.instruction |= (imm & 0x0000f000) << 4;
8209 }
8210 }
8211
8212 static void do_vfp_nsyn_opcode (const char *);
8213
8214 static int
8215 do_vfp_nsyn_mrs (void)
8216 {
8217 if (inst.operands[0].isvec)
8218 {
8219 if (inst.operands[1].reg != 1)
8220 first_error (_("operand 1 must be FPSCR"));
8221 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8222 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8223 do_vfp_nsyn_opcode ("fmstat");
8224 }
8225 else if (inst.operands[1].isvec)
8226 do_vfp_nsyn_opcode ("fmrx");
8227 else
8228 return FAIL;
8229
8230 return SUCCESS;
8231 }
8232
8233 static int
8234 do_vfp_nsyn_msr (void)
8235 {
8236 if (inst.operands[0].isvec)
8237 do_vfp_nsyn_opcode ("fmxr");
8238 else
8239 return FAIL;
8240
8241 return SUCCESS;
8242 }
8243
8244 static void
8245 do_vmrs (void)
8246 {
8247 unsigned Rt = inst.operands[0].reg;
8248
8249 if (thumb_mode && Rt == REG_SP)
8250 {
8251 inst.error = BAD_SP;
8252 return;
8253 }
8254
8255 /* APSR_ sets isvec. All other refs to PC are illegal. */
8256 if (!inst.operands[0].isvec && Rt == REG_PC)
8257 {
8258 inst.error = BAD_PC;
8259 return;
8260 }
8261
8262 /* If we get through parsing the register name, we just insert the number
8263 generated into the instruction without further validation. */
8264 inst.instruction |= (inst.operands[1].reg << 16);
8265 inst.instruction |= (Rt << 12);
8266 }
8267
8268 static void
8269 do_vmsr (void)
8270 {
8271 unsigned Rt = inst.operands[1].reg;
8272
8273 if (thumb_mode)
8274 reject_bad_reg (Rt);
8275 else if (Rt == REG_PC)
8276 {
8277 inst.error = BAD_PC;
8278 return;
8279 }
8280
8281 /* If we get through parsing the register name, we just insert the number
8282 generated into the instruction without further validation. */
8283 inst.instruction |= (inst.operands[0].reg << 16);
8284 inst.instruction |= (Rt << 12);
8285 }
8286
8287 static void
8288 do_mrs (void)
8289 {
8290 unsigned br;
8291
8292 if (do_vfp_nsyn_mrs () == SUCCESS)
8293 return;
8294
8295 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8296 inst.instruction |= inst.operands[0].reg << 12;
8297
8298 if (inst.operands[1].isreg)
8299 {
8300 br = inst.operands[1].reg;
8301 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8302 as_bad (_("bad register for mrs"));
8303 }
8304 else
8305 {
8306 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8307 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8308 != (PSR_c|PSR_f),
8309 _("'APSR', 'CPSR' or 'SPSR' expected"));
8310 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8311 }
8312
8313 inst.instruction |= br;
8314 }
8315
8316 /* Two possible forms:
8317 "{C|S}PSR_<field>, Rm",
8318 "{C|S}PSR_f, #expression". */
8319
8320 static void
8321 do_msr (void)
8322 {
8323 if (do_vfp_nsyn_msr () == SUCCESS)
8324 return;
8325
8326 inst.instruction |= inst.operands[0].imm;
8327 if (inst.operands[1].isreg)
8328 inst.instruction |= inst.operands[1].reg;
8329 else
8330 {
8331 inst.instruction |= INST_IMMEDIATE;
8332 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8333 inst.reloc.pc_rel = 0;
8334 }
8335 }
8336
8337 static void
8338 do_mul (void)
8339 {
8340 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8341
8342 if (!inst.operands[2].present)
8343 inst.operands[2].reg = inst.operands[0].reg;
8344 inst.instruction |= inst.operands[0].reg << 16;
8345 inst.instruction |= inst.operands[1].reg;
8346 inst.instruction |= inst.operands[2].reg << 8;
8347
8348 if (inst.operands[0].reg == inst.operands[1].reg
8349 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8350 as_tsktsk (_("Rd and Rm should be different in mul"));
8351 }
8352
8353 /* Long Multiply Parser
8354 UMULL RdLo, RdHi, Rm, Rs
8355 SMULL RdLo, RdHi, Rm, Rs
8356 UMLAL RdLo, RdHi, Rm, Rs
8357 SMLAL RdLo, RdHi, Rm, Rs. */
8358
8359 static void
8360 do_mull (void)
8361 {
8362 inst.instruction |= inst.operands[0].reg << 12;
8363 inst.instruction |= inst.operands[1].reg << 16;
8364 inst.instruction |= inst.operands[2].reg;
8365 inst.instruction |= inst.operands[3].reg << 8;
8366
8367 /* rdhi and rdlo must be different. */
8368 if (inst.operands[0].reg == inst.operands[1].reg)
8369 as_tsktsk (_("rdhi and rdlo must be different"));
8370
8371 /* rdhi, rdlo and rm must all be different before armv6. */
8372 if ((inst.operands[0].reg == inst.operands[2].reg
8373 || inst.operands[1].reg == inst.operands[2].reg)
8374 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8375 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8376 }
8377
8378 static void
8379 do_nop (void)
8380 {
8381 if (inst.operands[0].present
8382 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8383 {
8384 /* Architectural NOP hints are CPSR sets with no bits selected. */
8385 inst.instruction &= 0xf0000000;
8386 inst.instruction |= 0x0320f000;
8387 if (inst.operands[0].present)
8388 inst.instruction |= inst.operands[0].imm;
8389 }
8390 }
8391
8392 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8393 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8394 Condition defaults to COND_ALWAYS.
8395 Error if Rd, Rn or Rm are R15. */
8396
8397 static void
8398 do_pkhbt (void)
8399 {
8400 inst.instruction |= inst.operands[0].reg << 12;
8401 inst.instruction |= inst.operands[1].reg << 16;
8402 inst.instruction |= inst.operands[2].reg;
8403 if (inst.operands[3].present)
8404 encode_arm_shift (3);
8405 }
8406
8407 /* ARM V6 PKHTB (Argument Parse). */
8408
8409 static void
8410 do_pkhtb (void)
8411 {
8412 if (!inst.operands[3].present)
8413 {
8414 /* If the shift specifier is omitted, turn the instruction
8415 into pkhbt rd, rm, rn. */
8416 inst.instruction &= 0xfff00010;
8417 inst.instruction |= inst.operands[0].reg << 12;
8418 inst.instruction |= inst.operands[1].reg;
8419 inst.instruction |= inst.operands[2].reg << 16;
8420 }
8421 else
8422 {
8423 inst.instruction |= inst.operands[0].reg << 12;
8424 inst.instruction |= inst.operands[1].reg << 16;
8425 inst.instruction |= inst.operands[2].reg;
8426 encode_arm_shift (3);
8427 }
8428 }
8429
8430 /* ARMv5TE: Preload-Cache
8431 MP Extensions: Preload for write
8432
8433 PLD(W) <addr_mode>
8434
8435 Syntactically, like LDR with B=1, W=0, L=1. */
8436
8437 static void
8438 do_pld (void)
8439 {
8440 constraint (!inst.operands[0].isreg,
8441 _("'[' expected after PLD mnemonic"));
8442 constraint (inst.operands[0].postind,
8443 _("post-indexed expression used in preload instruction"));
8444 constraint (inst.operands[0].writeback,
8445 _("writeback used in preload instruction"));
8446 constraint (!inst.operands[0].preind,
8447 _("unindexed addressing used in preload instruction"));
8448 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8449 }
8450
8451 /* ARMv7: PLI <addr_mode> */
8452 static void
8453 do_pli (void)
8454 {
8455 constraint (!inst.operands[0].isreg,
8456 _("'[' expected after PLI mnemonic"));
8457 constraint (inst.operands[0].postind,
8458 _("post-indexed expression used in preload instruction"));
8459 constraint (inst.operands[0].writeback,
8460 _("writeback used in preload instruction"));
8461 constraint (!inst.operands[0].preind,
8462 _("unindexed addressing used in preload instruction"));
8463 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8464 inst.instruction &= ~PRE_INDEX;
8465 }
8466
8467 static void
8468 do_push_pop (void)
8469 {
8470 inst.operands[1] = inst.operands[0];
8471 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8472 inst.operands[0].isreg = 1;
8473 inst.operands[0].writeback = 1;
8474 inst.operands[0].reg = REG_SP;
8475 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8476 }
8477
8478 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8479 word at the specified address and the following word
8480 respectively.
8481 Unconditionally executed.
8482 Error if Rn is R15. */
8483
8484 static void
8485 do_rfe (void)
8486 {
8487 inst.instruction |= inst.operands[0].reg << 16;
8488 if (inst.operands[0].writeback)
8489 inst.instruction |= WRITE_BACK;
8490 }
8491
8492 /* ARM V6 ssat (argument parse). */
8493
8494 static void
8495 do_ssat (void)
8496 {
8497 inst.instruction |= inst.operands[0].reg << 12;
8498 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8499 inst.instruction |= inst.operands[2].reg;
8500
8501 if (inst.operands[3].present)
8502 encode_arm_shift (3);
8503 }
8504
8505 /* ARM V6 usat (argument parse). */
8506
8507 static void
8508 do_usat (void)
8509 {
8510 inst.instruction |= inst.operands[0].reg << 12;
8511 inst.instruction |= inst.operands[1].imm << 16;
8512 inst.instruction |= inst.operands[2].reg;
8513
8514 if (inst.operands[3].present)
8515 encode_arm_shift (3);
8516 }
8517
8518 /* ARM V6 ssat16 (argument parse). */
8519
8520 static void
8521 do_ssat16 (void)
8522 {
8523 inst.instruction |= inst.operands[0].reg << 12;
8524 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8525 inst.instruction |= inst.operands[2].reg;
8526 }
8527
8528 static void
8529 do_usat16 (void)
8530 {
8531 inst.instruction |= inst.operands[0].reg << 12;
8532 inst.instruction |= inst.operands[1].imm << 16;
8533 inst.instruction |= inst.operands[2].reg;
8534 }
8535
8536 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8537 preserving the other bits.
8538
8539 setend <endian_specifier>, where <endian_specifier> is either
8540 BE or LE. */
8541
8542 static void
8543 do_setend (void)
8544 {
8545 if (warn_on_deprecated
8546 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8547 as_warn (_("setend use is deprecated for ARMv8"));
8548
8549 if (inst.operands[0].imm)
8550 inst.instruction |= 0x200;
8551 }
8552
8553 static void
8554 do_shift (void)
8555 {
8556 unsigned int Rm = (inst.operands[1].present
8557 ? inst.operands[1].reg
8558 : inst.operands[0].reg);
8559
8560 inst.instruction |= inst.operands[0].reg << 12;
8561 inst.instruction |= Rm;
8562 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8563 {
8564 inst.instruction |= inst.operands[2].reg << 8;
8565 inst.instruction |= SHIFT_BY_REG;
8566 /* PR 12854: Error on extraneous shifts. */
8567 constraint (inst.operands[2].shifted,
8568 _("extraneous shift as part of operand to shift insn"));
8569 }
8570 else
8571 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8572 }
8573
8574 static void
8575 do_smc (void)
8576 {
8577 inst.reloc.type = BFD_RELOC_ARM_SMC;
8578 inst.reloc.pc_rel = 0;
8579 }
8580
8581 static void
8582 do_hvc (void)
8583 {
8584 inst.reloc.type = BFD_RELOC_ARM_HVC;
8585 inst.reloc.pc_rel = 0;
8586 }
8587
8588 static void
8589 do_swi (void)
8590 {
8591 inst.reloc.type = BFD_RELOC_ARM_SWI;
8592 inst.reloc.pc_rel = 0;
8593 }
8594
8595 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8596 SMLAxy{cond} Rd,Rm,Rs,Rn
8597 SMLAWy{cond} Rd,Rm,Rs,Rn
8598 Error if any register is R15. */
8599
8600 static void
8601 do_smla (void)
8602 {
8603 inst.instruction |= inst.operands[0].reg << 16;
8604 inst.instruction |= inst.operands[1].reg;
8605 inst.instruction |= inst.operands[2].reg << 8;
8606 inst.instruction |= inst.operands[3].reg << 12;
8607 }
8608
8609 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8610 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8611 Error if any register is R15.
8612 Warning if Rdlo == Rdhi. */
8613
8614 static void
8615 do_smlal (void)
8616 {
8617 inst.instruction |= inst.operands[0].reg << 12;
8618 inst.instruction |= inst.operands[1].reg << 16;
8619 inst.instruction |= inst.operands[2].reg;
8620 inst.instruction |= inst.operands[3].reg << 8;
8621
8622 if (inst.operands[0].reg == inst.operands[1].reg)
8623 as_tsktsk (_("rdhi and rdlo must be different"));
8624 }
8625
8626 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8627 SMULxy{cond} Rd,Rm,Rs
8628 Error if any register is R15. */
8629
8630 static void
8631 do_smul (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 16;
8634 inst.instruction |= inst.operands[1].reg;
8635 inst.instruction |= inst.operands[2].reg << 8;
8636 }
8637
8638 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8639 the same for both ARM and Thumb-2. */
8640
8641 static void
8642 do_srs (void)
8643 {
8644 int reg;
8645
8646 if (inst.operands[0].present)
8647 {
8648 reg = inst.operands[0].reg;
8649 constraint (reg != REG_SP, _("SRS base register must be r13"));
8650 }
8651 else
8652 reg = REG_SP;
8653
8654 inst.instruction |= reg << 16;
8655 inst.instruction |= inst.operands[1].imm;
8656 if (inst.operands[0].writeback || inst.operands[1].writeback)
8657 inst.instruction |= WRITE_BACK;
8658 }
8659
8660 /* ARM V6 strex (argument parse). */
8661
8662 static void
8663 do_strex (void)
8664 {
8665 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8666 || inst.operands[2].postind || inst.operands[2].writeback
8667 || inst.operands[2].immisreg || inst.operands[2].shifted
8668 || inst.operands[2].negative
8669 /* See comment in do_ldrex(). */
8670 || (inst.operands[2].reg == REG_PC),
8671 BAD_ADDR_MODE);
8672
8673 constraint (inst.operands[0].reg == inst.operands[1].reg
8674 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8675
8676 constraint (inst.reloc.exp.X_op != O_constant
8677 || inst.reloc.exp.X_add_number != 0,
8678 _("offset must be zero in ARM encoding"));
8679
8680 inst.instruction |= inst.operands[0].reg << 12;
8681 inst.instruction |= inst.operands[1].reg;
8682 inst.instruction |= inst.operands[2].reg << 16;
8683 inst.reloc.type = BFD_RELOC_UNUSED;
8684 }
8685
8686 static void
8687 do_t_strexbh (void)
8688 {
8689 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8690 || inst.operands[2].postind || inst.operands[2].writeback
8691 || inst.operands[2].immisreg || inst.operands[2].shifted
8692 || inst.operands[2].negative,
8693 BAD_ADDR_MODE);
8694
8695 constraint (inst.operands[0].reg == inst.operands[1].reg
8696 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8697
8698 do_rm_rd_rn ();
8699 }
8700
8701 static void
8702 do_strexd (void)
8703 {
8704 constraint (inst.operands[1].reg % 2 != 0,
8705 _("even register required"));
8706 constraint (inst.operands[2].present
8707 && inst.operands[2].reg != inst.operands[1].reg + 1,
8708 _("can only store two consecutive registers"));
8709 /* If op 2 were present and equal to PC, this function wouldn't
8710 have been called in the first place. */
8711 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8712
8713 constraint (inst.operands[0].reg == inst.operands[1].reg
8714 || inst.operands[0].reg == inst.operands[1].reg + 1
8715 || inst.operands[0].reg == inst.operands[3].reg,
8716 BAD_OVERLAP);
8717
8718 inst.instruction |= inst.operands[0].reg << 12;
8719 inst.instruction |= inst.operands[1].reg;
8720 inst.instruction |= inst.operands[3].reg << 16;
8721 }
8722
8723 /* ARM V8 STRL. */
8724 static void
8725 do_stlex (void)
8726 {
8727 constraint (inst.operands[0].reg == inst.operands[1].reg
8728 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8729
8730 do_rd_rm_rn ();
8731 }
8732
8733 static void
8734 do_t_stlex (void)
8735 {
8736 constraint (inst.operands[0].reg == inst.operands[1].reg
8737 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8738
8739 do_rm_rd_rn ();
8740 }
8741
8742 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8743 extends it to 32-bits, and adds the result to a value in another
8744 register. You can specify a rotation by 0, 8, 16, or 24 bits
8745 before extracting the 16-bit value.
8746 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8747 Condition defaults to COND_ALWAYS.
8748 Error if any register uses R15. */
8749
8750 static void
8751 do_sxtah (void)
8752 {
8753 inst.instruction |= inst.operands[0].reg << 12;
8754 inst.instruction |= inst.operands[1].reg << 16;
8755 inst.instruction |= inst.operands[2].reg;
8756 inst.instruction |= inst.operands[3].imm << 10;
8757 }
8758
8759 /* ARM V6 SXTH.
8760
8761 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8762 Condition defaults to COND_ALWAYS.
8763 Error if any register uses R15. */
8764
8765 static void
8766 do_sxth (void)
8767 {
8768 inst.instruction |= inst.operands[0].reg << 12;
8769 inst.instruction |= inst.operands[1].reg;
8770 inst.instruction |= inst.operands[2].imm << 10;
8771 }
8772 \f
8773 /* VFP instructions. In a logical order: SP variant first, monad
8774 before dyad, arithmetic then move then load/store. */
8775
8776 static void
8777 do_vfp_sp_monadic (void)
8778 {
8779 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8780 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8781 }
8782
8783 static void
8784 do_vfp_sp_dyadic (void)
8785 {
8786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8788 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8789 }
8790
8791 static void
8792 do_vfp_sp_compare_z (void)
8793 {
8794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8795 }
8796
8797 static void
8798 do_vfp_dp_sp_cvt (void)
8799 {
8800 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8801 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8802 }
8803
8804 static void
8805 do_vfp_sp_dp_cvt (void)
8806 {
8807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8809 }
8810
8811 static void
8812 do_vfp_reg_from_sp (void)
8813 {
8814 inst.instruction |= inst.operands[0].reg << 12;
8815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8816 }
8817
8818 static void
8819 do_vfp_reg2_from_sp2 (void)
8820 {
8821 constraint (inst.operands[2].imm != 2,
8822 _("only two consecutive VFP SP registers allowed here"));
8823 inst.instruction |= inst.operands[0].reg << 12;
8824 inst.instruction |= inst.operands[1].reg << 16;
8825 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8826 }
8827
8828 static void
8829 do_vfp_sp_from_reg (void)
8830 {
8831 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8832 inst.instruction |= inst.operands[1].reg << 12;
8833 }
8834
8835 static void
8836 do_vfp_sp2_from_reg2 (void)
8837 {
8838 constraint (inst.operands[0].imm != 2,
8839 _("only two consecutive VFP SP registers allowed here"));
8840 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8841 inst.instruction |= inst.operands[1].reg << 12;
8842 inst.instruction |= inst.operands[2].reg << 16;
8843 }
8844
8845 static void
8846 do_vfp_sp_ldst (void)
8847 {
8848 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8849 encode_arm_cp_address (1, FALSE, TRUE, 0);
8850 }
8851
8852 static void
8853 do_vfp_dp_ldst (void)
8854 {
8855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8856 encode_arm_cp_address (1, FALSE, TRUE, 0);
8857 }
8858
8859
8860 static void
8861 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8862 {
8863 if (inst.operands[0].writeback)
8864 inst.instruction |= WRITE_BACK;
8865 else
8866 constraint (ldstm_type != VFP_LDSTMIA,
8867 _("this addressing mode requires base-register writeback"));
8868 inst.instruction |= inst.operands[0].reg << 16;
8869 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8870 inst.instruction |= inst.operands[1].imm;
8871 }
8872
8873 static void
8874 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8875 {
8876 int count;
8877
8878 if (inst.operands[0].writeback)
8879 inst.instruction |= WRITE_BACK;
8880 else
8881 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8882 _("this addressing mode requires base-register writeback"));
8883
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8886
8887 count = inst.operands[1].imm << 1;
8888 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8889 count += 1;
8890
8891 inst.instruction |= count;
8892 }
8893
8894 static void
8895 do_vfp_sp_ldstmia (void)
8896 {
8897 vfp_sp_ldstm (VFP_LDSTMIA);
8898 }
8899
8900 static void
8901 do_vfp_sp_ldstmdb (void)
8902 {
8903 vfp_sp_ldstm (VFP_LDSTMDB);
8904 }
8905
8906 static void
8907 do_vfp_dp_ldstmia (void)
8908 {
8909 vfp_dp_ldstm (VFP_LDSTMIA);
8910 }
8911
8912 static void
8913 do_vfp_dp_ldstmdb (void)
8914 {
8915 vfp_dp_ldstm (VFP_LDSTMDB);
8916 }
8917
8918 static void
8919 do_vfp_xp_ldstmia (void)
8920 {
8921 vfp_dp_ldstm (VFP_LDSTMIAX);
8922 }
8923
8924 static void
8925 do_vfp_xp_ldstmdb (void)
8926 {
8927 vfp_dp_ldstm (VFP_LDSTMDBX);
8928 }
8929
8930 static void
8931 do_vfp_dp_rd_rm (void)
8932 {
8933 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8934 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8935 }
8936
8937 static void
8938 do_vfp_dp_rn_rd (void)
8939 {
8940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8942 }
8943
8944 static void
8945 do_vfp_dp_rd_rn (void)
8946 {
8947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8949 }
8950
8951 static void
8952 do_vfp_dp_rd_rn_rm (void)
8953 {
8954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8956 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8957 }
8958
8959 static void
8960 do_vfp_dp_rd (void)
8961 {
8962 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8963 }
8964
8965 static void
8966 do_vfp_dp_rm_rd_rn (void)
8967 {
8968 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8969 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8970 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8971 }
8972
8973 /* VFPv3 instructions. */
8974 static void
8975 do_vfp_sp_const (void)
8976 {
8977 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8978 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8979 inst.instruction |= (inst.operands[1].imm & 0x0f);
8980 }
8981
8982 static void
8983 do_vfp_dp_const (void)
8984 {
8985 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8986 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8987 inst.instruction |= (inst.operands[1].imm & 0x0f);
8988 }
8989
8990 static void
8991 vfp_conv (int srcsize)
8992 {
8993 int immbits = srcsize - inst.operands[1].imm;
8994
8995 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8996 {
8997 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8998 i.e. immbits must be in range 0 - 16. */
8999 inst.error = _("immediate value out of range, expected range [0, 16]");
9000 return;
9001 }
9002 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9003 {
9004 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9005 i.e. immbits must be in range 0 - 31. */
9006 inst.error = _("immediate value out of range, expected range [1, 32]");
9007 return;
9008 }
9009
9010 inst.instruction |= (immbits & 1) << 5;
9011 inst.instruction |= (immbits >> 1);
9012 }
9013
9014 static void
9015 do_vfp_sp_conv_16 (void)
9016 {
9017 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9018 vfp_conv (16);
9019 }
9020
9021 static void
9022 do_vfp_dp_conv_16 (void)
9023 {
9024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9025 vfp_conv (16);
9026 }
9027
9028 static void
9029 do_vfp_sp_conv_32 (void)
9030 {
9031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9032 vfp_conv (32);
9033 }
9034
9035 static void
9036 do_vfp_dp_conv_32 (void)
9037 {
9038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9039 vfp_conv (32);
9040 }
9041 \f
9042 /* FPA instructions. Also in a logical order. */
9043
9044 static void
9045 do_fpa_cmp (void)
9046 {
9047 inst.instruction |= inst.operands[0].reg << 16;
9048 inst.instruction |= inst.operands[1].reg;
9049 }
9050
9051 static void
9052 do_fpa_ldmstm (void)
9053 {
9054 inst.instruction |= inst.operands[0].reg << 12;
9055 switch (inst.operands[1].imm)
9056 {
9057 case 1: inst.instruction |= CP_T_X; break;
9058 case 2: inst.instruction |= CP_T_Y; break;
9059 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9060 case 4: break;
9061 default: abort ();
9062 }
9063
9064 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9065 {
9066 /* The instruction specified "ea" or "fd", so we can only accept
9067 [Rn]{!}. The instruction does not really support stacking or
9068 unstacking, so we have to emulate these by setting appropriate
9069 bits and offsets. */
9070 constraint (inst.reloc.exp.X_op != O_constant
9071 || inst.reloc.exp.X_add_number != 0,
9072 _("this instruction does not support indexing"));
9073
9074 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9075 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9076
9077 if (!(inst.instruction & INDEX_UP))
9078 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9079
9080 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9081 {
9082 inst.operands[2].preind = 0;
9083 inst.operands[2].postind = 1;
9084 }
9085 }
9086
9087 encode_arm_cp_address (2, TRUE, TRUE, 0);
9088 }
9089 \f
9090 /* iWMMXt instructions: strictly in alphabetical order. */
9091
9092 static void
9093 do_iwmmxt_tandorc (void)
9094 {
9095 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9096 }
9097
9098 static void
9099 do_iwmmxt_textrc (void)
9100 {
9101 inst.instruction |= inst.operands[0].reg << 12;
9102 inst.instruction |= inst.operands[1].imm;
9103 }
9104
9105 static void
9106 do_iwmmxt_textrm (void)
9107 {
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 inst.instruction |= inst.operands[1].reg << 16;
9110 inst.instruction |= inst.operands[2].imm;
9111 }
9112
9113 static void
9114 do_iwmmxt_tinsr (void)
9115 {
9116 inst.instruction |= inst.operands[0].reg << 16;
9117 inst.instruction |= inst.operands[1].reg << 12;
9118 inst.instruction |= inst.operands[2].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_tmia (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 5;
9125 inst.instruction |= inst.operands[1].reg;
9126 inst.instruction |= inst.operands[2].reg << 12;
9127 }
9128
9129 static void
9130 do_iwmmxt_waligni (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 12;
9133 inst.instruction |= inst.operands[1].reg << 16;
9134 inst.instruction |= inst.operands[2].reg;
9135 inst.instruction |= inst.operands[3].imm << 20;
9136 }
9137
9138 static void
9139 do_iwmmxt_wmerge (void)
9140 {
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 inst.instruction |= inst.operands[1].reg << 16;
9143 inst.instruction |= inst.operands[2].reg;
9144 inst.instruction |= inst.operands[3].imm << 21;
9145 }
9146
9147 static void
9148 do_iwmmxt_wmov (void)
9149 {
9150 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9151 inst.instruction |= inst.operands[0].reg << 12;
9152 inst.instruction |= inst.operands[1].reg << 16;
9153 inst.instruction |= inst.operands[1].reg;
9154 }
9155
9156 static void
9157 do_iwmmxt_wldstbh (void)
9158 {
9159 int reloc;
9160 inst.instruction |= inst.operands[0].reg << 12;
9161 if (thumb_mode)
9162 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9163 else
9164 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9165 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9166 }
9167
9168 static void
9169 do_iwmmxt_wldstw (void)
9170 {
9171 /* RIWR_RIWC clears .isreg for a control register. */
9172 if (!inst.operands[0].isreg)
9173 {
9174 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9175 inst.instruction |= 0xf0000000;
9176 }
9177
9178 inst.instruction |= inst.operands[0].reg << 12;
9179 encode_arm_cp_address (1, TRUE, TRUE, 0);
9180 }
9181
9182 static void
9183 do_iwmmxt_wldstd (void)
9184 {
9185 inst.instruction |= inst.operands[0].reg << 12;
9186 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9187 && inst.operands[1].immisreg)
9188 {
9189 inst.instruction &= ~0x1a000ff;
9190 inst.instruction |= (0xf << 28);
9191 if (inst.operands[1].preind)
9192 inst.instruction |= PRE_INDEX;
9193 if (!inst.operands[1].negative)
9194 inst.instruction |= INDEX_UP;
9195 if (inst.operands[1].writeback)
9196 inst.instruction |= WRITE_BACK;
9197 inst.instruction |= inst.operands[1].reg << 16;
9198 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9199 inst.instruction |= inst.operands[1].imm;
9200 }
9201 else
9202 encode_arm_cp_address (1, TRUE, FALSE, 0);
9203 }
9204
9205 static void
9206 do_iwmmxt_wshufh (void)
9207 {
9208 inst.instruction |= inst.operands[0].reg << 12;
9209 inst.instruction |= inst.operands[1].reg << 16;
9210 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9211 inst.instruction |= (inst.operands[2].imm & 0x0f);
9212 }
9213
9214 static void
9215 do_iwmmxt_wzero (void)
9216 {
9217 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9218 inst.instruction |= inst.operands[0].reg;
9219 inst.instruction |= inst.operands[0].reg << 12;
9220 inst.instruction |= inst.operands[0].reg << 16;
9221 }
9222
9223 static void
9224 do_iwmmxt_wrwrwr_or_imm5 (void)
9225 {
9226 if (inst.operands[2].isreg)
9227 do_rd_rn_rm ();
9228 else {
9229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9230 _("immediate operand requires iWMMXt2"));
9231 do_rd_rn ();
9232 if (inst.operands[2].imm == 0)
9233 {
9234 switch ((inst.instruction >> 20) & 0xf)
9235 {
9236 case 4:
9237 case 5:
9238 case 6:
9239 case 7:
9240 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9241 inst.operands[2].imm = 16;
9242 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9243 break;
9244 case 8:
9245 case 9:
9246 case 10:
9247 case 11:
9248 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9249 inst.operands[2].imm = 32;
9250 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9251 break;
9252 case 12:
9253 case 13:
9254 case 14:
9255 case 15:
9256 {
9257 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9258 unsigned long wrn;
9259 wrn = (inst.instruction >> 16) & 0xf;
9260 inst.instruction &= 0xff0fff0f;
9261 inst.instruction |= wrn;
9262 /* Bail out here; the instruction is now assembled. */
9263 return;
9264 }
9265 }
9266 }
9267 /* Map 32 -> 0, etc. */
9268 inst.operands[2].imm &= 0x1f;
9269 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9270 }
9271 }
9272 \f
9273 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9274 operations first, then control, shift, and load/store. */
9275
9276 /* Insns like "foo X,Y,Z". */
9277
9278 static void
9279 do_mav_triple (void)
9280 {
9281 inst.instruction |= inst.operands[0].reg << 16;
9282 inst.instruction |= inst.operands[1].reg;
9283 inst.instruction |= inst.operands[2].reg << 12;
9284 }
9285
9286 /* Insns like "foo W,X,Y,Z".
9287 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9288
9289 static void
9290 do_mav_quad (void)
9291 {
9292 inst.instruction |= inst.operands[0].reg << 5;
9293 inst.instruction |= inst.operands[1].reg << 12;
9294 inst.instruction |= inst.operands[2].reg << 16;
9295 inst.instruction |= inst.operands[3].reg;
9296 }
9297
9298 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9299 static void
9300 do_mav_dspsc (void)
9301 {
9302 inst.instruction |= inst.operands[1].reg << 12;
9303 }
9304
9305 /* Maverick shift immediate instructions.
9306 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9307 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9308
9309 static void
9310 do_mav_shift (void)
9311 {
9312 int imm = inst.operands[2].imm;
9313
9314 inst.instruction |= inst.operands[0].reg << 12;
9315 inst.instruction |= inst.operands[1].reg << 16;
9316
9317 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9318 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9319 Bit 4 should be 0. */
9320 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9321
9322 inst.instruction |= imm;
9323 }
9324 \f
9325 /* XScale instructions. Also sorted arithmetic before move. */
9326
9327 /* Xscale multiply-accumulate (argument parse)
9328 MIAcc acc0,Rm,Rs
9329 MIAPHcc acc0,Rm,Rs
9330 MIAxycc acc0,Rm,Rs. */
9331
9332 static void
9333 do_xsc_mia (void)
9334 {
9335 inst.instruction |= inst.operands[1].reg;
9336 inst.instruction |= inst.operands[2].reg << 12;
9337 }
9338
9339 /* Xscale move-accumulator-register (argument parse)
9340
9341 MARcc acc0,RdLo,RdHi. */
9342
9343 static void
9344 do_xsc_mar (void)
9345 {
9346 inst.instruction |= inst.operands[1].reg << 12;
9347 inst.instruction |= inst.operands[2].reg << 16;
9348 }
9349
9350 /* Xscale move-register-accumulator (argument parse)
9351
9352 MRAcc RdLo,RdHi,acc0. */
9353
9354 static void
9355 do_xsc_mra (void)
9356 {
9357 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9358 inst.instruction |= inst.operands[0].reg << 12;
9359 inst.instruction |= inst.operands[1].reg << 16;
9360 }
9361 \f
9362 /* Encoding functions relevant only to Thumb. */
9363
9364 /* inst.operands[i] is a shifted-register operand; encode
9365 it into inst.instruction in the format used by Thumb32. */
9366
9367 static void
9368 encode_thumb32_shifted_operand (int i)
9369 {
9370 unsigned int value = inst.reloc.exp.X_add_number;
9371 unsigned int shift = inst.operands[i].shift_kind;
9372
9373 constraint (inst.operands[i].immisreg,
9374 _("shift by register not allowed in thumb mode"));
9375 inst.instruction |= inst.operands[i].reg;
9376 if (shift == SHIFT_RRX)
9377 inst.instruction |= SHIFT_ROR << 4;
9378 else
9379 {
9380 constraint (inst.reloc.exp.X_op != O_constant,
9381 _("expression too complex"));
9382
9383 constraint (value > 32
9384 || (value == 32 && (shift == SHIFT_LSL
9385 || shift == SHIFT_ROR)),
9386 _("shift expression is too large"));
9387
9388 if (value == 0)
9389 shift = SHIFT_LSL;
9390 else if (value == 32)
9391 value = 0;
9392
9393 inst.instruction |= shift << 4;
9394 inst.instruction |= (value & 0x1c) << 10;
9395 inst.instruction |= (value & 0x03) << 6;
9396 }
9397 }
9398
9399
9400 /* inst.operands[i] was set up by parse_address. Encode it into a
9401 Thumb32 format load or store instruction. Reject forms that cannot
9402 be used with such instructions. If is_t is true, reject forms that
9403 cannot be used with a T instruction; if is_d is true, reject forms
9404 that cannot be used with a D instruction. If it is a store insn,
9405 reject PC in Rn. */
9406
9407 static void
9408 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9409 {
9410 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9411
9412 constraint (!inst.operands[i].isreg,
9413 _("Instruction does not support =N addresses"));
9414
9415 inst.instruction |= inst.operands[i].reg << 16;
9416 if (inst.operands[i].immisreg)
9417 {
9418 constraint (is_pc, BAD_PC_ADDRESSING);
9419 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9420 constraint (inst.operands[i].negative,
9421 _("Thumb does not support negative register indexing"));
9422 constraint (inst.operands[i].postind,
9423 _("Thumb does not support register post-indexing"));
9424 constraint (inst.operands[i].writeback,
9425 _("Thumb does not support register indexing with writeback"));
9426 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9427 _("Thumb supports only LSL in shifted register indexing"));
9428
9429 inst.instruction |= inst.operands[i].imm;
9430 if (inst.operands[i].shifted)
9431 {
9432 constraint (inst.reloc.exp.X_op != O_constant,
9433 _("expression too complex"));
9434 constraint (inst.reloc.exp.X_add_number < 0
9435 || inst.reloc.exp.X_add_number > 3,
9436 _("shift out of range"));
9437 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9438 }
9439 inst.reloc.type = BFD_RELOC_UNUSED;
9440 }
9441 else if (inst.operands[i].preind)
9442 {
9443 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9444 constraint (is_t && inst.operands[i].writeback,
9445 _("cannot use writeback with this instruction"));
9446 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
9447 BAD_PC_ADDRESSING);
9448
9449 if (is_d)
9450 {
9451 inst.instruction |= 0x01000000;
9452 if (inst.operands[i].writeback)
9453 inst.instruction |= 0x00200000;
9454 }
9455 else
9456 {
9457 inst.instruction |= 0x00000c00;
9458 if (inst.operands[i].writeback)
9459 inst.instruction |= 0x00000100;
9460 }
9461 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9462 }
9463 else if (inst.operands[i].postind)
9464 {
9465 gas_assert (inst.operands[i].writeback);
9466 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9467 constraint (is_t, _("cannot use post-indexing with this instruction"));
9468
9469 if (is_d)
9470 inst.instruction |= 0x00200000;
9471 else
9472 inst.instruction |= 0x00000900;
9473 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9474 }
9475 else /* unindexed - only for coprocessor */
9476 inst.error = _("instruction does not accept unindexed addressing");
9477 }
9478
9479 /* Table of Thumb instructions which exist in both 16- and 32-bit
9480 encodings (the latter only in post-V6T2 cores). The index is the
9481 value used in the insns table below. When there is more than one
9482 possible 16-bit encoding for the instruction, this table always
9483 holds variant (1).
9484 Also contains several pseudo-instructions used during relaxation. */
9485 #define T16_32_TAB \
9486 X(_adc, 4140, eb400000), \
9487 X(_adcs, 4140, eb500000), \
9488 X(_add, 1c00, eb000000), \
9489 X(_adds, 1c00, eb100000), \
9490 X(_addi, 0000, f1000000), \
9491 X(_addis, 0000, f1100000), \
9492 X(_add_pc,000f, f20f0000), \
9493 X(_add_sp,000d, f10d0000), \
9494 X(_adr, 000f, f20f0000), \
9495 X(_and, 4000, ea000000), \
9496 X(_ands, 4000, ea100000), \
9497 X(_asr, 1000, fa40f000), \
9498 X(_asrs, 1000, fa50f000), \
9499 X(_b, e000, f000b000), \
9500 X(_bcond, d000, f0008000), \
9501 X(_bic, 4380, ea200000), \
9502 X(_bics, 4380, ea300000), \
9503 X(_cmn, 42c0, eb100f00), \
9504 X(_cmp, 2800, ebb00f00), \
9505 X(_cpsie, b660, f3af8400), \
9506 X(_cpsid, b670, f3af8600), \
9507 X(_cpy, 4600, ea4f0000), \
9508 X(_dec_sp,80dd, f1ad0d00), \
9509 X(_eor, 4040, ea800000), \
9510 X(_eors, 4040, ea900000), \
9511 X(_inc_sp,00dd, f10d0d00), \
9512 X(_ldmia, c800, e8900000), \
9513 X(_ldr, 6800, f8500000), \
9514 X(_ldrb, 7800, f8100000), \
9515 X(_ldrh, 8800, f8300000), \
9516 X(_ldrsb, 5600, f9100000), \
9517 X(_ldrsh, 5e00, f9300000), \
9518 X(_ldr_pc,4800, f85f0000), \
9519 X(_ldr_pc2,4800, f85f0000), \
9520 X(_ldr_sp,9800, f85d0000), \
9521 X(_lsl, 0000, fa00f000), \
9522 X(_lsls, 0000, fa10f000), \
9523 X(_lsr, 0800, fa20f000), \
9524 X(_lsrs, 0800, fa30f000), \
9525 X(_mov, 2000, ea4f0000), \
9526 X(_movs, 2000, ea5f0000), \
9527 X(_mul, 4340, fb00f000), \
9528 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9529 X(_mvn, 43c0, ea6f0000), \
9530 X(_mvns, 43c0, ea7f0000), \
9531 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9532 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9533 X(_orr, 4300, ea400000), \
9534 X(_orrs, 4300, ea500000), \
9535 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9536 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9537 X(_rev, ba00, fa90f080), \
9538 X(_rev16, ba40, fa90f090), \
9539 X(_revsh, bac0, fa90f0b0), \
9540 X(_ror, 41c0, fa60f000), \
9541 X(_rors, 41c0, fa70f000), \
9542 X(_sbc, 4180, eb600000), \
9543 X(_sbcs, 4180, eb700000), \
9544 X(_stmia, c000, e8800000), \
9545 X(_str, 6000, f8400000), \
9546 X(_strb, 7000, f8000000), \
9547 X(_strh, 8000, f8200000), \
9548 X(_str_sp,9000, f84d0000), \
9549 X(_sub, 1e00, eba00000), \
9550 X(_subs, 1e00, ebb00000), \
9551 X(_subi, 8000, f1a00000), \
9552 X(_subis, 8000, f1b00000), \
9553 X(_sxtb, b240, fa4ff080), \
9554 X(_sxth, b200, fa0ff080), \
9555 X(_tst, 4200, ea100f00), \
9556 X(_uxtb, b2c0, fa5ff080), \
9557 X(_uxth, b280, fa1ff080), \
9558 X(_nop, bf00, f3af8000), \
9559 X(_yield, bf10, f3af8001), \
9560 X(_wfe, bf20, f3af8002), \
9561 X(_wfi, bf30, f3af8003), \
9562 X(_sev, bf40, f3af8004), \
9563 X(_sevl, bf50, f3af8005)
9564
9565 /* To catch errors in encoding functions, the codes are all offset by
9566 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9567 as 16-bit instructions. */
9568 #define X(a,b,c) T_MNEM##a
9569 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9570 #undef X
9571
9572 #define X(a,b,c) 0x##b
9573 static const unsigned short thumb_op16[] = { T16_32_TAB };
9574 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9575 #undef X
9576
9577 #define X(a,b,c) 0x##c
9578 static const unsigned int thumb_op32[] = { T16_32_TAB };
9579 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9580 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9581 #undef X
9582 #undef T16_32_TAB
9583
9584 /* Thumb instruction encoders, in alphabetical order. */
9585
9586 /* ADDW or SUBW. */
9587
9588 static void
9589 do_t_add_sub_w (void)
9590 {
9591 int Rd, Rn;
9592
9593 Rd = inst.operands[0].reg;
9594 Rn = inst.operands[1].reg;
9595
9596 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9597 is the SP-{plus,minus}-immediate form of the instruction. */
9598 if (Rn == REG_SP)
9599 constraint (Rd == REG_PC, BAD_PC);
9600 else
9601 reject_bad_reg (Rd);
9602
9603 inst.instruction |= (Rn << 16) | (Rd << 8);
9604 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9605 }
9606
9607 /* Parse an add or subtract instruction. We get here with inst.instruction
9608 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9609
9610 static void
9611 do_t_add_sub (void)
9612 {
9613 int Rd, Rs, Rn;
9614
9615 Rd = inst.operands[0].reg;
9616 Rs = (inst.operands[1].present
9617 ? inst.operands[1].reg /* Rd, Rs, foo */
9618 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9619
9620 if (Rd == REG_PC)
9621 set_it_insn_type_last ();
9622
9623 if (unified_syntax)
9624 {
9625 bfd_boolean flags;
9626 bfd_boolean narrow;
9627 int opcode;
9628
9629 flags = (inst.instruction == T_MNEM_adds
9630 || inst.instruction == T_MNEM_subs);
9631 if (flags)
9632 narrow = !in_it_block ();
9633 else
9634 narrow = in_it_block ();
9635 if (!inst.operands[2].isreg)
9636 {
9637 int add;
9638
9639 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9640
9641 add = (inst.instruction == T_MNEM_add
9642 || inst.instruction == T_MNEM_adds);
9643 opcode = 0;
9644 if (inst.size_req != 4)
9645 {
9646 /* Attempt to use a narrow opcode, with relaxation if
9647 appropriate. */
9648 if (Rd == REG_SP && Rs == REG_SP && !flags)
9649 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9650 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9651 opcode = T_MNEM_add_sp;
9652 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9653 opcode = T_MNEM_add_pc;
9654 else if (Rd <= 7 && Rs <= 7 && narrow)
9655 {
9656 if (flags)
9657 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9658 else
9659 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9660 }
9661 if (opcode)
9662 {
9663 inst.instruction = THUMB_OP16(opcode);
9664 inst.instruction |= (Rd << 4) | Rs;
9665 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9666 if (inst.size_req != 2)
9667 inst.relax = opcode;
9668 }
9669 else
9670 constraint (inst.size_req == 2, BAD_HIREG);
9671 }
9672 if (inst.size_req == 4
9673 || (inst.size_req != 2 && !opcode))
9674 {
9675 if (Rd == REG_PC)
9676 {
9677 constraint (add, BAD_PC);
9678 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9679 _("only SUBS PC, LR, #const allowed"));
9680 constraint (inst.reloc.exp.X_op != O_constant,
9681 _("expression too complex"));
9682 constraint (inst.reloc.exp.X_add_number < 0
9683 || inst.reloc.exp.X_add_number > 0xff,
9684 _("immediate value out of range"));
9685 inst.instruction = T2_SUBS_PC_LR
9686 | inst.reloc.exp.X_add_number;
9687 inst.reloc.type = BFD_RELOC_UNUSED;
9688 return;
9689 }
9690 else if (Rs == REG_PC)
9691 {
9692 /* Always use addw/subw. */
9693 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9694 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9695 }
9696 else
9697 {
9698 inst.instruction = THUMB_OP32 (inst.instruction);
9699 inst.instruction = (inst.instruction & 0xe1ffffff)
9700 | 0x10000000;
9701 if (flags)
9702 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9703 else
9704 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9705 }
9706 inst.instruction |= Rd << 8;
9707 inst.instruction |= Rs << 16;
9708 }
9709 }
9710 else
9711 {
9712 unsigned int value = inst.reloc.exp.X_add_number;
9713 unsigned int shift = inst.operands[2].shift_kind;
9714
9715 Rn = inst.operands[2].reg;
9716 /* See if we can do this with a 16-bit instruction. */
9717 if (!inst.operands[2].shifted && inst.size_req != 4)
9718 {
9719 if (Rd > 7 || Rs > 7 || Rn > 7)
9720 narrow = FALSE;
9721
9722 if (narrow)
9723 {
9724 inst.instruction = ((inst.instruction == T_MNEM_adds
9725 || inst.instruction == T_MNEM_add)
9726 ? T_OPCODE_ADD_R3
9727 : T_OPCODE_SUB_R3);
9728 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9729 return;
9730 }
9731
9732 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9733 {
9734 /* Thumb-1 cores (except v6-M) require at least one high
9735 register in a narrow non flag setting add. */
9736 if (Rd > 7 || Rn > 7
9737 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9738 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9739 {
9740 if (Rd == Rn)
9741 {
9742 Rn = Rs;
9743 Rs = Rd;
9744 }
9745 inst.instruction = T_OPCODE_ADD_HI;
9746 inst.instruction |= (Rd & 8) << 4;
9747 inst.instruction |= (Rd & 7);
9748 inst.instruction |= Rn << 3;
9749 return;
9750 }
9751 }
9752 }
9753
9754 constraint (Rd == REG_PC, BAD_PC);
9755 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9756 constraint (Rs == REG_PC, BAD_PC);
9757 reject_bad_reg (Rn);
9758
9759 /* If we get here, it can't be done in 16 bits. */
9760 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9761 _("shift must be constant"));
9762 inst.instruction = THUMB_OP32 (inst.instruction);
9763 inst.instruction |= Rd << 8;
9764 inst.instruction |= Rs << 16;
9765 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9766 _("shift value over 3 not allowed in thumb mode"));
9767 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9768 _("only LSL shift allowed in thumb mode"));
9769 encode_thumb32_shifted_operand (2);
9770 }
9771 }
9772 else
9773 {
9774 constraint (inst.instruction == T_MNEM_adds
9775 || inst.instruction == T_MNEM_subs,
9776 BAD_THUMB32);
9777
9778 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9779 {
9780 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9781 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9782 BAD_HIREG);
9783
9784 inst.instruction = (inst.instruction == T_MNEM_add
9785 ? 0x0000 : 0x8000);
9786 inst.instruction |= (Rd << 4) | Rs;
9787 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9788 return;
9789 }
9790
9791 Rn = inst.operands[2].reg;
9792 constraint (inst.operands[2].shifted, _("unshifted register required"));
9793
9794 /* We now have Rd, Rs, and Rn set to registers. */
9795 if (Rd > 7 || Rs > 7 || Rn > 7)
9796 {
9797 /* Can't do this for SUB. */
9798 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9799 inst.instruction = T_OPCODE_ADD_HI;
9800 inst.instruction |= (Rd & 8) << 4;
9801 inst.instruction |= (Rd & 7);
9802 if (Rs == Rd)
9803 inst.instruction |= Rn << 3;
9804 else if (Rn == Rd)
9805 inst.instruction |= Rs << 3;
9806 else
9807 constraint (1, _("dest must overlap one source register"));
9808 }
9809 else
9810 {
9811 inst.instruction = (inst.instruction == T_MNEM_add
9812 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9813 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9814 }
9815 }
9816 }
9817
9818 static void
9819 do_t_adr (void)
9820 {
9821 unsigned Rd;
9822
9823 Rd = inst.operands[0].reg;
9824 reject_bad_reg (Rd);
9825
9826 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9827 {
9828 /* Defer to section relaxation. */
9829 inst.relax = inst.instruction;
9830 inst.instruction = THUMB_OP16 (inst.instruction);
9831 inst.instruction |= Rd << 4;
9832 }
9833 else if (unified_syntax && inst.size_req != 2)
9834 {
9835 /* Generate a 32-bit opcode. */
9836 inst.instruction = THUMB_OP32 (inst.instruction);
9837 inst.instruction |= Rd << 8;
9838 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9839 inst.reloc.pc_rel = 1;
9840 }
9841 else
9842 {
9843 /* Generate a 16-bit opcode. */
9844 inst.instruction = THUMB_OP16 (inst.instruction);
9845 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9846 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9847 inst.reloc.pc_rel = 1;
9848
9849 inst.instruction |= Rd << 4;
9850 }
9851 }
9852
9853 /* Arithmetic instructions for which there is just one 16-bit
9854 instruction encoding, and it allows only two low registers.
9855 For maximal compatibility with ARM syntax, we allow three register
9856 operands even when Thumb-32 instructions are not available, as long
9857 as the first two are identical. For instance, both "sbc r0,r1" and
9858 "sbc r0,r0,r1" are allowed. */
9859 static void
9860 do_t_arit3 (void)
9861 {
9862 int Rd, Rs, Rn;
9863
9864 Rd = inst.operands[0].reg;
9865 Rs = (inst.operands[1].present
9866 ? inst.operands[1].reg /* Rd, Rs, foo */
9867 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9868 Rn = inst.operands[2].reg;
9869
9870 reject_bad_reg (Rd);
9871 reject_bad_reg (Rs);
9872 if (inst.operands[2].isreg)
9873 reject_bad_reg (Rn);
9874
9875 if (unified_syntax)
9876 {
9877 if (!inst.operands[2].isreg)
9878 {
9879 /* For an immediate, we always generate a 32-bit opcode;
9880 section relaxation will shrink it later if possible. */
9881 inst.instruction = THUMB_OP32 (inst.instruction);
9882 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9883 inst.instruction |= Rd << 8;
9884 inst.instruction |= Rs << 16;
9885 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9886 }
9887 else
9888 {
9889 bfd_boolean narrow;
9890
9891 /* See if we can do this with a 16-bit instruction. */
9892 if (THUMB_SETS_FLAGS (inst.instruction))
9893 narrow = !in_it_block ();
9894 else
9895 narrow = in_it_block ();
9896
9897 if (Rd > 7 || Rn > 7 || Rs > 7)
9898 narrow = FALSE;
9899 if (inst.operands[2].shifted)
9900 narrow = FALSE;
9901 if (inst.size_req == 4)
9902 narrow = FALSE;
9903
9904 if (narrow
9905 && Rd == Rs)
9906 {
9907 inst.instruction = THUMB_OP16 (inst.instruction);
9908 inst.instruction |= Rd;
9909 inst.instruction |= Rn << 3;
9910 return;
9911 }
9912
9913 /* If we get here, it can't be done in 16 bits. */
9914 constraint (inst.operands[2].shifted
9915 && inst.operands[2].immisreg,
9916 _("shift must be constant"));
9917 inst.instruction = THUMB_OP32 (inst.instruction);
9918 inst.instruction |= Rd << 8;
9919 inst.instruction |= Rs << 16;
9920 encode_thumb32_shifted_operand (2);
9921 }
9922 }
9923 else
9924 {
9925 /* On its face this is a lie - the instruction does set the
9926 flags. However, the only supported mnemonic in this mode
9927 says it doesn't. */
9928 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9929
9930 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9931 _("unshifted register required"));
9932 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9933 constraint (Rd != Rs,
9934 _("dest and source1 must be the same register"));
9935
9936 inst.instruction = THUMB_OP16 (inst.instruction);
9937 inst.instruction |= Rd;
9938 inst.instruction |= Rn << 3;
9939 }
9940 }
9941
9942 /* Similarly, but for instructions where the arithmetic operation is
9943 commutative, so we can allow either of them to be different from
9944 the destination operand in a 16-bit instruction. For instance, all
9945 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9946 accepted. */
9947 static void
9948 do_t_arit3c (void)
9949 {
9950 int Rd, Rs, Rn;
9951
9952 Rd = inst.operands[0].reg;
9953 Rs = (inst.operands[1].present
9954 ? inst.operands[1].reg /* Rd, Rs, foo */
9955 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9956 Rn = inst.operands[2].reg;
9957
9958 reject_bad_reg (Rd);
9959 reject_bad_reg (Rs);
9960 if (inst.operands[2].isreg)
9961 reject_bad_reg (Rn);
9962
9963 if (unified_syntax)
9964 {
9965 if (!inst.operands[2].isreg)
9966 {
9967 /* For an immediate, we always generate a 32-bit opcode;
9968 section relaxation will shrink it later if possible. */
9969 inst.instruction = THUMB_OP32 (inst.instruction);
9970 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9971 inst.instruction |= Rd << 8;
9972 inst.instruction |= Rs << 16;
9973 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9974 }
9975 else
9976 {
9977 bfd_boolean narrow;
9978
9979 /* See if we can do this with a 16-bit instruction. */
9980 if (THUMB_SETS_FLAGS (inst.instruction))
9981 narrow = !in_it_block ();
9982 else
9983 narrow = in_it_block ();
9984
9985 if (Rd > 7 || Rn > 7 || Rs > 7)
9986 narrow = FALSE;
9987 if (inst.operands[2].shifted)
9988 narrow = FALSE;
9989 if (inst.size_req == 4)
9990 narrow = FALSE;
9991
9992 if (narrow)
9993 {
9994 if (Rd == Rs)
9995 {
9996 inst.instruction = THUMB_OP16 (inst.instruction);
9997 inst.instruction |= Rd;
9998 inst.instruction |= Rn << 3;
9999 return;
10000 }
10001 if (Rd == Rn)
10002 {
10003 inst.instruction = THUMB_OP16 (inst.instruction);
10004 inst.instruction |= Rd;
10005 inst.instruction |= Rs << 3;
10006 return;
10007 }
10008 }
10009
10010 /* If we get here, it can't be done in 16 bits. */
10011 constraint (inst.operands[2].shifted
10012 && inst.operands[2].immisreg,
10013 _("shift must be constant"));
10014 inst.instruction = THUMB_OP32 (inst.instruction);
10015 inst.instruction |= Rd << 8;
10016 inst.instruction |= Rs << 16;
10017 encode_thumb32_shifted_operand (2);
10018 }
10019 }
10020 else
10021 {
10022 /* On its face this is a lie - the instruction does set the
10023 flags. However, the only supported mnemonic in this mode
10024 says it doesn't. */
10025 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10026
10027 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10028 _("unshifted register required"));
10029 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10030
10031 inst.instruction = THUMB_OP16 (inst.instruction);
10032 inst.instruction |= Rd;
10033
10034 if (Rd == Rs)
10035 inst.instruction |= Rn << 3;
10036 else if (Rd == Rn)
10037 inst.instruction |= Rs << 3;
10038 else
10039 constraint (1, _("dest must overlap one source register"));
10040 }
10041 }
10042
10043 static void
10044 do_t_bfc (void)
10045 {
10046 unsigned Rd;
10047 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10048 constraint (msb > 32, _("bit-field extends past end of register"));
10049 /* The instruction encoding stores the LSB and MSB,
10050 not the LSB and width. */
10051 Rd = inst.operands[0].reg;
10052 reject_bad_reg (Rd);
10053 inst.instruction |= Rd << 8;
10054 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10055 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10056 inst.instruction |= msb - 1;
10057 }
10058
10059 static void
10060 do_t_bfi (void)
10061 {
10062 int Rd, Rn;
10063 unsigned int msb;
10064
10065 Rd = inst.operands[0].reg;
10066 reject_bad_reg (Rd);
10067
10068 /* #0 in second position is alternative syntax for bfc, which is
10069 the same instruction but with REG_PC in the Rm field. */
10070 if (!inst.operands[1].isreg)
10071 Rn = REG_PC;
10072 else
10073 {
10074 Rn = inst.operands[1].reg;
10075 reject_bad_reg (Rn);
10076 }
10077
10078 msb = inst.operands[2].imm + inst.operands[3].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 inst.instruction |= Rd << 8;
10083 inst.instruction |= Rn << 16;
10084 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10085 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10086 inst.instruction |= msb - 1;
10087 }
10088
10089 static void
10090 do_t_bfx (void)
10091 {
10092 unsigned Rd, Rn;
10093
10094 Rd = inst.operands[0].reg;
10095 Rn = inst.operands[1].reg;
10096
10097 reject_bad_reg (Rd);
10098 reject_bad_reg (Rn);
10099
10100 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10101 _("bit-field extends past end of register"));
10102 inst.instruction |= Rd << 8;
10103 inst.instruction |= Rn << 16;
10104 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10105 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10106 inst.instruction |= inst.operands[3].imm - 1;
10107 }
10108
10109 /* ARM V5 Thumb BLX (argument parse)
10110 BLX <target_addr> which is BLX(1)
10111 BLX <Rm> which is BLX(2)
10112 Unfortunately, there are two different opcodes for this mnemonic.
10113 So, the insns[].value is not used, and the code here zaps values
10114 into inst.instruction.
10115
10116 ??? How to take advantage of the additional two bits of displacement
10117 available in Thumb32 mode? Need new relocation? */
10118
10119 static void
10120 do_t_blx (void)
10121 {
10122 set_it_insn_type_last ();
10123
10124 if (inst.operands[0].isreg)
10125 {
10126 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10127 /* We have a register, so this is BLX(2). */
10128 inst.instruction |= inst.operands[0].reg << 3;
10129 }
10130 else
10131 {
10132 /* No register. This must be BLX(1). */
10133 inst.instruction = 0xf000e800;
10134 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10135 }
10136 }
10137
10138 static void
10139 do_t_branch (void)
10140 {
10141 int opcode;
10142 int cond;
10143 int reloc;
10144
10145 cond = inst.cond;
10146 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10147
10148 if (in_it_block ())
10149 {
10150 /* Conditional branches inside IT blocks are encoded as unconditional
10151 branches. */
10152 cond = COND_ALWAYS;
10153 }
10154 else
10155 cond = inst.cond;
10156
10157 if (cond != COND_ALWAYS)
10158 opcode = T_MNEM_bcond;
10159 else
10160 opcode = inst.instruction;
10161
10162 if (unified_syntax
10163 && (inst.size_req == 4
10164 || (inst.size_req != 2
10165 && (inst.operands[0].hasreloc
10166 || inst.reloc.exp.X_op == O_constant))))
10167 {
10168 inst.instruction = THUMB_OP32(opcode);
10169 if (cond == COND_ALWAYS)
10170 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10171 else
10172 {
10173 gas_assert (cond != 0xF);
10174 inst.instruction |= cond << 22;
10175 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10176 }
10177 }
10178 else
10179 {
10180 inst.instruction = THUMB_OP16(opcode);
10181 if (cond == COND_ALWAYS)
10182 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10183 else
10184 {
10185 inst.instruction |= cond << 8;
10186 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10187 }
10188 /* Allow section relaxation. */
10189 if (unified_syntax && inst.size_req != 2)
10190 inst.relax = opcode;
10191 }
10192 inst.reloc.type = reloc;
10193 inst.reloc.pc_rel = 1;
10194 }
10195
10196 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10197 between the two is the maximum immediate allowed - which is passed in
10198 RANGE. */
10199 static void
10200 do_t_bkpt_hlt1 (int range)
10201 {
10202 constraint (inst.cond != COND_ALWAYS,
10203 _("instruction is always unconditional"));
10204 if (inst.operands[0].present)
10205 {
10206 constraint (inst.operands[0].imm > range,
10207 _("immediate value out of range"));
10208 inst.instruction |= inst.operands[0].imm;
10209 }
10210
10211 set_it_insn_type (NEUTRAL_IT_INSN);
10212 }
10213
10214 static void
10215 do_t_hlt (void)
10216 {
10217 do_t_bkpt_hlt1 (63);
10218 }
10219
10220 static void
10221 do_t_bkpt (void)
10222 {
10223 do_t_bkpt_hlt1 (255);
10224 }
10225
10226 static void
10227 do_t_branch23 (void)
10228 {
10229 set_it_insn_type_last ();
10230 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10231
10232 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10233 this file. We used to simply ignore the PLT reloc type here --
10234 the branch encoding is now needed to deal with TLSCALL relocs.
10235 So if we see a PLT reloc now, put it back to how it used to be to
10236 keep the preexisting behaviour. */
10237 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10238 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10239
10240 #if defined(OBJ_COFF)
10241 /* If the destination of the branch is a defined symbol which does not have
10242 the THUMB_FUNC attribute, then we must be calling a function which has
10243 the (interfacearm) attribute. We look for the Thumb entry point to that
10244 function and change the branch to refer to that function instead. */
10245 if ( inst.reloc.exp.X_op == O_symbol
10246 && inst.reloc.exp.X_add_symbol != NULL
10247 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10248 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10249 inst.reloc.exp.X_add_symbol =
10250 find_real_start (inst.reloc.exp.X_add_symbol);
10251 #endif
10252 }
10253
10254 static void
10255 do_t_bx (void)
10256 {
10257 set_it_insn_type_last ();
10258 inst.instruction |= inst.operands[0].reg << 3;
10259 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10260 should cause the alignment to be checked once it is known. This is
10261 because BX PC only works if the instruction is word aligned. */
10262 }
10263
10264 static void
10265 do_t_bxj (void)
10266 {
10267 int Rm;
10268
10269 set_it_insn_type_last ();
10270 Rm = inst.operands[0].reg;
10271 reject_bad_reg (Rm);
10272 inst.instruction |= Rm << 16;
10273 }
10274
10275 static void
10276 do_t_clz (void)
10277 {
10278 unsigned Rd;
10279 unsigned Rm;
10280
10281 Rd = inst.operands[0].reg;
10282 Rm = inst.operands[1].reg;
10283
10284 reject_bad_reg (Rd);
10285 reject_bad_reg (Rm);
10286
10287 inst.instruction |= Rd << 8;
10288 inst.instruction |= Rm << 16;
10289 inst.instruction |= Rm;
10290 }
10291
10292 static void
10293 do_t_cps (void)
10294 {
10295 set_it_insn_type (OUTSIDE_IT_INSN);
10296 inst.instruction |= inst.operands[0].imm;
10297 }
10298
10299 static void
10300 do_t_cpsi (void)
10301 {
10302 set_it_insn_type (OUTSIDE_IT_INSN);
10303 if (unified_syntax
10304 && (inst.operands[1].present || inst.size_req == 4)
10305 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10306 {
10307 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10308 inst.instruction = 0xf3af8000;
10309 inst.instruction |= imod << 9;
10310 inst.instruction |= inst.operands[0].imm << 5;
10311 if (inst.operands[1].present)
10312 inst.instruction |= 0x100 | inst.operands[1].imm;
10313 }
10314 else
10315 {
10316 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10317 && (inst.operands[0].imm & 4),
10318 _("selected processor does not support 'A' form "
10319 "of this instruction"));
10320 constraint (inst.operands[1].present || inst.size_req == 4,
10321 _("Thumb does not support the 2-argument "
10322 "form of this instruction"));
10323 inst.instruction |= inst.operands[0].imm;
10324 }
10325 }
10326
10327 /* THUMB CPY instruction (argument parse). */
10328
10329 static void
10330 do_t_cpy (void)
10331 {
10332 if (inst.size_req == 4)
10333 {
10334 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10335 inst.instruction |= inst.operands[0].reg << 8;
10336 inst.instruction |= inst.operands[1].reg;
10337 }
10338 else
10339 {
10340 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10341 inst.instruction |= (inst.operands[0].reg & 0x7);
10342 inst.instruction |= inst.operands[1].reg << 3;
10343 }
10344 }
10345
10346 static void
10347 do_t_cbz (void)
10348 {
10349 set_it_insn_type (OUTSIDE_IT_INSN);
10350 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10351 inst.instruction |= inst.operands[0].reg;
10352 inst.reloc.pc_rel = 1;
10353 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10354 }
10355
10356 static void
10357 do_t_dbg (void)
10358 {
10359 inst.instruction |= inst.operands[0].imm;
10360 }
10361
10362 static void
10363 do_t_div (void)
10364 {
10365 unsigned Rd, Rn, Rm;
10366
10367 Rd = inst.operands[0].reg;
10368 Rn = (inst.operands[1].present
10369 ? inst.operands[1].reg : Rd);
10370 Rm = inst.operands[2].reg;
10371
10372 reject_bad_reg (Rd);
10373 reject_bad_reg (Rn);
10374 reject_bad_reg (Rm);
10375
10376 inst.instruction |= Rd << 8;
10377 inst.instruction |= Rn << 16;
10378 inst.instruction |= Rm;
10379 }
10380
10381 static void
10382 do_t_hint (void)
10383 {
10384 if (unified_syntax && inst.size_req == 4)
10385 inst.instruction = THUMB_OP32 (inst.instruction);
10386 else
10387 inst.instruction = THUMB_OP16 (inst.instruction);
10388 }
10389
10390 static void
10391 do_t_it (void)
10392 {
10393 unsigned int cond = inst.operands[0].imm;
10394
10395 set_it_insn_type (IT_INSN);
10396 now_it.mask = (inst.instruction & 0xf) | 0x10;
10397 now_it.cc = cond;
10398 now_it.warn_deprecated = FALSE;
10399
10400 /* If the condition is a negative condition, invert the mask. */
10401 if ((cond & 0x1) == 0x0)
10402 {
10403 unsigned int mask = inst.instruction & 0x000f;
10404
10405 if ((mask & 0x7) == 0)
10406 {
10407 /* No conversion needed. */
10408 now_it.block_length = 1;
10409 }
10410 else if ((mask & 0x3) == 0)
10411 {
10412 mask ^= 0x8;
10413 now_it.block_length = 2;
10414 }
10415 else if ((mask & 0x1) == 0)
10416 {
10417 mask ^= 0xC;
10418 now_it.block_length = 3;
10419 }
10420 else
10421 {
10422 mask ^= 0xE;
10423 now_it.block_length = 4;
10424 }
10425
10426 inst.instruction &= 0xfff0;
10427 inst.instruction |= mask;
10428 }
10429
10430 inst.instruction |= cond << 4;
10431 }
10432
10433 /* Helper function used for both push/pop and ldm/stm. */
10434 static void
10435 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10436 {
10437 bfd_boolean load;
10438
10439 load = (inst.instruction & (1 << 20)) != 0;
10440
10441 if (mask & (1 << 13))
10442 inst.error = _("SP not allowed in register list");
10443
10444 if ((mask & (1 << base)) != 0
10445 && writeback)
10446 inst.error = _("having the base register in the register list when "
10447 "using write back is UNPREDICTABLE");
10448
10449 if (load)
10450 {
10451 if (mask & (1 << 15))
10452 {
10453 if (mask & (1 << 14))
10454 inst.error = _("LR and PC should not both be in register list");
10455 else
10456 set_it_insn_type_last ();
10457 }
10458 }
10459 else
10460 {
10461 if (mask & (1 << 15))
10462 inst.error = _("PC not allowed in register list");
10463 }
10464
10465 if ((mask & (mask - 1)) == 0)
10466 {
10467 /* Single register transfers implemented as str/ldr. */
10468 if (writeback)
10469 {
10470 if (inst.instruction & (1 << 23))
10471 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10472 else
10473 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10474 }
10475 else
10476 {
10477 if (inst.instruction & (1 << 23))
10478 inst.instruction = 0x00800000; /* ia -> [base] */
10479 else
10480 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10481 }
10482
10483 inst.instruction |= 0xf8400000;
10484 if (load)
10485 inst.instruction |= 0x00100000;
10486
10487 mask = ffs (mask) - 1;
10488 mask <<= 12;
10489 }
10490 else if (writeback)
10491 inst.instruction |= WRITE_BACK;
10492
10493 inst.instruction |= mask;
10494 inst.instruction |= base << 16;
10495 }
10496
10497 static void
10498 do_t_ldmstm (void)
10499 {
10500 /* This really doesn't seem worth it. */
10501 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10502 _("expression too complex"));
10503 constraint (inst.operands[1].writeback,
10504 _("Thumb load/store multiple does not support {reglist}^"));
10505
10506 if (unified_syntax)
10507 {
10508 bfd_boolean narrow;
10509 unsigned mask;
10510
10511 narrow = FALSE;
10512 /* See if we can use a 16-bit instruction. */
10513 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10514 && inst.size_req != 4
10515 && !(inst.operands[1].imm & ~0xff))
10516 {
10517 mask = 1 << inst.operands[0].reg;
10518
10519 if (inst.operands[0].reg <= 7)
10520 {
10521 if (inst.instruction == T_MNEM_stmia
10522 ? inst.operands[0].writeback
10523 : (inst.operands[0].writeback
10524 == !(inst.operands[1].imm & mask)))
10525 {
10526 if (inst.instruction == T_MNEM_stmia
10527 && (inst.operands[1].imm & mask)
10528 && (inst.operands[1].imm & (mask - 1)))
10529 as_warn (_("value stored for r%d is UNKNOWN"),
10530 inst.operands[0].reg);
10531
10532 inst.instruction = THUMB_OP16 (inst.instruction);
10533 inst.instruction |= inst.operands[0].reg << 8;
10534 inst.instruction |= inst.operands[1].imm;
10535 narrow = TRUE;
10536 }
10537 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10538 {
10539 /* This means 1 register in reg list one of 3 situations:
10540 1. Instruction is stmia, but without writeback.
10541 2. lmdia without writeback, but with Rn not in
10542 reglist.
10543 3. ldmia with writeback, but with Rn in reglist.
10544 Case 3 is UNPREDICTABLE behaviour, so we handle
10545 case 1 and 2 which can be converted into a 16-bit
10546 str or ldr. The SP cases are handled below. */
10547 unsigned long opcode;
10548 /* First, record an error for Case 3. */
10549 if (inst.operands[1].imm & mask
10550 && inst.operands[0].writeback)
10551 inst.error =
10552 _("having the base register in the register list when "
10553 "using write back is UNPREDICTABLE");
10554
10555 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10556 : T_MNEM_ldr);
10557 inst.instruction = THUMB_OP16 (opcode);
10558 inst.instruction |= inst.operands[0].reg << 3;
10559 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10560 narrow = TRUE;
10561 }
10562 }
10563 else if (inst.operands[0] .reg == REG_SP)
10564 {
10565 if (inst.operands[0].writeback)
10566 {
10567 inst.instruction =
10568 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10569 ? T_MNEM_push : T_MNEM_pop);
10570 inst.instruction |= inst.operands[1].imm;
10571 narrow = TRUE;
10572 }
10573 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10574 {
10575 inst.instruction =
10576 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10577 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10578 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10579 narrow = TRUE;
10580 }
10581 }
10582 }
10583
10584 if (!narrow)
10585 {
10586 if (inst.instruction < 0xffff)
10587 inst.instruction = THUMB_OP32 (inst.instruction);
10588
10589 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10590 inst.operands[0].writeback);
10591 }
10592 }
10593 else
10594 {
10595 constraint (inst.operands[0].reg > 7
10596 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10597 constraint (inst.instruction != T_MNEM_ldmia
10598 && inst.instruction != T_MNEM_stmia,
10599 _("Thumb-2 instruction only valid in unified syntax"));
10600 if (inst.instruction == T_MNEM_stmia)
10601 {
10602 if (!inst.operands[0].writeback)
10603 as_warn (_("this instruction will write back the base register"));
10604 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10605 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10606 as_warn (_("value stored for r%d is UNKNOWN"),
10607 inst.operands[0].reg);
10608 }
10609 else
10610 {
10611 if (!inst.operands[0].writeback
10612 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10613 as_warn (_("this instruction will write back the base register"));
10614 else if (inst.operands[0].writeback
10615 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10616 as_warn (_("this instruction will not write back the base register"));
10617 }
10618
10619 inst.instruction = THUMB_OP16 (inst.instruction);
10620 inst.instruction |= inst.operands[0].reg << 8;
10621 inst.instruction |= inst.operands[1].imm;
10622 }
10623 }
10624
10625 static void
10626 do_t_ldrex (void)
10627 {
10628 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10629 || inst.operands[1].postind || inst.operands[1].writeback
10630 || inst.operands[1].immisreg || inst.operands[1].shifted
10631 || inst.operands[1].negative,
10632 BAD_ADDR_MODE);
10633
10634 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10635
10636 inst.instruction |= inst.operands[0].reg << 12;
10637 inst.instruction |= inst.operands[1].reg << 16;
10638 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10639 }
10640
10641 static void
10642 do_t_ldrexd (void)
10643 {
10644 if (!inst.operands[1].present)
10645 {
10646 constraint (inst.operands[0].reg == REG_LR,
10647 _("r14 not allowed as first register "
10648 "when second register is omitted"));
10649 inst.operands[1].reg = inst.operands[0].reg + 1;
10650 }
10651 constraint (inst.operands[0].reg == inst.operands[1].reg,
10652 BAD_OVERLAP);
10653
10654 inst.instruction |= inst.operands[0].reg << 12;
10655 inst.instruction |= inst.operands[1].reg << 8;
10656 inst.instruction |= inst.operands[2].reg << 16;
10657 }
10658
10659 static void
10660 do_t_ldst (void)
10661 {
10662 unsigned long opcode;
10663 int Rn;
10664
10665 if (inst.operands[0].isreg
10666 && !inst.operands[0].preind
10667 && inst.operands[0].reg == REG_PC)
10668 set_it_insn_type_last ();
10669
10670 opcode = inst.instruction;
10671 if (unified_syntax)
10672 {
10673 if (!inst.operands[1].isreg)
10674 {
10675 if (opcode <= 0xffff)
10676 inst.instruction = THUMB_OP32 (opcode);
10677 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10678 return;
10679 }
10680 if (inst.operands[1].isreg
10681 && !inst.operands[1].writeback
10682 && !inst.operands[1].shifted && !inst.operands[1].postind
10683 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10684 && opcode <= 0xffff
10685 && inst.size_req != 4)
10686 {
10687 /* Insn may have a 16-bit form. */
10688 Rn = inst.operands[1].reg;
10689 if (inst.operands[1].immisreg)
10690 {
10691 inst.instruction = THUMB_OP16 (opcode);
10692 /* [Rn, Rik] */
10693 if (Rn <= 7 && inst.operands[1].imm <= 7)
10694 goto op16;
10695 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10696 reject_bad_reg (inst.operands[1].imm);
10697 }
10698 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10699 && opcode != T_MNEM_ldrsb)
10700 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10701 || (Rn == REG_SP && opcode == T_MNEM_str))
10702 {
10703 /* [Rn, #const] */
10704 if (Rn > 7)
10705 {
10706 if (Rn == REG_PC)
10707 {
10708 if (inst.reloc.pc_rel)
10709 opcode = T_MNEM_ldr_pc2;
10710 else
10711 opcode = T_MNEM_ldr_pc;
10712 }
10713 else
10714 {
10715 if (opcode == T_MNEM_ldr)
10716 opcode = T_MNEM_ldr_sp;
10717 else
10718 opcode = T_MNEM_str_sp;
10719 }
10720 inst.instruction = inst.operands[0].reg << 8;
10721 }
10722 else
10723 {
10724 inst.instruction = inst.operands[0].reg;
10725 inst.instruction |= inst.operands[1].reg << 3;
10726 }
10727 inst.instruction |= THUMB_OP16 (opcode);
10728 if (inst.size_req == 2)
10729 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10730 else
10731 inst.relax = opcode;
10732 return;
10733 }
10734 }
10735 /* Definitely a 32-bit variant. */
10736
10737 /* Warning for Erratum 752419. */
10738 if (opcode == T_MNEM_ldr
10739 && inst.operands[0].reg == REG_SP
10740 && inst.operands[1].writeback == 1
10741 && !inst.operands[1].immisreg)
10742 {
10743 if (no_cpu_selected ()
10744 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10745 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10746 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10747 as_warn (_("This instruction may be unpredictable "
10748 "if executed on M-profile cores "
10749 "with interrupts enabled."));
10750 }
10751
10752 /* Do some validations regarding addressing modes. */
10753 if (inst.operands[1].immisreg)
10754 reject_bad_reg (inst.operands[1].imm);
10755
10756 constraint (inst.operands[1].writeback == 1
10757 && inst.operands[0].reg == inst.operands[1].reg,
10758 BAD_OVERLAP);
10759
10760 inst.instruction = THUMB_OP32 (opcode);
10761 inst.instruction |= inst.operands[0].reg << 12;
10762 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10763 check_ldr_r15_aligned ();
10764 return;
10765 }
10766
10767 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10768
10769 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10770 {
10771 /* Only [Rn,Rm] is acceptable. */
10772 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10773 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10774 || inst.operands[1].postind || inst.operands[1].shifted
10775 || inst.operands[1].negative,
10776 _("Thumb does not support this addressing mode"));
10777 inst.instruction = THUMB_OP16 (inst.instruction);
10778 goto op16;
10779 }
10780
10781 inst.instruction = THUMB_OP16 (inst.instruction);
10782 if (!inst.operands[1].isreg)
10783 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10784 return;
10785
10786 constraint (!inst.operands[1].preind
10787 || inst.operands[1].shifted
10788 || inst.operands[1].writeback,
10789 _("Thumb does not support this addressing mode"));
10790 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10791 {
10792 constraint (inst.instruction & 0x0600,
10793 _("byte or halfword not valid for base register"));
10794 constraint (inst.operands[1].reg == REG_PC
10795 && !(inst.instruction & THUMB_LOAD_BIT),
10796 _("r15 based store not allowed"));
10797 constraint (inst.operands[1].immisreg,
10798 _("invalid base register for register offset"));
10799
10800 if (inst.operands[1].reg == REG_PC)
10801 inst.instruction = T_OPCODE_LDR_PC;
10802 else if (inst.instruction & THUMB_LOAD_BIT)
10803 inst.instruction = T_OPCODE_LDR_SP;
10804 else
10805 inst.instruction = T_OPCODE_STR_SP;
10806
10807 inst.instruction |= inst.operands[0].reg << 8;
10808 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10809 return;
10810 }
10811
10812 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10813 if (!inst.operands[1].immisreg)
10814 {
10815 /* Immediate offset. */
10816 inst.instruction |= inst.operands[0].reg;
10817 inst.instruction |= inst.operands[1].reg << 3;
10818 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10819 return;
10820 }
10821
10822 /* Register offset. */
10823 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10824 constraint (inst.operands[1].negative,
10825 _("Thumb does not support this addressing mode"));
10826
10827 op16:
10828 switch (inst.instruction)
10829 {
10830 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10831 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10832 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10833 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10834 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10835 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10836 case 0x5600 /* ldrsb */:
10837 case 0x5e00 /* ldrsh */: break;
10838 default: abort ();
10839 }
10840
10841 inst.instruction |= inst.operands[0].reg;
10842 inst.instruction |= inst.operands[1].reg << 3;
10843 inst.instruction |= inst.operands[1].imm << 6;
10844 }
10845
10846 static void
10847 do_t_ldstd (void)
10848 {
10849 if (!inst.operands[1].present)
10850 {
10851 inst.operands[1].reg = inst.operands[0].reg + 1;
10852 constraint (inst.operands[0].reg == REG_LR,
10853 _("r14 not allowed here"));
10854 constraint (inst.operands[0].reg == REG_R12,
10855 _("r12 not allowed here"));
10856 }
10857
10858 if (inst.operands[2].writeback
10859 && (inst.operands[0].reg == inst.operands[2].reg
10860 || inst.operands[1].reg == inst.operands[2].reg))
10861 as_warn (_("base register written back, and overlaps "
10862 "one of transfer registers"));
10863
10864 inst.instruction |= inst.operands[0].reg << 12;
10865 inst.instruction |= inst.operands[1].reg << 8;
10866 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10867 }
10868
10869 static void
10870 do_t_ldstt (void)
10871 {
10872 inst.instruction |= inst.operands[0].reg << 12;
10873 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10874 }
10875
10876 static void
10877 do_t_mla (void)
10878 {
10879 unsigned Rd, Rn, Rm, Ra;
10880
10881 Rd = inst.operands[0].reg;
10882 Rn = inst.operands[1].reg;
10883 Rm = inst.operands[2].reg;
10884 Ra = inst.operands[3].reg;
10885
10886 reject_bad_reg (Rd);
10887 reject_bad_reg (Rn);
10888 reject_bad_reg (Rm);
10889 reject_bad_reg (Ra);
10890
10891 inst.instruction |= Rd << 8;
10892 inst.instruction |= Rn << 16;
10893 inst.instruction |= Rm;
10894 inst.instruction |= Ra << 12;
10895 }
10896
10897 static void
10898 do_t_mlal (void)
10899 {
10900 unsigned RdLo, RdHi, Rn, Rm;
10901
10902 RdLo = inst.operands[0].reg;
10903 RdHi = inst.operands[1].reg;
10904 Rn = inst.operands[2].reg;
10905 Rm = inst.operands[3].reg;
10906
10907 reject_bad_reg (RdLo);
10908 reject_bad_reg (RdHi);
10909 reject_bad_reg (Rn);
10910 reject_bad_reg (Rm);
10911
10912 inst.instruction |= RdLo << 12;
10913 inst.instruction |= RdHi << 8;
10914 inst.instruction |= Rn << 16;
10915 inst.instruction |= Rm;
10916 }
10917
10918 static void
10919 do_t_mov_cmp (void)
10920 {
10921 unsigned Rn, Rm;
10922
10923 Rn = inst.operands[0].reg;
10924 Rm = inst.operands[1].reg;
10925
10926 if (Rn == REG_PC)
10927 set_it_insn_type_last ();
10928
10929 if (unified_syntax)
10930 {
10931 int r0off = (inst.instruction == T_MNEM_mov
10932 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10933 unsigned long opcode;
10934 bfd_boolean narrow;
10935 bfd_boolean low_regs;
10936
10937 low_regs = (Rn <= 7 && Rm <= 7);
10938 opcode = inst.instruction;
10939 if (in_it_block ())
10940 narrow = opcode != T_MNEM_movs;
10941 else
10942 narrow = opcode != T_MNEM_movs || low_regs;
10943 if (inst.size_req == 4
10944 || inst.operands[1].shifted)
10945 narrow = FALSE;
10946
10947 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10948 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10949 && !inst.operands[1].shifted
10950 && Rn == REG_PC
10951 && Rm == REG_LR)
10952 {
10953 inst.instruction = T2_SUBS_PC_LR;
10954 return;
10955 }
10956
10957 if (opcode == T_MNEM_cmp)
10958 {
10959 constraint (Rn == REG_PC, BAD_PC);
10960 if (narrow)
10961 {
10962 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10963 but valid. */
10964 warn_deprecated_sp (Rm);
10965 /* R15 was documented as a valid choice for Rm in ARMv6,
10966 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10967 tools reject R15, so we do too. */
10968 constraint (Rm == REG_PC, BAD_PC);
10969 }
10970 else
10971 reject_bad_reg (Rm);
10972 }
10973 else if (opcode == T_MNEM_mov
10974 || opcode == T_MNEM_movs)
10975 {
10976 if (inst.operands[1].isreg)
10977 {
10978 if (opcode == T_MNEM_movs)
10979 {
10980 reject_bad_reg (Rn);
10981 reject_bad_reg (Rm);
10982 }
10983 else if (narrow)
10984 {
10985 /* This is mov.n. */
10986 if ((Rn == REG_SP || Rn == REG_PC)
10987 && (Rm == REG_SP || Rm == REG_PC))
10988 {
10989 as_warn (_("Use of r%u as a source register is "
10990 "deprecated when r%u is the destination "
10991 "register."), Rm, Rn);
10992 }
10993 }
10994 else
10995 {
10996 /* This is mov.w. */
10997 constraint (Rn == REG_PC, BAD_PC);
10998 constraint (Rm == REG_PC, BAD_PC);
10999 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11000 }
11001 }
11002 else
11003 reject_bad_reg (Rn);
11004 }
11005
11006 if (!inst.operands[1].isreg)
11007 {
11008 /* Immediate operand. */
11009 if (!in_it_block () && opcode == T_MNEM_mov)
11010 narrow = 0;
11011 if (low_regs && narrow)
11012 {
11013 inst.instruction = THUMB_OP16 (opcode);
11014 inst.instruction |= Rn << 8;
11015 if (inst.size_req == 2)
11016 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11017 else
11018 inst.relax = opcode;
11019 }
11020 else
11021 {
11022 inst.instruction = THUMB_OP32 (inst.instruction);
11023 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11024 inst.instruction |= Rn << r0off;
11025 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11026 }
11027 }
11028 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11029 && (inst.instruction == T_MNEM_mov
11030 || inst.instruction == T_MNEM_movs))
11031 {
11032 /* Register shifts are encoded as separate shift instructions. */
11033 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11034
11035 if (in_it_block ())
11036 narrow = !flags;
11037 else
11038 narrow = flags;
11039
11040 if (inst.size_req == 4)
11041 narrow = FALSE;
11042
11043 if (!low_regs || inst.operands[1].imm > 7)
11044 narrow = FALSE;
11045
11046 if (Rn != Rm)
11047 narrow = FALSE;
11048
11049 switch (inst.operands[1].shift_kind)
11050 {
11051 case SHIFT_LSL:
11052 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11053 break;
11054 case SHIFT_ASR:
11055 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11056 break;
11057 case SHIFT_LSR:
11058 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11059 break;
11060 case SHIFT_ROR:
11061 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11062 break;
11063 default:
11064 abort ();
11065 }
11066
11067 inst.instruction = opcode;
11068 if (narrow)
11069 {
11070 inst.instruction |= Rn;
11071 inst.instruction |= inst.operands[1].imm << 3;
11072 }
11073 else
11074 {
11075 if (flags)
11076 inst.instruction |= CONDS_BIT;
11077
11078 inst.instruction |= Rn << 8;
11079 inst.instruction |= Rm << 16;
11080 inst.instruction |= inst.operands[1].imm;
11081 }
11082 }
11083 else if (!narrow)
11084 {
11085 /* Some mov with immediate shift have narrow variants.
11086 Register shifts are handled above. */
11087 if (low_regs && inst.operands[1].shifted
11088 && (inst.instruction == T_MNEM_mov
11089 || inst.instruction == T_MNEM_movs))
11090 {
11091 if (in_it_block ())
11092 narrow = (inst.instruction == T_MNEM_mov);
11093 else
11094 narrow = (inst.instruction == T_MNEM_movs);
11095 }
11096
11097 if (narrow)
11098 {
11099 switch (inst.operands[1].shift_kind)
11100 {
11101 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11102 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11103 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11104 default: narrow = FALSE; break;
11105 }
11106 }
11107
11108 if (narrow)
11109 {
11110 inst.instruction |= Rn;
11111 inst.instruction |= Rm << 3;
11112 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11113 }
11114 else
11115 {
11116 inst.instruction = THUMB_OP32 (inst.instruction);
11117 inst.instruction |= Rn << r0off;
11118 encode_thumb32_shifted_operand (1);
11119 }
11120 }
11121 else
11122 switch (inst.instruction)
11123 {
11124 case T_MNEM_mov:
11125 /* In v4t or v5t a move of two lowregs produces unpredictable
11126 results. Don't allow this. */
11127 if (low_regs)
11128 {
11129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11130 "MOV Rd, Rs with two low registers is not "
11131 "permitted on this architecture");
11132 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11133 arm_ext_v6);
11134 }
11135
11136 inst.instruction = T_OPCODE_MOV_HR;
11137 inst.instruction |= (Rn & 0x8) << 4;
11138 inst.instruction |= (Rn & 0x7);
11139 inst.instruction |= Rm << 3;
11140 break;
11141
11142 case T_MNEM_movs:
11143 /* We know we have low registers at this point.
11144 Generate LSLS Rd, Rs, #0. */
11145 inst.instruction = T_OPCODE_LSL_I;
11146 inst.instruction |= Rn;
11147 inst.instruction |= Rm << 3;
11148 break;
11149
11150 case T_MNEM_cmp:
11151 if (low_regs)
11152 {
11153 inst.instruction = T_OPCODE_CMP_LR;
11154 inst.instruction |= Rn;
11155 inst.instruction |= Rm << 3;
11156 }
11157 else
11158 {
11159 inst.instruction = T_OPCODE_CMP_HR;
11160 inst.instruction |= (Rn & 0x8) << 4;
11161 inst.instruction |= (Rn & 0x7);
11162 inst.instruction |= Rm << 3;
11163 }
11164 break;
11165 }
11166 return;
11167 }
11168
11169 inst.instruction = THUMB_OP16 (inst.instruction);
11170
11171 /* PR 10443: Do not silently ignore shifted operands. */
11172 constraint (inst.operands[1].shifted,
11173 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11174
11175 if (inst.operands[1].isreg)
11176 {
11177 if (Rn < 8 && Rm < 8)
11178 {
11179 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11180 since a MOV instruction produces unpredictable results. */
11181 if (inst.instruction == T_OPCODE_MOV_I8)
11182 inst.instruction = T_OPCODE_ADD_I3;
11183 else
11184 inst.instruction = T_OPCODE_CMP_LR;
11185
11186 inst.instruction |= Rn;
11187 inst.instruction |= Rm << 3;
11188 }
11189 else
11190 {
11191 if (inst.instruction == T_OPCODE_MOV_I8)
11192 inst.instruction = T_OPCODE_MOV_HR;
11193 else
11194 inst.instruction = T_OPCODE_CMP_HR;
11195 do_t_cpy ();
11196 }
11197 }
11198 else
11199 {
11200 constraint (Rn > 7,
11201 _("only lo regs allowed with immediate"));
11202 inst.instruction |= Rn << 8;
11203 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11204 }
11205 }
11206
11207 static void
11208 do_t_mov16 (void)
11209 {
11210 unsigned Rd;
11211 bfd_vma imm;
11212 bfd_boolean top;
11213
11214 top = (inst.instruction & 0x00800000) != 0;
11215 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11216 {
11217 constraint (top, _(":lower16: not allowed this instruction"));
11218 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11219 }
11220 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11221 {
11222 constraint (!top, _(":upper16: not allowed this instruction"));
11223 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11224 }
11225
11226 Rd = inst.operands[0].reg;
11227 reject_bad_reg (Rd);
11228
11229 inst.instruction |= Rd << 8;
11230 if (inst.reloc.type == BFD_RELOC_UNUSED)
11231 {
11232 imm = inst.reloc.exp.X_add_number;
11233 inst.instruction |= (imm & 0xf000) << 4;
11234 inst.instruction |= (imm & 0x0800) << 15;
11235 inst.instruction |= (imm & 0x0700) << 4;
11236 inst.instruction |= (imm & 0x00ff);
11237 }
11238 }
11239
11240 static void
11241 do_t_mvn_tst (void)
11242 {
11243 unsigned Rn, Rm;
11244
11245 Rn = inst.operands[0].reg;
11246 Rm = inst.operands[1].reg;
11247
11248 if (inst.instruction == T_MNEM_cmp
11249 || inst.instruction == T_MNEM_cmn)
11250 constraint (Rn == REG_PC, BAD_PC);
11251 else
11252 reject_bad_reg (Rn);
11253 reject_bad_reg (Rm);
11254
11255 if (unified_syntax)
11256 {
11257 int r0off = (inst.instruction == T_MNEM_mvn
11258 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11259 bfd_boolean narrow;
11260
11261 if (inst.size_req == 4
11262 || inst.instruction > 0xffff
11263 || inst.operands[1].shifted
11264 || Rn > 7 || Rm > 7)
11265 narrow = FALSE;
11266 else if (inst.instruction == T_MNEM_cmn)
11267 narrow = TRUE;
11268 else if (THUMB_SETS_FLAGS (inst.instruction))
11269 narrow = !in_it_block ();
11270 else
11271 narrow = in_it_block ();
11272
11273 if (!inst.operands[1].isreg)
11274 {
11275 /* For an immediate, we always generate a 32-bit opcode;
11276 section relaxation will shrink it later if possible. */
11277 if (inst.instruction < 0xffff)
11278 inst.instruction = THUMB_OP32 (inst.instruction);
11279 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11280 inst.instruction |= Rn << r0off;
11281 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11282 }
11283 else
11284 {
11285 /* See if we can do this with a 16-bit instruction. */
11286 if (narrow)
11287 {
11288 inst.instruction = THUMB_OP16 (inst.instruction);
11289 inst.instruction |= Rn;
11290 inst.instruction |= Rm << 3;
11291 }
11292 else
11293 {
11294 constraint (inst.operands[1].shifted
11295 && inst.operands[1].immisreg,
11296 _("shift must be constant"));
11297 if (inst.instruction < 0xffff)
11298 inst.instruction = THUMB_OP32 (inst.instruction);
11299 inst.instruction |= Rn << r0off;
11300 encode_thumb32_shifted_operand (1);
11301 }
11302 }
11303 }
11304 else
11305 {
11306 constraint (inst.instruction > 0xffff
11307 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11308 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11309 _("unshifted register required"));
11310 constraint (Rn > 7 || Rm > 7,
11311 BAD_HIREG);
11312
11313 inst.instruction = THUMB_OP16 (inst.instruction);
11314 inst.instruction |= Rn;
11315 inst.instruction |= Rm << 3;
11316 }
11317 }
11318
11319 static void
11320 do_t_mrs (void)
11321 {
11322 unsigned Rd;
11323
11324 if (do_vfp_nsyn_mrs () == SUCCESS)
11325 return;
11326
11327 Rd = inst.operands[0].reg;
11328 reject_bad_reg (Rd);
11329 inst.instruction |= Rd << 8;
11330
11331 if (inst.operands[1].isreg)
11332 {
11333 unsigned br = inst.operands[1].reg;
11334 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11335 as_bad (_("bad register for mrs"));
11336
11337 inst.instruction |= br & (0xf << 16);
11338 inst.instruction |= (br & 0x300) >> 4;
11339 inst.instruction |= (br & SPSR_BIT) >> 2;
11340 }
11341 else
11342 {
11343 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11344
11345 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11346 {
11347 /* PR gas/12698: The constraint is only applied for m_profile.
11348 If the user has specified -march=all, we want to ignore it as
11349 we are building for any CPU type, including non-m variants. */
11350 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11351 constraint ((flags != 0) && m_profile, _("selected processor does "
11352 "not support requested special purpose register"));
11353 }
11354 else
11355 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11356 devices). */
11357 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11358 _("'APSR', 'CPSR' or 'SPSR' expected"));
11359
11360 inst.instruction |= (flags & SPSR_BIT) >> 2;
11361 inst.instruction |= inst.operands[1].imm & 0xff;
11362 inst.instruction |= 0xf0000;
11363 }
11364 }
11365
11366 static void
11367 do_t_msr (void)
11368 {
11369 int flags;
11370 unsigned Rn;
11371
11372 if (do_vfp_nsyn_msr () == SUCCESS)
11373 return;
11374
11375 constraint (!inst.operands[1].isreg,
11376 _("Thumb encoding does not support an immediate here"));
11377
11378 if (inst.operands[0].isreg)
11379 flags = (int)(inst.operands[0].reg);
11380 else
11381 flags = inst.operands[0].imm;
11382
11383 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11384 {
11385 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11386
11387 /* PR gas/12698: The constraint is only applied for m_profile.
11388 If the user has specified -march=all, we want to ignore it as
11389 we are building for any CPU type, including non-m variants. */
11390 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11391 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11392 && (bits & ~(PSR_s | PSR_f)) != 0)
11393 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11394 && bits != PSR_f)) && m_profile,
11395 _("selected processor does not support requested special "
11396 "purpose register"));
11397 }
11398 else
11399 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11400 "requested special purpose register"));
11401
11402 Rn = inst.operands[1].reg;
11403 reject_bad_reg (Rn);
11404
11405 inst.instruction |= (flags & SPSR_BIT) >> 2;
11406 inst.instruction |= (flags & 0xf0000) >> 8;
11407 inst.instruction |= (flags & 0x300) >> 4;
11408 inst.instruction |= (flags & 0xff);
11409 inst.instruction |= Rn << 16;
11410 }
11411
11412 static void
11413 do_t_mul (void)
11414 {
11415 bfd_boolean narrow;
11416 unsigned Rd, Rn, Rm;
11417
11418 if (!inst.operands[2].present)
11419 inst.operands[2].reg = inst.operands[0].reg;
11420
11421 Rd = inst.operands[0].reg;
11422 Rn = inst.operands[1].reg;
11423 Rm = inst.operands[2].reg;
11424
11425 if (unified_syntax)
11426 {
11427 if (inst.size_req == 4
11428 || (Rd != Rn
11429 && Rd != Rm)
11430 || Rn > 7
11431 || Rm > 7)
11432 narrow = FALSE;
11433 else if (inst.instruction == T_MNEM_muls)
11434 narrow = !in_it_block ();
11435 else
11436 narrow = in_it_block ();
11437 }
11438 else
11439 {
11440 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11441 constraint (Rn > 7 || Rm > 7,
11442 BAD_HIREG);
11443 narrow = TRUE;
11444 }
11445
11446 if (narrow)
11447 {
11448 /* 16-bit MULS/Conditional MUL. */
11449 inst.instruction = THUMB_OP16 (inst.instruction);
11450 inst.instruction |= Rd;
11451
11452 if (Rd == Rn)
11453 inst.instruction |= Rm << 3;
11454 else if (Rd == Rm)
11455 inst.instruction |= Rn << 3;
11456 else
11457 constraint (1, _("dest must overlap one source register"));
11458 }
11459 else
11460 {
11461 constraint (inst.instruction != T_MNEM_mul,
11462 _("Thumb-2 MUL must not set flags"));
11463 /* 32-bit MUL. */
11464 inst.instruction = THUMB_OP32 (inst.instruction);
11465 inst.instruction |= Rd << 8;
11466 inst.instruction |= Rn << 16;
11467 inst.instruction |= Rm << 0;
11468
11469 reject_bad_reg (Rd);
11470 reject_bad_reg (Rn);
11471 reject_bad_reg (Rm);
11472 }
11473 }
11474
11475 static void
11476 do_t_mull (void)
11477 {
11478 unsigned RdLo, RdHi, Rn, Rm;
11479
11480 RdLo = inst.operands[0].reg;
11481 RdHi = inst.operands[1].reg;
11482 Rn = inst.operands[2].reg;
11483 Rm = inst.operands[3].reg;
11484
11485 reject_bad_reg (RdLo);
11486 reject_bad_reg (RdHi);
11487 reject_bad_reg (Rn);
11488 reject_bad_reg (Rm);
11489
11490 inst.instruction |= RdLo << 12;
11491 inst.instruction |= RdHi << 8;
11492 inst.instruction |= Rn << 16;
11493 inst.instruction |= Rm;
11494
11495 if (RdLo == RdHi)
11496 as_tsktsk (_("rdhi and rdlo must be different"));
11497 }
11498
11499 static void
11500 do_t_nop (void)
11501 {
11502 set_it_insn_type (NEUTRAL_IT_INSN);
11503
11504 if (unified_syntax)
11505 {
11506 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11507 {
11508 inst.instruction = THUMB_OP32 (inst.instruction);
11509 inst.instruction |= inst.operands[0].imm;
11510 }
11511 else
11512 {
11513 /* PR9722: Check for Thumb2 availability before
11514 generating a thumb2 nop instruction. */
11515 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11516 {
11517 inst.instruction = THUMB_OP16 (inst.instruction);
11518 inst.instruction |= inst.operands[0].imm << 4;
11519 }
11520 else
11521 inst.instruction = 0x46c0;
11522 }
11523 }
11524 else
11525 {
11526 constraint (inst.operands[0].present,
11527 _("Thumb does not support NOP with hints"));
11528 inst.instruction = 0x46c0;
11529 }
11530 }
11531
11532 static void
11533 do_t_neg (void)
11534 {
11535 if (unified_syntax)
11536 {
11537 bfd_boolean narrow;
11538
11539 if (THUMB_SETS_FLAGS (inst.instruction))
11540 narrow = !in_it_block ();
11541 else
11542 narrow = in_it_block ();
11543 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11544 narrow = FALSE;
11545 if (inst.size_req == 4)
11546 narrow = FALSE;
11547
11548 if (!narrow)
11549 {
11550 inst.instruction = THUMB_OP32 (inst.instruction);
11551 inst.instruction |= inst.operands[0].reg << 8;
11552 inst.instruction |= inst.operands[1].reg << 16;
11553 }
11554 else
11555 {
11556 inst.instruction = THUMB_OP16 (inst.instruction);
11557 inst.instruction |= inst.operands[0].reg;
11558 inst.instruction |= inst.operands[1].reg << 3;
11559 }
11560 }
11561 else
11562 {
11563 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11564 BAD_HIREG);
11565 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11566
11567 inst.instruction = THUMB_OP16 (inst.instruction);
11568 inst.instruction |= inst.operands[0].reg;
11569 inst.instruction |= inst.operands[1].reg << 3;
11570 }
11571 }
11572
11573 static void
11574 do_t_orn (void)
11575 {
11576 unsigned Rd, Rn;
11577
11578 Rd = inst.operands[0].reg;
11579 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11580
11581 reject_bad_reg (Rd);
11582 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11583 reject_bad_reg (Rn);
11584
11585 inst.instruction |= Rd << 8;
11586 inst.instruction |= Rn << 16;
11587
11588 if (!inst.operands[2].isreg)
11589 {
11590 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11591 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11592 }
11593 else
11594 {
11595 unsigned Rm;
11596
11597 Rm = inst.operands[2].reg;
11598 reject_bad_reg (Rm);
11599
11600 constraint (inst.operands[2].shifted
11601 && inst.operands[2].immisreg,
11602 _("shift must be constant"));
11603 encode_thumb32_shifted_operand (2);
11604 }
11605 }
11606
11607 static void
11608 do_t_pkhbt (void)
11609 {
11610 unsigned Rd, Rn, Rm;
11611
11612 Rd = inst.operands[0].reg;
11613 Rn = inst.operands[1].reg;
11614 Rm = inst.operands[2].reg;
11615
11616 reject_bad_reg (Rd);
11617 reject_bad_reg (Rn);
11618 reject_bad_reg (Rm);
11619
11620 inst.instruction |= Rd << 8;
11621 inst.instruction |= Rn << 16;
11622 inst.instruction |= Rm;
11623 if (inst.operands[3].present)
11624 {
11625 unsigned int val = inst.reloc.exp.X_add_number;
11626 constraint (inst.reloc.exp.X_op != O_constant,
11627 _("expression too complex"));
11628 inst.instruction |= (val & 0x1c) << 10;
11629 inst.instruction |= (val & 0x03) << 6;
11630 }
11631 }
11632
11633 static void
11634 do_t_pkhtb (void)
11635 {
11636 if (!inst.operands[3].present)
11637 {
11638 unsigned Rtmp;
11639
11640 inst.instruction &= ~0x00000020;
11641
11642 /* PR 10168. Swap the Rm and Rn registers. */
11643 Rtmp = inst.operands[1].reg;
11644 inst.operands[1].reg = inst.operands[2].reg;
11645 inst.operands[2].reg = Rtmp;
11646 }
11647 do_t_pkhbt ();
11648 }
11649
11650 static void
11651 do_t_pld (void)
11652 {
11653 if (inst.operands[0].immisreg)
11654 reject_bad_reg (inst.operands[0].imm);
11655
11656 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11657 }
11658
11659 static void
11660 do_t_push_pop (void)
11661 {
11662 unsigned mask;
11663
11664 constraint (inst.operands[0].writeback,
11665 _("push/pop do not support {reglist}^"));
11666 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11667 _("expression too complex"));
11668
11669 mask = inst.operands[0].imm;
11670 if ((mask & ~0xff) == 0)
11671 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11672 else if ((inst.instruction == T_MNEM_push
11673 && (mask & ~0xff) == 1 << REG_LR)
11674 || (inst.instruction == T_MNEM_pop
11675 && (mask & ~0xff) == 1 << REG_PC))
11676 {
11677 inst.instruction = THUMB_OP16 (inst.instruction);
11678 inst.instruction |= THUMB_PP_PC_LR;
11679 inst.instruction |= mask & 0xff;
11680 }
11681 else if (unified_syntax)
11682 {
11683 inst.instruction = THUMB_OP32 (inst.instruction);
11684 encode_thumb2_ldmstm (13, mask, TRUE);
11685 }
11686 else
11687 {
11688 inst.error = _("invalid register list to push/pop instruction");
11689 return;
11690 }
11691 }
11692
11693 static void
11694 do_t_rbit (void)
11695 {
11696 unsigned Rd, Rm;
11697
11698 Rd = inst.operands[0].reg;
11699 Rm = inst.operands[1].reg;
11700
11701 reject_bad_reg (Rd);
11702 reject_bad_reg (Rm);
11703
11704 inst.instruction |= Rd << 8;
11705 inst.instruction |= Rm << 16;
11706 inst.instruction |= Rm;
11707 }
11708
11709 static void
11710 do_t_rev (void)
11711 {
11712 unsigned Rd, Rm;
11713
11714 Rd = inst.operands[0].reg;
11715 Rm = inst.operands[1].reg;
11716
11717 reject_bad_reg (Rd);
11718 reject_bad_reg (Rm);
11719
11720 if (Rd <= 7 && Rm <= 7
11721 && inst.size_req != 4)
11722 {
11723 inst.instruction = THUMB_OP16 (inst.instruction);
11724 inst.instruction |= Rd;
11725 inst.instruction |= Rm << 3;
11726 }
11727 else if (unified_syntax)
11728 {
11729 inst.instruction = THUMB_OP32 (inst.instruction);
11730 inst.instruction |= Rd << 8;
11731 inst.instruction |= Rm << 16;
11732 inst.instruction |= Rm;
11733 }
11734 else
11735 inst.error = BAD_HIREG;
11736 }
11737
11738 static void
11739 do_t_rrx (void)
11740 {
11741 unsigned Rd, Rm;
11742
11743 Rd = inst.operands[0].reg;
11744 Rm = inst.operands[1].reg;
11745
11746 reject_bad_reg (Rd);
11747 reject_bad_reg (Rm);
11748
11749 inst.instruction |= Rd << 8;
11750 inst.instruction |= Rm;
11751 }
11752
11753 static void
11754 do_t_rsb (void)
11755 {
11756 unsigned Rd, Rs;
11757
11758 Rd = inst.operands[0].reg;
11759 Rs = (inst.operands[1].present
11760 ? inst.operands[1].reg /* Rd, Rs, foo */
11761 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11762
11763 reject_bad_reg (Rd);
11764 reject_bad_reg (Rs);
11765 if (inst.operands[2].isreg)
11766 reject_bad_reg (inst.operands[2].reg);
11767
11768 inst.instruction |= Rd << 8;
11769 inst.instruction |= Rs << 16;
11770 if (!inst.operands[2].isreg)
11771 {
11772 bfd_boolean narrow;
11773
11774 if ((inst.instruction & 0x00100000) != 0)
11775 narrow = !in_it_block ();
11776 else
11777 narrow = in_it_block ();
11778
11779 if (Rd > 7 || Rs > 7)
11780 narrow = FALSE;
11781
11782 if (inst.size_req == 4 || !unified_syntax)
11783 narrow = FALSE;
11784
11785 if (inst.reloc.exp.X_op != O_constant
11786 || inst.reloc.exp.X_add_number != 0)
11787 narrow = FALSE;
11788
11789 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11790 relaxation, but it doesn't seem worth the hassle. */
11791 if (narrow)
11792 {
11793 inst.reloc.type = BFD_RELOC_UNUSED;
11794 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11795 inst.instruction |= Rs << 3;
11796 inst.instruction |= Rd;
11797 }
11798 else
11799 {
11800 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11801 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11802 }
11803 }
11804 else
11805 encode_thumb32_shifted_operand (2);
11806 }
11807
11808 static void
11809 do_t_setend (void)
11810 {
11811 if (warn_on_deprecated
11812 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11813 as_warn (_("setend use is deprecated for ARMv8"));
11814
11815 set_it_insn_type (OUTSIDE_IT_INSN);
11816 if (inst.operands[0].imm)
11817 inst.instruction |= 0x8;
11818 }
11819
11820 static void
11821 do_t_shift (void)
11822 {
11823 if (!inst.operands[1].present)
11824 inst.operands[1].reg = inst.operands[0].reg;
11825
11826 if (unified_syntax)
11827 {
11828 bfd_boolean narrow;
11829 int shift_kind;
11830
11831 switch (inst.instruction)
11832 {
11833 case T_MNEM_asr:
11834 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11835 case T_MNEM_lsl:
11836 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11837 case T_MNEM_lsr:
11838 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11839 case T_MNEM_ror:
11840 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11841 default: abort ();
11842 }
11843
11844 if (THUMB_SETS_FLAGS (inst.instruction))
11845 narrow = !in_it_block ();
11846 else
11847 narrow = in_it_block ();
11848 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11849 narrow = FALSE;
11850 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11851 narrow = FALSE;
11852 if (inst.operands[2].isreg
11853 && (inst.operands[1].reg != inst.operands[0].reg
11854 || inst.operands[2].reg > 7))
11855 narrow = FALSE;
11856 if (inst.size_req == 4)
11857 narrow = FALSE;
11858
11859 reject_bad_reg (inst.operands[0].reg);
11860 reject_bad_reg (inst.operands[1].reg);
11861
11862 if (!narrow)
11863 {
11864 if (inst.operands[2].isreg)
11865 {
11866 reject_bad_reg (inst.operands[2].reg);
11867 inst.instruction = THUMB_OP32 (inst.instruction);
11868 inst.instruction |= inst.operands[0].reg << 8;
11869 inst.instruction |= inst.operands[1].reg << 16;
11870 inst.instruction |= inst.operands[2].reg;
11871
11872 /* PR 12854: Error on extraneous shifts. */
11873 constraint (inst.operands[2].shifted,
11874 _("extraneous shift as part of operand to shift insn"));
11875 }
11876 else
11877 {
11878 inst.operands[1].shifted = 1;
11879 inst.operands[1].shift_kind = shift_kind;
11880 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11881 ? T_MNEM_movs : T_MNEM_mov);
11882 inst.instruction |= inst.operands[0].reg << 8;
11883 encode_thumb32_shifted_operand (1);
11884 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11885 inst.reloc.type = BFD_RELOC_UNUSED;
11886 }
11887 }
11888 else
11889 {
11890 if (inst.operands[2].isreg)
11891 {
11892 switch (shift_kind)
11893 {
11894 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11895 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11896 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11897 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11898 default: abort ();
11899 }
11900
11901 inst.instruction |= inst.operands[0].reg;
11902 inst.instruction |= inst.operands[2].reg << 3;
11903
11904 /* PR 12854: Error on extraneous shifts. */
11905 constraint (inst.operands[2].shifted,
11906 _("extraneous shift as part of operand to shift insn"));
11907 }
11908 else
11909 {
11910 switch (shift_kind)
11911 {
11912 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11913 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11914 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11915 default: abort ();
11916 }
11917 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11918 inst.instruction |= inst.operands[0].reg;
11919 inst.instruction |= inst.operands[1].reg << 3;
11920 }
11921 }
11922 }
11923 else
11924 {
11925 constraint (inst.operands[0].reg > 7
11926 || inst.operands[1].reg > 7, BAD_HIREG);
11927 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11928
11929 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11930 {
11931 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11932 constraint (inst.operands[0].reg != inst.operands[1].reg,
11933 _("source1 and dest must be same register"));
11934
11935 switch (inst.instruction)
11936 {
11937 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11938 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11939 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11940 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11941 default: abort ();
11942 }
11943
11944 inst.instruction |= inst.operands[0].reg;
11945 inst.instruction |= inst.operands[2].reg << 3;
11946
11947 /* PR 12854: Error on extraneous shifts. */
11948 constraint (inst.operands[2].shifted,
11949 _("extraneous shift as part of operand to shift insn"));
11950 }
11951 else
11952 {
11953 switch (inst.instruction)
11954 {
11955 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11956 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11957 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11958 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11959 default: abort ();
11960 }
11961 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11962 inst.instruction |= inst.operands[0].reg;
11963 inst.instruction |= inst.operands[1].reg << 3;
11964 }
11965 }
11966 }
11967
11968 static void
11969 do_t_simd (void)
11970 {
11971 unsigned Rd, Rn, Rm;
11972
11973 Rd = inst.operands[0].reg;
11974 Rn = inst.operands[1].reg;
11975 Rm = inst.operands[2].reg;
11976
11977 reject_bad_reg (Rd);
11978 reject_bad_reg (Rn);
11979 reject_bad_reg (Rm);
11980
11981 inst.instruction |= Rd << 8;
11982 inst.instruction |= Rn << 16;
11983 inst.instruction |= Rm;
11984 }
11985
11986 static void
11987 do_t_simd2 (void)
11988 {
11989 unsigned Rd, Rn, Rm;
11990
11991 Rd = inst.operands[0].reg;
11992 Rm = inst.operands[1].reg;
11993 Rn = inst.operands[2].reg;
11994
11995 reject_bad_reg (Rd);
11996 reject_bad_reg (Rn);
11997 reject_bad_reg (Rm);
11998
11999 inst.instruction |= Rd << 8;
12000 inst.instruction |= Rn << 16;
12001 inst.instruction |= Rm;
12002 }
12003
12004 static void
12005 do_t_smc (void)
12006 {
12007 unsigned int value = inst.reloc.exp.X_add_number;
12008 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12009 _("SMC is not permitted on this architecture"));
12010 constraint (inst.reloc.exp.X_op != O_constant,
12011 _("expression too complex"));
12012 inst.reloc.type = BFD_RELOC_UNUSED;
12013 inst.instruction |= (value & 0xf000) >> 12;
12014 inst.instruction |= (value & 0x0ff0);
12015 inst.instruction |= (value & 0x000f) << 16;
12016 }
12017
12018 static void
12019 do_t_hvc (void)
12020 {
12021 unsigned int value = inst.reloc.exp.X_add_number;
12022
12023 inst.reloc.type = BFD_RELOC_UNUSED;
12024 inst.instruction |= (value & 0x0fff);
12025 inst.instruction |= (value & 0xf000) << 4;
12026 }
12027
12028 static void
12029 do_t_ssat_usat (int bias)
12030 {
12031 unsigned Rd, Rn;
12032
12033 Rd = inst.operands[0].reg;
12034 Rn = inst.operands[2].reg;
12035
12036 reject_bad_reg (Rd);
12037 reject_bad_reg (Rn);
12038
12039 inst.instruction |= Rd << 8;
12040 inst.instruction |= inst.operands[1].imm - bias;
12041 inst.instruction |= Rn << 16;
12042
12043 if (inst.operands[3].present)
12044 {
12045 offsetT shift_amount = inst.reloc.exp.X_add_number;
12046
12047 inst.reloc.type = BFD_RELOC_UNUSED;
12048
12049 constraint (inst.reloc.exp.X_op != O_constant,
12050 _("expression too complex"));
12051
12052 if (shift_amount != 0)
12053 {
12054 constraint (shift_amount > 31,
12055 _("shift expression is too large"));
12056
12057 if (inst.operands[3].shift_kind == SHIFT_ASR)
12058 inst.instruction |= 0x00200000; /* sh bit. */
12059
12060 inst.instruction |= (shift_amount & 0x1c) << 10;
12061 inst.instruction |= (shift_amount & 0x03) << 6;
12062 }
12063 }
12064 }
12065
12066 static void
12067 do_t_ssat (void)
12068 {
12069 do_t_ssat_usat (1);
12070 }
12071
12072 static void
12073 do_t_ssat16 (void)
12074 {
12075 unsigned Rd, Rn;
12076
12077 Rd = inst.operands[0].reg;
12078 Rn = inst.operands[2].reg;
12079
12080 reject_bad_reg (Rd);
12081 reject_bad_reg (Rn);
12082
12083 inst.instruction |= Rd << 8;
12084 inst.instruction |= inst.operands[1].imm - 1;
12085 inst.instruction |= Rn << 16;
12086 }
12087
12088 static void
12089 do_t_strex (void)
12090 {
12091 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12092 || inst.operands[2].postind || inst.operands[2].writeback
12093 || inst.operands[2].immisreg || inst.operands[2].shifted
12094 || inst.operands[2].negative,
12095 BAD_ADDR_MODE);
12096
12097 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12098
12099 inst.instruction |= inst.operands[0].reg << 8;
12100 inst.instruction |= inst.operands[1].reg << 12;
12101 inst.instruction |= inst.operands[2].reg << 16;
12102 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12103 }
12104
12105 static void
12106 do_t_strexd (void)
12107 {
12108 if (!inst.operands[2].present)
12109 inst.operands[2].reg = inst.operands[1].reg + 1;
12110
12111 constraint (inst.operands[0].reg == inst.operands[1].reg
12112 || inst.operands[0].reg == inst.operands[2].reg
12113 || inst.operands[0].reg == inst.operands[3].reg,
12114 BAD_OVERLAP);
12115
12116 inst.instruction |= inst.operands[0].reg;
12117 inst.instruction |= inst.operands[1].reg << 12;
12118 inst.instruction |= inst.operands[2].reg << 8;
12119 inst.instruction |= inst.operands[3].reg << 16;
12120 }
12121
12122 static void
12123 do_t_sxtah (void)
12124 {
12125 unsigned Rd, Rn, Rm;
12126
12127 Rd = inst.operands[0].reg;
12128 Rn = inst.operands[1].reg;
12129 Rm = inst.operands[2].reg;
12130
12131 reject_bad_reg (Rd);
12132 reject_bad_reg (Rn);
12133 reject_bad_reg (Rm);
12134
12135 inst.instruction |= Rd << 8;
12136 inst.instruction |= Rn << 16;
12137 inst.instruction |= Rm;
12138 inst.instruction |= inst.operands[3].imm << 4;
12139 }
12140
12141 static void
12142 do_t_sxth (void)
12143 {
12144 unsigned Rd, Rm;
12145
12146 Rd = inst.operands[0].reg;
12147 Rm = inst.operands[1].reg;
12148
12149 reject_bad_reg (Rd);
12150 reject_bad_reg (Rm);
12151
12152 if (inst.instruction <= 0xffff
12153 && inst.size_req != 4
12154 && Rd <= 7 && Rm <= 7
12155 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12156 {
12157 inst.instruction = THUMB_OP16 (inst.instruction);
12158 inst.instruction |= Rd;
12159 inst.instruction |= Rm << 3;
12160 }
12161 else if (unified_syntax)
12162 {
12163 if (inst.instruction <= 0xffff)
12164 inst.instruction = THUMB_OP32 (inst.instruction);
12165 inst.instruction |= Rd << 8;
12166 inst.instruction |= Rm;
12167 inst.instruction |= inst.operands[2].imm << 4;
12168 }
12169 else
12170 {
12171 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12172 _("Thumb encoding does not support rotation"));
12173 constraint (1, BAD_HIREG);
12174 }
12175 }
12176
12177 static void
12178 do_t_swi (void)
12179 {
12180 /* We have to do the following check manually as ARM_EXT_OS only applies
12181 to ARM_EXT_V6M. */
12182 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12183 {
12184 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12185 /* This only applies to the v6m howver, not later architectures. */
12186 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12187 as_bad (_("SVC is not permitted on this architecture"));
12188 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12189 }
12190
12191 inst.reloc.type = BFD_RELOC_ARM_SWI;
12192 }
12193
12194 static void
12195 do_t_tb (void)
12196 {
12197 unsigned Rn, Rm;
12198 int half;
12199
12200 half = (inst.instruction & 0x10) != 0;
12201 set_it_insn_type_last ();
12202 constraint (inst.operands[0].immisreg,
12203 _("instruction requires register index"));
12204
12205 Rn = inst.operands[0].reg;
12206 Rm = inst.operands[0].imm;
12207
12208 constraint (Rn == REG_SP, BAD_SP);
12209 reject_bad_reg (Rm);
12210
12211 constraint (!half && inst.operands[0].shifted,
12212 _("instruction does not allow shifted index"));
12213 inst.instruction |= (Rn << 16) | Rm;
12214 }
12215
12216 static void
12217 do_t_usat (void)
12218 {
12219 do_t_ssat_usat (0);
12220 }
12221
12222 static void
12223 do_t_usat16 (void)
12224 {
12225 unsigned Rd, Rn;
12226
12227 Rd = inst.operands[0].reg;
12228 Rn = inst.operands[2].reg;
12229
12230 reject_bad_reg (Rd);
12231 reject_bad_reg (Rn);
12232
12233 inst.instruction |= Rd << 8;
12234 inst.instruction |= inst.operands[1].imm;
12235 inst.instruction |= Rn << 16;
12236 }
12237
12238 /* Neon instruction encoder helpers. */
12239
12240 /* Encodings for the different types for various Neon opcodes. */
12241
12242 /* An "invalid" code for the following tables. */
12243 #define N_INV -1u
12244
12245 struct neon_tab_entry
12246 {
12247 unsigned integer;
12248 unsigned float_or_poly;
12249 unsigned scalar_or_imm;
12250 };
12251
12252 /* Map overloaded Neon opcodes to their respective encodings. */
12253 #define NEON_ENC_TAB \
12254 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12255 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12256 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12257 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12258 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12259 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12260 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12261 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12262 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12263 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12264 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12265 /* Register variants of the following two instructions are encoded as
12266 vcge / vcgt with the operands reversed. */ \
12267 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12268 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12269 X(vfma, N_INV, 0x0000c10, N_INV), \
12270 X(vfms, N_INV, 0x0200c10, N_INV), \
12271 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12272 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12273 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12274 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12275 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12276 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12277 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12278 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12279 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12280 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12281 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12282 X(vshl, 0x0000400, N_INV, 0x0800510), \
12283 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12284 X(vand, 0x0000110, N_INV, 0x0800030), \
12285 X(vbic, 0x0100110, N_INV, 0x0800030), \
12286 X(veor, 0x1000110, N_INV, N_INV), \
12287 X(vorn, 0x0300110, N_INV, 0x0800010), \
12288 X(vorr, 0x0200110, N_INV, 0x0800010), \
12289 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12290 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12291 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12292 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12293 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12294 X(vst1, 0x0000000, 0x0800000, N_INV), \
12295 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12296 X(vst2, 0x0000100, 0x0800100, N_INV), \
12297 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12298 X(vst3, 0x0000200, 0x0800200, N_INV), \
12299 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12300 X(vst4, 0x0000300, 0x0800300, N_INV), \
12301 X(vmovn, 0x1b20200, N_INV, N_INV), \
12302 X(vtrn, 0x1b20080, N_INV, N_INV), \
12303 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12304 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12305 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12306 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12307 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12308 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12309 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12310 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12311 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12312 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12313 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12314 X(vseleq, 0xe000a00, N_INV, N_INV), \
12315 X(vselvs, 0xe100a00, N_INV, N_INV), \
12316 X(vselge, 0xe200a00, N_INV, N_INV), \
12317 X(vselgt, 0xe300a00, N_INV, N_INV), \
12318 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12319 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12320 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12321 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
12322 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
12323 X(aes, 0x3b00300, N_INV, N_INV), \
12324 X(sha3op, 0x2000c00, N_INV, N_INV), \
12325 X(sha1h, 0x3b902c0, N_INV, N_INV), \
12326 X(sha2op, 0x3ba0380, N_INV, N_INV)
12327
12328 enum neon_opc
12329 {
12330 #define X(OPC,I,F,S) N_MNEM_##OPC
12331 NEON_ENC_TAB
12332 #undef X
12333 };
12334
12335 static const struct neon_tab_entry neon_enc_tab[] =
12336 {
12337 #define X(OPC,I,F,S) { (I), (F), (S) }
12338 NEON_ENC_TAB
12339 #undef X
12340 };
12341
12342 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12343 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12344 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12345 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12346 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12347 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12348 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12349 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12350 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12351 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12352 #define NEON_ENC_SINGLE_(X) \
12353 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12354 #define NEON_ENC_DOUBLE_(X) \
12355 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12356 #define NEON_ENC_FPV8_(X) \
12357 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12358
12359 #define NEON_ENCODE(type, inst) \
12360 do \
12361 { \
12362 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12363 inst.is_neon = 1; \
12364 } \
12365 while (0)
12366
12367 #define check_neon_suffixes \
12368 do \
12369 { \
12370 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12371 { \
12372 as_bad (_("invalid neon suffix for non neon instruction")); \
12373 return; \
12374 } \
12375 } \
12376 while (0)
12377
12378 /* Define shapes for instruction operands. The following mnemonic characters
12379 are used in this table:
12380
12381 F - VFP S<n> register
12382 D - Neon D<n> register
12383 Q - Neon Q<n> register
12384 I - Immediate
12385 S - Scalar
12386 R - ARM register
12387 L - D<n> register list
12388
12389 This table is used to generate various data:
12390 - enumerations of the form NS_DDR to be used as arguments to
12391 neon_select_shape.
12392 - a table classifying shapes into single, double, quad, mixed.
12393 - a table used to drive neon_select_shape. */
12394
12395 #define NEON_SHAPE_DEF \
12396 X(3, (D, D, D), DOUBLE), \
12397 X(3, (Q, Q, Q), QUAD), \
12398 X(3, (D, D, I), DOUBLE), \
12399 X(3, (Q, Q, I), QUAD), \
12400 X(3, (D, D, S), DOUBLE), \
12401 X(3, (Q, Q, S), QUAD), \
12402 X(2, (D, D), DOUBLE), \
12403 X(2, (Q, Q), QUAD), \
12404 X(2, (D, S), DOUBLE), \
12405 X(2, (Q, S), QUAD), \
12406 X(2, (D, R), DOUBLE), \
12407 X(2, (Q, R), QUAD), \
12408 X(2, (D, I), DOUBLE), \
12409 X(2, (Q, I), QUAD), \
12410 X(3, (D, L, D), DOUBLE), \
12411 X(2, (D, Q), MIXED), \
12412 X(2, (Q, D), MIXED), \
12413 X(3, (D, Q, I), MIXED), \
12414 X(3, (Q, D, I), MIXED), \
12415 X(3, (Q, D, D), MIXED), \
12416 X(3, (D, Q, Q), MIXED), \
12417 X(3, (Q, Q, D), MIXED), \
12418 X(3, (Q, D, S), MIXED), \
12419 X(3, (D, Q, S), MIXED), \
12420 X(4, (D, D, D, I), DOUBLE), \
12421 X(4, (Q, Q, Q, I), QUAD), \
12422 X(2, (F, F), SINGLE), \
12423 X(3, (F, F, F), SINGLE), \
12424 X(2, (F, I), SINGLE), \
12425 X(2, (F, D), MIXED), \
12426 X(2, (D, F), MIXED), \
12427 X(3, (F, F, I), MIXED), \
12428 X(4, (R, R, F, F), SINGLE), \
12429 X(4, (F, F, R, R), SINGLE), \
12430 X(3, (D, R, R), DOUBLE), \
12431 X(3, (R, R, D), DOUBLE), \
12432 X(2, (S, R), SINGLE), \
12433 X(2, (R, S), SINGLE), \
12434 X(2, (F, R), SINGLE), \
12435 X(2, (R, F), SINGLE)
12436
12437 #define S2(A,B) NS_##A##B
12438 #define S3(A,B,C) NS_##A##B##C
12439 #define S4(A,B,C,D) NS_##A##B##C##D
12440
12441 #define X(N, L, C) S##N L
12442
12443 enum neon_shape
12444 {
12445 NEON_SHAPE_DEF,
12446 NS_NULL
12447 };
12448
12449 #undef X
12450 #undef S2
12451 #undef S3
12452 #undef S4
12453
12454 enum neon_shape_class
12455 {
12456 SC_SINGLE,
12457 SC_DOUBLE,
12458 SC_QUAD,
12459 SC_MIXED
12460 };
12461
12462 #define X(N, L, C) SC_##C
12463
12464 static enum neon_shape_class neon_shape_class[] =
12465 {
12466 NEON_SHAPE_DEF
12467 };
12468
12469 #undef X
12470
12471 enum neon_shape_el
12472 {
12473 SE_F,
12474 SE_D,
12475 SE_Q,
12476 SE_I,
12477 SE_S,
12478 SE_R,
12479 SE_L
12480 };
12481
12482 /* Register widths of above. */
12483 static unsigned neon_shape_el_size[] =
12484 {
12485 32,
12486 64,
12487 128,
12488 0,
12489 32,
12490 32,
12491 0
12492 };
12493
12494 struct neon_shape_info
12495 {
12496 unsigned els;
12497 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12498 };
12499
12500 #define S2(A,B) { SE_##A, SE_##B }
12501 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12502 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12503
12504 #define X(N, L, C) { N, S##N L }
12505
12506 static struct neon_shape_info neon_shape_tab[] =
12507 {
12508 NEON_SHAPE_DEF
12509 };
12510
12511 #undef X
12512 #undef S2
12513 #undef S3
12514 #undef S4
12515
12516 /* Bit masks used in type checking given instructions.
12517 'N_EQK' means the type must be the same as (or based on in some way) the key
12518 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12519 set, various other bits can be set as well in order to modify the meaning of
12520 the type constraint. */
12521
12522 enum neon_type_mask
12523 {
12524 N_S8 = 0x0000001,
12525 N_S16 = 0x0000002,
12526 N_S32 = 0x0000004,
12527 N_S64 = 0x0000008,
12528 N_U8 = 0x0000010,
12529 N_U16 = 0x0000020,
12530 N_U32 = 0x0000040,
12531 N_U64 = 0x0000080,
12532 N_I8 = 0x0000100,
12533 N_I16 = 0x0000200,
12534 N_I32 = 0x0000400,
12535 N_I64 = 0x0000800,
12536 N_8 = 0x0001000,
12537 N_16 = 0x0002000,
12538 N_32 = 0x0004000,
12539 N_64 = 0x0008000,
12540 N_P8 = 0x0010000,
12541 N_P16 = 0x0020000,
12542 N_F16 = 0x0040000,
12543 N_F32 = 0x0080000,
12544 N_F64 = 0x0100000,
12545 N_P64 = 0x0200000,
12546 N_KEY = 0x1000000, /* Key element (main type specifier). */
12547 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12548 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12549 N_UNT = 0x8000000, /* Must be explicitly untyped. */
12550 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12551 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12552 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12553 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12554 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12555 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12556 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12557 N_UTYP = 0,
12558 N_MAX_NONSPECIAL = N_P64
12559 };
12560
12561 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12562
12563 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12564 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12565 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12566 #define N_SUF_32 (N_SU_32 | N_F32)
12567 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12568 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12569
12570 /* Pass this as the first type argument to neon_check_type to ignore types
12571 altogether. */
12572 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12573
12574 /* Select a "shape" for the current instruction (describing register types or
12575 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12576 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12577 function of operand parsing, so this function doesn't need to be called.
12578 Shapes should be listed in order of decreasing length. */
12579
12580 static enum neon_shape
12581 neon_select_shape (enum neon_shape shape, ...)
12582 {
12583 va_list ap;
12584 enum neon_shape first_shape = shape;
12585
12586 /* Fix missing optional operands. FIXME: we don't know at this point how
12587 many arguments we should have, so this makes the assumption that we have
12588 > 1. This is true of all current Neon opcodes, I think, but may not be
12589 true in the future. */
12590 if (!inst.operands[1].present)
12591 inst.operands[1] = inst.operands[0];
12592
12593 va_start (ap, shape);
12594
12595 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12596 {
12597 unsigned j;
12598 int matches = 1;
12599
12600 for (j = 0; j < neon_shape_tab[shape].els; j++)
12601 {
12602 if (!inst.operands[j].present)
12603 {
12604 matches = 0;
12605 break;
12606 }
12607
12608 switch (neon_shape_tab[shape].el[j])
12609 {
12610 case SE_F:
12611 if (!(inst.operands[j].isreg
12612 && inst.operands[j].isvec
12613 && inst.operands[j].issingle
12614 && !inst.operands[j].isquad))
12615 matches = 0;
12616 break;
12617
12618 case SE_D:
12619 if (!(inst.operands[j].isreg
12620 && inst.operands[j].isvec
12621 && !inst.operands[j].isquad
12622 && !inst.operands[j].issingle))
12623 matches = 0;
12624 break;
12625
12626 case SE_R:
12627 if (!(inst.operands[j].isreg
12628 && !inst.operands[j].isvec))
12629 matches = 0;
12630 break;
12631
12632 case SE_Q:
12633 if (!(inst.operands[j].isreg
12634 && inst.operands[j].isvec
12635 && inst.operands[j].isquad
12636 && !inst.operands[j].issingle))
12637 matches = 0;
12638 break;
12639
12640 case SE_I:
12641 if (!(!inst.operands[j].isreg
12642 && !inst.operands[j].isscalar))
12643 matches = 0;
12644 break;
12645
12646 case SE_S:
12647 if (!(!inst.operands[j].isreg
12648 && inst.operands[j].isscalar))
12649 matches = 0;
12650 break;
12651
12652 case SE_L:
12653 break;
12654 }
12655 if (!matches)
12656 break;
12657 }
12658 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12659 /* We've matched all the entries in the shape table, and we don't
12660 have any left over operands which have not been matched. */
12661 break;
12662 }
12663
12664 va_end (ap);
12665
12666 if (shape == NS_NULL && first_shape != NS_NULL)
12667 first_error (_("invalid instruction shape"));
12668
12669 return shape;
12670 }
12671
12672 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12673 means the Q bit should be set). */
12674
12675 static int
12676 neon_quad (enum neon_shape shape)
12677 {
12678 return neon_shape_class[shape] == SC_QUAD;
12679 }
12680
12681 static void
12682 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12683 unsigned *g_size)
12684 {
12685 /* Allow modification to be made to types which are constrained to be
12686 based on the key element, based on bits set alongside N_EQK. */
12687 if ((typebits & N_EQK) != 0)
12688 {
12689 if ((typebits & N_HLF) != 0)
12690 *g_size /= 2;
12691 else if ((typebits & N_DBL) != 0)
12692 *g_size *= 2;
12693 if ((typebits & N_SGN) != 0)
12694 *g_type = NT_signed;
12695 else if ((typebits & N_UNS) != 0)
12696 *g_type = NT_unsigned;
12697 else if ((typebits & N_INT) != 0)
12698 *g_type = NT_integer;
12699 else if ((typebits & N_FLT) != 0)
12700 *g_type = NT_float;
12701 else if ((typebits & N_SIZ) != 0)
12702 *g_type = NT_untyped;
12703 }
12704 }
12705
12706 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12707 operand type, i.e. the single type specified in a Neon instruction when it
12708 is the only one given. */
12709
12710 static struct neon_type_el
12711 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12712 {
12713 struct neon_type_el dest = *key;
12714
12715 gas_assert ((thisarg & N_EQK) != 0);
12716
12717 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12718
12719 return dest;
12720 }
12721
12722 /* Convert Neon type and size into compact bitmask representation. */
12723
12724 static enum neon_type_mask
12725 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12726 {
12727 switch (type)
12728 {
12729 case NT_untyped:
12730 switch (size)
12731 {
12732 case 8: return N_8;
12733 case 16: return N_16;
12734 case 32: return N_32;
12735 case 64: return N_64;
12736 default: ;
12737 }
12738 break;
12739
12740 case NT_integer:
12741 switch (size)
12742 {
12743 case 8: return N_I8;
12744 case 16: return N_I16;
12745 case 32: return N_I32;
12746 case 64: return N_I64;
12747 default: ;
12748 }
12749 break;
12750
12751 case NT_float:
12752 switch (size)
12753 {
12754 case 16: return N_F16;
12755 case 32: return N_F32;
12756 case 64: return N_F64;
12757 default: ;
12758 }
12759 break;
12760
12761 case NT_poly:
12762 switch (size)
12763 {
12764 case 8: return N_P8;
12765 case 16: return N_P16;
12766 case 64: return N_P64;
12767 default: ;
12768 }
12769 break;
12770
12771 case NT_signed:
12772 switch (size)
12773 {
12774 case 8: return N_S8;
12775 case 16: return N_S16;
12776 case 32: return N_S32;
12777 case 64: return N_S64;
12778 default: ;
12779 }
12780 break;
12781
12782 case NT_unsigned:
12783 switch (size)
12784 {
12785 case 8: return N_U8;
12786 case 16: return N_U16;
12787 case 32: return N_U32;
12788 case 64: return N_U64;
12789 default: ;
12790 }
12791 break;
12792
12793 default: ;
12794 }
12795
12796 return N_UTYP;
12797 }
12798
12799 /* Convert compact Neon bitmask type representation to a type and size. Only
12800 handles the case where a single bit is set in the mask. */
12801
12802 static int
12803 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12804 enum neon_type_mask mask)
12805 {
12806 if ((mask & N_EQK) != 0)
12807 return FAIL;
12808
12809 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12810 *size = 8;
12811 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
12812 *size = 16;
12813 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12814 *size = 32;
12815 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
12816 *size = 64;
12817 else
12818 return FAIL;
12819
12820 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12821 *type = NT_signed;
12822 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12823 *type = NT_unsigned;
12824 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12825 *type = NT_integer;
12826 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12827 *type = NT_untyped;
12828 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
12829 *type = NT_poly;
12830 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
12831 *type = NT_float;
12832 else
12833 return FAIL;
12834
12835 return SUCCESS;
12836 }
12837
12838 /* Modify a bitmask of allowed types. This is only needed for type
12839 relaxation. */
12840
12841 static unsigned
12842 modify_types_allowed (unsigned allowed, unsigned mods)
12843 {
12844 unsigned size;
12845 enum neon_el_type type;
12846 unsigned destmask;
12847 int i;
12848
12849 destmask = 0;
12850
12851 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12852 {
12853 if (el_type_of_type_chk (&type, &size,
12854 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12855 {
12856 neon_modify_type_size (mods, &type, &size);
12857 destmask |= type_chk_of_el_type (type, size);
12858 }
12859 }
12860
12861 return destmask;
12862 }
12863
12864 /* Check type and return type classification.
12865 The manual states (paraphrase): If one datatype is given, it indicates the
12866 type given in:
12867 - the second operand, if there is one
12868 - the operand, if there is no second operand
12869 - the result, if there are no operands.
12870 This isn't quite good enough though, so we use a concept of a "key" datatype
12871 which is set on a per-instruction basis, which is the one which matters when
12872 only one data type is written.
12873 Note: this function has side-effects (e.g. filling in missing operands). All
12874 Neon instructions should call it before performing bit encoding. */
12875
12876 static struct neon_type_el
12877 neon_check_type (unsigned els, enum neon_shape ns, ...)
12878 {
12879 va_list ap;
12880 unsigned i, pass, key_el = 0;
12881 unsigned types[NEON_MAX_TYPE_ELS];
12882 enum neon_el_type k_type = NT_invtype;
12883 unsigned k_size = -1u;
12884 struct neon_type_el badtype = {NT_invtype, -1};
12885 unsigned key_allowed = 0;
12886
12887 /* Optional registers in Neon instructions are always (not) in operand 1.
12888 Fill in the missing operand here, if it was omitted. */
12889 if (els > 1 && !inst.operands[1].present)
12890 inst.operands[1] = inst.operands[0];
12891
12892 /* Suck up all the varargs. */
12893 va_start (ap, ns);
12894 for (i = 0; i < els; i++)
12895 {
12896 unsigned thisarg = va_arg (ap, unsigned);
12897 if (thisarg == N_IGNORE_TYPE)
12898 {
12899 va_end (ap);
12900 return badtype;
12901 }
12902 types[i] = thisarg;
12903 if ((thisarg & N_KEY) != 0)
12904 key_el = i;
12905 }
12906 va_end (ap);
12907
12908 if (inst.vectype.elems > 0)
12909 for (i = 0; i < els; i++)
12910 if (inst.operands[i].vectype.type != NT_invtype)
12911 {
12912 first_error (_("types specified in both the mnemonic and operands"));
12913 return badtype;
12914 }
12915
12916 /* Duplicate inst.vectype elements here as necessary.
12917 FIXME: No idea if this is exactly the same as the ARM assembler,
12918 particularly when an insn takes one register and one non-register
12919 operand. */
12920 if (inst.vectype.elems == 1 && els > 1)
12921 {
12922 unsigned j;
12923 inst.vectype.elems = els;
12924 inst.vectype.el[key_el] = inst.vectype.el[0];
12925 for (j = 0; j < els; j++)
12926 if (j != key_el)
12927 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12928 types[j]);
12929 }
12930 else if (inst.vectype.elems == 0 && els > 0)
12931 {
12932 unsigned j;
12933 /* No types were given after the mnemonic, so look for types specified
12934 after each operand. We allow some flexibility here; as long as the
12935 "key" operand has a type, we can infer the others. */
12936 for (j = 0; j < els; j++)
12937 if (inst.operands[j].vectype.type != NT_invtype)
12938 inst.vectype.el[j] = inst.operands[j].vectype;
12939
12940 if (inst.operands[key_el].vectype.type != NT_invtype)
12941 {
12942 for (j = 0; j < els; j++)
12943 if (inst.operands[j].vectype.type == NT_invtype)
12944 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12945 types[j]);
12946 }
12947 else
12948 {
12949 first_error (_("operand types can't be inferred"));
12950 return badtype;
12951 }
12952 }
12953 else if (inst.vectype.elems != els)
12954 {
12955 first_error (_("type specifier has the wrong number of parts"));
12956 return badtype;
12957 }
12958
12959 for (pass = 0; pass < 2; pass++)
12960 {
12961 for (i = 0; i < els; i++)
12962 {
12963 unsigned thisarg = types[i];
12964 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12965 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12966 enum neon_el_type g_type = inst.vectype.el[i].type;
12967 unsigned g_size = inst.vectype.el[i].size;
12968
12969 /* Decay more-specific signed & unsigned types to sign-insensitive
12970 integer types if sign-specific variants are unavailable. */
12971 if ((g_type == NT_signed || g_type == NT_unsigned)
12972 && (types_allowed & N_SU_ALL) == 0)
12973 g_type = NT_integer;
12974
12975 /* If only untyped args are allowed, decay any more specific types to
12976 them. Some instructions only care about signs for some element
12977 sizes, so handle that properly. */
12978 if (((types_allowed & N_UNT) == 0)
12979 && ((g_size == 8 && (types_allowed & N_8) != 0)
12980 || (g_size == 16 && (types_allowed & N_16) != 0)
12981 || (g_size == 32 && (types_allowed & N_32) != 0)
12982 || (g_size == 64 && (types_allowed & N_64) != 0)))
12983 g_type = NT_untyped;
12984
12985 if (pass == 0)
12986 {
12987 if ((thisarg & N_KEY) != 0)
12988 {
12989 k_type = g_type;
12990 k_size = g_size;
12991 key_allowed = thisarg & ~N_KEY;
12992 }
12993 }
12994 else
12995 {
12996 if ((thisarg & N_VFP) != 0)
12997 {
12998 enum neon_shape_el regshape;
12999 unsigned regwidth, match;
13000
13001 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13002 if (ns == NS_NULL)
13003 {
13004 first_error (_("invalid instruction shape"));
13005 return badtype;
13006 }
13007 regshape = neon_shape_tab[ns].el[i];
13008 regwidth = neon_shape_el_size[regshape];
13009
13010 /* In VFP mode, operands must match register widths. If we
13011 have a key operand, use its width, else use the width of
13012 the current operand. */
13013 if (k_size != -1u)
13014 match = k_size;
13015 else
13016 match = g_size;
13017
13018 if (regwidth != match)
13019 {
13020 first_error (_("operand size must match register width"));
13021 return badtype;
13022 }
13023 }
13024
13025 if ((thisarg & N_EQK) == 0)
13026 {
13027 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13028
13029 if ((given_type & types_allowed) == 0)
13030 {
13031 first_error (_("bad type in Neon instruction"));
13032 return badtype;
13033 }
13034 }
13035 else
13036 {
13037 enum neon_el_type mod_k_type = k_type;
13038 unsigned mod_k_size = k_size;
13039 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13040 if (g_type != mod_k_type || g_size != mod_k_size)
13041 {
13042 first_error (_("inconsistent types in Neon instruction"));
13043 return badtype;
13044 }
13045 }
13046 }
13047 }
13048 }
13049
13050 return inst.vectype.el[key_el];
13051 }
13052
13053 /* Neon-style VFP instruction forwarding. */
13054
13055 /* Thumb VFP instructions have 0xE in the condition field. */
13056
13057 static void
13058 do_vfp_cond_or_thumb (void)
13059 {
13060 inst.is_neon = 1;
13061
13062 if (thumb_mode)
13063 inst.instruction |= 0xe0000000;
13064 else
13065 inst.instruction |= inst.cond << 28;
13066 }
13067
13068 /* Look up and encode a simple mnemonic, for use as a helper function for the
13069 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13070 etc. It is assumed that operand parsing has already been done, and that the
13071 operands are in the form expected by the given opcode (this isn't necessarily
13072 the same as the form in which they were parsed, hence some massaging must
13073 take place before this function is called).
13074 Checks current arch version against that in the looked-up opcode. */
13075
13076 static void
13077 do_vfp_nsyn_opcode (const char *opname)
13078 {
13079 const struct asm_opcode *opcode;
13080
13081 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13082
13083 if (!opcode)
13084 abort ();
13085
13086 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13087 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13088 _(BAD_FPU));
13089
13090 inst.is_neon = 1;
13091
13092 if (thumb_mode)
13093 {
13094 inst.instruction = opcode->tvalue;
13095 opcode->tencode ();
13096 }
13097 else
13098 {
13099 inst.instruction = (inst.cond << 28) | opcode->avalue;
13100 opcode->aencode ();
13101 }
13102 }
13103
13104 static void
13105 do_vfp_nsyn_add_sub (enum neon_shape rs)
13106 {
13107 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13108
13109 if (rs == NS_FFF)
13110 {
13111 if (is_add)
13112 do_vfp_nsyn_opcode ("fadds");
13113 else
13114 do_vfp_nsyn_opcode ("fsubs");
13115 }
13116 else
13117 {
13118 if (is_add)
13119 do_vfp_nsyn_opcode ("faddd");
13120 else
13121 do_vfp_nsyn_opcode ("fsubd");
13122 }
13123 }
13124
13125 /* Check operand types to see if this is a VFP instruction, and if so call
13126 PFN (). */
13127
13128 static int
13129 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13130 {
13131 enum neon_shape rs;
13132 struct neon_type_el et;
13133
13134 switch (args)
13135 {
13136 case 2:
13137 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13138 et = neon_check_type (2, rs,
13139 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13140 break;
13141
13142 case 3:
13143 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13144 et = neon_check_type (3, rs,
13145 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13146 break;
13147
13148 default:
13149 abort ();
13150 }
13151
13152 if (et.type != NT_invtype)
13153 {
13154 pfn (rs);
13155 return SUCCESS;
13156 }
13157
13158 inst.error = NULL;
13159 return FAIL;
13160 }
13161
13162 static void
13163 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13164 {
13165 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13166
13167 if (rs == NS_FFF)
13168 {
13169 if (is_mla)
13170 do_vfp_nsyn_opcode ("fmacs");
13171 else
13172 do_vfp_nsyn_opcode ("fnmacs");
13173 }
13174 else
13175 {
13176 if (is_mla)
13177 do_vfp_nsyn_opcode ("fmacd");
13178 else
13179 do_vfp_nsyn_opcode ("fnmacd");
13180 }
13181 }
13182
13183 static void
13184 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13185 {
13186 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13187
13188 if (rs == NS_FFF)
13189 {
13190 if (is_fma)
13191 do_vfp_nsyn_opcode ("ffmas");
13192 else
13193 do_vfp_nsyn_opcode ("ffnmas");
13194 }
13195 else
13196 {
13197 if (is_fma)
13198 do_vfp_nsyn_opcode ("ffmad");
13199 else
13200 do_vfp_nsyn_opcode ("ffnmad");
13201 }
13202 }
13203
13204 static void
13205 do_vfp_nsyn_mul (enum neon_shape rs)
13206 {
13207 if (rs == NS_FFF)
13208 do_vfp_nsyn_opcode ("fmuls");
13209 else
13210 do_vfp_nsyn_opcode ("fmuld");
13211 }
13212
13213 static void
13214 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13215 {
13216 int is_neg = (inst.instruction & 0x80) != 0;
13217 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13218
13219 if (rs == NS_FF)
13220 {
13221 if (is_neg)
13222 do_vfp_nsyn_opcode ("fnegs");
13223 else
13224 do_vfp_nsyn_opcode ("fabss");
13225 }
13226 else
13227 {
13228 if (is_neg)
13229 do_vfp_nsyn_opcode ("fnegd");
13230 else
13231 do_vfp_nsyn_opcode ("fabsd");
13232 }
13233 }
13234
13235 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13236 insns belong to Neon, and are handled elsewhere. */
13237
13238 static void
13239 do_vfp_nsyn_ldm_stm (int is_dbmode)
13240 {
13241 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13242 if (is_ldm)
13243 {
13244 if (is_dbmode)
13245 do_vfp_nsyn_opcode ("fldmdbs");
13246 else
13247 do_vfp_nsyn_opcode ("fldmias");
13248 }
13249 else
13250 {
13251 if (is_dbmode)
13252 do_vfp_nsyn_opcode ("fstmdbs");
13253 else
13254 do_vfp_nsyn_opcode ("fstmias");
13255 }
13256 }
13257
13258 static void
13259 do_vfp_nsyn_sqrt (void)
13260 {
13261 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13262 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13263
13264 if (rs == NS_FF)
13265 do_vfp_nsyn_opcode ("fsqrts");
13266 else
13267 do_vfp_nsyn_opcode ("fsqrtd");
13268 }
13269
13270 static void
13271 do_vfp_nsyn_div (void)
13272 {
13273 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13274 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13275 N_F32 | N_F64 | N_KEY | N_VFP);
13276
13277 if (rs == NS_FFF)
13278 do_vfp_nsyn_opcode ("fdivs");
13279 else
13280 do_vfp_nsyn_opcode ("fdivd");
13281 }
13282
13283 static void
13284 do_vfp_nsyn_nmul (void)
13285 {
13286 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13287 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13288 N_F32 | N_F64 | N_KEY | N_VFP);
13289
13290 if (rs == NS_FFF)
13291 {
13292 NEON_ENCODE (SINGLE, inst);
13293 do_vfp_sp_dyadic ();
13294 }
13295 else
13296 {
13297 NEON_ENCODE (DOUBLE, inst);
13298 do_vfp_dp_rd_rn_rm ();
13299 }
13300 do_vfp_cond_or_thumb ();
13301 }
13302
13303 static void
13304 do_vfp_nsyn_cmp (void)
13305 {
13306 if (inst.operands[1].isreg)
13307 {
13308 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13309 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13310
13311 if (rs == NS_FF)
13312 {
13313 NEON_ENCODE (SINGLE, inst);
13314 do_vfp_sp_monadic ();
13315 }
13316 else
13317 {
13318 NEON_ENCODE (DOUBLE, inst);
13319 do_vfp_dp_rd_rm ();
13320 }
13321 }
13322 else
13323 {
13324 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13325 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13326
13327 switch (inst.instruction & 0x0fffffff)
13328 {
13329 case N_MNEM_vcmp:
13330 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13331 break;
13332 case N_MNEM_vcmpe:
13333 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13334 break;
13335 default:
13336 abort ();
13337 }
13338
13339 if (rs == NS_FI)
13340 {
13341 NEON_ENCODE (SINGLE, inst);
13342 do_vfp_sp_compare_z ();
13343 }
13344 else
13345 {
13346 NEON_ENCODE (DOUBLE, inst);
13347 do_vfp_dp_rd ();
13348 }
13349 }
13350 do_vfp_cond_or_thumb ();
13351 }
13352
13353 static void
13354 nsyn_insert_sp (void)
13355 {
13356 inst.operands[1] = inst.operands[0];
13357 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13358 inst.operands[0].reg = REG_SP;
13359 inst.operands[0].isreg = 1;
13360 inst.operands[0].writeback = 1;
13361 inst.operands[0].present = 1;
13362 }
13363
13364 static void
13365 do_vfp_nsyn_push (void)
13366 {
13367 nsyn_insert_sp ();
13368 if (inst.operands[1].issingle)
13369 do_vfp_nsyn_opcode ("fstmdbs");
13370 else
13371 do_vfp_nsyn_opcode ("fstmdbd");
13372 }
13373
13374 static void
13375 do_vfp_nsyn_pop (void)
13376 {
13377 nsyn_insert_sp ();
13378 if (inst.operands[1].issingle)
13379 do_vfp_nsyn_opcode ("fldmias");
13380 else
13381 do_vfp_nsyn_opcode ("fldmiad");
13382 }
13383
13384 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13385 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13386
13387 static void
13388 neon_dp_fixup (struct arm_it* insn)
13389 {
13390 unsigned int i = insn->instruction;
13391 insn->is_neon = 1;
13392
13393 if (thumb_mode)
13394 {
13395 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13396 if (i & (1 << 24))
13397 i |= 1 << 28;
13398
13399 i &= ~(1 << 24);
13400
13401 i |= 0xef000000;
13402 }
13403 else
13404 i |= 0xf2000000;
13405
13406 insn->instruction = i;
13407 }
13408
13409 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13410 (0, 1, 2, 3). */
13411
13412 static unsigned
13413 neon_logbits (unsigned x)
13414 {
13415 return ffs (x) - 4;
13416 }
13417
13418 #define LOW4(R) ((R) & 0xf)
13419 #define HI1(R) (((R) >> 4) & 1)
13420
13421 /* Encode insns with bit pattern:
13422
13423 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13424 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13425
13426 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13427 different meaning for some instruction. */
13428
13429 static void
13430 neon_three_same (int isquad, int ubit, int size)
13431 {
13432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13434 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13435 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13436 inst.instruction |= LOW4 (inst.operands[2].reg);
13437 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13438 inst.instruction |= (isquad != 0) << 6;
13439 inst.instruction |= (ubit != 0) << 24;
13440 if (size != -1)
13441 inst.instruction |= neon_logbits (size) << 20;
13442
13443 neon_dp_fixup (&inst);
13444 }
13445
13446 /* Encode instructions of the form:
13447
13448 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13449 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13450
13451 Don't write size if SIZE == -1. */
13452
13453 static void
13454 neon_two_same (int qbit, int ubit, int size)
13455 {
13456 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13457 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13458 inst.instruction |= LOW4 (inst.operands[1].reg);
13459 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13460 inst.instruction |= (qbit != 0) << 6;
13461 inst.instruction |= (ubit != 0) << 24;
13462
13463 if (size != -1)
13464 inst.instruction |= neon_logbits (size) << 18;
13465
13466 neon_dp_fixup (&inst);
13467 }
13468
13469 /* Neon instruction encoders, in approximate order of appearance. */
13470
13471 static void
13472 do_neon_dyadic_i_su (void)
13473 {
13474 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13475 struct neon_type_el et = neon_check_type (3, rs,
13476 N_EQK, N_EQK, N_SU_32 | N_KEY);
13477 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13478 }
13479
13480 static void
13481 do_neon_dyadic_i64_su (void)
13482 {
13483 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13484 struct neon_type_el et = neon_check_type (3, rs,
13485 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13486 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13487 }
13488
13489 static void
13490 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13491 unsigned immbits)
13492 {
13493 unsigned size = et.size >> 3;
13494 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13495 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13496 inst.instruction |= LOW4 (inst.operands[1].reg);
13497 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13498 inst.instruction |= (isquad != 0) << 6;
13499 inst.instruction |= immbits << 16;
13500 inst.instruction |= (size >> 3) << 7;
13501 inst.instruction |= (size & 0x7) << 19;
13502 if (write_ubit)
13503 inst.instruction |= (uval != 0) << 24;
13504
13505 neon_dp_fixup (&inst);
13506 }
13507
13508 static void
13509 do_neon_shl_imm (void)
13510 {
13511 if (!inst.operands[2].isreg)
13512 {
13513 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13514 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13515 NEON_ENCODE (IMMED, inst);
13516 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13517 }
13518 else
13519 {
13520 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13521 struct neon_type_el et = neon_check_type (3, rs,
13522 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13523 unsigned int tmp;
13524
13525 /* VSHL/VQSHL 3-register variants have syntax such as:
13526 vshl.xx Dd, Dm, Dn
13527 whereas other 3-register operations encoded by neon_three_same have
13528 syntax like:
13529 vadd.xx Dd, Dn, Dm
13530 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13531 here. */
13532 tmp = inst.operands[2].reg;
13533 inst.operands[2].reg = inst.operands[1].reg;
13534 inst.operands[1].reg = tmp;
13535 NEON_ENCODE (INTEGER, inst);
13536 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13537 }
13538 }
13539
13540 static void
13541 do_neon_qshl_imm (void)
13542 {
13543 if (!inst.operands[2].isreg)
13544 {
13545 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13546 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13547
13548 NEON_ENCODE (IMMED, inst);
13549 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13550 inst.operands[2].imm);
13551 }
13552 else
13553 {
13554 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13555 struct neon_type_el et = neon_check_type (3, rs,
13556 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13557 unsigned int tmp;
13558
13559 /* See note in do_neon_shl_imm. */
13560 tmp = inst.operands[2].reg;
13561 inst.operands[2].reg = inst.operands[1].reg;
13562 inst.operands[1].reg = tmp;
13563 NEON_ENCODE (INTEGER, inst);
13564 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13565 }
13566 }
13567
13568 static void
13569 do_neon_rshl (void)
13570 {
13571 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13572 struct neon_type_el et = neon_check_type (3, rs,
13573 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13574 unsigned int tmp;
13575
13576 tmp = inst.operands[2].reg;
13577 inst.operands[2].reg = inst.operands[1].reg;
13578 inst.operands[1].reg = tmp;
13579 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13580 }
13581
13582 static int
13583 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13584 {
13585 /* Handle .I8 pseudo-instructions. */
13586 if (size == 8)
13587 {
13588 /* Unfortunately, this will make everything apart from zero out-of-range.
13589 FIXME is this the intended semantics? There doesn't seem much point in
13590 accepting .I8 if so. */
13591 immediate |= immediate << 8;
13592 size = 16;
13593 }
13594
13595 if (size >= 32)
13596 {
13597 if (immediate == (immediate & 0x000000ff))
13598 {
13599 *immbits = immediate;
13600 return 0x1;
13601 }
13602 else if (immediate == (immediate & 0x0000ff00))
13603 {
13604 *immbits = immediate >> 8;
13605 return 0x3;
13606 }
13607 else if (immediate == (immediate & 0x00ff0000))
13608 {
13609 *immbits = immediate >> 16;
13610 return 0x5;
13611 }
13612 else if (immediate == (immediate & 0xff000000))
13613 {
13614 *immbits = immediate >> 24;
13615 return 0x7;
13616 }
13617 if ((immediate & 0xffff) != (immediate >> 16))
13618 goto bad_immediate;
13619 immediate &= 0xffff;
13620 }
13621
13622 if (immediate == (immediate & 0x000000ff))
13623 {
13624 *immbits = immediate;
13625 return 0x9;
13626 }
13627 else if (immediate == (immediate & 0x0000ff00))
13628 {
13629 *immbits = immediate >> 8;
13630 return 0xb;
13631 }
13632
13633 bad_immediate:
13634 first_error (_("immediate value out of range"));
13635 return FAIL;
13636 }
13637
13638 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13639 A, B, C, D. */
13640
13641 static int
13642 neon_bits_same_in_bytes (unsigned imm)
13643 {
13644 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13645 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13646 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13647 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13648 }
13649
13650 /* For immediate of above form, return 0bABCD. */
13651
13652 static unsigned
13653 neon_squash_bits (unsigned imm)
13654 {
13655 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13656 | ((imm & 0x01000000) >> 21);
13657 }
13658
13659 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13660
13661 static unsigned
13662 neon_qfloat_bits (unsigned imm)
13663 {
13664 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13665 }
13666
13667 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13668 the instruction. *OP is passed as the initial value of the op field, and
13669 may be set to a different value depending on the constant (i.e.
13670 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13671 MVN). If the immediate looks like a repeated pattern then also
13672 try smaller element sizes. */
13673
13674 static int
13675 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13676 unsigned *immbits, int *op, int size,
13677 enum neon_el_type type)
13678 {
13679 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13680 float. */
13681 if (type == NT_float && !float_p)
13682 return FAIL;
13683
13684 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13685 {
13686 if (size != 32 || *op == 1)
13687 return FAIL;
13688 *immbits = neon_qfloat_bits (immlo);
13689 return 0xf;
13690 }
13691
13692 if (size == 64)
13693 {
13694 if (neon_bits_same_in_bytes (immhi)
13695 && neon_bits_same_in_bytes (immlo))
13696 {
13697 if (*op == 1)
13698 return FAIL;
13699 *immbits = (neon_squash_bits (immhi) << 4)
13700 | neon_squash_bits (immlo);
13701 *op = 1;
13702 return 0xe;
13703 }
13704
13705 if (immhi != immlo)
13706 return FAIL;
13707 }
13708
13709 if (size >= 32)
13710 {
13711 if (immlo == (immlo & 0x000000ff))
13712 {
13713 *immbits = immlo;
13714 return 0x0;
13715 }
13716 else if (immlo == (immlo & 0x0000ff00))
13717 {
13718 *immbits = immlo >> 8;
13719 return 0x2;
13720 }
13721 else if (immlo == (immlo & 0x00ff0000))
13722 {
13723 *immbits = immlo >> 16;
13724 return 0x4;
13725 }
13726 else if (immlo == (immlo & 0xff000000))
13727 {
13728 *immbits = immlo >> 24;
13729 return 0x6;
13730 }
13731 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13732 {
13733 *immbits = (immlo >> 8) & 0xff;
13734 return 0xc;
13735 }
13736 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13737 {
13738 *immbits = (immlo >> 16) & 0xff;
13739 return 0xd;
13740 }
13741
13742 if ((immlo & 0xffff) != (immlo >> 16))
13743 return FAIL;
13744 immlo &= 0xffff;
13745 }
13746
13747 if (size >= 16)
13748 {
13749 if (immlo == (immlo & 0x000000ff))
13750 {
13751 *immbits = immlo;
13752 return 0x8;
13753 }
13754 else if (immlo == (immlo & 0x0000ff00))
13755 {
13756 *immbits = immlo >> 8;
13757 return 0xa;
13758 }
13759
13760 if ((immlo & 0xff) != (immlo >> 8))
13761 return FAIL;
13762 immlo &= 0xff;
13763 }
13764
13765 if (immlo == (immlo & 0x000000ff))
13766 {
13767 /* Don't allow MVN with 8-bit immediate. */
13768 if (*op == 1)
13769 return FAIL;
13770 *immbits = immlo;
13771 return 0xe;
13772 }
13773
13774 return FAIL;
13775 }
13776
13777 /* Write immediate bits [7:0] to the following locations:
13778
13779 |28/24|23 19|18 16|15 4|3 0|
13780 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13781
13782 This function is used by VMOV/VMVN/VORR/VBIC. */
13783
13784 static void
13785 neon_write_immbits (unsigned immbits)
13786 {
13787 inst.instruction |= immbits & 0xf;
13788 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13789 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13790 }
13791
13792 /* Invert low-order SIZE bits of XHI:XLO. */
13793
13794 static void
13795 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13796 {
13797 unsigned immlo = xlo ? *xlo : 0;
13798 unsigned immhi = xhi ? *xhi : 0;
13799
13800 switch (size)
13801 {
13802 case 8:
13803 immlo = (~immlo) & 0xff;
13804 break;
13805
13806 case 16:
13807 immlo = (~immlo) & 0xffff;
13808 break;
13809
13810 case 64:
13811 immhi = (~immhi) & 0xffffffff;
13812 /* fall through. */
13813
13814 case 32:
13815 immlo = (~immlo) & 0xffffffff;
13816 break;
13817
13818 default:
13819 abort ();
13820 }
13821
13822 if (xlo)
13823 *xlo = immlo;
13824
13825 if (xhi)
13826 *xhi = immhi;
13827 }
13828
13829 static void
13830 do_neon_logic (void)
13831 {
13832 if (inst.operands[2].present && inst.operands[2].isreg)
13833 {
13834 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13835 neon_check_type (3, rs, N_IGNORE_TYPE);
13836 /* U bit and size field were set as part of the bitmask. */
13837 NEON_ENCODE (INTEGER, inst);
13838 neon_three_same (neon_quad (rs), 0, -1);
13839 }
13840 else
13841 {
13842 const int three_ops_form = (inst.operands[2].present
13843 && !inst.operands[2].isreg);
13844 const int immoperand = (three_ops_form ? 2 : 1);
13845 enum neon_shape rs = (three_ops_form
13846 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13847 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13848 struct neon_type_el et = neon_check_type (2, rs,
13849 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13850 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13851 unsigned immbits;
13852 int cmode;
13853
13854 if (et.type == NT_invtype)
13855 return;
13856
13857 if (three_ops_form)
13858 constraint (inst.operands[0].reg != inst.operands[1].reg,
13859 _("first and second operands shall be the same register"));
13860
13861 NEON_ENCODE (IMMED, inst);
13862
13863 immbits = inst.operands[immoperand].imm;
13864 if (et.size == 64)
13865 {
13866 /* .i64 is a pseudo-op, so the immediate must be a repeating
13867 pattern. */
13868 if (immbits != (inst.operands[immoperand].regisimm ?
13869 inst.operands[immoperand].reg : 0))
13870 {
13871 /* Set immbits to an invalid constant. */
13872 immbits = 0xdeadbeef;
13873 }
13874 }
13875
13876 switch (opcode)
13877 {
13878 case N_MNEM_vbic:
13879 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13880 break;
13881
13882 case N_MNEM_vorr:
13883 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13884 break;
13885
13886 case N_MNEM_vand:
13887 /* Pseudo-instruction for VBIC. */
13888 neon_invert_size (&immbits, 0, et.size);
13889 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13890 break;
13891
13892 case N_MNEM_vorn:
13893 /* Pseudo-instruction for VORR. */
13894 neon_invert_size (&immbits, 0, et.size);
13895 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13896 break;
13897
13898 default:
13899 abort ();
13900 }
13901
13902 if (cmode == FAIL)
13903 return;
13904
13905 inst.instruction |= neon_quad (rs) << 6;
13906 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13907 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13908 inst.instruction |= cmode << 8;
13909 neon_write_immbits (immbits);
13910
13911 neon_dp_fixup (&inst);
13912 }
13913 }
13914
13915 static void
13916 do_neon_bitfield (void)
13917 {
13918 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13919 neon_check_type (3, rs, N_IGNORE_TYPE);
13920 neon_three_same (neon_quad (rs), 0, -1);
13921 }
13922
13923 static void
13924 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13925 unsigned destbits)
13926 {
13927 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13928 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13929 types | N_KEY);
13930 if (et.type == NT_float)
13931 {
13932 NEON_ENCODE (FLOAT, inst);
13933 neon_three_same (neon_quad (rs), 0, -1);
13934 }
13935 else
13936 {
13937 NEON_ENCODE (INTEGER, inst);
13938 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13939 }
13940 }
13941
13942 static void
13943 do_neon_dyadic_if_su (void)
13944 {
13945 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13946 }
13947
13948 static void
13949 do_neon_dyadic_if_su_d (void)
13950 {
13951 /* This version only allow D registers, but that constraint is enforced during
13952 operand parsing so we don't need to do anything extra here. */
13953 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13954 }
13955
13956 static void
13957 do_neon_dyadic_if_i_d (void)
13958 {
13959 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13960 affected if we specify unsigned args. */
13961 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13962 }
13963
13964 enum vfp_or_neon_is_neon_bits
13965 {
13966 NEON_CHECK_CC = 1,
13967 NEON_CHECK_ARCH = 2,
13968 NEON_CHECK_ARCH8 = 4
13969 };
13970
13971 /* Call this function if an instruction which may have belonged to the VFP or
13972 Neon instruction sets, but turned out to be a Neon instruction (due to the
13973 operand types involved, etc.). We have to check and/or fix-up a couple of
13974 things:
13975
13976 - Make sure the user hasn't attempted to make a Neon instruction
13977 conditional.
13978 - Alter the value in the condition code field if necessary.
13979 - Make sure that the arch supports Neon instructions.
13980
13981 Which of these operations take place depends on bits from enum
13982 vfp_or_neon_is_neon_bits.
13983
13984 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13985 current instruction's condition is COND_ALWAYS, the condition field is
13986 changed to inst.uncond_value. This is necessary because instructions shared
13987 between VFP and Neon may be conditional for the VFP variants only, and the
13988 unconditional Neon version must have, e.g., 0xF in the condition field. */
13989
13990 static int
13991 vfp_or_neon_is_neon (unsigned check)
13992 {
13993 /* Conditions are always legal in Thumb mode (IT blocks). */
13994 if (!thumb_mode && (check & NEON_CHECK_CC))
13995 {
13996 if (inst.cond != COND_ALWAYS)
13997 {
13998 first_error (_(BAD_COND));
13999 return FAIL;
14000 }
14001 if (inst.uncond_value != -1)
14002 inst.instruction |= inst.uncond_value << 28;
14003 }
14004
14005 if ((check & NEON_CHECK_ARCH)
14006 && !mark_feature_used (&fpu_neon_ext_v1))
14007 {
14008 first_error (_(BAD_FPU));
14009 return FAIL;
14010 }
14011
14012 if ((check & NEON_CHECK_ARCH8)
14013 && !mark_feature_used (&fpu_neon_ext_armv8))
14014 {
14015 first_error (_(BAD_FPU));
14016 return FAIL;
14017 }
14018
14019 return SUCCESS;
14020 }
14021
14022 static void
14023 do_neon_addsub_if_i (void)
14024 {
14025 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14026 return;
14027
14028 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14029 return;
14030
14031 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14032 affected if we specify unsigned args. */
14033 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14034 }
14035
14036 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14037 result to be:
14038 V<op> A,B (A is operand 0, B is operand 2)
14039 to mean:
14040 V<op> A,B,A
14041 not:
14042 V<op> A,B,B
14043 so handle that case specially. */
14044
14045 static void
14046 neon_exchange_operands (void)
14047 {
14048 void *scratch = alloca (sizeof (inst.operands[0]));
14049 if (inst.operands[1].present)
14050 {
14051 /* Swap operands[1] and operands[2]. */
14052 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14053 inst.operands[1] = inst.operands[2];
14054 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14055 }
14056 else
14057 {
14058 inst.operands[1] = inst.operands[2];
14059 inst.operands[2] = inst.operands[0];
14060 }
14061 }
14062
14063 static void
14064 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14065 {
14066 if (inst.operands[2].isreg)
14067 {
14068 if (invert)
14069 neon_exchange_operands ();
14070 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14071 }
14072 else
14073 {
14074 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14075 struct neon_type_el et = neon_check_type (2, rs,
14076 N_EQK | N_SIZ, immtypes | N_KEY);
14077
14078 NEON_ENCODE (IMMED, inst);
14079 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14081 inst.instruction |= LOW4 (inst.operands[1].reg);
14082 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14083 inst.instruction |= neon_quad (rs) << 6;
14084 inst.instruction |= (et.type == NT_float) << 10;
14085 inst.instruction |= neon_logbits (et.size) << 18;
14086
14087 neon_dp_fixup (&inst);
14088 }
14089 }
14090
14091 static void
14092 do_neon_cmp (void)
14093 {
14094 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14095 }
14096
14097 static void
14098 do_neon_cmp_inv (void)
14099 {
14100 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14101 }
14102
14103 static void
14104 do_neon_ceq (void)
14105 {
14106 neon_compare (N_IF_32, N_IF_32, FALSE);
14107 }
14108
14109 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14110 scalars, which are encoded in 5 bits, M : Rm.
14111 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14112 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14113 index in M. */
14114
14115 static unsigned
14116 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14117 {
14118 unsigned regno = NEON_SCALAR_REG (scalar);
14119 unsigned elno = NEON_SCALAR_INDEX (scalar);
14120
14121 switch (elsize)
14122 {
14123 case 16:
14124 if (regno > 7 || elno > 3)
14125 goto bad_scalar;
14126 return regno | (elno << 3);
14127
14128 case 32:
14129 if (regno > 15 || elno > 1)
14130 goto bad_scalar;
14131 return regno | (elno << 4);
14132
14133 default:
14134 bad_scalar:
14135 first_error (_("scalar out of range for multiply instruction"));
14136 }
14137
14138 return 0;
14139 }
14140
14141 /* Encode multiply / multiply-accumulate scalar instructions. */
14142
14143 static void
14144 neon_mul_mac (struct neon_type_el et, int ubit)
14145 {
14146 unsigned scalar;
14147
14148 /* Give a more helpful error message if we have an invalid type. */
14149 if (et.type == NT_invtype)
14150 return;
14151
14152 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14155 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14156 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14157 inst.instruction |= LOW4 (scalar);
14158 inst.instruction |= HI1 (scalar) << 5;
14159 inst.instruction |= (et.type == NT_float) << 8;
14160 inst.instruction |= neon_logbits (et.size) << 20;
14161 inst.instruction |= (ubit != 0) << 24;
14162
14163 neon_dp_fixup (&inst);
14164 }
14165
14166 static void
14167 do_neon_mac_maybe_scalar (void)
14168 {
14169 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14170 return;
14171
14172 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14173 return;
14174
14175 if (inst.operands[2].isscalar)
14176 {
14177 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14178 struct neon_type_el et = neon_check_type (3, rs,
14179 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14180 NEON_ENCODE (SCALAR, inst);
14181 neon_mul_mac (et, neon_quad (rs));
14182 }
14183 else
14184 {
14185 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14186 affected if we specify unsigned args. */
14187 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14188 }
14189 }
14190
14191 static void
14192 do_neon_fmac (void)
14193 {
14194 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14195 return;
14196
14197 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14198 return;
14199
14200 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14201 }
14202
14203 static void
14204 do_neon_tst (void)
14205 {
14206 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14207 struct neon_type_el et = neon_check_type (3, rs,
14208 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14209 neon_three_same (neon_quad (rs), 0, et.size);
14210 }
14211
14212 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14213 same types as the MAC equivalents. The polynomial type for this instruction
14214 is encoded the same as the integer type. */
14215
14216 static void
14217 do_neon_mul (void)
14218 {
14219 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14220 return;
14221
14222 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14223 return;
14224
14225 if (inst.operands[2].isscalar)
14226 do_neon_mac_maybe_scalar ();
14227 else
14228 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14229 }
14230
14231 static void
14232 do_neon_qdmulh (void)
14233 {
14234 if (inst.operands[2].isscalar)
14235 {
14236 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14237 struct neon_type_el et = neon_check_type (3, rs,
14238 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14239 NEON_ENCODE (SCALAR, inst);
14240 neon_mul_mac (et, neon_quad (rs));
14241 }
14242 else
14243 {
14244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14245 struct neon_type_el et = neon_check_type (3, rs,
14246 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14247 NEON_ENCODE (INTEGER, inst);
14248 /* The U bit (rounding) comes from bit mask. */
14249 neon_three_same (neon_quad (rs), 0, et.size);
14250 }
14251 }
14252
14253 static void
14254 do_neon_fcmp_absolute (void)
14255 {
14256 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14257 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14258 /* Size field comes from bit mask. */
14259 neon_three_same (neon_quad (rs), 1, -1);
14260 }
14261
14262 static void
14263 do_neon_fcmp_absolute_inv (void)
14264 {
14265 neon_exchange_operands ();
14266 do_neon_fcmp_absolute ();
14267 }
14268
14269 static void
14270 do_neon_step (void)
14271 {
14272 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14273 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14274 neon_three_same (neon_quad (rs), 0, -1);
14275 }
14276
14277 static void
14278 do_neon_abs_neg (void)
14279 {
14280 enum neon_shape rs;
14281 struct neon_type_el et;
14282
14283 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14284 return;
14285
14286 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14287 return;
14288
14289 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14290 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14291
14292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14294 inst.instruction |= LOW4 (inst.operands[1].reg);
14295 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14296 inst.instruction |= neon_quad (rs) << 6;
14297 inst.instruction |= (et.type == NT_float) << 10;
14298 inst.instruction |= neon_logbits (et.size) << 18;
14299
14300 neon_dp_fixup (&inst);
14301 }
14302
14303 static void
14304 do_neon_sli (void)
14305 {
14306 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14307 struct neon_type_el et = neon_check_type (2, rs,
14308 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14309 int imm = inst.operands[2].imm;
14310 constraint (imm < 0 || (unsigned)imm >= et.size,
14311 _("immediate out of range for insert"));
14312 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14313 }
14314
14315 static void
14316 do_neon_sri (void)
14317 {
14318 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14319 struct neon_type_el et = neon_check_type (2, rs,
14320 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14321 int imm = inst.operands[2].imm;
14322 constraint (imm < 1 || (unsigned)imm > et.size,
14323 _("immediate out of range for insert"));
14324 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14325 }
14326
14327 static void
14328 do_neon_qshlu_imm (void)
14329 {
14330 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14331 struct neon_type_el et = neon_check_type (2, rs,
14332 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14333 int imm = inst.operands[2].imm;
14334 constraint (imm < 0 || (unsigned)imm >= et.size,
14335 _("immediate out of range for shift"));
14336 /* Only encodes the 'U present' variant of the instruction.
14337 In this case, signed types have OP (bit 8) set to 0.
14338 Unsigned types have OP set to 1. */
14339 inst.instruction |= (et.type == NT_unsigned) << 8;
14340 /* The rest of the bits are the same as other immediate shifts. */
14341 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14342 }
14343
14344 static void
14345 do_neon_qmovn (void)
14346 {
14347 struct neon_type_el et = neon_check_type (2, NS_DQ,
14348 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14349 /* Saturating move where operands can be signed or unsigned, and the
14350 destination has the same signedness. */
14351 NEON_ENCODE (INTEGER, inst);
14352 if (et.type == NT_unsigned)
14353 inst.instruction |= 0xc0;
14354 else
14355 inst.instruction |= 0x80;
14356 neon_two_same (0, 1, et.size / 2);
14357 }
14358
14359 static void
14360 do_neon_qmovun (void)
14361 {
14362 struct neon_type_el et = neon_check_type (2, NS_DQ,
14363 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14364 /* Saturating move with unsigned results. Operands must be signed. */
14365 NEON_ENCODE (INTEGER, inst);
14366 neon_two_same (0, 1, et.size / 2);
14367 }
14368
14369 static void
14370 do_neon_rshift_sat_narrow (void)
14371 {
14372 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14373 or unsigned. If operands are unsigned, results must also be unsigned. */
14374 struct neon_type_el et = neon_check_type (2, NS_DQI,
14375 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14376 int imm = inst.operands[2].imm;
14377 /* This gets the bounds check, size encoding and immediate bits calculation
14378 right. */
14379 et.size /= 2;
14380
14381 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14382 VQMOVN.I<size> <Dd>, <Qm>. */
14383 if (imm == 0)
14384 {
14385 inst.operands[2].present = 0;
14386 inst.instruction = N_MNEM_vqmovn;
14387 do_neon_qmovn ();
14388 return;
14389 }
14390
14391 constraint (imm < 1 || (unsigned)imm > et.size,
14392 _("immediate out of range"));
14393 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14394 }
14395
14396 static void
14397 do_neon_rshift_sat_narrow_u (void)
14398 {
14399 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14400 or unsigned. If operands are unsigned, results must also be unsigned. */
14401 struct neon_type_el et = neon_check_type (2, NS_DQI,
14402 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14403 int imm = inst.operands[2].imm;
14404 /* This gets the bounds check, size encoding and immediate bits calculation
14405 right. */
14406 et.size /= 2;
14407
14408 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14409 VQMOVUN.I<size> <Dd>, <Qm>. */
14410 if (imm == 0)
14411 {
14412 inst.operands[2].present = 0;
14413 inst.instruction = N_MNEM_vqmovun;
14414 do_neon_qmovun ();
14415 return;
14416 }
14417
14418 constraint (imm < 1 || (unsigned)imm > et.size,
14419 _("immediate out of range"));
14420 /* FIXME: The manual is kind of unclear about what value U should have in
14421 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14422 must be 1. */
14423 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14424 }
14425
14426 static void
14427 do_neon_movn (void)
14428 {
14429 struct neon_type_el et = neon_check_type (2, NS_DQ,
14430 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14431 NEON_ENCODE (INTEGER, inst);
14432 neon_two_same (0, 1, et.size / 2);
14433 }
14434
14435 static void
14436 do_neon_rshift_narrow (void)
14437 {
14438 struct neon_type_el et = neon_check_type (2, NS_DQI,
14439 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14440 int imm = inst.operands[2].imm;
14441 /* This gets the bounds check, size encoding and immediate bits calculation
14442 right. */
14443 et.size /= 2;
14444
14445 /* If immediate is zero then we are a pseudo-instruction for
14446 VMOVN.I<size> <Dd>, <Qm> */
14447 if (imm == 0)
14448 {
14449 inst.operands[2].present = 0;
14450 inst.instruction = N_MNEM_vmovn;
14451 do_neon_movn ();
14452 return;
14453 }
14454
14455 constraint (imm < 1 || (unsigned)imm > et.size,
14456 _("immediate out of range for narrowing operation"));
14457 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14458 }
14459
14460 static void
14461 do_neon_shll (void)
14462 {
14463 /* FIXME: Type checking when lengthening. */
14464 struct neon_type_el et = neon_check_type (2, NS_QDI,
14465 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14466 unsigned imm = inst.operands[2].imm;
14467
14468 if (imm == et.size)
14469 {
14470 /* Maximum shift variant. */
14471 NEON_ENCODE (INTEGER, inst);
14472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14474 inst.instruction |= LOW4 (inst.operands[1].reg);
14475 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14476 inst.instruction |= neon_logbits (et.size) << 18;
14477
14478 neon_dp_fixup (&inst);
14479 }
14480 else
14481 {
14482 /* A more-specific type check for non-max versions. */
14483 et = neon_check_type (2, NS_QDI,
14484 N_EQK | N_DBL, N_SU_32 | N_KEY);
14485 NEON_ENCODE (IMMED, inst);
14486 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14487 }
14488 }
14489
14490 /* Check the various types for the VCVT instruction, and return which version
14491 the current instruction is. */
14492
14493 #define CVT_FLAVOUR_VAR \
14494 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14495 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14496 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14497 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14498 /* Half-precision conversions. */ \
14499 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14500 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14501 /* VFP instructions. */ \
14502 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14503 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14504 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14505 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14506 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14507 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14508 /* VFP instructions with bitshift. */ \
14509 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14510 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14511 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14512 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14513 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14514 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14515 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14516 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14517
14518 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14519 neon_cvt_flavour_##C,
14520
14521 /* The different types of conversions we can do. */
14522 enum neon_cvt_flavour
14523 {
14524 CVT_FLAVOUR_VAR
14525 neon_cvt_flavour_invalid,
14526 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14527 };
14528
14529 #undef CVT_VAR
14530
14531 static enum neon_cvt_flavour
14532 get_neon_cvt_flavour (enum neon_shape rs)
14533 {
14534 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14535 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14536 if (et.type != NT_invtype) \
14537 { \
14538 inst.error = NULL; \
14539 return (neon_cvt_flavour_##C); \
14540 }
14541
14542 struct neon_type_el et;
14543 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14544 || rs == NS_FF) ? N_VFP : 0;
14545 /* The instruction versions which take an immediate take one register
14546 argument, which is extended to the width of the full register. Thus the
14547 "source" and "destination" registers must have the same width. Hack that
14548 here by making the size equal to the key (wider, in this case) operand. */
14549 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14550
14551 CVT_FLAVOUR_VAR;
14552
14553 return neon_cvt_flavour_invalid;
14554 #undef CVT_VAR
14555 }
14556
14557 enum neon_cvt_mode
14558 {
14559 neon_cvt_mode_a,
14560 neon_cvt_mode_n,
14561 neon_cvt_mode_p,
14562 neon_cvt_mode_m,
14563 neon_cvt_mode_z,
14564 neon_cvt_mode_x,
14565 neon_cvt_mode_r
14566 };
14567
14568 /* Neon-syntax VFP conversions. */
14569
14570 static void
14571 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14572 {
14573 const char *opname = 0;
14574
14575 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14576 {
14577 /* Conversions with immediate bitshift. */
14578 const char *enc[] =
14579 {
14580 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14581 CVT_FLAVOUR_VAR
14582 NULL
14583 #undef CVT_VAR
14584 };
14585
14586 if (flavour < (int) ARRAY_SIZE (enc))
14587 {
14588 opname = enc[flavour];
14589 constraint (inst.operands[0].reg != inst.operands[1].reg,
14590 _("operands 0 and 1 must be the same register"));
14591 inst.operands[1] = inst.operands[2];
14592 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14593 }
14594 }
14595 else
14596 {
14597 /* Conversions without bitshift. */
14598 const char *enc[] =
14599 {
14600 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14601 CVT_FLAVOUR_VAR
14602 NULL
14603 #undef CVT_VAR
14604 };
14605
14606 if (flavour < (int) ARRAY_SIZE (enc))
14607 opname = enc[flavour];
14608 }
14609
14610 if (opname)
14611 do_vfp_nsyn_opcode (opname);
14612 }
14613
14614 static void
14615 do_vfp_nsyn_cvtz (void)
14616 {
14617 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14618 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14619 const char *enc[] =
14620 {
14621 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14622 CVT_FLAVOUR_VAR
14623 NULL
14624 #undef CVT_VAR
14625 };
14626
14627 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14628 do_vfp_nsyn_opcode (enc[flavour]);
14629 }
14630
14631 static void
14632 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14633 enum neon_cvt_mode mode)
14634 {
14635 int sz, op;
14636 int rm;
14637
14638 set_it_insn_type (OUTSIDE_IT_INSN);
14639
14640 switch (flavour)
14641 {
14642 case neon_cvt_flavour_s32_f64:
14643 sz = 1;
14644 op = 0;
14645 break;
14646 case neon_cvt_flavour_s32_f32:
14647 sz = 0;
14648 op = 1;
14649 break;
14650 case neon_cvt_flavour_u32_f64:
14651 sz = 1;
14652 op = 0;
14653 break;
14654 case neon_cvt_flavour_u32_f32:
14655 sz = 0;
14656 op = 0;
14657 break;
14658 default:
14659 first_error (_("invalid instruction shape"));
14660 return;
14661 }
14662
14663 switch (mode)
14664 {
14665 case neon_cvt_mode_a: rm = 0; break;
14666 case neon_cvt_mode_n: rm = 1; break;
14667 case neon_cvt_mode_p: rm = 2; break;
14668 case neon_cvt_mode_m: rm = 3; break;
14669 default: first_error (_("invalid rounding mode")); return;
14670 }
14671
14672 NEON_ENCODE (FPV8, inst);
14673 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14674 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14675 inst.instruction |= sz << 8;
14676 inst.instruction |= op << 7;
14677 inst.instruction |= rm << 16;
14678 inst.instruction |= 0xf0000000;
14679 inst.is_neon = TRUE;
14680 }
14681
14682 static void
14683 do_neon_cvt_1 (enum neon_cvt_mode mode)
14684 {
14685 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14686 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14687 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14688
14689 /* PR11109: Handle round-to-zero for VCVT conversions. */
14690 if (mode == neon_cvt_mode_z
14691 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14692 && (flavour == neon_cvt_flavour_s32_f32
14693 || flavour == neon_cvt_flavour_u32_f32
14694 || flavour == neon_cvt_flavour_s32_f64
14695 || flavour == neon_cvt_flavour_u32_f64)
14696 && (rs == NS_FD || rs == NS_FF))
14697 {
14698 do_vfp_nsyn_cvtz ();
14699 return;
14700 }
14701
14702 /* VFP rather than Neon conversions. */
14703 if (flavour >= neon_cvt_flavour_first_fp)
14704 {
14705 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14706 do_vfp_nsyn_cvt (rs, flavour);
14707 else
14708 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14709
14710 return;
14711 }
14712
14713 switch (rs)
14714 {
14715 case NS_DDI:
14716 case NS_QQI:
14717 {
14718 unsigned immbits;
14719 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14720
14721 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14722 return;
14723
14724 /* Fixed-point conversion with #0 immediate is encoded as an
14725 integer conversion. */
14726 if (inst.operands[2].present && inst.operands[2].imm == 0)
14727 goto int_encode;
14728 immbits = 32 - inst.operands[2].imm;
14729 NEON_ENCODE (IMMED, inst);
14730 if (flavour != neon_cvt_flavour_invalid)
14731 inst.instruction |= enctab[flavour];
14732 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14733 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14734 inst.instruction |= LOW4 (inst.operands[1].reg);
14735 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14736 inst.instruction |= neon_quad (rs) << 6;
14737 inst.instruction |= 1 << 21;
14738 inst.instruction |= immbits << 16;
14739
14740 neon_dp_fixup (&inst);
14741 }
14742 break;
14743
14744 case NS_DD:
14745 case NS_QQ:
14746 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14747 {
14748 NEON_ENCODE (FLOAT, inst);
14749 set_it_insn_type (OUTSIDE_IT_INSN);
14750
14751 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14752 return;
14753
14754 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14755 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14756 inst.instruction |= LOW4 (inst.operands[1].reg);
14757 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14758 inst.instruction |= neon_quad (rs) << 6;
14759 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14760 inst.instruction |= mode << 8;
14761 if (thumb_mode)
14762 inst.instruction |= 0xfc000000;
14763 else
14764 inst.instruction |= 0xf0000000;
14765 }
14766 else
14767 {
14768 int_encode:
14769 {
14770 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14771
14772 NEON_ENCODE (INTEGER, inst);
14773
14774 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14775 return;
14776
14777 if (flavour != neon_cvt_flavour_invalid)
14778 inst.instruction |= enctab[flavour];
14779
14780 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14781 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14782 inst.instruction |= LOW4 (inst.operands[1].reg);
14783 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14784 inst.instruction |= neon_quad (rs) << 6;
14785 inst.instruction |= 2 << 18;
14786
14787 neon_dp_fixup (&inst);
14788 }
14789 }
14790 break;
14791
14792 /* Half-precision conversions for Advanced SIMD -- neon. */
14793 case NS_QD:
14794 case NS_DQ:
14795
14796 if ((rs == NS_DQ)
14797 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14798 {
14799 as_bad (_("operand size must match register width"));
14800 break;
14801 }
14802
14803 if ((rs == NS_QD)
14804 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14805 {
14806 as_bad (_("operand size must match register width"));
14807 break;
14808 }
14809
14810 if (rs == NS_DQ)
14811 inst.instruction = 0x3b60600;
14812 else
14813 inst.instruction = 0x3b60700;
14814
14815 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14816 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14817 inst.instruction |= LOW4 (inst.operands[1].reg);
14818 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14819 neon_dp_fixup (&inst);
14820 break;
14821
14822 default:
14823 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14824 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14825 do_vfp_nsyn_cvt (rs, flavour);
14826 else
14827 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14828 }
14829 }
14830
14831 static void
14832 do_neon_cvtr (void)
14833 {
14834 do_neon_cvt_1 (neon_cvt_mode_x);
14835 }
14836
14837 static void
14838 do_neon_cvt (void)
14839 {
14840 do_neon_cvt_1 (neon_cvt_mode_z);
14841 }
14842
14843 static void
14844 do_neon_cvta (void)
14845 {
14846 do_neon_cvt_1 (neon_cvt_mode_a);
14847 }
14848
14849 static void
14850 do_neon_cvtn (void)
14851 {
14852 do_neon_cvt_1 (neon_cvt_mode_n);
14853 }
14854
14855 static void
14856 do_neon_cvtp (void)
14857 {
14858 do_neon_cvt_1 (neon_cvt_mode_p);
14859 }
14860
14861 static void
14862 do_neon_cvtm (void)
14863 {
14864 do_neon_cvt_1 (neon_cvt_mode_m);
14865 }
14866
14867 static void
14868 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
14869 {
14870 if (is_double)
14871 mark_feature_used (&fpu_vfp_ext_armv8);
14872
14873 encode_arm_vfp_reg (inst.operands[0].reg,
14874 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
14875 encode_arm_vfp_reg (inst.operands[1].reg,
14876 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
14877 inst.instruction |= to ? 0x10000 : 0;
14878 inst.instruction |= t ? 0x80 : 0;
14879 inst.instruction |= is_double ? 0x100 : 0;
14880 do_vfp_cond_or_thumb ();
14881 }
14882
14883 static void
14884 do_neon_cvttb_1 (bfd_boolean t)
14885 {
14886 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
14887
14888 if (rs == NS_NULL)
14889 return;
14890 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
14891 {
14892 inst.error = NULL;
14893 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
14894 }
14895 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
14896 {
14897 inst.error = NULL;
14898 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
14899 }
14900 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
14901 {
14902 inst.error = NULL;
14903 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
14904 }
14905 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
14906 {
14907 inst.error = NULL;
14908 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
14909 }
14910 else
14911 return;
14912 }
14913
14914 static void
14915 do_neon_cvtb (void)
14916 {
14917 do_neon_cvttb_1 (FALSE);
14918 }
14919
14920
14921 static void
14922 do_neon_cvtt (void)
14923 {
14924 do_neon_cvttb_1 (TRUE);
14925 }
14926
14927 static void
14928 neon_move_immediate (void)
14929 {
14930 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14931 struct neon_type_el et = neon_check_type (2, rs,
14932 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14933 unsigned immlo, immhi = 0, immbits;
14934 int op, cmode, float_p;
14935
14936 constraint (et.type == NT_invtype,
14937 _("operand size must be specified for immediate VMOV"));
14938
14939 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14940 op = (inst.instruction & (1 << 5)) != 0;
14941
14942 immlo = inst.operands[1].imm;
14943 if (inst.operands[1].regisimm)
14944 immhi = inst.operands[1].reg;
14945
14946 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14947 _("immediate has bits set outside the operand size"));
14948
14949 float_p = inst.operands[1].immisfloat;
14950
14951 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14952 et.size, et.type)) == FAIL)
14953 {
14954 /* Invert relevant bits only. */
14955 neon_invert_size (&immlo, &immhi, et.size);
14956 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14957 with one or the other; those cases are caught by
14958 neon_cmode_for_move_imm. */
14959 op = !op;
14960 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14961 &op, et.size, et.type)) == FAIL)
14962 {
14963 first_error (_("immediate out of range"));
14964 return;
14965 }
14966 }
14967
14968 inst.instruction &= ~(1 << 5);
14969 inst.instruction |= op << 5;
14970
14971 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14972 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14973 inst.instruction |= neon_quad (rs) << 6;
14974 inst.instruction |= cmode << 8;
14975
14976 neon_write_immbits (immbits);
14977 }
14978
14979 static void
14980 do_neon_mvn (void)
14981 {
14982 if (inst.operands[1].isreg)
14983 {
14984 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14985
14986 NEON_ENCODE (INTEGER, inst);
14987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14989 inst.instruction |= LOW4 (inst.operands[1].reg);
14990 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14991 inst.instruction |= neon_quad (rs) << 6;
14992 }
14993 else
14994 {
14995 NEON_ENCODE (IMMED, inst);
14996 neon_move_immediate ();
14997 }
14998
14999 neon_dp_fixup (&inst);
15000 }
15001
15002 /* Encode instructions of form:
15003
15004 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15005 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15006
15007 static void
15008 neon_mixed_length (struct neon_type_el et, unsigned size)
15009 {
15010 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15011 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15012 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15013 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15014 inst.instruction |= LOW4 (inst.operands[2].reg);
15015 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15016 inst.instruction |= (et.type == NT_unsigned) << 24;
15017 inst.instruction |= neon_logbits (size) << 20;
15018
15019 neon_dp_fixup (&inst);
15020 }
15021
15022 static void
15023 do_neon_dyadic_long (void)
15024 {
15025 /* FIXME: Type checking for lengthening op. */
15026 struct neon_type_el et = neon_check_type (3, NS_QDD,
15027 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15028 neon_mixed_length (et, et.size);
15029 }
15030
15031 static void
15032 do_neon_abal (void)
15033 {
15034 struct neon_type_el et = neon_check_type (3, NS_QDD,
15035 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15036 neon_mixed_length (et, et.size);
15037 }
15038
15039 static void
15040 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15041 {
15042 if (inst.operands[2].isscalar)
15043 {
15044 struct neon_type_el et = neon_check_type (3, NS_QDS,
15045 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15046 NEON_ENCODE (SCALAR, inst);
15047 neon_mul_mac (et, et.type == NT_unsigned);
15048 }
15049 else
15050 {
15051 struct neon_type_el et = neon_check_type (3, NS_QDD,
15052 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15053 NEON_ENCODE (INTEGER, inst);
15054 neon_mixed_length (et, et.size);
15055 }
15056 }
15057
15058 static void
15059 do_neon_mac_maybe_scalar_long (void)
15060 {
15061 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15062 }
15063
15064 static void
15065 do_neon_dyadic_wide (void)
15066 {
15067 struct neon_type_el et = neon_check_type (3, NS_QQD,
15068 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15069 neon_mixed_length (et, et.size);
15070 }
15071
15072 static void
15073 do_neon_dyadic_narrow (void)
15074 {
15075 struct neon_type_el et = neon_check_type (3, NS_QDD,
15076 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15077 /* Operand sign is unimportant, and the U bit is part of the opcode,
15078 so force the operand type to integer. */
15079 et.type = NT_integer;
15080 neon_mixed_length (et, et.size / 2);
15081 }
15082
15083 static void
15084 do_neon_mul_sat_scalar_long (void)
15085 {
15086 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15087 }
15088
15089 static void
15090 do_neon_vmull (void)
15091 {
15092 if (inst.operands[2].isscalar)
15093 do_neon_mac_maybe_scalar_long ();
15094 else
15095 {
15096 struct neon_type_el et = neon_check_type (3, NS_QDD,
15097 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15098
15099 if (et.type == NT_poly)
15100 NEON_ENCODE (POLY, inst);
15101 else
15102 NEON_ENCODE (INTEGER, inst);
15103
15104 /* For polynomial encoding the U bit must be zero, and the size must
15105 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15106 obviously, as 0b10). */
15107 if (et.size == 64)
15108 {
15109 /* Check we're on the correct architecture. */
15110 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15111 inst.error =
15112 _("Instruction form not available on this architecture.");
15113
15114 et.size = 32;
15115 }
15116
15117 neon_mixed_length (et, et.size);
15118 }
15119 }
15120
15121 static void
15122 do_neon_ext (void)
15123 {
15124 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15125 struct neon_type_el et = neon_check_type (3, rs,
15126 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15127 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15128
15129 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15130 _("shift out of range"));
15131 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15134 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15135 inst.instruction |= LOW4 (inst.operands[2].reg);
15136 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15137 inst.instruction |= neon_quad (rs) << 6;
15138 inst.instruction |= imm << 8;
15139
15140 neon_dp_fixup (&inst);
15141 }
15142
15143 static void
15144 do_neon_rev (void)
15145 {
15146 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15147 struct neon_type_el et = neon_check_type (2, rs,
15148 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15149 unsigned op = (inst.instruction >> 7) & 3;
15150 /* N (width of reversed regions) is encoded as part of the bitmask. We
15151 extract it here to check the elements to be reversed are smaller.
15152 Otherwise we'd get a reserved instruction. */
15153 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15154 gas_assert (elsize != 0);
15155 constraint (et.size >= elsize,
15156 _("elements must be smaller than reversal region"));
15157 neon_two_same (neon_quad (rs), 1, et.size);
15158 }
15159
15160 static void
15161 do_neon_dup (void)
15162 {
15163 if (inst.operands[1].isscalar)
15164 {
15165 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15166 struct neon_type_el et = neon_check_type (2, rs,
15167 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15168 unsigned sizebits = et.size >> 3;
15169 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15170 int logsize = neon_logbits (et.size);
15171 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15172
15173 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15174 return;
15175
15176 NEON_ENCODE (SCALAR, inst);
15177 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15178 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15179 inst.instruction |= LOW4 (dm);
15180 inst.instruction |= HI1 (dm) << 5;
15181 inst.instruction |= neon_quad (rs) << 6;
15182 inst.instruction |= x << 17;
15183 inst.instruction |= sizebits << 16;
15184
15185 neon_dp_fixup (&inst);
15186 }
15187 else
15188 {
15189 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15190 struct neon_type_el et = neon_check_type (2, rs,
15191 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15192 /* Duplicate ARM register to lanes of vector. */
15193 NEON_ENCODE (ARMREG, inst);
15194 switch (et.size)
15195 {
15196 case 8: inst.instruction |= 0x400000; break;
15197 case 16: inst.instruction |= 0x000020; break;
15198 case 32: inst.instruction |= 0x000000; break;
15199 default: break;
15200 }
15201 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15202 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15203 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15204 inst.instruction |= neon_quad (rs) << 21;
15205 /* The encoding for this instruction is identical for the ARM and Thumb
15206 variants, except for the condition field. */
15207 do_vfp_cond_or_thumb ();
15208 }
15209 }
15210
15211 /* VMOV has particularly many variations. It can be one of:
15212 0. VMOV<c><q> <Qd>, <Qm>
15213 1. VMOV<c><q> <Dd>, <Dm>
15214 (Register operations, which are VORR with Rm = Rn.)
15215 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15216 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15217 (Immediate loads.)
15218 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15219 (ARM register to scalar.)
15220 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15221 (Two ARM registers to vector.)
15222 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15223 (Scalar to ARM register.)
15224 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15225 (Vector to two ARM registers.)
15226 8. VMOV.F32 <Sd>, <Sm>
15227 9. VMOV.F64 <Dd>, <Dm>
15228 (VFP register moves.)
15229 10. VMOV.F32 <Sd>, #imm
15230 11. VMOV.F64 <Dd>, #imm
15231 (VFP float immediate load.)
15232 12. VMOV <Rd>, <Sm>
15233 (VFP single to ARM reg.)
15234 13. VMOV <Sd>, <Rm>
15235 (ARM reg to VFP single.)
15236 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15237 (Two ARM regs to two VFP singles.)
15238 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15239 (Two VFP singles to two ARM regs.)
15240
15241 These cases can be disambiguated using neon_select_shape, except cases 1/9
15242 and 3/11 which depend on the operand type too.
15243
15244 All the encoded bits are hardcoded by this function.
15245
15246 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15247 Cases 5, 7 may be used with VFPv2 and above.
15248
15249 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15250 can specify a type where it doesn't make sense to, and is ignored). */
15251
15252 static void
15253 do_neon_mov (void)
15254 {
15255 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15256 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15257 NS_NULL);
15258 struct neon_type_el et;
15259 const char *ldconst = 0;
15260
15261 switch (rs)
15262 {
15263 case NS_DD: /* case 1/9. */
15264 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15265 /* It is not an error here if no type is given. */
15266 inst.error = NULL;
15267 if (et.type == NT_float && et.size == 64)
15268 {
15269 do_vfp_nsyn_opcode ("fcpyd");
15270 break;
15271 }
15272 /* fall through. */
15273
15274 case NS_QQ: /* case 0/1. */
15275 {
15276 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15277 return;
15278 /* The architecture manual I have doesn't explicitly state which
15279 value the U bit should have for register->register moves, but
15280 the equivalent VORR instruction has U = 0, so do that. */
15281 inst.instruction = 0x0200110;
15282 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15283 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15284 inst.instruction |= LOW4 (inst.operands[1].reg);
15285 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15286 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15287 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15288 inst.instruction |= neon_quad (rs) << 6;
15289
15290 neon_dp_fixup (&inst);
15291 }
15292 break;
15293
15294 case NS_DI: /* case 3/11. */
15295 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15296 inst.error = NULL;
15297 if (et.type == NT_float && et.size == 64)
15298 {
15299 /* case 11 (fconstd). */
15300 ldconst = "fconstd";
15301 goto encode_fconstd;
15302 }
15303 /* fall through. */
15304
15305 case NS_QI: /* case 2/3. */
15306 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15307 return;
15308 inst.instruction = 0x0800010;
15309 neon_move_immediate ();
15310 neon_dp_fixup (&inst);
15311 break;
15312
15313 case NS_SR: /* case 4. */
15314 {
15315 unsigned bcdebits = 0;
15316 int logsize;
15317 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15318 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15319
15320 /* .<size> is optional here, defaulting to .32. */
15321 if (inst.vectype.elems == 0
15322 && inst.operands[0].vectype.type == NT_invtype
15323 && inst.operands[1].vectype.type == NT_invtype)
15324 {
15325 inst.vectype.el[0].type = NT_untyped;
15326 inst.vectype.el[0].size = 32;
15327 inst.vectype.elems = 1;
15328 }
15329
15330 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15331 logsize = neon_logbits (et.size);
15332
15333 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15334 _(BAD_FPU));
15335 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15336 && et.size != 32, _(BAD_FPU));
15337 constraint (et.type == NT_invtype, _("bad type for scalar"));
15338 constraint (x >= 64 / et.size, _("scalar index out of range"));
15339
15340 switch (et.size)
15341 {
15342 case 8: bcdebits = 0x8; break;
15343 case 16: bcdebits = 0x1; break;
15344 case 32: bcdebits = 0x0; break;
15345 default: ;
15346 }
15347
15348 bcdebits |= x << logsize;
15349
15350 inst.instruction = 0xe000b10;
15351 do_vfp_cond_or_thumb ();
15352 inst.instruction |= LOW4 (dn) << 16;
15353 inst.instruction |= HI1 (dn) << 7;
15354 inst.instruction |= inst.operands[1].reg << 12;
15355 inst.instruction |= (bcdebits & 3) << 5;
15356 inst.instruction |= (bcdebits >> 2) << 21;
15357 }
15358 break;
15359
15360 case NS_DRR: /* case 5 (fmdrr). */
15361 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15362 _(BAD_FPU));
15363
15364 inst.instruction = 0xc400b10;
15365 do_vfp_cond_or_thumb ();
15366 inst.instruction |= LOW4 (inst.operands[0].reg);
15367 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15368 inst.instruction |= inst.operands[1].reg << 12;
15369 inst.instruction |= inst.operands[2].reg << 16;
15370 break;
15371
15372 case NS_RS: /* case 6. */
15373 {
15374 unsigned logsize;
15375 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15376 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15377 unsigned abcdebits = 0;
15378
15379 /* .<dt> is optional here, defaulting to .32. */
15380 if (inst.vectype.elems == 0
15381 && inst.operands[0].vectype.type == NT_invtype
15382 && inst.operands[1].vectype.type == NT_invtype)
15383 {
15384 inst.vectype.el[0].type = NT_untyped;
15385 inst.vectype.el[0].size = 32;
15386 inst.vectype.elems = 1;
15387 }
15388
15389 et = neon_check_type (2, NS_NULL,
15390 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15391 logsize = neon_logbits (et.size);
15392
15393 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15394 _(BAD_FPU));
15395 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15396 && et.size != 32, _(BAD_FPU));
15397 constraint (et.type == NT_invtype, _("bad type for scalar"));
15398 constraint (x >= 64 / et.size, _("scalar index out of range"));
15399
15400 switch (et.size)
15401 {
15402 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15403 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15404 case 32: abcdebits = 0x00; break;
15405 default: ;
15406 }
15407
15408 abcdebits |= x << logsize;
15409 inst.instruction = 0xe100b10;
15410 do_vfp_cond_or_thumb ();
15411 inst.instruction |= LOW4 (dn) << 16;
15412 inst.instruction |= HI1 (dn) << 7;
15413 inst.instruction |= inst.operands[0].reg << 12;
15414 inst.instruction |= (abcdebits & 3) << 5;
15415 inst.instruction |= (abcdebits >> 2) << 21;
15416 }
15417 break;
15418
15419 case NS_RRD: /* case 7 (fmrrd). */
15420 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15421 _(BAD_FPU));
15422
15423 inst.instruction = 0xc500b10;
15424 do_vfp_cond_or_thumb ();
15425 inst.instruction |= inst.operands[0].reg << 12;
15426 inst.instruction |= inst.operands[1].reg << 16;
15427 inst.instruction |= LOW4 (inst.operands[2].reg);
15428 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15429 break;
15430
15431 case NS_FF: /* case 8 (fcpys). */
15432 do_vfp_nsyn_opcode ("fcpys");
15433 break;
15434
15435 case NS_FI: /* case 10 (fconsts). */
15436 ldconst = "fconsts";
15437 encode_fconstd:
15438 if (is_quarter_float (inst.operands[1].imm))
15439 {
15440 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15441 do_vfp_nsyn_opcode (ldconst);
15442 }
15443 else
15444 first_error (_("immediate out of range"));
15445 break;
15446
15447 case NS_RF: /* case 12 (fmrs). */
15448 do_vfp_nsyn_opcode ("fmrs");
15449 break;
15450
15451 case NS_FR: /* case 13 (fmsr). */
15452 do_vfp_nsyn_opcode ("fmsr");
15453 break;
15454
15455 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15456 (one of which is a list), but we have parsed four. Do some fiddling to
15457 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15458 expect. */
15459 case NS_RRFF: /* case 14 (fmrrs). */
15460 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15461 _("VFP registers must be adjacent"));
15462 inst.operands[2].imm = 2;
15463 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15464 do_vfp_nsyn_opcode ("fmrrs");
15465 break;
15466
15467 case NS_FFRR: /* case 15 (fmsrr). */
15468 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15469 _("VFP registers must be adjacent"));
15470 inst.operands[1] = inst.operands[2];
15471 inst.operands[2] = inst.operands[3];
15472 inst.operands[0].imm = 2;
15473 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15474 do_vfp_nsyn_opcode ("fmsrr");
15475 break;
15476
15477 case NS_NULL:
15478 /* neon_select_shape has determined that the instruction
15479 shape is wrong and has already set the error message. */
15480 break;
15481
15482 default:
15483 abort ();
15484 }
15485 }
15486
15487 static void
15488 do_neon_rshift_round_imm (void)
15489 {
15490 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15491 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15492 int imm = inst.operands[2].imm;
15493
15494 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15495 if (imm == 0)
15496 {
15497 inst.operands[2].present = 0;
15498 do_neon_mov ();
15499 return;
15500 }
15501
15502 constraint (imm < 1 || (unsigned)imm > et.size,
15503 _("immediate out of range for shift"));
15504 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15505 et.size - imm);
15506 }
15507
15508 static void
15509 do_neon_movl (void)
15510 {
15511 struct neon_type_el et = neon_check_type (2, NS_QD,
15512 N_EQK | N_DBL, N_SU_32 | N_KEY);
15513 unsigned sizebits = et.size >> 3;
15514 inst.instruction |= sizebits << 19;
15515 neon_two_same (0, et.type == NT_unsigned, -1);
15516 }
15517
15518 static void
15519 do_neon_trn (void)
15520 {
15521 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15522 struct neon_type_el et = neon_check_type (2, rs,
15523 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15524 NEON_ENCODE (INTEGER, inst);
15525 neon_two_same (neon_quad (rs), 1, et.size);
15526 }
15527
15528 static void
15529 do_neon_zip_uzp (void)
15530 {
15531 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15532 struct neon_type_el et = neon_check_type (2, rs,
15533 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15534 if (rs == NS_DD && et.size == 32)
15535 {
15536 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15537 inst.instruction = N_MNEM_vtrn;
15538 do_neon_trn ();
15539 return;
15540 }
15541 neon_two_same (neon_quad (rs), 1, et.size);
15542 }
15543
15544 static void
15545 do_neon_sat_abs_neg (void)
15546 {
15547 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15548 struct neon_type_el et = neon_check_type (2, rs,
15549 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15550 neon_two_same (neon_quad (rs), 1, et.size);
15551 }
15552
15553 static void
15554 do_neon_pair_long (void)
15555 {
15556 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15557 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15558 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15559 inst.instruction |= (et.type == NT_unsigned) << 7;
15560 neon_two_same (neon_quad (rs), 1, et.size);
15561 }
15562
15563 static void
15564 do_neon_recip_est (void)
15565 {
15566 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15567 struct neon_type_el et = neon_check_type (2, rs,
15568 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15569 inst.instruction |= (et.type == NT_float) << 8;
15570 neon_two_same (neon_quad (rs), 1, et.size);
15571 }
15572
15573 static void
15574 do_neon_cls (void)
15575 {
15576 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15577 struct neon_type_el et = neon_check_type (2, rs,
15578 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15579 neon_two_same (neon_quad (rs), 1, et.size);
15580 }
15581
15582 static void
15583 do_neon_clz (void)
15584 {
15585 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15586 struct neon_type_el et = neon_check_type (2, rs,
15587 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15588 neon_two_same (neon_quad (rs), 1, et.size);
15589 }
15590
15591 static void
15592 do_neon_cnt (void)
15593 {
15594 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15595 struct neon_type_el et = neon_check_type (2, rs,
15596 N_EQK | N_INT, N_8 | N_KEY);
15597 neon_two_same (neon_quad (rs), 1, et.size);
15598 }
15599
15600 static void
15601 do_neon_swp (void)
15602 {
15603 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15604 neon_two_same (neon_quad (rs), 1, -1);
15605 }
15606
15607 static void
15608 do_neon_tbl_tbx (void)
15609 {
15610 unsigned listlenbits;
15611 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15612
15613 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15614 {
15615 first_error (_("bad list length for table lookup"));
15616 return;
15617 }
15618
15619 listlenbits = inst.operands[1].imm - 1;
15620 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15621 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15622 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15623 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15624 inst.instruction |= LOW4 (inst.operands[2].reg);
15625 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15626 inst.instruction |= listlenbits << 8;
15627
15628 neon_dp_fixup (&inst);
15629 }
15630
15631 static void
15632 do_neon_ldm_stm (void)
15633 {
15634 /* P, U and L bits are part of bitmask. */
15635 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15636 unsigned offsetbits = inst.operands[1].imm * 2;
15637
15638 if (inst.operands[1].issingle)
15639 {
15640 do_vfp_nsyn_ldm_stm (is_dbmode);
15641 return;
15642 }
15643
15644 constraint (is_dbmode && !inst.operands[0].writeback,
15645 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15646
15647 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15648 _("register list must contain at least 1 and at most 16 "
15649 "registers"));
15650
15651 inst.instruction |= inst.operands[0].reg << 16;
15652 inst.instruction |= inst.operands[0].writeback << 21;
15653 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15654 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15655
15656 inst.instruction |= offsetbits;
15657
15658 do_vfp_cond_or_thumb ();
15659 }
15660
15661 static void
15662 do_neon_ldr_str (void)
15663 {
15664 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15665
15666 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15667 And is UNPREDICTABLE in thumb mode. */
15668 if (!is_ldr
15669 && inst.operands[1].reg == REG_PC
15670 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
15671 {
15672 if (thumb_mode)
15673 inst.error = _("Use of PC here is UNPREDICTABLE");
15674 else if (warn_on_deprecated)
15675 as_warn (_("Use of PC here is deprecated"));
15676 }
15677
15678 if (inst.operands[0].issingle)
15679 {
15680 if (is_ldr)
15681 do_vfp_nsyn_opcode ("flds");
15682 else
15683 do_vfp_nsyn_opcode ("fsts");
15684 }
15685 else
15686 {
15687 if (is_ldr)
15688 do_vfp_nsyn_opcode ("fldd");
15689 else
15690 do_vfp_nsyn_opcode ("fstd");
15691 }
15692 }
15693
15694 /* "interleave" version also handles non-interleaving register VLD1/VST1
15695 instructions. */
15696
15697 static void
15698 do_neon_ld_st_interleave (void)
15699 {
15700 struct neon_type_el et = neon_check_type (1, NS_NULL,
15701 N_8 | N_16 | N_32 | N_64);
15702 unsigned alignbits = 0;
15703 unsigned idx;
15704 /* The bits in this table go:
15705 0: register stride of one (0) or two (1)
15706 1,2: register list length, minus one (1, 2, 3, 4).
15707 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15708 We use -1 for invalid entries. */
15709 const int typetable[] =
15710 {
15711 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15712 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15713 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15714 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15715 };
15716 int typebits;
15717
15718 if (et.type == NT_invtype)
15719 return;
15720
15721 if (inst.operands[1].immisalign)
15722 switch (inst.operands[1].imm >> 8)
15723 {
15724 case 64: alignbits = 1; break;
15725 case 128:
15726 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15727 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15728 goto bad_alignment;
15729 alignbits = 2;
15730 break;
15731 case 256:
15732 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15733 goto bad_alignment;
15734 alignbits = 3;
15735 break;
15736 default:
15737 bad_alignment:
15738 first_error (_("bad alignment"));
15739 return;
15740 }
15741
15742 inst.instruction |= alignbits << 4;
15743 inst.instruction |= neon_logbits (et.size) << 6;
15744
15745 /* Bits [4:6] of the immediate in a list specifier encode register stride
15746 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15747 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15748 up the right value for "type" in a table based on this value and the given
15749 list style, then stick it back. */
15750 idx = ((inst.operands[0].imm >> 4) & 7)
15751 | (((inst.instruction >> 8) & 3) << 3);
15752
15753 typebits = typetable[idx];
15754
15755 constraint (typebits == -1, _("bad list type for instruction"));
15756
15757 inst.instruction &= ~0xf00;
15758 inst.instruction |= typebits << 8;
15759 }
15760
15761 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15762 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15763 otherwise. The variable arguments are a list of pairs of legal (size, align)
15764 values, terminated with -1. */
15765
15766 static int
15767 neon_alignment_bit (int size, int align, int *do_align, ...)
15768 {
15769 va_list ap;
15770 int result = FAIL, thissize, thisalign;
15771
15772 if (!inst.operands[1].immisalign)
15773 {
15774 *do_align = 0;
15775 return SUCCESS;
15776 }
15777
15778 va_start (ap, do_align);
15779
15780 do
15781 {
15782 thissize = va_arg (ap, int);
15783 if (thissize == -1)
15784 break;
15785 thisalign = va_arg (ap, int);
15786
15787 if (size == thissize && align == thisalign)
15788 result = SUCCESS;
15789 }
15790 while (result != SUCCESS);
15791
15792 va_end (ap);
15793
15794 if (result == SUCCESS)
15795 *do_align = 1;
15796 else
15797 first_error (_("unsupported alignment for instruction"));
15798
15799 return result;
15800 }
15801
15802 static void
15803 do_neon_ld_st_lane (void)
15804 {
15805 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15806 int align_good, do_align = 0;
15807 int logsize = neon_logbits (et.size);
15808 int align = inst.operands[1].imm >> 8;
15809 int n = (inst.instruction >> 8) & 3;
15810 int max_el = 64 / et.size;
15811
15812 if (et.type == NT_invtype)
15813 return;
15814
15815 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15816 _("bad list length"));
15817 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15818 _("scalar index out of range"));
15819 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15820 && et.size == 8,
15821 _("stride of 2 unavailable when element size is 8"));
15822
15823 switch (n)
15824 {
15825 case 0: /* VLD1 / VST1. */
15826 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15827 32, 32, -1);
15828 if (align_good == FAIL)
15829 return;
15830 if (do_align)
15831 {
15832 unsigned alignbits = 0;
15833 switch (et.size)
15834 {
15835 case 16: alignbits = 0x1; break;
15836 case 32: alignbits = 0x3; break;
15837 default: ;
15838 }
15839 inst.instruction |= alignbits << 4;
15840 }
15841 break;
15842
15843 case 1: /* VLD2 / VST2. */
15844 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15845 32, 64, -1);
15846 if (align_good == FAIL)
15847 return;
15848 if (do_align)
15849 inst.instruction |= 1 << 4;
15850 break;
15851
15852 case 2: /* VLD3 / VST3. */
15853 constraint (inst.operands[1].immisalign,
15854 _("can't use alignment with this instruction"));
15855 break;
15856
15857 case 3: /* VLD4 / VST4. */
15858 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15859 16, 64, 32, 64, 32, 128, -1);
15860 if (align_good == FAIL)
15861 return;
15862 if (do_align)
15863 {
15864 unsigned alignbits = 0;
15865 switch (et.size)
15866 {
15867 case 8: alignbits = 0x1; break;
15868 case 16: alignbits = 0x1; break;
15869 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15870 default: ;
15871 }
15872 inst.instruction |= alignbits << 4;
15873 }
15874 break;
15875
15876 default: ;
15877 }
15878
15879 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15880 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15881 inst.instruction |= 1 << (4 + logsize);
15882
15883 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15884 inst.instruction |= logsize << 10;
15885 }
15886
15887 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15888
15889 static void
15890 do_neon_ld_dup (void)
15891 {
15892 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15893 int align_good, do_align = 0;
15894
15895 if (et.type == NT_invtype)
15896 return;
15897
15898 switch ((inst.instruction >> 8) & 3)
15899 {
15900 case 0: /* VLD1. */
15901 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15902 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15903 &do_align, 16, 16, 32, 32, -1);
15904 if (align_good == FAIL)
15905 return;
15906 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15907 {
15908 case 1: break;
15909 case 2: inst.instruction |= 1 << 5; break;
15910 default: first_error (_("bad list length")); return;
15911 }
15912 inst.instruction |= neon_logbits (et.size) << 6;
15913 break;
15914
15915 case 1: /* VLD2. */
15916 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15917 &do_align, 8, 16, 16, 32, 32, 64, -1);
15918 if (align_good == FAIL)
15919 return;
15920 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15921 _("bad list length"));
15922 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15923 inst.instruction |= 1 << 5;
15924 inst.instruction |= neon_logbits (et.size) << 6;
15925 break;
15926
15927 case 2: /* VLD3. */
15928 constraint (inst.operands[1].immisalign,
15929 _("can't use alignment with this instruction"));
15930 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15931 _("bad list length"));
15932 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15933 inst.instruction |= 1 << 5;
15934 inst.instruction |= neon_logbits (et.size) << 6;
15935 break;
15936
15937 case 3: /* VLD4. */
15938 {
15939 int align = inst.operands[1].imm >> 8;
15940 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15941 16, 64, 32, 64, 32, 128, -1);
15942 if (align_good == FAIL)
15943 return;
15944 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15945 _("bad list length"));
15946 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15947 inst.instruction |= 1 << 5;
15948 if (et.size == 32 && align == 128)
15949 inst.instruction |= 0x3 << 6;
15950 else
15951 inst.instruction |= neon_logbits (et.size) << 6;
15952 }
15953 break;
15954
15955 default: ;
15956 }
15957
15958 inst.instruction |= do_align << 4;
15959 }
15960
15961 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15962 apart from bits [11:4]. */
15963
15964 static void
15965 do_neon_ldx_stx (void)
15966 {
15967 if (inst.operands[1].isreg)
15968 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15969
15970 switch (NEON_LANE (inst.operands[0].imm))
15971 {
15972 case NEON_INTERLEAVE_LANES:
15973 NEON_ENCODE (INTERLV, inst);
15974 do_neon_ld_st_interleave ();
15975 break;
15976
15977 case NEON_ALL_LANES:
15978 NEON_ENCODE (DUP, inst);
15979 if (inst.instruction == N_INV)
15980 {
15981 first_error ("only loads support such operands");
15982 break;
15983 }
15984 do_neon_ld_dup ();
15985 break;
15986
15987 default:
15988 NEON_ENCODE (LANE, inst);
15989 do_neon_ld_st_lane ();
15990 }
15991
15992 /* L bit comes from bit mask. */
15993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15994 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15995 inst.instruction |= inst.operands[1].reg << 16;
15996
15997 if (inst.operands[1].postind)
15998 {
15999 int postreg = inst.operands[1].imm & 0xf;
16000 constraint (!inst.operands[1].immisreg,
16001 _("post-index must be a register"));
16002 constraint (postreg == 0xd || postreg == 0xf,
16003 _("bad register for post-index"));
16004 inst.instruction |= postreg;
16005 }
16006 else if (inst.operands[1].writeback)
16007 {
16008 inst.instruction |= 0xd;
16009 }
16010 else
16011 inst.instruction |= 0xf;
16012
16013 if (thumb_mode)
16014 inst.instruction |= 0xf9000000;
16015 else
16016 inst.instruction |= 0xf4000000;
16017 }
16018
16019 /* FP v8. */
16020 static void
16021 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16022 {
16023 NEON_ENCODE (FPV8, inst);
16024
16025 if (rs == NS_FFF)
16026 do_vfp_sp_dyadic ();
16027 else
16028 do_vfp_dp_rd_rn_rm ();
16029
16030 if (rs == NS_DDD)
16031 inst.instruction |= 0x100;
16032
16033 inst.instruction |= 0xf0000000;
16034 }
16035
16036 static void
16037 do_vsel (void)
16038 {
16039 set_it_insn_type (OUTSIDE_IT_INSN);
16040
16041 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16042 first_error (_("invalid instruction shape"));
16043 }
16044
16045 static void
16046 do_vmaxnm (void)
16047 {
16048 set_it_insn_type (OUTSIDE_IT_INSN);
16049
16050 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16051 return;
16052
16053 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16054 return;
16055
16056 neon_dyadic_misc (NT_untyped, N_F32, 0);
16057 }
16058
16059 static void
16060 do_vrint_1 (enum neon_cvt_mode mode)
16061 {
16062 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16063 struct neon_type_el et;
16064
16065 if (rs == NS_NULL)
16066 return;
16067
16068 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16069 if (et.type != NT_invtype)
16070 {
16071 /* VFP encodings. */
16072 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16073 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16074 set_it_insn_type (OUTSIDE_IT_INSN);
16075
16076 NEON_ENCODE (FPV8, inst);
16077 if (rs == NS_FF)
16078 do_vfp_sp_monadic ();
16079 else
16080 do_vfp_dp_rd_rm ();
16081
16082 switch (mode)
16083 {
16084 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16085 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16086 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16087 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16088 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16089 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16090 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16091 default: abort ();
16092 }
16093
16094 inst.instruction |= (rs == NS_DD) << 8;
16095 do_vfp_cond_or_thumb ();
16096 }
16097 else
16098 {
16099 /* Neon encodings (or something broken...). */
16100 inst.error = NULL;
16101 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16102
16103 if (et.type == NT_invtype)
16104 return;
16105
16106 set_it_insn_type (OUTSIDE_IT_INSN);
16107 NEON_ENCODE (FLOAT, inst);
16108
16109 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16110 return;
16111
16112 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16113 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16114 inst.instruction |= LOW4 (inst.operands[1].reg);
16115 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16116 inst.instruction |= neon_quad (rs) << 6;
16117 switch (mode)
16118 {
16119 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16120 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16121 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16122 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16123 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16124 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16125 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16126 default: abort ();
16127 }
16128
16129 if (thumb_mode)
16130 inst.instruction |= 0xfc000000;
16131 else
16132 inst.instruction |= 0xf0000000;
16133 }
16134 }
16135
16136 static void
16137 do_vrintx (void)
16138 {
16139 do_vrint_1 (neon_cvt_mode_x);
16140 }
16141
16142 static void
16143 do_vrintz (void)
16144 {
16145 do_vrint_1 (neon_cvt_mode_z);
16146 }
16147
16148 static void
16149 do_vrintr (void)
16150 {
16151 do_vrint_1 (neon_cvt_mode_r);
16152 }
16153
16154 static void
16155 do_vrinta (void)
16156 {
16157 do_vrint_1 (neon_cvt_mode_a);
16158 }
16159
16160 static void
16161 do_vrintn (void)
16162 {
16163 do_vrint_1 (neon_cvt_mode_n);
16164 }
16165
16166 static void
16167 do_vrintp (void)
16168 {
16169 do_vrint_1 (neon_cvt_mode_p);
16170 }
16171
16172 static void
16173 do_vrintm (void)
16174 {
16175 do_vrint_1 (neon_cvt_mode_m);
16176 }
16177
16178 /* Crypto v1 instructions. */
16179 static void
16180 do_crypto_2op_1 (unsigned elttype, int op)
16181 {
16182 set_it_insn_type (OUTSIDE_IT_INSN);
16183
16184 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16185 == NT_invtype)
16186 return;
16187
16188 inst.error = NULL;
16189
16190 NEON_ENCODE (INTEGER, inst);
16191 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16192 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16193 inst.instruction |= LOW4 (inst.operands[1].reg);
16194 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16195 if (op != -1)
16196 inst.instruction |= op << 6;
16197
16198 if (thumb_mode)
16199 inst.instruction |= 0xfc000000;
16200 else
16201 inst.instruction |= 0xf0000000;
16202 }
16203
16204 static void
16205 do_crypto_3op_1 (int u, int op)
16206 {
16207 set_it_insn_type (OUTSIDE_IT_INSN);
16208
16209 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16210 N_32 | N_UNT | N_KEY).type == NT_invtype)
16211 return;
16212
16213 inst.error = NULL;
16214
16215 NEON_ENCODE (INTEGER, inst);
16216 neon_three_same (1, u, 8 << op);
16217 }
16218
16219 static void
16220 do_aese (void)
16221 {
16222 do_crypto_2op_1 (N_8, 0);
16223 }
16224
16225 static void
16226 do_aesd (void)
16227 {
16228 do_crypto_2op_1 (N_8, 1);
16229 }
16230
16231 static void
16232 do_aesmc (void)
16233 {
16234 do_crypto_2op_1 (N_8, 2);
16235 }
16236
16237 static void
16238 do_aesimc (void)
16239 {
16240 do_crypto_2op_1 (N_8, 3);
16241 }
16242
16243 static void
16244 do_sha1c (void)
16245 {
16246 do_crypto_3op_1 (0, 0);
16247 }
16248
16249 static void
16250 do_sha1p (void)
16251 {
16252 do_crypto_3op_1 (0, 1);
16253 }
16254
16255 static void
16256 do_sha1m (void)
16257 {
16258 do_crypto_3op_1 (0, 2);
16259 }
16260
16261 static void
16262 do_sha1su0 (void)
16263 {
16264 do_crypto_3op_1 (0, 3);
16265 }
16266
16267 static void
16268 do_sha256h (void)
16269 {
16270 do_crypto_3op_1 (1, 0);
16271 }
16272
16273 static void
16274 do_sha256h2 (void)
16275 {
16276 do_crypto_3op_1 (1, 1);
16277 }
16278
16279 static void
16280 do_sha256su1 (void)
16281 {
16282 do_crypto_3op_1 (1, 2);
16283 }
16284
16285 static void
16286 do_sha1h (void)
16287 {
16288 do_crypto_2op_1 (N_32, -1);
16289 }
16290
16291 static void
16292 do_sha1su1 (void)
16293 {
16294 do_crypto_2op_1 (N_32, 0);
16295 }
16296
16297 static void
16298 do_sha256su0 (void)
16299 {
16300 do_crypto_2op_1 (N_32, 1);
16301 }
16302
16303 static void
16304 do_crc32_1 (unsigned int poly, unsigned int sz)
16305 {
16306 unsigned int Rd = inst.operands[0].reg;
16307 unsigned int Rn = inst.operands[1].reg;
16308 unsigned int Rm = inst.operands[2].reg;
16309
16310 set_it_insn_type (OUTSIDE_IT_INSN);
16311 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
16312 inst.instruction |= LOW4 (Rn) << 16;
16313 inst.instruction |= LOW4 (Rm);
16314 inst.instruction |= sz << (thumb_mode ? 4 : 21);
16315 inst.instruction |= poly << (thumb_mode ? 20 : 9);
16316
16317 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
16318 as_warn (UNPRED_REG ("r15"));
16319 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
16320 as_warn (UNPRED_REG ("r13"));
16321 }
16322
16323 static void
16324 do_crc32b (void)
16325 {
16326 do_crc32_1 (0, 0);
16327 }
16328
16329 static void
16330 do_crc32h (void)
16331 {
16332 do_crc32_1 (0, 1);
16333 }
16334
16335 static void
16336 do_crc32w (void)
16337 {
16338 do_crc32_1 (0, 2);
16339 }
16340
16341 static void
16342 do_crc32cb (void)
16343 {
16344 do_crc32_1 (1, 0);
16345 }
16346
16347 static void
16348 do_crc32ch (void)
16349 {
16350 do_crc32_1 (1, 1);
16351 }
16352
16353 static void
16354 do_crc32cw (void)
16355 {
16356 do_crc32_1 (1, 2);
16357 }
16358
16359 \f
16360 /* Overall per-instruction processing. */
16361
16362 /* We need to be able to fix up arbitrary expressions in some statements.
16363 This is so that we can handle symbols that are an arbitrary distance from
16364 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16365 which returns part of an address in a form which will be valid for
16366 a data instruction. We do this by pushing the expression into a symbol
16367 in the expr_section, and creating a fix for that. */
16368
16369 static void
16370 fix_new_arm (fragS * frag,
16371 int where,
16372 short int size,
16373 expressionS * exp,
16374 int pc_rel,
16375 int reloc)
16376 {
16377 fixS * new_fix;
16378
16379 switch (exp->X_op)
16380 {
16381 case O_constant:
16382 if (pc_rel)
16383 {
16384 /* Create an absolute valued symbol, so we have something to
16385 refer to in the object file. Unfortunately for us, gas's
16386 generic expression parsing will already have folded out
16387 any use of .set foo/.type foo %function that may have
16388 been used to set type information of the target location,
16389 that's being specified symbolically. We have to presume
16390 the user knows what they are doing. */
16391 char name[16 + 8];
16392 symbolS *symbol;
16393
16394 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16395
16396 symbol = symbol_find_or_make (name);
16397 S_SET_SEGMENT (symbol, absolute_section);
16398 symbol_set_frag (symbol, &zero_address_frag);
16399 S_SET_VALUE (symbol, exp->X_add_number);
16400 exp->X_op = O_symbol;
16401 exp->X_add_symbol = symbol;
16402 exp->X_add_number = 0;
16403 }
16404 /* FALLTHROUGH */
16405 case O_symbol:
16406 case O_add:
16407 case O_subtract:
16408 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16409 (enum bfd_reloc_code_real) reloc);
16410 break;
16411
16412 default:
16413 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16414 pc_rel, (enum bfd_reloc_code_real) reloc);
16415 break;
16416 }
16417
16418 /* Mark whether the fix is to a THUMB instruction, or an ARM
16419 instruction. */
16420 new_fix->tc_fix_data = thumb_mode;
16421 }
16422
16423 /* Create a frg for an instruction requiring relaxation. */
16424 static void
16425 output_relax_insn (void)
16426 {
16427 char * to;
16428 symbolS *sym;
16429 int offset;
16430
16431 /* The size of the instruction is unknown, so tie the debug info to the
16432 start of the instruction. */
16433 dwarf2_emit_insn (0);
16434
16435 switch (inst.reloc.exp.X_op)
16436 {
16437 case O_symbol:
16438 sym = inst.reloc.exp.X_add_symbol;
16439 offset = inst.reloc.exp.X_add_number;
16440 break;
16441 case O_constant:
16442 sym = NULL;
16443 offset = inst.reloc.exp.X_add_number;
16444 break;
16445 default:
16446 sym = make_expr_symbol (&inst.reloc.exp);
16447 offset = 0;
16448 break;
16449 }
16450 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16451 inst.relax, sym, offset, NULL/*offset, opcode*/);
16452 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16453 }
16454
16455 /* Write a 32-bit thumb instruction to buf. */
16456 static void
16457 put_thumb32_insn (char * buf, unsigned long insn)
16458 {
16459 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16460 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16461 }
16462
16463 static void
16464 output_inst (const char * str)
16465 {
16466 char * to = NULL;
16467
16468 if (inst.error)
16469 {
16470 as_bad ("%s -- `%s'", inst.error, str);
16471 return;
16472 }
16473 if (inst.relax)
16474 {
16475 output_relax_insn ();
16476 return;
16477 }
16478 if (inst.size == 0)
16479 return;
16480
16481 to = frag_more (inst.size);
16482 /* PR 9814: Record the thumb mode into the current frag so that we know
16483 what type of NOP padding to use, if necessary. We override any previous
16484 setting so that if the mode has changed then the NOPS that we use will
16485 match the encoding of the last instruction in the frag. */
16486 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16487
16488 if (thumb_mode && (inst.size > THUMB_SIZE))
16489 {
16490 gas_assert (inst.size == (2 * THUMB_SIZE));
16491 put_thumb32_insn (to, inst.instruction);
16492 }
16493 else if (inst.size > INSN_SIZE)
16494 {
16495 gas_assert (inst.size == (2 * INSN_SIZE));
16496 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16497 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16498 }
16499 else
16500 md_number_to_chars (to, inst.instruction, inst.size);
16501
16502 if (inst.reloc.type != BFD_RELOC_UNUSED)
16503 fix_new_arm (frag_now, to - frag_now->fr_literal,
16504 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16505 inst.reloc.type);
16506
16507 dwarf2_emit_insn (inst.size);
16508 }
16509
16510 static char *
16511 output_it_inst (int cond, int mask, char * to)
16512 {
16513 unsigned long instruction = 0xbf00;
16514
16515 mask &= 0xf;
16516 instruction |= mask;
16517 instruction |= cond << 4;
16518
16519 if (to == NULL)
16520 {
16521 to = frag_more (2);
16522 #ifdef OBJ_ELF
16523 dwarf2_emit_insn (2);
16524 #endif
16525 }
16526
16527 md_number_to_chars (to, instruction, 2);
16528
16529 return to;
16530 }
16531
16532 /* Tag values used in struct asm_opcode's tag field. */
16533 enum opcode_tag
16534 {
16535 OT_unconditional, /* Instruction cannot be conditionalized.
16536 The ARM condition field is still 0xE. */
16537 OT_unconditionalF, /* Instruction cannot be conditionalized
16538 and carries 0xF in its ARM condition field. */
16539 OT_csuffix, /* Instruction takes a conditional suffix. */
16540 OT_csuffixF, /* Some forms of the instruction take a conditional
16541 suffix, others place 0xF where the condition field
16542 would be. */
16543 OT_cinfix3, /* Instruction takes a conditional infix,
16544 beginning at character index 3. (In
16545 unified mode, it becomes a suffix.) */
16546 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16547 tsts, cmps, cmns, and teqs. */
16548 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16549 character index 3, even in unified mode. Used for
16550 legacy instructions where suffix and infix forms
16551 may be ambiguous. */
16552 OT_csuf_or_in3, /* Instruction takes either a conditional
16553 suffix or an infix at character index 3. */
16554 OT_odd_infix_unc, /* This is the unconditional variant of an
16555 instruction that takes a conditional infix
16556 at an unusual position. In unified mode,
16557 this variant will accept a suffix. */
16558 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16559 are the conditional variants of instructions that
16560 take conditional infixes in unusual positions.
16561 The infix appears at character index
16562 (tag - OT_odd_infix_0). These are not accepted
16563 in unified mode. */
16564 };
16565
16566 /* Subroutine of md_assemble, responsible for looking up the primary
16567 opcode from the mnemonic the user wrote. STR points to the
16568 beginning of the mnemonic.
16569
16570 This is not simply a hash table lookup, because of conditional
16571 variants. Most instructions have conditional variants, which are
16572 expressed with a _conditional affix_ to the mnemonic. If we were
16573 to encode each conditional variant as a literal string in the opcode
16574 table, it would have approximately 20,000 entries.
16575
16576 Most mnemonics take this affix as a suffix, and in unified syntax,
16577 'most' is upgraded to 'all'. However, in the divided syntax, some
16578 instructions take the affix as an infix, notably the s-variants of
16579 the arithmetic instructions. Of those instructions, all but six
16580 have the infix appear after the third character of the mnemonic.
16581
16582 Accordingly, the algorithm for looking up primary opcodes given
16583 an identifier is:
16584
16585 1. Look up the identifier in the opcode table.
16586 If we find a match, go to step U.
16587
16588 2. Look up the last two characters of the identifier in the
16589 conditions table. If we find a match, look up the first N-2
16590 characters of the identifier in the opcode table. If we
16591 find a match, go to step CE.
16592
16593 3. Look up the fourth and fifth characters of the identifier in
16594 the conditions table. If we find a match, extract those
16595 characters from the identifier, and look up the remaining
16596 characters in the opcode table. If we find a match, go
16597 to step CM.
16598
16599 4. Fail.
16600
16601 U. Examine the tag field of the opcode structure, in case this is
16602 one of the six instructions with its conditional infix in an
16603 unusual place. If it is, the tag tells us where to find the
16604 infix; look it up in the conditions table and set inst.cond
16605 accordingly. Otherwise, this is an unconditional instruction.
16606 Again set inst.cond accordingly. Return the opcode structure.
16607
16608 CE. Examine the tag field to make sure this is an instruction that
16609 should receive a conditional suffix. If it is not, fail.
16610 Otherwise, set inst.cond from the suffix we already looked up,
16611 and return the opcode structure.
16612
16613 CM. Examine the tag field to make sure this is an instruction that
16614 should receive a conditional infix after the third character.
16615 If it is not, fail. Otherwise, undo the edits to the current
16616 line of input and proceed as for case CE. */
16617
16618 static const struct asm_opcode *
16619 opcode_lookup (char **str)
16620 {
16621 char *end, *base;
16622 char *affix;
16623 const struct asm_opcode *opcode;
16624 const struct asm_cond *cond;
16625 char save[2];
16626
16627 /* Scan up to the end of the mnemonic, which must end in white space,
16628 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16629 for (base = end = *str; *end != '\0'; end++)
16630 if (*end == ' ' || *end == '.')
16631 break;
16632
16633 if (end == base)
16634 return NULL;
16635
16636 /* Handle a possible width suffix and/or Neon type suffix. */
16637 if (end[0] == '.')
16638 {
16639 int offset = 2;
16640
16641 /* The .w and .n suffixes are only valid if the unified syntax is in
16642 use. */
16643 if (unified_syntax && end[1] == 'w')
16644 inst.size_req = 4;
16645 else if (unified_syntax && end[1] == 'n')
16646 inst.size_req = 2;
16647 else
16648 offset = 0;
16649
16650 inst.vectype.elems = 0;
16651
16652 *str = end + offset;
16653
16654 if (end[offset] == '.')
16655 {
16656 /* See if we have a Neon type suffix (possible in either unified or
16657 non-unified ARM syntax mode). */
16658 if (parse_neon_type (&inst.vectype, str) == FAIL)
16659 return NULL;
16660 }
16661 else if (end[offset] != '\0' && end[offset] != ' ')
16662 return NULL;
16663 }
16664 else
16665 *str = end;
16666
16667 /* Look for unaffixed or special-case affixed mnemonic. */
16668 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16669 end - base);
16670 if (opcode)
16671 {
16672 /* step U */
16673 if (opcode->tag < OT_odd_infix_0)
16674 {
16675 inst.cond = COND_ALWAYS;
16676 return opcode;
16677 }
16678
16679 if (warn_on_deprecated && unified_syntax)
16680 as_warn (_("conditional infixes are deprecated in unified syntax"));
16681 affix = base + (opcode->tag - OT_odd_infix_0);
16682 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16683 gas_assert (cond);
16684
16685 inst.cond = cond->value;
16686 return opcode;
16687 }
16688
16689 /* Cannot have a conditional suffix on a mnemonic of less than two
16690 characters. */
16691 if (end - base < 3)
16692 return NULL;
16693
16694 /* Look for suffixed mnemonic. */
16695 affix = end - 2;
16696 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16697 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16698 affix - base);
16699 if (opcode && cond)
16700 {
16701 /* step CE */
16702 switch (opcode->tag)
16703 {
16704 case OT_cinfix3_legacy:
16705 /* Ignore conditional suffixes matched on infix only mnemonics. */
16706 break;
16707
16708 case OT_cinfix3:
16709 case OT_cinfix3_deprecated:
16710 case OT_odd_infix_unc:
16711 if (!unified_syntax)
16712 return 0;
16713 /* else fall through */
16714
16715 case OT_csuffix:
16716 case OT_csuffixF:
16717 case OT_csuf_or_in3:
16718 inst.cond = cond->value;
16719 return opcode;
16720
16721 case OT_unconditional:
16722 case OT_unconditionalF:
16723 if (thumb_mode)
16724 inst.cond = cond->value;
16725 else
16726 {
16727 /* Delayed diagnostic. */
16728 inst.error = BAD_COND;
16729 inst.cond = COND_ALWAYS;
16730 }
16731 return opcode;
16732
16733 default:
16734 return NULL;
16735 }
16736 }
16737
16738 /* Cannot have a usual-position infix on a mnemonic of less than
16739 six characters (five would be a suffix). */
16740 if (end - base < 6)
16741 return NULL;
16742
16743 /* Look for infixed mnemonic in the usual position. */
16744 affix = base + 3;
16745 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16746 if (!cond)
16747 return NULL;
16748
16749 memcpy (save, affix, 2);
16750 memmove (affix, affix + 2, (end - affix) - 2);
16751 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16752 (end - base) - 2);
16753 memmove (affix + 2, affix, (end - affix) - 2);
16754 memcpy (affix, save, 2);
16755
16756 if (opcode
16757 && (opcode->tag == OT_cinfix3
16758 || opcode->tag == OT_cinfix3_deprecated
16759 || opcode->tag == OT_csuf_or_in3
16760 || opcode->tag == OT_cinfix3_legacy))
16761 {
16762 /* Step CM. */
16763 if (warn_on_deprecated && unified_syntax
16764 && (opcode->tag == OT_cinfix3
16765 || opcode->tag == OT_cinfix3_deprecated))
16766 as_warn (_("conditional infixes are deprecated in unified syntax"));
16767
16768 inst.cond = cond->value;
16769 return opcode;
16770 }
16771
16772 return NULL;
16773 }
16774
16775 /* This function generates an initial IT instruction, leaving its block
16776 virtually open for the new instructions. Eventually,
16777 the mask will be updated by now_it_add_mask () each time
16778 a new instruction needs to be included in the IT block.
16779 Finally, the block is closed with close_automatic_it_block ().
16780 The block closure can be requested either from md_assemble (),
16781 a tencode (), or due to a label hook. */
16782
16783 static void
16784 new_automatic_it_block (int cond)
16785 {
16786 now_it.state = AUTOMATIC_IT_BLOCK;
16787 now_it.mask = 0x18;
16788 now_it.cc = cond;
16789 now_it.block_length = 1;
16790 mapping_state (MAP_THUMB);
16791 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16792 now_it.warn_deprecated = FALSE;
16793 now_it.insn_cond = TRUE;
16794 }
16795
16796 /* Close an automatic IT block.
16797 See comments in new_automatic_it_block (). */
16798
16799 static void
16800 close_automatic_it_block (void)
16801 {
16802 now_it.mask = 0x10;
16803 now_it.block_length = 0;
16804 }
16805
16806 /* Update the mask of the current automatically-generated IT
16807 instruction. See comments in new_automatic_it_block (). */
16808
16809 static void
16810 now_it_add_mask (int cond)
16811 {
16812 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16813 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16814 | ((bitvalue) << (nbit)))
16815 const int resulting_bit = (cond & 1);
16816
16817 now_it.mask &= 0xf;
16818 now_it.mask = SET_BIT_VALUE (now_it.mask,
16819 resulting_bit,
16820 (5 - now_it.block_length));
16821 now_it.mask = SET_BIT_VALUE (now_it.mask,
16822 1,
16823 ((5 - now_it.block_length) - 1) );
16824 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16825
16826 #undef CLEAR_BIT
16827 #undef SET_BIT_VALUE
16828 }
16829
16830 /* The IT blocks handling machinery is accessed through the these functions:
16831 it_fsm_pre_encode () from md_assemble ()
16832 set_it_insn_type () optional, from the tencode functions
16833 set_it_insn_type_last () ditto
16834 in_it_block () ditto
16835 it_fsm_post_encode () from md_assemble ()
16836 force_automatic_it_block_close () from label habdling functions
16837
16838 Rationale:
16839 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16840 initializing the IT insn type with a generic initial value depending
16841 on the inst.condition.
16842 2) During the tencode function, two things may happen:
16843 a) The tencode function overrides the IT insn type by
16844 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16845 b) The tencode function queries the IT block state by
16846 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16847
16848 Both set_it_insn_type and in_it_block run the internal FSM state
16849 handling function (handle_it_state), because: a) setting the IT insn
16850 type may incur in an invalid state (exiting the function),
16851 and b) querying the state requires the FSM to be updated.
16852 Specifically we want to avoid creating an IT block for conditional
16853 branches, so it_fsm_pre_encode is actually a guess and we can't
16854 determine whether an IT block is required until the tencode () routine
16855 has decided what type of instruction this actually it.
16856 Because of this, if set_it_insn_type and in_it_block have to be used,
16857 set_it_insn_type has to be called first.
16858
16859 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16860 determines the insn IT type depending on the inst.cond code.
16861 When a tencode () routine encodes an instruction that can be
16862 either outside an IT block, or, in the case of being inside, has to be
16863 the last one, set_it_insn_type_last () will determine the proper
16864 IT instruction type based on the inst.cond code. Otherwise,
16865 set_it_insn_type can be called for overriding that logic or
16866 for covering other cases.
16867
16868 Calling handle_it_state () may not transition the IT block state to
16869 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16870 still queried. Instead, if the FSM determines that the state should
16871 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16872 after the tencode () function: that's what it_fsm_post_encode () does.
16873
16874 Since in_it_block () calls the state handling function to get an
16875 updated state, an error may occur (due to invalid insns combination).
16876 In that case, inst.error is set.
16877 Therefore, inst.error has to be checked after the execution of
16878 the tencode () routine.
16879
16880 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16881 any pending state change (if any) that didn't take place in
16882 handle_it_state () as explained above. */
16883
16884 static void
16885 it_fsm_pre_encode (void)
16886 {
16887 if (inst.cond != COND_ALWAYS)
16888 inst.it_insn_type = INSIDE_IT_INSN;
16889 else
16890 inst.it_insn_type = OUTSIDE_IT_INSN;
16891
16892 now_it.state_handled = 0;
16893 }
16894
16895 /* IT state FSM handling function. */
16896
16897 static int
16898 handle_it_state (void)
16899 {
16900 now_it.state_handled = 1;
16901 now_it.insn_cond = FALSE;
16902
16903 switch (now_it.state)
16904 {
16905 case OUTSIDE_IT_BLOCK:
16906 switch (inst.it_insn_type)
16907 {
16908 case OUTSIDE_IT_INSN:
16909 break;
16910
16911 case INSIDE_IT_INSN:
16912 case INSIDE_IT_LAST_INSN:
16913 if (thumb_mode == 0)
16914 {
16915 if (unified_syntax
16916 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16917 as_tsktsk (_("Warning: conditional outside an IT block"\
16918 " for Thumb."));
16919 }
16920 else
16921 {
16922 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16923 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16924 {
16925 /* Automatically generate the IT instruction. */
16926 new_automatic_it_block (inst.cond);
16927 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16928 close_automatic_it_block ();
16929 }
16930 else
16931 {
16932 inst.error = BAD_OUT_IT;
16933 return FAIL;
16934 }
16935 }
16936 break;
16937
16938 case IF_INSIDE_IT_LAST_INSN:
16939 case NEUTRAL_IT_INSN:
16940 break;
16941
16942 case IT_INSN:
16943 now_it.state = MANUAL_IT_BLOCK;
16944 now_it.block_length = 0;
16945 break;
16946 }
16947 break;
16948
16949 case AUTOMATIC_IT_BLOCK:
16950 /* Three things may happen now:
16951 a) We should increment current it block size;
16952 b) We should close current it block (closing insn or 4 insns);
16953 c) We should close current it block and start a new one (due
16954 to incompatible conditions or
16955 4 insns-length block reached). */
16956
16957 switch (inst.it_insn_type)
16958 {
16959 case OUTSIDE_IT_INSN:
16960 /* The closure of the block shall happen immediatelly,
16961 so any in_it_block () call reports the block as closed. */
16962 force_automatic_it_block_close ();
16963 break;
16964
16965 case INSIDE_IT_INSN:
16966 case INSIDE_IT_LAST_INSN:
16967 case IF_INSIDE_IT_LAST_INSN:
16968 now_it.block_length++;
16969
16970 if (now_it.block_length > 4
16971 || !now_it_compatible (inst.cond))
16972 {
16973 force_automatic_it_block_close ();
16974 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16975 new_automatic_it_block (inst.cond);
16976 }
16977 else
16978 {
16979 now_it.insn_cond = TRUE;
16980 now_it_add_mask (inst.cond);
16981 }
16982
16983 if (now_it.state == AUTOMATIC_IT_BLOCK
16984 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16985 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16986 close_automatic_it_block ();
16987 break;
16988
16989 case NEUTRAL_IT_INSN:
16990 now_it.block_length++;
16991 now_it.insn_cond = TRUE;
16992
16993 if (now_it.block_length > 4)
16994 force_automatic_it_block_close ();
16995 else
16996 now_it_add_mask (now_it.cc & 1);
16997 break;
16998
16999 case IT_INSN:
17000 close_automatic_it_block ();
17001 now_it.state = MANUAL_IT_BLOCK;
17002 break;
17003 }
17004 break;
17005
17006 case MANUAL_IT_BLOCK:
17007 {
17008 /* Check conditional suffixes. */
17009 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
17010 int is_last;
17011 now_it.mask <<= 1;
17012 now_it.mask &= 0x1f;
17013 is_last = (now_it.mask == 0x10);
17014 now_it.insn_cond = TRUE;
17015
17016 switch (inst.it_insn_type)
17017 {
17018 case OUTSIDE_IT_INSN:
17019 inst.error = BAD_NOT_IT;
17020 return FAIL;
17021
17022 case INSIDE_IT_INSN:
17023 if (cond != inst.cond)
17024 {
17025 inst.error = BAD_IT_COND;
17026 return FAIL;
17027 }
17028 break;
17029
17030 case INSIDE_IT_LAST_INSN:
17031 case IF_INSIDE_IT_LAST_INSN:
17032 if (cond != inst.cond)
17033 {
17034 inst.error = BAD_IT_COND;
17035 return FAIL;
17036 }
17037 if (!is_last)
17038 {
17039 inst.error = BAD_BRANCH;
17040 return FAIL;
17041 }
17042 break;
17043
17044 case NEUTRAL_IT_INSN:
17045 /* The BKPT instruction is unconditional even in an IT block. */
17046 break;
17047
17048 case IT_INSN:
17049 inst.error = BAD_IT_IT;
17050 return FAIL;
17051 }
17052 }
17053 break;
17054 }
17055
17056 return SUCCESS;
17057 }
17058
17059 struct depr_insn_mask
17060 {
17061 unsigned long pattern;
17062 unsigned long mask;
17063 const char* description;
17064 };
17065
17066 /* List of 16-bit instruction patterns deprecated in an IT block in
17067 ARMv8. */
17068 static const struct depr_insn_mask depr_it_insns[] = {
17069 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17070 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17071 { 0xa000, 0xb800, N_("ADR") },
17072 { 0x4800, 0xf800, N_("Literal loads") },
17073 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17074 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17075 { 0, 0, NULL }
17076 };
17077
17078 static void
17079 it_fsm_post_encode (void)
17080 {
17081 int is_last;
17082
17083 if (!now_it.state_handled)
17084 handle_it_state ();
17085
17086 if (now_it.insn_cond
17087 && !now_it.warn_deprecated
17088 && warn_on_deprecated
17089 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17090 {
17091 if (inst.instruction >= 0x10000)
17092 {
17093 as_warn (_("IT blocks containing 32-bit Thumb instructions are "
17094 "deprecated in ARMv8"));
17095 now_it.warn_deprecated = TRUE;
17096 }
17097 else
17098 {
17099 const struct depr_insn_mask *p = depr_it_insns;
17100
17101 while (p->mask != 0)
17102 {
17103 if ((inst.instruction & p->mask) == p->pattern)
17104 {
17105 as_warn (_("IT blocks containing 16-bit Thumb instructions "
17106 "of the following class are deprecated in ARMv8: "
17107 "%s"), p->description);
17108 now_it.warn_deprecated = TRUE;
17109 break;
17110 }
17111
17112 ++p;
17113 }
17114 }
17115
17116 if (now_it.block_length > 1)
17117 {
17118 as_warn (_("IT blocks containing more than one conditional "
17119 "instruction are deprecated in ARMv8"));
17120 now_it.warn_deprecated = TRUE;
17121 }
17122 }
17123
17124 is_last = (now_it.mask == 0x10);
17125 if (is_last)
17126 {
17127 now_it.state = OUTSIDE_IT_BLOCK;
17128 now_it.mask = 0;
17129 }
17130 }
17131
17132 static void
17133 force_automatic_it_block_close (void)
17134 {
17135 if (now_it.state == AUTOMATIC_IT_BLOCK)
17136 {
17137 close_automatic_it_block ();
17138 now_it.state = OUTSIDE_IT_BLOCK;
17139 now_it.mask = 0;
17140 }
17141 }
17142
17143 static int
17144 in_it_block (void)
17145 {
17146 if (!now_it.state_handled)
17147 handle_it_state ();
17148
17149 return now_it.state != OUTSIDE_IT_BLOCK;
17150 }
17151
17152 void
17153 md_assemble (char *str)
17154 {
17155 char *p = str;
17156 const struct asm_opcode * opcode;
17157
17158 /* Align the previous label if needed. */
17159 if (last_label_seen != NULL)
17160 {
17161 symbol_set_frag (last_label_seen, frag_now);
17162 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17163 S_SET_SEGMENT (last_label_seen, now_seg);
17164 }
17165
17166 memset (&inst, '\0', sizeof (inst));
17167 inst.reloc.type = BFD_RELOC_UNUSED;
17168
17169 opcode = opcode_lookup (&p);
17170 if (!opcode)
17171 {
17172 /* It wasn't an instruction, but it might be a register alias of
17173 the form alias .req reg, or a Neon .dn/.qn directive. */
17174 if (! create_register_alias (str, p)
17175 && ! create_neon_reg_alias (str, p))
17176 as_bad (_("bad instruction `%s'"), str);
17177
17178 return;
17179 }
17180
17181 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17182 as_warn (_("s suffix on comparison instruction is deprecated"));
17183
17184 /* The value which unconditional instructions should have in place of the
17185 condition field. */
17186 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17187
17188 if (thumb_mode)
17189 {
17190 arm_feature_set variant;
17191
17192 variant = cpu_variant;
17193 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17194 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17195 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17196 /* Check that this instruction is supported for this CPU. */
17197 if (!opcode->tvariant
17198 || (thumb_mode == 1
17199 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17200 {
17201 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
17202 return;
17203 }
17204 if (inst.cond != COND_ALWAYS && !unified_syntax
17205 && opcode->tencode != do_t_branch)
17206 {
17207 as_bad (_("Thumb does not support conditional execution"));
17208 return;
17209 }
17210
17211 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
17212 {
17213 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
17214 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17215 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17216 {
17217 /* Two things are addressed here.
17218 1) Implicit require narrow instructions on Thumb-1.
17219 This avoids relaxation accidentally introducing Thumb-2
17220 instructions.
17221 2) Reject wide instructions in non Thumb-2 cores. */
17222 if (inst.size_req == 0)
17223 inst.size_req = 2;
17224 else if (inst.size_req == 4)
17225 {
17226 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
17227 return;
17228 }
17229 }
17230 }
17231
17232 inst.instruction = opcode->tvalue;
17233
17234 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17235 {
17236 /* Prepare the it_insn_type for those encodings that don't set
17237 it. */
17238 it_fsm_pre_encode ();
17239
17240 opcode->tencode ();
17241
17242 it_fsm_post_encode ();
17243 }
17244
17245 if (!(inst.error || inst.relax))
17246 {
17247 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17248 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17249 if (inst.size_req && inst.size_req != inst.size)
17250 {
17251 as_bad (_("cannot honor width suffix -- `%s'"), str);
17252 return;
17253 }
17254 }
17255
17256 /* Something has gone badly wrong if we try to relax a fixed size
17257 instruction. */
17258 gas_assert (inst.size_req == 0 || !inst.relax);
17259
17260 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17261 *opcode->tvariant);
17262 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17263 set those bits when Thumb-2 32-bit instructions are seen. ie.
17264 anything other than bl/blx and v6-M instructions.
17265 This is overly pessimistic for relaxable instructions. */
17266 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17267 || inst.relax)
17268 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17269 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17270 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17271 arm_ext_v6t2);
17272
17273 check_neon_suffixes;
17274
17275 if (!inst.error)
17276 {
17277 mapping_state (MAP_THUMB);
17278 }
17279 }
17280 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17281 {
17282 bfd_boolean is_bx;
17283
17284 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17285 is_bx = (opcode->aencode == do_bx);
17286
17287 /* Check that this instruction is supported for this CPU. */
17288 if (!(is_bx && fix_v4bx)
17289 && !(opcode->avariant &&
17290 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17291 {
17292 as_bad (_("selected processor does not support ARM mode `%s'"), str);
17293 return;
17294 }
17295 if (inst.size_req)
17296 {
17297 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17298 return;
17299 }
17300
17301 inst.instruction = opcode->avalue;
17302 if (opcode->tag == OT_unconditionalF)
17303 inst.instruction |= 0xF << 28;
17304 else
17305 inst.instruction |= inst.cond << 28;
17306 inst.size = INSN_SIZE;
17307 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17308 {
17309 it_fsm_pre_encode ();
17310 opcode->aencode ();
17311 it_fsm_post_encode ();
17312 }
17313 /* Arm mode bx is marked as both v4T and v5 because it's still required
17314 on a hypothetical non-thumb v5 core. */
17315 if (is_bx)
17316 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17317 else
17318 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17319 *opcode->avariant);
17320
17321 check_neon_suffixes;
17322
17323 if (!inst.error)
17324 {
17325 mapping_state (MAP_ARM);
17326 }
17327 }
17328 else
17329 {
17330 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17331 "-- `%s'"), str);
17332 return;
17333 }
17334 output_inst (str);
17335 }
17336
17337 static void
17338 check_it_blocks_finished (void)
17339 {
17340 #ifdef OBJ_ELF
17341 asection *sect;
17342
17343 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17344 if (seg_info (sect)->tc_segment_info_data.current_it.state
17345 == MANUAL_IT_BLOCK)
17346 {
17347 as_warn (_("section '%s' finished with an open IT block."),
17348 sect->name);
17349 }
17350 #else
17351 if (now_it.state == MANUAL_IT_BLOCK)
17352 as_warn (_("file finished with an open IT block."));
17353 #endif
17354 }
17355
17356 /* Various frobbings of labels and their addresses. */
17357
17358 void
17359 arm_start_line_hook (void)
17360 {
17361 last_label_seen = NULL;
17362 }
17363
17364 void
17365 arm_frob_label (symbolS * sym)
17366 {
17367 last_label_seen = sym;
17368
17369 ARM_SET_THUMB (sym, thumb_mode);
17370
17371 #if defined OBJ_COFF || defined OBJ_ELF
17372 ARM_SET_INTERWORK (sym, support_interwork);
17373 #endif
17374
17375 force_automatic_it_block_close ();
17376
17377 /* Note - do not allow local symbols (.Lxxx) to be labelled
17378 as Thumb functions. This is because these labels, whilst
17379 they exist inside Thumb code, are not the entry points for
17380 possible ARM->Thumb calls. Also, these labels can be used
17381 as part of a computed goto or switch statement. eg gcc
17382 can generate code that looks like this:
17383
17384 ldr r2, [pc, .Laaa]
17385 lsl r3, r3, #2
17386 ldr r2, [r3, r2]
17387 mov pc, r2
17388
17389 .Lbbb: .word .Lxxx
17390 .Lccc: .word .Lyyy
17391 ..etc...
17392 .Laaa: .word Lbbb
17393
17394 The first instruction loads the address of the jump table.
17395 The second instruction converts a table index into a byte offset.
17396 The third instruction gets the jump address out of the table.
17397 The fourth instruction performs the jump.
17398
17399 If the address stored at .Laaa is that of a symbol which has the
17400 Thumb_Func bit set, then the linker will arrange for this address
17401 to have the bottom bit set, which in turn would mean that the
17402 address computation performed by the third instruction would end
17403 up with the bottom bit set. Since the ARM is capable of unaligned
17404 word loads, the instruction would then load the incorrect address
17405 out of the jump table, and chaos would ensue. */
17406 if (label_is_thumb_function_name
17407 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17408 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17409 {
17410 /* When the address of a Thumb function is taken the bottom
17411 bit of that address should be set. This will allow
17412 interworking between Arm and Thumb functions to work
17413 correctly. */
17414
17415 THUMB_SET_FUNC (sym, 1);
17416
17417 label_is_thumb_function_name = FALSE;
17418 }
17419
17420 dwarf2_emit_label (sym);
17421 }
17422
17423 bfd_boolean
17424 arm_data_in_code (void)
17425 {
17426 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17427 {
17428 *input_line_pointer = '/';
17429 input_line_pointer += 5;
17430 *input_line_pointer = 0;
17431 return TRUE;
17432 }
17433
17434 return FALSE;
17435 }
17436
17437 char *
17438 arm_canonicalize_symbol_name (char * name)
17439 {
17440 int len;
17441
17442 if (thumb_mode && (len = strlen (name)) > 5
17443 && streq (name + len - 5, "/data"))
17444 *(name + len - 5) = 0;
17445
17446 return name;
17447 }
17448 \f
17449 /* Table of all register names defined by default. The user can
17450 define additional names with .req. Note that all register names
17451 should appear in both upper and lowercase variants. Some registers
17452 also have mixed-case names. */
17453
17454 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17455 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17456 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17457 #define REGSET(p,t) \
17458 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17459 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17460 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17461 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17462 #define REGSETH(p,t) \
17463 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17464 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17465 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17466 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17467 #define REGSET2(p,t) \
17468 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17469 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17470 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17471 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17472 #define SPLRBANK(base,bank,t) \
17473 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17474 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17475 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17476 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17477 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17478 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17479
17480 static const struct reg_entry reg_names[] =
17481 {
17482 /* ARM integer registers. */
17483 REGSET(r, RN), REGSET(R, RN),
17484
17485 /* ATPCS synonyms. */
17486 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17487 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17488 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17489
17490 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17491 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17492 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17493
17494 /* Well-known aliases. */
17495 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17496 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17497
17498 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17499 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17500
17501 /* Coprocessor numbers. */
17502 REGSET(p, CP), REGSET(P, CP),
17503
17504 /* Coprocessor register numbers. The "cr" variants are for backward
17505 compatibility. */
17506 REGSET(c, CN), REGSET(C, CN),
17507 REGSET(cr, CN), REGSET(CR, CN),
17508
17509 /* ARM banked registers. */
17510 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17511 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17512 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17513 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17514 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17515 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17516 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17517
17518 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17519 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17520 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17521 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17522 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17523 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
17524 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17525 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17526
17527 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17528 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17529 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17530 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17531 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17532 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17533 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17534 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17535 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17536
17537 /* FPA registers. */
17538 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17539 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17540
17541 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17542 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17543
17544 /* VFP SP registers. */
17545 REGSET(s,VFS), REGSET(S,VFS),
17546 REGSETH(s,VFS), REGSETH(S,VFS),
17547
17548 /* VFP DP Registers. */
17549 REGSET(d,VFD), REGSET(D,VFD),
17550 /* Extra Neon DP registers. */
17551 REGSETH(d,VFD), REGSETH(D,VFD),
17552
17553 /* Neon QP registers. */
17554 REGSET2(q,NQ), REGSET2(Q,NQ),
17555
17556 /* VFP control registers. */
17557 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17558 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17559 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17560 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17561 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17562 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17563
17564 /* Maverick DSP coprocessor registers. */
17565 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17566 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17567
17568 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17569 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17570 REGDEF(dspsc,0,DSPSC),
17571
17572 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17573 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17574 REGDEF(DSPSC,0,DSPSC),
17575
17576 /* iWMMXt data registers - p0, c0-15. */
17577 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17578
17579 /* iWMMXt control registers - p1, c0-3. */
17580 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17581 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17582 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17583 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17584
17585 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17586 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17587 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17588 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17589 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17590
17591 /* XScale accumulator registers. */
17592 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17593 };
17594 #undef REGDEF
17595 #undef REGNUM
17596 #undef REGSET
17597
17598 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17599 within psr_required_here. */
17600 static const struct asm_psr psrs[] =
17601 {
17602 /* Backward compatibility notation. Note that "all" is no longer
17603 truly all possible PSR bits. */
17604 {"all", PSR_c | PSR_f},
17605 {"flg", PSR_f},
17606 {"ctl", PSR_c},
17607
17608 /* Individual flags. */
17609 {"f", PSR_f},
17610 {"c", PSR_c},
17611 {"x", PSR_x},
17612 {"s", PSR_s},
17613
17614 /* Combinations of flags. */
17615 {"fs", PSR_f | PSR_s},
17616 {"fx", PSR_f | PSR_x},
17617 {"fc", PSR_f | PSR_c},
17618 {"sf", PSR_s | PSR_f},
17619 {"sx", PSR_s | PSR_x},
17620 {"sc", PSR_s | PSR_c},
17621 {"xf", PSR_x | PSR_f},
17622 {"xs", PSR_x | PSR_s},
17623 {"xc", PSR_x | PSR_c},
17624 {"cf", PSR_c | PSR_f},
17625 {"cs", PSR_c | PSR_s},
17626 {"cx", PSR_c | PSR_x},
17627 {"fsx", PSR_f | PSR_s | PSR_x},
17628 {"fsc", PSR_f | PSR_s | PSR_c},
17629 {"fxs", PSR_f | PSR_x | PSR_s},
17630 {"fxc", PSR_f | PSR_x | PSR_c},
17631 {"fcs", PSR_f | PSR_c | PSR_s},
17632 {"fcx", PSR_f | PSR_c | PSR_x},
17633 {"sfx", PSR_s | PSR_f | PSR_x},
17634 {"sfc", PSR_s | PSR_f | PSR_c},
17635 {"sxf", PSR_s | PSR_x | PSR_f},
17636 {"sxc", PSR_s | PSR_x | PSR_c},
17637 {"scf", PSR_s | PSR_c | PSR_f},
17638 {"scx", PSR_s | PSR_c | PSR_x},
17639 {"xfs", PSR_x | PSR_f | PSR_s},
17640 {"xfc", PSR_x | PSR_f | PSR_c},
17641 {"xsf", PSR_x | PSR_s | PSR_f},
17642 {"xsc", PSR_x | PSR_s | PSR_c},
17643 {"xcf", PSR_x | PSR_c | PSR_f},
17644 {"xcs", PSR_x | PSR_c | PSR_s},
17645 {"cfs", PSR_c | PSR_f | PSR_s},
17646 {"cfx", PSR_c | PSR_f | PSR_x},
17647 {"csf", PSR_c | PSR_s | PSR_f},
17648 {"csx", PSR_c | PSR_s | PSR_x},
17649 {"cxf", PSR_c | PSR_x | PSR_f},
17650 {"cxs", PSR_c | PSR_x | PSR_s},
17651 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17652 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17653 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17654 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17655 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17656 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17657 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17658 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17659 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17660 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17661 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17662 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17663 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17664 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17665 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17666 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17667 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17668 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17669 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17670 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17671 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17672 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17673 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17674 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17675 };
17676
17677 /* Table of V7M psr names. */
17678 static const struct asm_psr v7m_psrs[] =
17679 {
17680 {"apsr", 0 }, {"APSR", 0 },
17681 {"iapsr", 1 }, {"IAPSR", 1 },
17682 {"eapsr", 2 }, {"EAPSR", 2 },
17683 {"psr", 3 }, {"PSR", 3 },
17684 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17685 {"ipsr", 5 }, {"IPSR", 5 },
17686 {"epsr", 6 }, {"EPSR", 6 },
17687 {"iepsr", 7 }, {"IEPSR", 7 },
17688 {"msp", 8 }, {"MSP", 8 },
17689 {"psp", 9 }, {"PSP", 9 },
17690 {"primask", 16}, {"PRIMASK", 16},
17691 {"basepri", 17}, {"BASEPRI", 17},
17692 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17693 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17694 {"faultmask", 19}, {"FAULTMASK", 19},
17695 {"control", 20}, {"CONTROL", 20}
17696 };
17697
17698 /* Table of all shift-in-operand names. */
17699 static const struct asm_shift_name shift_names [] =
17700 {
17701 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17702 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17703 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17704 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17705 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17706 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17707 };
17708
17709 /* Table of all explicit relocation names. */
17710 #ifdef OBJ_ELF
17711 static struct reloc_entry reloc_names[] =
17712 {
17713 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17714 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17715 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17716 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17717 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17718 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17719 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17720 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17721 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17722 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17723 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17724 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17725 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17726 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17727 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17728 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17729 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17730 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17731 };
17732 #endif
17733
17734 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17735 static const struct asm_cond conds[] =
17736 {
17737 {"eq", 0x0},
17738 {"ne", 0x1},
17739 {"cs", 0x2}, {"hs", 0x2},
17740 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17741 {"mi", 0x4},
17742 {"pl", 0x5},
17743 {"vs", 0x6},
17744 {"vc", 0x7},
17745 {"hi", 0x8},
17746 {"ls", 0x9},
17747 {"ge", 0xa},
17748 {"lt", 0xb},
17749 {"gt", 0xc},
17750 {"le", 0xd},
17751 {"al", 0xe}
17752 };
17753
17754 #define UL_BARRIER(L,U,CODE,FEAT) \
17755 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17756 { U, CODE, ARM_FEATURE (FEAT, 0) }
17757
17758 static struct asm_barrier_opt barrier_opt_names[] =
17759 {
17760 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17761 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17762 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17763 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17764 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17765 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17766 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17767 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17768 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17769 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17770 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17771 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17772 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17773 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17774 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17775 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17776 };
17777
17778 #undef UL_BARRIER
17779
17780 /* Table of ARM-format instructions. */
17781
17782 /* Macros for gluing together operand strings. N.B. In all cases
17783 other than OPS0, the trailing OP_stop comes from default
17784 zero-initialization of the unspecified elements of the array. */
17785 #define OPS0() { OP_stop, }
17786 #define OPS1(a) { OP_##a, }
17787 #define OPS2(a,b) { OP_##a,OP_##b, }
17788 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17789 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17790 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17791 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17792
17793 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17794 This is useful when mixing operands for ARM and THUMB, i.e. using the
17795 MIX_ARM_THUMB_OPERANDS macro.
17796 In order to use these macros, prefix the number of operands with _
17797 e.g. _3. */
17798 #define OPS_1(a) { a, }
17799 #define OPS_2(a,b) { a,b, }
17800 #define OPS_3(a,b,c) { a,b,c, }
17801 #define OPS_4(a,b,c,d) { a,b,c,d, }
17802 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17803 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17804
17805 /* These macros abstract out the exact format of the mnemonic table and
17806 save some repeated characters. */
17807
17808 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17809 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17810 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17811 THUMB_VARIANT, do_##ae, do_##te }
17812
17813 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17814 a T_MNEM_xyz enumerator. */
17815 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17816 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17817 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17818 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17819
17820 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17821 infix after the third character. */
17822 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17823 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17824 THUMB_VARIANT, do_##ae, do_##te }
17825 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17826 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17827 THUMB_VARIANT, do_##ae, do_##te }
17828 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17829 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17830 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17831 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17832 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17833 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17834 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17835 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17836
17837 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17838 field is still 0xE. Many of the Thumb variants can be executed
17839 conditionally, so this is checked separately. */
17840 #define TUE(mnem, op, top, nops, ops, ae, te) \
17841 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17842 THUMB_VARIANT, do_##ae, do_##te }
17843
17844 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
17845 Used by mnemonics that have very minimal differences in the encoding for
17846 ARM and Thumb variants and can be handled in a common function. */
17847 #define TUEc(mnem, op, top, nops, ops, en) \
17848 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17849 THUMB_VARIANT, do_##en, do_##en }
17850
17851 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17852 condition code field. */
17853 #define TUF(mnem, op, top, nops, ops, ae, te) \
17854 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17855 THUMB_VARIANT, do_##ae, do_##te }
17856
17857 /* ARM-only variants of all the above. */
17858 #define CE(mnem, op, nops, ops, ae) \
17859 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17860
17861 #define C3(mnem, op, nops, ops, ae) \
17862 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17863
17864 /* Legacy mnemonics that always have conditional infix after the third
17865 character. */
17866 #define CL(mnem, op, nops, ops, ae) \
17867 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17868 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17869
17870 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17871 #define cCE(mnem, op, nops, ops, ae) \
17872 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17873
17874 /* Legacy coprocessor instructions where conditional infix and conditional
17875 suffix are ambiguous. For consistency this includes all FPA instructions,
17876 not just the potentially ambiguous ones. */
17877 #define cCL(mnem, op, nops, ops, ae) \
17878 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17879 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17880
17881 /* Coprocessor, takes either a suffix or a position-3 infix
17882 (for an FPA corner case). */
17883 #define C3E(mnem, op, nops, ops, ae) \
17884 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17885 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17886
17887 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17888 { m1 #m2 m3, OPS##nops ops, \
17889 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17890 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17891
17892 #define CM(m1, m2, op, nops, ops, ae) \
17893 xCM_ (m1, , m2, op, nops, ops, ae), \
17894 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17895 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17896 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17897 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17898 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17899 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17900 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17901 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17902 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17903 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17904 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17905 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17906 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17907 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17908 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17909 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17910 xCM_ (m1, le, m2, op, nops, ops, ae), \
17911 xCM_ (m1, al, m2, op, nops, ops, ae)
17912
17913 #define UE(mnem, op, nops, ops, ae) \
17914 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17915
17916 #define UF(mnem, op, nops, ops, ae) \
17917 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17918
17919 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17920 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17921 use the same encoding function for each. */
17922 #define NUF(mnem, op, nops, ops, enc) \
17923 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17924 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17925
17926 /* Neon data processing, version which indirects through neon_enc_tab for
17927 the various overloaded versions of opcodes. */
17928 #define nUF(mnem, op, nops, ops, enc) \
17929 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17930 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17931
17932 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17933 version. */
17934 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17935 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17936 THUMB_VARIANT, do_##enc, do_##enc }
17937
17938 #define NCE(mnem, op, nops, ops, enc) \
17939 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17940
17941 #define NCEF(mnem, op, nops, ops, enc) \
17942 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17943
17944 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17945 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17946 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17947 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17948
17949 #define nCE(mnem, op, nops, ops, enc) \
17950 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17951
17952 #define nCEF(mnem, op, nops, ops, enc) \
17953 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17954
17955 #define do_0 0
17956
17957 static const struct asm_opcode insns[] =
17958 {
17959 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17960 #define THUMB_VARIANT &arm_ext_v4t
17961 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17962 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17963 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17964 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17965 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17966 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17967 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17968 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17969 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17970 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17971 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17972 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17973 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17974 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17975 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17976 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17977
17978 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17979 for setting PSR flag bits. They are obsolete in V6 and do not
17980 have Thumb equivalents. */
17981 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17982 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17983 CL("tstp", 110f000, 2, (RR, SH), cmp),
17984 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17985 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17986 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17987 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17988 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17989 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17990
17991 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17992 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17993 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17994 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17995
17996 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17997 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17998 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17999 OP_RRnpc),
18000 OP_ADDRGLDR),ldst, t_ldst),
18001 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18002
18003 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18004 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18005 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18006 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18007 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18008 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18009
18010 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
18011 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
18012 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
18013 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
18014
18015 /* Pseudo ops. */
18016 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
18017 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
18018 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
18019
18020 /* Thumb-compatibility pseudo ops. */
18021 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
18022 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
18023 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
18024 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
18025 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
18026 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
18027 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
18028 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
18029 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
18030 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18031 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18032 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
18033
18034 /* These may simplify to neg. */
18035 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18036 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
18037
18038 #undef THUMB_VARIANT
18039 #define THUMB_VARIANT & arm_ext_v6
18040
18041 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
18042
18043 /* V1 instructions with no Thumb analogue prior to V6T2. */
18044 #undef THUMB_VARIANT
18045 #define THUMB_VARIANT & arm_ext_v6t2
18046
18047 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18048 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18049 CL("teqp", 130f000, 2, (RR, SH), cmp),
18050
18051 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18052 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18053 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18054 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18055
18056 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18057 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18058
18059 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18060 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18061
18062 /* V1 instructions with no Thumb analogue at all. */
18063 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
18064 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18065
18066 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18067 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18068 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18069 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18070 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18071 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18072 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18073 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18074
18075 #undef ARM_VARIANT
18076 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18077 #undef THUMB_VARIANT
18078 #define THUMB_VARIANT & arm_ext_v4t
18079
18080 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18081 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18082
18083 #undef THUMB_VARIANT
18084 #define THUMB_VARIANT & arm_ext_v6t2
18085
18086 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18087 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18088
18089 /* Generic coprocessor instructions. */
18090 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18091 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18092 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18093 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18094 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18095 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18096 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
18097
18098 #undef ARM_VARIANT
18099 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18100
18101 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18102 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18103
18104 #undef ARM_VARIANT
18105 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18106 #undef THUMB_VARIANT
18107 #define THUMB_VARIANT & arm_ext_msr
18108
18109 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18110 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18111
18112 #undef ARM_VARIANT
18113 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18114 #undef THUMB_VARIANT
18115 #define THUMB_VARIANT & arm_ext_v6t2
18116
18117 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18118 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18119 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18120 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18121 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18122 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18123 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18124 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18125
18126 #undef ARM_VARIANT
18127 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18128 #undef THUMB_VARIANT
18129 #define THUMB_VARIANT & arm_ext_v4t
18130
18131 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18132 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18133 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18134 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18135 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18136 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18137
18138 #undef ARM_VARIANT
18139 #define ARM_VARIANT & arm_ext_v4t_5
18140
18141 /* ARM Architecture 4T. */
18142 /* Note: bx (and blx) are required on V5, even if the processor does
18143 not support Thumb. */
18144 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18145
18146 #undef ARM_VARIANT
18147 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18148 #undef THUMB_VARIANT
18149 #define THUMB_VARIANT & arm_ext_v5t
18150
18151 /* Note: blx has 2 variants; the .value coded here is for
18152 BLX(2). Only this variant has conditional execution. */
18153 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18154 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18155
18156 #undef THUMB_VARIANT
18157 #define THUMB_VARIANT & arm_ext_v6t2
18158
18159 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18160 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18161 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18162 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18163 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18164 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18165 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18166 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18167
18168 #undef ARM_VARIANT
18169 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18170 #undef THUMB_VARIANT
18171 #define THUMB_VARIANT &arm_ext_v5exp
18172
18173 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18174 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18175 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18176 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18177
18178 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18179 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18180
18181 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18182 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18183 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18184 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18185
18186 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18187 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18188 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18189 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18190
18191 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18192 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18193
18194 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18195 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18196 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18197 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18198
18199 #undef ARM_VARIANT
18200 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18201 #undef THUMB_VARIANT
18202 #define THUMB_VARIANT &arm_ext_v6t2
18203
18204 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18205 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18206 ldrd, t_ldstd),
18207 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18208 ADDRGLDRS), ldrd, t_ldstd),
18209
18210 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18211 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18212
18213 #undef ARM_VARIANT
18214 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18215
18216 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18217
18218 #undef ARM_VARIANT
18219 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18220 #undef THUMB_VARIANT
18221 #define THUMB_VARIANT & arm_ext_v6
18222
18223 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18224 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18225 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18226 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18227 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18228 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18229 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18230 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18231 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18232 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18233
18234 #undef THUMB_VARIANT
18235 #define THUMB_VARIANT & arm_ext_v6t2
18236
18237 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18238 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18239 strex, t_strex),
18240 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18241 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18242
18243 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18244 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18245
18246 /* ARM V6 not included in V7M. */
18247 #undef THUMB_VARIANT
18248 #define THUMB_VARIANT & arm_ext_v6_notm
18249 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18250 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18251 UF(rfeib, 9900a00, 1, (RRw), rfe),
18252 UF(rfeda, 8100a00, 1, (RRw), rfe),
18253 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18254 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18255 UF(rfefa, 8100a00, 1, (RRw), rfe),
18256 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18257 UF(rfeed, 9900a00, 1, (RRw), rfe),
18258 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18259 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18260 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18261 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18262 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
18263 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18264 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
18265 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18266 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18267
18268 /* ARM V6 not included in V7M (eg. integer SIMD). */
18269 #undef THUMB_VARIANT
18270 #define THUMB_VARIANT & arm_ext_v6_dsp
18271 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18272 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18273 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18274 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18275 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18276 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18277 /* Old name for QASX. */
18278 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18279 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18280 /* Old name for QSAX. */
18281 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18282 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18283 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18284 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18285 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18286 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18287 /* Old name for SASX. */
18288 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18289 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18290 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18291 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18292 /* Old name for SHASX. */
18293 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18294 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18295 /* Old name for SHSAX. */
18296 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18297 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18298 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18299 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18300 /* Old name for SSAX. */
18301 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18302 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18303 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18304 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18305 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18306 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18307 /* Old name for UASX. */
18308 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18309 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18310 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18311 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18312 /* Old name for UHASX. */
18313 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18314 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18315 /* Old name for UHSAX. */
18316 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18317 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18318 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18319 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18320 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18321 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18322 /* Old name for UQASX. */
18323 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18324 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18325 /* Old name for UQSAX. */
18326 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18327 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18328 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18329 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18330 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18331 /* Old name for USAX. */
18332 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18333 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18334 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18335 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18336 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18337 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18338 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18339 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18340 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18341 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18342 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18343 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18344 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18345 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18346 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18347 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18348 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18349 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18350 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18351 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18352 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18353 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18354 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18355 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18356 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18357 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18358 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18359 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18360 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18361 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18362 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18363 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18364 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18365 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18366
18367 #undef ARM_VARIANT
18368 #define ARM_VARIANT & arm_ext_v6k
18369 #undef THUMB_VARIANT
18370 #define THUMB_VARIANT & arm_ext_v6k
18371
18372 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18373 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18374 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18375 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18376
18377 #undef THUMB_VARIANT
18378 #define THUMB_VARIANT & arm_ext_v6_notm
18379 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18380 ldrexd, t_ldrexd),
18381 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18382 RRnpcb), strexd, t_strexd),
18383
18384 #undef THUMB_VARIANT
18385 #define THUMB_VARIANT & arm_ext_v6t2
18386 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18387 rd_rn, rd_rn),
18388 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18389 rd_rn, rd_rn),
18390 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18391 strex, t_strexbh),
18392 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18393 strex, t_strexbh),
18394 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18395
18396 #undef ARM_VARIANT
18397 #define ARM_VARIANT & arm_ext_sec
18398 #undef THUMB_VARIANT
18399 #define THUMB_VARIANT & arm_ext_sec
18400
18401 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18402
18403 #undef ARM_VARIANT
18404 #define ARM_VARIANT & arm_ext_virt
18405 #undef THUMB_VARIANT
18406 #define THUMB_VARIANT & arm_ext_virt
18407
18408 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18409 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18410
18411 #undef ARM_VARIANT
18412 #define ARM_VARIANT & arm_ext_v6t2
18413 #undef THUMB_VARIANT
18414 #define THUMB_VARIANT & arm_ext_v6t2
18415
18416 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18417 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18418 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18419 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18420
18421 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18422 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18423 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18424 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18425
18426 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18427 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18428 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18429 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18430
18431 /* Thumb-only instructions. */
18432 #undef ARM_VARIANT
18433 #define ARM_VARIANT NULL
18434 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18435 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18436
18437 /* ARM does not really have an IT instruction, so always allow it.
18438 The opcode is copied from Thumb in order to allow warnings in
18439 -mimplicit-it=[never | arm] modes. */
18440 #undef ARM_VARIANT
18441 #define ARM_VARIANT & arm_ext_v1
18442
18443 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18444 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18445 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18446 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18447 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18448 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18449 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18450 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18451 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18452 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18453 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18454 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18455 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18456 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18457 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18458 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18459 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18460 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18461
18462 /* Thumb2 only instructions. */
18463 #undef ARM_VARIANT
18464 #define ARM_VARIANT NULL
18465
18466 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18467 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18468 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18469 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18470 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18471 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18472
18473 /* Hardware division instructions. */
18474 #undef ARM_VARIANT
18475 #define ARM_VARIANT & arm_ext_adiv
18476 #undef THUMB_VARIANT
18477 #define THUMB_VARIANT & arm_ext_div
18478
18479 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18480 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18481
18482 /* ARM V6M/V7 instructions. */
18483 #undef ARM_VARIANT
18484 #define ARM_VARIANT & arm_ext_barrier
18485 #undef THUMB_VARIANT
18486 #define THUMB_VARIANT & arm_ext_barrier
18487
18488 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
18489 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
18490 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
18491
18492 /* ARM V7 instructions. */
18493 #undef ARM_VARIANT
18494 #define ARM_VARIANT & arm_ext_v7
18495 #undef THUMB_VARIANT
18496 #define THUMB_VARIANT & arm_ext_v7
18497
18498 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18499 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18500
18501 #undef ARM_VARIANT
18502 #define ARM_VARIANT & arm_ext_mp
18503 #undef THUMB_VARIANT
18504 #define THUMB_VARIANT & arm_ext_mp
18505
18506 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18507
18508 /* AArchv8 instructions. */
18509 #undef ARM_VARIANT
18510 #define ARM_VARIANT & arm_ext_v8
18511 #undef THUMB_VARIANT
18512 #define THUMB_VARIANT & arm_ext_v8
18513
18514 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18515 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18516 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18517 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18518 ldrexd, t_ldrexd),
18519 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18520 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18521 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18522 stlex, t_stlex),
18523 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18524 strexd, t_strexd),
18525 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18526 stlex, t_stlex),
18527 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18528 stlex, t_stlex),
18529 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18530 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18531 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18532 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18533 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18534 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18535
18536 /* ARMv8 T32 only. */
18537 #undef ARM_VARIANT
18538 #define ARM_VARIANT NULL
18539 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18540 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18541 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18542
18543 /* FP for ARMv8. */
18544 #undef ARM_VARIANT
18545 #define ARM_VARIANT & fpu_vfp_ext_armv8
18546 #undef THUMB_VARIANT
18547 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18548
18549 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18550 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18551 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18552 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18553 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18554 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18555 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18556 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18557 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18558 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
18559 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18560 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18561 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18562 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18563 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18564 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18565 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
18566
18567 /* Crypto v1 extensions. */
18568 #undef ARM_VARIANT
18569 #define ARM_VARIANT & fpu_crypto_ext_armv8
18570 #undef THUMB_VARIANT
18571 #define THUMB_VARIANT & fpu_crypto_ext_armv8
18572
18573 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
18574 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
18575 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
18576 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
18577 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
18578 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
18579 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
18580 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
18581 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
18582 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
18583 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
18584 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
18585 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
18586 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
18587
18588 #undef ARM_VARIANT
18589 #define ARM_VARIANT & crc_ext_armv8
18590 #undef THUMB_VARIANT
18591 #define THUMB_VARIANT & crc_ext_armv8
18592 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
18593 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
18594 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
18595 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
18596 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
18597 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
18598
18599 #undef ARM_VARIANT
18600 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18601 #undef THUMB_VARIANT
18602 #define THUMB_VARIANT NULL
18603
18604 cCE("wfs", e200110, 1, (RR), rd),
18605 cCE("rfs", e300110, 1, (RR), rd),
18606 cCE("wfc", e400110, 1, (RR), rd),
18607 cCE("rfc", e500110, 1, (RR), rd),
18608
18609 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18610 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18611 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18612 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18613
18614 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18615 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18616 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18617 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18618
18619 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18620 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18621 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18622 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18623 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18624 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18625 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18626 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18627 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18628 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18629 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18630 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18631
18632 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18633 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18634 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18635 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18636 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18637 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18638 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18639 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18640 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18641 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18642 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18643 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18644
18645 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18646 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18647 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18648 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18649 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18650 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18651 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18652 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18653 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18654 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18655 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18656 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18657
18658 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18659 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18660 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18661 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18662 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18663 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18664 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18665 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18666 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18667 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18668 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18669 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18670
18671 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18672 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18673 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18674 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18675 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18676 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18677 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18678 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18679 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18680 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18681 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18682 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18683
18684 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18685 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18686 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18687 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18688 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18689 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18690 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18691 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18692 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18693 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18694 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18695 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18696
18697 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18698 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18699 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18700 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18701 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18702 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18703 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18704 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18705 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18706 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18707 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18708 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18709
18710 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18711 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18712 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18713 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18714 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18715 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18716 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18717 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18718 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18719 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18720 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18721 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18722
18723 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18724 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18725 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18726 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18727 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18728 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18729 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18730 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18731 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18732 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18733 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18734 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18735
18736 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18737 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18738 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18739 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18740 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18741 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18742 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18743 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18744 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18745 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18746 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18747 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18748
18749 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18750 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18751 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18752 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18753 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18754 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18755 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18756 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18757 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18758 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18759 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18760 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18761
18762 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18763 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18764 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18765 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18766 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18767 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18768 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18769 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18770 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18771 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18772 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18773 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18774
18775 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18776 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18777 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18778 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18779 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18780 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18781 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18782 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18783 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18784 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18785 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18786 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18787
18788 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18789 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18790 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18791 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18792 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18793 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18794 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18795 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18796 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18797 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18798 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18799 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18800
18801 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18802 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18803 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18804 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18805 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18806 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18807 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18808 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18809 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18810 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18811 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18812 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18813
18814 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18815 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18816 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18817 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18818 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18819 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18820 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18821 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18822 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18823 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18824 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18825 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18826
18827 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18828 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18829 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18830 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18831 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18832 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18833 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18834 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18835 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18836 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18837 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18838 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18839
18840 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18841 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18842 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18843 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18844 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18845 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18846 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18847 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18848 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18849 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18850 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18851 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18852
18853 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18854 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18855 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18856 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18857 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18858 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18859 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18860 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18861 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18862 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18863 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18864 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18865
18866 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18867 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18868 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18869 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18870 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18871 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18872 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18873 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18874 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18875 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18876 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18877 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18878
18879 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18880 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18881 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18882 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18883 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18884 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18885 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18886 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18887 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18888 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18889 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18890 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18891
18892 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18893 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18894 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18895 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18896 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18897 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18898 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18899 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18900 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18901 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18902 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18903 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18904
18905 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18906 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18907 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18908 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18909 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18910 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18911 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18912 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18913 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18914 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18915 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18916 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18917
18918 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18919 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18920 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18921 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18922 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18923 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18924 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18925 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18926 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18927 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18928 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18929 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18930
18931 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18932 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18933 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18934 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18935 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18936 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18937 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18938 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18939 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18940 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18941 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18942 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18943
18944 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18945 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18946 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18947 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18948 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18949 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18950 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18951 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18952 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18953 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18954 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18955 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18956
18957 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18958 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18959 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18960 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18961 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18962 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18963 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18964 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18965 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18966 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18967 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18968 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18969
18970 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18971 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18972 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18973 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18974 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18975 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18976 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18977 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18978 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18979 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18980 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18981 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18982
18983 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18984 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18985 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18986 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18987 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18988 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18989 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18990 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18991 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18992 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18993 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18994 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18995
18996 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18997 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18998 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18999 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
19000
19001 cCL("flts", e000110, 2, (RF, RR), rn_rd),
19002 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
19003 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
19004 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
19005 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
19006 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
19007 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
19008 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
19009 cCL("flte", e080110, 2, (RF, RR), rn_rd),
19010 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
19011 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
19012 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
19013
19014 /* The implementation of the FIX instruction is broken on some
19015 assemblers, in that it accepts a precision specifier as well as a
19016 rounding specifier, despite the fact that this is meaningless.
19017 To be more compatible, we accept it as well, though of course it
19018 does not set any bits. */
19019 cCE("fix", e100110, 2, (RR, RF), rd_rm),
19020 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
19021 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
19022 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
19023 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
19024 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
19025 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
19026 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
19027 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
19028 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
19029 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
19030 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
19031 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
19032
19033 /* Instructions that were new with the real FPA, call them V2. */
19034 #undef ARM_VARIANT
19035 #define ARM_VARIANT & fpu_fpa_ext_v2
19036
19037 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19038 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19039 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19040 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19041 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19042 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19043
19044 #undef ARM_VARIANT
19045 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
19046
19047 /* Moves and type conversions. */
19048 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19049 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19050 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19051 cCE("fmstat", ef1fa10, 0, (), noargs),
19052 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19053 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
19054 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19055 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19056 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19057 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19058 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19059 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19060 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19061 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
19062
19063 /* Memory operations. */
19064 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19065 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19066 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19067 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19068 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19069 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19070 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19071 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19072 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19073 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19074 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19075 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19076 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19077 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19078 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19079 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19080 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19081 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19082
19083 /* Monadic operations. */
19084 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19085 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19086 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
19087
19088 /* Dyadic operations. */
19089 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19090 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19091 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19092 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19093 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19094 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19095 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19096 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19097 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19098
19099 /* Comparisons. */
19100 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19101 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19102 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19103 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
19104
19105 /* Double precision load/store are still present on single precision
19106 implementations. */
19107 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19108 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19109 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19110 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19111 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19112 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19113 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19114 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19115 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19116 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19117
19118 #undef ARM_VARIANT
19119 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19120
19121 /* Moves and type conversions. */
19122 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19123 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19124 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19125 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19126 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19127 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19128 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19129 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19130 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19131 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19132 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19133 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19134 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19135
19136 /* Monadic operations. */
19137 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19138 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19139 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19140
19141 /* Dyadic operations. */
19142 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19143 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19144 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19145 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19146 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19147 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19148 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19149 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19150 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19151
19152 /* Comparisons. */
19153 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19154 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19155 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19156 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19157
19158 #undef ARM_VARIANT
19159 #define ARM_VARIANT & fpu_vfp_ext_v2
19160
19161 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19162 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19163 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19164 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19165
19166 /* Instructions which may belong to either the Neon or VFP instruction sets.
19167 Individual encoder functions perform additional architecture checks. */
19168 #undef ARM_VARIANT
19169 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19170 #undef THUMB_VARIANT
19171 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19172
19173 /* These mnemonics are unique to VFP. */
19174 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19175 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19176 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19177 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19178 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19179 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19180 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19181 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19182 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19183 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19184
19185 /* Mnemonics shared by Neon and VFP. */
19186 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19187 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19188 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19189
19190 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19191 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19192
19193 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19194 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19195
19196 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19197 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19198 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19199 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19200 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19201 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19202 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19203 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19204
19205 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19206 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19207 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19208 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19209
19210
19211 /* NOTE: All VMOV encoding is special-cased! */
19212 NCE(vmov, 0, 1, (VMOV), neon_mov),
19213 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19214
19215 #undef THUMB_VARIANT
19216 #define THUMB_VARIANT & fpu_neon_ext_v1
19217 #undef ARM_VARIANT
19218 #define ARM_VARIANT & fpu_neon_ext_v1
19219
19220 /* Data processing with three registers of the same length. */
19221 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19222 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19223 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19224 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19225 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19226 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19227 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19228 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19229 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19230 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19231 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19232 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19233 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19234 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19235 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19236 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19237 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19238 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19239 /* If not immediate, fall back to neon_dyadic_i64_su.
19240 shl_imm should accept I8 I16 I32 I64,
19241 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19242 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19243 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19244 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19245 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19246 /* Logic ops, types optional & ignored. */
19247 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19248 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19249 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19250 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19251 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19252 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19253 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19254 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19255 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19256 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19257 /* Bitfield ops, untyped. */
19258 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19259 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19260 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19261 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19262 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19263 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19264 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19265 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19266 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19267 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19268 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19269 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19270 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19271 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19272 back to neon_dyadic_if_su. */
19273 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19274 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19275 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19276 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19277 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19278 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19279 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19280 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19281 /* Comparison. Type I8 I16 I32 F32. */
19282 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19283 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19284 /* As above, D registers only. */
19285 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19286 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19287 /* Int and float variants, signedness unimportant. */
19288 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19289 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19290 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19291 /* Add/sub take types I8 I16 I32 I64 F32. */
19292 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19293 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19294 /* vtst takes sizes 8, 16, 32. */
19295 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19296 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19297 /* VMUL takes I8 I16 I32 F32 P8. */
19298 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19299 /* VQD{R}MULH takes S16 S32. */
19300 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19301 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19302 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19303 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19304 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19305 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19306 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19307 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19308 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19309 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19310 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19311 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19312 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19313 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19314 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19315 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19316
19317 /* Two address, int/float. Types S8 S16 S32 F32. */
19318 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19319 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19320
19321 /* Data processing with two registers and a shift amount. */
19322 /* Right shifts, and variants with rounding.
19323 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19324 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19325 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19326 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19327 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19328 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19329 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19330 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19331 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19332 /* Shift and insert. Sizes accepted 8 16 32 64. */
19333 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19334 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19335 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19336 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19337 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19338 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19339 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19340 /* Right shift immediate, saturating & narrowing, with rounding variants.
19341 Types accepted S16 S32 S64 U16 U32 U64. */
19342 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19343 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19344 /* As above, unsigned. Types accepted S16 S32 S64. */
19345 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19346 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19347 /* Right shift narrowing. Types accepted I16 I32 I64. */
19348 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19349 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19350 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19351 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19352 /* CVT with optional immediate for fixed-point variant. */
19353 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19354
19355 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19356 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19357
19358 /* Data processing, three registers of different lengths. */
19359 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19360 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19361 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19362 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19363 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19364 /* If not scalar, fall back to neon_dyadic_long.
19365 Vector types as above, scalar types S16 S32 U16 U32. */
19366 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19367 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19368 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19369 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19370 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19371 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19372 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19373 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19374 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19375 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19376 /* Saturating doubling multiplies. Types S16 S32. */
19377 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19378 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19379 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19380 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19381 S16 S32 U16 U32. */
19382 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19383
19384 /* Extract. Size 8. */
19385 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19386 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19387
19388 /* Two registers, miscellaneous. */
19389 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19390 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19391 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19392 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19393 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19394 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19395 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19396 /* Vector replicate. Sizes 8 16 32. */
19397 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19398 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19399 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19400 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19401 /* VMOVN. Types I16 I32 I64. */
19402 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19403 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19404 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19405 /* VQMOVUN. Types S16 S32 S64. */
19406 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19407 /* VZIP / VUZP. Sizes 8 16 32. */
19408 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19409 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19410 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19411 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19412 /* VQABS / VQNEG. Types S8 S16 S32. */
19413 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19414 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19415 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19416 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19417 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19418 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19419 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19420 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19421 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19422 /* Reciprocal estimates. Types U32 F32. */
19423 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19424 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19425 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19426 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19427 /* VCLS. Types S8 S16 S32. */
19428 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19429 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19430 /* VCLZ. Types I8 I16 I32. */
19431 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19432 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19433 /* VCNT. Size 8. */
19434 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19435 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19436 /* Two address, untyped. */
19437 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19438 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19439 /* VTRN. Sizes 8 16 32. */
19440 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19441 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19442
19443 /* Table lookup. Size 8. */
19444 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19445 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19446
19447 #undef THUMB_VARIANT
19448 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19449 #undef ARM_VARIANT
19450 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19451
19452 /* Neon element/structure load/store. */
19453 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19454 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19455 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19456 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19457 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19458 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19459 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19460 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19461
19462 #undef THUMB_VARIANT
19463 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
19464 #undef ARM_VARIANT
19465 #define ARM_VARIANT &fpu_vfp_ext_v3xd
19466 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19467 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19468 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19469 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19470 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19471 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19472 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19473 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19474 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19475
19476 #undef THUMB_VARIANT
19477 #define THUMB_VARIANT & fpu_vfp_ext_v3
19478 #undef ARM_VARIANT
19479 #define ARM_VARIANT & fpu_vfp_ext_v3
19480
19481 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19482 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19483 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19484 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19485 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19486 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19487 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19488 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19489 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19490
19491 #undef ARM_VARIANT
19492 #define ARM_VARIANT &fpu_vfp_ext_fma
19493 #undef THUMB_VARIANT
19494 #define THUMB_VARIANT &fpu_vfp_ext_fma
19495 /* Mnemonics shared by Neon and VFP. These are included in the
19496 VFP FMA variant; NEON and VFP FMA always includes the NEON
19497 FMA instructions. */
19498 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19499 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19500 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19501 the v form should always be used. */
19502 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19503 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19504 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19505 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19506 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19507 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19508
19509 #undef THUMB_VARIANT
19510 #undef ARM_VARIANT
19511 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19512
19513 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19514 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19515 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19516 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19517 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19518 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19519 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19520 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19521
19522 #undef ARM_VARIANT
19523 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19524
19525 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19526 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19527 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19528 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19529 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19530 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19531 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19532 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19533 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19534 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19535 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19536 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19537 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19538 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19539 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19540 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19541 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19542 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19543 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19544 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19545 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19546 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19547 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19548 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19549 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19550 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19551 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19552 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19553 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19554 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19555 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19556 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19557 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19558 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19559 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19560 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19561 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19562 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19563 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19564 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19565 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19566 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19567 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19568 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19569 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19570 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19571 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19572 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19573 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19574 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19575 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19576 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19577 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19578 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19579 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19580 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19581 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19582 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19583 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19584 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19585 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19586 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19587 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19588 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19589 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19590 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19591 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19592 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19593 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19594 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19595 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19596 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19597 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19598 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19599 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19600 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19601 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19602 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19603 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19604 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19605 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19606 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19607 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19608 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19609 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19610 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19611 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19612 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19613 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19614 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19615 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19616 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19617 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19618 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19619 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19620 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19621 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19622 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19623 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19624 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19625 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19626 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19627 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19628 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19629 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19630 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19631 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19632 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19633 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19634 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19635 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19636 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19637 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19638 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19639 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19640 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19641 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19642 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19643 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19644 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19645 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19646 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19647 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19648 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19649 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19650 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19651 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19652 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19653 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19654 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19655 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19656 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19657 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19658 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19659 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19660 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19661 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19662 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19663 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19664 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19665 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19666 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19667 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19668 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19669 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19670 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19671 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19672 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19673 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19674 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19675 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19676 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19677 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19678 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19679 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19680 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19681 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19682 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19683 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19684 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19685 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19686 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19687
19688 #undef ARM_VARIANT
19689 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19690
19691 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19692 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19693 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19694 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19695 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19696 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19697 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19698 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19699 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19700 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19701 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19702 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19703 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19704 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19705 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19706 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19707 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19708 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19709 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19710 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19711 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19712 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19713 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19714 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19715 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19716 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19717 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19718 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19719 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19720 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19721 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19722 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19723 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19724 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19725 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19726 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19727 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19728 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19729 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19730 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19731 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19732 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19733 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19734 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19735 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19736 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19737 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19738 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19739 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19740 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19741 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19742 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19743 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19744 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19745 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19746 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19747 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19748
19749 #undef ARM_VARIANT
19750 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19751
19752 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19753 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19754 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19755 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19756 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19757 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19758 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19759 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19760 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19761 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19762 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19763 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19764 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19765 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19766 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19767 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19768 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19769 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19770 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19771 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19772 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19773 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19774 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19775 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19776 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19777 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19778 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19779 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19780 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19781 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19782 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19783 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19784 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19785 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19786 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19787 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19788 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19789 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19790 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19791 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19792 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19793 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19794 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19795 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19796 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19797 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19798 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19799 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19800 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19801 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19802 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19803 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19804 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19805 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19806 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19807 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19808 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19809 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19810 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19811 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19812 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19813 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19814 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19815 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19816 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19817 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19818 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19819 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19820 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19821 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19822 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19823 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19824 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19825 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19826 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19827 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19828 };
19829 #undef ARM_VARIANT
19830 #undef THUMB_VARIANT
19831 #undef TCE
19832 #undef TUE
19833 #undef TUF
19834 #undef TCC
19835 #undef cCE
19836 #undef cCL
19837 #undef C3E
19838 #undef CE
19839 #undef CM
19840 #undef UE
19841 #undef UF
19842 #undef UT
19843 #undef NUF
19844 #undef nUF
19845 #undef NCE
19846 #undef nCE
19847 #undef OPS0
19848 #undef OPS1
19849 #undef OPS2
19850 #undef OPS3
19851 #undef OPS4
19852 #undef OPS5
19853 #undef OPS6
19854 #undef do_0
19855 \f
19856 /* MD interface: bits in the object file. */
19857
19858 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19859 for use in the a.out file, and stores them in the array pointed to by buf.
19860 This knows about the endian-ness of the target machine and does
19861 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19862 2 (short) and 4 (long) Floating numbers are put out as a series of
19863 LITTLENUMS (shorts, here at least). */
19864
19865 void
19866 md_number_to_chars (char * buf, valueT val, int n)
19867 {
19868 if (target_big_endian)
19869 number_to_chars_bigendian (buf, val, n);
19870 else
19871 number_to_chars_littleendian (buf, val, n);
19872 }
19873
19874 static valueT
19875 md_chars_to_number (char * buf, int n)
19876 {
19877 valueT result = 0;
19878 unsigned char * where = (unsigned char *) buf;
19879
19880 if (target_big_endian)
19881 {
19882 while (n--)
19883 {
19884 result <<= 8;
19885 result |= (*where++ & 255);
19886 }
19887 }
19888 else
19889 {
19890 while (n--)
19891 {
19892 result <<= 8;
19893 result |= (where[n] & 255);
19894 }
19895 }
19896
19897 return result;
19898 }
19899
19900 /* MD interface: Sections. */
19901
19902 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19903 that an rs_machine_dependent frag may reach. */
19904
19905 unsigned int
19906 arm_frag_max_var (fragS *fragp)
19907 {
19908 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19909 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19910
19911 Note that we generate relaxable instructions even for cases that don't
19912 really need it, like an immediate that's a trivial constant. So we're
19913 overestimating the instruction size for some of those cases. Rather
19914 than putting more intelligence here, it would probably be better to
19915 avoid generating a relaxation frag in the first place when it can be
19916 determined up front that a short instruction will suffice. */
19917
19918 gas_assert (fragp->fr_type == rs_machine_dependent);
19919 return INSN_SIZE;
19920 }
19921
19922 /* Estimate the size of a frag before relaxing. Assume everything fits in
19923 2 bytes. */
19924
19925 int
19926 md_estimate_size_before_relax (fragS * fragp,
19927 segT segtype ATTRIBUTE_UNUSED)
19928 {
19929 fragp->fr_var = 2;
19930 return 2;
19931 }
19932
19933 /* Convert a machine dependent frag. */
19934
19935 void
19936 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19937 {
19938 unsigned long insn;
19939 unsigned long old_op;
19940 char *buf;
19941 expressionS exp;
19942 fixS *fixp;
19943 int reloc_type;
19944 int pc_rel;
19945 int opcode;
19946
19947 buf = fragp->fr_literal + fragp->fr_fix;
19948
19949 old_op = bfd_get_16(abfd, buf);
19950 if (fragp->fr_symbol)
19951 {
19952 exp.X_op = O_symbol;
19953 exp.X_add_symbol = fragp->fr_symbol;
19954 }
19955 else
19956 {
19957 exp.X_op = O_constant;
19958 }
19959 exp.X_add_number = fragp->fr_offset;
19960 opcode = fragp->fr_subtype;
19961 switch (opcode)
19962 {
19963 case T_MNEM_ldr_pc:
19964 case T_MNEM_ldr_pc2:
19965 case T_MNEM_ldr_sp:
19966 case T_MNEM_str_sp:
19967 case T_MNEM_ldr:
19968 case T_MNEM_ldrb:
19969 case T_MNEM_ldrh:
19970 case T_MNEM_str:
19971 case T_MNEM_strb:
19972 case T_MNEM_strh:
19973 if (fragp->fr_var == 4)
19974 {
19975 insn = THUMB_OP32 (opcode);
19976 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19977 {
19978 insn |= (old_op & 0x700) << 4;
19979 }
19980 else
19981 {
19982 insn |= (old_op & 7) << 12;
19983 insn |= (old_op & 0x38) << 13;
19984 }
19985 insn |= 0x00000c00;
19986 put_thumb32_insn (buf, insn);
19987 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19988 }
19989 else
19990 {
19991 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19992 }
19993 pc_rel = (opcode == T_MNEM_ldr_pc2);
19994 break;
19995 case T_MNEM_adr:
19996 if (fragp->fr_var == 4)
19997 {
19998 insn = THUMB_OP32 (opcode);
19999 insn |= (old_op & 0xf0) << 4;
20000 put_thumb32_insn (buf, insn);
20001 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
20002 }
20003 else
20004 {
20005 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20006 exp.X_add_number -= 4;
20007 }
20008 pc_rel = 1;
20009 break;
20010 case T_MNEM_mov:
20011 case T_MNEM_movs:
20012 case T_MNEM_cmp:
20013 case T_MNEM_cmn:
20014 if (fragp->fr_var == 4)
20015 {
20016 int r0off = (opcode == T_MNEM_mov
20017 || opcode == T_MNEM_movs) ? 0 : 8;
20018 insn = THUMB_OP32 (opcode);
20019 insn = (insn & 0xe1ffffff) | 0x10000000;
20020 insn |= (old_op & 0x700) << r0off;
20021 put_thumb32_insn (buf, insn);
20022 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20023 }
20024 else
20025 {
20026 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
20027 }
20028 pc_rel = 0;
20029 break;
20030 case T_MNEM_b:
20031 if (fragp->fr_var == 4)
20032 {
20033 insn = THUMB_OP32(opcode);
20034 put_thumb32_insn (buf, insn);
20035 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
20036 }
20037 else
20038 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
20039 pc_rel = 1;
20040 break;
20041 case T_MNEM_bcond:
20042 if (fragp->fr_var == 4)
20043 {
20044 insn = THUMB_OP32(opcode);
20045 insn |= (old_op & 0xf00) << 14;
20046 put_thumb32_insn (buf, insn);
20047 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20048 }
20049 else
20050 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20051 pc_rel = 1;
20052 break;
20053 case T_MNEM_add_sp:
20054 case T_MNEM_add_pc:
20055 case T_MNEM_inc_sp:
20056 case T_MNEM_dec_sp:
20057 if (fragp->fr_var == 4)
20058 {
20059 /* ??? Choose between add and addw. */
20060 insn = THUMB_OP32 (opcode);
20061 insn |= (old_op & 0xf0) << 4;
20062 put_thumb32_insn (buf, insn);
20063 if (opcode == T_MNEM_add_pc)
20064 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20065 else
20066 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20067 }
20068 else
20069 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20070 pc_rel = 0;
20071 break;
20072
20073 case T_MNEM_addi:
20074 case T_MNEM_addis:
20075 case T_MNEM_subi:
20076 case T_MNEM_subis:
20077 if (fragp->fr_var == 4)
20078 {
20079 insn = THUMB_OP32 (opcode);
20080 insn |= (old_op & 0xf0) << 4;
20081 insn |= (old_op & 0xf) << 16;
20082 put_thumb32_insn (buf, insn);
20083 if (insn & (1 << 20))
20084 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20085 else
20086 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20087 }
20088 else
20089 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20090 pc_rel = 0;
20091 break;
20092 default:
20093 abort ();
20094 }
20095 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
20096 (enum bfd_reloc_code_real) reloc_type);
20097 fixp->fx_file = fragp->fr_file;
20098 fixp->fx_line = fragp->fr_line;
20099 fragp->fr_fix += fragp->fr_var;
20100 }
20101
20102 /* Return the size of a relaxable immediate operand instruction.
20103 SHIFT and SIZE specify the form of the allowable immediate. */
20104 static int
20105 relax_immediate (fragS *fragp, int size, int shift)
20106 {
20107 offsetT offset;
20108 offsetT mask;
20109 offsetT low;
20110
20111 /* ??? Should be able to do better than this. */
20112 if (fragp->fr_symbol)
20113 return 4;
20114
20115 low = (1 << shift) - 1;
20116 mask = (1 << (shift + size)) - (1 << shift);
20117 offset = fragp->fr_offset;
20118 /* Force misaligned offsets to 32-bit variant. */
20119 if (offset & low)
20120 return 4;
20121 if (offset & ~mask)
20122 return 4;
20123 return 2;
20124 }
20125
20126 /* Get the address of a symbol during relaxation. */
20127 static addressT
20128 relaxed_symbol_addr (fragS *fragp, long stretch)
20129 {
20130 fragS *sym_frag;
20131 addressT addr;
20132 symbolS *sym;
20133
20134 sym = fragp->fr_symbol;
20135 sym_frag = symbol_get_frag (sym);
20136 know (S_GET_SEGMENT (sym) != absolute_section
20137 || sym_frag == &zero_address_frag);
20138 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20139
20140 /* If frag has yet to be reached on this pass, assume it will
20141 move by STRETCH just as we did. If this is not so, it will
20142 be because some frag between grows, and that will force
20143 another pass. */
20144
20145 if (stretch != 0
20146 && sym_frag->relax_marker != fragp->relax_marker)
20147 {
20148 fragS *f;
20149
20150 /* Adjust stretch for any alignment frag. Note that if have
20151 been expanding the earlier code, the symbol may be
20152 defined in what appears to be an earlier frag. FIXME:
20153 This doesn't handle the fr_subtype field, which specifies
20154 a maximum number of bytes to skip when doing an
20155 alignment. */
20156 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20157 {
20158 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20159 {
20160 if (stretch < 0)
20161 stretch = - ((- stretch)
20162 & ~ ((1 << (int) f->fr_offset) - 1));
20163 else
20164 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20165 if (stretch == 0)
20166 break;
20167 }
20168 }
20169 if (f != NULL)
20170 addr += stretch;
20171 }
20172
20173 return addr;
20174 }
20175
20176 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20177 load. */
20178 static int
20179 relax_adr (fragS *fragp, asection *sec, long stretch)
20180 {
20181 addressT addr;
20182 offsetT val;
20183
20184 /* Assume worst case for symbols not known to be in the same section. */
20185 if (fragp->fr_symbol == NULL
20186 || !S_IS_DEFINED (fragp->fr_symbol)
20187 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20188 || S_IS_WEAK (fragp->fr_symbol))
20189 return 4;
20190
20191 val = relaxed_symbol_addr (fragp, stretch);
20192 addr = fragp->fr_address + fragp->fr_fix;
20193 addr = (addr + 4) & ~3;
20194 /* Force misaligned targets to 32-bit variant. */
20195 if (val & 3)
20196 return 4;
20197 val -= addr;
20198 if (val < 0 || val > 1020)
20199 return 4;
20200 return 2;
20201 }
20202
20203 /* Return the size of a relaxable add/sub immediate instruction. */
20204 static int
20205 relax_addsub (fragS *fragp, asection *sec)
20206 {
20207 char *buf;
20208 int op;
20209
20210 buf = fragp->fr_literal + fragp->fr_fix;
20211 op = bfd_get_16(sec->owner, buf);
20212 if ((op & 0xf) == ((op >> 4) & 0xf))
20213 return relax_immediate (fragp, 8, 0);
20214 else
20215 return relax_immediate (fragp, 3, 0);
20216 }
20217
20218
20219 /* Return the size of a relaxable branch instruction. BITS is the
20220 size of the offset field in the narrow instruction. */
20221
20222 static int
20223 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20224 {
20225 addressT addr;
20226 offsetT val;
20227 offsetT limit;
20228
20229 /* Assume worst case for symbols not known to be in the same section. */
20230 if (!S_IS_DEFINED (fragp->fr_symbol)
20231 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20232 || S_IS_WEAK (fragp->fr_symbol))
20233 return 4;
20234
20235 #ifdef OBJ_ELF
20236 if (S_IS_DEFINED (fragp->fr_symbol)
20237 && ARM_IS_FUNC (fragp->fr_symbol))
20238 return 4;
20239
20240 /* PR 12532. Global symbols with default visibility might
20241 be preempted, so do not relax relocations to them. */
20242 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
20243 && (! S_IS_LOCAL (fragp->fr_symbol)))
20244 return 4;
20245 #endif
20246
20247 val = relaxed_symbol_addr (fragp, stretch);
20248 addr = fragp->fr_address + fragp->fr_fix + 4;
20249 val -= addr;
20250
20251 /* Offset is a signed value *2 */
20252 limit = 1 << bits;
20253 if (val >= limit || val < -limit)
20254 return 4;
20255 return 2;
20256 }
20257
20258
20259 /* Relax a machine dependent frag. This returns the amount by which
20260 the current size of the frag should change. */
20261
20262 int
20263 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20264 {
20265 int oldsize;
20266 int newsize;
20267
20268 oldsize = fragp->fr_var;
20269 switch (fragp->fr_subtype)
20270 {
20271 case T_MNEM_ldr_pc2:
20272 newsize = relax_adr (fragp, sec, stretch);
20273 break;
20274 case T_MNEM_ldr_pc:
20275 case T_MNEM_ldr_sp:
20276 case T_MNEM_str_sp:
20277 newsize = relax_immediate (fragp, 8, 2);
20278 break;
20279 case T_MNEM_ldr:
20280 case T_MNEM_str:
20281 newsize = relax_immediate (fragp, 5, 2);
20282 break;
20283 case T_MNEM_ldrh:
20284 case T_MNEM_strh:
20285 newsize = relax_immediate (fragp, 5, 1);
20286 break;
20287 case T_MNEM_ldrb:
20288 case T_MNEM_strb:
20289 newsize = relax_immediate (fragp, 5, 0);
20290 break;
20291 case T_MNEM_adr:
20292 newsize = relax_adr (fragp, sec, stretch);
20293 break;
20294 case T_MNEM_mov:
20295 case T_MNEM_movs:
20296 case T_MNEM_cmp:
20297 case T_MNEM_cmn:
20298 newsize = relax_immediate (fragp, 8, 0);
20299 break;
20300 case T_MNEM_b:
20301 newsize = relax_branch (fragp, sec, 11, stretch);
20302 break;
20303 case T_MNEM_bcond:
20304 newsize = relax_branch (fragp, sec, 8, stretch);
20305 break;
20306 case T_MNEM_add_sp:
20307 case T_MNEM_add_pc:
20308 newsize = relax_immediate (fragp, 8, 2);
20309 break;
20310 case T_MNEM_inc_sp:
20311 case T_MNEM_dec_sp:
20312 newsize = relax_immediate (fragp, 7, 2);
20313 break;
20314 case T_MNEM_addi:
20315 case T_MNEM_addis:
20316 case T_MNEM_subi:
20317 case T_MNEM_subis:
20318 newsize = relax_addsub (fragp, sec);
20319 break;
20320 default:
20321 abort ();
20322 }
20323
20324 fragp->fr_var = newsize;
20325 /* Freeze wide instructions that are at or before the same location as
20326 in the previous pass. This avoids infinite loops.
20327 Don't freeze them unconditionally because targets may be artificially
20328 misaligned by the expansion of preceding frags. */
20329 if (stretch <= 0 && newsize > 2)
20330 {
20331 md_convert_frag (sec->owner, sec, fragp);
20332 frag_wane (fragp);
20333 }
20334
20335 return newsize - oldsize;
20336 }
20337
20338 /* Round up a section size to the appropriate boundary. */
20339
20340 valueT
20341 md_section_align (segT segment ATTRIBUTE_UNUSED,
20342 valueT size)
20343 {
20344 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20345 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20346 {
20347 /* For a.out, force the section size to be aligned. If we don't do
20348 this, BFD will align it for us, but it will not write out the
20349 final bytes of the section. This may be a bug in BFD, but it is
20350 easier to fix it here since that is how the other a.out targets
20351 work. */
20352 int align;
20353
20354 align = bfd_get_section_alignment (stdoutput, segment);
20355 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20356 }
20357 #endif
20358
20359 return size;
20360 }
20361
20362 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20363 of an rs_align_code fragment. */
20364
20365 void
20366 arm_handle_align (fragS * fragP)
20367 {
20368 static char const arm_noop[2][2][4] =
20369 {
20370 { /* ARMv1 */
20371 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20372 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20373 },
20374 { /* ARMv6k */
20375 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20376 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20377 },
20378 };
20379 static char const thumb_noop[2][2][2] =
20380 {
20381 { /* Thumb-1 */
20382 {0xc0, 0x46}, /* LE */
20383 {0x46, 0xc0}, /* BE */
20384 },
20385 { /* Thumb-2 */
20386 {0x00, 0xbf}, /* LE */
20387 {0xbf, 0x00} /* BE */
20388 }
20389 };
20390 static char const wide_thumb_noop[2][4] =
20391 { /* Wide Thumb-2 */
20392 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20393 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20394 };
20395
20396 unsigned bytes, fix, noop_size;
20397 char * p;
20398 const char * noop;
20399 const char *narrow_noop = NULL;
20400 #ifdef OBJ_ELF
20401 enum mstate state;
20402 #endif
20403
20404 if (fragP->fr_type != rs_align_code)
20405 return;
20406
20407 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20408 p = fragP->fr_literal + fragP->fr_fix;
20409 fix = 0;
20410
20411 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20412 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20413
20414 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20415
20416 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20417 {
20418 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20419 {
20420 narrow_noop = thumb_noop[1][target_big_endian];
20421 noop = wide_thumb_noop[target_big_endian];
20422 }
20423 else
20424 noop = thumb_noop[0][target_big_endian];
20425 noop_size = 2;
20426 #ifdef OBJ_ELF
20427 state = MAP_THUMB;
20428 #endif
20429 }
20430 else
20431 {
20432 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20433 [target_big_endian];
20434 noop_size = 4;
20435 #ifdef OBJ_ELF
20436 state = MAP_ARM;
20437 #endif
20438 }
20439
20440 fragP->fr_var = noop_size;
20441
20442 if (bytes & (noop_size - 1))
20443 {
20444 fix = bytes & (noop_size - 1);
20445 #ifdef OBJ_ELF
20446 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20447 #endif
20448 memset (p, 0, fix);
20449 p += fix;
20450 bytes -= fix;
20451 }
20452
20453 if (narrow_noop)
20454 {
20455 if (bytes & noop_size)
20456 {
20457 /* Insert a narrow noop. */
20458 memcpy (p, narrow_noop, noop_size);
20459 p += noop_size;
20460 bytes -= noop_size;
20461 fix += noop_size;
20462 }
20463
20464 /* Use wide noops for the remainder */
20465 noop_size = 4;
20466 }
20467
20468 while (bytes >= noop_size)
20469 {
20470 memcpy (p, noop, noop_size);
20471 p += noop_size;
20472 bytes -= noop_size;
20473 fix += noop_size;
20474 }
20475
20476 fragP->fr_fix += fix;
20477 }
20478
20479 /* Called from md_do_align. Used to create an alignment
20480 frag in a code section. */
20481
20482 void
20483 arm_frag_align_code (int n, int max)
20484 {
20485 char * p;
20486
20487 /* We assume that there will never be a requirement
20488 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20489 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20490 {
20491 char err_msg[128];
20492
20493 sprintf (err_msg,
20494 _("alignments greater than %d bytes not supported in .text sections."),
20495 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20496 as_fatal ("%s", err_msg);
20497 }
20498
20499 p = frag_var (rs_align_code,
20500 MAX_MEM_FOR_RS_ALIGN_CODE,
20501 1,
20502 (relax_substateT) max,
20503 (symbolS *) NULL,
20504 (offsetT) n,
20505 (char *) NULL);
20506 *p = 0;
20507 }
20508
20509 /* Perform target specific initialisation of a frag.
20510 Note - despite the name this initialisation is not done when the frag
20511 is created, but only when its type is assigned. A frag can be created
20512 and used a long time before its type is set, so beware of assuming that
20513 this initialisationis performed first. */
20514
20515 #ifndef OBJ_ELF
20516 void
20517 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20518 {
20519 /* Record whether this frag is in an ARM or a THUMB area. */
20520 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20521 }
20522
20523 #else /* OBJ_ELF is defined. */
20524 void
20525 arm_init_frag (fragS * fragP, int max_chars)
20526 {
20527 /* If the current ARM vs THUMB mode has not already
20528 been recorded into this frag then do so now. */
20529 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20530 {
20531 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20532
20533 /* Record a mapping symbol for alignment frags. We will delete this
20534 later if the alignment ends up empty. */
20535 switch (fragP->fr_type)
20536 {
20537 case rs_align:
20538 case rs_align_test:
20539 case rs_fill:
20540 mapping_state_2 (MAP_DATA, max_chars);
20541 break;
20542 case rs_align_code:
20543 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20544 break;
20545 default:
20546 break;
20547 }
20548 }
20549 }
20550
20551 /* When we change sections we need to issue a new mapping symbol. */
20552
20553 void
20554 arm_elf_change_section (void)
20555 {
20556 /* Link an unlinked unwind index table section to the .text section. */
20557 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20558 && elf_linked_to_section (now_seg) == NULL)
20559 elf_linked_to_section (now_seg) = text_section;
20560 }
20561
20562 int
20563 arm_elf_section_type (const char * str, size_t len)
20564 {
20565 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20566 return SHT_ARM_EXIDX;
20567
20568 return -1;
20569 }
20570 \f
20571 /* Code to deal with unwinding tables. */
20572
20573 static void add_unwind_adjustsp (offsetT);
20574
20575 /* Generate any deferred unwind frame offset. */
20576
20577 static void
20578 flush_pending_unwind (void)
20579 {
20580 offsetT offset;
20581
20582 offset = unwind.pending_offset;
20583 unwind.pending_offset = 0;
20584 if (offset != 0)
20585 add_unwind_adjustsp (offset);
20586 }
20587
20588 /* Add an opcode to this list for this function. Two-byte opcodes should
20589 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20590 order. */
20591
20592 static void
20593 add_unwind_opcode (valueT op, int length)
20594 {
20595 /* Add any deferred stack adjustment. */
20596 if (unwind.pending_offset)
20597 flush_pending_unwind ();
20598
20599 unwind.sp_restored = 0;
20600
20601 if (unwind.opcode_count + length > unwind.opcode_alloc)
20602 {
20603 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20604 if (unwind.opcodes)
20605 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20606 unwind.opcode_alloc);
20607 else
20608 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20609 }
20610 while (length > 0)
20611 {
20612 length--;
20613 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20614 op >>= 8;
20615 unwind.opcode_count++;
20616 }
20617 }
20618
20619 /* Add unwind opcodes to adjust the stack pointer. */
20620
20621 static void
20622 add_unwind_adjustsp (offsetT offset)
20623 {
20624 valueT op;
20625
20626 if (offset > 0x200)
20627 {
20628 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20629 char bytes[5];
20630 int n;
20631 valueT o;
20632
20633 /* Long form: 0xb2, uleb128. */
20634 /* This might not fit in a word so add the individual bytes,
20635 remembering the list is built in reverse order. */
20636 o = (valueT) ((offset - 0x204) >> 2);
20637 if (o == 0)
20638 add_unwind_opcode (0, 1);
20639
20640 /* Calculate the uleb128 encoding of the offset. */
20641 n = 0;
20642 while (o)
20643 {
20644 bytes[n] = o & 0x7f;
20645 o >>= 7;
20646 if (o)
20647 bytes[n] |= 0x80;
20648 n++;
20649 }
20650 /* Add the insn. */
20651 for (; n; n--)
20652 add_unwind_opcode (bytes[n - 1], 1);
20653 add_unwind_opcode (0xb2, 1);
20654 }
20655 else if (offset > 0x100)
20656 {
20657 /* Two short opcodes. */
20658 add_unwind_opcode (0x3f, 1);
20659 op = (offset - 0x104) >> 2;
20660 add_unwind_opcode (op, 1);
20661 }
20662 else if (offset > 0)
20663 {
20664 /* Short opcode. */
20665 op = (offset - 4) >> 2;
20666 add_unwind_opcode (op, 1);
20667 }
20668 else if (offset < 0)
20669 {
20670 offset = -offset;
20671 while (offset > 0x100)
20672 {
20673 add_unwind_opcode (0x7f, 1);
20674 offset -= 0x100;
20675 }
20676 op = ((offset - 4) >> 2) | 0x40;
20677 add_unwind_opcode (op, 1);
20678 }
20679 }
20680
20681 /* Finish the list of unwind opcodes for this function. */
20682 static void
20683 finish_unwind_opcodes (void)
20684 {
20685 valueT op;
20686
20687 if (unwind.fp_used)
20688 {
20689 /* Adjust sp as necessary. */
20690 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20691 flush_pending_unwind ();
20692
20693 /* After restoring sp from the frame pointer. */
20694 op = 0x90 | unwind.fp_reg;
20695 add_unwind_opcode (op, 1);
20696 }
20697 else
20698 flush_pending_unwind ();
20699 }
20700
20701
20702 /* Start an exception table entry. If idx is nonzero this is an index table
20703 entry. */
20704
20705 static void
20706 start_unwind_section (const segT text_seg, int idx)
20707 {
20708 const char * text_name;
20709 const char * prefix;
20710 const char * prefix_once;
20711 const char * group_name;
20712 size_t prefix_len;
20713 size_t text_len;
20714 char * sec_name;
20715 size_t sec_name_len;
20716 int type;
20717 int flags;
20718 int linkonce;
20719
20720 if (idx)
20721 {
20722 prefix = ELF_STRING_ARM_unwind;
20723 prefix_once = ELF_STRING_ARM_unwind_once;
20724 type = SHT_ARM_EXIDX;
20725 }
20726 else
20727 {
20728 prefix = ELF_STRING_ARM_unwind_info;
20729 prefix_once = ELF_STRING_ARM_unwind_info_once;
20730 type = SHT_PROGBITS;
20731 }
20732
20733 text_name = segment_name (text_seg);
20734 if (streq (text_name, ".text"))
20735 text_name = "";
20736
20737 if (strncmp (text_name, ".gnu.linkonce.t.",
20738 strlen (".gnu.linkonce.t.")) == 0)
20739 {
20740 prefix = prefix_once;
20741 text_name += strlen (".gnu.linkonce.t.");
20742 }
20743
20744 prefix_len = strlen (prefix);
20745 text_len = strlen (text_name);
20746 sec_name_len = prefix_len + text_len;
20747 sec_name = (char *) xmalloc (sec_name_len + 1);
20748 memcpy (sec_name, prefix, prefix_len);
20749 memcpy (sec_name + prefix_len, text_name, text_len);
20750 sec_name[prefix_len + text_len] = '\0';
20751
20752 flags = SHF_ALLOC;
20753 linkonce = 0;
20754 group_name = 0;
20755
20756 /* Handle COMDAT group. */
20757 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20758 {
20759 group_name = elf_group_name (text_seg);
20760 if (group_name == NULL)
20761 {
20762 as_bad (_("Group section `%s' has no group signature"),
20763 segment_name (text_seg));
20764 ignore_rest_of_line ();
20765 return;
20766 }
20767 flags |= SHF_GROUP;
20768 linkonce = 1;
20769 }
20770
20771 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20772
20773 /* Set the section link for index tables. */
20774 if (idx)
20775 elf_linked_to_section (now_seg) = text_seg;
20776 }
20777
20778
20779 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20780 personality routine data. Returns zero, or the index table value for
20781 and inline entry. */
20782
20783 static valueT
20784 create_unwind_entry (int have_data)
20785 {
20786 int size;
20787 addressT where;
20788 char *ptr;
20789 /* The current word of data. */
20790 valueT data;
20791 /* The number of bytes left in this word. */
20792 int n;
20793
20794 finish_unwind_opcodes ();
20795
20796 /* Remember the current text section. */
20797 unwind.saved_seg = now_seg;
20798 unwind.saved_subseg = now_subseg;
20799
20800 start_unwind_section (now_seg, 0);
20801
20802 if (unwind.personality_routine == NULL)
20803 {
20804 if (unwind.personality_index == -2)
20805 {
20806 if (have_data)
20807 as_bad (_("handlerdata in cantunwind frame"));
20808 return 1; /* EXIDX_CANTUNWIND. */
20809 }
20810
20811 /* Use a default personality routine if none is specified. */
20812 if (unwind.personality_index == -1)
20813 {
20814 if (unwind.opcode_count > 3)
20815 unwind.personality_index = 1;
20816 else
20817 unwind.personality_index = 0;
20818 }
20819
20820 /* Space for the personality routine entry. */
20821 if (unwind.personality_index == 0)
20822 {
20823 if (unwind.opcode_count > 3)
20824 as_bad (_("too many unwind opcodes for personality routine 0"));
20825
20826 if (!have_data)
20827 {
20828 /* All the data is inline in the index table. */
20829 data = 0x80;
20830 n = 3;
20831 while (unwind.opcode_count > 0)
20832 {
20833 unwind.opcode_count--;
20834 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20835 n--;
20836 }
20837
20838 /* Pad with "finish" opcodes. */
20839 while (n--)
20840 data = (data << 8) | 0xb0;
20841
20842 return data;
20843 }
20844 size = 0;
20845 }
20846 else
20847 /* We get two opcodes "free" in the first word. */
20848 size = unwind.opcode_count - 2;
20849 }
20850 else
20851 {
20852 gas_assert (unwind.personality_index == -1);
20853
20854 /* An extra byte is required for the opcode count. */
20855 size = unwind.opcode_count + 1;
20856 }
20857
20858 size = (size + 3) >> 2;
20859 if (size > 0xff)
20860 as_bad (_("too many unwind opcodes"));
20861
20862 frag_align (2, 0, 0);
20863 record_alignment (now_seg, 2);
20864 unwind.table_entry = expr_build_dot ();
20865
20866 /* Allocate the table entry. */
20867 ptr = frag_more ((size << 2) + 4);
20868 /* PR 13449: Zero the table entries in case some of them are not used. */
20869 memset (ptr, 0, (size << 2) + 4);
20870 where = frag_now_fix () - ((size << 2) + 4);
20871
20872 switch (unwind.personality_index)
20873 {
20874 case -1:
20875 /* ??? Should this be a PLT generating relocation? */
20876 /* Custom personality routine. */
20877 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20878 BFD_RELOC_ARM_PREL31);
20879
20880 where += 4;
20881 ptr += 4;
20882
20883 /* Set the first byte to the number of additional words. */
20884 data = size > 0 ? size - 1 : 0;
20885 n = 3;
20886 break;
20887
20888 /* ABI defined personality routines. */
20889 case 0:
20890 /* Three opcodes bytes are packed into the first word. */
20891 data = 0x80;
20892 n = 3;
20893 break;
20894
20895 case 1:
20896 case 2:
20897 /* The size and first two opcode bytes go in the first word. */
20898 data = ((0x80 + unwind.personality_index) << 8) | size;
20899 n = 2;
20900 break;
20901
20902 default:
20903 /* Should never happen. */
20904 abort ();
20905 }
20906
20907 /* Pack the opcodes into words (MSB first), reversing the list at the same
20908 time. */
20909 while (unwind.opcode_count > 0)
20910 {
20911 if (n == 0)
20912 {
20913 md_number_to_chars (ptr, data, 4);
20914 ptr += 4;
20915 n = 4;
20916 data = 0;
20917 }
20918 unwind.opcode_count--;
20919 n--;
20920 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20921 }
20922
20923 /* Finish off the last word. */
20924 if (n < 4)
20925 {
20926 /* Pad with "finish" opcodes. */
20927 while (n--)
20928 data = (data << 8) | 0xb0;
20929
20930 md_number_to_chars (ptr, data, 4);
20931 }
20932
20933 if (!have_data)
20934 {
20935 /* Add an empty descriptor if there is no user-specified data. */
20936 ptr = frag_more (4);
20937 md_number_to_chars (ptr, 0, 4);
20938 }
20939
20940 return 0;
20941 }
20942
20943
20944 /* Initialize the DWARF-2 unwind information for this procedure. */
20945
20946 void
20947 tc_arm_frame_initial_instructions (void)
20948 {
20949 cfi_add_CFA_def_cfa (REG_SP, 0);
20950 }
20951 #endif /* OBJ_ELF */
20952
20953 /* Convert REGNAME to a DWARF-2 register number. */
20954
20955 int
20956 tc_arm_regname_to_dw2regnum (char *regname)
20957 {
20958 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20959
20960 if (reg == FAIL)
20961 return -1;
20962
20963 return reg;
20964 }
20965
20966 #ifdef TE_PE
20967 void
20968 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20969 {
20970 expressionS exp;
20971
20972 exp.X_op = O_secrel;
20973 exp.X_add_symbol = symbol;
20974 exp.X_add_number = 0;
20975 emit_expr (&exp, size);
20976 }
20977 #endif
20978
20979 /* MD interface: Symbol and relocation handling. */
20980
20981 /* Return the address within the segment that a PC-relative fixup is
20982 relative to. For ARM, PC-relative fixups applied to instructions
20983 are generally relative to the location of the fixup plus 8 bytes.
20984 Thumb branches are offset by 4, and Thumb loads relative to PC
20985 require special handling. */
20986
20987 long
20988 md_pcrel_from_section (fixS * fixP, segT seg)
20989 {
20990 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20991
20992 /* If this is pc-relative and we are going to emit a relocation
20993 then we just want to put out any pipeline compensation that the linker
20994 will need. Otherwise we want to use the calculated base.
20995 For WinCE we skip the bias for externals as well, since this
20996 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20997 if (fixP->fx_pcrel
20998 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20999 || (arm_force_relocation (fixP)
21000 #ifdef TE_WINCE
21001 && !S_IS_EXTERNAL (fixP->fx_addsy)
21002 #endif
21003 )))
21004 base = 0;
21005
21006
21007 switch (fixP->fx_r_type)
21008 {
21009 /* PC relative addressing on the Thumb is slightly odd as the
21010 bottom two bits of the PC are forced to zero for the
21011 calculation. This happens *after* application of the
21012 pipeline offset. However, Thumb adrl already adjusts for
21013 this, so we need not do it again. */
21014 case BFD_RELOC_ARM_THUMB_ADD:
21015 return base & ~3;
21016
21017 case BFD_RELOC_ARM_THUMB_OFFSET:
21018 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21019 case BFD_RELOC_ARM_T32_ADD_PC12:
21020 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21021 return (base + 4) & ~3;
21022
21023 /* Thumb branches are simply offset by +4. */
21024 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21025 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21026 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21027 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21028 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21029 return base + 4;
21030
21031 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21032 if (fixP->fx_addsy
21033 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21034 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21035 && ARM_IS_FUNC (fixP->fx_addsy)
21036 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21037 base = fixP->fx_where + fixP->fx_frag->fr_address;
21038 return base + 4;
21039
21040 /* BLX is like branches above, but forces the low two bits of PC to
21041 zero. */
21042 case BFD_RELOC_THUMB_PCREL_BLX:
21043 if (fixP->fx_addsy
21044 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21045 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21046 && THUMB_IS_FUNC (fixP->fx_addsy)
21047 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21048 base = fixP->fx_where + fixP->fx_frag->fr_address;
21049 return (base + 4) & ~3;
21050
21051 /* ARM mode branches are offset by +8. However, the Windows CE
21052 loader expects the relocation not to take this into account. */
21053 case BFD_RELOC_ARM_PCREL_BLX:
21054 if (fixP->fx_addsy
21055 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21056 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21057 && ARM_IS_FUNC (fixP->fx_addsy)
21058 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21059 base = fixP->fx_where + fixP->fx_frag->fr_address;
21060 return base + 8;
21061
21062 case BFD_RELOC_ARM_PCREL_CALL:
21063 if (fixP->fx_addsy
21064 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21065 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21066 && THUMB_IS_FUNC (fixP->fx_addsy)
21067 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21068 base = fixP->fx_where + fixP->fx_frag->fr_address;
21069 return base + 8;
21070
21071 case BFD_RELOC_ARM_PCREL_BRANCH:
21072 case BFD_RELOC_ARM_PCREL_JUMP:
21073 case BFD_RELOC_ARM_PLT32:
21074 #ifdef TE_WINCE
21075 /* When handling fixups immediately, because we have already
21076 discovered the value of a symbol, or the address of the frag involved
21077 we must account for the offset by +8, as the OS loader will never see the reloc.
21078 see fixup_segment() in write.c
21079 The S_IS_EXTERNAL test handles the case of global symbols.
21080 Those need the calculated base, not just the pipe compensation the linker will need. */
21081 if (fixP->fx_pcrel
21082 && fixP->fx_addsy != NULL
21083 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21084 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21085 return base + 8;
21086 return base;
21087 #else
21088 return base + 8;
21089 #endif
21090
21091
21092 /* ARM mode loads relative to PC are also offset by +8. Unlike
21093 branches, the Windows CE loader *does* expect the relocation
21094 to take this into account. */
21095 case BFD_RELOC_ARM_OFFSET_IMM:
21096 case BFD_RELOC_ARM_OFFSET_IMM8:
21097 case BFD_RELOC_ARM_HWLITERAL:
21098 case BFD_RELOC_ARM_LITERAL:
21099 case BFD_RELOC_ARM_CP_OFF_IMM:
21100 return base + 8;
21101
21102
21103 /* Other PC-relative relocations are un-offset. */
21104 default:
21105 return base;
21106 }
21107 }
21108
21109 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21110 Otherwise we have no need to default values of symbols. */
21111
21112 symbolS *
21113 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
21114 {
21115 #ifdef OBJ_ELF
21116 if (name[0] == '_' && name[1] == 'G'
21117 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21118 {
21119 if (!GOT_symbol)
21120 {
21121 if (symbol_find (name))
21122 as_bad (_("GOT already in the symbol table"));
21123
21124 GOT_symbol = symbol_new (name, undefined_section,
21125 (valueT) 0, & zero_address_frag);
21126 }
21127
21128 return GOT_symbol;
21129 }
21130 #endif
21131
21132 return NULL;
21133 }
21134
21135 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21136 computed as two separate immediate values, added together. We
21137 already know that this value cannot be computed by just one ARM
21138 instruction. */
21139
21140 static unsigned int
21141 validate_immediate_twopart (unsigned int val,
21142 unsigned int * highpart)
21143 {
21144 unsigned int a;
21145 unsigned int i;
21146
21147 for (i = 0; i < 32; i += 2)
21148 if (((a = rotate_left (val, i)) & 0xff) != 0)
21149 {
21150 if (a & 0xff00)
21151 {
21152 if (a & ~ 0xffff)
21153 continue;
21154 * highpart = (a >> 8) | ((i + 24) << 7);
21155 }
21156 else if (a & 0xff0000)
21157 {
21158 if (a & 0xff000000)
21159 continue;
21160 * highpart = (a >> 16) | ((i + 16) << 7);
21161 }
21162 else
21163 {
21164 gas_assert (a & 0xff000000);
21165 * highpart = (a >> 24) | ((i + 8) << 7);
21166 }
21167
21168 return (a & 0xff) | (i << 7);
21169 }
21170
21171 return FAIL;
21172 }
21173
21174 static int
21175 validate_offset_imm (unsigned int val, int hwse)
21176 {
21177 if ((hwse && val > 255) || val > 4095)
21178 return FAIL;
21179 return val;
21180 }
21181
21182 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21183 negative immediate constant by altering the instruction. A bit of
21184 a hack really.
21185 MOV <-> MVN
21186 AND <-> BIC
21187 ADC <-> SBC
21188 by inverting the second operand, and
21189 ADD <-> SUB
21190 CMP <-> CMN
21191 by negating the second operand. */
21192
21193 static int
21194 negate_data_op (unsigned long * instruction,
21195 unsigned long value)
21196 {
21197 int op, new_inst;
21198 unsigned long negated, inverted;
21199
21200 negated = encode_arm_immediate (-value);
21201 inverted = encode_arm_immediate (~value);
21202
21203 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21204 switch (op)
21205 {
21206 /* First negates. */
21207 case OPCODE_SUB: /* ADD <-> SUB */
21208 new_inst = OPCODE_ADD;
21209 value = negated;
21210 break;
21211
21212 case OPCODE_ADD:
21213 new_inst = OPCODE_SUB;
21214 value = negated;
21215 break;
21216
21217 case OPCODE_CMP: /* CMP <-> CMN */
21218 new_inst = OPCODE_CMN;
21219 value = negated;
21220 break;
21221
21222 case OPCODE_CMN:
21223 new_inst = OPCODE_CMP;
21224 value = negated;
21225 break;
21226
21227 /* Now Inverted ops. */
21228 case OPCODE_MOV: /* MOV <-> MVN */
21229 new_inst = OPCODE_MVN;
21230 value = inverted;
21231 break;
21232
21233 case OPCODE_MVN:
21234 new_inst = OPCODE_MOV;
21235 value = inverted;
21236 break;
21237
21238 case OPCODE_AND: /* AND <-> BIC */
21239 new_inst = OPCODE_BIC;
21240 value = inverted;
21241 break;
21242
21243 case OPCODE_BIC:
21244 new_inst = OPCODE_AND;
21245 value = inverted;
21246 break;
21247
21248 case OPCODE_ADC: /* ADC <-> SBC */
21249 new_inst = OPCODE_SBC;
21250 value = inverted;
21251 break;
21252
21253 case OPCODE_SBC:
21254 new_inst = OPCODE_ADC;
21255 value = inverted;
21256 break;
21257
21258 /* We cannot do anything. */
21259 default:
21260 return FAIL;
21261 }
21262
21263 if (value == (unsigned) FAIL)
21264 return FAIL;
21265
21266 *instruction &= OPCODE_MASK;
21267 *instruction |= new_inst << DATA_OP_SHIFT;
21268 return value;
21269 }
21270
21271 /* Like negate_data_op, but for Thumb-2. */
21272
21273 static unsigned int
21274 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21275 {
21276 int op, new_inst;
21277 int rd;
21278 unsigned int negated, inverted;
21279
21280 negated = encode_thumb32_immediate (-value);
21281 inverted = encode_thumb32_immediate (~value);
21282
21283 rd = (*instruction >> 8) & 0xf;
21284 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21285 switch (op)
21286 {
21287 /* ADD <-> SUB. Includes CMP <-> CMN. */
21288 case T2_OPCODE_SUB:
21289 new_inst = T2_OPCODE_ADD;
21290 value = negated;
21291 break;
21292
21293 case T2_OPCODE_ADD:
21294 new_inst = T2_OPCODE_SUB;
21295 value = negated;
21296 break;
21297
21298 /* ORR <-> ORN. Includes MOV <-> MVN. */
21299 case T2_OPCODE_ORR:
21300 new_inst = T2_OPCODE_ORN;
21301 value = inverted;
21302 break;
21303
21304 case T2_OPCODE_ORN:
21305 new_inst = T2_OPCODE_ORR;
21306 value = inverted;
21307 break;
21308
21309 /* AND <-> BIC. TST has no inverted equivalent. */
21310 case T2_OPCODE_AND:
21311 new_inst = T2_OPCODE_BIC;
21312 if (rd == 15)
21313 value = FAIL;
21314 else
21315 value = inverted;
21316 break;
21317
21318 case T2_OPCODE_BIC:
21319 new_inst = T2_OPCODE_AND;
21320 value = inverted;
21321 break;
21322
21323 /* ADC <-> SBC */
21324 case T2_OPCODE_ADC:
21325 new_inst = T2_OPCODE_SBC;
21326 value = inverted;
21327 break;
21328
21329 case T2_OPCODE_SBC:
21330 new_inst = T2_OPCODE_ADC;
21331 value = inverted;
21332 break;
21333
21334 /* We cannot do anything. */
21335 default:
21336 return FAIL;
21337 }
21338
21339 if (value == (unsigned int)FAIL)
21340 return FAIL;
21341
21342 *instruction &= T2_OPCODE_MASK;
21343 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21344 return value;
21345 }
21346
21347 /* Read a 32-bit thumb instruction from buf. */
21348 static unsigned long
21349 get_thumb32_insn (char * buf)
21350 {
21351 unsigned long insn;
21352 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21353 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21354
21355 return insn;
21356 }
21357
21358
21359 /* We usually want to set the low bit on the address of thumb function
21360 symbols. In particular .word foo - . should have the low bit set.
21361 Generic code tries to fold the difference of two symbols to
21362 a constant. Prevent this and force a relocation when the first symbols
21363 is a thumb function. */
21364
21365 bfd_boolean
21366 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21367 {
21368 if (op == O_subtract
21369 && l->X_op == O_symbol
21370 && r->X_op == O_symbol
21371 && THUMB_IS_FUNC (l->X_add_symbol))
21372 {
21373 l->X_op = O_subtract;
21374 l->X_op_symbol = r->X_add_symbol;
21375 l->X_add_number -= r->X_add_number;
21376 return TRUE;
21377 }
21378
21379 /* Process as normal. */
21380 return FALSE;
21381 }
21382
21383 /* Encode Thumb2 unconditional branches and calls. The encoding
21384 for the 2 are identical for the immediate values. */
21385
21386 static void
21387 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21388 {
21389 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21390 offsetT newval;
21391 offsetT newval2;
21392 addressT S, I1, I2, lo, hi;
21393
21394 S = (value >> 24) & 0x01;
21395 I1 = (value >> 23) & 0x01;
21396 I2 = (value >> 22) & 0x01;
21397 hi = (value >> 12) & 0x3ff;
21398 lo = (value >> 1) & 0x7ff;
21399 newval = md_chars_to_number (buf, THUMB_SIZE);
21400 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21401 newval |= (S << 10) | hi;
21402 newval2 &= ~T2I1I2MASK;
21403 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21404 md_number_to_chars (buf, newval, THUMB_SIZE);
21405 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21406 }
21407
21408 void
21409 md_apply_fix (fixS * fixP,
21410 valueT * valP,
21411 segT seg)
21412 {
21413 offsetT value = * valP;
21414 offsetT newval;
21415 unsigned int newimm;
21416 unsigned long temp;
21417 int sign;
21418 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21419
21420 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21421
21422 /* Note whether this will delete the relocation. */
21423
21424 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21425 fixP->fx_done = 1;
21426
21427 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21428 consistency with the behaviour on 32-bit hosts. Remember value
21429 for emit_reloc. */
21430 value &= 0xffffffff;
21431 value ^= 0x80000000;
21432 value -= 0x80000000;
21433
21434 *valP = value;
21435 fixP->fx_addnumber = value;
21436
21437 /* Same treatment for fixP->fx_offset. */
21438 fixP->fx_offset &= 0xffffffff;
21439 fixP->fx_offset ^= 0x80000000;
21440 fixP->fx_offset -= 0x80000000;
21441
21442 switch (fixP->fx_r_type)
21443 {
21444 case BFD_RELOC_NONE:
21445 /* This will need to go in the object file. */
21446 fixP->fx_done = 0;
21447 break;
21448
21449 case BFD_RELOC_ARM_IMMEDIATE:
21450 /* We claim that this fixup has been processed here,
21451 even if in fact we generate an error because we do
21452 not have a reloc for it, so tc_gen_reloc will reject it. */
21453 fixP->fx_done = 1;
21454
21455 if (fixP->fx_addsy)
21456 {
21457 const char *msg = 0;
21458
21459 if (! S_IS_DEFINED (fixP->fx_addsy))
21460 msg = _("undefined symbol %s used as an immediate value");
21461 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21462 msg = _("symbol %s is in a different section");
21463 else if (S_IS_WEAK (fixP->fx_addsy))
21464 msg = _("symbol %s is weak and may be overridden later");
21465
21466 if (msg)
21467 {
21468 as_bad_where (fixP->fx_file, fixP->fx_line,
21469 msg, S_GET_NAME (fixP->fx_addsy));
21470 break;
21471 }
21472 }
21473
21474 temp = md_chars_to_number (buf, INSN_SIZE);
21475
21476 /* If the offset is negative, we should use encoding A2 for ADR. */
21477 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21478 newimm = negate_data_op (&temp, value);
21479 else
21480 {
21481 newimm = encode_arm_immediate (value);
21482
21483 /* If the instruction will fail, see if we can fix things up by
21484 changing the opcode. */
21485 if (newimm == (unsigned int) FAIL)
21486 newimm = negate_data_op (&temp, value);
21487 }
21488
21489 if (newimm == (unsigned int) FAIL)
21490 {
21491 as_bad_where (fixP->fx_file, fixP->fx_line,
21492 _("invalid constant (%lx) after fixup"),
21493 (unsigned long) value);
21494 break;
21495 }
21496
21497 newimm |= (temp & 0xfffff000);
21498 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21499 break;
21500
21501 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21502 {
21503 unsigned int highpart = 0;
21504 unsigned int newinsn = 0xe1a00000; /* nop. */
21505
21506 if (fixP->fx_addsy)
21507 {
21508 const char *msg = 0;
21509
21510 if (! S_IS_DEFINED (fixP->fx_addsy))
21511 msg = _("undefined symbol %s used as an immediate value");
21512 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21513 msg = _("symbol %s is in a different section");
21514 else if (S_IS_WEAK (fixP->fx_addsy))
21515 msg = _("symbol %s is weak and may be overridden later");
21516
21517 if (msg)
21518 {
21519 as_bad_where (fixP->fx_file, fixP->fx_line,
21520 msg, S_GET_NAME (fixP->fx_addsy));
21521 break;
21522 }
21523 }
21524
21525 newimm = encode_arm_immediate (value);
21526 temp = md_chars_to_number (buf, INSN_SIZE);
21527
21528 /* If the instruction will fail, see if we can fix things up by
21529 changing the opcode. */
21530 if (newimm == (unsigned int) FAIL
21531 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21532 {
21533 /* No ? OK - try using two ADD instructions to generate
21534 the value. */
21535 newimm = validate_immediate_twopart (value, & highpart);
21536
21537 /* Yes - then make sure that the second instruction is
21538 also an add. */
21539 if (newimm != (unsigned int) FAIL)
21540 newinsn = temp;
21541 /* Still No ? Try using a negated value. */
21542 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21543 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21544 /* Otherwise - give up. */
21545 else
21546 {
21547 as_bad_where (fixP->fx_file, fixP->fx_line,
21548 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21549 (long) value);
21550 break;
21551 }
21552
21553 /* Replace the first operand in the 2nd instruction (which
21554 is the PC) with the destination register. We have
21555 already added in the PC in the first instruction and we
21556 do not want to do it again. */
21557 newinsn &= ~ 0xf0000;
21558 newinsn |= ((newinsn & 0x0f000) << 4);
21559 }
21560
21561 newimm |= (temp & 0xfffff000);
21562 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21563
21564 highpart |= (newinsn & 0xfffff000);
21565 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21566 }
21567 break;
21568
21569 case BFD_RELOC_ARM_OFFSET_IMM:
21570 if (!fixP->fx_done && seg->use_rela_p)
21571 value = 0;
21572
21573 case BFD_RELOC_ARM_LITERAL:
21574 sign = value > 0;
21575
21576 if (value < 0)
21577 value = - value;
21578
21579 if (validate_offset_imm (value, 0) == FAIL)
21580 {
21581 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21582 as_bad_where (fixP->fx_file, fixP->fx_line,
21583 _("invalid literal constant: pool needs to be closer"));
21584 else
21585 as_bad_where (fixP->fx_file, fixP->fx_line,
21586 _("bad immediate value for offset (%ld)"),
21587 (long) value);
21588 break;
21589 }
21590
21591 newval = md_chars_to_number (buf, INSN_SIZE);
21592 if (value == 0)
21593 newval &= 0xfffff000;
21594 else
21595 {
21596 newval &= 0xff7ff000;
21597 newval |= value | (sign ? INDEX_UP : 0);
21598 }
21599 md_number_to_chars (buf, newval, INSN_SIZE);
21600 break;
21601
21602 case BFD_RELOC_ARM_OFFSET_IMM8:
21603 case BFD_RELOC_ARM_HWLITERAL:
21604 sign = value > 0;
21605
21606 if (value < 0)
21607 value = - value;
21608
21609 if (validate_offset_imm (value, 1) == FAIL)
21610 {
21611 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21612 as_bad_where (fixP->fx_file, fixP->fx_line,
21613 _("invalid literal constant: pool needs to be closer"));
21614 else
21615 as_bad_where (fixP->fx_file, fixP->fx_line,
21616 _("bad immediate value for 8-bit offset (%ld)"),
21617 (long) value);
21618 break;
21619 }
21620
21621 newval = md_chars_to_number (buf, INSN_SIZE);
21622 if (value == 0)
21623 newval &= 0xfffff0f0;
21624 else
21625 {
21626 newval &= 0xff7ff0f0;
21627 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21628 }
21629 md_number_to_chars (buf, newval, INSN_SIZE);
21630 break;
21631
21632 case BFD_RELOC_ARM_T32_OFFSET_U8:
21633 if (value < 0 || value > 1020 || value % 4 != 0)
21634 as_bad_where (fixP->fx_file, fixP->fx_line,
21635 _("bad immediate value for offset (%ld)"), (long) value);
21636 value /= 4;
21637
21638 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21639 newval |= value;
21640 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21641 break;
21642
21643 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21644 /* This is a complicated relocation used for all varieties of Thumb32
21645 load/store instruction with immediate offset:
21646
21647 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21648 *4, optional writeback(W)
21649 (doubleword load/store)
21650
21651 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21652 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21653 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21654 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21655 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21656
21657 Uppercase letters indicate bits that are already encoded at
21658 this point. Lowercase letters are our problem. For the
21659 second block of instructions, the secondary opcode nybble
21660 (bits 8..11) is present, and bit 23 is zero, even if this is
21661 a PC-relative operation. */
21662 newval = md_chars_to_number (buf, THUMB_SIZE);
21663 newval <<= 16;
21664 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21665
21666 if ((newval & 0xf0000000) == 0xe0000000)
21667 {
21668 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21669 if (value >= 0)
21670 newval |= (1 << 23);
21671 else
21672 value = -value;
21673 if (value % 4 != 0)
21674 {
21675 as_bad_where (fixP->fx_file, fixP->fx_line,
21676 _("offset not a multiple of 4"));
21677 break;
21678 }
21679 value /= 4;
21680 if (value > 0xff)
21681 {
21682 as_bad_where (fixP->fx_file, fixP->fx_line,
21683 _("offset out of range"));
21684 break;
21685 }
21686 newval &= ~0xff;
21687 }
21688 else if ((newval & 0x000f0000) == 0x000f0000)
21689 {
21690 /* PC-relative, 12-bit offset. */
21691 if (value >= 0)
21692 newval |= (1 << 23);
21693 else
21694 value = -value;
21695 if (value > 0xfff)
21696 {
21697 as_bad_where (fixP->fx_file, fixP->fx_line,
21698 _("offset out of range"));
21699 break;
21700 }
21701 newval &= ~0xfff;
21702 }
21703 else if ((newval & 0x00000100) == 0x00000100)
21704 {
21705 /* Writeback: 8-bit, +/- offset. */
21706 if (value >= 0)
21707 newval |= (1 << 9);
21708 else
21709 value = -value;
21710 if (value > 0xff)
21711 {
21712 as_bad_where (fixP->fx_file, fixP->fx_line,
21713 _("offset out of range"));
21714 break;
21715 }
21716 newval &= ~0xff;
21717 }
21718 else if ((newval & 0x00000f00) == 0x00000e00)
21719 {
21720 /* T-instruction: positive 8-bit offset. */
21721 if (value < 0 || value > 0xff)
21722 {
21723 as_bad_where (fixP->fx_file, fixP->fx_line,
21724 _("offset out of range"));
21725 break;
21726 }
21727 newval &= ~0xff;
21728 newval |= value;
21729 }
21730 else
21731 {
21732 /* Positive 12-bit or negative 8-bit offset. */
21733 int limit;
21734 if (value >= 0)
21735 {
21736 newval |= (1 << 23);
21737 limit = 0xfff;
21738 }
21739 else
21740 {
21741 value = -value;
21742 limit = 0xff;
21743 }
21744 if (value > limit)
21745 {
21746 as_bad_where (fixP->fx_file, fixP->fx_line,
21747 _("offset out of range"));
21748 break;
21749 }
21750 newval &= ~limit;
21751 }
21752
21753 newval |= value;
21754 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21755 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21756 break;
21757
21758 case BFD_RELOC_ARM_SHIFT_IMM:
21759 newval = md_chars_to_number (buf, INSN_SIZE);
21760 if (((unsigned long) value) > 32
21761 || (value == 32
21762 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21763 {
21764 as_bad_where (fixP->fx_file, fixP->fx_line,
21765 _("shift expression is too large"));
21766 break;
21767 }
21768
21769 if (value == 0)
21770 /* Shifts of zero must be done as lsl. */
21771 newval &= ~0x60;
21772 else if (value == 32)
21773 value = 0;
21774 newval &= 0xfffff07f;
21775 newval |= (value & 0x1f) << 7;
21776 md_number_to_chars (buf, newval, INSN_SIZE);
21777 break;
21778
21779 case BFD_RELOC_ARM_T32_IMMEDIATE:
21780 case BFD_RELOC_ARM_T32_ADD_IMM:
21781 case BFD_RELOC_ARM_T32_IMM12:
21782 case BFD_RELOC_ARM_T32_ADD_PC12:
21783 /* We claim that this fixup has been processed here,
21784 even if in fact we generate an error because we do
21785 not have a reloc for it, so tc_gen_reloc will reject it. */
21786 fixP->fx_done = 1;
21787
21788 if (fixP->fx_addsy
21789 && ! S_IS_DEFINED (fixP->fx_addsy))
21790 {
21791 as_bad_where (fixP->fx_file, fixP->fx_line,
21792 _("undefined symbol %s used as an immediate value"),
21793 S_GET_NAME (fixP->fx_addsy));
21794 break;
21795 }
21796
21797 newval = md_chars_to_number (buf, THUMB_SIZE);
21798 newval <<= 16;
21799 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21800
21801 newimm = FAIL;
21802 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21803 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21804 {
21805 newimm = encode_thumb32_immediate (value);
21806 if (newimm == (unsigned int) FAIL)
21807 newimm = thumb32_negate_data_op (&newval, value);
21808 }
21809 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21810 && newimm == (unsigned int) FAIL)
21811 {
21812 /* Turn add/sum into addw/subw. */
21813 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21814 newval = (newval & 0xfeffffff) | 0x02000000;
21815 /* No flat 12-bit imm encoding for addsw/subsw. */
21816 if ((newval & 0x00100000) == 0)
21817 {
21818 /* 12 bit immediate for addw/subw. */
21819 if (value < 0)
21820 {
21821 value = -value;
21822 newval ^= 0x00a00000;
21823 }
21824 if (value > 0xfff)
21825 newimm = (unsigned int) FAIL;
21826 else
21827 newimm = value;
21828 }
21829 }
21830
21831 if (newimm == (unsigned int)FAIL)
21832 {
21833 as_bad_where (fixP->fx_file, fixP->fx_line,
21834 _("invalid constant (%lx) after fixup"),
21835 (unsigned long) value);
21836 break;
21837 }
21838
21839 newval |= (newimm & 0x800) << 15;
21840 newval |= (newimm & 0x700) << 4;
21841 newval |= (newimm & 0x0ff);
21842
21843 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21844 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21845 break;
21846
21847 case BFD_RELOC_ARM_SMC:
21848 if (((unsigned long) value) > 0xffff)
21849 as_bad_where (fixP->fx_file, fixP->fx_line,
21850 _("invalid smc expression"));
21851 newval = md_chars_to_number (buf, INSN_SIZE);
21852 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21853 md_number_to_chars (buf, newval, INSN_SIZE);
21854 break;
21855
21856 case BFD_RELOC_ARM_HVC:
21857 if (((unsigned long) value) > 0xffff)
21858 as_bad_where (fixP->fx_file, fixP->fx_line,
21859 _("invalid hvc expression"));
21860 newval = md_chars_to_number (buf, INSN_SIZE);
21861 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21862 md_number_to_chars (buf, newval, INSN_SIZE);
21863 break;
21864
21865 case BFD_RELOC_ARM_SWI:
21866 if (fixP->tc_fix_data != 0)
21867 {
21868 if (((unsigned long) value) > 0xff)
21869 as_bad_where (fixP->fx_file, fixP->fx_line,
21870 _("invalid swi expression"));
21871 newval = md_chars_to_number (buf, THUMB_SIZE);
21872 newval |= value;
21873 md_number_to_chars (buf, newval, THUMB_SIZE);
21874 }
21875 else
21876 {
21877 if (((unsigned long) value) > 0x00ffffff)
21878 as_bad_where (fixP->fx_file, fixP->fx_line,
21879 _("invalid swi expression"));
21880 newval = md_chars_to_number (buf, INSN_SIZE);
21881 newval |= value;
21882 md_number_to_chars (buf, newval, INSN_SIZE);
21883 }
21884 break;
21885
21886 case BFD_RELOC_ARM_MULTI:
21887 if (((unsigned long) value) > 0xffff)
21888 as_bad_where (fixP->fx_file, fixP->fx_line,
21889 _("invalid expression in load/store multiple"));
21890 newval = value | md_chars_to_number (buf, INSN_SIZE);
21891 md_number_to_chars (buf, newval, INSN_SIZE);
21892 break;
21893
21894 #ifdef OBJ_ELF
21895 case BFD_RELOC_ARM_PCREL_CALL:
21896
21897 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21898 && fixP->fx_addsy
21899 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21900 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21901 && THUMB_IS_FUNC (fixP->fx_addsy))
21902 /* Flip the bl to blx. This is a simple flip
21903 bit here because we generate PCREL_CALL for
21904 unconditional bls. */
21905 {
21906 newval = md_chars_to_number (buf, INSN_SIZE);
21907 newval = newval | 0x10000000;
21908 md_number_to_chars (buf, newval, INSN_SIZE);
21909 temp = 1;
21910 fixP->fx_done = 1;
21911 }
21912 else
21913 temp = 3;
21914 goto arm_branch_common;
21915
21916 case BFD_RELOC_ARM_PCREL_JUMP:
21917 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21918 && fixP->fx_addsy
21919 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21920 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21921 && THUMB_IS_FUNC (fixP->fx_addsy))
21922 {
21923 /* This would map to a bl<cond>, b<cond>,
21924 b<always> to a Thumb function. We
21925 need to force a relocation for this particular
21926 case. */
21927 newval = md_chars_to_number (buf, INSN_SIZE);
21928 fixP->fx_done = 0;
21929 }
21930
21931 case BFD_RELOC_ARM_PLT32:
21932 #endif
21933 case BFD_RELOC_ARM_PCREL_BRANCH:
21934 temp = 3;
21935 goto arm_branch_common;
21936
21937 case BFD_RELOC_ARM_PCREL_BLX:
21938
21939 temp = 1;
21940 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21941 && fixP->fx_addsy
21942 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21943 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21944 && ARM_IS_FUNC (fixP->fx_addsy))
21945 {
21946 /* Flip the blx to a bl and warn. */
21947 const char *name = S_GET_NAME (fixP->fx_addsy);
21948 newval = 0xeb000000;
21949 as_warn_where (fixP->fx_file, fixP->fx_line,
21950 _("blx to '%s' an ARM ISA state function changed to bl"),
21951 name);
21952 md_number_to_chars (buf, newval, INSN_SIZE);
21953 temp = 3;
21954 fixP->fx_done = 1;
21955 }
21956
21957 #ifdef OBJ_ELF
21958 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21959 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21960 #endif
21961
21962 arm_branch_common:
21963 /* We are going to store value (shifted right by two) in the
21964 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21965 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21966 also be be clear. */
21967 if (value & temp)
21968 as_bad_where (fixP->fx_file, fixP->fx_line,
21969 _("misaligned branch destination"));
21970 if ((value & (offsetT)0xfe000000) != (offsetT)0
21971 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21972 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21973
21974 if (fixP->fx_done || !seg->use_rela_p)
21975 {
21976 newval = md_chars_to_number (buf, INSN_SIZE);
21977 newval |= (value >> 2) & 0x00ffffff;
21978 /* Set the H bit on BLX instructions. */
21979 if (temp == 1)
21980 {
21981 if (value & 2)
21982 newval |= 0x01000000;
21983 else
21984 newval &= ~0x01000000;
21985 }
21986 md_number_to_chars (buf, newval, INSN_SIZE);
21987 }
21988 break;
21989
21990 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21991 /* CBZ can only branch forward. */
21992
21993 /* Attempts to use CBZ to branch to the next instruction
21994 (which, strictly speaking, are prohibited) will be turned into
21995 no-ops.
21996
21997 FIXME: It may be better to remove the instruction completely and
21998 perform relaxation. */
21999 if (value == -2)
22000 {
22001 newval = md_chars_to_number (buf, THUMB_SIZE);
22002 newval = 0xbf00; /* NOP encoding T1 */
22003 md_number_to_chars (buf, newval, THUMB_SIZE);
22004 }
22005 else
22006 {
22007 if (value & ~0x7e)
22008 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22009
22010 if (fixP->fx_done || !seg->use_rela_p)
22011 {
22012 newval = md_chars_to_number (buf, THUMB_SIZE);
22013 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
22014 md_number_to_chars (buf, newval, THUMB_SIZE);
22015 }
22016 }
22017 break;
22018
22019 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
22020 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
22021 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22022
22023 if (fixP->fx_done || !seg->use_rela_p)
22024 {
22025 newval = md_chars_to_number (buf, THUMB_SIZE);
22026 newval |= (value & 0x1ff) >> 1;
22027 md_number_to_chars (buf, newval, THUMB_SIZE);
22028 }
22029 break;
22030
22031 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
22032 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
22033 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22034
22035 if (fixP->fx_done || !seg->use_rela_p)
22036 {
22037 newval = md_chars_to_number (buf, THUMB_SIZE);
22038 newval |= (value & 0xfff) >> 1;
22039 md_number_to_chars (buf, newval, THUMB_SIZE);
22040 }
22041 break;
22042
22043 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22044 if (fixP->fx_addsy
22045 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22046 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22047 && ARM_IS_FUNC (fixP->fx_addsy)
22048 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22049 {
22050 /* Force a relocation for a branch 20 bits wide. */
22051 fixP->fx_done = 0;
22052 }
22053 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
22054 as_bad_where (fixP->fx_file, fixP->fx_line,
22055 _("conditional branch out of range"));
22056
22057 if (fixP->fx_done || !seg->use_rela_p)
22058 {
22059 offsetT newval2;
22060 addressT S, J1, J2, lo, hi;
22061
22062 S = (value & 0x00100000) >> 20;
22063 J2 = (value & 0x00080000) >> 19;
22064 J1 = (value & 0x00040000) >> 18;
22065 hi = (value & 0x0003f000) >> 12;
22066 lo = (value & 0x00000ffe) >> 1;
22067
22068 newval = md_chars_to_number (buf, THUMB_SIZE);
22069 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22070 newval |= (S << 10) | hi;
22071 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22072 md_number_to_chars (buf, newval, THUMB_SIZE);
22073 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22074 }
22075 break;
22076
22077 case BFD_RELOC_THUMB_PCREL_BLX:
22078 /* If there is a blx from a thumb state function to
22079 another thumb function flip this to a bl and warn
22080 about it. */
22081
22082 if (fixP->fx_addsy
22083 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22084 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22085 && THUMB_IS_FUNC (fixP->fx_addsy))
22086 {
22087 const char *name = S_GET_NAME (fixP->fx_addsy);
22088 as_warn_where (fixP->fx_file, fixP->fx_line,
22089 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22090 name);
22091 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22092 newval = newval | 0x1000;
22093 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22094 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22095 fixP->fx_done = 1;
22096 }
22097
22098
22099 goto thumb_bl_common;
22100
22101 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22102 /* A bl from Thumb state ISA to an internal ARM state function
22103 is converted to a blx. */
22104 if (fixP->fx_addsy
22105 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22106 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22107 && ARM_IS_FUNC (fixP->fx_addsy)
22108 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22109 {
22110 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22111 newval = newval & ~0x1000;
22112 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22113 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22114 fixP->fx_done = 1;
22115 }
22116
22117 thumb_bl_common:
22118
22119 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22120 /* For a BLX instruction, make sure that the relocation is rounded up
22121 to a word boundary. This follows the semantics of the instruction
22122 which specifies that bit 1 of the target address will come from bit
22123 1 of the base address. */
22124 value = (value + 3) & ~ 3;
22125
22126 #ifdef OBJ_ELF
22127 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22128 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22129 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22130 #endif
22131
22132 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22133 {
22134 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22135 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22136 else if ((value & ~0x1ffffff)
22137 && ((value & ~0x1ffffff) != ~0x1ffffff))
22138 as_bad_where (fixP->fx_file, fixP->fx_line,
22139 _("Thumb2 branch out of range"));
22140 }
22141
22142 if (fixP->fx_done || !seg->use_rela_p)
22143 encode_thumb2_b_bl_offset (buf, value);
22144
22145 break;
22146
22147 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22148 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22149 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22150
22151 if (fixP->fx_done || !seg->use_rela_p)
22152 encode_thumb2_b_bl_offset (buf, value);
22153
22154 break;
22155
22156 case BFD_RELOC_8:
22157 if (fixP->fx_done || !seg->use_rela_p)
22158 md_number_to_chars (buf, value, 1);
22159 break;
22160
22161 case BFD_RELOC_16:
22162 if (fixP->fx_done || !seg->use_rela_p)
22163 md_number_to_chars (buf, value, 2);
22164 break;
22165
22166 #ifdef OBJ_ELF
22167 case BFD_RELOC_ARM_TLS_CALL:
22168 case BFD_RELOC_ARM_THM_TLS_CALL:
22169 case BFD_RELOC_ARM_TLS_DESCSEQ:
22170 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22171 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22172 break;
22173
22174 case BFD_RELOC_ARM_TLS_GOTDESC:
22175 case BFD_RELOC_ARM_TLS_GD32:
22176 case BFD_RELOC_ARM_TLS_LE32:
22177 case BFD_RELOC_ARM_TLS_IE32:
22178 case BFD_RELOC_ARM_TLS_LDM32:
22179 case BFD_RELOC_ARM_TLS_LDO32:
22180 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22181 /* fall through */
22182
22183 case BFD_RELOC_ARM_GOT32:
22184 case BFD_RELOC_ARM_GOTOFF:
22185 if (fixP->fx_done || !seg->use_rela_p)
22186 md_number_to_chars (buf, 0, 4);
22187 break;
22188
22189 case BFD_RELOC_ARM_GOT_PREL:
22190 if (fixP->fx_done || !seg->use_rela_p)
22191 md_number_to_chars (buf, value, 4);
22192 break;
22193
22194 case BFD_RELOC_ARM_TARGET2:
22195 /* TARGET2 is not partial-inplace, so we need to write the
22196 addend here for REL targets, because it won't be written out
22197 during reloc processing later. */
22198 if (fixP->fx_done || !seg->use_rela_p)
22199 md_number_to_chars (buf, fixP->fx_offset, 4);
22200 break;
22201 #endif
22202
22203 case BFD_RELOC_RVA:
22204 case BFD_RELOC_32:
22205 case BFD_RELOC_ARM_TARGET1:
22206 case BFD_RELOC_ARM_ROSEGREL32:
22207 case BFD_RELOC_ARM_SBREL32:
22208 case BFD_RELOC_32_PCREL:
22209 #ifdef TE_PE
22210 case BFD_RELOC_32_SECREL:
22211 #endif
22212 if (fixP->fx_done || !seg->use_rela_p)
22213 #ifdef TE_WINCE
22214 /* For WinCE we only do this for pcrel fixups. */
22215 if (fixP->fx_done || fixP->fx_pcrel)
22216 #endif
22217 md_number_to_chars (buf, value, 4);
22218 break;
22219
22220 #ifdef OBJ_ELF
22221 case BFD_RELOC_ARM_PREL31:
22222 if (fixP->fx_done || !seg->use_rela_p)
22223 {
22224 newval = md_chars_to_number (buf, 4) & 0x80000000;
22225 if ((value ^ (value >> 1)) & 0x40000000)
22226 {
22227 as_bad_where (fixP->fx_file, fixP->fx_line,
22228 _("rel31 relocation overflow"));
22229 }
22230 newval |= value & 0x7fffffff;
22231 md_number_to_chars (buf, newval, 4);
22232 }
22233 break;
22234 #endif
22235
22236 case BFD_RELOC_ARM_CP_OFF_IMM:
22237 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22238 if (value < -1023 || value > 1023 || (value & 3))
22239 as_bad_where (fixP->fx_file, fixP->fx_line,
22240 _("co-processor offset out of range"));
22241 cp_off_common:
22242 sign = value > 0;
22243 if (value < 0)
22244 value = -value;
22245 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22246 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22247 newval = md_chars_to_number (buf, INSN_SIZE);
22248 else
22249 newval = get_thumb32_insn (buf);
22250 if (value == 0)
22251 newval &= 0xffffff00;
22252 else
22253 {
22254 newval &= 0xff7fff00;
22255 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22256 }
22257 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22258 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22259 md_number_to_chars (buf, newval, INSN_SIZE);
22260 else
22261 put_thumb32_insn (buf, newval);
22262 break;
22263
22264 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22265 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22266 if (value < -255 || value > 255)
22267 as_bad_where (fixP->fx_file, fixP->fx_line,
22268 _("co-processor offset out of range"));
22269 value *= 4;
22270 goto cp_off_common;
22271
22272 case BFD_RELOC_ARM_THUMB_OFFSET:
22273 newval = md_chars_to_number (buf, THUMB_SIZE);
22274 /* Exactly what ranges, and where the offset is inserted depends
22275 on the type of instruction, we can establish this from the
22276 top 4 bits. */
22277 switch (newval >> 12)
22278 {
22279 case 4: /* PC load. */
22280 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22281 forced to zero for these loads; md_pcrel_from has already
22282 compensated for this. */
22283 if (value & 3)
22284 as_bad_where (fixP->fx_file, fixP->fx_line,
22285 _("invalid offset, target not word aligned (0x%08lX)"),
22286 (((unsigned long) fixP->fx_frag->fr_address
22287 + (unsigned long) fixP->fx_where) & ~3)
22288 + (unsigned long) value);
22289
22290 if (value & ~0x3fc)
22291 as_bad_where (fixP->fx_file, fixP->fx_line,
22292 _("invalid offset, value too big (0x%08lX)"),
22293 (long) value);
22294
22295 newval |= value >> 2;
22296 break;
22297
22298 case 9: /* SP load/store. */
22299 if (value & ~0x3fc)
22300 as_bad_where (fixP->fx_file, fixP->fx_line,
22301 _("invalid offset, value too big (0x%08lX)"),
22302 (long) value);
22303 newval |= value >> 2;
22304 break;
22305
22306 case 6: /* Word load/store. */
22307 if (value & ~0x7c)
22308 as_bad_where (fixP->fx_file, fixP->fx_line,
22309 _("invalid offset, value too big (0x%08lX)"),
22310 (long) value);
22311 newval |= value << 4; /* 6 - 2. */
22312 break;
22313
22314 case 7: /* Byte load/store. */
22315 if (value & ~0x1f)
22316 as_bad_where (fixP->fx_file, fixP->fx_line,
22317 _("invalid offset, value too big (0x%08lX)"),
22318 (long) value);
22319 newval |= value << 6;
22320 break;
22321
22322 case 8: /* Halfword load/store. */
22323 if (value & ~0x3e)
22324 as_bad_where (fixP->fx_file, fixP->fx_line,
22325 _("invalid offset, value too big (0x%08lX)"),
22326 (long) value);
22327 newval |= value << 5; /* 6 - 1. */
22328 break;
22329
22330 default:
22331 as_bad_where (fixP->fx_file, fixP->fx_line,
22332 "Unable to process relocation for thumb opcode: %lx",
22333 (unsigned long) newval);
22334 break;
22335 }
22336 md_number_to_chars (buf, newval, THUMB_SIZE);
22337 break;
22338
22339 case BFD_RELOC_ARM_THUMB_ADD:
22340 /* This is a complicated relocation, since we use it for all of
22341 the following immediate relocations:
22342
22343 3bit ADD/SUB
22344 8bit ADD/SUB
22345 9bit ADD/SUB SP word-aligned
22346 10bit ADD PC/SP word-aligned
22347
22348 The type of instruction being processed is encoded in the
22349 instruction field:
22350
22351 0x8000 SUB
22352 0x00F0 Rd
22353 0x000F Rs
22354 */
22355 newval = md_chars_to_number (buf, THUMB_SIZE);
22356 {
22357 int rd = (newval >> 4) & 0xf;
22358 int rs = newval & 0xf;
22359 int subtract = !!(newval & 0x8000);
22360
22361 /* Check for HI regs, only very restricted cases allowed:
22362 Adjusting SP, and using PC or SP to get an address. */
22363 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22364 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22365 as_bad_where (fixP->fx_file, fixP->fx_line,
22366 _("invalid Hi register with immediate"));
22367
22368 /* If value is negative, choose the opposite instruction. */
22369 if (value < 0)
22370 {
22371 value = -value;
22372 subtract = !subtract;
22373 if (value < 0)
22374 as_bad_where (fixP->fx_file, fixP->fx_line,
22375 _("immediate value out of range"));
22376 }
22377
22378 if (rd == REG_SP)
22379 {
22380 if (value & ~0x1fc)
22381 as_bad_where (fixP->fx_file, fixP->fx_line,
22382 _("invalid immediate for stack address calculation"));
22383 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22384 newval |= value >> 2;
22385 }
22386 else if (rs == REG_PC || rs == REG_SP)
22387 {
22388 if (subtract || value & ~0x3fc)
22389 as_bad_where (fixP->fx_file, fixP->fx_line,
22390 _("invalid immediate for address calculation (value = 0x%08lX)"),
22391 (unsigned long) value);
22392 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22393 newval |= rd << 8;
22394 newval |= value >> 2;
22395 }
22396 else if (rs == rd)
22397 {
22398 if (value & ~0xff)
22399 as_bad_where (fixP->fx_file, fixP->fx_line,
22400 _("immediate value out of range"));
22401 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22402 newval |= (rd << 8) | value;
22403 }
22404 else
22405 {
22406 if (value & ~0x7)
22407 as_bad_where (fixP->fx_file, fixP->fx_line,
22408 _("immediate value out of range"));
22409 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22410 newval |= rd | (rs << 3) | (value << 6);
22411 }
22412 }
22413 md_number_to_chars (buf, newval, THUMB_SIZE);
22414 break;
22415
22416 case BFD_RELOC_ARM_THUMB_IMM:
22417 newval = md_chars_to_number (buf, THUMB_SIZE);
22418 if (value < 0 || value > 255)
22419 as_bad_where (fixP->fx_file, fixP->fx_line,
22420 _("invalid immediate: %ld is out of range"),
22421 (long) value);
22422 newval |= value;
22423 md_number_to_chars (buf, newval, THUMB_SIZE);
22424 break;
22425
22426 case BFD_RELOC_ARM_THUMB_SHIFT:
22427 /* 5bit shift value (0..32). LSL cannot take 32. */
22428 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22429 temp = newval & 0xf800;
22430 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22431 as_bad_where (fixP->fx_file, fixP->fx_line,
22432 _("invalid shift value: %ld"), (long) value);
22433 /* Shifts of zero must be encoded as LSL. */
22434 if (value == 0)
22435 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22436 /* Shifts of 32 are encoded as zero. */
22437 else if (value == 32)
22438 value = 0;
22439 newval |= value << 6;
22440 md_number_to_chars (buf, newval, THUMB_SIZE);
22441 break;
22442
22443 case BFD_RELOC_VTABLE_INHERIT:
22444 case BFD_RELOC_VTABLE_ENTRY:
22445 fixP->fx_done = 0;
22446 return;
22447
22448 case BFD_RELOC_ARM_MOVW:
22449 case BFD_RELOC_ARM_MOVT:
22450 case BFD_RELOC_ARM_THUMB_MOVW:
22451 case BFD_RELOC_ARM_THUMB_MOVT:
22452 if (fixP->fx_done || !seg->use_rela_p)
22453 {
22454 /* REL format relocations are limited to a 16-bit addend. */
22455 if (!fixP->fx_done)
22456 {
22457 if (value < -0x8000 || value > 0x7fff)
22458 as_bad_where (fixP->fx_file, fixP->fx_line,
22459 _("offset out of range"));
22460 }
22461 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22462 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22463 {
22464 value >>= 16;
22465 }
22466
22467 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22468 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22469 {
22470 newval = get_thumb32_insn (buf);
22471 newval &= 0xfbf08f00;
22472 newval |= (value & 0xf000) << 4;
22473 newval |= (value & 0x0800) << 15;
22474 newval |= (value & 0x0700) << 4;
22475 newval |= (value & 0x00ff);
22476 put_thumb32_insn (buf, newval);
22477 }
22478 else
22479 {
22480 newval = md_chars_to_number (buf, 4);
22481 newval &= 0xfff0f000;
22482 newval |= value & 0x0fff;
22483 newval |= (value & 0xf000) << 4;
22484 md_number_to_chars (buf, newval, 4);
22485 }
22486 }
22487 return;
22488
22489 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22490 case BFD_RELOC_ARM_ALU_PC_G0:
22491 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22492 case BFD_RELOC_ARM_ALU_PC_G1:
22493 case BFD_RELOC_ARM_ALU_PC_G2:
22494 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22495 case BFD_RELOC_ARM_ALU_SB_G0:
22496 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22497 case BFD_RELOC_ARM_ALU_SB_G1:
22498 case BFD_RELOC_ARM_ALU_SB_G2:
22499 gas_assert (!fixP->fx_done);
22500 if (!seg->use_rela_p)
22501 {
22502 bfd_vma insn;
22503 bfd_vma encoded_addend;
22504 bfd_vma addend_abs = abs (value);
22505
22506 /* Check that the absolute value of the addend can be
22507 expressed as an 8-bit constant plus a rotation. */
22508 encoded_addend = encode_arm_immediate (addend_abs);
22509 if (encoded_addend == (unsigned int) FAIL)
22510 as_bad_where (fixP->fx_file, fixP->fx_line,
22511 _("the offset 0x%08lX is not representable"),
22512 (unsigned long) addend_abs);
22513
22514 /* Extract the instruction. */
22515 insn = md_chars_to_number (buf, INSN_SIZE);
22516
22517 /* If the addend is positive, use an ADD instruction.
22518 Otherwise use a SUB. Take care not to destroy the S bit. */
22519 insn &= 0xff1fffff;
22520 if (value < 0)
22521 insn |= 1 << 22;
22522 else
22523 insn |= 1 << 23;
22524
22525 /* Place the encoded addend into the first 12 bits of the
22526 instruction. */
22527 insn &= 0xfffff000;
22528 insn |= encoded_addend;
22529
22530 /* Update the instruction. */
22531 md_number_to_chars (buf, insn, INSN_SIZE);
22532 }
22533 break;
22534
22535 case BFD_RELOC_ARM_LDR_PC_G0:
22536 case BFD_RELOC_ARM_LDR_PC_G1:
22537 case BFD_RELOC_ARM_LDR_PC_G2:
22538 case BFD_RELOC_ARM_LDR_SB_G0:
22539 case BFD_RELOC_ARM_LDR_SB_G1:
22540 case BFD_RELOC_ARM_LDR_SB_G2:
22541 gas_assert (!fixP->fx_done);
22542 if (!seg->use_rela_p)
22543 {
22544 bfd_vma insn;
22545 bfd_vma addend_abs = abs (value);
22546
22547 /* Check that the absolute value of the addend can be
22548 encoded in 12 bits. */
22549 if (addend_abs >= 0x1000)
22550 as_bad_where (fixP->fx_file, fixP->fx_line,
22551 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22552 (unsigned long) addend_abs);
22553
22554 /* Extract the instruction. */
22555 insn = md_chars_to_number (buf, INSN_SIZE);
22556
22557 /* If the addend is negative, clear bit 23 of the instruction.
22558 Otherwise set it. */
22559 if (value < 0)
22560 insn &= ~(1 << 23);
22561 else
22562 insn |= 1 << 23;
22563
22564 /* Place the absolute value of the addend into the first 12 bits
22565 of the instruction. */
22566 insn &= 0xfffff000;
22567 insn |= addend_abs;
22568
22569 /* Update the instruction. */
22570 md_number_to_chars (buf, insn, INSN_SIZE);
22571 }
22572 break;
22573
22574 case BFD_RELOC_ARM_LDRS_PC_G0:
22575 case BFD_RELOC_ARM_LDRS_PC_G1:
22576 case BFD_RELOC_ARM_LDRS_PC_G2:
22577 case BFD_RELOC_ARM_LDRS_SB_G0:
22578 case BFD_RELOC_ARM_LDRS_SB_G1:
22579 case BFD_RELOC_ARM_LDRS_SB_G2:
22580 gas_assert (!fixP->fx_done);
22581 if (!seg->use_rela_p)
22582 {
22583 bfd_vma insn;
22584 bfd_vma addend_abs = abs (value);
22585
22586 /* Check that the absolute value of the addend can be
22587 encoded in 8 bits. */
22588 if (addend_abs >= 0x100)
22589 as_bad_where (fixP->fx_file, fixP->fx_line,
22590 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22591 (unsigned long) addend_abs);
22592
22593 /* Extract the instruction. */
22594 insn = md_chars_to_number (buf, INSN_SIZE);
22595
22596 /* If the addend is negative, clear bit 23 of the instruction.
22597 Otherwise set it. */
22598 if (value < 0)
22599 insn &= ~(1 << 23);
22600 else
22601 insn |= 1 << 23;
22602
22603 /* Place the first four bits of the absolute value of the addend
22604 into the first 4 bits of the instruction, and the remaining
22605 four into bits 8 .. 11. */
22606 insn &= 0xfffff0f0;
22607 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22608
22609 /* Update the instruction. */
22610 md_number_to_chars (buf, insn, INSN_SIZE);
22611 }
22612 break;
22613
22614 case BFD_RELOC_ARM_LDC_PC_G0:
22615 case BFD_RELOC_ARM_LDC_PC_G1:
22616 case BFD_RELOC_ARM_LDC_PC_G2:
22617 case BFD_RELOC_ARM_LDC_SB_G0:
22618 case BFD_RELOC_ARM_LDC_SB_G1:
22619 case BFD_RELOC_ARM_LDC_SB_G2:
22620 gas_assert (!fixP->fx_done);
22621 if (!seg->use_rela_p)
22622 {
22623 bfd_vma insn;
22624 bfd_vma addend_abs = abs (value);
22625
22626 /* Check that the absolute value of the addend is a multiple of
22627 four and, when divided by four, fits in 8 bits. */
22628 if (addend_abs & 0x3)
22629 as_bad_where (fixP->fx_file, fixP->fx_line,
22630 _("bad offset 0x%08lX (must be word-aligned)"),
22631 (unsigned long) addend_abs);
22632
22633 if ((addend_abs >> 2) > 0xff)
22634 as_bad_where (fixP->fx_file, fixP->fx_line,
22635 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22636 (unsigned long) addend_abs);
22637
22638 /* Extract the instruction. */
22639 insn = md_chars_to_number (buf, INSN_SIZE);
22640
22641 /* If the addend is negative, clear bit 23 of the instruction.
22642 Otherwise set it. */
22643 if (value < 0)
22644 insn &= ~(1 << 23);
22645 else
22646 insn |= 1 << 23;
22647
22648 /* Place the addend (divided by four) into the first eight
22649 bits of the instruction. */
22650 insn &= 0xfffffff0;
22651 insn |= addend_abs >> 2;
22652
22653 /* Update the instruction. */
22654 md_number_to_chars (buf, insn, INSN_SIZE);
22655 }
22656 break;
22657
22658 case BFD_RELOC_ARM_V4BX:
22659 /* This will need to go in the object file. */
22660 fixP->fx_done = 0;
22661 break;
22662
22663 case BFD_RELOC_UNUSED:
22664 default:
22665 as_bad_where (fixP->fx_file, fixP->fx_line,
22666 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22667 }
22668 }
22669
22670 /* Translate internal representation of relocation info to BFD target
22671 format. */
22672
22673 arelent *
22674 tc_gen_reloc (asection *section, fixS *fixp)
22675 {
22676 arelent * reloc;
22677 bfd_reloc_code_real_type code;
22678
22679 reloc = (arelent *) xmalloc (sizeof (arelent));
22680
22681 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22682 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22683 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22684
22685 if (fixp->fx_pcrel)
22686 {
22687 if (section->use_rela_p)
22688 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22689 else
22690 fixp->fx_offset = reloc->address;
22691 }
22692 reloc->addend = fixp->fx_offset;
22693
22694 switch (fixp->fx_r_type)
22695 {
22696 case BFD_RELOC_8:
22697 if (fixp->fx_pcrel)
22698 {
22699 code = BFD_RELOC_8_PCREL;
22700 break;
22701 }
22702
22703 case BFD_RELOC_16:
22704 if (fixp->fx_pcrel)
22705 {
22706 code = BFD_RELOC_16_PCREL;
22707 break;
22708 }
22709
22710 case BFD_RELOC_32:
22711 if (fixp->fx_pcrel)
22712 {
22713 code = BFD_RELOC_32_PCREL;
22714 break;
22715 }
22716
22717 case BFD_RELOC_ARM_MOVW:
22718 if (fixp->fx_pcrel)
22719 {
22720 code = BFD_RELOC_ARM_MOVW_PCREL;
22721 break;
22722 }
22723
22724 case BFD_RELOC_ARM_MOVT:
22725 if (fixp->fx_pcrel)
22726 {
22727 code = BFD_RELOC_ARM_MOVT_PCREL;
22728 break;
22729 }
22730
22731 case BFD_RELOC_ARM_THUMB_MOVW:
22732 if (fixp->fx_pcrel)
22733 {
22734 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22735 break;
22736 }
22737
22738 case BFD_RELOC_ARM_THUMB_MOVT:
22739 if (fixp->fx_pcrel)
22740 {
22741 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22742 break;
22743 }
22744
22745 case BFD_RELOC_NONE:
22746 case BFD_RELOC_ARM_PCREL_BRANCH:
22747 case BFD_RELOC_ARM_PCREL_BLX:
22748 case BFD_RELOC_RVA:
22749 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22750 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22751 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22752 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22753 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22754 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22755 case BFD_RELOC_VTABLE_ENTRY:
22756 case BFD_RELOC_VTABLE_INHERIT:
22757 #ifdef TE_PE
22758 case BFD_RELOC_32_SECREL:
22759 #endif
22760 code = fixp->fx_r_type;
22761 break;
22762
22763 case BFD_RELOC_THUMB_PCREL_BLX:
22764 #ifdef OBJ_ELF
22765 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22766 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22767 else
22768 #endif
22769 code = BFD_RELOC_THUMB_PCREL_BLX;
22770 break;
22771
22772 case BFD_RELOC_ARM_LITERAL:
22773 case BFD_RELOC_ARM_HWLITERAL:
22774 /* If this is called then the a literal has
22775 been referenced across a section boundary. */
22776 as_bad_where (fixp->fx_file, fixp->fx_line,
22777 _("literal referenced across section boundary"));
22778 return NULL;
22779
22780 #ifdef OBJ_ELF
22781 case BFD_RELOC_ARM_TLS_CALL:
22782 case BFD_RELOC_ARM_THM_TLS_CALL:
22783 case BFD_RELOC_ARM_TLS_DESCSEQ:
22784 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22785 case BFD_RELOC_ARM_GOT32:
22786 case BFD_RELOC_ARM_GOTOFF:
22787 case BFD_RELOC_ARM_GOT_PREL:
22788 case BFD_RELOC_ARM_PLT32:
22789 case BFD_RELOC_ARM_TARGET1:
22790 case BFD_RELOC_ARM_ROSEGREL32:
22791 case BFD_RELOC_ARM_SBREL32:
22792 case BFD_RELOC_ARM_PREL31:
22793 case BFD_RELOC_ARM_TARGET2:
22794 case BFD_RELOC_ARM_TLS_LE32:
22795 case BFD_RELOC_ARM_TLS_LDO32:
22796 case BFD_RELOC_ARM_PCREL_CALL:
22797 case BFD_RELOC_ARM_PCREL_JUMP:
22798 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22799 case BFD_RELOC_ARM_ALU_PC_G0:
22800 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22801 case BFD_RELOC_ARM_ALU_PC_G1:
22802 case BFD_RELOC_ARM_ALU_PC_G2:
22803 case BFD_RELOC_ARM_LDR_PC_G0:
22804 case BFD_RELOC_ARM_LDR_PC_G1:
22805 case BFD_RELOC_ARM_LDR_PC_G2:
22806 case BFD_RELOC_ARM_LDRS_PC_G0:
22807 case BFD_RELOC_ARM_LDRS_PC_G1:
22808 case BFD_RELOC_ARM_LDRS_PC_G2:
22809 case BFD_RELOC_ARM_LDC_PC_G0:
22810 case BFD_RELOC_ARM_LDC_PC_G1:
22811 case BFD_RELOC_ARM_LDC_PC_G2:
22812 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22813 case BFD_RELOC_ARM_ALU_SB_G0:
22814 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22815 case BFD_RELOC_ARM_ALU_SB_G1:
22816 case BFD_RELOC_ARM_ALU_SB_G2:
22817 case BFD_RELOC_ARM_LDR_SB_G0:
22818 case BFD_RELOC_ARM_LDR_SB_G1:
22819 case BFD_RELOC_ARM_LDR_SB_G2:
22820 case BFD_RELOC_ARM_LDRS_SB_G0:
22821 case BFD_RELOC_ARM_LDRS_SB_G1:
22822 case BFD_RELOC_ARM_LDRS_SB_G2:
22823 case BFD_RELOC_ARM_LDC_SB_G0:
22824 case BFD_RELOC_ARM_LDC_SB_G1:
22825 case BFD_RELOC_ARM_LDC_SB_G2:
22826 case BFD_RELOC_ARM_V4BX:
22827 code = fixp->fx_r_type;
22828 break;
22829
22830 case BFD_RELOC_ARM_TLS_GOTDESC:
22831 case BFD_RELOC_ARM_TLS_GD32:
22832 case BFD_RELOC_ARM_TLS_IE32:
22833 case BFD_RELOC_ARM_TLS_LDM32:
22834 /* BFD will include the symbol's address in the addend.
22835 But we don't want that, so subtract it out again here. */
22836 if (!S_IS_COMMON (fixp->fx_addsy))
22837 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22838 code = fixp->fx_r_type;
22839 break;
22840 #endif
22841
22842 case BFD_RELOC_ARM_IMMEDIATE:
22843 as_bad_where (fixp->fx_file, fixp->fx_line,
22844 _("internal relocation (type: IMMEDIATE) not fixed up"));
22845 return NULL;
22846
22847 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22848 as_bad_where (fixp->fx_file, fixp->fx_line,
22849 _("ADRL used for a symbol not defined in the same file"));
22850 return NULL;
22851
22852 case BFD_RELOC_ARM_OFFSET_IMM:
22853 if (section->use_rela_p)
22854 {
22855 code = fixp->fx_r_type;
22856 break;
22857 }
22858
22859 if (fixp->fx_addsy != NULL
22860 && !S_IS_DEFINED (fixp->fx_addsy)
22861 && S_IS_LOCAL (fixp->fx_addsy))
22862 {
22863 as_bad_where (fixp->fx_file, fixp->fx_line,
22864 _("undefined local label `%s'"),
22865 S_GET_NAME (fixp->fx_addsy));
22866 return NULL;
22867 }
22868
22869 as_bad_where (fixp->fx_file, fixp->fx_line,
22870 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22871 return NULL;
22872
22873 default:
22874 {
22875 char * type;
22876
22877 switch (fixp->fx_r_type)
22878 {
22879 case BFD_RELOC_NONE: type = "NONE"; break;
22880 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22881 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22882 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22883 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22884 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22885 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22886 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22887 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22888 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22889 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22890 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22891 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22892 default: type = _("<unknown>"); break;
22893 }
22894 as_bad_where (fixp->fx_file, fixp->fx_line,
22895 _("cannot represent %s relocation in this object file format"),
22896 type);
22897 return NULL;
22898 }
22899 }
22900
22901 #ifdef OBJ_ELF
22902 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22903 && GOT_symbol
22904 && fixp->fx_addsy == GOT_symbol)
22905 {
22906 code = BFD_RELOC_ARM_GOTPC;
22907 reloc->addend = fixp->fx_offset = reloc->address;
22908 }
22909 #endif
22910
22911 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22912
22913 if (reloc->howto == NULL)
22914 {
22915 as_bad_where (fixp->fx_file, fixp->fx_line,
22916 _("cannot represent %s relocation in this object file format"),
22917 bfd_get_reloc_code_name (code));
22918 return NULL;
22919 }
22920
22921 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22922 vtable entry to be used in the relocation's section offset. */
22923 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22924 reloc->address = fixp->fx_offset;
22925
22926 return reloc;
22927 }
22928
22929 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22930
22931 void
22932 cons_fix_new_arm (fragS * frag,
22933 int where,
22934 int size,
22935 expressionS * exp)
22936 {
22937 bfd_reloc_code_real_type type;
22938 int pcrel = 0;
22939
22940 /* Pick a reloc.
22941 FIXME: @@ Should look at CPU word size. */
22942 switch (size)
22943 {
22944 case 1:
22945 type = BFD_RELOC_8;
22946 break;
22947 case 2:
22948 type = BFD_RELOC_16;
22949 break;
22950 case 4:
22951 default:
22952 type = BFD_RELOC_32;
22953 break;
22954 case 8:
22955 type = BFD_RELOC_64;
22956 break;
22957 }
22958
22959 #ifdef TE_PE
22960 if (exp->X_op == O_secrel)
22961 {
22962 exp->X_op = O_symbol;
22963 type = BFD_RELOC_32_SECREL;
22964 }
22965 #endif
22966
22967 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22968 }
22969
22970 #if defined (OBJ_COFF)
22971 void
22972 arm_validate_fix (fixS * fixP)
22973 {
22974 /* If the destination of the branch is a defined symbol which does not have
22975 the THUMB_FUNC attribute, then we must be calling a function which has
22976 the (interfacearm) attribute. We look for the Thumb entry point to that
22977 function and change the branch to refer to that function instead. */
22978 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22979 && fixP->fx_addsy != NULL
22980 && S_IS_DEFINED (fixP->fx_addsy)
22981 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22982 {
22983 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22984 }
22985 }
22986 #endif
22987
22988
22989 int
22990 arm_force_relocation (struct fix * fixp)
22991 {
22992 #if defined (OBJ_COFF) && defined (TE_PE)
22993 if (fixp->fx_r_type == BFD_RELOC_RVA)
22994 return 1;
22995 #endif
22996
22997 /* In case we have a call or a branch to a function in ARM ISA mode from
22998 a thumb function or vice-versa force the relocation. These relocations
22999 are cleared off for some cores that might have blx and simple transformations
23000 are possible. */
23001
23002 #ifdef OBJ_ELF
23003 switch (fixp->fx_r_type)
23004 {
23005 case BFD_RELOC_ARM_PCREL_JUMP:
23006 case BFD_RELOC_ARM_PCREL_CALL:
23007 case BFD_RELOC_THUMB_PCREL_BLX:
23008 if (THUMB_IS_FUNC (fixp->fx_addsy))
23009 return 1;
23010 break;
23011
23012 case BFD_RELOC_ARM_PCREL_BLX:
23013 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23014 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23015 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23016 if (ARM_IS_FUNC (fixp->fx_addsy))
23017 return 1;
23018 break;
23019
23020 default:
23021 break;
23022 }
23023 #endif
23024
23025 /* Resolve these relocations even if the symbol is extern or weak.
23026 Technically this is probably wrong due to symbol preemption.
23027 In practice these relocations do not have enough range to be useful
23028 at dynamic link time, and some code (e.g. in the Linux kernel)
23029 expects these references to be resolved. */
23030 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
23031 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
23032 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
23033 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
23034 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23035 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
23036 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
23037 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
23038 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23039 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
23040 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
23041 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
23042 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
23043 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
23044 return 0;
23045
23046 /* Always leave these relocations for the linker. */
23047 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23048 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23049 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23050 return 1;
23051
23052 /* Always generate relocations against function symbols. */
23053 if (fixp->fx_r_type == BFD_RELOC_32
23054 && fixp->fx_addsy
23055 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23056 return 1;
23057
23058 return generic_force_reloc (fixp);
23059 }
23060
23061 #if defined (OBJ_ELF) || defined (OBJ_COFF)
23062 /* Relocations against function names must be left unadjusted,
23063 so that the linker can use this information to generate interworking
23064 stubs. The MIPS version of this function
23065 also prevents relocations that are mips-16 specific, but I do not
23066 know why it does this.
23067
23068 FIXME:
23069 There is one other problem that ought to be addressed here, but
23070 which currently is not: Taking the address of a label (rather
23071 than a function) and then later jumping to that address. Such
23072 addresses also ought to have their bottom bit set (assuming that
23073 they reside in Thumb code), but at the moment they will not. */
23074
23075 bfd_boolean
23076 arm_fix_adjustable (fixS * fixP)
23077 {
23078 if (fixP->fx_addsy == NULL)
23079 return 1;
23080
23081 /* Preserve relocations against symbols with function type. */
23082 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
23083 return FALSE;
23084
23085 if (THUMB_IS_FUNC (fixP->fx_addsy)
23086 && fixP->fx_subsy == NULL)
23087 return FALSE;
23088
23089 /* We need the symbol name for the VTABLE entries. */
23090 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23091 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23092 return FALSE;
23093
23094 /* Don't allow symbols to be discarded on GOT related relocs. */
23095 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23096 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23097 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23098 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23099 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23100 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23101 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23102 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
23103 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23104 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23105 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23106 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23107 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
23108 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
23109 return FALSE;
23110
23111 /* Similarly for group relocations. */
23112 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23113 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23114 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23115 return FALSE;
23116
23117 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23118 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23119 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23120 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23121 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23122 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23123 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23124 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23125 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
23126 return FALSE;
23127
23128 return TRUE;
23129 }
23130 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
23131
23132 #ifdef OBJ_ELF
23133
23134 const char *
23135 elf32_arm_target_format (void)
23136 {
23137 #ifdef TE_SYMBIAN
23138 return (target_big_endian
23139 ? "elf32-bigarm-symbian"
23140 : "elf32-littlearm-symbian");
23141 #elif defined (TE_VXWORKS)
23142 return (target_big_endian
23143 ? "elf32-bigarm-vxworks"
23144 : "elf32-littlearm-vxworks");
23145 #elif defined (TE_NACL)
23146 return (target_big_endian
23147 ? "elf32-bigarm-nacl"
23148 : "elf32-littlearm-nacl");
23149 #else
23150 if (target_big_endian)
23151 return "elf32-bigarm";
23152 else
23153 return "elf32-littlearm";
23154 #endif
23155 }
23156
23157 void
23158 armelf_frob_symbol (symbolS * symp,
23159 int * puntp)
23160 {
23161 elf_frob_symbol (symp, puntp);
23162 }
23163 #endif
23164
23165 /* MD interface: Finalization. */
23166
23167 void
23168 arm_cleanup (void)
23169 {
23170 literal_pool * pool;
23171
23172 /* Ensure that all the IT blocks are properly closed. */
23173 check_it_blocks_finished ();
23174
23175 for (pool = list_of_pools; pool; pool = pool->next)
23176 {
23177 /* Put it at the end of the relevant section. */
23178 subseg_set (pool->section, pool->sub_section);
23179 #ifdef OBJ_ELF
23180 arm_elf_change_section ();
23181 #endif
23182 s_ltorg (0);
23183 }
23184 }
23185
23186 #ifdef OBJ_ELF
23187 /* Remove any excess mapping symbols generated for alignment frags in
23188 SEC. We may have created a mapping symbol before a zero byte
23189 alignment; remove it if there's a mapping symbol after the
23190 alignment. */
23191 static void
23192 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23193 void *dummy ATTRIBUTE_UNUSED)
23194 {
23195 segment_info_type *seginfo = seg_info (sec);
23196 fragS *fragp;
23197
23198 if (seginfo == NULL || seginfo->frchainP == NULL)
23199 return;
23200
23201 for (fragp = seginfo->frchainP->frch_root;
23202 fragp != NULL;
23203 fragp = fragp->fr_next)
23204 {
23205 symbolS *sym = fragp->tc_frag_data.last_map;
23206 fragS *next = fragp->fr_next;
23207
23208 /* Variable-sized frags have been converted to fixed size by
23209 this point. But if this was variable-sized to start with,
23210 there will be a fixed-size frag after it. So don't handle
23211 next == NULL. */
23212 if (sym == NULL || next == NULL)
23213 continue;
23214
23215 if (S_GET_VALUE (sym) < next->fr_address)
23216 /* Not at the end of this frag. */
23217 continue;
23218 know (S_GET_VALUE (sym) == next->fr_address);
23219
23220 do
23221 {
23222 if (next->tc_frag_data.first_map != NULL)
23223 {
23224 /* Next frag starts with a mapping symbol. Discard this
23225 one. */
23226 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23227 break;
23228 }
23229
23230 if (next->fr_next == NULL)
23231 {
23232 /* This mapping symbol is at the end of the section. Discard
23233 it. */
23234 know (next->fr_fix == 0 && next->fr_var == 0);
23235 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23236 break;
23237 }
23238
23239 /* As long as we have empty frags without any mapping symbols,
23240 keep looking. */
23241 /* If the next frag is non-empty and does not start with a
23242 mapping symbol, then this mapping symbol is required. */
23243 if (next->fr_address != next->fr_next->fr_address)
23244 break;
23245
23246 next = next->fr_next;
23247 }
23248 while (next != NULL);
23249 }
23250 }
23251 #endif
23252
23253 /* Adjust the symbol table. This marks Thumb symbols as distinct from
23254 ARM ones. */
23255
23256 void
23257 arm_adjust_symtab (void)
23258 {
23259 #ifdef OBJ_COFF
23260 symbolS * sym;
23261
23262 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23263 {
23264 if (ARM_IS_THUMB (sym))
23265 {
23266 if (THUMB_IS_FUNC (sym))
23267 {
23268 /* Mark the symbol as a Thumb function. */
23269 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23270 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23271 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
23272
23273 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23274 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23275 else
23276 as_bad (_("%s: unexpected function type: %d"),
23277 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23278 }
23279 else switch (S_GET_STORAGE_CLASS (sym))
23280 {
23281 case C_EXT:
23282 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23283 break;
23284 case C_STAT:
23285 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23286 break;
23287 case C_LABEL:
23288 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23289 break;
23290 default:
23291 /* Do nothing. */
23292 break;
23293 }
23294 }
23295
23296 if (ARM_IS_INTERWORK (sym))
23297 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
23298 }
23299 #endif
23300 #ifdef OBJ_ELF
23301 symbolS * sym;
23302 char bind;
23303
23304 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23305 {
23306 if (ARM_IS_THUMB (sym))
23307 {
23308 elf_symbol_type * elf_sym;
23309
23310 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23311 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
23312
23313 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23314 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
23315 {
23316 /* If it's a .thumb_func, declare it as so,
23317 otherwise tag label as .code 16. */
23318 if (THUMB_IS_FUNC (sym))
23319 elf_sym->internal_elf_sym.st_target_internal
23320 = ST_BRANCH_TO_THUMB;
23321 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23322 elf_sym->internal_elf_sym.st_info =
23323 ELF_ST_INFO (bind, STT_ARM_16BIT);
23324 }
23325 }
23326 }
23327
23328 /* Remove any overlapping mapping symbols generated by alignment frags. */
23329 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
23330 /* Now do generic ELF adjustments. */
23331 elf_adjust_symtab ();
23332 #endif
23333 }
23334
23335 /* MD interface: Initialization. */
23336
23337 static void
23338 set_constant_flonums (void)
23339 {
23340 int i;
23341
23342 for (i = 0; i < NUM_FLOAT_VALS; i++)
23343 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23344 abort ();
23345 }
23346
23347 /* Auto-select Thumb mode if it's the only available instruction set for the
23348 given architecture. */
23349
23350 static void
23351 autoselect_thumb_from_cpu_variant (void)
23352 {
23353 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23354 opcode_select (16);
23355 }
23356
23357 void
23358 md_begin (void)
23359 {
23360 unsigned mach;
23361 unsigned int i;
23362
23363 if ( (arm_ops_hsh = hash_new ()) == NULL
23364 || (arm_cond_hsh = hash_new ()) == NULL
23365 || (arm_shift_hsh = hash_new ()) == NULL
23366 || (arm_psr_hsh = hash_new ()) == NULL
23367 || (arm_v7m_psr_hsh = hash_new ()) == NULL
23368 || (arm_reg_hsh = hash_new ()) == NULL
23369 || (arm_reloc_hsh = hash_new ()) == NULL
23370 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
23371 as_fatal (_("virtual memory exhausted"));
23372
23373 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
23374 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23375 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23376 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23377 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23378 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23379 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23380 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23381 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23382 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23383 (void *) (v7m_psrs + i));
23384 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23385 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23386 for (i = 0;
23387 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23388 i++)
23389 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23390 (void *) (barrier_opt_names + i));
23391 #ifdef OBJ_ELF
23392 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23393 {
23394 struct reloc_entry * entry = reloc_names + i;
23395
23396 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23397 /* This makes encode_branch() use the EABI versions of this relocation. */
23398 entry->reloc = BFD_RELOC_UNUSED;
23399
23400 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23401 }
23402 #endif
23403
23404 set_constant_flonums ();
23405
23406 /* Set the cpu variant based on the command-line options. We prefer
23407 -mcpu= over -march= if both are set (as for GCC); and we prefer
23408 -mfpu= over any other way of setting the floating point unit.
23409 Use of legacy options with new options are faulted. */
23410 if (legacy_cpu)
23411 {
23412 if (mcpu_cpu_opt || march_cpu_opt)
23413 as_bad (_("use of old and new-style options to set CPU type"));
23414
23415 mcpu_cpu_opt = legacy_cpu;
23416 }
23417 else if (!mcpu_cpu_opt)
23418 mcpu_cpu_opt = march_cpu_opt;
23419
23420 if (legacy_fpu)
23421 {
23422 if (mfpu_opt)
23423 as_bad (_("use of old and new-style options to set FPU type"));
23424
23425 mfpu_opt = legacy_fpu;
23426 }
23427 else if (!mfpu_opt)
23428 {
23429 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23430 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23431 /* Some environments specify a default FPU. If they don't, infer it
23432 from the processor. */
23433 if (mcpu_fpu_opt)
23434 mfpu_opt = mcpu_fpu_opt;
23435 else
23436 mfpu_opt = march_fpu_opt;
23437 #else
23438 mfpu_opt = &fpu_default;
23439 #endif
23440 }
23441
23442 if (!mfpu_opt)
23443 {
23444 if (mcpu_cpu_opt != NULL)
23445 mfpu_opt = &fpu_default;
23446 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23447 mfpu_opt = &fpu_arch_vfp_v2;
23448 else
23449 mfpu_opt = &fpu_arch_fpa;
23450 }
23451
23452 #ifdef CPU_DEFAULT
23453 if (!mcpu_cpu_opt)
23454 {
23455 mcpu_cpu_opt = &cpu_default;
23456 selected_cpu = cpu_default;
23457 }
23458 #else
23459 if (mcpu_cpu_opt)
23460 selected_cpu = *mcpu_cpu_opt;
23461 else
23462 mcpu_cpu_opt = &arm_arch_any;
23463 #endif
23464
23465 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23466
23467 autoselect_thumb_from_cpu_variant ();
23468
23469 arm_arch_used = thumb_arch_used = arm_arch_none;
23470
23471 #if defined OBJ_COFF || defined OBJ_ELF
23472 {
23473 unsigned int flags = 0;
23474
23475 #if defined OBJ_ELF
23476 flags = meabi_flags;
23477
23478 switch (meabi_flags)
23479 {
23480 case EF_ARM_EABI_UNKNOWN:
23481 #endif
23482 /* Set the flags in the private structure. */
23483 if (uses_apcs_26) flags |= F_APCS26;
23484 if (support_interwork) flags |= F_INTERWORK;
23485 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23486 if (pic_code) flags |= F_PIC;
23487 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23488 flags |= F_SOFT_FLOAT;
23489
23490 switch (mfloat_abi_opt)
23491 {
23492 case ARM_FLOAT_ABI_SOFT:
23493 case ARM_FLOAT_ABI_SOFTFP:
23494 flags |= F_SOFT_FLOAT;
23495 break;
23496
23497 case ARM_FLOAT_ABI_HARD:
23498 if (flags & F_SOFT_FLOAT)
23499 as_bad (_("hard-float conflicts with specified fpu"));
23500 break;
23501 }
23502
23503 /* Using pure-endian doubles (even if soft-float). */
23504 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
23505 flags |= F_VFP_FLOAT;
23506
23507 #if defined OBJ_ELF
23508 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23509 flags |= EF_ARM_MAVERICK_FLOAT;
23510 break;
23511
23512 case EF_ARM_EABI_VER4:
23513 case EF_ARM_EABI_VER5:
23514 /* No additional flags to set. */
23515 break;
23516
23517 default:
23518 abort ();
23519 }
23520 #endif
23521 bfd_set_private_flags (stdoutput, flags);
23522
23523 /* We have run out flags in the COFF header to encode the
23524 status of ATPCS support, so instead we create a dummy,
23525 empty, debug section called .arm.atpcs. */
23526 if (atpcs)
23527 {
23528 asection * sec;
23529
23530 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23531
23532 if (sec != NULL)
23533 {
23534 bfd_set_section_flags
23535 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23536 bfd_set_section_size (stdoutput, sec, 0);
23537 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23538 }
23539 }
23540 }
23541 #endif
23542
23543 /* Record the CPU type as well. */
23544 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23545 mach = bfd_mach_arm_iWMMXt2;
23546 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23547 mach = bfd_mach_arm_iWMMXt;
23548 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23549 mach = bfd_mach_arm_XScale;
23550 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23551 mach = bfd_mach_arm_ep9312;
23552 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23553 mach = bfd_mach_arm_5TE;
23554 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23555 {
23556 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23557 mach = bfd_mach_arm_5T;
23558 else
23559 mach = bfd_mach_arm_5;
23560 }
23561 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23562 {
23563 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23564 mach = bfd_mach_arm_4T;
23565 else
23566 mach = bfd_mach_arm_4;
23567 }
23568 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23569 mach = bfd_mach_arm_3M;
23570 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23571 mach = bfd_mach_arm_3;
23572 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23573 mach = bfd_mach_arm_2a;
23574 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23575 mach = bfd_mach_arm_2;
23576 else
23577 mach = bfd_mach_arm_unknown;
23578
23579 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23580 }
23581
23582 /* Command line processing. */
23583
23584 /* md_parse_option
23585 Invocation line includes a switch not recognized by the base assembler.
23586 See if it's a processor-specific option.
23587
23588 This routine is somewhat complicated by the need for backwards
23589 compatibility (since older releases of gcc can't be changed).
23590 The new options try to make the interface as compatible as
23591 possible with GCC.
23592
23593 New options (supported) are:
23594
23595 -mcpu=<cpu name> Assemble for selected processor
23596 -march=<architecture name> Assemble for selected architecture
23597 -mfpu=<fpu architecture> Assemble for selected FPU.
23598 -EB/-mbig-endian Big-endian
23599 -EL/-mlittle-endian Little-endian
23600 -k Generate PIC code
23601 -mthumb Start in Thumb mode
23602 -mthumb-interwork Code supports ARM/Thumb interworking
23603
23604 -m[no-]warn-deprecated Warn about deprecated features
23605
23606 For now we will also provide support for:
23607
23608 -mapcs-32 32-bit Program counter
23609 -mapcs-26 26-bit Program counter
23610 -macps-float Floats passed in FP registers
23611 -mapcs-reentrant Reentrant code
23612 -matpcs
23613 (sometime these will probably be replaced with -mapcs=<list of options>
23614 and -matpcs=<list of options>)
23615
23616 The remaining options are only supported for back-wards compatibility.
23617 Cpu variants, the arm part is optional:
23618 -m[arm]1 Currently not supported.
23619 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23620 -m[arm]3 Arm 3 processor
23621 -m[arm]6[xx], Arm 6 processors
23622 -m[arm]7[xx][t][[d]m] Arm 7 processors
23623 -m[arm]8[10] Arm 8 processors
23624 -m[arm]9[20][tdmi] Arm 9 processors
23625 -mstrongarm[110[0]] StrongARM processors
23626 -mxscale XScale processors
23627 -m[arm]v[2345[t[e]]] Arm architectures
23628 -mall All (except the ARM1)
23629 FP variants:
23630 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23631 -mfpe-old (No float load/store multiples)
23632 -mvfpxd VFP Single precision
23633 -mvfp All VFP
23634 -mno-fpu Disable all floating point instructions
23635
23636 The following CPU names are recognized:
23637 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23638 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23639 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23640 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23641 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23642 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23643 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23644
23645 */
23646
23647 const char * md_shortopts = "m:k";
23648
23649 #ifdef ARM_BI_ENDIAN
23650 #define OPTION_EB (OPTION_MD_BASE + 0)
23651 #define OPTION_EL (OPTION_MD_BASE + 1)
23652 #else
23653 #if TARGET_BYTES_BIG_ENDIAN
23654 #define OPTION_EB (OPTION_MD_BASE + 0)
23655 #else
23656 #define OPTION_EL (OPTION_MD_BASE + 1)
23657 #endif
23658 #endif
23659 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23660
23661 struct option md_longopts[] =
23662 {
23663 #ifdef OPTION_EB
23664 {"EB", no_argument, NULL, OPTION_EB},
23665 #endif
23666 #ifdef OPTION_EL
23667 {"EL", no_argument, NULL, OPTION_EL},
23668 #endif
23669 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23670 {NULL, no_argument, NULL, 0}
23671 };
23672
23673 size_t md_longopts_size = sizeof (md_longopts);
23674
23675 struct arm_option_table
23676 {
23677 char *option; /* Option name to match. */
23678 char *help; /* Help information. */
23679 int *var; /* Variable to change. */
23680 int value; /* What to change it to. */
23681 char *deprecated; /* If non-null, print this message. */
23682 };
23683
23684 struct arm_option_table arm_opts[] =
23685 {
23686 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23687 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23688 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23689 &support_interwork, 1, NULL},
23690 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23691 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23692 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23693 1, NULL},
23694 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23695 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23696 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23697 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23698 NULL},
23699
23700 /* These are recognized by the assembler, but have no affect on code. */
23701 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23702 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23703
23704 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23705 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23706 &warn_on_deprecated, 0, NULL},
23707 {NULL, NULL, NULL, 0, NULL}
23708 };
23709
23710 struct arm_legacy_option_table
23711 {
23712 char *option; /* Option name to match. */
23713 const arm_feature_set **var; /* Variable to change. */
23714 const arm_feature_set value; /* What to change it to. */
23715 char *deprecated; /* If non-null, print this message. */
23716 };
23717
23718 const struct arm_legacy_option_table arm_legacy_opts[] =
23719 {
23720 /* DON'T add any new processors to this list -- we want the whole list
23721 to go away... Add them to the processors table instead. */
23722 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23723 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23724 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23725 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23726 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23727 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23728 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23729 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23730 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23731 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23732 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23733 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23734 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23735 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23736 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23737 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23738 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23739 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23740 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23741 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23742 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23743 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23744 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23745 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23746 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23747 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23748 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23749 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23750 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23751 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23752 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23753 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23754 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23755 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23756 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23757 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23758 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23759 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23760 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23761 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23762 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23763 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23764 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23765 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23766 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23767 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23768 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23769 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23770 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23771 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23772 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23773 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23774 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23775 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23776 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23777 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23778 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23779 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23780 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23781 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23782 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23783 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23784 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23785 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23786 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23787 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23788 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23789 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23790 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23791 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23792 N_("use -mcpu=strongarm110")},
23793 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23794 N_("use -mcpu=strongarm1100")},
23795 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23796 N_("use -mcpu=strongarm1110")},
23797 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23798 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23799 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23800
23801 /* Architecture variants -- don't add any more to this list either. */
23802 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23803 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23804 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23805 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23806 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23807 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23808 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23809 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23810 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23811 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23812 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23813 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23814 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23815 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23816 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23817 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23818 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23819 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23820
23821 /* Floating point variants -- don't add any more to this list either. */
23822 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23823 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23824 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23825 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23826 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23827
23828 {NULL, NULL, ARM_ARCH_NONE, NULL}
23829 };
23830
23831 struct arm_cpu_option_table
23832 {
23833 char *name;
23834 size_t name_len;
23835 const arm_feature_set value;
23836 /* For some CPUs we assume an FPU unless the user explicitly sets
23837 -mfpu=... */
23838 const arm_feature_set default_fpu;
23839 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23840 case. */
23841 const char *canonical_name;
23842 };
23843
23844 /* This list should, at a minimum, contain all the cpu names
23845 recognized by GCC. */
23846 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23847 static const struct arm_cpu_option_table arm_cpus[] =
23848 {
23849 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23850 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23851 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23852 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23853 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23854 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23855 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23856 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23857 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23858 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23859 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23860 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23861 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23862 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23863 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23864 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23865 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23866 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23867 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23868 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23869 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23870 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23871 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23872 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23873 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23874 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23875 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23876 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23877 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23878 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23879 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23880 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23881 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23882 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23883 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23884 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23885 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23886 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23887 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23888 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23889 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23890 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23891 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23892 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23893 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23894 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23895 /* For V5 or later processors we default to using VFP; but the user
23896 should really set the FPU type explicitly. */
23897 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23898 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23899 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23900 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23901 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23902 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23903 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23904 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23905 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23906 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23907 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23908 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23909 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23910 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23911 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23912 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23913 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23914 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23915 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23916 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23917 "ARM1026EJ-S"),
23918 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23919 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23920 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23921 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23922 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23923 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23924 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23925 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23926 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23927 "ARM1136JF-S"),
23928 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23929 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23930 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23931 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23932 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23933 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23934 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23935 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23936 FPU_NONE, "Cortex-A5"),
23937 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23938 FPU_ARCH_NEON_VFP_V4,
23939 "Cortex-A7"),
23940 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23941 ARM_FEATURE (0, FPU_VFP_V3
23942 | FPU_NEON_EXT_V1),
23943 "Cortex-A8"),
23944 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23945 ARM_FEATURE (0, FPU_VFP_V3
23946 | FPU_NEON_EXT_V1),
23947 "Cortex-A9"),
23948 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23949 FPU_ARCH_NEON_VFP_V4,
23950 "Cortex-A15"),
23951 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23952 "Cortex-A53"),
23953 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23954 "Cortex-A57"),
23955 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23956 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23957 "Cortex-R4F"),
23958 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23959 FPU_NONE, "Cortex-R5"),
23960 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
23961 FPU_ARCH_VFP_V3D16,
23962 "Cortex-R7"),
23963 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23964 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23965 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23966 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23967 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23968 /* ??? XSCALE is really an architecture. */
23969 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23970 /* ??? iwmmxt is not a processor. */
23971 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23972 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23973 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23974 /* Maverick */
23975 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23976 FPU_ARCH_MAVERICK, "ARM920T"),
23977 /* Marvell processors. */
23978 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE (ARM_AEXT_V7A | ARM_EXT_MP | ARM_EXT_SEC, 0),
23979 FPU_ARCH_VFP_V3D16, NULL),
23980
23981 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23982 };
23983 #undef ARM_CPU_OPT
23984
23985 struct arm_arch_option_table
23986 {
23987 char *name;
23988 size_t name_len;
23989 const arm_feature_set value;
23990 const arm_feature_set default_fpu;
23991 };
23992
23993 /* This list should, at a minimum, contain all the architecture names
23994 recognized by GCC. */
23995 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23996 static const struct arm_arch_option_table arm_archs[] =
23997 {
23998 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23999 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
24000 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
24001 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
24002 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
24003 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
24004 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
24005 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
24006 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
24007 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
24008 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
24009 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
24010 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
24011 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
24012 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
24013 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
24014 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
24015 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
24016 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
24017 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
24018 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
24019 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
24020 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
24021 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
24022 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
24023 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
24024 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
24025 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
24026 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
24027 /* The official spelling of the ARMv7 profile variants is the dashed form.
24028 Accept the non-dashed form for compatibility with old toolchains. */
24029 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24030 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24031 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24032 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24033 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24034 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24035 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
24036 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
24037 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
24038 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
24039 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
24040 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24041 };
24042 #undef ARM_ARCH_OPT
24043
24044 /* ISA extensions in the co-processor and main instruction set space. */
24045 struct arm_option_extension_value_table
24046 {
24047 char *name;
24048 size_t name_len;
24049 const arm_feature_set value;
24050 const arm_feature_set allowed_archs;
24051 };
24052
24053 /* The following table must be in alphabetical order with a NULL last entry.
24054 */
24055 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
24056 static const struct arm_option_extension_value_table arm_extensions[] =
24057 {
24058 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE (ARM_EXT_V8, 0)),
24059 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24060 ARM_FEATURE (ARM_EXT_V8, 0)),
24061 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
24062 ARM_FEATURE (ARM_EXT_V8, 0)),
24063 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
24064 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24065 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
24066 ARM_EXT_OPT ("iwmmxt2",
24067 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
24068 ARM_EXT_OPT ("maverick",
24069 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
24070 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
24071 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24072 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24073 ARM_FEATURE (ARM_EXT_V8, 0)),
24074 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
24075 ARM_FEATURE (ARM_EXT_V6M, 0)),
24076 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
24077 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
24078 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
24079 | ARM_EXT_DIV, 0),
24080 ARM_FEATURE (ARM_EXT_V7A, 0)),
24081 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
24082 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24083 };
24084 #undef ARM_EXT_OPT
24085
24086 /* ISA floating-point and Advanced SIMD extensions. */
24087 struct arm_option_fpu_value_table
24088 {
24089 char *name;
24090 const arm_feature_set value;
24091 };
24092
24093 /* This list should, at a minimum, contain all the fpu names
24094 recognized by GCC. */
24095 static const struct arm_option_fpu_value_table arm_fpus[] =
24096 {
24097 {"softfpa", FPU_NONE},
24098 {"fpe", FPU_ARCH_FPE},
24099 {"fpe2", FPU_ARCH_FPE},
24100 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
24101 {"fpa", FPU_ARCH_FPA},
24102 {"fpa10", FPU_ARCH_FPA},
24103 {"fpa11", FPU_ARCH_FPA},
24104 {"arm7500fe", FPU_ARCH_FPA},
24105 {"softvfp", FPU_ARCH_VFP},
24106 {"softvfp+vfp", FPU_ARCH_VFP_V2},
24107 {"vfp", FPU_ARCH_VFP_V2},
24108 {"vfp9", FPU_ARCH_VFP_V2},
24109 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
24110 {"vfp10", FPU_ARCH_VFP_V2},
24111 {"vfp10-r0", FPU_ARCH_VFP_V1},
24112 {"vfpxd", FPU_ARCH_VFP_V1xD},
24113 {"vfpv2", FPU_ARCH_VFP_V2},
24114 {"vfpv3", FPU_ARCH_VFP_V3},
24115 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
24116 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
24117 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
24118 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
24119 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
24120 {"arm1020t", FPU_ARCH_VFP_V1},
24121 {"arm1020e", FPU_ARCH_VFP_V2},
24122 {"arm1136jfs", FPU_ARCH_VFP_V2},
24123 {"arm1136jf-s", FPU_ARCH_VFP_V2},
24124 {"maverick", FPU_ARCH_MAVERICK},
24125 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
24126 {"neon-fp16", FPU_ARCH_NEON_FP16},
24127 {"vfpv4", FPU_ARCH_VFP_V4},
24128 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
24129 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
24130 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
24131 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
24132 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
24133 {"crypto-neon-fp-armv8",
24134 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
24135 {NULL, ARM_ARCH_NONE}
24136 };
24137
24138 struct arm_option_value_table
24139 {
24140 char *name;
24141 long value;
24142 };
24143
24144 static const struct arm_option_value_table arm_float_abis[] =
24145 {
24146 {"hard", ARM_FLOAT_ABI_HARD},
24147 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24148 {"soft", ARM_FLOAT_ABI_SOFT},
24149 {NULL, 0}
24150 };
24151
24152 #ifdef OBJ_ELF
24153 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
24154 static const struct arm_option_value_table arm_eabis[] =
24155 {
24156 {"gnu", EF_ARM_EABI_UNKNOWN},
24157 {"4", EF_ARM_EABI_VER4},
24158 {"5", EF_ARM_EABI_VER5},
24159 {NULL, 0}
24160 };
24161 #endif
24162
24163 struct arm_long_option_table
24164 {
24165 char * option; /* Substring to match. */
24166 char * help; /* Help information. */
24167 int (* func) (char * subopt); /* Function to decode sub-option. */
24168 char * deprecated; /* If non-null, print this message. */
24169 };
24170
24171 static bfd_boolean
24172 arm_parse_extension (char *str, const arm_feature_set **opt_p)
24173 {
24174 arm_feature_set *ext_set = (arm_feature_set *)
24175 xmalloc (sizeof (arm_feature_set));
24176
24177 /* We insist on extensions being specified in alphabetical order, and with
24178 extensions being added before being removed. We achieve this by having
24179 the global ARM_EXTENSIONS table in alphabetical order, and using the
24180 ADDING_VALUE variable to indicate whether we are adding an extension (1)
24181 or removing it (0) and only allowing it to change in the order
24182 -1 -> 1 -> 0. */
24183 const struct arm_option_extension_value_table * opt = NULL;
24184 int adding_value = -1;
24185
24186 /* Copy the feature set, so that we can modify it. */
24187 *ext_set = **opt_p;
24188 *opt_p = ext_set;
24189
24190 while (str != NULL && *str != 0)
24191 {
24192 char *ext;
24193 size_t len;
24194
24195 if (*str != '+')
24196 {
24197 as_bad (_("invalid architectural extension"));
24198 return FALSE;
24199 }
24200
24201 str++;
24202 ext = strchr (str, '+');
24203
24204 if (ext != NULL)
24205 len = ext - str;
24206 else
24207 len = strlen (str);
24208
24209 if (len >= 2 && strncmp (str, "no", 2) == 0)
24210 {
24211 if (adding_value != 0)
24212 {
24213 adding_value = 0;
24214 opt = arm_extensions;
24215 }
24216
24217 len -= 2;
24218 str += 2;
24219 }
24220 else if (len > 0)
24221 {
24222 if (adding_value == -1)
24223 {
24224 adding_value = 1;
24225 opt = arm_extensions;
24226 }
24227 else if (adding_value != 1)
24228 {
24229 as_bad (_("must specify extensions to add before specifying "
24230 "those to remove"));
24231 return FALSE;
24232 }
24233 }
24234
24235 if (len == 0)
24236 {
24237 as_bad (_("missing architectural extension"));
24238 return FALSE;
24239 }
24240
24241 gas_assert (adding_value != -1);
24242 gas_assert (opt != NULL);
24243
24244 /* Scan over the options table trying to find an exact match. */
24245 for (; opt->name != NULL; opt++)
24246 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24247 {
24248 /* Check we can apply the extension to this architecture. */
24249 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24250 {
24251 as_bad (_("extension does not apply to the base architecture"));
24252 return FALSE;
24253 }
24254
24255 /* Add or remove the extension. */
24256 if (adding_value)
24257 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24258 else
24259 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24260
24261 break;
24262 }
24263
24264 if (opt->name == NULL)
24265 {
24266 /* Did we fail to find an extension because it wasn't specified in
24267 alphabetical order, or because it does not exist? */
24268
24269 for (opt = arm_extensions; opt->name != NULL; opt++)
24270 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24271 break;
24272
24273 if (opt->name == NULL)
24274 as_bad (_("unknown architectural extension `%s'"), str);
24275 else
24276 as_bad (_("architectural extensions must be specified in "
24277 "alphabetical order"));
24278
24279 return FALSE;
24280 }
24281 else
24282 {
24283 /* We should skip the extension we've just matched the next time
24284 round. */
24285 opt++;
24286 }
24287
24288 str = ext;
24289 };
24290
24291 return TRUE;
24292 }
24293
24294 static bfd_boolean
24295 arm_parse_cpu (char *str)
24296 {
24297 const struct arm_cpu_option_table *opt;
24298 char *ext = strchr (str, '+');
24299 size_t len;
24300
24301 if (ext != NULL)
24302 len = ext - str;
24303 else
24304 len = strlen (str);
24305
24306 if (len == 0)
24307 {
24308 as_bad (_("missing cpu name `%s'"), str);
24309 return FALSE;
24310 }
24311
24312 for (opt = arm_cpus; opt->name != NULL; opt++)
24313 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24314 {
24315 mcpu_cpu_opt = &opt->value;
24316 mcpu_fpu_opt = &opt->default_fpu;
24317 if (opt->canonical_name)
24318 strcpy (selected_cpu_name, opt->canonical_name);
24319 else
24320 {
24321 size_t i;
24322
24323 for (i = 0; i < len; i++)
24324 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24325 selected_cpu_name[i] = 0;
24326 }
24327
24328 if (ext != NULL)
24329 return arm_parse_extension (ext, &mcpu_cpu_opt);
24330
24331 return TRUE;
24332 }
24333
24334 as_bad (_("unknown cpu `%s'"), str);
24335 return FALSE;
24336 }
24337
24338 static bfd_boolean
24339 arm_parse_arch (char *str)
24340 {
24341 const struct arm_arch_option_table *opt;
24342 char *ext = strchr (str, '+');
24343 size_t len;
24344
24345 if (ext != NULL)
24346 len = ext - str;
24347 else
24348 len = strlen (str);
24349
24350 if (len == 0)
24351 {
24352 as_bad (_("missing architecture name `%s'"), str);
24353 return FALSE;
24354 }
24355
24356 for (opt = arm_archs; opt->name != NULL; opt++)
24357 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24358 {
24359 march_cpu_opt = &opt->value;
24360 march_fpu_opt = &opt->default_fpu;
24361 strcpy (selected_cpu_name, opt->name);
24362
24363 if (ext != NULL)
24364 return arm_parse_extension (ext, &march_cpu_opt);
24365
24366 return TRUE;
24367 }
24368
24369 as_bad (_("unknown architecture `%s'\n"), str);
24370 return FALSE;
24371 }
24372
24373 static bfd_boolean
24374 arm_parse_fpu (char * str)
24375 {
24376 const struct arm_option_fpu_value_table * opt;
24377
24378 for (opt = arm_fpus; opt->name != NULL; opt++)
24379 if (streq (opt->name, str))
24380 {
24381 mfpu_opt = &opt->value;
24382 return TRUE;
24383 }
24384
24385 as_bad (_("unknown floating point format `%s'\n"), str);
24386 return FALSE;
24387 }
24388
24389 static bfd_boolean
24390 arm_parse_float_abi (char * str)
24391 {
24392 const struct arm_option_value_table * opt;
24393
24394 for (opt = arm_float_abis; opt->name != NULL; opt++)
24395 if (streq (opt->name, str))
24396 {
24397 mfloat_abi_opt = opt->value;
24398 return TRUE;
24399 }
24400
24401 as_bad (_("unknown floating point abi `%s'\n"), str);
24402 return FALSE;
24403 }
24404
24405 #ifdef OBJ_ELF
24406 static bfd_boolean
24407 arm_parse_eabi (char * str)
24408 {
24409 const struct arm_option_value_table *opt;
24410
24411 for (opt = arm_eabis; opt->name != NULL; opt++)
24412 if (streq (opt->name, str))
24413 {
24414 meabi_flags = opt->value;
24415 return TRUE;
24416 }
24417 as_bad (_("unknown EABI `%s'\n"), str);
24418 return FALSE;
24419 }
24420 #endif
24421
24422 static bfd_boolean
24423 arm_parse_it_mode (char * str)
24424 {
24425 bfd_boolean ret = TRUE;
24426
24427 if (streq ("arm", str))
24428 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24429 else if (streq ("thumb", str))
24430 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24431 else if (streq ("always", str))
24432 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24433 else if (streq ("never", str))
24434 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24435 else
24436 {
24437 as_bad (_("unknown implicit IT mode `%s', should be "\
24438 "arm, thumb, always, or never."), str);
24439 ret = FALSE;
24440 }
24441
24442 return ret;
24443 }
24444
24445 struct arm_long_option_table arm_long_opts[] =
24446 {
24447 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24448 arm_parse_cpu, NULL},
24449 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24450 arm_parse_arch, NULL},
24451 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24452 arm_parse_fpu, NULL},
24453 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24454 arm_parse_float_abi, NULL},
24455 #ifdef OBJ_ELF
24456 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24457 arm_parse_eabi, NULL},
24458 #endif
24459 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24460 arm_parse_it_mode, NULL},
24461 {NULL, NULL, 0, NULL}
24462 };
24463
24464 int
24465 md_parse_option (int c, char * arg)
24466 {
24467 struct arm_option_table *opt;
24468 const struct arm_legacy_option_table *fopt;
24469 struct arm_long_option_table *lopt;
24470
24471 switch (c)
24472 {
24473 #ifdef OPTION_EB
24474 case OPTION_EB:
24475 target_big_endian = 1;
24476 break;
24477 #endif
24478
24479 #ifdef OPTION_EL
24480 case OPTION_EL:
24481 target_big_endian = 0;
24482 break;
24483 #endif
24484
24485 case OPTION_FIX_V4BX:
24486 fix_v4bx = TRUE;
24487 break;
24488
24489 case 'a':
24490 /* Listing option. Just ignore these, we don't support additional
24491 ones. */
24492 return 0;
24493
24494 default:
24495 for (opt = arm_opts; opt->option != NULL; opt++)
24496 {
24497 if (c == opt->option[0]
24498 && ((arg == NULL && opt->option[1] == 0)
24499 || streq (arg, opt->option + 1)))
24500 {
24501 /* If the option is deprecated, tell the user. */
24502 if (warn_on_deprecated && opt->deprecated != NULL)
24503 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24504 arg ? arg : "", _(opt->deprecated));
24505
24506 if (opt->var != NULL)
24507 *opt->var = opt->value;
24508
24509 return 1;
24510 }
24511 }
24512
24513 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24514 {
24515 if (c == fopt->option[0]
24516 && ((arg == NULL && fopt->option[1] == 0)
24517 || streq (arg, fopt->option + 1)))
24518 {
24519 /* If the option is deprecated, tell the user. */
24520 if (warn_on_deprecated && fopt->deprecated != NULL)
24521 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24522 arg ? arg : "", _(fopt->deprecated));
24523
24524 if (fopt->var != NULL)
24525 *fopt->var = &fopt->value;
24526
24527 return 1;
24528 }
24529 }
24530
24531 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24532 {
24533 /* These options are expected to have an argument. */
24534 if (c == lopt->option[0]
24535 && arg != NULL
24536 && strncmp (arg, lopt->option + 1,
24537 strlen (lopt->option + 1)) == 0)
24538 {
24539 /* If the option is deprecated, tell the user. */
24540 if (warn_on_deprecated && lopt->deprecated != NULL)
24541 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24542 _(lopt->deprecated));
24543
24544 /* Call the sup-option parser. */
24545 return lopt->func (arg + strlen (lopt->option) - 1);
24546 }
24547 }
24548
24549 return 0;
24550 }
24551
24552 return 1;
24553 }
24554
24555 void
24556 md_show_usage (FILE * fp)
24557 {
24558 struct arm_option_table *opt;
24559 struct arm_long_option_table *lopt;
24560
24561 fprintf (fp, _(" ARM-specific assembler options:\n"));
24562
24563 for (opt = arm_opts; opt->option != NULL; opt++)
24564 if (opt->help != NULL)
24565 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24566
24567 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24568 if (lopt->help != NULL)
24569 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24570
24571 #ifdef OPTION_EB
24572 fprintf (fp, _("\
24573 -EB assemble code for a big-endian cpu\n"));
24574 #endif
24575
24576 #ifdef OPTION_EL
24577 fprintf (fp, _("\
24578 -EL assemble code for a little-endian cpu\n"));
24579 #endif
24580
24581 fprintf (fp, _("\
24582 --fix-v4bx Allow BX in ARMv4 code\n"));
24583 }
24584
24585
24586 #ifdef OBJ_ELF
24587 typedef struct
24588 {
24589 int val;
24590 arm_feature_set flags;
24591 } cpu_arch_ver_table;
24592
24593 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24594 least features first. */
24595 static const cpu_arch_ver_table cpu_arch_ver[] =
24596 {
24597 {1, ARM_ARCH_V4},
24598 {2, ARM_ARCH_V4T},
24599 {3, ARM_ARCH_V5},
24600 {3, ARM_ARCH_V5T},
24601 {4, ARM_ARCH_V5TE},
24602 {5, ARM_ARCH_V5TEJ},
24603 {6, ARM_ARCH_V6},
24604 {9, ARM_ARCH_V6K},
24605 {7, ARM_ARCH_V6Z},
24606 {11, ARM_ARCH_V6M},
24607 {12, ARM_ARCH_V6SM},
24608 {8, ARM_ARCH_V6T2},
24609 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24610 {10, ARM_ARCH_V7R},
24611 {10, ARM_ARCH_V7M},
24612 {14, ARM_ARCH_V8A},
24613 {0, ARM_ARCH_NONE}
24614 };
24615
24616 /* Set an attribute if it has not already been set by the user. */
24617 static void
24618 aeabi_set_attribute_int (int tag, int value)
24619 {
24620 if (tag < 1
24621 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24622 || !attributes_set_explicitly[tag])
24623 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24624 }
24625
24626 static void
24627 aeabi_set_attribute_string (int tag, const char *value)
24628 {
24629 if (tag < 1
24630 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24631 || !attributes_set_explicitly[tag])
24632 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24633 }
24634
24635 /* Set the public EABI object attributes. */
24636 static void
24637 aeabi_set_public_attributes (void)
24638 {
24639 int arch;
24640 char profile;
24641 int virt_sec = 0;
24642 int fp16_optional = 0;
24643 arm_feature_set flags;
24644 arm_feature_set tmp;
24645 const cpu_arch_ver_table *p;
24646
24647 /* Choose the architecture based on the capabilities of the requested cpu
24648 (if any) and/or the instructions actually used. */
24649 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24650 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24651 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24652
24653 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24654 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24655
24656 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24657 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24658
24659 /* Allow the user to override the reported architecture. */
24660 if (object_arch)
24661 {
24662 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24663 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24664 }
24665
24666 /* We need to make sure that the attributes do not identify us as v6S-M
24667 when the only v6S-M feature in use is the Operating System Extensions. */
24668 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24669 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24670 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24671
24672 tmp = flags;
24673 arch = 0;
24674 for (p = cpu_arch_ver; p->val; p++)
24675 {
24676 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24677 {
24678 arch = p->val;
24679 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24680 }
24681 }
24682
24683 /* The table lookup above finds the last architecture to contribute
24684 a new feature. Unfortunately, Tag13 is a subset of the union of
24685 v6T2 and v7-M, so it is never seen as contributing a new feature.
24686 We can not search for the last entry which is entirely used,
24687 because if no CPU is specified we build up only those flags
24688 actually used. Perhaps we should separate out the specified
24689 and implicit cases. Avoid taking this path for -march=all by
24690 checking for contradictory v7-A / v7-M features. */
24691 if (arch == 10
24692 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24693 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24694 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24695 arch = 13;
24696
24697 /* Tag_CPU_name. */
24698 if (selected_cpu_name[0])
24699 {
24700 char *q;
24701
24702 q = selected_cpu_name;
24703 if (strncmp (q, "armv", 4) == 0)
24704 {
24705 int i;
24706
24707 q += 4;
24708 for (i = 0; q[i]; i++)
24709 q[i] = TOUPPER (q[i]);
24710 }
24711 aeabi_set_attribute_string (Tag_CPU_name, q);
24712 }
24713
24714 /* Tag_CPU_arch. */
24715 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24716
24717 /* Tag_CPU_arch_profile. */
24718 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24719 profile = 'A';
24720 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24721 profile = 'R';
24722 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24723 profile = 'M';
24724 else
24725 profile = '\0';
24726
24727 if (profile != '\0')
24728 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24729
24730 /* Tag_ARM_ISA_use. */
24731 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24732 || arch == 0)
24733 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24734
24735 /* Tag_THUMB_ISA_use. */
24736 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24737 || arch == 0)
24738 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24739 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24740
24741 /* Tag_VFP_arch. */
24742 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24743 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24744 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24745 aeabi_set_attribute_int (Tag_VFP_arch,
24746 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24747 ? 5 : 6);
24748 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24749 {
24750 fp16_optional = 1;
24751 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24752 }
24753 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24754 {
24755 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24756 fp16_optional = 1;
24757 }
24758 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24759 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24760 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24761 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24762 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24763
24764 /* Tag_ABI_HardFP_use. */
24765 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24766 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24767 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24768
24769 /* Tag_WMMX_arch. */
24770 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24771 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24772 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24773 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24774
24775 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24776 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24777 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24778 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24779 {
24780 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24781 {
24782 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24783 }
24784 else
24785 {
24786 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24787 fp16_optional = 1;
24788 }
24789 }
24790
24791 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24792 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24793 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24794
24795 /* Tag_DIV_use.
24796
24797 We set Tag_DIV_use to two when integer divide instructions have been used
24798 in ARM state, or when Thumb integer divide instructions have been used,
24799 but we have no architecture profile set, nor have we any ARM instructions.
24800
24801 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24802 architecture.
24803
24804 For new architectures we will have to check these tests. */
24805 gas_assert (arch <= TAG_CPU_ARCH_V8);
24806 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24807 aeabi_set_attribute_int (Tag_DIV_use, 0);
24808 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24809 || (profile == '\0'
24810 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24811 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24812 aeabi_set_attribute_int (Tag_DIV_use, 2);
24813
24814 /* Tag_MP_extension_use. */
24815 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24816 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24817
24818 /* Tag Virtualization_use. */
24819 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24820 virt_sec |= 1;
24821 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24822 virt_sec |= 2;
24823 if (virt_sec != 0)
24824 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24825 }
24826
24827 /* Add the default contents for the .ARM.attributes section. */
24828 void
24829 arm_md_end (void)
24830 {
24831 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24832 return;
24833
24834 aeabi_set_public_attributes ();
24835 }
24836 #endif /* OBJ_ELF */
24837
24838
24839 /* Parse a .cpu directive. */
24840
24841 static void
24842 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24843 {
24844 const struct arm_cpu_option_table *opt;
24845 char *name;
24846 char saved_char;
24847
24848 name = input_line_pointer;
24849 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24850 input_line_pointer++;
24851 saved_char = *input_line_pointer;
24852 *input_line_pointer = 0;
24853
24854 /* Skip the first "all" entry. */
24855 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24856 if (streq (opt->name, name))
24857 {
24858 mcpu_cpu_opt = &opt->value;
24859 selected_cpu = opt->value;
24860 if (opt->canonical_name)
24861 strcpy (selected_cpu_name, opt->canonical_name);
24862 else
24863 {
24864 int i;
24865 for (i = 0; opt->name[i]; i++)
24866 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24867
24868 selected_cpu_name[i] = 0;
24869 }
24870 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24871 *input_line_pointer = saved_char;
24872 demand_empty_rest_of_line ();
24873 return;
24874 }
24875 as_bad (_("unknown cpu `%s'"), name);
24876 *input_line_pointer = saved_char;
24877 ignore_rest_of_line ();
24878 }
24879
24880
24881 /* Parse a .arch directive. */
24882
24883 static void
24884 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24885 {
24886 const struct arm_arch_option_table *opt;
24887 char saved_char;
24888 char *name;
24889
24890 name = input_line_pointer;
24891 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24892 input_line_pointer++;
24893 saved_char = *input_line_pointer;
24894 *input_line_pointer = 0;
24895
24896 /* Skip the first "all" entry. */
24897 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24898 if (streq (opt->name, name))
24899 {
24900 mcpu_cpu_opt = &opt->value;
24901 selected_cpu = opt->value;
24902 strcpy (selected_cpu_name, opt->name);
24903 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24904 *input_line_pointer = saved_char;
24905 demand_empty_rest_of_line ();
24906 return;
24907 }
24908
24909 as_bad (_("unknown architecture `%s'\n"), name);
24910 *input_line_pointer = saved_char;
24911 ignore_rest_of_line ();
24912 }
24913
24914
24915 /* Parse a .object_arch directive. */
24916
24917 static void
24918 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24919 {
24920 const struct arm_arch_option_table *opt;
24921 char saved_char;
24922 char *name;
24923
24924 name = input_line_pointer;
24925 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24926 input_line_pointer++;
24927 saved_char = *input_line_pointer;
24928 *input_line_pointer = 0;
24929
24930 /* Skip the first "all" entry. */
24931 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24932 if (streq (opt->name, name))
24933 {
24934 object_arch = &opt->value;
24935 *input_line_pointer = saved_char;
24936 demand_empty_rest_of_line ();
24937 return;
24938 }
24939
24940 as_bad (_("unknown architecture `%s'\n"), name);
24941 *input_line_pointer = saved_char;
24942 ignore_rest_of_line ();
24943 }
24944
24945 /* Parse a .arch_extension directive. */
24946
24947 static void
24948 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24949 {
24950 const struct arm_option_extension_value_table *opt;
24951 char saved_char;
24952 char *name;
24953 int adding_value = 1;
24954
24955 name = input_line_pointer;
24956 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24957 input_line_pointer++;
24958 saved_char = *input_line_pointer;
24959 *input_line_pointer = 0;
24960
24961 if (strlen (name) >= 2
24962 && strncmp (name, "no", 2) == 0)
24963 {
24964 adding_value = 0;
24965 name += 2;
24966 }
24967
24968 for (opt = arm_extensions; opt->name != NULL; opt++)
24969 if (streq (opt->name, name))
24970 {
24971 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24972 {
24973 as_bad (_("architectural extension `%s' is not allowed for the "
24974 "current base architecture"), name);
24975 break;
24976 }
24977
24978 if (adding_value)
24979 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24980 else
24981 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24982
24983 mcpu_cpu_opt = &selected_cpu;
24984 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24985 *input_line_pointer = saved_char;
24986 demand_empty_rest_of_line ();
24987 return;
24988 }
24989
24990 if (opt->name == NULL)
24991 as_bad (_("unknown architecture `%s'\n"), name);
24992
24993 *input_line_pointer = saved_char;
24994 ignore_rest_of_line ();
24995 }
24996
24997 /* Parse a .fpu directive. */
24998
24999 static void
25000 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
25001 {
25002 const struct arm_option_fpu_value_table *opt;
25003 char saved_char;
25004 char *name;
25005
25006 name = input_line_pointer;
25007 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25008 input_line_pointer++;
25009 saved_char = *input_line_pointer;
25010 *input_line_pointer = 0;
25011
25012 for (opt = arm_fpus; opt->name != NULL; opt++)
25013 if (streq (opt->name, name))
25014 {
25015 mfpu_opt = &opt->value;
25016 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25017 *input_line_pointer = saved_char;
25018 demand_empty_rest_of_line ();
25019 return;
25020 }
25021
25022 as_bad (_("unknown floating point format `%s'\n"), name);
25023 *input_line_pointer = saved_char;
25024 ignore_rest_of_line ();
25025 }
25026
25027 /* Copy symbol information. */
25028
25029 void
25030 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
25031 {
25032 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
25033 }
25034
25035 #ifdef OBJ_ELF
25036 /* Given a symbolic attribute NAME, return the proper integer value.
25037 Returns -1 if the attribute is not known. */
25038
25039 int
25040 arm_convert_symbolic_attribute (const char *name)
25041 {
25042 static const struct
25043 {
25044 const char * name;
25045 const int tag;
25046 }
25047 attribute_table[] =
25048 {
25049 /* When you modify this table you should
25050 also modify the list in doc/c-arm.texi. */
25051 #define T(tag) {#tag, tag}
25052 T (Tag_CPU_raw_name),
25053 T (Tag_CPU_name),
25054 T (Tag_CPU_arch),
25055 T (Tag_CPU_arch_profile),
25056 T (Tag_ARM_ISA_use),
25057 T (Tag_THUMB_ISA_use),
25058 T (Tag_FP_arch),
25059 T (Tag_VFP_arch),
25060 T (Tag_WMMX_arch),
25061 T (Tag_Advanced_SIMD_arch),
25062 T (Tag_PCS_config),
25063 T (Tag_ABI_PCS_R9_use),
25064 T (Tag_ABI_PCS_RW_data),
25065 T (Tag_ABI_PCS_RO_data),
25066 T (Tag_ABI_PCS_GOT_use),
25067 T (Tag_ABI_PCS_wchar_t),
25068 T (Tag_ABI_FP_rounding),
25069 T (Tag_ABI_FP_denormal),
25070 T (Tag_ABI_FP_exceptions),
25071 T (Tag_ABI_FP_user_exceptions),
25072 T (Tag_ABI_FP_number_model),
25073 T (Tag_ABI_align_needed),
25074 T (Tag_ABI_align8_needed),
25075 T (Tag_ABI_align_preserved),
25076 T (Tag_ABI_align8_preserved),
25077 T (Tag_ABI_enum_size),
25078 T (Tag_ABI_HardFP_use),
25079 T (Tag_ABI_VFP_args),
25080 T (Tag_ABI_WMMX_args),
25081 T (Tag_ABI_optimization_goals),
25082 T (Tag_ABI_FP_optimization_goals),
25083 T (Tag_compatibility),
25084 T (Tag_CPU_unaligned_access),
25085 T (Tag_FP_HP_extension),
25086 T (Tag_VFP_HP_extension),
25087 T (Tag_ABI_FP_16bit_format),
25088 T (Tag_MPextension_use),
25089 T (Tag_DIV_use),
25090 T (Tag_nodefaults),
25091 T (Tag_also_compatible_with),
25092 T (Tag_conformance),
25093 T (Tag_T2EE_use),
25094 T (Tag_Virtualization_use),
25095 /* We deliberately do not include Tag_MPextension_use_legacy. */
25096 #undef T
25097 };
25098 unsigned int i;
25099
25100 if (name == NULL)
25101 return -1;
25102
25103 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
25104 if (streq (name, attribute_table[i].name))
25105 return attribute_table[i].tag;
25106
25107 return -1;
25108 }
25109
25110
25111 /* Apply sym value for relocations only in the case that
25112 they are for local symbols and you have the respective
25113 architectural feature for blx and simple switches. */
25114 int
25115 arm_apply_sym_value (struct fix * fixP)
25116 {
25117 if (fixP->fx_addsy
25118 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
25119 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
25120 {
25121 switch (fixP->fx_r_type)
25122 {
25123 case BFD_RELOC_ARM_PCREL_BLX:
25124 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25125 if (ARM_IS_FUNC (fixP->fx_addsy))
25126 return 1;
25127 break;
25128
25129 case BFD_RELOC_ARM_PCREL_CALL:
25130 case BFD_RELOC_THUMB_PCREL_BLX:
25131 if (THUMB_IS_FUNC (fixP->fx_addsy))
25132 return 1;
25133 break;
25134
25135 default:
25136 break;
25137 }
25138
25139 }
25140 return 0;
25141 }
25142 #endif /* OBJ_ELF */
This page took 0.592768 seconds and 5 git commands to generate.