Removes support in the ARM assembler for the unsigned variants of the VQ(R)DMLAH...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Toggle value[pos]. */
1013 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1014
1015 /* Pure syntax. */
1016
1017 /* This array holds the chars that always start a comment. If the
1018 pre-processor is disabled, these aren't very useful. */
1019 char arm_comment_chars[] = "@";
1020
1021 /* This array holds the chars that only start a comment at the beginning of
1022 a line. If the line seems to have the form '# 123 filename'
1023 .line and .file directives will appear in the pre-processed output. */
1024 /* Note that input_file.c hand checks for '#' at the beginning of the
1025 first line of the input file. This is because the compiler outputs
1026 #NO_APP at the beginning of its output. */
1027 /* Also note that comments like this one will always work. */
1028 const char line_comment_chars[] = "#";
1029
1030 char arm_line_separator_chars[] = ";";
1031
1032 /* Chars that can be used to separate mant
1033 from exp in floating point numbers. */
1034 const char EXP_CHARS[] = "eE";
1035
1036 /* Chars that mean this number is a floating point constant. */
1037 /* As in 0f12.456 */
1038 /* or 0d1.2345e12 */
1039
1040 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1041
1042 /* Prefix characters that indicate the start of an immediate
1043 value. */
1044 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1045
1046 /* Separator character handling. */
1047
1048 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1049
1050 static inline int
1051 skip_past_char (char ** str, char c)
1052 {
1053 /* PR gas/14987: Allow for whitespace before the expected character. */
1054 skip_whitespace (*str);
1055
1056 if (**str == c)
1057 {
1058 (*str)++;
1059 return SUCCESS;
1060 }
1061 else
1062 return FAIL;
1063 }
1064
1065 #define skip_past_comma(str) skip_past_char (str, ',')
1066
1067 /* Arithmetic expressions (possibly involving symbols). */
1068
1069 /* Return TRUE if anything in the expression is a bignum. */
1070
1071 static bfd_boolean
1072 walk_no_bignums (symbolS * sp)
1073 {
1074 if (symbol_get_value_expression (sp)->X_op == O_big)
1075 return TRUE;
1076
1077 if (symbol_get_value_expression (sp)->X_add_symbol)
1078 {
1079 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1080 || (symbol_get_value_expression (sp)->X_op_symbol
1081 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1082 }
1083
1084 return FALSE;
1085 }
1086
1087 static bfd_boolean in_my_get_expression = FALSE;
1088
1089 /* Third argument to my_get_expression. */
1090 #define GE_NO_PREFIX 0
1091 #define GE_IMM_PREFIX 1
1092 #define GE_OPT_PREFIX 2
1093 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1094 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1095 #define GE_OPT_PREFIX_BIG 3
1096
1097 static int
1098 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1099 {
1100 char * save_in;
1101
1102 /* In unified syntax, all prefixes are optional. */
1103 if (unified_syntax)
1104 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1105 : GE_OPT_PREFIX;
1106
1107 switch (prefix_mode)
1108 {
1109 case GE_NO_PREFIX: break;
1110 case GE_IMM_PREFIX:
1111 if (!is_immediate_prefix (**str))
1112 {
1113 inst.error = _("immediate expression requires a # prefix");
1114 return FAIL;
1115 }
1116 (*str)++;
1117 break;
1118 case GE_OPT_PREFIX:
1119 case GE_OPT_PREFIX_BIG:
1120 if (is_immediate_prefix (**str))
1121 (*str)++;
1122 break;
1123 default:
1124 abort ();
1125 }
1126
1127 memset (ep, 0, sizeof (expressionS));
1128
1129 save_in = input_line_pointer;
1130 input_line_pointer = *str;
1131 in_my_get_expression = TRUE;
1132 expression (ep);
1133 in_my_get_expression = FALSE;
1134
1135 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1136 {
1137 /* We found a bad or missing expression in md_operand(). */
1138 *str = input_line_pointer;
1139 input_line_pointer = save_in;
1140 if (inst.error == NULL)
1141 inst.error = (ep->X_op == O_absent
1142 ? _("missing expression") :_("bad expression"));
1143 return 1;
1144 }
1145
1146 /* Get rid of any bignums now, so that we don't generate an error for which
1147 we can't establish a line number later on. Big numbers are never valid
1148 in instructions, which is where this routine is always called. */
1149 if (prefix_mode != GE_OPT_PREFIX_BIG
1150 && (ep->X_op == O_big
1151 || (ep->X_add_symbol
1152 && (walk_no_bignums (ep->X_add_symbol)
1153 || (ep->X_op_symbol
1154 && walk_no_bignums (ep->X_op_symbol))))))
1155 {
1156 inst.error = _("invalid constant");
1157 *str = input_line_pointer;
1158 input_line_pointer = save_in;
1159 return 1;
1160 }
1161
1162 *str = input_line_pointer;
1163 input_line_pointer = save_in;
1164 return SUCCESS;
1165 }
1166
1167 /* Turn a string in input_line_pointer into a floating point constant
1168 of type TYPE, and store the appropriate bytes in *LITP. The number
1169 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1170 returned, or NULL on OK.
1171
1172 Note that fp constants aren't represent in the normal way on the ARM.
1173 In big endian mode, things are as expected. However, in little endian
1174 mode fp constants are big-endian word-wise, and little-endian byte-wise
1175 within the words. For example, (double) 1.1 in big endian mode is
1176 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1177 the byte sequence 99 99 f1 3f 9a 99 99 99.
1178
1179 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1180
1181 const char *
1182 md_atof (int type, char * litP, int * sizeP)
1183 {
1184 int prec;
1185 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1186 char *t;
1187 int i;
1188
1189 switch (type)
1190 {
1191 case 'f':
1192 case 'F':
1193 case 's':
1194 case 'S':
1195 prec = 2;
1196 break;
1197
1198 case 'd':
1199 case 'D':
1200 case 'r':
1201 case 'R':
1202 prec = 4;
1203 break;
1204
1205 case 'x':
1206 case 'X':
1207 prec = 5;
1208 break;
1209
1210 case 'p':
1211 case 'P':
1212 prec = 5;
1213 break;
1214
1215 default:
1216 *sizeP = 0;
1217 return _("Unrecognized or unsupported floating point constant");
1218 }
1219
1220 t = atof_ieee (input_line_pointer, type, words);
1221 if (t)
1222 input_line_pointer = t;
1223 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1224
1225 if (target_big_endian)
1226 {
1227 for (i = 0; i < prec; i++)
1228 {
1229 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1230 litP += sizeof (LITTLENUM_TYPE);
1231 }
1232 }
1233 else
1234 {
1235 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1236 for (i = prec - 1; i >= 0; i--)
1237 {
1238 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1239 litP += sizeof (LITTLENUM_TYPE);
1240 }
1241 else
1242 /* For a 4 byte float the order of elements in `words' is 1 0.
1243 For an 8 byte float the order is 1 0 3 2. */
1244 for (i = 0; i < prec; i += 2)
1245 {
1246 md_number_to_chars (litP, (valueT) words[i + 1],
1247 sizeof (LITTLENUM_TYPE));
1248 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1249 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1250 litP += 2 * sizeof (LITTLENUM_TYPE);
1251 }
1252 }
1253
1254 return NULL;
1255 }
1256
1257 /* We handle all bad expressions here, so that we can report the faulty
1258 instruction in the error message. */
1259
1260 void
1261 md_operand (expressionS * exp)
1262 {
1263 if (in_my_get_expression)
1264 exp->X_op = O_illegal;
1265 }
1266
1267 /* Immediate values. */
1268
1269 #ifdef OBJ_ELF
1270 /* Generic immediate-value read function for use in directives.
1271 Accepts anything that 'expression' can fold to a constant.
1272 *val receives the number. */
1273
1274 static int
1275 immediate_for_directive (int *val)
1276 {
1277 expressionS exp;
1278 exp.X_op = O_illegal;
1279
1280 if (is_immediate_prefix (*input_line_pointer))
1281 {
1282 input_line_pointer++;
1283 expression (&exp);
1284 }
1285
1286 if (exp.X_op != O_constant)
1287 {
1288 as_bad (_("expected #constant"));
1289 ignore_rest_of_line ();
1290 return FAIL;
1291 }
1292 *val = exp.X_add_number;
1293 return SUCCESS;
1294 }
1295 #endif
1296
1297 /* Register parsing. */
1298
1299 /* Generic register parser. CCP points to what should be the
1300 beginning of a register name. If it is indeed a valid register
1301 name, advance CCP over it and return the reg_entry structure;
1302 otherwise return NULL. Does not issue diagnostics. */
1303
1304 static struct reg_entry *
1305 arm_reg_parse_multi (char **ccp)
1306 {
1307 char *start = *ccp;
1308 char *p;
1309 struct reg_entry *reg;
1310
1311 skip_whitespace (start);
1312
1313 #ifdef REGISTER_PREFIX
1314 if (*start != REGISTER_PREFIX)
1315 return NULL;
1316 start++;
1317 #endif
1318 #ifdef OPTIONAL_REGISTER_PREFIX
1319 if (*start == OPTIONAL_REGISTER_PREFIX)
1320 start++;
1321 #endif
1322
1323 p = start;
1324 if (!ISALPHA (*p) || !is_name_beginner (*p))
1325 return NULL;
1326
1327 do
1328 p++;
1329 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1330
1331 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1332
1333 if (!reg)
1334 return NULL;
1335
1336 *ccp = p;
1337 return reg;
1338 }
1339
1340 static int
1341 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1342 enum arm_reg_type type)
1343 {
1344 /* Alternative syntaxes are accepted for a few register classes. */
1345 switch (type)
1346 {
1347 case REG_TYPE_MVF:
1348 case REG_TYPE_MVD:
1349 case REG_TYPE_MVFX:
1350 case REG_TYPE_MVDX:
1351 /* Generic coprocessor register names are allowed for these. */
1352 if (reg && reg->type == REG_TYPE_CN)
1353 return reg->number;
1354 break;
1355
1356 case REG_TYPE_CP:
1357 /* For backward compatibility, a bare number is valid here. */
1358 {
1359 unsigned long processor = strtoul (start, ccp, 10);
1360 if (*ccp != start && processor <= 15)
1361 return processor;
1362 }
1363 /* Fall through. */
1364
1365 case REG_TYPE_MMXWC:
1366 /* WC includes WCG. ??? I'm not sure this is true for all
1367 instructions that take WC registers. */
1368 if (reg && reg->type == REG_TYPE_MMXWCG)
1369 return reg->number;
1370 break;
1371
1372 default:
1373 break;
1374 }
1375
1376 return FAIL;
1377 }
1378
1379 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1380 return value is the register number or FAIL. */
1381
1382 static int
1383 arm_reg_parse (char **ccp, enum arm_reg_type type)
1384 {
1385 char *start = *ccp;
1386 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1387 int ret;
1388
1389 /* Do not allow a scalar (reg+index) to parse as a register. */
1390 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1391 return FAIL;
1392
1393 if (reg && reg->type == type)
1394 return reg->number;
1395
1396 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1397 return ret;
1398
1399 *ccp = start;
1400 return FAIL;
1401 }
1402
1403 /* Parse a Neon type specifier. *STR should point at the leading '.'
1404 character. Does no verification at this stage that the type fits the opcode
1405 properly. E.g.,
1406
1407 .i32.i32.s16
1408 .s32.f32
1409 .u16
1410
1411 Can all be legally parsed by this function.
1412
1413 Fills in neon_type struct pointer with parsed information, and updates STR
1414 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1415 type, FAIL if not. */
1416
1417 static int
1418 parse_neon_type (struct neon_type *type, char **str)
1419 {
1420 char *ptr = *str;
1421
1422 if (type)
1423 type->elems = 0;
1424
1425 while (type->elems < NEON_MAX_TYPE_ELS)
1426 {
1427 enum neon_el_type thistype = NT_untyped;
1428 unsigned thissize = -1u;
1429
1430 if (*ptr != '.')
1431 break;
1432
1433 ptr++;
1434
1435 /* Just a size without an explicit type. */
1436 if (ISDIGIT (*ptr))
1437 goto parsesize;
1438
1439 switch (TOLOWER (*ptr))
1440 {
1441 case 'i': thistype = NT_integer; break;
1442 case 'f': thistype = NT_float; break;
1443 case 'p': thistype = NT_poly; break;
1444 case 's': thistype = NT_signed; break;
1445 case 'u': thistype = NT_unsigned; break;
1446 case 'd':
1447 thistype = NT_float;
1448 thissize = 64;
1449 ptr++;
1450 goto done;
1451 default:
1452 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1453 return FAIL;
1454 }
1455
1456 ptr++;
1457
1458 /* .f is an abbreviation for .f32. */
1459 if (thistype == NT_float && !ISDIGIT (*ptr))
1460 thissize = 32;
1461 else
1462 {
1463 parsesize:
1464 thissize = strtoul (ptr, &ptr, 10);
1465
1466 if (thissize != 8 && thissize != 16 && thissize != 32
1467 && thissize != 64)
1468 {
1469 as_bad (_("bad size %d in type specifier"), thissize);
1470 return FAIL;
1471 }
1472 }
1473
1474 done:
1475 if (type)
1476 {
1477 type->el[type->elems].type = thistype;
1478 type->el[type->elems].size = thissize;
1479 type->elems++;
1480 }
1481 }
1482
1483 /* Empty/missing type is not a successful parse. */
1484 if (type->elems == 0)
1485 return FAIL;
1486
1487 *str = ptr;
1488
1489 return SUCCESS;
1490 }
1491
1492 /* Errors may be set multiple times during parsing or bit encoding
1493 (particularly in the Neon bits), but usually the earliest error which is set
1494 will be the most meaningful. Avoid overwriting it with later (cascading)
1495 errors by calling this function. */
1496
1497 static void
1498 first_error (const char *err)
1499 {
1500 if (!inst.error)
1501 inst.error = err;
1502 }
1503
1504 /* Parse a single type, e.g. ".s32", leading period included. */
1505 static int
1506 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1507 {
1508 char *str = *ccp;
1509 struct neon_type optype;
1510
1511 if (*str == '.')
1512 {
1513 if (parse_neon_type (&optype, &str) == SUCCESS)
1514 {
1515 if (optype.elems == 1)
1516 *vectype = optype.el[0];
1517 else
1518 {
1519 first_error (_("only one type should be specified for operand"));
1520 return FAIL;
1521 }
1522 }
1523 else
1524 {
1525 first_error (_("vector type expected"));
1526 return FAIL;
1527 }
1528 }
1529 else
1530 return FAIL;
1531
1532 *ccp = str;
1533
1534 return SUCCESS;
1535 }
1536
1537 /* Special meanings for indices (which have a range of 0-7), which will fit into
1538 a 4-bit integer. */
1539
1540 #define NEON_ALL_LANES 15
1541 #define NEON_INTERLEAVE_LANES 14
1542
1543 /* Record a use of the given feature. */
1544 static void
1545 record_feature_use (const arm_feature_set *feature)
1546 {
1547 if (thumb_mode)
1548 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1549 else
1550 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1551 }
1552
1553 /* If the given feature available in the selected CPU, mark it as used.
1554 Returns TRUE iff feature is available. */
1555 static bfd_boolean
1556 mark_feature_used (const arm_feature_set *feature)
1557 {
1558
1559 /* Do not support the use of MVE only instructions when in auto-detection or
1560 -march=all. */
1561 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1562 && ARM_CPU_IS_ANY (cpu_variant))
1563 {
1564 first_error (BAD_MVE_AUTO);
1565 return FALSE;
1566 }
1567 /* Ensure the option is valid on the current architecture. */
1568 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1569 return FALSE;
1570
1571 /* Add the appropriate architecture feature for the barrier option used.
1572 */
1573 record_feature_use (feature);
1574
1575 return TRUE;
1576 }
1577
1578 /* Parse either a register or a scalar, with an optional type. Return the
1579 register number, and optionally fill in the actual type of the register
1580 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1581 type/index information in *TYPEINFO. */
1582
1583 static int
1584 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1585 enum arm_reg_type *rtype,
1586 struct neon_typed_alias *typeinfo)
1587 {
1588 char *str = *ccp;
1589 struct reg_entry *reg = arm_reg_parse_multi (&str);
1590 struct neon_typed_alias atype;
1591 struct neon_type_el parsetype;
1592
1593 atype.defined = 0;
1594 atype.index = -1;
1595 atype.eltype.type = NT_invtype;
1596 atype.eltype.size = -1;
1597
1598 /* Try alternate syntax for some types of register. Note these are mutually
1599 exclusive with the Neon syntax extensions. */
1600 if (reg == NULL)
1601 {
1602 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1603 if (altreg != FAIL)
1604 *ccp = str;
1605 if (typeinfo)
1606 *typeinfo = atype;
1607 return altreg;
1608 }
1609
1610 /* Undo polymorphism when a set of register types may be accepted. */
1611 if ((type == REG_TYPE_NDQ
1612 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1613 || (type == REG_TYPE_VFSD
1614 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1615 || (type == REG_TYPE_NSDQ
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1617 || reg->type == REG_TYPE_NQ))
1618 || (type == REG_TYPE_NSD
1619 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1620 || (type == REG_TYPE_MMXWC
1621 && (reg->type == REG_TYPE_MMXWCG)))
1622 type = (enum arm_reg_type) reg->type;
1623
1624 if (type == REG_TYPE_MQ)
1625 {
1626 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1627 return FAIL;
1628
1629 if (!reg || reg->type != REG_TYPE_NQ)
1630 return FAIL;
1631
1632 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1633 {
1634 first_error (_("expected MVE register [q0..q7]"));
1635 return FAIL;
1636 }
1637 type = REG_TYPE_NQ;
1638 }
1639 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1640 && (type == REG_TYPE_NQ))
1641 return FAIL;
1642
1643
1644 if (type != reg->type)
1645 return FAIL;
1646
1647 if (reg->neon)
1648 atype = *reg->neon;
1649
1650 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1651 {
1652 if ((atype.defined & NTA_HASTYPE) != 0)
1653 {
1654 first_error (_("can't redefine type for operand"));
1655 return FAIL;
1656 }
1657 atype.defined |= NTA_HASTYPE;
1658 atype.eltype = parsetype;
1659 }
1660
1661 if (skip_past_char (&str, '[') == SUCCESS)
1662 {
1663 if (type != REG_TYPE_VFD
1664 && !(type == REG_TYPE_VFS
1665 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1666 && !(type == REG_TYPE_NQ
1667 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1668 {
1669 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1670 first_error (_("only D and Q registers may be indexed"));
1671 else
1672 first_error (_("only D registers may be indexed"));
1673 return FAIL;
1674 }
1675
1676 if ((atype.defined & NTA_HASINDEX) != 0)
1677 {
1678 first_error (_("can't change index for operand"));
1679 return FAIL;
1680 }
1681
1682 atype.defined |= NTA_HASINDEX;
1683
1684 if (skip_past_char (&str, ']') == SUCCESS)
1685 atype.index = NEON_ALL_LANES;
1686 else
1687 {
1688 expressionS exp;
1689
1690 my_get_expression (&exp, &str, GE_NO_PREFIX);
1691
1692 if (exp.X_op != O_constant)
1693 {
1694 first_error (_("constant expression required"));
1695 return FAIL;
1696 }
1697
1698 if (skip_past_char (&str, ']') == FAIL)
1699 return FAIL;
1700
1701 atype.index = exp.X_add_number;
1702 }
1703 }
1704
1705 if (typeinfo)
1706 *typeinfo = atype;
1707
1708 if (rtype)
1709 *rtype = type;
1710
1711 *ccp = str;
1712
1713 return reg->number;
1714 }
1715
1716 /* Like arm_reg_parse, but also allow the following extra features:
1717 - If RTYPE is non-zero, return the (possibly restricted) type of the
1718 register (e.g. Neon double or quad reg when either has been requested).
1719 - If this is a Neon vector type with additional type information, fill
1720 in the struct pointed to by VECTYPE (if non-NULL).
1721 This function will fault on encountering a scalar. */
1722
1723 static int
1724 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1725 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1726 {
1727 struct neon_typed_alias atype;
1728 char *str = *ccp;
1729 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1730
1731 if (reg == FAIL)
1732 return FAIL;
1733
1734 /* Do not allow regname(... to parse as a register. */
1735 if (*str == '(')
1736 return FAIL;
1737
1738 /* Do not allow a scalar (reg+index) to parse as a register. */
1739 if ((atype.defined & NTA_HASINDEX) != 0)
1740 {
1741 first_error (_("register operand expected, but got scalar"));
1742 return FAIL;
1743 }
1744
1745 if (vectype)
1746 *vectype = atype.eltype;
1747
1748 *ccp = str;
1749
1750 return reg;
1751 }
1752
1753 #define NEON_SCALAR_REG(X) ((X) >> 4)
1754 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1755
1756 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1757 have enough information to be able to do a good job bounds-checking. So, we
1758 just do easy checks here, and do further checks later. */
1759
1760 static int
1761 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1762 arm_reg_type reg_type)
1763 {
1764 int reg;
1765 char *str = *ccp;
1766 struct neon_typed_alias atype;
1767 unsigned reg_size;
1768
1769 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1770
1771 switch (reg_type)
1772 {
1773 case REG_TYPE_VFS:
1774 reg_size = 32;
1775 break;
1776 case REG_TYPE_VFD:
1777 reg_size = 64;
1778 break;
1779 case REG_TYPE_MQ:
1780 reg_size = 128;
1781 break;
1782 default:
1783 gas_assert (0);
1784 return FAIL;
1785 }
1786
1787 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1788 return FAIL;
1789
1790 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1791 {
1792 first_error (_("scalar must have an index"));
1793 return FAIL;
1794 }
1795 else if (atype.index >= reg_size / elsize)
1796 {
1797 first_error (_("scalar index out of range"));
1798 return FAIL;
1799 }
1800
1801 if (type)
1802 *type = atype.eltype;
1803
1804 *ccp = str;
1805
1806 return reg * 16 + atype.index;
1807 }
1808
1809 /* Types of registers in a list. */
1810
1811 enum reg_list_els
1812 {
1813 REGLIST_RN,
1814 REGLIST_CLRM,
1815 REGLIST_VFP_S,
1816 REGLIST_VFP_S_VPR,
1817 REGLIST_VFP_D,
1818 REGLIST_VFP_D_VPR,
1819 REGLIST_NEON_D
1820 };
1821
1822 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1823
1824 static long
1825 parse_reg_list (char ** strp, enum reg_list_els etype)
1826 {
1827 char *str = *strp;
1828 long range = 0;
1829 int another_range;
1830
1831 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1832
1833 /* We come back here if we get ranges concatenated by '+' or '|'. */
1834 do
1835 {
1836 skip_whitespace (str);
1837
1838 another_range = 0;
1839
1840 if (*str == '{')
1841 {
1842 int in_range = 0;
1843 int cur_reg = -1;
1844
1845 str++;
1846 do
1847 {
1848 int reg;
1849 const char apsr_str[] = "apsr";
1850 int apsr_str_len = strlen (apsr_str);
1851
1852 reg = arm_reg_parse (&str, REGLIST_RN);
1853 if (etype == REGLIST_CLRM)
1854 {
1855 if (reg == REG_SP || reg == REG_PC)
1856 reg = FAIL;
1857 else if (reg == FAIL
1858 && !strncasecmp (str, apsr_str, apsr_str_len)
1859 && !ISALPHA (*(str + apsr_str_len)))
1860 {
1861 reg = 15;
1862 str += apsr_str_len;
1863 }
1864
1865 if (reg == FAIL)
1866 {
1867 first_error (_("r0-r12, lr or APSR expected"));
1868 return FAIL;
1869 }
1870 }
1871 else /* etype == REGLIST_RN. */
1872 {
1873 if (reg == FAIL)
1874 {
1875 first_error (_(reg_expected_msgs[REGLIST_RN]));
1876 return FAIL;
1877 }
1878 }
1879
1880 if (in_range)
1881 {
1882 int i;
1883
1884 if (reg <= cur_reg)
1885 {
1886 first_error (_("bad range in register list"));
1887 return FAIL;
1888 }
1889
1890 for (i = cur_reg + 1; i < reg; i++)
1891 {
1892 if (range & (1 << i))
1893 as_tsktsk
1894 (_("Warning: duplicated register (r%d) in register list"),
1895 i);
1896 else
1897 range |= 1 << i;
1898 }
1899 in_range = 0;
1900 }
1901
1902 if (range & (1 << reg))
1903 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1904 reg);
1905 else if (reg <= cur_reg)
1906 as_tsktsk (_("Warning: register range not in ascending order"));
1907
1908 range |= 1 << reg;
1909 cur_reg = reg;
1910 }
1911 while (skip_past_comma (&str) != FAIL
1912 || (in_range = 1, *str++ == '-'));
1913 str--;
1914
1915 if (skip_past_char (&str, '}') == FAIL)
1916 {
1917 first_error (_("missing `}'"));
1918 return FAIL;
1919 }
1920 }
1921 else if (etype == REGLIST_RN)
1922 {
1923 expressionS exp;
1924
1925 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1926 return FAIL;
1927
1928 if (exp.X_op == O_constant)
1929 {
1930 if (exp.X_add_number
1931 != (exp.X_add_number & 0x0000ffff))
1932 {
1933 inst.error = _("invalid register mask");
1934 return FAIL;
1935 }
1936
1937 if ((range & exp.X_add_number) != 0)
1938 {
1939 int regno = range & exp.X_add_number;
1940
1941 regno &= -regno;
1942 regno = (1 << regno) - 1;
1943 as_tsktsk
1944 (_("Warning: duplicated register (r%d) in register list"),
1945 regno);
1946 }
1947
1948 range |= exp.X_add_number;
1949 }
1950 else
1951 {
1952 if (inst.relocs[0].type != 0)
1953 {
1954 inst.error = _("expression too complex");
1955 return FAIL;
1956 }
1957
1958 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1959 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1960 inst.relocs[0].pc_rel = 0;
1961 }
1962 }
1963
1964 if (*str == '|' || *str == '+')
1965 {
1966 str++;
1967 another_range = 1;
1968 }
1969 }
1970 while (another_range);
1971
1972 *strp = str;
1973 return range;
1974 }
1975
1976 /* Parse a VFP register list. If the string is invalid return FAIL.
1977 Otherwise return the number of registers, and set PBASE to the first
1978 register. Parses registers of type ETYPE.
1979 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1980 - Q registers can be used to specify pairs of D registers
1981 - { } can be omitted from around a singleton register list
1982 FIXME: This is not implemented, as it would require backtracking in
1983 some cases, e.g.:
1984 vtbl.8 d3,d4,d5
1985 This could be done (the meaning isn't really ambiguous), but doesn't
1986 fit in well with the current parsing framework.
1987 - 32 D registers may be used (also true for VFPv3).
1988 FIXME: Types are ignored in these register lists, which is probably a
1989 bug. */
1990
1991 static int
1992 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1993 bfd_boolean *partial_match)
1994 {
1995 char *str = *ccp;
1996 int base_reg;
1997 int new_base;
1998 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1999 int max_regs = 0;
2000 int count = 0;
2001 int warned = 0;
2002 unsigned long mask = 0;
2003 int i;
2004 bfd_boolean vpr_seen = FALSE;
2005 bfd_boolean expect_vpr =
2006 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2007
2008 if (skip_past_char (&str, '{') == FAIL)
2009 {
2010 inst.error = _("expecting {");
2011 return FAIL;
2012 }
2013
2014 switch (etype)
2015 {
2016 case REGLIST_VFP_S:
2017 case REGLIST_VFP_S_VPR:
2018 regtype = REG_TYPE_VFS;
2019 max_regs = 32;
2020 break;
2021
2022 case REGLIST_VFP_D:
2023 case REGLIST_VFP_D_VPR:
2024 regtype = REG_TYPE_VFD;
2025 break;
2026
2027 case REGLIST_NEON_D:
2028 regtype = REG_TYPE_NDQ;
2029 break;
2030
2031 default:
2032 gas_assert (0);
2033 }
2034
2035 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2036 {
2037 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2038 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2039 {
2040 max_regs = 32;
2041 if (thumb_mode)
2042 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2043 fpu_vfp_ext_d32);
2044 else
2045 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2046 fpu_vfp_ext_d32);
2047 }
2048 else
2049 max_regs = 16;
2050 }
2051
2052 base_reg = max_regs;
2053 *partial_match = FALSE;
2054
2055 do
2056 {
2057 int setmask = 1, addregs = 1;
2058 const char vpr_str[] = "vpr";
2059 int vpr_str_len = strlen (vpr_str);
2060
2061 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2062
2063 if (expect_vpr)
2064 {
2065 if (new_base == FAIL
2066 && !strncasecmp (str, vpr_str, vpr_str_len)
2067 && !ISALPHA (*(str + vpr_str_len))
2068 && !vpr_seen)
2069 {
2070 vpr_seen = TRUE;
2071 str += vpr_str_len;
2072 if (count == 0)
2073 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 }
2075 else if (vpr_seen)
2076 {
2077 first_error (_("VPR expected last"));
2078 return FAIL;
2079 }
2080 else if (new_base == FAIL)
2081 {
2082 if (regtype == REG_TYPE_VFS)
2083 first_error (_("VFP single precision register or VPR "
2084 "expected"));
2085 else /* regtype == REG_TYPE_VFD. */
2086 first_error (_("VFP/Neon double precision register or VPR "
2087 "expected"));
2088 return FAIL;
2089 }
2090 }
2091 else if (new_base == FAIL)
2092 {
2093 first_error (_(reg_expected_msgs[regtype]));
2094 return FAIL;
2095 }
2096
2097 *partial_match = TRUE;
2098 if (vpr_seen)
2099 continue;
2100
2101 if (new_base >= max_regs)
2102 {
2103 first_error (_("register out of range in list"));
2104 return FAIL;
2105 }
2106
2107 /* Note: a value of 2 * n is returned for the register Q<n>. */
2108 if (regtype == REG_TYPE_NQ)
2109 {
2110 setmask = 3;
2111 addregs = 2;
2112 }
2113
2114 if (new_base < base_reg)
2115 base_reg = new_base;
2116
2117 if (mask & (setmask << new_base))
2118 {
2119 first_error (_("invalid register list"));
2120 return FAIL;
2121 }
2122
2123 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2124 {
2125 as_tsktsk (_("register list not in ascending order"));
2126 warned = 1;
2127 }
2128
2129 mask |= setmask << new_base;
2130 count += addregs;
2131
2132 if (*str == '-') /* We have the start of a range expression */
2133 {
2134 int high_range;
2135
2136 str++;
2137
2138 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2139 == FAIL)
2140 {
2141 inst.error = gettext (reg_expected_msgs[regtype]);
2142 return FAIL;
2143 }
2144
2145 if (high_range >= max_regs)
2146 {
2147 first_error (_("register out of range in list"));
2148 return FAIL;
2149 }
2150
2151 if (regtype == REG_TYPE_NQ)
2152 high_range = high_range + 1;
2153
2154 if (high_range <= new_base)
2155 {
2156 inst.error = _("register range not in ascending order");
2157 return FAIL;
2158 }
2159
2160 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2161 {
2162 if (mask & (setmask << new_base))
2163 {
2164 inst.error = _("invalid register list");
2165 return FAIL;
2166 }
2167
2168 mask |= setmask << new_base;
2169 count += addregs;
2170 }
2171 }
2172 }
2173 while (skip_past_comma (&str) != FAIL);
2174
2175 str++;
2176
2177 /* Sanity check -- should have raised a parse error above. */
2178 if ((!vpr_seen && count == 0) || count > max_regs)
2179 abort ();
2180
2181 *pbase = base_reg;
2182
2183 if (expect_vpr && !vpr_seen)
2184 {
2185 first_error (_("VPR expected last"));
2186 return FAIL;
2187 }
2188
2189 /* Final test -- the registers must be consecutive. */
2190 mask >>= base_reg;
2191 for (i = 0; i < count; i++)
2192 {
2193 if ((mask & (1u << i)) == 0)
2194 {
2195 inst.error = _("non-contiguous register range");
2196 return FAIL;
2197 }
2198 }
2199
2200 *ccp = str;
2201
2202 return count;
2203 }
2204
2205 /* True if two alias types are the same. */
2206
2207 static bfd_boolean
2208 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2209 {
2210 if (!a && !b)
2211 return TRUE;
2212
2213 if (!a || !b)
2214 return FALSE;
2215
2216 if (a->defined != b->defined)
2217 return FALSE;
2218
2219 if ((a->defined & NTA_HASTYPE) != 0
2220 && (a->eltype.type != b->eltype.type
2221 || a->eltype.size != b->eltype.size))
2222 return FALSE;
2223
2224 if ((a->defined & NTA_HASINDEX) != 0
2225 && (a->index != b->index))
2226 return FALSE;
2227
2228 return TRUE;
2229 }
2230
2231 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2232 The base register is put in *PBASE.
2233 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2234 the return value.
2235 The register stride (minus one) is put in bit 4 of the return value.
2236 Bits [6:5] encode the list length (minus one).
2237 The type of the list elements is put in *ELTYPE, if non-NULL. */
2238
2239 #define NEON_LANE(X) ((X) & 0xf)
2240 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2241 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2242
2243 static int
2244 parse_neon_el_struct_list (char **str, unsigned *pbase,
2245 int mve,
2246 struct neon_type_el *eltype)
2247 {
2248 char *ptr = *str;
2249 int base_reg = -1;
2250 int reg_incr = -1;
2251 int count = 0;
2252 int lane = -1;
2253 int leading_brace = 0;
2254 enum arm_reg_type rtype = REG_TYPE_NDQ;
2255 const char *const incr_error = mve ? _("register stride must be 1") :
2256 _("register stride must be 1 or 2");
2257 const char *const type_error = _("mismatched element/structure types in list");
2258 struct neon_typed_alias firsttype;
2259 firsttype.defined = 0;
2260 firsttype.eltype.type = NT_invtype;
2261 firsttype.eltype.size = -1;
2262 firsttype.index = -1;
2263
2264 if (skip_past_char (&ptr, '{') == SUCCESS)
2265 leading_brace = 1;
2266
2267 do
2268 {
2269 struct neon_typed_alias atype;
2270 if (mve)
2271 rtype = REG_TYPE_MQ;
2272 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2273
2274 if (getreg == FAIL)
2275 {
2276 first_error (_(reg_expected_msgs[rtype]));
2277 return FAIL;
2278 }
2279
2280 if (base_reg == -1)
2281 {
2282 base_reg = getreg;
2283 if (rtype == REG_TYPE_NQ)
2284 {
2285 reg_incr = 1;
2286 }
2287 firsttype = atype;
2288 }
2289 else if (reg_incr == -1)
2290 {
2291 reg_incr = getreg - base_reg;
2292 if (reg_incr < 1 || reg_incr > 2)
2293 {
2294 first_error (_(incr_error));
2295 return FAIL;
2296 }
2297 }
2298 else if (getreg != base_reg + reg_incr * count)
2299 {
2300 first_error (_(incr_error));
2301 return FAIL;
2302 }
2303
2304 if (! neon_alias_types_same (&atype, &firsttype))
2305 {
2306 first_error (_(type_error));
2307 return FAIL;
2308 }
2309
2310 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 modes. */
2312 if (ptr[0] == '-')
2313 {
2314 struct neon_typed_alias htype;
2315 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2316 if (lane == -1)
2317 lane = NEON_INTERLEAVE_LANES;
2318 else if (lane != NEON_INTERLEAVE_LANES)
2319 {
2320 first_error (_(type_error));
2321 return FAIL;
2322 }
2323 if (reg_incr == -1)
2324 reg_incr = 1;
2325 else if (reg_incr != 1)
2326 {
2327 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 return FAIL;
2329 }
2330 ptr++;
2331 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2332 if (hireg == FAIL)
2333 {
2334 first_error (_(reg_expected_msgs[rtype]));
2335 return FAIL;
2336 }
2337 if (! neon_alias_types_same (&htype, &firsttype))
2338 {
2339 first_error (_(type_error));
2340 return FAIL;
2341 }
2342 count += hireg + dregs - getreg;
2343 continue;
2344 }
2345
2346 /* If we're using Q registers, we can't use [] or [n] syntax. */
2347 if (rtype == REG_TYPE_NQ)
2348 {
2349 count += 2;
2350 continue;
2351 }
2352
2353 if ((atype.defined & NTA_HASINDEX) != 0)
2354 {
2355 if (lane == -1)
2356 lane = atype.index;
2357 else if (lane != atype.index)
2358 {
2359 first_error (_(type_error));
2360 return FAIL;
2361 }
2362 }
2363 else if (lane == -1)
2364 lane = NEON_INTERLEAVE_LANES;
2365 else if (lane != NEON_INTERLEAVE_LANES)
2366 {
2367 first_error (_(type_error));
2368 return FAIL;
2369 }
2370 count++;
2371 }
2372 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2373
2374 /* No lane set by [x]. We must be interleaving structures. */
2375 if (lane == -1)
2376 lane = NEON_INTERLEAVE_LANES;
2377
2378 /* Sanity check. */
2379 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2380 || (count > 1 && reg_incr == -1))
2381 {
2382 first_error (_("error parsing element/structure list"));
2383 return FAIL;
2384 }
2385
2386 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2387 {
2388 first_error (_("expected }"));
2389 return FAIL;
2390 }
2391
2392 if (reg_incr == -1)
2393 reg_incr = 1;
2394
2395 if (eltype)
2396 *eltype = firsttype.eltype;
2397
2398 *pbase = base_reg;
2399 *str = ptr;
2400
2401 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2402 }
2403
2404 /* Parse an explicit relocation suffix on an expression. This is
2405 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2406 arm_reloc_hsh contains no entries, so this function can only
2407 succeed if there is no () after the word. Returns -1 on error,
2408 BFD_RELOC_UNUSED if there wasn't any suffix. */
2409
2410 static int
2411 parse_reloc (char **str)
2412 {
2413 struct reloc_entry *r;
2414 char *p, *q;
2415
2416 if (**str != '(')
2417 return BFD_RELOC_UNUSED;
2418
2419 p = *str + 1;
2420 q = p;
2421
2422 while (*q && *q != ')' && *q != ',')
2423 q++;
2424 if (*q != ')')
2425 return -1;
2426
2427 if ((r = (struct reloc_entry *)
2428 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2429 return -1;
2430
2431 *str = q + 1;
2432 return r->reloc;
2433 }
2434
2435 /* Directives: register aliases. */
2436
2437 static struct reg_entry *
2438 insert_reg_alias (char *str, unsigned number, int type)
2439 {
2440 struct reg_entry *new_reg;
2441 const char *name;
2442
2443 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2444 {
2445 if (new_reg->builtin)
2446 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2447
2448 /* Only warn about a redefinition if it's not defined as the
2449 same register. */
2450 else if (new_reg->number != number || new_reg->type != type)
2451 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2452
2453 return NULL;
2454 }
2455
2456 name = xstrdup (str);
2457 new_reg = XNEW (struct reg_entry);
2458
2459 new_reg->name = name;
2460 new_reg->number = number;
2461 new_reg->type = type;
2462 new_reg->builtin = FALSE;
2463 new_reg->neon = NULL;
2464
2465 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2466 abort ();
2467
2468 return new_reg;
2469 }
2470
2471 static void
2472 insert_neon_reg_alias (char *str, int number, int type,
2473 struct neon_typed_alias *atype)
2474 {
2475 struct reg_entry *reg = insert_reg_alias (str, number, type);
2476
2477 if (!reg)
2478 {
2479 first_error (_("attempt to redefine typed alias"));
2480 return;
2481 }
2482
2483 if (atype)
2484 {
2485 reg->neon = XNEW (struct neon_typed_alias);
2486 *reg->neon = *atype;
2487 }
2488 }
2489
2490 /* Look for the .req directive. This is of the form:
2491
2492 new_register_name .req existing_register_name
2493
2494 If we find one, or if it looks sufficiently like one that we want to
2495 handle any error here, return TRUE. Otherwise return FALSE. */
2496
2497 static bfd_boolean
2498 create_register_alias (char * newname, char *p)
2499 {
2500 struct reg_entry *old;
2501 char *oldname, *nbuf;
2502 size_t nlen;
2503
2504 /* The input scrubber ensures that whitespace after the mnemonic is
2505 collapsed to single spaces. */
2506 oldname = p;
2507 if (strncmp (oldname, " .req ", 6) != 0)
2508 return FALSE;
2509
2510 oldname += 6;
2511 if (*oldname == '\0')
2512 return FALSE;
2513
2514 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2515 if (!old)
2516 {
2517 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2518 return TRUE;
2519 }
2520
2521 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2522 the desired alias name, and p points to its end. If not, then
2523 the desired alias name is in the global original_case_string. */
2524 #ifdef TC_CASE_SENSITIVE
2525 nlen = p - newname;
2526 #else
2527 newname = original_case_string;
2528 nlen = strlen (newname);
2529 #endif
2530
2531 nbuf = xmemdup0 (newname, nlen);
2532
2533 /* Create aliases under the new name as stated; an all-lowercase
2534 version of the new name; and an all-uppercase version of the new
2535 name. */
2536 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2537 {
2538 for (p = nbuf; *p; p++)
2539 *p = TOUPPER (*p);
2540
2541 if (strncmp (nbuf, newname, nlen))
2542 {
2543 /* If this attempt to create an additional alias fails, do not bother
2544 trying to create the all-lower case alias. We will fail and issue
2545 a second, duplicate error message. This situation arises when the
2546 programmer does something like:
2547 foo .req r0
2548 Foo .req r1
2549 The second .req creates the "Foo" alias but then fails to create
2550 the artificial FOO alias because it has already been created by the
2551 first .req. */
2552 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2553 {
2554 free (nbuf);
2555 return TRUE;
2556 }
2557 }
2558
2559 for (p = nbuf; *p; p++)
2560 *p = TOLOWER (*p);
2561
2562 if (strncmp (nbuf, newname, nlen))
2563 insert_reg_alias (nbuf, old->number, old->type);
2564 }
2565
2566 free (nbuf);
2567 return TRUE;
2568 }
2569
2570 /* Create a Neon typed/indexed register alias using directives, e.g.:
2571 X .dn d5.s32[1]
2572 Y .qn 6.s16
2573 Z .dn d7
2574 T .dn Z[0]
2575 These typed registers can be used instead of the types specified after the
2576 Neon mnemonic, so long as all operands given have types. Types can also be
2577 specified directly, e.g.:
2578 vadd d0.s32, d1.s32, d2.s32 */
2579
2580 static bfd_boolean
2581 create_neon_reg_alias (char *newname, char *p)
2582 {
2583 enum arm_reg_type basetype;
2584 struct reg_entry *basereg;
2585 struct reg_entry mybasereg;
2586 struct neon_type ntype;
2587 struct neon_typed_alias typeinfo;
2588 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2589 int namelen;
2590
2591 typeinfo.defined = 0;
2592 typeinfo.eltype.type = NT_invtype;
2593 typeinfo.eltype.size = -1;
2594 typeinfo.index = -1;
2595
2596 nameend = p;
2597
2598 if (strncmp (p, " .dn ", 5) == 0)
2599 basetype = REG_TYPE_VFD;
2600 else if (strncmp (p, " .qn ", 5) == 0)
2601 basetype = REG_TYPE_NQ;
2602 else
2603 return FALSE;
2604
2605 p += 5;
2606
2607 if (*p == '\0')
2608 return FALSE;
2609
2610 basereg = arm_reg_parse_multi (&p);
2611
2612 if (basereg && basereg->type != basetype)
2613 {
2614 as_bad (_("bad type for register"));
2615 return FALSE;
2616 }
2617
2618 if (basereg == NULL)
2619 {
2620 expressionS exp;
2621 /* Try parsing as an integer. */
2622 my_get_expression (&exp, &p, GE_NO_PREFIX);
2623 if (exp.X_op != O_constant)
2624 {
2625 as_bad (_("expression must be constant"));
2626 return FALSE;
2627 }
2628 basereg = &mybasereg;
2629 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2630 : exp.X_add_number;
2631 basereg->neon = 0;
2632 }
2633
2634 if (basereg->neon)
2635 typeinfo = *basereg->neon;
2636
2637 if (parse_neon_type (&ntype, &p) == SUCCESS)
2638 {
2639 /* We got a type. */
2640 if (typeinfo.defined & NTA_HASTYPE)
2641 {
2642 as_bad (_("can't redefine the type of a register alias"));
2643 return FALSE;
2644 }
2645
2646 typeinfo.defined |= NTA_HASTYPE;
2647 if (ntype.elems != 1)
2648 {
2649 as_bad (_("you must specify a single type only"));
2650 return FALSE;
2651 }
2652 typeinfo.eltype = ntype.el[0];
2653 }
2654
2655 if (skip_past_char (&p, '[') == SUCCESS)
2656 {
2657 expressionS exp;
2658 /* We got a scalar index. */
2659
2660 if (typeinfo.defined & NTA_HASINDEX)
2661 {
2662 as_bad (_("can't redefine the index of a scalar alias"));
2663 return FALSE;
2664 }
2665
2666 my_get_expression (&exp, &p, GE_NO_PREFIX);
2667
2668 if (exp.X_op != O_constant)
2669 {
2670 as_bad (_("scalar index must be constant"));
2671 return FALSE;
2672 }
2673
2674 typeinfo.defined |= NTA_HASINDEX;
2675 typeinfo.index = exp.X_add_number;
2676
2677 if (skip_past_char (&p, ']') == FAIL)
2678 {
2679 as_bad (_("expecting ]"));
2680 return FALSE;
2681 }
2682 }
2683
2684 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2685 the desired alias name, and p points to its end. If not, then
2686 the desired alias name is in the global original_case_string. */
2687 #ifdef TC_CASE_SENSITIVE
2688 namelen = nameend - newname;
2689 #else
2690 newname = original_case_string;
2691 namelen = strlen (newname);
2692 #endif
2693
2694 namebuf = xmemdup0 (newname, namelen);
2695
2696 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2697 typeinfo.defined != 0 ? &typeinfo : NULL);
2698
2699 /* Insert name in all uppercase. */
2700 for (p = namebuf; *p; p++)
2701 *p = TOUPPER (*p);
2702
2703 if (strncmp (namebuf, newname, namelen))
2704 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2705 typeinfo.defined != 0 ? &typeinfo : NULL);
2706
2707 /* Insert name in all lowercase. */
2708 for (p = namebuf; *p; p++)
2709 *p = TOLOWER (*p);
2710
2711 if (strncmp (namebuf, newname, namelen))
2712 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2713 typeinfo.defined != 0 ? &typeinfo : NULL);
2714
2715 free (namebuf);
2716 return TRUE;
2717 }
2718
2719 /* Should never be called, as .req goes between the alias and the
2720 register name, not at the beginning of the line. */
2721
2722 static void
2723 s_req (int a ATTRIBUTE_UNUSED)
2724 {
2725 as_bad (_("invalid syntax for .req directive"));
2726 }
2727
2728 static void
2729 s_dn (int a ATTRIBUTE_UNUSED)
2730 {
2731 as_bad (_("invalid syntax for .dn directive"));
2732 }
2733
2734 static void
2735 s_qn (int a ATTRIBUTE_UNUSED)
2736 {
2737 as_bad (_("invalid syntax for .qn directive"));
2738 }
2739
2740 /* The .unreq directive deletes an alias which was previously defined
2741 by .req. For example:
2742
2743 my_alias .req r11
2744 .unreq my_alias */
2745
2746 static void
2747 s_unreq (int a ATTRIBUTE_UNUSED)
2748 {
2749 char * name;
2750 char saved_char;
2751
2752 name = input_line_pointer;
2753
2754 while (*input_line_pointer != 0
2755 && *input_line_pointer != ' '
2756 && *input_line_pointer != '\n')
2757 ++input_line_pointer;
2758
2759 saved_char = *input_line_pointer;
2760 *input_line_pointer = 0;
2761
2762 if (!*name)
2763 as_bad (_("invalid syntax for .unreq directive"));
2764 else
2765 {
2766 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2767 name);
2768
2769 if (!reg)
2770 as_bad (_("unknown register alias '%s'"), name);
2771 else if (reg->builtin)
2772 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2773 name);
2774 else
2775 {
2776 char * p;
2777 char * nbuf;
2778
2779 hash_delete (arm_reg_hsh, name, FALSE);
2780 free ((char *) reg->name);
2781 if (reg->neon)
2782 free (reg->neon);
2783 free (reg);
2784
2785 /* Also locate the all upper case and all lower case versions.
2786 Do not complain if we cannot find one or the other as it
2787 was probably deleted above. */
2788
2789 nbuf = strdup (name);
2790 for (p = nbuf; *p; p++)
2791 *p = TOUPPER (*p);
2792 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2793 if (reg)
2794 {
2795 hash_delete (arm_reg_hsh, nbuf, FALSE);
2796 free ((char *) reg->name);
2797 if (reg->neon)
2798 free (reg->neon);
2799 free (reg);
2800 }
2801
2802 for (p = nbuf; *p; p++)
2803 *p = TOLOWER (*p);
2804 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2805 if (reg)
2806 {
2807 hash_delete (arm_reg_hsh, nbuf, FALSE);
2808 free ((char *) reg->name);
2809 if (reg->neon)
2810 free (reg->neon);
2811 free (reg);
2812 }
2813
2814 free (nbuf);
2815 }
2816 }
2817
2818 *input_line_pointer = saved_char;
2819 demand_empty_rest_of_line ();
2820 }
2821
2822 /* Directives: Instruction set selection. */
2823
2824 #ifdef OBJ_ELF
2825 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2826 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2827 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2828 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2829
2830 /* Create a new mapping symbol for the transition to STATE. */
2831
2832 static void
2833 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2834 {
2835 symbolS * symbolP;
2836 const char * symname;
2837 int type;
2838
2839 switch (state)
2840 {
2841 case MAP_DATA:
2842 symname = "$d";
2843 type = BSF_NO_FLAGS;
2844 break;
2845 case MAP_ARM:
2846 symname = "$a";
2847 type = BSF_NO_FLAGS;
2848 break;
2849 case MAP_THUMB:
2850 symname = "$t";
2851 type = BSF_NO_FLAGS;
2852 break;
2853 default:
2854 abort ();
2855 }
2856
2857 symbolP = symbol_new (symname, now_seg, value, frag);
2858 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2859
2860 switch (state)
2861 {
2862 case MAP_ARM:
2863 THUMB_SET_FUNC (symbolP, 0);
2864 ARM_SET_THUMB (symbolP, 0);
2865 ARM_SET_INTERWORK (symbolP, support_interwork);
2866 break;
2867
2868 case MAP_THUMB:
2869 THUMB_SET_FUNC (symbolP, 1);
2870 ARM_SET_THUMB (symbolP, 1);
2871 ARM_SET_INTERWORK (symbolP, support_interwork);
2872 break;
2873
2874 case MAP_DATA:
2875 default:
2876 break;
2877 }
2878
2879 /* Save the mapping symbols for future reference. Also check that
2880 we do not place two mapping symbols at the same offset within a
2881 frag. We'll handle overlap between frags in
2882 check_mapping_symbols.
2883
2884 If .fill or other data filling directive generates zero sized data,
2885 the mapping symbol for the following code will have the same value
2886 as the one generated for the data filling directive. In this case,
2887 we replace the old symbol with the new one at the same address. */
2888 if (value == 0)
2889 {
2890 if (frag->tc_frag_data.first_map != NULL)
2891 {
2892 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2893 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2894 }
2895 frag->tc_frag_data.first_map = symbolP;
2896 }
2897 if (frag->tc_frag_data.last_map != NULL)
2898 {
2899 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2900 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2901 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2902 }
2903 frag->tc_frag_data.last_map = symbolP;
2904 }
2905
2906 /* We must sometimes convert a region marked as code to data during
2907 code alignment, if an odd number of bytes have to be padded. The
2908 code mapping symbol is pushed to an aligned address. */
2909
2910 static void
2911 insert_data_mapping_symbol (enum mstate state,
2912 valueT value, fragS *frag, offsetT bytes)
2913 {
2914 /* If there was already a mapping symbol, remove it. */
2915 if (frag->tc_frag_data.last_map != NULL
2916 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2917 {
2918 symbolS *symp = frag->tc_frag_data.last_map;
2919
2920 if (value == 0)
2921 {
2922 know (frag->tc_frag_data.first_map == symp);
2923 frag->tc_frag_data.first_map = NULL;
2924 }
2925 frag->tc_frag_data.last_map = NULL;
2926 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2927 }
2928
2929 make_mapping_symbol (MAP_DATA, value, frag);
2930 make_mapping_symbol (state, value + bytes, frag);
2931 }
2932
2933 static void mapping_state_2 (enum mstate state, int max_chars);
2934
2935 /* Set the mapping state to STATE. Only call this when about to
2936 emit some STATE bytes to the file. */
2937
2938 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2939 void
2940 mapping_state (enum mstate state)
2941 {
2942 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2943
2944 if (mapstate == state)
2945 /* The mapping symbol has already been emitted.
2946 There is nothing else to do. */
2947 return;
2948
2949 if (state == MAP_ARM || state == MAP_THUMB)
2950 /* PR gas/12931
2951 All ARM instructions require 4-byte alignment.
2952 (Almost) all Thumb instructions require 2-byte alignment.
2953
2954 When emitting instructions into any section, mark the section
2955 appropriately.
2956
2957 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2958 but themselves require 2-byte alignment; this applies to some
2959 PC- relative forms. However, these cases will involve implicit
2960 literal pool generation or an explicit .align >=2, both of
2961 which will cause the section to me marked with sufficient
2962 alignment. Thus, we don't handle those cases here. */
2963 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2964
2965 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2966 /* This case will be evaluated later. */
2967 return;
2968
2969 mapping_state_2 (state, 0);
2970 }
2971
2972 /* Same as mapping_state, but MAX_CHARS bytes have already been
2973 allocated. Put the mapping symbol that far back. */
2974
2975 static void
2976 mapping_state_2 (enum mstate state, int max_chars)
2977 {
2978 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2979
2980 if (!SEG_NORMAL (now_seg))
2981 return;
2982
2983 if (mapstate == state)
2984 /* The mapping symbol has already been emitted.
2985 There is nothing else to do. */
2986 return;
2987
2988 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2989 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2990 {
2991 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2992 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2993
2994 if (add_symbol)
2995 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2996 }
2997
2998 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2999 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3000 }
3001 #undef TRANSITION
3002 #else
3003 #define mapping_state(x) ((void)0)
3004 #define mapping_state_2(x, y) ((void)0)
3005 #endif
3006
3007 /* Find the real, Thumb encoded start of a Thumb function. */
3008
3009 #ifdef OBJ_COFF
3010 static symbolS *
3011 find_real_start (symbolS * symbolP)
3012 {
3013 char * real_start;
3014 const char * name = S_GET_NAME (symbolP);
3015 symbolS * new_target;
3016
3017 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3018 #define STUB_NAME ".real_start_of"
3019
3020 if (name == NULL)
3021 abort ();
3022
3023 /* The compiler may generate BL instructions to local labels because
3024 it needs to perform a branch to a far away location. These labels
3025 do not have a corresponding ".real_start_of" label. We check
3026 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3027 the ".real_start_of" convention for nonlocal branches. */
3028 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3029 return symbolP;
3030
3031 real_start = concat (STUB_NAME, name, NULL);
3032 new_target = symbol_find (real_start);
3033 free (real_start);
3034
3035 if (new_target == NULL)
3036 {
3037 as_warn (_("Failed to find real start of function: %s\n"), name);
3038 new_target = symbolP;
3039 }
3040
3041 return new_target;
3042 }
3043 #endif
3044
3045 static void
3046 opcode_select (int width)
3047 {
3048 switch (width)
3049 {
3050 case 16:
3051 if (! thumb_mode)
3052 {
3053 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3054 as_bad (_("selected processor does not support THUMB opcodes"));
3055
3056 thumb_mode = 1;
3057 /* No need to force the alignment, since we will have been
3058 coming from ARM mode, which is word-aligned. */
3059 record_alignment (now_seg, 1);
3060 }
3061 break;
3062
3063 case 32:
3064 if (thumb_mode)
3065 {
3066 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3067 as_bad (_("selected processor does not support ARM opcodes"));
3068
3069 thumb_mode = 0;
3070
3071 if (!need_pass_2)
3072 frag_align (2, 0, 0);
3073
3074 record_alignment (now_seg, 1);
3075 }
3076 break;
3077
3078 default:
3079 as_bad (_("invalid instruction size selected (%d)"), width);
3080 }
3081 }
3082
3083 static void
3084 s_arm (int ignore ATTRIBUTE_UNUSED)
3085 {
3086 opcode_select (32);
3087 demand_empty_rest_of_line ();
3088 }
3089
3090 static void
3091 s_thumb (int ignore ATTRIBUTE_UNUSED)
3092 {
3093 opcode_select (16);
3094 demand_empty_rest_of_line ();
3095 }
3096
3097 static void
3098 s_code (int unused ATTRIBUTE_UNUSED)
3099 {
3100 int temp;
3101
3102 temp = get_absolute_expression ();
3103 switch (temp)
3104 {
3105 case 16:
3106 case 32:
3107 opcode_select (temp);
3108 break;
3109
3110 default:
3111 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3112 }
3113 }
3114
3115 static void
3116 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3117 {
3118 /* If we are not already in thumb mode go into it, EVEN if
3119 the target processor does not support thumb instructions.
3120 This is used by gcc/config/arm/lib1funcs.asm for example
3121 to compile interworking support functions even if the
3122 target processor should not support interworking. */
3123 if (! thumb_mode)
3124 {
3125 thumb_mode = 2;
3126 record_alignment (now_seg, 1);
3127 }
3128
3129 demand_empty_rest_of_line ();
3130 }
3131
3132 static void
3133 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3134 {
3135 s_thumb (0);
3136
3137 /* The following label is the name/address of the start of a Thumb function.
3138 We need to know this for the interworking support. */
3139 label_is_thumb_function_name = TRUE;
3140 }
3141
3142 /* Perform a .set directive, but also mark the alias as
3143 being a thumb function. */
3144
3145 static void
3146 s_thumb_set (int equiv)
3147 {
3148 /* XXX the following is a duplicate of the code for s_set() in read.c
3149 We cannot just call that code as we need to get at the symbol that
3150 is created. */
3151 char * name;
3152 char delim;
3153 char * end_name;
3154 symbolS * symbolP;
3155
3156 /* Especial apologies for the random logic:
3157 This just grew, and could be parsed much more simply!
3158 Dean - in haste. */
3159 delim = get_symbol_name (& name);
3160 end_name = input_line_pointer;
3161 (void) restore_line_pointer (delim);
3162
3163 if (*input_line_pointer != ',')
3164 {
3165 *end_name = 0;
3166 as_bad (_("expected comma after name \"%s\""), name);
3167 *end_name = delim;
3168 ignore_rest_of_line ();
3169 return;
3170 }
3171
3172 input_line_pointer++;
3173 *end_name = 0;
3174
3175 if (name[0] == '.' && name[1] == '\0')
3176 {
3177 /* XXX - this should not happen to .thumb_set. */
3178 abort ();
3179 }
3180
3181 if ((symbolP = symbol_find (name)) == NULL
3182 && (symbolP = md_undefined_symbol (name)) == NULL)
3183 {
3184 #ifndef NO_LISTING
3185 /* When doing symbol listings, play games with dummy fragments living
3186 outside the normal fragment chain to record the file and line info
3187 for this symbol. */
3188 if (listing & LISTING_SYMBOLS)
3189 {
3190 extern struct list_info_struct * listing_tail;
3191 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3192
3193 memset (dummy_frag, 0, sizeof (fragS));
3194 dummy_frag->fr_type = rs_fill;
3195 dummy_frag->line = listing_tail;
3196 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3197 dummy_frag->fr_symbol = symbolP;
3198 }
3199 else
3200 #endif
3201 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3202
3203 #ifdef OBJ_COFF
3204 /* "set" symbols are local unless otherwise specified. */
3205 SF_SET_LOCAL (symbolP);
3206 #endif /* OBJ_COFF */
3207 } /* Make a new symbol. */
3208
3209 symbol_table_insert (symbolP);
3210
3211 * end_name = delim;
3212
3213 if (equiv
3214 && S_IS_DEFINED (symbolP)
3215 && S_GET_SEGMENT (symbolP) != reg_section)
3216 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3217
3218 pseudo_set (symbolP);
3219
3220 demand_empty_rest_of_line ();
3221
3222 /* XXX Now we come to the Thumb specific bit of code. */
3223
3224 THUMB_SET_FUNC (symbolP, 1);
3225 ARM_SET_THUMB (symbolP, 1);
3226 #if defined OBJ_ELF || defined OBJ_COFF
3227 ARM_SET_INTERWORK (symbolP, support_interwork);
3228 #endif
3229 }
3230
3231 /* Directives: Mode selection. */
3232
3233 /* .syntax [unified|divided] - choose the new unified syntax
3234 (same for Arm and Thumb encoding, modulo slight differences in what
3235 can be represented) or the old divergent syntax for each mode. */
3236 static void
3237 s_syntax (int unused ATTRIBUTE_UNUSED)
3238 {
3239 char *name, delim;
3240
3241 delim = get_symbol_name (& name);
3242
3243 if (!strcasecmp (name, "unified"))
3244 unified_syntax = TRUE;
3245 else if (!strcasecmp (name, "divided"))
3246 unified_syntax = FALSE;
3247 else
3248 {
3249 as_bad (_("unrecognized syntax mode \"%s\""), name);
3250 return;
3251 }
3252 (void) restore_line_pointer (delim);
3253 demand_empty_rest_of_line ();
3254 }
3255
3256 /* Directives: sectioning and alignment. */
3257
3258 static void
3259 s_bss (int ignore ATTRIBUTE_UNUSED)
3260 {
3261 /* We don't support putting frags in the BSS segment, we fake it by
3262 marking in_bss, then looking at s_skip for clues. */
3263 subseg_set (bss_section, 0);
3264 demand_empty_rest_of_line ();
3265
3266 #ifdef md_elf_section_change_hook
3267 md_elf_section_change_hook ();
3268 #endif
3269 }
3270
3271 static void
3272 s_even (int ignore ATTRIBUTE_UNUSED)
3273 {
3274 /* Never make frag if expect extra pass. */
3275 if (!need_pass_2)
3276 frag_align (1, 0, 0);
3277
3278 record_alignment (now_seg, 1);
3279
3280 demand_empty_rest_of_line ();
3281 }
3282
3283 /* Directives: CodeComposer Studio. */
3284
3285 /* .ref (for CodeComposer Studio syntax only). */
3286 static void
3287 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3288 {
3289 if (codecomposer_syntax)
3290 ignore_rest_of_line ();
3291 else
3292 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3293 }
3294
3295 /* If name is not NULL, then it is used for marking the beginning of a
3296 function, whereas if it is NULL then it means the function end. */
3297 static void
3298 asmfunc_debug (const char * name)
3299 {
3300 static const char * last_name = NULL;
3301
3302 if (name != NULL)
3303 {
3304 gas_assert (last_name == NULL);
3305 last_name = name;
3306
3307 if (debug_type == DEBUG_STABS)
3308 stabs_generate_asm_func (name, name);
3309 }
3310 else
3311 {
3312 gas_assert (last_name != NULL);
3313
3314 if (debug_type == DEBUG_STABS)
3315 stabs_generate_asm_endfunc (last_name, last_name);
3316
3317 last_name = NULL;
3318 }
3319 }
3320
3321 static void
3322 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3323 {
3324 if (codecomposer_syntax)
3325 {
3326 switch (asmfunc_state)
3327 {
3328 case OUTSIDE_ASMFUNC:
3329 asmfunc_state = WAITING_ASMFUNC_NAME;
3330 break;
3331
3332 case WAITING_ASMFUNC_NAME:
3333 as_bad (_(".asmfunc repeated."));
3334 break;
3335
3336 case WAITING_ENDASMFUNC:
3337 as_bad (_(".asmfunc without function."));
3338 break;
3339 }
3340 demand_empty_rest_of_line ();
3341 }
3342 else
3343 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 }
3345
3346 static void
3347 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3348 {
3349 if (codecomposer_syntax)
3350 {
3351 switch (asmfunc_state)
3352 {
3353 case OUTSIDE_ASMFUNC:
3354 as_bad (_(".endasmfunc without a .asmfunc."));
3355 break;
3356
3357 case WAITING_ASMFUNC_NAME:
3358 as_bad (_(".endasmfunc without function."));
3359 break;
3360
3361 case WAITING_ENDASMFUNC:
3362 asmfunc_state = OUTSIDE_ASMFUNC;
3363 asmfunc_debug (NULL);
3364 break;
3365 }
3366 demand_empty_rest_of_line ();
3367 }
3368 else
3369 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 }
3371
3372 static void
3373 s_ccs_def (int name)
3374 {
3375 if (codecomposer_syntax)
3376 s_globl (name);
3377 else
3378 as_bad (_(".def pseudo-op only available with -mccs flag."));
3379 }
3380
3381 /* Directives: Literal pools. */
3382
3383 static literal_pool *
3384 find_literal_pool (void)
3385 {
3386 literal_pool * pool;
3387
3388 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3389 {
3390 if (pool->section == now_seg
3391 && pool->sub_section == now_subseg)
3392 break;
3393 }
3394
3395 return pool;
3396 }
3397
3398 static literal_pool *
3399 find_or_make_literal_pool (void)
3400 {
3401 /* Next literal pool ID number. */
3402 static unsigned int latest_pool_num = 1;
3403 literal_pool * pool;
3404
3405 pool = find_literal_pool ();
3406
3407 if (pool == NULL)
3408 {
3409 /* Create a new pool. */
3410 pool = XNEW (literal_pool);
3411 if (! pool)
3412 return NULL;
3413
3414 pool->next_free_entry = 0;
3415 pool->section = now_seg;
3416 pool->sub_section = now_subseg;
3417 pool->next = list_of_pools;
3418 pool->symbol = NULL;
3419 pool->alignment = 2;
3420
3421 /* Add it to the list. */
3422 list_of_pools = pool;
3423 }
3424
3425 /* New pools, and emptied pools, will have a NULL symbol. */
3426 if (pool->symbol == NULL)
3427 {
3428 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3429 (valueT) 0, &zero_address_frag);
3430 pool->id = latest_pool_num ++;
3431 }
3432
3433 /* Done. */
3434 return pool;
3435 }
3436
3437 /* Add the literal in the global 'inst'
3438 structure to the relevant literal pool. */
3439
3440 static int
3441 add_to_lit_pool (unsigned int nbytes)
3442 {
3443 #define PADDING_SLOT 0x1
3444 #define LIT_ENTRY_SIZE_MASK 0xFF
3445 literal_pool * pool;
3446 unsigned int entry, pool_size = 0;
3447 bfd_boolean padding_slot_p = FALSE;
3448 unsigned imm1 = 0;
3449 unsigned imm2 = 0;
3450
3451 if (nbytes == 8)
3452 {
3453 imm1 = inst.operands[1].imm;
3454 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3455 : inst.relocs[0].exp.X_unsigned ? 0
3456 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3457 if (target_big_endian)
3458 {
3459 imm1 = imm2;
3460 imm2 = inst.operands[1].imm;
3461 }
3462 }
3463
3464 pool = find_or_make_literal_pool ();
3465
3466 /* Check if this literal value is already in the pool. */
3467 for (entry = 0; entry < pool->next_free_entry; entry ++)
3468 {
3469 if (nbytes == 4)
3470 {
3471 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3472 && (inst.relocs[0].exp.X_op == O_constant)
3473 && (pool->literals[entry].X_add_number
3474 == inst.relocs[0].exp.X_add_number)
3475 && (pool->literals[entry].X_md == nbytes)
3476 && (pool->literals[entry].X_unsigned
3477 == inst.relocs[0].exp.X_unsigned))
3478 break;
3479
3480 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3481 && (inst.relocs[0].exp.X_op == O_symbol)
3482 && (pool->literals[entry].X_add_number
3483 == inst.relocs[0].exp.X_add_number)
3484 && (pool->literals[entry].X_add_symbol
3485 == inst.relocs[0].exp.X_add_symbol)
3486 && (pool->literals[entry].X_op_symbol
3487 == inst.relocs[0].exp.X_op_symbol)
3488 && (pool->literals[entry].X_md == nbytes))
3489 break;
3490 }
3491 else if ((nbytes == 8)
3492 && !(pool_size & 0x7)
3493 && ((entry + 1) != pool->next_free_entry)
3494 && (pool->literals[entry].X_op == O_constant)
3495 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3496 && (pool->literals[entry].X_unsigned
3497 == inst.relocs[0].exp.X_unsigned)
3498 && (pool->literals[entry + 1].X_op == O_constant)
3499 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3500 && (pool->literals[entry + 1].X_unsigned
3501 == inst.relocs[0].exp.X_unsigned))
3502 break;
3503
3504 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3505 if (padding_slot_p && (nbytes == 4))
3506 break;
3507
3508 pool_size += 4;
3509 }
3510
3511 /* Do we need to create a new entry? */
3512 if (entry == pool->next_free_entry)
3513 {
3514 if (entry >= MAX_LITERAL_POOL_SIZE)
3515 {
3516 inst.error = _("literal pool overflow");
3517 return FAIL;
3518 }
3519
3520 if (nbytes == 8)
3521 {
3522 /* For 8-byte entries, we align to an 8-byte boundary,
3523 and split it into two 4-byte entries, because on 32-bit
3524 host, 8-byte constants are treated as big num, thus
3525 saved in "generic_bignum" which will be overwritten
3526 by later assignments.
3527
3528 We also need to make sure there is enough space for
3529 the split.
3530
3531 We also check to make sure the literal operand is a
3532 constant number. */
3533 if (!(inst.relocs[0].exp.X_op == O_constant
3534 || inst.relocs[0].exp.X_op == O_big))
3535 {
3536 inst.error = _("invalid type for literal pool");
3537 return FAIL;
3538 }
3539 else if (pool_size & 0x7)
3540 {
3541 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3542 {
3543 inst.error = _("literal pool overflow");
3544 return FAIL;
3545 }
3546
3547 pool->literals[entry] = inst.relocs[0].exp;
3548 pool->literals[entry].X_op = O_constant;
3549 pool->literals[entry].X_add_number = 0;
3550 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3551 pool->next_free_entry += 1;
3552 pool_size += 4;
3553 }
3554 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3555 {
3556 inst.error = _("literal pool overflow");
3557 return FAIL;
3558 }
3559
3560 pool->literals[entry] = inst.relocs[0].exp;
3561 pool->literals[entry].X_op = O_constant;
3562 pool->literals[entry].X_add_number = imm1;
3563 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3564 pool->literals[entry++].X_md = 4;
3565 pool->literals[entry] = inst.relocs[0].exp;
3566 pool->literals[entry].X_op = O_constant;
3567 pool->literals[entry].X_add_number = imm2;
3568 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3569 pool->literals[entry].X_md = 4;
3570 pool->alignment = 3;
3571 pool->next_free_entry += 1;
3572 }
3573 else
3574 {
3575 pool->literals[entry] = inst.relocs[0].exp;
3576 pool->literals[entry].X_md = 4;
3577 }
3578
3579 #ifdef OBJ_ELF
3580 /* PR ld/12974: Record the location of the first source line to reference
3581 this entry in the literal pool. If it turns out during linking that the
3582 symbol does not exist we will be able to give an accurate line number for
3583 the (first use of the) missing reference. */
3584 if (debug_type == DEBUG_DWARF2)
3585 dwarf2_where (pool->locs + entry);
3586 #endif
3587 pool->next_free_entry += 1;
3588 }
3589 else if (padding_slot_p)
3590 {
3591 pool->literals[entry] = inst.relocs[0].exp;
3592 pool->literals[entry].X_md = nbytes;
3593 }
3594
3595 inst.relocs[0].exp.X_op = O_symbol;
3596 inst.relocs[0].exp.X_add_number = pool_size;
3597 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3598
3599 return SUCCESS;
3600 }
3601
3602 bfd_boolean
3603 tc_start_label_without_colon (void)
3604 {
3605 bfd_boolean ret = TRUE;
3606
3607 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3608 {
3609 const char *label = input_line_pointer;
3610
3611 while (!is_end_of_line[(int) label[-1]])
3612 --label;
3613
3614 if (*label == '.')
3615 {
3616 as_bad (_("Invalid label '%s'"), label);
3617 ret = FALSE;
3618 }
3619
3620 asmfunc_debug (label);
3621
3622 asmfunc_state = WAITING_ENDASMFUNC;
3623 }
3624
3625 return ret;
3626 }
3627
3628 /* Can't use symbol_new here, so have to create a symbol and then at
3629 a later date assign it a value. That's what these functions do. */
3630
3631 static void
3632 symbol_locate (symbolS * symbolP,
3633 const char * name, /* It is copied, the caller can modify. */
3634 segT segment, /* Segment identifier (SEG_<something>). */
3635 valueT valu, /* Symbol value. */
3636 fragS * frag) /* Associated fragment. */
3637 {
3638 size_t name_length;
3639 char * preserved_copy_of_name;
3640
3641 name_length = strlen (name) + 1; /* +1 for \0. */
3642 obstack_grow (&notes, name, name_length);
3643 preserved_copy_of_name = (char *) obstack_finish (&notes);
3644
3645 #ifdef tc_canonicalize_symbol_name
3646 preserved_copy_of_name =
3647 tc_canonicalize_symbol_name (preserved_copy_of_name);
3648 #endif
3649
3650 S_SET_NAME (symbolP, preserved_copy_of_name);
3651
3652 S_SET_SEGMENT (symbolP, segment);
3653 S_SET_VALUE (symbolP, valu);
3654 symbol_clear_list_pointers (symbolP);
3655
3656 symbol_set_frag (symbolP, frag);
3657
3658 /* Link to end of symbol chain. */
3659 {
3660 extern int symbol_table_frozen;
3661
3662 if (symbol_table_frozen)
3663 abort ();
3664 }
3665
3666 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3667
3668 obj_symbol_new_hook (symbolP);
3669
3670 #ifdef tc_symbol_new_hook
3671 tc_symbol_new_hook (symbolP);
3672 #endif
3673
3674 #ifdef DEBUG_SYMS
3675 verify_symbol_chain (symbol_rootP, symbol_lastP);
3676 #endif /* DEBUG_SYMS */
3677 }
3678
3679 static void
3680 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3681 {
3682 unsigned int entry;
3683 literal_pool * pool;
3684 char sym_name[20];
3685
3686 pool = find_literal_pool ();
3687 if (pool == NULL
3688 || pool->symbol == NULL
3689 || pool->next_free_entry == 0)
3690 return;
3691
3692 /* Align pool as you have word accesses.
3693 Only make a frag if we have to. */
3694 if (!need_pass_2)
3695 frag_align (pool->alignment, 0, 0);
3696
3697 record_alignment (now_seg, 2);
3698
3699 #ifdef OBJ_ELF
3700 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3701 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3702 #endif
3703 sprintf (sym_name, "$$lit_\002%x", pool->id);
3704
3705 symbol_locate (pool->symbol, sym_name, now_seg,
3706 (valueT) frag_now_fix (), frag_now);
3707 symbol_table_insert (pool->symbol);
3708
3709 ARM_SET_THUMB (pool->symbol, thumb_mode);
3710
3711 #if defined OBJ_COFF || defined OBJ_ELF
3712 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3713 #endif
3714
3715 for (entry = 0; entry < pool->next_free_entry; entry ++)
3716 {
3717 #ifdef OBJ_ELF
3718 if (debug_type == DEBUG_DWARF2)
3719 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3720 #endif
3721 /* First output the expression in the instruction to the pool. */
3722 emit_expr (&(pool->literals[entry]),
3723 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3724 }
3725
3726 /* Mark the pool as empty. */
3727 pool->next_free_entry = 0;
3728 pool->symbol = NULL;
3729 }
3730
3731 #ifdef OBJ_ELF
3732 /* Forward declarations for functions below, in the MD interface
3733 section. */
3734 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3735 static valueT create_unwind_entry (int);
3736 static void start_unwind_section (const segT, int);
3737 static void add_unwind_opcode (valueT, int);
3738 static void flush_pending_unwind (void);
3739
3740 /* Directives: Data. */
3741
3742 static void
3743 s_arm_elf_cons (int nbytes)
3744 {
3745 expressionS exp;
3746
3747 #ifdef md_flush_pending_output
3748 md_flush_pending_output ();
3749 #endif
3750
3751 if (is_it_end_of_statement ())
3752 {
3753 demand_empty_rest_of_line ();
3754 return;
3755 }
3756
3757 #ifdef md_cons_align
3758 md_cons_align (nbytes);
3759 #endif
3760
3761 mapping_state (MAP_DATA);
3762 do
3763 {
3764 int reloc;
3765 char *base = input_line_pointer;
3766
3767 expression (& exp);
3768
3769 if (exp.X_op != O_symbol)
3770 emit_expr (&exp, (unsigned int) nbytes);
3771 else
3772 {
3773 char *before_reloc = input_line_pointer;
3774 reloc = parse_reloc (&input_line_pointer);
3775 if (reloc == -1)
3776 {
3777 as_bad (_("unrecognized relocation suffix"));
3778 ignore_rest_of_line ();
3779 return;
3780 }
3781 else if (reloc == BFD_RELOC_UNUSED)
3782 emit_expr (&exp, (unsigned int) nbytes);
3783 else
3784 {
3785 reloc_howto_type *howto = (reloc_howto_type *)
3786 bfd_reloc_type_lookup (stdoutput,
3787 (bfd_reloc_code_real_type) reloc);
3788 int size = bfd_get_reloc_size (howto);
3789
3790 if (reloc == BFD_RELOC_ARM_PLT32)
3791 {
3792 as_bad (_("(plt) is only valid on branch targets"));
3793 reloc = BFD_RELOC_UNUSED;
3794 size = 0;
3795 }
3796
3797 if (size > nbytes)
3798 as_bad (ngettext ("%s relocations do not fit in %d byte",
3799 "%s relocations do not fit in %d bytes",
3800 nbytes),
3801 howto->name, nbytes);
3802 else
3803 {
3804 /* We've parsed an expression stopping at O_symbol.
3805 But there may be more expression left now that we
3806 have parsed the relocation marker. Parse it again.
3807 XXX Surely there is a cleaner way to do this. */
3808 char *p = input_line_pointer;
3809 int offset;
3810 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3811
3812 memcpy (save_buf, base, input_line_pointer - base);
3813 memmove (base + (input_line_pointer - before_reloc),
3814 base, before_reloc - base);
3815
3816 input_line_pointer = base + (input_line_pointer-before_reloc);
3817 expression (&exp);
3818 memcpy (base, save_buf, p - base);
3819
3820 offset = nbytes - size;
3821 p = frag_more (nbytes);
3822 memset (p, 0, nbytes);
3823 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3824 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3825 free (save_buf);
3826 }
3827 }
3828 }
3829 }
3830 while (*input_line_pointer++ == ',');
3831
3832 /* Put terminator back into stream. */
3833 input_line_pointer --;
3834 demand_empty_rest_of_line ();
3835 }
3836
3837 /* Emit an expression containing a 32-bit thumb instruction.
3838 Implementation based on put_thumb32_insn. */
3839
3840 static void
3841 emit_thumb32_expr (expressionS * exp)
3842 {
3843 expressionS exp_high = *exp;
3844
3845 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3846 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3847 exp->X_add_number &= 0xffff;
3848 emit_expr (exp, (unsigned int) THUMB_SIZE);
3849 }
3850
3851 /* Guess the instruction size based on the opcode. */
3852
3853 static int
3854 thumb_insn_size (int opcode)
3855 {
3856 if ((unsigned int) opcode < 0xe800u)
3857 return 2;
3858 else if ((unsigned int) opcode >= 0xe8000000u)
3859 return 4;
3860 else
3861 return 0;
3862 }
3863
3864 static bfd_boolean
3865 emit_insn (expressionS *exp, int nbytes)
3866 {
3867 int size = 0;
3868
3869 if (exp->X_op == O_constant)
3870 {
3871 size = nbytes;
3872
3873 if (size == 0)
3874 size = thumb_insn_size (exp->X_add_number);
3875
3876 if (size != 0)
3877 {
3878 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3879 {
3880 as_bad (_(".inst.n operand too big. "\
3881 "Use .inst.w instead"));
3882 size = 0;
3883 }
3884 else
3885 {
3886 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3887 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3888 else
3889 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3890
3891 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3892 emit_thumb32_expr (exp);
3893 else
3894 emit_expr (exp, (unsigned int) size);
3895
3896 it_fsm_post_encode ();
3897 }
3898 }
3899 else
3900 as_bad (_("cannot determine Thumb instruction size. " \
3901 "Use .inst.n/.inst.w instead"));
3902 }
3903 else
3904 as_bad (_("constant expression required"));
3905
3906 return (size != 0);
3907 }
3908
3909 /* Like s_arm_elf_cons but do not use md_cons_align and
3910 set the mapping state to MAP_ARM/MAP_THUMB. */
3911
3912 static void
3913 s_arm_elf_inst (int nbytes)
3914 {
3915 if (is_it_end_of_statement ())
3916 {
3917 demand_empty_rest_of_line ();
3918 return;
3919 }
3920
3921 /* Calling mapping_state () here will not change ARM/THUMB,
3922 but will ensure not to be in DATA state. */
3923
3924 if (thumb_mode)
3925 mapping_state (MAP_THUMB);
3926 else
3927 {
3928 if (nbytes != 0)
3929 {
3930 as_bad (_("width suffixes are invalid in ARM mode"));
3931 ignore_rest_of_line ();
3932 return;
3933 }
3934
3935 nbytes = 4;
3936
3937 mapping_state (MAP_ARM);
3938 }
3939
3940 do
3941 {
3942 expressionS exp;
3943
3944 expression (& exp);
3945
3946 if (! emit_insn (& exp, nbytes))
3947 {
3948 ignore_rest_of_line ();
3949 return;
3950 }
3951 }
3952 while (*input_line_pointer++ == ',');
3953
3954 /* Put terminator back into stream. */
3955 input_line_pointer --;
3956 demand_empty_rest_of_line ();
3957 }
3958
3959 /* Parse a .rel31 directive. */
3960
3961 static void
3962 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3963 {
3964 expressionS exp;
3965 char *p;
3966 valueT highbit;
3967
3968 highbit = 0;
3969 if (*input_line_pointer == '1')
3970 highbit = 0x80000000;
3971 else if (*input_line_pointer != '0')
3972 as_bad (_("expected 0 or 1"));
3973
3974 input_line_pointer++;
3975 if (*input_line_pointer != ',')
3976 as_bad (_("missing comma"));
3977 input_line_pointer++;
3978
3979 #ifdef md_flush_pending_output
3980 md_flush_pending_output ();
3981 #endif
3982
3983 #ifdef md_cons_align
3984 md_cons_align (4);
3985 #endif
3986
3987 mapping_state (MAP_DATA);
3988
3989 expression (&exp);
3990
3991 p = frag_more (4);
3992 md_number_to_chars (p, highbit, 4);
3993 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3994 BFD_RELOC_ARM_PREL31);
3995
3996 demand_empty_rest_of_line ();
3997 }
3998
3999 /* Directives: AEABI stack-unwind tables. */
4000
4001 /* Parse an unwind_fnstart directive. Simply records the current location. */
4002
4003 static void
4004 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4005 {
4006 demand_empty_rest_of_line ();
4007 if (unwind.proc_start)
4008 {
4009 as_bad (_("duplicate .fnstart directive"));
4010 return;
4011 }
4012
4013 /* Mark the start of the function. */
4014 unwind.proc_start = expr_build_dot ();
4015
4016 /* Reset the rest of the unwind info. */
4017 unwind.opcode_count = 0;
4018 unwind.table_entry = NULL;
4019 unwind.personality_routine = NULL;
4020 unwind.personality_index = -1;
4021 unwind.frame_size = 0;
4022 unwind.fp_offset = 0;
4023 unwind.fp_reg = REG_SP;
4024 unwind.fp_used = 0;
4025 unwind.sp_restored = 0;
4026 }
4027
4028
4029 /* Parse a handlerdata directive. Creates the exception handling table entry
4030 for the function. */
4031
4032 static void
4033 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4034 {
4035 demand_empty_rest_of_line ();
4036 if (!unwind.proc_start)
4037 as_bad (MISSING_FNSTART);
4038
4039 if (unwind.table_entry)
4040 as_bad (_("duplicate .handlerdata directive"));
4041
4042 create_unwind_entry (1);
4043 }
4044
4045 /* Parse an unwind_fnend directive. Generates the index table entry. */
4046
4047 static void
4048 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4049 {
4050 long where;
4051 char *ptr;
4052 valueT val;
4053 unsigned int marked_pr_dependency;
4054
4055 demand_empty_rest_of_line ();
4056
4057 if (!unwind.proc_start)
4058 {
4059 as_bad (_(".fnend directive without .fnstart"));
4060 return;
4061 }
4062
4063 /* Add eh table entry. */
4064 if (unwind.table_entry == NULL)
4065 val = create_unwind_entry (0);
4066 else
4067 val = 0;
4068
4069 /* Add index table entry. This is two words. */
4070 start_unwind_section (unwind.saved_seg, 1);
4071 frag_align (2, 0, 0);
4072 record_alignment (now_seg, 2);
4073
4074 ptr = frag_more (8);
4075 memset (ptr, 0, 8);
4076 where = frag_now_fix () - 8;
4077
4078 /* Self relative offset of the function start. */
4079 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4080 BFD_RELOC_ARM_PREL31);
4081
4082 /* Indicate dependency on EHABI-defined personality routines to the
4083 linker, if it hasn't been done already. */
4084 marked_pr_dependency
4085 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4086 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4087 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4088 {
4089 static const char *const name[] =
4090 {
4091 "__aeabi_unwind_cpp_pr0",
4092 "__aeabi_unwind_cpp_pr1",
4093 "__aeabi_unwind_cpp_pr2"
4094 };
4095 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4096 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4097 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4098 |= 1 << unwind.personality_index;
4099 }
4100
4101 if (val)
4102 /* Inline exception table entry. */
4103 md_number_to_chars (ptr + 4, val, 4);
4104 else
4105 /* Self relative offset of the table entry. */
4106 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4107 BFD_RELOC_ARM_PREL31);
4108
4109 /* Restore the original section. */
4110 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4111
4112 unwind.proc_start = NULL;
4113 }
4114
4115
4116 /* Parse an unwind_cantunwind directive. */
4117
4118 static void
4119 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4120 {
4121 demand_empty_rest_of_line ();
4122 if (!unwind.proc_start)
4123 as_bad (MISSING_FNSTART);
4124
4125 if (unwind.personality_routine || unwind.personality_index != -1)
4126 as_bad (_("personality routine specified for cantunwind frame"));
4127
4128 unwind.personality_index = -2;
4129 }
4130
4131
4132 /* Parse a personalityindex directive. */
4133
4134 static void
4135 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4136 {
4137 expressionS exp;
4138
4139 if (!unwind.proc_start)
4140 as_bad (MISSING_FNSTART);
4141
4142 if (unwind.personality_routine || unwind.personality_index != -1)
4143 as_bad (_("duplicate .personalityindex directive"));
4144
4145 expression (&exp);
4146
4147 if (exp.X_op != O_constant
4148 || exp.X_add_number < 0 || exp.X_add_number > 15)
4149 {
4150 as_bad (_("bad personality routine number"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
4154
4155 unwind.personality_index = exp.X_add_number;
4156
4157 demand_empty_rest_of_line ();
4158 }
4159
4160
4161 /* Parse a personality directive. */
4162
4163 static void
4164 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4165 {
4166 char *name, *p, c;
4167
4168 if (!unwind.proc_start)
4169 as_bad (MISSING_FNSTART);
4170
4171 if (unwind.personality_routine || unwind.personality_index != -1)
4172 as_bad (_("duplicate .personality directive"));
4173
4174 c = get_symbol_name (& name);
4175 p = input_line_pointer;
4176 if (c == '"')
4177 ++ input_line_pointer;
4178 unwind.personality_routine = symbol_find_or_make (name);
4179 *p = c;
4180 demand_empty_rest_of_line ();
4181 }
4182
4183
4184 /* Parse a directive saving core registers. */
4185
4186 static void
4187 s_arm_unwind_save_core (void)
4188 {
4189 valueT op;
4190 long range;
4191 int n;
4192
4193 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4194 if (range == FAIL)
4195 {
4196 as_bad (_("expected register list"));
4197 ignore_rest_of_line ();
4198 return;
4199 }
4200
4201 demand_empty_rest_of_line ();
4202
4203 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4204 into .unwind_save {..., sp...}. We aren't bothered about the value of
4205 ip because it is clobbered by calls. */
4206 if (unwind.sp_restored && unwind.fp_reg == 12
4207 && (range & 0x3000) == 0x1000)
4208 {
4209 unwind.opcode_count--;
4210 unwind.sp_restored = 0;
4211 range = (range | 0x2000) & ~0x1000;
4212 unwind.pending_offset = 0;
4213 }
4214
4215 /* Pop r4-r15. */
4216 if (range & 0xfff0)
4217 {
4218 /* See if we can use the short opcodes. These pop a block of up to 8
4219 registers starting with r4, plus maybe r14. */
4220 for (n = 0; n < 8; n++)
4221 {
4222 /* Break at the first non-saved register. */
4223 if ((range & (1 << (n + 4))) == 0)
4224 break;
4225 }
4226 /* See if there are any other bits set. */
4227 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4228 {
4229 /* Use the long form. */
4230 op = 0x8000 | ((range >> 4) & 0xfff);
4231 add_unwind_opcode (op, 2);
4232 }
4233 else
4234 {
4235 /* Use the short form. */
4236 if (range & 0x4000)
4237 op = 0xa8; /* Pop r14. */
4238 else
4239 op = 0xa0; /* Do not pop r14. */
4240 op |= (n - 1);
4241 add_unwind_opcode (op, 1);
4242 }
4243 }
4244
4245 /* Pop r0-r3. */
4246 if (range & 0xf)
4247 {
4248 op = 0xb100 | (range & 0xf);
4249 add_unwind_opcode (op, 2);
4250 }
4251
4252 /* Record the number of bytes pushed. */
4253 for (n = 0; n < 16; n++)
4254 {
4255 if (range & (1 << n))
4256 unwind.frame_size += 4;
4257 }
4258 }
4259
4260
4261 /* Parse a directive saving FPA registers. */
4262
4263 static void
4264 s_arm_unwind_save_fpa (int reg)
4265 {
4266 expressionS exp;
4267 int num_regs;
4268 valueT op;
4269
4270 /* Get Number of registers to transfer. */
4271 if (skip_past_comma (&input_line_pointer) != FAIL)
4272 expression (&exp);
4273 else
4274 exp.X_op = O_illegal;
4275
4276 if (exp.X_op != O_constant)
4277 {
4278 as_bad (_("expected , <constant>"));
4279 ignore_rest_of_line ();
4280 return;
4281 }
4282
4283 num_regs = exp.X_add_number;
4284
4285 if (num_regs < 1 || num_regs > 4)
4286 {
4287 as_bad (_("number of registers must be in the range [1:4]"));
4288 ignore_rest_of_line ();
4289 return;
4290 }
4291
4292 demand_empty_rest_of_line ();
4293
4294 if (reg == 4)
4295 {
4296 /* Short form. */
4297 op = 0xb4 | (num_regs - 1);
4298 add_unwind_opcode (op, 1);
4299 }
4300 else
4301 {
4302 /* Long form. */
4303 op = 0xc800 | (reg << 4) | (num_regs - 1);
4304 add_unwind_opcode (op, 2);
4305 }
4306 unwind.frame_size += num_regs * 12;
4307 }
4308
4309
4310 /* Parse a directive saving VFP registers for ARMv6 and above. */
4311
4312 static void
4313 s_arm_unwind_save_vfp_armv6 (void)
4314 {
4315 int count;
4316 unsigned int start;
4317 valueT op;
4318 int num_vfpv3_regs = 0;
4319 int num_regs_below_16;
4320 bfd_boolean partial_match;
4321
4322 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4323 &partial_match);
4324 if (count == FAIL)
4325 {
4326 as_bad (_("expected register list"));
4327 ignore_rest_of_line ();
4328 return;
4329 }
4330
4331 demand_empty_rest_of_line ();
4332
4333 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4334 than FSTMX/FLDMX-style ones). */
4335
4336 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4337 if (start >= 16)
4338 num_vfpv3_regs = count;
4339 else if (start + count > 16)
4340 num_vfpv3_regs = start + count - 16;
4341
4342 if (num_vfpv3_regs > 0)
4343 {
4344 int start_offset = start > 16 ? start - 16 : 0;
4345 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4346 add_unwind_opcode (op, 2);
4347 }
4348
4349 /* Generate opcode for registers numbered in the range 0 .. 15. */
4350 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4351 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4352 if (num_regs_below_16 > 0)
4353 {
4354 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4355 add_unwind_opcode (op, 2);
4356 }
4357
4358 unwind.frame_size += count * 8;
4359 }
4360
4361
4362 /* Parse a directive saving VFP registers for pre-ARMv6. */
4363
4364 static void
4365 s_arm_unwind_save_vfp (void)
4366 {
4367 int count;
4368 unsigned int reg;
4369 valueT op;
4370 bfd_boolean partial_match;
4371
4372 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4373 &partial_match);
4374 if (count == FAIL)
4375 {
4376 as_bad (_("expected register list"));
4377 ignore_rest_of_line ();
4378 return;
4379 }
4380
4381 demand_empty_rest_of_line ();
4382
4383 if (reg == 8)
4384 {
4385 /* Short form. */
4386 op = 0xb8 | (count - 1);
4387 add_unwind_opcode (op, 1);
4388 }
4389 else
4390 {
4391 /* Long form. */
4392 op = 0xb300 | (reg << 4) | (count - 1);
4393 add_unwind_opcode (op, 2);
4394 }
4395 unwind.frame_size += count * 8 + 4;
4396 }
4397
4398
4399 /* Parse a directive saving iWMMXt data registers. */
4400
4401 static void
4402 s_arm_unwind_save_mmxwr (void)
4403 {
4404 int reg;
4405 int hi_reg;
4406 int i;
4407 unsigned mask = 0;
4408 valueT op;
4409
4410 if (*input_line_pointer == '{')
4411 input_line_pointer++;
4412
4413 do
4414 {
4415 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4416
4417 if (reg == FAIL)
4418 {
4419 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4420 goto error;
4421 }
4422
4423 if (mask >> reg)
4424 as_tsktsk (_("register list not in ascending order"));
4425 mask |= 1 << reg;
4426
4427 if (*input_line_pointer == '-')
4428 {
4429 input_line_pointer++;
4430 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4431 if (hi_reg == FAIL)
4432 {
4433 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4434 goto error;
4435 }
4436 else if (reg >= hi_reg)
4437 {
4438 as_bad (_("bad register range"));
4439 goto error;
4440 }
4441 for (; reg < hi_reg; reg++)
4442 mask |= 1 << reg;
4443 }
4444 }
4445 while (skip_past_comma (&input_line_pointer) != FAIL);
4446
4447 skip_past_char (&input_line_pointer, '}');
4448
4449 demand_empty_rest_of_line ();
4450
4451 /* Generate any deferred opcodes because we're going to be looking at
4452 the list. */
4453 flush_pending_unwind ();
4454
4455 for (i = 0; i < 16; i++)
4456 {
4457 if (mask & (1 << i))
4458 unwind.frame_size += 8;
4459 }
4460
4461 /* Attempt to combine with a previous opcode. We do this because gcc
4462 likes to output separate unwind directives for a single block of
4463 registers. */
4464 if (unwind.opcode_count > 0)
4465 {
4466 i = unwind.opcodes[unwind.opcode_count - 1];
4467 if ((i & 0xf8) == 0xc0)
4468 {
4469 i &= 7;
4470 /* Only merge if the blocks are contiguous. */
4471 if (i < 6)
4472 {
4473 if ((mask & 0xfe00) == (1 << 9))
4474 {
4475 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4476 unwind.opcode_count--;
4477 }
4478 }
4479 else if (i == 6 && unwind.opcode_count >= 2)
4480 {
4481 i = unwind.opcodes[unwind.opcode_count - 2];
4482 reg = i >> 4;
4483 i &= 0xf;
4484
4485 op = 0xffff << (reg - 1);
4486 if (reg > 0
4487 && ((mask & op) == (1u << (reg - 1))))
4488 {
4489 op = (1 << (reg + i + 1)) - 1;
4490 op &= ~((1 << reg) - 1);
4491 mask |= op;
4492 unwind.opcode_count -= 2;
4493 }
4494 }
4495 }
4496 }
4497
4498 hi_reg = 15;
4499 /* We want to generate opcodes in the order the registers have been
4500 saved, ie. descending order. */
4501 for (reg = 15; reg >= -1; reg--)
4502 {
4503 /* Save registers in blocks. */
4504 if (reg < 0
4505 || !(mask & (1 << reg)))
4506 {
4507 /* We found an unsaved reg. Generate opcodes to save the
4508 preceding block. */
4509 if (reg != hi_reg)
4510 {
4511 if (reg == 9)
4512 {
4513 /* Short form. */
4514 op = 0xc0 | (hi_reg - 10);
4515 add_unwind_opcode (op, 1);
4516 }
4517 else
4518 {
4519 /* Long form. */
4520 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4521 add_unwind_opcode (op, 2);
4522 }
4523 }
4524 hi_reg = reg - 1;
4525 }
4526 }
4527
4528 return;
4529 error:
4530 ignore_rest_of_line ();
4531 }
4532
4533 static void
4534 s_arm_unwind_save_mmxwcg (void)
4535 {
4536 int reg;
4537 int hi_reg;
4538 unsigned mask = 0;
4539 valueT op;
4540
4541 if (*input_line_pointer == '{')
4542 input_line_pointer++;
4543
4544 skip_whitespace (input_line_pointer);
4545
4546 do
4547 {
4548 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4549
4550 if (reg == FAIL)
4551 {
4552 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4553 goto error;
4554 }
4555
4556 reg -= 8;
4557 if (mask >> reg)
4558 as_tsktsk (_("register list not in ascending order"));
4559 mask |= 1 << reg;
4560
4561 if (*input_line_pointer == '-')
4562 {
4563 input_line_pointer++;
4564 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4565 if (hi_reg == FAIL)
4566 {
4567 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4568 goto error;
4569 }
4570 else if (reg >= hi_reg)
4571 {
4572 as_bad (_("bad register range"));
4573 goto error;
4574 }
4575 for (; reg < hi_reg; reg++)
4576 mask |= 1 << reg;
4577 }
4578 }
4579 while (skip_past_comma (&input_line_pointer) != FAIL);
4580
4581 skip_past_char (&input_line_pointer, '}');
4582
4583 demand_empty_rest_of_line ();
4584
4585 /* Generate any deferred opcodes because we're going to be looking at
4586 the list. */
4587 flush_pending_unwind ();
4588
4589 for (reg = 0; reg < 16; reg++)
4590 {
4591 if (mask & (1 << reg))
4592 unwind.frame_size += 4;
4593 }
4594 op = 0xc700 | mask;
4595 add_unwind_opcode (op, 2);
4596 return;
4597 error:
4598 ignore_rest_of_line ();
4599 }
4600
4601
4602 /* Parse an unwind_save directive.
4603 If the argument is non-zero, this is a .vsave directive. */
4604
4605 static void
4606 s_arm_unwind_save (int arch_v6)
4607 {
4608 char *peek;
4609 struct reg_entry *reg;
4610 bfd_boolean had_brace = FALSE;
4611
4612 if (!unwind.proc_start)
4613 as_bad (MISSING_FNSTART);
4614
4615 /* Figure out what sort of save we have. */
4616 peek = input_line_pointer;
4617
4618 if (*peek == '{')
4619 {
4620 had_brace = TRUE;
4621 peek++;
4622 }
4623
4624 reg = arm_reg_parse_multi (&peek);
4625
4626 if (!reg)
4627 {
4628 as_bad (_("register expected"));
4629 ignore_rest_of_line ();
4630 return;
4631 }
4632
4633 switch (reg->type)
4634 {
4635 case REG_TYPE_FN:
4636 if (had_brace)
4637 {
4638 as_bad (_("FPA .unwind_save does not take a register list"));
4639 ignore_rest_of_line ();
4640 return;
4641 }
4642 input_line_pointer = peek;
4643 s_arm_unwind_save_fpa (reg->number);
4644 return;
4645
4646 case REG_TYPE_RN:
4647 s_arm_unwind_save_core ();
4648 return;
4649
4650 case REG_TYPE_VFD:
4651 if (arch_v6)
4652 s_arm_unwind_save_vfp_armv6 ();
4653 else
4654 s_arm_unwind_save_vfp ();
4655 return;
4656
4657 case REG_TYPE_MMXWR:
4658 s_arm_unwind_save_mmxwr ();
4659 return;
4660
4661 case REG_TYPE_MMXWCG:
4662 s_arm_unwind_save_mmxwcg ();
4663 return;
4664
4665 default:
4666 as_bad (_(".unwind_save does not support this kind of register"));
4667 ignore_rest_of_line ();
4668 }
4669 }
4670
4671
4672 /* Parse an unwind_movsp directive. */
4673
4674 static void
4675 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4676 {
4677 int reg;
4678 valueT op;
4679 int offset;
4680
4681 if (!unwind.proc_start)
4682 as_bad (MISSING_FNSTART);
4683
4684 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4685 if (reg == FAIL)
4686 {
4687 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4688 ignore_rest_of_line ();
4689 return;
4690 }
4691
4692 /* Optional constant. */
4693 if (skip_past_comma (&input_line_pointer) != FAIL)
4694 {
4695 if (immediate_for_directive (&offset) == FAIL)
4696 return;
4697 }
4698 else
4699 offset = 0;
4700
4701 demand_empty_rest_of_line ();
4702
4703 if (reg == REG_SP || reg == REG_PC)
4704 {
4705 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 return;
4707 }
4708
4709 if (unwind.fp_reg != REG_SP)
4710 as_bad (_("unexpected .unwind_movsp directive"));
4711
4712 /* Generate opcode to restore the value. */
4713 op = 0x90 | reg;
4714 add_unwind_opcode (op, 1);
4715
4716 /* Record the information for later. */
4717 unwind.fp_reg = reg;
4718 unwind.fp_offset = unwind.frame_size - offset;
4719 unwind.sp_restored = 1;
4720 }
4721
4722 /* Parse an unwind_pad directive. */
4723
4724 static void
4725 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4726 {
4727 int offset;
4728
4729 if (!unwind.proc_start)
4730 as_bad (MISSING_FNSTART);
4731
4732 if (immediate_for_directive (&offset) == FAIL)
4733 return;
4734
4735 if (offset & 3)
4736 {
4737 as_bad (_("stack increment must be multiple of 4"));
4738 ignore_rest_of_line ();
4739 return;
4740 }
4741
4742 /* Don't generate any opcodes, just record the details for later. */
4743 unwind.frame_size += offset;
4744 unwind.pending_offset += offset;
4745
4746 demand_empty_rest_of_line ();
4747 }
4748
4749 /* Parse an unwind_setfp directive. */
4750
4751 static void
4752 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4753 {
4754 int sp_reg;
4755 int fp_reg;
4756 int offset;
4757
4758 if (!unwind.proc_start)
4759 as_bad (MISSING_FNSTART);
4760
4761 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4762 if (skip_past_comma (&input_line_pointer) == FAIL)
4763 sp_reg = FAIL;
4764 else
4765 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4766
4767 if (fp_reg == FAIL || sp_reg == FAIL)
4768 {
4769 as_bad (_("expected <reg>, <reg>"));
4770 ignore_rest_of_line ();
4771 return;
4772 }
4773
4774 /* Optional constant. */
4775 if (skip_past_comma (&input_line_pointer) != FAIL)
4776 {
4777 if (immediate_for_directive (&offset) == FAIL)
4778 return;
4779 }
4780 else
4781 offset = 0;
4782
4783 demand_empty_rest_of_line ();
4784
4785 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4786 {
4787 as_bad (_("register must be either sp or set by a previous"
4788 "unwind_movsp directive"));
4789 return;
4790 }
4791
4792 /* Don't generate any opcodes, just record the information for later. */
4793 unwind.fp_reg = fp_reg;
4794 unwind.fp_used = 1;
4795 if (sp_reg == REG_SP)
4796 unwind.fp_offset = unwind.frame_size - offset;
4797 else
4798 unwind.fp_offset -= offset;
4799 }
4800
4801 /* Parse an unwind_raw directive. */
4802
4803 static void
4804 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4805 {
4806 expressionS exp;
4807 /* This is an arbitrary limit. */
4808 unsigned char op[16];
4809 int count;
4810
4811 if (!unwind.proc_start)
4812 as_bad (MISSING_FNSTART);
4813
4814 expression (&exp);
4815 if (exp.X_op == O_constant
4816 && skip_past_comma (&input_line_pointer) != FAIL)
4817 {
4818 unwind.frame_size += exp.X_add_number;
4819 expression (&exp);
4820 }
4821 else
4822 exp.X_op = O_illegal;
4823
4824 if (exp.X_op != O_constant)
4825 {
4826 as_bad (_("expected <offset>, <opcode>"));
4827 ignore_rest_of_line ();
4828 return;
4829 }
4830
4831 count = 0;
4832
4833 /* Parse the opcode. */
4834 for (;;)
4835 {
4836 if (count >= 16)
4837 {
4838 as_bad (_("unwind opcode too long"));
4839 ignore_rest_of_line ();
4840 }
4841 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4842 {
4843 as_bad (_("invalid unwind opcode"));
4844 ignore_rest_of_line ();
4845 return;
4846 }
4847 op[count++] = exp.X_add_number;
4848
4849 /* Parse the next byte. */
4850 if (skip_past_comma (&input_line_pointer) == FAIL)
4851 break;
4852
4853 expression (&exp);
4854 }
4855
4856 /* Add the opcode bytes in reverse order. */
4857 while (count--)
4858 add_unwind_opcode (op[count], 1);
4859
4860 demand_empty_rest_of_line ();
4861 }
4862
4863
4864 /* Parse a .eabi_attribute directive. */
4865
4866 static void
4867 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4868 {
4869 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4870
4871 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4872 attributes_set_explicitly[tag] = 1;
4873 }
4874
4875 /* Emit a tls fix for the symbol. */
4876
4877 static void
4878 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4879 {
4880 char *p;
4881 expressionS exp;
4882 #ifdef md_flush_pending_output
4883 md_flush_pending_output ();
4884 #endif
4885
4886 #ifdef md_cons_align
4887 md_cons_align (4);
4888 #endif
4889
4890 /* Since we're just labelling the code, there's no need to define a
4891 mapping symbol. */
4892 expression (&exp);
4893 p = obstack_next_free (&frchain_now->frch_obstack);
4894 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4895 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4896 : BFD_RELOC_ARM_TLS_DESCSEQ);
4897 }
4898 #endif /* OBJ_ELF */
4899
4900 static void s_arm_arch (int);
4901 static void s_arm_object_arch (int);
4902 static void s_arm_cpu (int);
4903 static void s_arm_fpu (int);
4904 static void s_arm_arch_extension (int);
4905
4906 #ifdef TE_PE
4907
4908 static void
4909 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4910 {
4911 expressionS exp;
4912
4913 do
4914 {
4915 expression (&exp);
4916 if (exp.X_op == O_symbol)
4917 exp.X_op = O_secrel;
4918
4919 emit_expr (&exp, 4);
4920 }
4921 while (*input_line_pointer++ == ',');
4922
4923 input_line_pointer--;
4924 demand_empty_rest_of_line ();
4925 }
4926 #endif /* TE_PE */
4927
4928 /* This table describes all the machine specific pseudo-ops the assembler
4929 has to support. The fields are:
4930 pseudo-op name without dot
4931 function to call to execute this pseudo-op
4932 Integer arg to pass to the function. */
4933
4934 const pseudo_typeS md_pseudo_table[] =
4935 {
4936 /* Never called because '.req' does not start a line. */
4937 { "req", s_req, 0 },
4938 /* Following two are likewise never called. */
4939 { "dn", s_dn, 0 },
4940 { "qn", s_qn, 0 },
4941 { "unreq", s_unreq, 0 },
4942 { "bss", s_bss, 0 },
4943 { "align", s_align_ptwo, 2 },
4944 { "arm", s_arm, 0 },
4945 { "thumb", s_thumb, 0 },
4946 { "code", s_code, 0 },
4947 { "force_thumb", s_force_thumb, 0 },
4948 { "thumb_func", s_thumb_func, 0 },
4949 { "thumb_set", s_thumb_set, 0 },
4950 { "even", s_even, 0 },
4951 { "ltorg", s_ltorg, 0 },
4952 { "pool", s_ltorg, 0 },
4953 { "syntax", s_syntax, 0 },
4954 { "cpu", s_arm_cpu, 0 },
4955 { "arch", s_arm_arch, 0 },
4956 { "object_arch", s_arm_object_arch, 0 },
4957 { "fpu", s_arm_fpu, 0 },
4958 { "arch_extension", s_arm_arch_extension, 0 },
4959 #ifdef OBJ_ELF
4960 { "word", s_arm_elf_cons, 4 },
4961 { "long", s_arm_elf_cons, 4 },
4962 { "inst.n", s_arm_elf_inst, 2 },
4963 { "inst.w", s_arm_elf_inst, 4 },
4964 { "inst", s_arm_elf_inst, 0 },
4965 { "rel31", s_arm_rel31, 0 },
4966 { "fnstart", s_arm_unwind_fnstart, 0 },
4967 { "fnend", s_arm_unwind_fnend, 0 },
4968 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4969 { "personality", s_arm_unwind_personality, 0 },
4970 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4971 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4972 { "save", s_arm_unwind_save, 0 },
4973 { "vsave", s_arm_unwind_save, 1 },
4974 { "movsp", s_arm_unwind_movsp, 0 },
4975 { "pad", s_arm_unwind_pad, 0 },
4976 { "setfp", s_arm_unwind_setfp, 0 },
4977 { "unwind_raw", s_arm_unwind_raw, 0 },
4978 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4979 { "tlsdescseq", s_arm_tls_descseq, 0 },
4980 #else
4981 { "word", cons, 4},
4982
4983 /* These are used for dwarf. */
4984 {"2byte", cons, 2},
4985 {"4byte", cons, 4},
4986 {"8byte", cons, 8},
4987 /* These are used for dwarf2. */
4988 { "file", dwarf2_directive_file, 0 },
4989 { "loc", dwarf2_directive_loc, 0 },
4990 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4991 #endif
4992 { "extend", float_cons, 'x' },
4993 { "ldouble", float_cons, 'x' },
4994 { "packed", float_cons, 'p' },
4995 #ifdef TE_PE
4996 {"secrel32", pe_directive_secrel, 0},
4997 #endif
4998
4999 /* These are for compatibility with CodeComposer Studio. */
5000 {"ref", s_ccs_ref, 0},
5001 {"def", s_ccs_def, 0},
5002 {"asmfunc", s_ccs_asmfunc, 0},
5003 {"endasmfunc", s_ccs_endasmfunc, 0},
5004
5005 { 0, 0, 0 }
5006 };
5007 \f
5008 /* Parser functions used exclusively in instruction operands. */
5009
5010 /* Generic immediate-value read function for use in insn parsing.
5011 STR points to the beginning of the immediate (the leading #);
5012 VAL receives the value; if the value is outside [MIN, MAX]
5013 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 optional. */
5015
5016 static int
5017 parse_immediate (char **str, int *val, int min, int max,
5018 bfd_boolean prefix_opt)
5019 {
5020 expressionS exp;
5021
5022 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5023 if (exp.X_op != O_constant)
5024 {
5025 inst.error = _("constant expression required");
5026 return FAIL;
5027 }
5028
5029 if (exp.X_add_number < min || exp.X_add_number > max)
5030 {
5031 inst.error = _("immediate value out of range");
5032 return FAIL;
5033 }
5034
5035 *val = exp.X_add_number;
5036 return SUCCESS;
5037 }
5038
5039 /* Less-generic immediate-value read function with the possibility of loading a
5040 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5041 instructions. Puts the result directly in inst.operands[i]. */
5042
5043 static int
5044 parse_big_immediate (char **str, int i, expressionS *in_exp,
5045 bfd_boolean allow_symbol_p)
5046 {
5047 expressionS exp;
5048 expressionS *exp_p = in_exp ? in_exp : &exp;
5049 char *ptr = *str;
5050
5051 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5052
5053 if (exp_p->X_op == O_constant)
5054 {
5055 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5056 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5057 O_constant. We have to be careful not to break compilation for
5058 32-bit X_add_number, though. */
5059 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5060 {
5061 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5062 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5063 & 0xffffffff);
5064 inst.operands[i].regisimm = 1;
5065 }
5066 }
5067 else if (exp_p->X_op == O_big
5068 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5069 {
5070 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5071
5072 /* Bignums have their least significant bits in
5073 generic_bignum[0]. Make sure we put 32 bits in imm and
5074 32 bits in reg, in a (hopefully) portable way. */
5075 gas_assert (parts != 0);
5076
5077 /* Make sure that the number is not too big.
5078 PR 11972: Bignums can now be sign-extended to the
5079 size of a .octa so check that the out of range bits
5080 are all zero or all one. */
5081 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5082 {
5083 LITTLENUM_TYPE m = -1;
5084
5085 if (generic_bignum[parts * 2] != 0
5086 && generic_bignum[parts * 2] != m)
5087 return FAIL;
5088
5089 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5090 if (generic_bignum[j] != generic_bignum[j-1])
5091 return FAIL;
5092 }
5093
5094 inst.operands[i].imm = 0;
5095 for (j = 0; j < parts; j++, idx++)
5096 inst.operands[i].imm |= generic_bignum[idx]
5097 << (LITTLENUM_NUMBER_OF_BITS * j);
5098 inst.operands[i].reg = 0;
5099 for (j = 0; j < parts; j++, idx++)
5100 inst.operands[i].reg |= generic_bignum[idx]
5101 << (LITTLENUM_NUMBER_OF_BITS * j);
5102 inst.operands[i].regisimm = 1;
5103 }
5104 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5105 return FAIL;
5106
5107 *str = ptr;
5108
5109 return SUCCESS;
5110 }
5111
5112 /* Returns the pseudo-register number of an FPA immediate constant,
5113 or FAIL if there isn't a valid constant here. */
5114
5115 static int
5116 parse_fpa_immediate (char ** str)
5117 {
5118 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5119 char * save_in;
5120 expressionS exp;
5121 int i;
5122 int j;
5123
5124 /* First try and match exact strings, this is to guarantee
5125 that some formats will work even for cross assembly. */
5126
5127 for (i = 0; fp_const[i]; i++)
5128 {
5129 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5130 {
5131 char *start = *str;
5132
5133 *str += strlen (fp_const[i]);
5134 if (is_end_of_line[(unsigned char) **str])
5135 return i + 8;
5136 *str = start;
5137 }
5138 }
5139
5140 /* Just because we didn't get a match doesn't mean that the constant
5141 isn't valid, just that it is in a format that we don't
5142 automatically recognize. Try parsing it with the standard
5143 expression routines. */
5144
5145 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5146
5147 /* Look for a raw floating point number. */
5148 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5149 && is_end_of_line[(unsigned char) *save_in])
5150 {
5151 for (i = 0; i < NUM_FLOAT_VALS; i++)
5152 {
5153 for (j = 0; j < MAX_LITTLENUMS; j++)
5154 {
5155 if (words[j] != fp_values[i][j])
5156 break;
5157 }
5158
5159 if (j == MAX_LITTLENUMS)
5160 {
5161 *str = save_in;
5162 return i + 8;
5163 }
5164 }
5165 }
5166
5167 /* Try and parse a more complex expression, this will probably fail
5168 unless the code uses a floating point prefix (eg "0f"). */
5169 save_in = input_line_pointer;
5170 input_line_pointer = *str;
5171 if (expression (&exp) == absolute_section
5172 && exp.X_op == O_big
5173 && exp.X_add_number < 0)
5174 {
5175 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5176 Ditto for 15. */
5177 #define X_PRECISION 5
5178 #define E_PRECISION 15L
5179 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5180 {
5181 for (i = 0; i < NUM_FLOAT_VALS; i++)
5182 {
5183 for (j = 0; j < MAX_LITTLENUMS; j++)
5184 {
5185 if (words[j] != fp_values[i][j])
5186 break;
5187 }
5188
5189 if (j == MAX_LITTLENUMS)
5190 {
5191 *str = input_line_pointer;
5192 input_line_pointer = save_in;
5193 return i + 8;
5194 }
5195 }
5196 }
5197 }
5198
5199 *str = input_line_pointer;
5200 input_line_pointer = save_in;
5201 inst.error = _("invalid FPA immediate expression");
5202 return FAIL;
5203 }
5204
5205 /* Returns 1 if a number has "quarter-precision" float format
5206 0baBbbbbbc defgh000 00000000 00000000. */
5207
5208 static int
5209 is_quarter_float (unsigned imm)
5210 {
5211 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5212 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5213 }
5214
5215
5216 /* Detect the presence of a floating point or integer zero constant,
5217 i.e. #0.0 or #0. */
5218
5219 static bfd_boolean
5220 parse_ifimm_zero (char **in)
5221 {
5222 int error_code;
5223
5224 if (!is_immediate_prefix (**in))
5225 {
5226 /* In unified syntax, all prefixes are optional. */
5227 if (!unified_syntax)
5228 return FALSE;
5229 }
5230 else
5231 ++*in;
5232
5233 /* Accept #0x0 as a synonym for #0. */
5234 if (strncmp (*in, "0x", 2) == 0)
5235 {
5236 int val;
5237 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5238 return FALSE;
5239 return TRUE;
5240 }
5241
5242 error_code = atof_generic (in, ".", EXP_CHARS,
5243 &generic_floating_point_number);
5244
5245 if (!error_code
5246 && generic_floating_point_number.sign == '+'
5247 && (generic_floating_point_number.low
5248 > generic_floating_point_number.leader))
5249 return TRUE;
5250
5251 return FALSE;
5252 }
5253
5254 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5255 0baBbbbbbc defgh000 00000000 00000000.
5256 The zero and minus-zero cases need special handling, since they can't be
5257 encoded in the "quarter-precision" float format, but can nonetheless be
5258 loaded as integer constants. */
5259
5260 static unsigned
5261 parse_qfloat_immediate (char **ccp, int *immed)
5262 {
5263 char *str = *ccp;
5264 char *fpnum;
5265 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5266 int found_fpchar = 0;
5267
5268 skip_past_char (&str, '#');
5269
5270 /* We must not accidentally parse an integer as a floating-point number. Make
5271 sure that the value we parse is not an integer by checking for special
5272 characters '.' or 'e'.
5273 FIXME: This is a horrible hack, but doing better is tricky because type
5274 information isn't in a very usable state at parse time. */
5275 fpnum = str;
5276 skip_whitespace (fpnum);
5277
5278 if (strncmp (fpnum, "0x", 2) == 0)
5279 return FAIL;
5280 else
5281 {
5282 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5283 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5284 {
5285 found_fpchar = 1;
5286 break;
5287 }
5288
5289 if (!found_fpchar)
5290 return FAIL;
5291 }
5292
5293 if ((str = atof_ieee (str, 's', words)) != NULL)
5294 {
5295 unsigned fpword = 0;
5296 int i;
5297
5298 /* Our FP word must be 32 bits (single-precision FP). */
5299 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5300 {
5301 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5302 fpword |= words[i];
5303 }
5304
5305 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5306 *immed = fpword;
5307 else
5308 return FAIL;
5309
5310 *ccp = str;
5311
5312 return SUCCESS;
5313 }
5314
5315 return FAIL;
5316 }
5317
5318 /* Shift operands. */
5319 enum shift_kind
5320 {
5321 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5322 };
5323
5324 struct asm_shift_name
5325 {
5326 const char *name;
5327 enum shift_kind kind;
5328 };
5329
5330 /* Third argument to parse_shift. */
5331 enum parse_shift_mode
5332 {
5333 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5334 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5335 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5336 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5337 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5338 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5339 };
5340
5341 /* Parse a <shift> specifier on an ARM data processing instruction.
5342 This has three forms:
5343
5344 (LSL|LSR|ASL|ASR|ROR) Rs
5345 (LSL|LSR|ASL|ASR|ROR) #imm
5346 RRX
5347
5348 Note that ASL is assimilated to LSL in the instruction encoding, and
5349 RRX to ROR #0 (which cannot be written as such). */
5350
5351 static int
5352 parse_shift (char **str, int i, enum parse_shift_mode mode)
5353 {
5354 const struct asm_shift_name *shift_name;
5355 enum shift_kind shift;
5356 char *s = *str;
5357 char *p = s;
5358 int reg;
5359
5360 for (p = *str; ISALPHA (*p); p++)
5361 ;
5362
5363 if (p == *str)
5364 {
5365 inst.error = _("shift expression expected");
5366 return FAIL;
5367 }
5368
5369 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5370 p - *str);
5371
5372 if (shift_name == NULL)
5373 {
5374 inst.error = _("shift expression expected");
5375 return FAIL;
5376 }
5377
5378 shift = shift_name->kind;
5379
5380 switch (mode)
5381 {
5382 case NO_SHIFT_RESTRICT:
5383 case SHIFT_IMMEDIATE:
5384 if (shift == SHIFT_UXTW)
5385 {
5386 inst.error = _("'UXTW' not allowed here");
5387 return FAIL;
5388 }
5389 break;
5390
5391 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5392 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5393 {
5394 inst.error = _("'LSL' or 'ASR' required");
5395 return FAIL;
5396 }
5397 break;
5398
5399 case SHIFT_LSL_IMMEDIATE:
5400 if (shift != SHIFT_LSL)
5401 {
5402 inst.error = _("'LSL' required");
5403 return FAIL;
5404 }
5405 break;
5406
5407 case SHIFT_ASR_IMMEDIATE:
5408 if (shift != SHIFT_ASR)
5409 {
5410 inst.error = _("'ASR' required");
5411 return FAIL;
5412 }
5413 break;
5414 case SHIFT_UXTW_IMMEDIATE:
5415 if (shift != SHIFT_UXTW)
5416 {
5417 inst.error = _("'UXTW' required");
5418 return FAIL;
5419 }
5420 break;
5421
5422 default: abort ();
5423 }
5424
5425 if (shift != SHIFT_RRX)
5426 {
5427 /* Whitespace can appear here if the next thing is a bare digit. */
5428 skip_whitespace (p);
5429
5430 if (mode == NO_SHIFT_RESTRICT
5431 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5432 {
5433 inst.operands[i].imm = reg;
5434 inst.operands[i].immisreg = 1;
5435 }
5436 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5437 return FAIL;
5438 }
5439 inst.operands[i].shift_kind = shift;
5440 inst.operands[i].shifted = 1;
5441 *str = p;
5442 return SUCCESS;
5443 }
5444
5445 /* Parse a <shifter_operand> for an ARM data processing instruction:
5446
5447 #<immediate>
5448 #<immediate>, <rotate>
5449 <Rm>
5450 <Rm>, <shift>
5451
5452 where <shift> is defined by parse_shift above, and <rotate> is a
5453 multiple of 2 between 0 and 30. Validation of immediate operands
5454 is deferred to md_apply_fix. */
5455
5456 static int
5457 parse_shifter_operand (char **str, int i)
5458 {
5459 int value;
5460 expressionS exp;
5461
5462 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5463 {
5464 inst.operands[i].reg = value;
5465 inst.operands[i].isreg = 1;
5466
5467 /* parse_shift will override this if appropriate */
5468 inst.relocs[0].exp.X_op = O_constant;
5469 inst.relocs[0].exp.X_add_number = 0;
5470
5471 if (skip_past_comma (str) == FAIL)
5472 return SUCCESS;
5473
5474 /* Shift operation on register. */
5475 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5476 }
5477
5478 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5479 return FAIL;
5480
5481 if (skip_past_comma (str) == SUCCESS)
5482 {
5483 /* #x, y -- ie explicit rotation by Y. */
5484 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5485 return FAIL;
5486
5487 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5488 {
5489 inst.error = _("constant expression expected");
5490 return FAIL;
5491 }
5492
5493 value = exp.X_add_number;
5494 if (value < 0 || value > 30 || value % 2 != 0)
5495 {
5496 inst.error = _("invalid rotation");
5497 return FAIL;
5498 }
5499 if (inst.relocs[0].exp.X_add_number < 0
5500 || inst.relocs[0].exp.X_add_number > 255)
5501 {
5502 inst.error = _("invalid constant");
5503 return FAIL;
5504 }
5505
5506 /* Encode as specified. */
5507 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5508 return SUCCESS;
5509 }
5510
5511 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5512 inst.relocs[0].pc_rel = 0;
5513 return SUCCESS;
5514 }
5515
5516 /* Group relocation information. Each entry in the table contains the
5517 textual name of the relocation as may appear in assembler source
5518 and must end with a colon.
5519 Along with this textual name are the relocation codes to be used if
5520 the corresponding instruction is an ALU instruction (ADD or SUB only),
5521 an LDR, an LDRS, or an LDC. */
5522
5523 struct group_reloc_table_entry
5524 {
5525 const char *name;
5526 int alu_code;
5527 int ldr_code;
5528 int ldrs_code;
5529 int ldc_code;
5530 };
5531
5532 typedef enum
5533 {
5534 /* Varieties of non-ALU group relocation. */
5535
5536 GROUP_LDR,
5537 GROUP_LDRS,
5538 GROUP_LDC,
5539 GROUP_MVE
5540 } group_reloc_type;
5541
5542 static struct group_reloc_table_entry group_reloc_table[] =
5543 { /* Program counter relative: */
5544 { "pc_g0_nc",
5545 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5546 0, /* LDR */
5547 0, /* LDRS */
5548 0 }, /* LDC */
5549 { "pc_g0",
5550 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5551 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5552 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5553 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5554 { "pc_g1_nc",
5555 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5556 0, /* LDR */
5557 0, /* LDRS */
5558 0 }, /* LDC */
5559 { "pc_g1",
5560 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5561 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5562 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5563 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5564 { "pc_g2",
5565 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5566 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5567 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5568 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5569 /* Section base relative */
5570 { "sb_g0_nc",
5571 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5572 0, /* LDR */
5573 0, /* LDRS */
5574 0 }, /* LDC */
5575 { "sb_g0",
5576 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5577 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5578 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5579 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5580 { "sb_g1_nc",
5581 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5582 0, /* LDR */
5583 0, /* LDRS */
5584 0 }, /* LDC */
5585 { "sb_g1",
5586 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5587 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5588 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5589 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5590 { "sb_g2",
5591 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5592 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5593 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5594 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5595 /* Absolute thumb alu relocations. */
5596 { "lower0_7",
5597 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5598 0, /* LDR. */
5599 0, /* LDRS. */
5600 0 }, /* LDC. */
5601 { "lower8_15",
5602 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5603 0, /* LDR. */
5604 0, /* LDRS. */
5605 0 }, /* LDC. */
5606 { "upper0_7",
5607 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5608 0, /* LDR. */
5609 0, /* LDRS. */
5610 0 }, /* LDC. */
5611 { "upper8_15",
5612 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5613 0, /* LDR. */
5614 0, /* LDRS. */
5615 0 } }; /* LDC. */
5616
5617 /* Given the address of a pointer pointing to the textual name of a group
5618 relocation as may appear in assembler source, attempt to find its details
5619 in group_reloc_table. The pointer will be updated to the character after
5620 the trailing colon. On failure, FAIL will be returned; SUCCESS
5621 otherwise. On success, *entry will be updated to point at the relevant
5622 group_reloc_table entry. */
5623
5624 static int
5625 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5626 {
5627 unsigned int i;
5628 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5629 {
5630 int length = strlen (group_reloc_table[i].name);
5631
5632 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5633 && (*str)[length] == ':')
5634 {
5635 *out = &group_reloc_table[i];
5636 *str += (length + 1);
5637 return SUCCESS;
5638 }
5639 }
5640
5641 return FAIL;
5642 }
5643
5644 /* Parse a <shifter_operand> for an ARM data processing instruction
5645 (as for parse_shifter_operand) where group relocations are allowed:
5646
5647 #<immediate>
5648 #<immediate>, <rotate>
5649 #:<group_reloc>:<expression>
5650 <Rm>
5651 <Rm>, <shift>
5652
5653 where <group_reloc> is one of the strings defined in group_reloc_table.
5654 The hashes are optional.
5655
5656 Everything else is as for parse_shifter_operand. */
5657
5658 static parse_operand_result
5659 parse_shifter_operand_group_reloc (char **str, int i)
5660 {
5661 /* Determine if we have the sequence of characters #: or just :
5662 coming next. If we do, then we check for a group relocation.
5663 If we don't, punt the whole lot to parse_shifter_operand. */
5664
5665 if (((*str)[0] == '#' && (*str)[1] == ':')
5666 || (*str)[0] == ':')
5667 {
5668 struct group_reloc_table_entry *entry;
5669
5670 if ((*str)[0] == '#')
5671 (*str) += 2;
5672 else
5673 (*str)++;
5674
5675 /* Try to parse a group relocation. Anything else is an error. */
5676 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5677 {
5678 inst.error = _("unknown group relocation");
5679 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5680 }
5681
5682 /* We now have the group relocation table entry corresponding to
5683 the name in the assembler source. Next, we parse the expression. */
5684 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5685 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5686
5687 /* Record the relocation type (always the ALU variant here). */
5688 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5689 gas_assert (inst.relocs[0].type != 0);
5690
5691 return PARSE_OPERAND_SUCCESS;
5692 }
5693 else
5694 return parse_shifter_operand (str, i) == SUCCESS
5695 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5696
5697 /* Never reached. */
5698 }
5699
5700 /* Parse a Neon alignment expression. Information is written to
5701 inst.operands[i]. We assume the initial ':' has been skipped.
5702
5703 align .imm = align << 8, .immisalign=1, .preind=0 */
5704 static parse_operand_result
5705 parse_neon_alignment (char **str, int i)
5706 {
5707 char *p = *str;
5708 expressionS exp;
5709
5710 my_get_expression (&exp, &p, GE_NO_PREFIX);
5711
5712 if (exp.X_op != O_constant)
5713 {
5714 inst.error = _("alignment must be constant");
5715 return PARSE_OPERAND_FAIL;
5716 }
5717
5718 inst.operands[i].imm = exp.X_add_number << 8;
5719 inst.operands[i].immisalign = 1;
5720 /* Alignments are not pre-indexes. */
5721 inst.operands[i].preind = 0;
5722
5723 *str = p;
5724 return PARSE_OPERAND_SUCCESS;
5725 }
5726
5727 /* Parse all forms of an ARM address expression. Information is written
5728 to inst.operands[i] and/or inst.relocs[0].
5729
5730 Preindexed addressing (.preind=1):
5731
5732 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5733 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5734 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5735 .shift_kind=shift .relocs[0].exp=shift_imm
5736
5737 These three may have a trailing ! which causes .writeback to be set also.
5738
5739 Postindexed addressing (.postind=1, .writeback=1):
5740
5741 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5742 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5743 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5744 .shift_kind=shift .relocs[0].exp=shift_imm
5745
5746 Unindexed addressing (.preind=0, .postind=0):
5747
5748 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749
5750 Other:
5751
5752 [Rn]{!} shorthand for [Rn,#0]{!}
5753 =immediate .isreg=0 .relocs[0].exp=immediate
5754 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5755
5756 It is the caller's responsibility to check for addressing modes not
5757 supported by the instruction, and to set inst.relocs[0].type. */
5758
5759 static parse_operand_result
5760 parse_address_main (char **str, int i, int group_relocations,
5761 group_reloc_type group_type)
5762 {
5763 char *p = *str;
5764 int reg;
5765
5766 if (skip_past_char (&p, '[') == FAIL)
5767 {
5768 if (skip_past_char (&p, '=') == FAIL)
5769 {
5770 /* Bare address - translate to PC-relative offset. */
5771 inst.relocs[0].pc_rel = 1;
5772 inst.operands[i].reg = REG_PC;
5773 inst.operands[i].isreg = 1;
5774 inst.operands[i].preind = 1;
5775
5776 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5777 return PARSE_OPERAND_FAIL;
5778 }
5779 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5780 /*allow_symbol_p=*/TRUE))
5781 return PARSE_OPERAND_FAIL;
5782
5783 *str = p;
5784 return PARSE_OPERAND_SUCCESS;
5785 }
5786
5787 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5788 skip_whitespace (p);
5789
5790 if (group_type == GROUP_MVE)
5791 {
5792 enum arm_reg_type rtype = REG_TYPE_MQ;
5793 struct neon_type_el et;
5794 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5795 {
5796 inst.operands[i].isquad = 1;
5797 }
5798 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5799 {
5800 inst.error = BAD_ADDR_MODE;
5801 return PARSE_OPERAND_FAIL;
5802 }
5803 }
5804 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5805 {
5806 if (group_type == GROUP_MVE)
5807 inst.error = BAD_ADDR_MODE;
5808 else
5809 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5810 return PARSE_OPERAND_FAIL;
5811 }
5812 inst.operands[i].reg = reg;
5813 inst.operands[i].isreg = 1;
5814
5815 if (skip_past_comma (&p) == SUCCESS)
5816 {
5817 inst.operands[i].preind = 1;
5818
5819 if (*p == '+') p++;
5820 else if (*p == '-') p++, inst.operands[i].negative = 1;
5821
5822 enum arm_reg_type rtype = REG_TYPE_MQ;
5823 struct neon_type_el et;
5824 if (group_type == GROUP_MVE
5825 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5826 {
5827 inst.operands[i].immisreg = 2;
5828 inst.operands[i].imm = reg;
5829
5830 if (skip_past_comma (&p) == SUCCESS)
5831 {
5832 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5833 {
5834 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5835 inst.relocs[0].exp.X_add_number = 0;
5836 }
5837 else
5838 return PARSE_OPERAND_FAIL;
5839 }
5840 }
5841 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5842 {
5843 inst.operands[i].imm = reg;
5844 inst.operands[i].immisreg = 1;
5845
5846 if (skip_past_comma (&p) == SUCCESS)
5847 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5848 return PARSE_OPERAND_FAIL;
5849 }
5850 else if (skip_past_char (&p, ':') == SUCCESS)
5851 {
5852 /* FIXME: '@' should be used here, but it's filtered out by generic
5853 code before we get to see it here. This may be subject to
5854 change. */
5855 parse_operand_result result = parse_neon_alignment (&p, i);
5856
5857 if (result != PARSE_OPERAND_SUCCESS)
5858 return result;
5859 }
5860 else
5861 {
5862 if (inst.operands[i].negative)
5863 {
5864 inst.operands[i].negative = 0;
5865 p--;
5866 }
5867
5868 if (group_relocations
5869 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5870 {
5871 struct group_reloc_table_entry *entry;
5872
5873 /* Skip over the #: or : sequence. */
5874 if (*p == '#')
5875 p += 2;
5876 else
5877 p++;
5878
5879 /* Try to parse a group relocation. Anything else is an
5880 error. */
5881 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5882 {
5883 inst.error = _("unknown group relocation");
5884 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5885 }
5886
5887 /* We now have the group relocation table entry corresponding to
5888 the name in the assembler source. Next, we parse the
5889 expression. */
5890 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5891 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5892
5893 /* Record the relocation type. */
5894 switch (group_type)
5895 {
5896 case GROUP_LDR:
5897 inst.relocs[0].type
5898 = (bfd_reloc_code_real_type) entry->ldr_code;
5899 break;
5900
5901 case GROUP_LDRS:
5902 inst.relocs[0].type
5903 = (bfd_reloc_code_real_type) entry->ldrs_code;
5904 break;
5905
5906 case GROUP_LDC:
5907 inst.relocs[0].type
5908 = (bfd_reloc_code_real_type) entry->ldc_code;
5909 break;
5910
5911 default:
5912 gas_assert (0);
5913 }
5914
5915 if (inst.relocs[0].type == 0)
5916 {
5917 inst.error = _("this group relocation is not allowed on this instruction");
5918 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5919 }
5920 }
5921 else
5922 {
5923 char *q = p;
5924
5925 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5926 return PARSE_OPERAND_FAIL;
5927 /* If the offset is 0, find out if it's a +0 or -0. */
5928 if (inst.relocs[0].exp.X_op == O_constant
5929 && inst.relocs[0].exp.X_add_number == 0)
5930 {
5931 skip_whitespace (q);
5932 if (*q == '#')
5933 {
5934 q++;
5935 skip_whitespace (q);
5936 }
5937 if (*q == '-')
5938 inst.operands[i].negative = 1;
5939 }
5940 }
5941 }
5942 }
5943 else if (skip_past_char (&p, ':') == SUCCESS)
5944 {
5945 /* FIXME: '@' should be used here, but it's filtered out by generic code
5946 before we get to see it here. This may be subject to change. */
5947 parse_operand_result result = parse_neon_alignment (&p, i);
5948
5949 if (result != PARSE_OPERAND_SUCCESS)
5950 return result;
5951 }
5952
5953 if (skip_past_char (&p, ']') == FAIL)
5954 {
5955 inst.error = _("']' expected");
5956 return PARSE_OPERAND_FAIL;
5957 }
5958
5959 if (skip_past_char (&p, '!') == SUCCESS)
5960 inst.operands[i].writeback = 1;
5961
5962 else if (skip_past_comma (&p) == SUCCESS)
5963 {
5964 if (skip_past_char (&p, '{') == SUCCESS)
5965 {
5966 /* [Rn], {expr} - unindexed, with option */
5967 if (parse_immediate (&p, &inst.operands[i].imm,
5968 0, 255, TRUE) == FAIL)
5969 return PARSE_OPERAND_FAIL;
5970
5971 if (skip_past_char (&p, '}') == FAIL)
5972 {
5973 inst.error = _("'}' expected at end of 'option' field");
5974 return PARSE_OPERAND_FAIL;
5975 }
5976 if (inst.operands[i].preind)
5977 {
5978 inst.error = _("cannot combine index with option");
5979 return PARSE_OPERAND_FAIL;
5980 }
5981 *str = p;
5982 return PARSE_OPERAND_SUCCESS;
5983 }
5984 else
5985 {
5986 inst.operands[i].postind = 1;
5987 inst.operands[i].writeback = 1;
5988
5989 if (inst.operands[i].preind)
5990 {
5991 inst.error = _("cannot combine pre- and post-indexing");
5992 return PARSE_OPERAND_FAIL;
5993 }
5994
5995 if (*p == '+') p++;
5996 else if (*p == '-') p++, inst.operands[i].negative = 1;
5997
5998 enum arm_reg_type rtype = REG_TYPE_MQ;
5999 struct neon_type_el et;
6000 if (group_type == GROUP_MVE
6001 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6002 {
6003 inst.operands[i].immisreg = 2;
6004 inst.operands[i].imm = reg;
6005 }
6006 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6007 {
6008 /* We might be using the immediate for alignment already. If we
6009 are, OR the register number into the low-order bits. */
6010 if (inst.operands[i].immisalign)
6011 inst.operands[i].imm |= reg;
6012 else
6013 inst.operands[i].imm = reg;
6014 inst.operands[i].immisreg = 1;
6015
6016 if (skip_past_comma (&p) == SUCCESS)
6017 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6018 return PARSE_OPERAND_FAIL;
6019 }
6020 else
6021 {
6022 char *q = p;
6023
6024 if (inst.operands[i].negative)
6025 {
6026 inst.operands[i].negative = 0;
6027 p--;
6028 }
6029 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6030 return PARSE_OPERAND_FAIL;
6031 /* If the offset is 0, find out if it's a +0 or -0. */
6032 if (inst.relocs[0].exp.X_op == O_constant
6033 && inst.relocs[0].exp.X_add_number == 0)
6034 {
6035 skip_whitespace (q);
6036 if (*q == '#')
6037 {
6038 q++;
6039 skip_whitespace (q);
6040 }
6041 if (*q == '-')
6042 inst.operands[i].negative = 1;
6043 }
6044 }
6045 }
6046 }
6047
6048 /* If at this point neither .preind nor .postind is set, we have a
6049 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6050 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6051 {
6052 inst.operands[i].preind = 1;
6053 inst.relocs[0].exp.X_op = O_constant;
6054 inst.relocs[0].exp.X_add_number = 0;
6055 }
6056 *str = p;
6057 return PARSE_OPERAND_SUCCESS;
6058 }
6059
6060 static int
6061 parse_address (char **str, int i)
6062 {
6063 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6064 ? SUCCESS : FAIL;
6065 }
6066
6067 static parse_operand_result
6068 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6069 {
6070 return parse_address_main (str, i, 1, type);
6071 }
6072
6073 /* Parse an operand for a MOVW or MOVT instruction. */
6074 static int
6075 parse_half (char **str)
6076 {
6077 char * p;
6078
6079 p = *str;
6080 skip_past_char (&p, '#');
6081 if (strncasecmp (p, ":lower16:", 9) == 0)
6082 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6083 else if (strncasecmp (p, ":upper16:", 9) == 0)
6084 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6085
6086 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6087 {
6088 p += 9;
6089 skip_whitespace (p);
6090 }
6091
6092 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6093 return FAIL;
6094
6095 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6096 {
6097 if (inst.relocs[0].exp.X_op != O_constant)
6098 {
6099 inst.error = _("constant expression expected");
6100 return FAIL;
6101 }
6102 if (inst.relocs[0].exp.X_add_number < 0
6103 || inst.relocs[0].exp.X_add_number > 0xffff)
6104 {
6105 inst.error = _("immediate value out of range");
6106 return FAIL;
6107 }
6108 }
6109 *str = p;
6110 return SUCCESS;
6111 }
6112
6113 /* Miscellaneous. */
6114
6115 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6116 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6117 static int
6118 parse_psr (char **str, bfd_boolean lhs)
6119 {
6120 char *p;
6121 unsigned long psr_field;
6122 const struct asm_psr *psr;
6123 char *start;
6124 bfd_boolean is_apsr = FALSE;
6125 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6126
6127 /* PR gas/12698: If the user has specified -march=all then m_profile will
6128 be TRUE, but we want to ignore it in this case as we are building for any
6129 CPU type, including non-m variants. */
6130 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6131 m_profile = FALSE;
6132
6133 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6134 feature for ease of use and backwards compatibility. */
6135 p = *str;
6136 if (strncasecmp (p, "SPSR", 4) == 0)
6137 {
6138 if (m_profile)
6139 goto unsupported_psr;
6140
6141 psr_field = SPSR_BIT;
6142 }
6143 else if (strncasecmp (p, "CPSR", 4) == 0)
6144 {
6145 if (m_profile)
6146 goto unsupported_psr;
6147
6148 psr_field = 0;
6149 }
6150 else if (strncasecmp (p, "APSR", 4) == 0)
6151 {
6152 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6153 and ARMv7-R architecture CPUs. */
6154 is_apsr = TRUE;
6155 psr_field = 0;
6156 }
6157 else if (m_profile)
6158 {
6159 start = p;
6160 do
6161 p++;
6162 while (ISALNUM (*p) || *p == '_');
6163
6164 if (strncasecmp (start, "iapsr", 5) == 0
6165 || strncasecmp (start, "eapsr", 5) == 0
6166 || strncasecmp (start, "xpsr", 4) == 0
6167 || strncasecmp (start, "psr", 3) == 0)
6168 p = start + strcspn (start, "rR") + 1;
6169
6170 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6171 p - start);
6172
6173 if (!psr)
6174 return FAIL;
6175
6176 /* If APSR is being written, a bitfield may be specified. Note that
6177 APSR itself is handled above. */
6178 if (psr->field <= 3)
6179 {
6180 psr_field = psr->field;
6181 is_apsr = TRUE;
6182 goto check_suffix;
6183 }
6184
6185 *str = p;
6186 /* M-profile MSR instructions have the mask field set to "10", except
6187 *PSR variants which modify APSR, which may use a different mask (and
6188 have been handled already). Do that by setting the PSR_f field
6189 here. */
6190 return psr->field | (lhs ? PSR_f : 0);
6191 }
6192 else
6193 goto unsupported_psr;
6194
6195 p += 4;
6196 check_suffix:
6197 if (*p == '_')
6198 {
6199 /* A suffix follows. */
6200 p++;
6201 start = p;
6202
6203 do
6204 p++;
6205 while (ISALNUM (*p) || *p == '_');
6206
6207 if (is_apsr)
6208 {
6209 /* APSR uses a notation for bits, rather than fields. */
6210 unsigned int nzcvq_bits = 0;
6211 unsigned int g_bit = 0;
6212 char *bit;
6213
6214 for (bit = start; bit != p; bit++)
6215 {
6216 switch (TOLOWER (*bit))
6217 {
6218 case 'n':
6219 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6220 break;
6221
6222 case 'z':
6223 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6224 break;
6225
6226 case 'c':
6227 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6228 break;
6229
6230 case 'v':
6231 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6232 break;
6233
6234 case 'q':
6235 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6236 break;
6237
6238 case 'g':
6239 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6240 break;
6241
6242 default:
6243 inst.error = _("unexpected bit specified after APSR");
6244 return FAIL;
6245 }
6246 }
6247
6248 if (nzcvq_bits == 0x1f)
6249 psr_field |= PSR_f;
6250
6251 if (g_bit == 0x1)
6252 {
6253 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6254 {
6255 inst.error = _("selected processor does not "
6256 "support DSP extension");
6257 return FAIL;
6258 }
6259
6260 psr_field |= PSR_s;
6261 }
6262
6263 if ((nzcvq_bits & 0x20) != 0
6264 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6265 || (g_bit & 0x2) != 0)
6266 {
6267 inst.error = _("bad bitmask specified after APSR");
6268 return FAIL;
6269 }
6270 }
6271 else
6272 {
6273 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6274 p - start);
6275 if (!psr)
6276 goto error;
6277
6278 psr_field |= psr->field;
6279 }
6280 }
6281 else
6282 {
6283 if (ISALNUM (*p))
6284 goto error; /* Garbage after "[CS]PSR". */
6285
6286 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6287 is deprecated, but allow it anyway. */
6288 if (is_apsr && lhs)
6289 {
6290 psr_field |= PSR_f;
6291 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6292 "deprecated"));
6293 }
6294 else if (!m_profile)
6295 /* These bits are never right for M-profile devices: don't set them
6296 (only code paths which read/write APSR reach here). */
6297 psr_field |= (PSR_c | PSR_f);
6298 }
6299 *str = p;
6300 return psr_field;
6301
6302 unsupported_psr:
6303 inst.error = _("selected processor does not support requested special "
6304 "purpose register");
6305 return FAIL;
6306
6307 error:
6308 inst.error = _("flag for {c}psr instruction expected");
6309 return FAIL;
6310 }
6311
6312 static int
6313 parse_sys_vldr_vstr (char **str)
6314 {
6315 unsigned i;
6316 int val = FAIL;
6317 struct {
6318 const char *name;
6319 int regl;
6320 int regh;
6321 } sysregs[] = {
6322 {"FPSCR", 0x1, 0x0},
6323 {"FPSCR_nzcvqc", 0x2, 0x0},
6324 {"VPR", 0x4, 0x1},
6325 {"P0", 0x5, 0x1},
6326 {"FPCXTNS", 0x6, 0x1},
6327 {"FPCXTS", 0x7, 0x1}
6328 };
6329 char *op_end = strchr (*str, ',');
6330 size_t op_strlen = op_end - *str;
6331
6332 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6333 {
6334 if (!strncmp (*str, sysregs[i].name, op_strlen))
6335 {
6336 val = sysregs[i].regl | (sysregs[i].regh << 3);
6337 *str = op_end;
6338 break;
6339 }
6340 }
6341
6342 return val;
6343 }
6344
6345 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6346 value suitable for splatting into the AIF field of the instruction. */
6347
6348 static int
6349 parse_cps_flags (char **str)
6350 {
6351 int val = 0;
6352 int saw_a_flag = 0;
6353 char *s = *str;
6354
6355 for (;;)
6356 switch (*s++)
6357 {
6358 case '\0': case ',':
6359 goto done;
6360
6361 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6362 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6363 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6364
6365 default:
6366 inst.error = _("unrecognized CPS flag");
6367 return FAIL;
6368 }
6369
6370 done:
6371 if (saw_a_flag == 0)
6372 {
6373 inst.error = _("missing CPS flags");
6374 return FAIL;
6375 }
6376
6377 *str = s - 1;
6378 return val;
6379 }
6380
6381 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6382 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6383
6384 static int
6385 parse_endian_specifier (char **str)
6386 {
6387 int little_endian;
6388 char *s = *str;
6389
6390 if (strncasecmp (s, "BE", 2))
6391 little_endian = 0;
6392 else if (strncasecmp (s, "LE", 2))
6393 little_endian = 1;
6394 else
6395 {
6396 inst.error = _("valid endian specifiers are be or le");
6397 return FAIL;
6398 }
6399
6400 if (ISALNUM (s[2]) || s[2] == '_')
6401 {
6402 inst.error = _("valid endian specifiers are be or le");
6403 return FAIL;
6404 }
6405
6406 *str = s + 2;
6407 return little_endian;
6408 }
6409
6410 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6411 value suitable for poking into the rotate field of an sxt or sxta
6412 instruction, or FAIL on error. */
6413
6414 static int
6415 parse_ror (char **str)
6416 {
6417 int rot;
6418 char *s = *str;
6419
6420 if (strncasecmp (s, "ROR", 3) == 0)
6421 s += 3;
6422 else
6423 {
6424 inst.error = _("missing rotation field after comma");
6425 return FAIL;
6426 }
6427
6428 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6429 return FAIL;
6430
6431 switch (rot)
6432 {
6433 case 0: *str = s; return 0x0;
6434 case 8: *str = s; return 0x1;
6435 case 16: *str = s; return 0x2;
6436 case 24: *str = s; return 0x3;
6437
6438 default:
6439 inst.error = _("rotation can only be 0, 8, 16, or 24");
6440 return FAIL;
6441 }
6442 }
6443
6444 /* Parse a conditional code (from conds[] below). The value returned is in the
6445 range 0 .. 14, or FAIL. */
6446 static int
6447 parse_cond (char **str)
6448 {
6449 char *q;
6450 const struct asm_cond *c;
6451 int n;
6452 /* Condition codes are always 2 characters, so matching up to
6453 3 characters is sufficient. */
6454 char cond[3];
6455
6456 q = *str;
6457 n = 0;
6458 while (ISALPHA (*q) && n < 3)
6459 {
6460 cond[n] = TOLOWER (*q);
6461 q++;
6462 n++;
6463 }
6464
6465 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6466 if (!c)
6467 {
6468 inst.error = _("condition required");
6469 return FAIL;
6470 }
6471
6472 *str = q;
6473 return c->value;
6474 }
6475
6476 /* Parse an option for a barrier instruction. Returns the encoding for the
6477 option, or FAIL. */
6478 static int
6479 parse_barrier (char **str)
6480 {
6481 char *p, *q;
6482 const struct asm_barrier_opt *o;
6483
6484 p = q = *str;
6485 while (ISALPHA (*q))
6486 q++;
6487
6488 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6489 q - p);
6490 if (!o)
6491 return FAIL;
6492
6493 if (!mark_feature_used (&o->arch))
6494 return FAIL;
6495
6496 *str = q;
6497 return o->value;
6498 }
6499
6500 /* Parse the operands of a table branch instruction. Similar to a memory
6501 operand. */
6502 static int
6503 parse_tb (char **str)
6504 {
6505 char * p = *str;
6506 int reg;
6507
6508 if (skip_past_char (&p, '[') == FAIL)
6509 {
6510 inst.error = _("'[' expected");
6511 return FAIL;
6512 }
6513
6514 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6515 {
6516 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6517 return FAIL;
6518 }
6519 inst.operands[0].reg = reg;
6520
6521 if (skip_past_comma (&p) == FAIL)
6522 {
6523 inst.error = _("',' expected");
6524 return FAIL;
6525 }
6526
6527 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6528 {
6529 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6530 return FAIL;
6531 }
6532 inst.operands[0].imm = reg;
6533
6534 if (skip_past_comma (&p) == SUCCESS)
6535 {
6536 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6537 return FAIL;
6538 if (inst.relocs[0].exp.X_add_number != 1)
6539 {
6540 inst.error = _("invalid shift");
6541 return FAIL;
6542 }
6543 inst.operands[0].shifted = 1;
6544 }
6545
6546 if (skip_past_char (&p, ']') == FAIL)
6547 {
6548 inst.error = _("']' expected");
6549 return FAIL;
6550 }
6551 *str = p;
6552 return SUCCESS;
6553 }
6554
6555 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6556 information on the types the operands can take and how they are encoded.
6557 Up to four operands may be read; this function handles setting the
6558 ".present" field for each read operand itself.
6559 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6560 else returns FAIL. */
6561
6562 static int
6563 parse_neon_mov (char **str, int *which_operand)
6564 {
6565 int i = *which_operand, val;
6566 enum arm_reg_type rtype;
6567 char *ptr = *str;
6568 struct neon_type_el optype;
6569
6570 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6571 {
6572 /* Cases 17 or 19. */
6573 inst.operands[i].reg = val;
6574 inst.operands[i].isvec = 1;
6575 inst.operands[i].isscalar = 2;
6576 inst.operands[i].vectype = optype;
6577 inst.operands[i++].present = 1;
6578
6579 if (skip_past_comma (&ptr) == FAIL)
6580 goto wanted_comma;
6581
6582 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6583 {
6584 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6585 inst.operands[i].reg = val;
6586 inst.operands[i].isreg = 1;
6587 inst.operands[i].present = 1;
6588 }
6589 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6590 {
6591 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6592 inst.operands[i].reg = val;
6593 inst.operands[i].isvec = 1;
6594 inst.operands[i].isscalar = 2;
6595 inst.operands[i].vectype = optype;
6596 inst.operands[i++].present = 1;
6597
6598 if (skip_past_comma (&ptr) == FAIL)
6599 goto wanted_comma;
6600
6601 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6602 goto wanted_arm;
6603
6604 inst.operands[i].reg = val;
6605 inst.operands[i].isreg = 1;
6606 inst.operands[i++].present = 1;
6607
6608 if (skip_past_comma (&ptr) == FAIL)
6609 goto wanted_comma;
6610
6611 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6612 goto wanted_arm;
6613
6614 inst.operands[i].reg = val;
6615 inst.operands[i].isreg = 1;
6616 inst.operands[i].present = 1;
6617 }
6618 else
6619 {
6620 first_error (_("expected ARM or MVE vector register"));
6621 return FAIL;
6622 }
6623 }
6624 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6625 {
6626 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6627 inst.operands[i].reg = val;
6628 inst.operands[i].isscalar = 1;
6629 inst.operands[i].vectype = optype;
6630 inst.operands[i++].present = 1;
6631
6632 if (skip_past_comma (&ptr) == FAIL)
6633 goto wanted_comma;
6634
6635 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6636 goto wanted_arm;
6637
6638 inst.operands[i].reg = val;
6639 inst.operands[i].isreg = 1;
6640 inst.operands[i].present = 1;
6641 }
6642 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6643 != FAIL)
6644 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6645 != FAIL))
6646 {
6647 /* Cases 0, 1, 2, 3, 5 (D only). */
6648 if (skip_past_comma (&ptr) == FAIL)
6649 goto wanted_comma;
6650
6651 inst.operands[i].reg = val;
6652 inst.operands[i].isreg = 1;
6653 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6654 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6655 inst.operands[i].isvec = 1;
6656 inst.operands[i].vectype = optype;
6657 inst.operands[i++].present = 1;
6658
6659 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6660 {
6661 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6662 Case 13: VMOV <Sd>, <Rm> */
6663 inst.operands[i].reg = val;
6664 inst.operands[i].isreg = 1;
6665 inst.operands[i].present = 1;
6666
6667 if (rtype == REG_TYPE_NQ)
6668 {
6669 first_error (_("can't use Neon quad register here"));
6670 return FAIL;
6671 }
6672 else if (rtype != REG_TYPE_VFS)
6673 {
6674 i++;
6675 if (skip_past_comma (&ptr) == FAIL)
6676 goto wanted_comma;
6677 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6678 goto wanted_arm;
6679 inst.operands[i].reg = val;
6680 inst.operands[i].isreg = 1;
6681 inst.operands[i].present = 1;
6682 }
6683 }
6684 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6685 &optype)) != FAIL)
6686 {
6687 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6688 Case 1: VMOV<c><q> <Dd>, <Dm>
6689 Case 8: VMOV.F32 <Sd>, <Sm>
6690 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6691
6692 inst.operands[i].reg = val;
6693 inst.operands[i].isreg = 1;
6694 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6695 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6696 inst.operands[i].isvec = 1;
6697 inst.operands[i].vectype = optype;
6698 inst.operands[i].present = 1;
6699
6700 if (skip_past_comma (&ptr) == SUCCESS)
6701 {
6702 /* Case 15. */
6703 i++;
6704
6705 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6706 goto wanted_arm;
6707
6708 inst.operands[i].reg = val;
6709 inst.operands[i].isreg = 1;
6710 inst.operands[i++].present = 1;
6711
6712 if (skip_past_comma (&ptr) == FAIL)
6713 goto wanted_comma;
6714
6715 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6716 goto wanted_arm;
6717
6718 inst.operands[i].reg = val;
6719 inst.operands[i].isreg = 1;
6720 inst.operands[i].present = 1;
6721 }
6722 }
6723 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6724 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6725 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6726 Case 10: VMOV.F32 <Sd>, #<imm>
6727 Case 11: VMOV.F64 <Dd>, #<imm> */
6728 inst.operands[i].immisfloat = 1;
6729 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6730 == SUCCESS)
6731 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6732 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 ;
6734 else
6735 {
6736 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 return FAIL;
6738 }
6739 }
6740 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6741 {
6742 /* Cases 6, 7, 16, 18. */
6743 inst.operands[i].reg = val;
6744 inst.operands[i].isreg = 1;
6745 inst.operands[i++].present = 1;
6746
6747 if (skip_past_comma (&ptr) == FAIL)
6748 goto wanted_comma;
6749
6750 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6751 {
6752 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6753 inst.operands[i].reg = val;
6754 inst.operands[i].isscalar = 2;
6755 inst.operands[i].present = 1;
6756 inst.operands[i].vectype = optype;
6757 }
6758 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6759 {
6760 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6761 inst.operands[i].reg = val;
6762 inst.operands[i].isscalar = 1;
6763 inst.operands[i].present = 1;
6764 inst.operands[i].vectype = optype;
6765 }
6766 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6767 {
6768 inst.operands[i].reg = val;
6769 inst.operands[i].isreg = 1;
6770 inst.operands[i++].present = 1;
6771
6772 if (skip_past_comma (&ptr) == FAIL)
6773 goto wanted_comma;
6774
6775 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6776 != FAIL)
6777 {
6778 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6779
6780 inst.operands[i].reg = val;
6781 inst.operands[i].isreg = 1;
6782 inst.operands[i].isvec = 1;
6783 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6784 inst.operands[i].vectype = optype;
6785 inst.operands[i].present = 1;
6786
6787 if (rtype == REG_TYPE_VFS)
6788 {
6789 /* Case 14. */
6790 i++;
6791 if (skip_past_comma (&ptr) == FAIL)
6792 goto wanted_comma;
6793 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6794 &optype)) == FAIL)
6795 {
6796 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6797 return FAIL;
6798 }
6799 inst.operands[i].reg = val;
6800 inst.operands[i].isreg = 1;
6801 inst.operands[i].isvec = 1;
6802 inst.operands[i].issingle = 1;
6803 inst.operands[i].vectype = optype;
6804 inst.operands[i].present = 1;
6805 }
6806 }
6807 else
6808 {
6809 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6810 != FAIL)
6811 {
6812 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6813 inst.operands[i].reg = val;
6814 inst.operands[i].isvec = 1;
6815 inst.operands[i].isscalar = 2;
6816 inst.operands[i].vectype = optype;
6817 inst.operands[i++].present = 1;
6818
6819 if (skip_past_comma (&ptr) == FAIL)
6820 goto wanted_comma;
6821
6822 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6823 == FAIL)
6824 {
6825 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6826 return FAIL;
6827 }
6828 inst.operands[i].reg = val;
6829 inst.operands[i].isvec = 1;
6830 inst.operands[i].isscalar = 2;
6831 inst.operands[i].vectype = optype;
6832 inst.operands[i].present = 1;
6833 }
6834 else
6835 {
6836 first_error (_("VFP single, double or MVE vector register"
6837 " expected"));
6838 return FAIL;
6839 }
6840 }
6841 }
6842 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6843 != FAIL)
6844 {
6845 /* Case 13. */
6846 inst.operands[i].reg = val;
6847 inst.operands[i].isreg = 1;
6848 inst.operands[i].isvec = 1;
6849 inst.operands[i].issingle = 1;
6850 inst.operands[i].vectype = optype;
6851 inst.operands[i].present = 1;
6852 }
6853 }
6854 else
6855 {
6856 first_error (_("parse error"));
6857 return FAIL;
6858 }
6859
6860 /* Successfully parsed the operands. Update args. */
6861 *which_operand = i;
6862 *str = ptr;
6863 return SUCCESS;
6864
6865 wanted_comma:
6866 first_error (_("expected comma"));
6867 return FAIL;
6868
6869 wanted_arm:
6870 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6871 return FAIL;
6872 }
6873
6874 /* Use this macro when the operand constraints are different
6875 for ARM and THUMB (e.g. ldrd). */
6876 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6877 ((arm_operand) | ((thumb_operand) << 16))
6878
6879 /* Matcher codes for parse_operands. */
6880 enum operand_parse_code
6881 {
6882 OP_stop, /* end of line */
6883
6884 OP_RR, /* ARM register */
6885 OP_RRnpc, /* ARM register, not r15 */
6886 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6887 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6888 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6889 optional trailing ! */
6890 OP_RRw, /* ARM register, not r15, optional trailing ! */
6891 OP_RCP, /* Coprocessor number */
6892 OP_RCN, /* Coprocessor register */
6893 OP_RF, /* FPA register */
6894 OP_RVS, /* VFP single precision register */
6895 OP_RVD, /* VFP double precision register (0..15) */
6896 OP_RND, /* Neon double precision register (0..31) */
6897 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6898 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6899 */
6900 OP_RNQ, /* Neon quad precision register */
6901 OP_RNQMQ, /* Neon quad or MVE vector register. */
6902 OP_RVSD, /* VFP single or double precision register */
6903 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6904 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6905 OP_RNSD, /* Neon single or double precision register */
6906 OP_RNDQ, /* Neon double or quad precision register */
6907 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6908 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6909 OP_RNSDQ, /* Neon single, double or quad precision register */
6910 OP_RNSC, /* Neon scalar D[X] */
6911 OP_RVC, /* VFP control register */
6912 OP_RMF, /* Maverick F register */
6913 OP_RMD, /* Maverick D register */
6914 OP_RMFX, /* Maverick FX register */
6915 OP_RMDX, /* Maverick DX register */
6916 OP_RMAX, /* Maverick AX register */
6917 OP_RMDS, /* Maverick DSPSC register */
6918 OP_RIWR, /* iWMMXt wR register */
6919 OP_RIWC, /* iWMMXt wC register */
6920 OP_RIWG, /* iWMMXt wCG register */
6921 OP_RXA, /* XScale accumulator register */
6922
6923 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6924 */
6925 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6926 GPR (no SP/SP) */
6927 OP_RMQ, /* MVE vector register. */
6928 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6929 OP_RMQRR, /* MVE vector or ARM register. */
6930
6931 /* New operands for Armv8.1-M Mainline. */
6932 OP_LR, /* ARM LR register */
6933 OP_RRe, /* ARM register, only even numbered. */
6934 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6935 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6936 OP_RR_ZR, /* ARM register or ZR but no PC */
6937
6938 OP_REGLST, /* ARM register list */
6939 OP_CLRMLST, /* CLRM register list */
6940 OP_VRSLST, /* VFP single-precision register list */
6941 OP_VRDLST, /* VFP double-precision register list */
6942 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6943 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6944 OP_NSTRLST, /* Neon element/structure list */
6945 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6946 OP_MSTRLST2, /* MVE vector list with two elements. */
6947 OP_MSTRLST4, /* MVE vector list with four elements. */
6948
6949 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6950 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6951 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6952 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6953 zero. */
6954 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6955 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6956 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6957 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6958 */
6959 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6960 scalar, or ARM register. */
6961 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6962 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6963 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6964 register. */
6965 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6966 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6967 OP_VMOV, /* Neon VMOV operands. */
6968 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6969 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6970 OP_RNDQMQ_Ibig,
6971 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6972 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
6973 ARM register. */
6974 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6975 OP_VLDR, /* VLDR operand. */
6976
6977 OP_I0, /* immediate zero */
6978 OP_I7, /* immediate value 0 .. 7 */
6979 OP_I15, /* 0 .. 15 */
6980 OP_I16, /* 1 .. 16 */
6981 OP_I16z, /* 0 .. 16 */
6982 OP_I31, /* 0 .. 31 */
6983 OP_I31w, /* 0 .. 31, optional trailing ! */
6984 OP_I32, /* 1 .. 32 */
6985 OP_I32z, /* 0 .. 32 */
6986 OP_I63, /* 0 .. 63 */
6987 OP_I63s, /* -64 .. 63 */
6988 OP_I64, /* 1 .. 64 */
6989 OP_I64z, /* 0 .. 64 */
6990 OP_I255, /* 0 .. 255 */
6991
6992 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6993 OP_I7b, /* 0 .. 7 */
6994 OP_I15b, /* 0 .. 15 */
6995 OP_I31b, /* 0 .. 31 */
6996
6997 OP_SH, /* shifter operand */
6998 OP_SHG, /* shifter operand with possible group relocation */
6999 OP_ADDR, /* Memory address expression (any mode) */
7000 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7001 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7002 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7003 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7004 OP_EXP, /* arbitrary expression */
7005 OP_EXPi, /* same, with optional immediate prefix */
7006 OP_EXPr, /* same, with optional relocation suffix */
7007 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7008 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7009 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7010 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7011
7012 OP_CPSF, /* CPS flags */
7013 OP_ENDI, /* Endianness specifier */
7014 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7015 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7016 OP_COND, /* conditional code */
7017 OP_TB, /* Table branch. */
7018
7019 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7020
7021 OP_RRnpc_I0, /* ARM register or literal 0 */
7022 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7023 OP_RR_EXi, /* ARM register or expression with imm prefix */
7024 OP_RF_IF, /* FPA register or immediate */
7025 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7026 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7027
7028 /* Optional operands. */
7029 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7030 OP_oI31b, /* 0 .. 31 */
7031 OP_oI32b, /* 1 .. 32 */
7032 OP_oI32z, /* 0 .. 32 */
7033 OP_oIffffb, /* 0 .. 65535 */
7034 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7035
7036 OP_oRR, /* ARM register */
7037 OP_oLR, /* ARM LR register */
7038 OP_oRRnpc, /* ARM register, not the PC */
7039 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7040 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7041 OP_oRND, /* Optional Neon double precision register */
7042 OP_oRNQ, /* Optional Neon quad precision register */
7043 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7044 OP_oRNDQ, /* Optional Neon double or quad precision register */
7045 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7046 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7047 register. */
7048 OP_oSHll, /* LSL immediate */
7049 OP_oSHar, /* ASR immediate */
7050 OP_oSHllar, /* LSL or ASR immediate */
7051 OP_oROR, /* ROR 0/8/16/24 */
7052 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7053
7054 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7055
7056 /* Some pre-defined mixed (ARM/THUMB) operands. */
7057 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7058 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7059 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7060
7061 OP_FIRST_OPTIONAL = OP_oI7b
7062 };
7063
7064 /* Generic instruction operand parser. This does no encoding and no
7065 semantic validation; it merely squirrels values away in the inst
7066 structure. Returns SUCCESS or FAIL depending on whether the
7067 specified grammar matched. */
7068 static int
7069 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7070 {
7071 unsigned const int *upat = pattern;
7072 char *backtrack_pos = 0;
7073 const char *backtrack_error = 0;
7074 int i, val = 0, backtrack_index = 0;
7075 enum arm_reg_type rtype;
7076 parse_operand_result result;
7077 unsigned int op_parse_code;
7078 bfd_boolean partial_match;
7079
7080 #define po_char_or_fail(chr) \
7081 do \
7082 { \
7083 if (skip_past_char (&str, chr) == FAIL) \
7084 goto bad_args; \
7085 } \
7086 while (0)
7087
7088 #define po_reg_or_fail(regtype) \
7089 do \
7090 { \
7091 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7092 & inst.operands[i].vectype); \
7093 if (val == FAIL) \
7094 { \
7095 first_error (_(reg_expected_msgs[regtype])); \
7096 goto failure; \
7097 } \
7098 inst.operands[i].reg = val; \
7099 inst.operands[i].isreg = 1; \
7100 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7101 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7102 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7103 || rtype == REG_TYPE_VFD \
7104 || rtype == REG_TYPE_NQ); \
7105 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7106 } \
7107 while (0)
7108
7109 #define po_reg_or_goto(regtype, label) \
7110 do \
7111 { \
7112 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7113 & inst.operands[i].vectype); \
7114 if (val == FAIL) \
7115 goto label; \
7116 \
7117 inst.operands[i].reg = val; \
7118 inst.operands[i].isreg = 1; \
7119 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7120 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7121 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7122 || rtype == REG_TYPE_VFD \
7123 || rtype == REG_TYPE_NQ); \
7124 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7125 } \
7126 while (0)
7127
7128 #define po_imm_or_fail(min, max, popt) \
7129 do \
7130 { \
7131 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7132 goto failure; \
7133 inst.operands[i].imm = val; \
7134 } \
7135 while (0)
7136
7137 #define po_scalar_or_goto(elsz, label, reg_type) \
7138 do \
7139 { \
7140 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7141 reg_type); \
7142 if (val == FAIL) \
7143 goto label; \
7144 inst.operands[i].reg = val; \
7145 inst.operands[i].isscalar = 1; \
7146 } \
7147 while (0)
7148
7149 #define po_misc_or_fail(expr) \
7150 do \
7151 { \
7152 if (expr) \
7153 goto failure; \
7154 } \
7155 while (0)
7156
7157 #define po_misc_or_fail_no_backtrack(expr) \
7158 do \
7159 { \
7160 result = expr; \
7161 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7162 backtrack_pos = 0; \
7163 if (result != PARSE_OPERAND_SUCCESS) \
7164 goto failure; \
7165 } \
7166 while (0)
7167
7168 #define po_barrier_or_imm(str) \
7169 do \
7170 { \
7171 val = parse_barrier (&str); \
7172 if (val == FAIL && ! ISALPHA (*str)) \
7173 goto immediate; \
7174 if (val == FAIL \
7175 /* ISB can only take SY as an option. */ \
7176 || ((inst.instruction & 0xf0) == 0x60 \
7177 && val != 0xf)) \
7178 { \
7179 inst.error = _("invalid barrier type"); \
7180 backtrack_pos = 0; \
7181 goto failure; \
7182 } \
7183 } \
7184 while (0)
7185
7186 skip_whitespace (str);
7187
7188 for (i = 0; upat[i] != OP_stop; i++)
7189 {
7190 op_parse_code = upat[i];
7191 if (op_parse_code >= 1<<16)
7192 op_parse_code = thumb ? (op_parse_code >> 16)
7193 : (op_parse_code & ((1<<16)-1));
7194
7195 if (op_parse_code >= OP_FIRST_OPTIONAL)
7196 {
7197 /* Remember where we are in case we need to backtrack. */
7198 backtrack_pos = str;
7199 backtrack_error = inst.error;
7200 backtrack_index = i;
7201 }
7202
7203 if (i > 0 && (i > 1 || inst.operands[0].present))
7204 po_char_or_fail (',');
7205
7206 switch (op_parse_code)
7207 {
7208 /* Registers */
7209 case OP_oRRnpc:
7210 case OP_oRRnpcsp:
7211 case OP_RRnpc:
7212 case OP_RRnpcsp:
7213 case OP_oRR:
7214 case OP_RRe:
7215 case OP_RRo:
7216 case OP_LR:
7217 case OP_oLR:
7218 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7219 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7220 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7221 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7222 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7223 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7224 case OP_oRND:
7225 case OP_RNDMQR:
7226 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7227 break;
7228 try_rndmq:
7229 case OP_RNDMQ:
7230 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7231 break;
7232 try_rnd:
7233 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7234 case OP_RVC:
7235 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7236 break;
7237 /* Also accept generic coprocessor regs for unknown registers. */
7238 coproc_reg:
7239 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7240 break;
7241 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7242 existing register with a value of 0, this seems like the
7243 best way to parse P0. */
7244 vpr_po:
7245 if (strncasecmp (str, "P0", 2) == 0)
7246 {
7247 str += 2;
7248 inst.operands[i].isreg = 1;
7249 inst.operands[i].reg = 13;
7250 }
7251 else
7252 goto failure;
7253 break;
7254 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7255 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7256 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7257 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7258 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7259 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7260 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7261 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7262 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7263 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7264 case OP_oRNQ:
7265 case OP_RNQMQ:
7266 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7267 break;
7268 try_nq:
7269 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7270 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7271 case OP_RNDQMQR:
7272 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7273 break;
7274 try_rndqmq:
7275 case OP_oRNDQMQ:
7276 case OP_RNDQMQ:
7277 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7278 break;
7279 try_rndq:
7280 case OP_oRNDQ:
7281 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7282 case OP_RVSDMQ:
7283 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7284 break;
7285 try_rvsd:
7286 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7287 case OP_RVSD_COND:
7288 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7289 break;
7290 case OP_oRNSDQ:
7291 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7292 case OP_RNSDQMQR:
7293 po_reg_or_goto (REG_TYPE_RN, try_mq);
7294 break;
7295 try_mq:
7296 case OP_oRNSDQMQ:
7297 case OP_RNSDQMQ:
7298 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7299 break;
7300 try_nsdq2:
7301 po_reg_or_fail (REG_TYPE_NSDQ);
7302 inst.error = 0;
7303 break;
7304 case OP_RMQRR:
7305 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7306 break;
7307 try_rmq:
7308 case OP_RMQ:
7309 po_reg_or_fail (REG_TYPE_MQ);
7310 break;
7311 /* Neon scalar. Using an element size of 8 means that some invalid
7312 scalars are accepted here, so deal with those in later code. */
7313 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7314
7315 case OP_RNDQ_I0:
7316 {
7317 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7318 break;
7319 try_imm0:
7320 po_imm_or_fail (0, 0, TRUE);
7321 }
7322 break;
7323
7324 case OP_RVSD_I0:
7325 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7326 break;
7327
7328 case OP_RSVDMQ_FI0:
7329 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7330 break;
7331 try_rsvd_fi0:
7332 case OP_RSVD_FI0:
7333 {
7334 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7335 break;
7336 try_ifimm0:
7337 if (parse_ifimm_zero (&str))
7338 inst.operands[i].imm = 0;
7339 else
7340 {
7341 inst.error
7342 = _("only floating point zero is allowed as immediate value");
7343 goto failure;
7344 }
7345 }
7346 break;
7347
7348 case OP_RR_RNSC:
7349 {
7350 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7351 break;
7352 try_rr:
7353 po_reg_or_fail (REG_TYPE_RN);
7354 }
7355 break;
7356
7357 case OP_RNSDQ_RNSC_MQ_RR:
7358 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7359 break;
7360 try_rnsdq_rnsc_mq:
7361 case OP_RNSDQ_RNSC_MQ:
7362 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7363 break;
7364 try_rnsdq_rnsc:
7365 case OP_RNSDQ_RNSC:
7366 {
7367 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7368 inst.error = 0;
7369 break;
7370 try_nsdq:
7371 po_reg_or_fail (REG_TYPE_NSDQ);
7372 inst.error = 0;
7373 }
7374 break;
7375
7376 case OP_RNSD_RNSC:
7377 {
7378 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7379 break;
7380 try_s_scalar:
7381 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7382 break;
7383 try_nsd:
7384 po_reg_or_fail (REG_TYPE_NSD);
7385 }
7386 break;
7387
7388 case OP_RNDQMQ_RNSC_RR:
7389 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7390 break;
7391 try_rndq_rnsc_rr:
7392 case OP_RNDQ_RNSC_RR:
7393 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7394 break;
7395 case OP_RNDQMQ_RNSC:
7396 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7397 break;
7398 try_rndq_rnsc:
7399 case OP_RNDQ_RNSC:
7400 {
7401 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7402 break;
7403 try_ndq:
7404 po_reg_or_fail (REG_TYPE_NDQ);
7405 }
7406 break;
7407
7408 case OP_RND_RNSC:
7409 {
7410 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7411 break;
7412 try_vfd:
7413 po_reg_or_fail (REG_TYPE_VFD);
7414 }
7415 break;
7416
7417 case OP_VMOV:
7418 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7419 not careful then bad things might happen. */
7420 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7421 break;
7422
7423 case OP_RNDQMQ_Ibig:
7424 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7425 break;
7426 try_rndq_ibig:
7427 case OP_RNDQ_Ibig:
7428 {
7429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7430 break;
7431 try_immbig:
7432 /* There's a possibility of getting a 64-bit immediate here, so
7433 we need special handling. */
7434 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7435 == FAIL)
7436 {
7437 inst.error = _("immediate value is out of range");
7438 goto failure;
7439 }
7440 }
7441 break;
7442
7443 case OP_RNDQMQ_I63b_RR:
7444 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7445 break;
7446 try_rndq_i63b_rr:
7447 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7448 break;
7449 try_rndq_i63b:
7450 case OP_RNDQ_I63b:
7451 {
7452 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7453 break;
7454 try_shimm:
7455 po_imm_or_fail (0, 63, TRUE);
7456 }
7457 break;
7458
7459 case OP_RRnpcb:
7460 po_char_or_fail ('[');
7461 po_reg_or_fail (REG_TYPE_RN);
7462 po_char_or_fail (']');
7463 break;
7464
7465 case OP_RRnpctw:
7466 case OP_RRw:
7467 case OP_oRRw:
7468 po_reg_or_fail (REG_TYPE_RN);
7469 if (skip_past_char (&str, '!') == SUCCESS)
7470 inst.operands[i].writeback = 1;
7471 break;
7472
7473 /* Immediates */
7474 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7475 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7476 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7477 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7478 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7479 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7480 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7481 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7482 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7483 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7484 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7485 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7486
7487 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7488 case OP_oI7b:
7489 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7490 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7491 case OP_oI31b:
7492 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7493 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7494 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7495 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7496
7497 /* Immediate variants */
7498 case OP_oI255c:
7499 po_char_or_fail ('{');
7500 po_imm_or_fail (0, 255, TRUE);
7501 po_char_or_fail ('}');
7502 break;
7503
7504 case OP_I31w:
7505 /* The expression parser chokes on a trailing !, so we have
7506 to find it first and zap it. */
7507 {
7508 char *s = str;
7509 while (*s && *s != ',')
7510 s++;
7511 if (s[-1] == '!')
7512 {
7513 s[-1] = '\0';
7514 inst.operands[i].writeback = 1;
7515 }
7516 po_imm_or_fail (0, 31, TRUE);
7517 if (str == s - 1)
7518 str = s;
7519 }
7520 break;
7521
7522 /* Expressions */
7523 case OP_EXPi: EXPi:
7524 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7525 GE_OPT_PREFIX));
7526 break;
7527
7528 case OP_EXP:
7529 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7530 GE_NO_PREFIX));
7531 break;
7532
7533 case OP_EXPr: EXPr:
7534 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7535 GE_NO_PREFIX));
7536 if (inst.relocs[0].exp.X_op == O_symbol)
7537 {
7538 val = parse_reloc (&str);
7539 if (val == -1)
7540 {
7541 inst.error = _("unrecognized relocation suffix");
7542 goto failure;
7543 }
7544 else if (val != BFD_RELOC_UNUSED)
7545 {
7546 inst.operands[i].imm = val;
7547 inst.operands[i].hasreloc = 1;
7548 }
7549 }
7550 break;
7551
7552 case OP_EXPs:
7553 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7554 GE_NO_PREFIX));
7555 if (inst.relocs[i].exp.X_op == O_symbol)
7556 {
7557 inst.operands[i].hasreloc = 1;
7558 }
7559 else if (inst.relocs[i].exp.X_op == O_constant)
7560 {
7561 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7562 inst.operands[i].hasreloc = 0;
7563 }
7564 break;
7565
7566 /* Operand for MOVW or MOVT. */
7567 case OP_HALF:
7568 po_misc_or_fail (parse_half (&str));
7569 break;
7570
7571 /* Register or expression. */
7572 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7573 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7574
7575 /* Register or immediate. */
7576 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7577 I0: po_imm_or_fail (0, 0, FALSE); break;
7578
7579 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7580 I32: po_imm_or_fail (1, 32, FALSE); break;
7581
7582 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7583 IF:
7584 if (!is_immediate_prefix (*str))
7585 goto bad_args;
7586 str++;
7587 val = parse_fpa_immediate (&str);
7588 if (val == FAIL)
7589 goto failure;
7590 /* FPA immediates are encoded as registers 8-15.
7591 parse_fpa_immediate has already applied the offset. */
7592 inst.operands[i].reg = val;
7593 inst.operands[i].isreg = 1;
7594 break;
7595
7596 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7597 I32z: po_imm_or_fail (0, 32, FALSE); break;
7598
7599 /* Two kinds of register. */
7600 case OP_RIWR_RIWC:
7601 {
7602 struct reg_entry *rege = arm_reg_parse_multi (&str);
7603 if (!rege
7604 || (rege->type != REG_TYPE_MMXWR
7605 && rege->type != REG_TYPE_MMXWC
7606 && rege->type != REG_TYPE_MMXWCG))
7607 {
7608 inst.error = _("iWMMXt data or control register expected");
7609 goto failure;
7610 }
7611 inst.operands[i].reg = rege->number;
7612 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7613 }
7614 break;
7615
7616 case OP_RIWC_RIWG:
7617 {
7618 struct reg_entry *rege = arm_reg_parse_multi (&str);
7619 if (!rege
7620 || (rege->type != REG_TYPE_MMXWC
7621 && rege->type != REG_TYPE_MMXWCG))
7622 {
7623 inst.error = _("iWMMXt control register expected");
7624 goto failure;
7625 }
7626 inst.operands[i].reg = rege->number;
7627 inst.operands[i].isreg = 1;
7628 }
7629 break;
7630
7631 /* Misc */
7632 case OP_CPSF: val = parse_cps_flags (&str); break;
7633 case OP_ENDI: val = parse_endian_specifier (&str); break;
7634 case OP_oROR: val = parse_ror (&str); break;
7635 try_cond:
7636 case OP_COND: val = parse_cond (&str); break;
7637 case OP_oBARRIER_I15:
7638 po_barrier_or_imm (str); break;
7639 immediate:
7640 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7641 goto failure;
7642 break;
7643
7644 case OP_wPSR:
7645 case OP_rPSR:
7646 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7647 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7648 {
7649 inst.error = _("Banked registers are not available with this "
7650 "architecture.");
7651 goto failure;
7652 }
7653 break;
7654 try_psr:
7655 val = parse_psr (&str, op_parse_code == OP_wPSR);
7656 break;
7657
7658 case OP_VLDR:
7659 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7660 break;
7661 try_sysreg:
7662 val = parse_sys_vldr_vstr (&str);
7663 break;
7664
7665 case OP_APSR_RR:
7666 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7667 break;
7668 try_apsr:
7669 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7670 instruction). */
7671 if (strncasecmp (str, "APSR_", 5) == 0)
7672 {
7673 unsigned found = 0;
7674 str += 5;
7675 while (found < 15)
7676 switch (*str++)
7677 {
7678 case 'c': found = (found & 1) ? 16 : found | 1; break;
7679 case 'n': found = (found & 2) ? 16 : found | 2; break;
7680 case 'z': found = (found & 4) ? 16 : found | 4; break;
7681 case 'v': found = (found & 8) ? 16 : found | 8; break;
7682 default: found = 16;
7683 }
7684 if (found != 15)
7685 goto failure;
7686 inst.operands[i].isvec = 1;
7687 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7688 inst.operands[i].reg = REG_PC;
7689 }
7690 else
7691 goto failure;
7692 break;
7693
7694 case OP_TB:
7695 po_misc_or_fail (parse_tb (&str));
7696 break;
7697
7698 /* Register lists. */
7699 case OP_REGLST:
7700 val = parse_reg_list (&str, REGLIST_RN);
7701 if (*str == '^')
7702 {
7703 inst.operands[i].writeback = 1;
7704 str++;
7705 }
7706 break;
7707
7708 case OP_CLRMLST:
7709 val = parse_reg_list (&str, REGLIST_CLRM);
7710 break;
7711
7712 case OP_VRSLST:
7713 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7714 &partial_match);
7715 break;
7716
7717 case OP_VRDLST:
7718 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7719 &partial_match);
7720 break;
7721
7722 case OP_VRSDLST:
7723 /* Allow Q registers too. */
7724 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7725 REGLIST_NEON_D, &partial_match);
7726 if (val == FAIL)
7727 {
7728 inst.error = NULL;
7729 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7730 REGLIST_VFP_S, &partial_match);
7731 inst.operands[i].issingle = 1;
7732 }
7733 break;
7734
7735 case OP_VRSDVLST:
7736 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7737 REGLIST_VFP_D_VPR, &partial_match);
7738 if (val == FAIL && !partial_match)
7739 {
7740 inst.error = NULL;
7741 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7742 REGLIST_VFP_S_VPR, &partial_match);
7743 inst.operands[i].issingle = 1;
7744 }
7745 break;
7746
7747 case OP_NRDLST:
7748 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7749 REGLIST_NEON_D, &partial_match);
7750 break;
7751
7752 case OP_MSTRLST4:
7753 case OP_MSTRLST2:
7754 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7755 1, &inst.operands[i].vectype);
7756 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7757 goto failure;
7758 break;
7759 case OP_NSTRLST:
7760 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7761 0, &inst.operands[i].vectype);
7762 break;
7763
7764 /* Addressing modes */
7765 case OP_ADDRMVE:
7766 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7767 break;
7768
7769 case OP_ADDR:
7770 po_misc_or_fail (parse_address (&str, i));
7771 break;
7772
7773 case OP_ADDRGLDR:
7774 po_misc_or_fail_no_backtrack (
7775 parse_address_group_reloc (&str, i, GROUP_LDR));
7776 break;
7777
7778 case OP_ADDRGLDRS:
7779 po_misc_or_fail_no_backtrack (
7780 parse_address_group_reloc (&str, i, GROUP_LDRS));
7781 break;
7782
7783 case OP_ADDRGLDC:
7784 po_misc_or_fail_no_backtrack (
7785 parse_address_group_reloc (&str, i, GROUP_LDC));
7786 break;
7787
7788 case OP_SH:
7789 po_misc_or_fail (parse_shifter_operand (&str, i));
7790 break;
7791
7792 case OP_SHG:
7793 po_misc_or_fail_no_backtrack (
7794 parse_shifter_operand_group_reloc (&str, i));
7795 break;
7796
7797 case OP_oSHll:
7798 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7799 break;
7800
7801 case OP_oSHar:
7802 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7803 break;
7804
7805 case OP_oSHllar:
7806 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7807 break;
7808
7809 case OP_RMQRZ:
7810 case OP_oRMQRZ:
7811 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7812 break;
7813
7814 case OP_RR_ZR:
7815 try_rr_zr:
7816 po_reg_or_goto (REG_TYPE_RN, ZR);
7817 break;
7818 ZR:
7819 po_reg_or_fail (REG_TYPE_ZR);
7820 break;
7821
7822 default:
7823 as_fatal (_("unhandled operand code %d"), op_parse_code);
7824 }
7825
7826 /* Various value-based sanity checks and shared operations. We
7827 do not signal immediate failures for the register constraints;
7828 this allows a syntax error to take precedence. */
7829 switch (op_parse_code)
7830 {
7831 case OP_oRRnpc:
7832 case OP_RRnpc:
7833 case OP_RRnpcb:
7834 case OP_RRw:
7835 case OP_oRRw:
7836 case OP_RRnpc_I0:
7837 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7838 inst.error = BAD_PC;
7839 break;
7840
7841 case OP_oRRnpcsp:
7842 case OP_RRnpcsp:
7843 case OP_RRnpcsp_I32:
7844 if (inst.operands[i].isreg)
7845 {
7846 if (inst.operands[i].reg == REG_PC)
7847 inst.error = BAD_PC;
7848 else if (inst.operands[i].reg == REG_SP
7849 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7850 relaxed since ARMv8-A. */
7851 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7852 {
7853 gas_assert (thumb);
7854 inst.error = BAD_SP;
7855 }
7856 }
7857 break;
7858
7859 case OP_RRnpctw:
7860 if (inst.operands[i].isreg
7861 && inst.operands[i].reg == REG_PC
7862 && (inst.operands[i].writeback || thumb))
7863 inst.error = BAD_PC;
7864 break;
7865
7866 case OP_RVSD_COND:
7867 case OP_VLDR:
7868 if (inst.operands[i].isreg)
7869 break;
7870 /* fall through. */
7871
7872 case OP_CPSF:
7873 case OP_ENDI:
7874 case OP_oROR:
7875 case OP_wPSR:
7876 case OP_rPSR:
7877 case OP_COND:
7878 case OP_oBARRIER_I15:
7879 case OP_REGLST:
7880 case OP_CLRMLST:
7881 case OP_VRSLST:
7882 case OP_VRDLST:
7883 case OP_VRSDLST:
7884 case OP_VRSDVLST:
7885 case OP_NRDLST:
7886 case OP_NSTRLST:
7887 case OP_MSTRLST2:
7888 case OP_MSTRLST4:
7889 if (val == FAIL)
7890 goto failure;
7891 inst.operands[i].imm = val;
7892 break;
7893
7894 case OP_LR:
7895 case OP_oLR:
7896 if (inst.operands[i].reg != REG_LR)
7897 inst.error = _("operand must be LR register");
7898 break;
7899
7900 case OP_RMQRZ:
7901 case OP_oRMQRZ:
7902 case OP_RR_ZR:
7903 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7904 inst.error = BAD_PC;
7905 break;
7906
7907 case OP_RRe:
7908 if (inst.operands[i].isreg
7909 && (inst.operands[i].reg & 0x00000001) != 0)
7910 inst.error = BAD_ODD;
7911 break;
7912
7913 case OP_RRo:
7914 if (inst.operands[i].isreg)
7915 {
7916 if ((inst.operands[i].reg & 0x00000001) != 1)
7917 inst.error = BAD_EVEN;
7918 else if (inst.operands[i].reg == REG_SP)
7919 as_tsktsk (MVE_BAD_SP);
7920 else if (inst.operands[i].reg == REG_PC)
7921 inst.error = BAD_PC;
7922 }
7923 break;
7924
7925 default:
7926 break;
7927 }
7928
7929 /* If we get here, this operand was successfully parsed. */
7930 inst.operands[i].present = 1;
7931 continue;
7932
7933 bad_args:
7934 inst.error = BAD_ARGS;
7935
7936 failure:
7937 if (!backtrack_pos)
7938 {
7939 /* The parse routine should already have set inst.error, but set a
7940 default here just in case. */
7941 if (!inst.error)
7942 inst.error = BAD_SYNTAX;
7943 return FAIL;
7944 }
7945
7946 /* Do not backtrack over a trailing optional argument that
7947 absorbed some text. We will only fail again, with the
7948 'garbage following instruction' error message, which is
7949 probably less helpful than the current one. */
7950 if (backtrack_index == i && backtrack_pos != str
7951 && upat[i+1] == OP_stop)
7952 {
7953 if (!inst.error)
7954 inst.error = BAD_SYNTAX;
7955 return FAIL;
7956 }
7957
7958 /* Try again, skipping the optional argument at backtrack_pos. */
7959 str = backtrack_pos;
7960 inst.error = backtrack_error;
7961 inst.operands[backtrack_index].present = 0;
7962 i = backtrack_index;
7963 backtrack_pos = 0;
7964 }
7965
7966 /* Check that we have parsed all the arguments. */
7967 if (*str != '\0' && !inst.error)
7968 inst.error = _("garbage following instruction");
7969
7970 return inst.error ? FAIL : SUCCESS;
7971 }
7972
7973 #undef po_char_or_fail
7974 #undef po_reg_or_fail
7975 #undef po_reg_or_goto
7976 #undef po_imm_or_fail
7977 #undef po_scalar_or_fail
7978 #undef po_barrier_or_imm
7979
7980 /* Shorthand macro for instruction encoding functions issuing errors. */
7981 #define constraint(expr, err) \
7982 do \
7983 { \
7984 if (expr) \
7985 { \
7986 inst.error = err; \
7987 return; \
7988 } \
7989 } \
7990 while (0)
7991
7992 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7993 instructions are unpredictable if these registers are used. This
7994 is the BadReg predicate in ARM's Thumb-2 documentation.
7995
7996 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7997 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7998 #define reject_bad_reg(reg) \
7999 do \
8000 if (reg == REG_PC) \
8001 { \
8002 inst.error = BAD_PC; \
8003 return; \
8004 } \
8005 else if (reg == REG_SP \
8006 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8007 { \
8008 inst.error = BAD_SP; \
8009 return; \
8010 } \
8011 while (0)
8012
8013 /* If REG is R13 (the stack pointer), warn that its use is
8014 deprecated. */
8015 #define warn_deprecated_sp(reg) \
8016 do \
8017 if (warn_on_deprecated && reg == REG_SP) \
8018 as_tsktsk (_("use of r13 is deprecated")); \
8019 while (0)
8020
8021 /* Functions for operand encoding. ARM, then Thumb. */
8022
8023 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8024
8025 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8026
8027 The only binary encoding difference is the Coprocessor number. Coprocessor
8028 9 is used for half-precision calculations or conversions. The format of the
8029 instruction is the same as the equivalent Coprocessor 10 instruction that
8030 exists for Single-Precision operation. */
8031
8032 static void
8033 do_scalar_fp16_v82_encode (void)
8034 {
8035 if (inst.cond < COND_ALWAYS)
8036 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8037 " the behaviour is UNPREDICTABLE"));
8038 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8039 _(BAD_FP16));
8040
8041 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8042 mark_feature_used (&arm_ext_fp16);
8043 }
8044
8045 /* If VAL can be encoded in the immediate field of an ARM instruction,
8046 return the encoded form. Otherwise, return FAIL. */
8047
8048 static unsigned int
8049 encode_arm_immediate (unsigned int val)
8050 {
8051 unsigned int a, i;
8052
8053 if (val <= 0xff)
8054 return val;
8055
8056 for (i = 2; i < 32; i += 2)
8057 if ((a = rotate_left (val, i)) <= 0xff)
8058 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8059
8060 return FAIL;
8061 }
8062
8063 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8064 return the encoded form. Otherwise, return FAIL. */
8065 static unsigned int
8066 encode_thumb32_immediate (unsigned int val)
8067 {
8068 unsigned int a, i;
8069
8070 if (val <= 0xff)
8071 return val;
8072
8073 for (i = 1; i <= 24; i++)
8074 {
8075 a = val >> i;
8076 if ((val & ~(0xff << i)) == 0)
8077 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8078 }
8079
8080 a = val & 0xff;
8081 if (val == ((a << 16) | a))
8082 return 0x100 | a;
8083 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8084 return 0x300 | a;
8085
8086 a = val & 0xff00;
8087 if (val == ((a << 16) | a))
8088 return 0x200 | (a >> 8);
8089
8090 return FAIL;
8091 }
8092 /* Encode a VFP SP or DP register number into inst.instruction. */
8093
8094 static void
8095 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8096 {
8097 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8098 && reg > 15)
8099 {
8100 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8101 {
8102 if (thumb_mode)
8103 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8104 fpu_vfp_ext_d32);
8105 else
8106 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8107 fpu_vfp_ext_d32);
8108 }
8109 else
8110 {
8111 first_error (_("D register out of range for selected VFP version"));
8112 return;
8113 }
8114 }
8115
8116 switch (pos)
8117 {
8118 case VFP_REG_Sd:
8119 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8120 break;
8121
8122 case VFP_REG_Sn:
8123 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8124 break;
8125
8126 case VFP_REG_Sm:
8127 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8128 break;
8129
8130 case VFP_REG_Dd:
8131 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8132 break;
8133
8134 case VFP_REG_Dn:
8135 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8136 break;
8137
8138 case VFP_REG_Dm:
8139 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8140 break;
8141
8142 default:
8143 abort ();
8144 }
8145 }
8146
8147 /* Encode a <shift> in an ARM-format instruction. The immediate,
8148 if any, is handled by md_apply_fix. */
8149 static void
8150 encode_arm_shift (int i)
8151 {
8152 /* register-shifted register. */
8153 if (inst.operands[i].immisreg)
8154 {
8155 int op_index;
8156 for (op_index = 0; op_index <= i; ++op_index)
8157 {
8158 /* Check the operand only when it's presented. In pre-UAL syntax,
8159 if the destination register is the same as the first operand, two
8160 register form of the instruction can be used. */
8161 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8162 && inst.operands[op_index].reg == REG_PC)
8163 as_warn (UNPRED_REG ("r15"));
8164 }
8165
8166 if (inst.operands[i].imm == REG_PC)
8167 as_warn (UNPRED_REG ("r15"));
8168 }
8169
8170 if (inst.operands[i].shift_kind == SHIFT_RRX)
8171 inst.instruction |= SHIFT_ROR << 5;
8172 else
8173 {
8174 inst.instruction |= inst.operands[i].shift_kind << 5;
8175 if (inst.operands[i].immisreg)
8176 {
8177 inst.instruction |= SHIFT_BY_REG;
8178 inst.instruction |= inst.operands[i].imm << 8;
8179 }
8180 else
8181 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8182 }
8183 }
8184
8185 static void
8186 encode_arm_shifter_operand (int i)
8187 {
8188 if (inst.operands[i].isreg)
8189 {
8190 inst.instruction |= inst.operands[i].reg;
8191 encode_arm_shift (i);
8192 }
8193 else
8194 {
8195 inst.instruction |= INST_IMMEDIATE;
8196 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8197 inst.instruction |= inst.operands[i].imm;
8198 }
8199 }
8200
8201 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8202 static void
8203 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8204 {
8205 /* PR 14260:
8206 Generate an error if the operand is not a register. */
8207 constraint (!inst.operands[i].isreg,
8208 _("Instruction does not support =N addresses"));
8209
8210 inst.instruction |= inst.operands[i].reg << 16;
8211
8212 if (inst.operands[i].preind)
8213 {
8214 if (is_t)
8215 {
8216 inst.error = _("instruction does not accept preindexed addressing");
8217 return;
8218 }
8219 inst.instruction |= PRE_INDEX;
8220 if (inst.operands[i].writeback)
8221 inst.instruction |= WRITE_BACK;
8222
8223 }
8224 else if (inst.operands[i].postind)
8225 {
8226 gas_assert (inst.operands[i].writeback);
8227 if (is_t)
8228 inst.instruction |= WRITE_BACK;
8229 }
8230 else /* unindexed - only for coprocessor */
8231 {
8232 inst.error = _("instruction does not accept unindexed addressing");
8233 return;
8234 }
8235
8236 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8237 && (((inst.instruction & 0x000f0000) >> 16)
8238 == ((inst.instruction & 0x0000f000) >> 12)))
8239 as_warn ((inst.instruction & LOAD_BIT)
8240 ? _("destination register same as write-back base")
8241 : _("source register same as write-back base"));
8242 }
8243
8244 /* inst.operands[i] was set up by parse_address. Encode it into an
8245 ARM-format mode 2 load or store instruction. If is_t is true,
8246 reject forms that cannot be used with a T instruction (i.e. not
8247 post-indexed). */
8248 static void
8249 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8250 {
8251 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8252
8253 encode_arm_addr_mode_common (i, is_t);
8254
8255 if (inst.operands[i].immisreg)
8256 {
8257 constraint ((inst.operands[i].imm == REG_PC
8258 || (is_pc && inst.operands[i].writeback)),
8259 BAD_PC_ADDRESSING);
8260 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8261 inst.instruction |= inst.operands[i].imm;
8262 if (!inst.operands[i].negative)
8263 inst.instruction |= INDEX_UP;
8264 if (inst.operands[i].shifted)
8265 {
8266 if (inst.operands[i].shift_kind == SHIFT_RRX)
8267 inst.instruction |= SHIFT_ROR << 5;
8268 else
8269 {
8270 inst.instruction |= inst.operands[i].shift_kind << 5;
8271 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8272 }
8273 }
8274 }
8275 else /* immediate offset in inst.relocs[0] */
8276 {
8277 if (is_pc && !inst.relocs[0].pc_rel)
8278 {
8279 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8280
8281 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8282 cannot use PC in addressing.
8283 PC cannot be used in writeback addressing, either. */
8284 constraint ((is_t || inst.operands[i].writeback),
8285 BAD_PC_ADDRESSING);
8286
8287 /* Use of PC in str is deprecated for ARMv7. */
8288 if (warn_on_deprecated
8289 && !is_load
8290 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8291 as_tsktsk (_("use of PC in this instruction is deprecated"));
8292 }
8293
8294 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8295 {
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8300 }
8301 }
8302 }
8303
8304 /* inst.operands[i] was set up by parse_address. Encode it into an
8305 ARM-format mode 3 load or store instruction. Reject forms that
8306 cannot be used with such instructions. If is_t is true, reject
8307 forms that cannot be used with a T instruction (i.e. not
8308 post-indexed). */
8309 static void
8310 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8311 {
8312 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8313 {
8314 inst.error = _("instruction does not accept scaled register index");
8315 return;
8316 }
8317
8318 encode_arm_addr_mode_common (i, is_t);
8319
8320 if (inst.operands[i].immisreg)
8321 {
8322 constraint ((inst.operands[i].imm == REG_PC
8323 || (is_t && inst.operands[i].reg == REG_PC)),
8324 BAD_PC_ADDRESSING);
8325 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8326 BAD_PC_WRITEBACK);
8327 inst.instruction |= inst.operands[i].imm;
8328 if (!inst.operands[i].negative)
8329 inst.instruction |= INDEX_UP;
8330 }
8331 else /* immediate offset in inst.relocs[0] */
8332 {
8333 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8334 && inst.operands[i].writeback),
8335 BAD_PC_WRITEBACK);
8336 inst.instruction |= HWOFFSET_IMM;
8337 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8338 {
8339 /* Prefer + for zero encoded value. */
8340 if (!inst.operands[i].negative)
8341 inst.instruction |= INDEX_UP;
8342
8343 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8344 }
8345 }
8346 }
8347
8348 /* Write immediate bits [7:0] to the following locations:
8349
8350 |28/24|23 19|18 16|15 4|3 0|
8351 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8352
8353 This function is used by VMOV/VMVN/VORR/VBIC. */
8354
8355 static void
8356 neon_write_immbits (unsigned immbits)
8357 {
8358 inst.instruction |= immbits & 0xf;
8359 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8360 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8361 }
8362
8363 /* Invert low-order SIZE bits of XHI:XLO. */
8364
8365 static void
8366 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8367 {
8368 unsigned immlo = xlo ? *xlo : 0;
8369 unsigned immhi = xhi ? *xhi : 0;
8370
8371 switch (size)
8372 {
8373 case 8:
8374 immlo = (~immlo) & 0xff;
8375 break;
8376
8377 case 16:
8378 immlo = (~immlo) & 0xffff;
8379 break;
8380
8381 case 64:
8382 immhi = (~immhi) & 0xffffffff;
8383 /* fall through. */
8384
8385 case 32:
8386 immlo = (~immlo) & 0xffffffff;
8387 break;
8388
8389 default:
8390 abort ();
8391 }
8392
8393 if (xlo)
8394 *xlo = immlo;
8395
8396 if (xhi)
8397 *xhi = immhi;
8398 }
8399
8400 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8401 A, B, C, D. */
8402
8403 static int
8404 neon_bits_same_in_bytes (unsigned imm)
8405 {
8406 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8407 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8408 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8409 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8410 }
8411
8412 /* For immediate of above form, return 0bABCD. */
8413
8414 static unsigned
8415 neon_squash_bits (unsigned imm)
8416 {
8417 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8418 | ((imm & 0x01000000) >> 21);
8419 }
8420
8421 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8422
8423 static unsigned
8424 neon_qfloat_bits (unsigned imm)
8425 {
8426 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8427 }
8428
8429 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8430 the instruction. *OP is passed as the initial value of the op field, and
8431 may be set to a different value depending on the constant (i.e.
8432 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8433 MVN). If the immediate looks like a repeated pattern then also
8434 try smaller element sizes. */
8435
8436 static int
8437 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8438 unsigned *immbits, int *op, int size,
8439 enum neon_el_type type)
8440 {
8441 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8442 float. */
8443 if (type == NT_float && !float_p)
8444 return FAIL;
8445
8446 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8447 {
8448 if (size != 32 || *op == 1)
8449 return FAIL;
8450 *immbits = neon_qfloat_bits (immlo);
8451 return 0xf;
8452 }
8453
8454 if (size == 64)
8455 {
8456 if (neon_bits_same_in_bytes (immhi)
8457 && neon_bits_same_in_bytes (immlo))
8458 {
8459 if (*op == 1)
8460 return FAIL;
8461 *immbits = (neon_squash_bits (immhi) << 4)
8462 | neon_squash_bits (immlo);
8463 *op = 1;
8464 return 0xe;
8465 }
8466
8467 if (immhi != immlo)
8468 return FAIL;
8469 }
8470
8471 if (size >= 32)
8472 {
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 *immbits = immlo;
8476 return 0x0;
8477 }
8478 else if (immlo == (immlo & 0x0000ff00))
8479 {
8480 *immbits = immlo >> 8;
8481 return 0x2;
8482 }
8483 else if (immlo == (immlo & 0x00ff0000))
8484 {
8485 *immbits = immlo >> 16;
8486 return 0x4;
8487 }
8488 else if (immlo == (immlo & 0xff000000))
8489 {
8490 *immbits = immlo >> 24;
8491 return 0x6;
8492 }
8493 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8494 {
8495 *immbits = (immlo >> 8) & 0xff;
8496 return 0xc;
8497 }
8498 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8499 {
8500 *immbits = (immlo >> 16) & 0xff;
8501 return 0xd;
8502 }
8503
8504 if ((immlo & 0xffff) != (immlo >> 16))
8505 return FAIL;
8506 immlo &= 0xffff;
8507 }
8508
8509 if (size >= 16)
8510 {
8511 if (immlo == (immlo & 0x000000ff))
8512 {
8513 *immbits = immlo;
8514 return 0x8;
8515 }
8516 else if (immlo == (immlo & 0x0000ff00))
8517 {
8518 *immbits = immlo >> 8;
8519 return 0xa;
8520 }
8521
8522 if ((immlo & 0xff) != (immlo >> 8))
8523 return FAIL;
8524 immlo &= 0xff;
8525 }
8526
8527 if (immlo == (immlo & 0x000000ff))
8528 {
8529 /* Don't allow MVN with 8-bit immediate. */
8530 if (*op == 1)
8531 return FAIL;
8532 *immbits = immlo;
8533 return 0xe;
8534 }
8535
8536 return FAIL;
8537 }
8538
8539 #if defined BFD_HOST_64_BIT
8540 /* Returns TRUE if double precision value V may be cast
8541 to single precision without loss of accuracy. */
8542
8543 static bfd_boolean
8544 is_double_a_single (bfd_int64_t v)
8545 {
8546 int exp = (int)((v >> 52) & 0x7FF);
8547 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8548
8549 return (exp == 0 || exp == 0x7FF
8550 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8551 && (mantissa & 0x1FFFFFFFl) == 0;
8552 }
8553
8554 /* Returns a double precision value casted to single precision
8555 (ignoring the least significant bits in exponent and mantissa). */
8556
8557 static int
8558 double_to_single (bfd_int64_t v)
8559 {
8560 int sign = (int) ((v >> 63) & 1l);
8561 int exp = (int) ((v >> 52) & 0x7FF);
8562 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8563
8564 if (exp == 0x7FF)
8565 exp = 0xFF;
8566 else
8567 {
8568 exp = exp - 1023 + 127;
8569 if (exp >= 0xFF)
8570 {
8571 /* Infinity. */
8572 exp = 0x7F;
8573 mantissa = 0;
8574 }
8575 else if (exp < 0)
8576 {
8577 /* No denormalized numbers. */
8578 exp = 0;
8579 mantissa = 0;
8580 }
8581 }
8582 mantissa >>= 29;
8583 return (sign << 31) | (exp << 23) | mantissa;
8584 }
8585 #endif /* BFD_HOST_64_BIT */
8586
8587 enum lit_type
8588 {
8589 CONST_THUMB,
8590 CONST_ARM,
8591 CONST_VEC
8592 };
8593
8594 static void do_vfp_nsyn_opcode (const char *);
8595
8596 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8597 Determine whether it can be performed with a move instruction; if
8598 it can, convert inst.instruction to that move instruction and
8599 return TRUE; if it can't, convert inst.instruction to a literal-pool
8600 load and return FALSE. If this is not a valid thing to do in the
8601 current context, set inst.error and return TRUE.
8602
8603 inst.operands[i] describes the destination register. */
8604
8605 static bfd_boolean
8606 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8607 {
8608 unsigned long tbit;
8609 bfd_boolean thumb_p = (t == CONST_THUMB);
8610 bfd_boolean arm_p = (t == CONST_ARM);
8611
8612 if (thumb_p)
8613 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8614 else
8615 tbit = LOAD_BIT;
8616
8617 if ((inst.instruction & tbit) == 0)
8618 {
8619 inst.error = _("invalid pseudo operation");
8620 return TRUE;
8621 }
8622
8623 if (inst.relocs[0].exp.X_op != O_constant
8624 && inst.relocs[0].exp.X_op != O_symbol
8625 && inst.relocs[0].exp.X_op != O_big)
8626 {
8627 inst.error = _("constant expression expected");
8628 return TRUE;
8629 }
8630
8631 if (inst.relocs[0].exp.X_op == O_constant
8632 || inst.relocs[0].exp.X_op == O_big)
8633 {
8634 #if defined BFD_HOST_64_BIT
8635 bfd_int64_t v;
8636 #else
8637 offsetT v;
8638 #endif
8639 if (inst.relocs[0].exp.X_op == O_big)
8640 {
8641 LITTLENUM_TYPE w[X_PRECISION];
8642 LITTLENUM_TYPE * l;
8643
8644 if (inst.relocs[0].exp.X_add_number == -1)
8645 {
8646 gen_to_words (w, X_PRECISION, E_PRECISION);
8647 l = w;
8648 /* FIXME: Should we check words w[2..5] ? */
8649 }
8650 else
8651 l = generic_bignum;
8652
8653 #if defined BFD_HOST_64_BIT
8654 v =
8655 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8656 << LITTLENUM_NUMBER_OF_BITS)
8657 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8658 << LITTLENUM_NUMBER_OF_BITS)
8659 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8660 << LITTLENUM_NUMBER_OF_BITS)
8661 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8662 #else
8663 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8664 | (l[0] & LITTLENUM_MASK);
8665 #endif
8666 }
8667 else
8668 v = inst.relocs[0].exp.X_add_number;
8669
8670 if (!inst.operands[i].issingle)
8671 {
8672 if (thumb_p)
8673 {
8674 /* LDR should not use lead in a flag-setting instruction being
8675 chosen so we do not check whether movs can be used. */
8676
8677 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8678 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8679 && inst.operands[i].reg != 13
8680 && inst.operands[i].reg != 15)
8681 {
8682 /* Check if on thumb2 it can be done with a mov.w, mvn or
8683 movw instruction. */
8684 unsigned int newimm;
8685 bfd_boolean isNegated;
8686
8687 newimm = encode_thumb32_immediate (v);
8688 if (newimm != (unsigned int) FAIL)
8689 isNegated = FALSE;
8690 else
8691 {
8692 newimm = encode_thumb32_immediate (~v);
8693 if (newimm != (unsigned int) FAIL)
8694 isNegated = TRUE;
8695 }
8696
8697 /* The number can be loaded with a mov.w or mvn
8698 instruction. */
8699 if (newimm != (unsigned int) FAIL
8700 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8701 {
8702 inst.instruction = (0xf04f0000 /* MOV.W. */
8703 | (inst.operands[i].reg << 8));
8704 /* Change to MOVN. */
8705 inst.instruction |= (isNegated ? 0x200000 : 0);
8706 inst.instruction |= (newimm & 0x800) << 15;
8707 inst.instruction |= (newimm & 0x700) << 4;
8708 inst.instruction |= (newimm & 0x0ff);
8709 return TRUE;
8710 }
8711 /* The number can be loaded with a movw instruction. */
8712 else if ((v & ~0xFFFF) == 0
8713 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8714 {
8715 int imm = v & 0xFFFF;
8716
8717 inst.instruction = 0xf2400000; /* MOVW. */
8718 inst.instruction |= (inst.operands[i].reg << 8);
8719 inst.instruction |= (imm & 0xf000) << 4;
8720 inst.instruction |= (imm & 0x0800) << 15;
8721 inst.instruction |= (imm & 0x0700) << 4;
8722 inst.instruction |= (imm & 0x00ff);
8723 /* In case this replacement is being done on Armv8-M
8724 Baseline we need to make sure to disable the
8725 instruction size check, as otherwise GAS will reject
8726 the use of this T32 instruction. */
8727 inst.size_req = 0;
8728 return TRUE;
8729 }
8730 }
8731 }
8732 else if (arm_p)
8733 {
8734 int value = encode_arm_immediate (v);
8735
8736 if (value != FAIL)
8737 {
8738 /* This can be done with a mov instruction. */
8739 inst.instruction &= LITERAL_MASK;
8740 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8741 inst.instruction |= value & 0xfff;
8742 return TRUE;
8743 }
8744
8745 value = encode_arm_immediate (~ v);
8746 if (value != FAIL)
8747 {
8748 /* This can be done with a mvn instruction. */
8749 inst.instruction &= LITERAL_MASK;
8750 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8751 inst.instruction |= value & 0xfff;
8752 return TRUE;
8753 }
8754 }
8755 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8756 {
8757 int op = 0;
8758 unsigned immbits = 0;
8759 unsigned immlo = inst.operands[1].imm;
8760 unsigned immhi = inst.operands[1].regisimm
8761 ? inst.operands[1].reg
8762 : inst.relocs[0].exp.X_unsigned
8763 ? 0
8764 : ((bfd_int64_t)((int) immlo)) >> 32;
8765 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8766 &op, 64, NT_invtype);
8767
8768 if (cmode == FAIL)
8769 {
8770 neon_invert_size (&immlo, &immhi, 64);
8771 op = !op;
8772 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8773 &op, 64, NT_invtype);
8774 }
8775
8776 if (cmode != FAIL)
8777 {
8778 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8779 | (1 << 23)
8780 | (cmode << 8)
8781 | (op << 5)
8782 | (1 << 4);
8783
8784 /* Fill other bits in vmov encoding for both thumb and arm. */
8785 if (thumb_mode)
8786 inst.instruction |= (0x7U << 29) | (0xF << 24);
8787 else
8788 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8789 neon_write_immbits (immbits);
8790 return TRUE;
8791 }
8792 }
8793 }
8794
8795 if (t == CONST_VEC)
8796 {
8797 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8798 if (inst.operands[i].issingle
8799 && is_quarter_float (inst.operands[1].imm)
8800 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8801 {
8802 inst.operands[1].imm =
8803 neon_qfloat_bits (v);
8804 do_vfp_nsyn_opcode ("fconsts");
8805 return TRUE;
8806 }
8807
8808 /* If our host does not support a 64-bit type then we cannot perform
8809 the following optimization. This mean that there will be a
8810 discrepancy between the output produced by an assembler built for
8811 a 32-bit-only host and the output produced from a 64-bit host, but
8812 this cannot be helped. */
8813 #if defined BFD_HOST_64_BIT
8814 else if (!inst.operands[1].issingle
8815 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8816 {
8817 if (is_double_a_single (v)
8818 && is_quarter_float (double_to_single (v)))
8819 {
8820 inst.operands[1].imm =
8821 neon_qfloat_bits (double_to_single (v));
8822 do_vfp_nsyn_opcode ("fconstd");
8823 return TRUE;
8824 }
8825 }
8826 #endif
8827 }
8828 }
8829
8830 if (add_to_lit_pool ((!inst.operands[i].isvec
8831 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8832 return TRUE;
8833
8834 inst.operands[1].reg = REG_PC;
8835 inst.operands[1].isreg = 1;
8836 inst.operands[1].preind = 1;
8837 inst.relocs[0].pc_rel = 1;
8838 inst.relocs[0].type = (thumb_p
8839 ? BFD_RELOC_ARM_THUMB_OFFSET
8840 : (mode_3
8841 ? BFD_RELOC_ARM_HWLITERAL
8842 : BFD_RELOC_ARM_LITERAL));
8843 return FALSE;
8844 }
8845
8846 /* inst.operands[i] was set up by parse_address. Encode it into an
8847 ARM-format instruction. Reject all forms which cannot be encoded
8848 into a coprocessor load/store instruction. If wb_ok is false,
8849 reject use of writeback; if unind_ok is false, reject use of
8850 unindexed addressing. If reloc_override is not 0, use it instead
8851 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8852 (in which case it is preserved). */
8853
8854 static int
8855 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8856 {
8857 if (!inst.operands[i].isreg)
8858 {
8859 /* PR 18256 */
8860 if (! inst.operands[0].isvec)
8861 {
8862 inst.error = _("invalid co-processor operand");
8863 return FAIL;
8864 }
8865 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8866 return SUCCESS;
8867 }
8868
8869 inst.instruction |= inst.operands[i].reg << 16;
8870
8871 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8872
8873 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8874 {
8875 gas_assert (!inst.operands[i].writeback);
8876 if (!unind_ok)
8877 {
8878 inst.error = _("instruction does not support unindexed addressing");
8879 return FAIL;
8880 }
8881 inst.instruction |= inst.operands[i].imm;
8882 inst.instruction |= INDEX_UP;
8883 return SUCCESS;
8884 }
8885
8886 if (inst.operands[i].preind)
8887 inst.instruction |= PRE_INDEX;
8888
8889 if (inst.operands[i].writeback)
8890 {
8891 if (inst.operands[i].reg == REG_PC)
8892 {
8893 inst.error = _("pc may not be used with write-back");
8894 return FAIL;
8895 }
8896 if (!wb_ok)
8897 {
8898 inst.error = _("instruction does not support writeback");
8899 return FAIL;
8900 }
8901 inst.instruction |= WRITE_BACK;
8902 }
8903
8904 if (reloc_override)
8905 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8906 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8907 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8908 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8909 {
8910 if (thumb_mode)
8911 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8912 else
8913 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8914 }
8915
8916 /* Prefer + for zero encoded value. */
8917 if (!inst.operands[i].negative)
8918 inst.instruction |= INDEX_UP;
8919
8920 return SUCCESS;
8921 }
8922
8923 /* Functions for instruction encoding, sorted by sub-architecture.
8924 First some generics; their names are taken from the conventional
8925 bit positions for register arguments in ARM format instructions. */
8926
8927 static void
8928 do_noargs (void)
8929 {
8930 }
8931
8932 static void
8933 do_rd (void)
8934 {
8935 inst.instruction |= inst.operands[0].reg << 12;
8936 }
8937
8938 static void
8939 do_rn (void)
8940 {
8941 inst.instruction |= inst.operands[0].reg << 16;
8942 }
8943
8944 static void
8945 do_rd_rm (void)
8946 {
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[1].reg;
8949 }
8950
8951 static void
8952 do_rm_rn (void)
8953 {
8954 inst.instruction |= inst.operands[0].reg;
8955 inst.instruction |= inst.operands[1].reg << 16;
8956 }
8957
8958 static void
8959 do_rd_rn (void)
8960 {
8961 inst.instruction |= inst.operands[0].reg << 12;
8962 inst.instruction |= inst.operands[1].reg << 16;
8963 }
8964
8965 static void
8966 do_rn_rd (void)
8967 {
8968 inst.instruction |= inst.operands[0].reg << 16;
8969 inst.instruction |= inst.operands[1].reg << 12;
8970 }
8971
8972 static void
8973 do_tt (void)
8974 {
8975 inst.instruction |= inst.operands[0].reg << 8;
8976 inst.instruction |= inst.operands[1].reg << 16;
8977 }
8978
8979 static bfd_boolean
8980 check_obsolete (const arm_feature_set *feature, const char *msg)
8981 {
8982 if (ARM_CPU_IS_ANY (cpu_variant))
8983 {
8984 as_tsktsk ("%s", msg);
8985 return TRUE;
8986 }
8987 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8988 {
8989 as_bad ("%s", msg);
8990 return TRUE;
8991 }
8992
8993 return FALSE;
8994 }
8995
8996 static void
8997 do_rd_rm_rn (void)
8998 {
8999 unsigned Rn = inst.operands[2].reg;
9000 /* Enforce restrictions on SWP instruction. */
9001 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9002 {
9003 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9004 _("Rn must not overlap other operands"));
9005
9006 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9007 */
9008 if (!check_obsolete (&arm_ext_v8,
9009 _("swp{b} use is obsoleted for ARMv8 and later"))
9010 && warn_on_deprecated
9011 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9012 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9013 }
9014
9015 inst.instruction |= inst.operands[0].reg << 12;
9016 inst.instruction |= inst.operands[1].reg;
9017 inst.instruction |= Rn << 16;
9018 }
9019
9020 static void
9021 do_rd_rn_rm (void)
9022 {
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 inst.instruction |= inst.operands[1].reg << 16;
9025 inst.instruction |= inst.operands[2].reg;
9026 }
9027
9028 static void
9029 do_rm_rd_rn (void)
9030 {
9031 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9032 constraint (((inst.relocs[0].exp.X_op != O_constant
9033 && inst.relocs[0].exp.X_op != O_illegal)
9034 || inst.relocs[0].exp.X_add_number != 0),
9035 BAD_ADDR_MODE);
9036 inst.instruction |= inst.operands[0].reg;
9037 inst.instruction |= inst.operands[1].reg << 12;
9038 inst.instruction |= inst.operands[2].reg << 16;
9039 }
9040
9041 static void
9042 do_imm0 (void)
9043 {
9044 inst.instruction |= inst.operands[0].imm;
9045 }
9046
9047 static void
9048 do_rd_cpaddr (void)
9049 {
9050 inst.instruction |= inst.operands[0].reg << 12;
9051 encode_arm_cp_address (1, TRUE, TRUE, 0);
9052 }
9053
9054 /* ARM instructions, in alphabetical order by function name (except
9055 that wrapper functions appear immediately after the function they
9056 wrap). */
9057
9058 /* This is a pseudo-op of the form "adr rd, label" to be converted
9059 into a relative address of the form "add rd, pc, #label-.-8". */
9060
9061 static void
9062 do_adr (void)
9063 {
9064 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9065
9066 /* Frag hacking will turn this into a sub instruction if the offset turns
9067 out to be negative. */
9068 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9069 inst.relocs[0].pc_rel = 1;
9070 inst.relocs[0].exp.X_add_number -= 8;
9071
9072 if (support_interwork
9073 && inst.relocs[0].exp.X_op == O_symbol
9074 && inst.relocs[0].exp.X_add_symbol != NULL
9075 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9076 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9077 inst.relocs[0].exp.X_add_number |= 1;
9078 }
9079
9080 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9081 into a relative address of the form:
9082 add rd, pc, #low(label-.-8)"
9083 add rd, rd, #high(label-.-8)" */
9084
9085 static void
9086 do_adrl (void)
9087 {
9088 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9089
9090 /* Frag hacking will turn this into a sub instruction if the offset turns
9091 out to be negative. */
9092 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9093 inst.relocs[0].pc_rel = 1;
9094 inst.size = INSN_SIZE * 2;
9095 inst.relocs[0].exp.X_add_number -= 8;
9096
9097 if (support_interwork
9098 && inst.relocs[0].exp.X_op == O_symbol
9099 && inst.relocs[0].exp.X_add_symbol != NULL
9100 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9101 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9102 inst.relocs[0].exp.X_add_number |= 1;
9103 }
9104
9105 static void
9106 do_arit (void)
9107 {
9108 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9109 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9110 THUMB1_RELOC_ONLY);
9111 if (!inst.operands[1].present)
9112 inst.operands[1].reg = inst.operands[0].reg;
9113 inst.instruction |= inst.operands[0].reg << 12;
9114 inst.instruction |= inst.operands[1].reg << 16;
9115 encode_arm_shifter_operand (2);
9116 }
9117
9118 static void
9119 do_barrier (void)
9120 {
9121 if (inst.operands[0].present)
9122 inst.instruction |= inst.operands[0].imm;
9123 else
9124 inst.instruction |= 0xf;
9125 }
9126
9127 static void
9128 do_bfc (void)
9129 {
9130 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9131 constraint (msb > 32, _("bit-field extends past end of register"));
9132 /* The instruction encoding stores the LSB and MSB,
9133 not the LSB and width. */
9134 inst.instruction |= inst.operands[0].reg << 12;
9135 inst.instruction |= inst.operands[1].imm << 7;
9136 inst.instruction |= (msb - 1) << 16;
9137 }
9138
9139 static void
9140 do_bfi (void)
9141 {
9142 unsigned int msb;
9143
9144 /* #0 in second position is alternative syntax for bfc, which is
9145 the same instruction but with REG_PC in the Rm field. */
9146 if (!inst.operands[1].isreg)
9147 inst.operands[1].reg = REG_PC;
9148
9149 msb = inst.operands[2].imm + inst.operands[3].imm;
9150 constraint (msb > 32, _("bit-field extends past end of register"));
9151 /* The instruction encoding stores the LSB and MSB,
9152 not the LSB and width. */
9153 inst.instruction |= inst.operands[0].reg << 12;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].imm << 7;
9156 inst.instruction |= (msb - 1) << 16;
9157 }
9158
9159 static void
9160 do_bfx (void)
9161 {
9162 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9163 _("bit-field extends past end of register"));
9164 inst.instruction |= inst.operands[0].reg << 12;
9165 inst.instruction |= inst.operands[1].reg;
9166 inst.instruction |= inst.operands[2].imm << 7;
9167 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9168 }
9169
9170 /* ARM V5 breakpoint instruction (argument parse)
9171 BKPT <16 bit unsigned immediate>
9172 Instruction is not conditional.
9173 The bit pattern given in insns[] has the COND_ALWAYS condition,
9174 and it is an error if the caller tried to override that. */
9175
9176 static void
9177 do_bkpt (void)
9178 {
9179 /* Top 12 of 16 bits to bits 19:8. */
9180 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9181
9182 /* Bottom 4 of 16 bits to bits 3:0. */
9183 inst.instruction |= inst.operands[0].imm & 0xf;
9184 }
9185
9186 static void
9187 encode_branch (int default_reloc)
9188 {
9189 if (inst.operands[0].hasreloc)
9190 {
9191 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9192 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9193 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9194 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9195 ? BFD_RELOC_ARM_PLT32
9196 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9197 }
9198 else
9199 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9200 inst.relocs[0].pc_rel = 1;
9201 }
9202
9203 static void
9204 do_branch (void)
9205 {
9206 #ifdef OBJ_ELF
9207 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9208 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9209 else
9210 #endif
9211 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9212 }
9213
9214 static void
9215 do_bl (void)
9216 {
9217 #ifdef OBJ_ELF
9218 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9219 {
9220 if (inst.cond == COND_ALWAYS)
9221 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9222 else
9223 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9224 }
9225 else
9226 #endif
9227 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9228 }
9229
9230 /* ARM V5 branch-link-exchange instruction (argument parse)
9231 BLX <target_addr> ie BLX(1)
9232 BLX{<condition>} <Rm> ie BLX(2)
9233 Unfortunately, there are two different opcodes for this mnemonic.
9234 So, the insns[].value is not used, and the code here zaps values
9235 into inst.instruction.
9236 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9237
9238 static void
9239 do_blx (void)
9240 {
9241 if (inst.operands[0].isreg)
9242 {
9243 /* Arg is a register; the opcode provided by insns[] is correct.
9244 It is not illegal to do "blx pc", just useless. */
9245 if (inst.operands[0].reg == REG_PC)
9246 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9247
9248 inst.instruction |= inst.operands[0].reg;
9249 }
9250 else
9251 {
9252 /* Arg is an address; this instruction cannot be executed
9253 conditionally, and the opcode must be adjusted.
9254 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9255 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9256 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9257 inst.instruction = 0xfa000000;
9258 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9259 }
9260 }
9261
9262 static void
9263 do_bx (void)
9264 {
9265 bfd_boolean want_reloc;
9266
9267 if (inst.operands[0].reg == REG_PC)
9268 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9269
9270 inst.instruction |= inst.operands[0].reg;
9271 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9272 it is for ARMv4t or earlier. */
9273 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9274 if (!ARM_FEATURE_ZERO (selected_object_arch)
9275 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9276 want_reloc = TRUE;
9277
9278 #ifdef OBJ_ELF
9279 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9280 #endif
9281 want_reloc = FALSE;
9282
9283 if (want_reloc)
9284 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9285 }
9286
9287
9288 /* ARM v5TEJ. Jump to Jazelle code. */
9289
9290 static void
9291 do_bxj (void)
9292 {
9293 if (inst.operands[0].reg == REG_PC)
9294 as_tsktsk (_("use of r15 in bxj is not really useful"));
9295
9296 inst.instruction |= inst.operands[0].reg;
9297 }
9298
9299 /* Co-processor data operation:
9300 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9301 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9302 static void
9303 do_cdp (void)
9304 {
9305 inst.instruction |= inst.operands[0].reg << 8;
9306 inst.instruction |= inst.operands[1].imm << 20;
9307 inst.instruction |= inst.operands[2].reg << 12;
9308 inst.instruction |= inst.operands[3].reg << 16;
9309 inst.instruction |= inst.operands[4].reg;
9310 inst.instruction |= inst.operands[5].imm << 5;
9311 }
9312
9313 static void
9314 do_cmp (void)
9315 {
9316 inst.instruction |= inst.operands[0].reg << 16;
9317 encode_arm_shifter_operand (1);
9318 }
9319
9320 /* Transfer between coprocessor and ARM registers.
9321 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9322 MRC2
9323 MCR{cond}
9324 MCR2
9325
9326 No special properties. */
9327
9328 struct deprecated_coproc_regs_s
9329 {
9330 unsigned cp;
9331 int opc1;
9332 unsigned crn;
9333 unsigned crm;
9334 int opc2;
9335 arm_feature_set deprecated;
9336 arm_feature_set obsoleted;
9337 const char *dep_msg;
9338 const char *obs_msg;
9339 };
9340
9341 #define DEPR_ACCESS_V8 \
9342 N_("This coprocessor register access is deprecated in ARMv8")
9343
9344 /* Table of all deprecated coprocessor registers. */
9345 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9346 {
9347 {15, 0, 7, 10, 5, /* CP15DMB. */
9348 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9349 DEPR_ACCESS_V8, NULL},
9350 {15, 0, 7, 10, 4, /* CP15DSB. */
9351 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9352 DEPR_ACCESS_V8, NULL},
9353 {15, 0, 7, 5, 4, /* CP15ISB. */
9354 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9355 DEPR_ACCESS_V8, NULL},
9356 {14, 6, 1, 0, 0, /* TEEHBR. */
9357 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9358 DEPR_ACCESS_V8, NULL},
9359 {14, 6, 0, 0, 0, /* TEECR. */
9360 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9361 DEPR_ACCESS_V8, NULL},
9362 };
9363
9364 #undef DEPR_ACCESS_V8
9365
9366 static const size_t deprecated_coproc_reg_count =
9367 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9368
9369 static void
9370 do_co_reg (void)
9371 {
9372 unsigned Rd;
9373 size_t i;
9374
9375 Rd = inst.operands[2].reg;
9376 if (thumb_mode)
9377 {
9378 if (inst.instruction == 0xee000010
9379 || inst.instruction == 0xfe000010)
9380 /* MCR, MCR2 */
9381 reject_bad_reg (Rd);
9382 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9383 /* MRC, MRC2 */
9384 constraint (Rd == REG_SP, BAD_SP);
9385 }
9386 else
9387 {
9388 /* MCR */
9389 if (inst.instruction == 0xe000010)
9390 constraint (Rd == REG_PC, BAD_PC);
9391 }
9392
9393 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9394 {
9395 const struct deprecated_coproc_regs_s *r =
9396 deprecated_coproc_regs + i;
9397
9398 if (inst.operands[0].reg == r->cp
9399 && inst.operands[1].imm == r->opc1
9400 && inst.operands[3].reg == r->crn
9401 && inst.operands[4].reg == r->crm
9402 && inst.operands[5].imm == r->opc2)
9403 {
9404 if (! ARM_CPU_IS_ANY (cpu_variant)
9405 && warn_on_deprecated
9406 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9407 as_tsktsk ("%s", r->dep_msg);
9408 }
9409 }
9410
9411 inst.instruction |= inst.operands[0].reg << 8;
9412 inst.instruction |= inst.operands[1].imm << 21;
9413 inst.instruction |= Rd << 12;
9414 inst.instruction |= inst.operands[3].reg << 16;
9415 inst.instruction |= inst.operands[4].reg;
9416 inst.instruction |= inst.operands[5].imm << 5;
9417 }
9418
9419 /* Transfer between coprocessor register and pair of ARM registers.
9420 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9421 MCRR2
9422 MRRC{cond}
9423 MRRC2
9424
9425 Two XScale instructions are special cases of these:
9426
9427 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9428 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9429
9430 Result unpredictable if Rd or Rn is R15. */
9431
9432 static void
9433 do_co_reg2c (void)
9434 {
9435 unsigned Rd, Rn;
9436
9437 Rd = inst.operands[2].reg;
9438 Rn = inst.operands[3].reg;
9439
9440 if (thumb_mode)
9441 {
9442 reject_bad_reg (Rd);
9443 reject_bad_reg (Rn);
9444 }
9445 else
9446 {
9447 constraint (Rd == REG_PC, BAD_PC);
9448 constraint (Rn == REG_PC, BAD_PC);
9449 }
9450
9451 /* Only check the MRRC{2} variants. */
9452 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9453 {
9454 /* If Rd == Rn, error that the operation is
9455 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9456 constraint (Rd == Rn, BAD_OVERLAP);
9457 }
9458
9459 inst.instruction |= inst.operands[0].reg << 8;
9460 inst.instruction |= inst.operands[1].imm << 4;
9461 inst.instruction |= Rd << 12;
9462 inst.instruction |= Rn << 16;
9463 inst.instruction |= inst.operands[4].reg;
9464 }
9465
9466 static void
9467 do_cpsi (void)
9468 {
9469 inst.instruction |= inst.operands[0].imm << 6;
9470 if (inst.operands[1].present)
9471 {
9472 inst.instruction |= CPSI_MMOD;
9473 inst.instruction |= inst.operands[1].imm;
9474 }
9475 }
9476
9477 static void
9478 do_dbg (void)
9479 {
9480 inst.instruction |= inst.operands[0].imm;
9481 }
9482
9483 static void
9484 do_div (void)
9485 {
9486 unsigned Rd, Rn, Rm;
9487
9488 Rd = inst.operands[0].reg;
9489 Rn = (inst.operands[1].present
9490 ? inst.operands[1].reg : Rd);
9491 Rm = inst.operands[2].reg;
9492
9493 constraint ((Rd == REG_PC), BAD_PC);
9494 constraint ((Rn == REG_PC), BAD_PC);
9495 constraint ((Rm == REG_PC), BAD_PC);
9496
9497 inst.instruction |= Rd << 16;
9498 inst.instruction |= Rn << 0;
9499 inst.instruction |= Rm << 8;
9500 }
9501
9502 static void
9503 do_it (void)
9504 {
9505 /* There is no IT instruction in ARM mode. We
9506 process it to do the validation as if in
9507 thumb mode, just in case the code gets
9508 assembled for thumb using the unified syntax. */
9509
9510 inst.size = 0;
9511 if (unified_syntax)
9512 {
9513 set_pred_insn_type (IT_INSN);
9514 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9515 now_pred.cc = inst.operands[0].imm;
9516 }
9517 }
9518
9519 /* If there is only one register in the register list,
9520 then return its register number. Otherwise return -1. */
9521 static int
9522 only_one_reg_in_list (int range)
9523 {
9524 int i = ffs (range) - 1;
9525 return (i > 15 || range != (1 << i)) ? -1 : i;
9526 }
9527
9528 static void
9529 encode_ldmstm(int from_push_pop_mnem)
9530 {
9531 int base_reg = inst.operands[0].reg;
9532 int range = inst.operands[1].imm;
9533 int one_reg;
9534
9535 inst.instruction |= base_reg << 16;
9536 inst.instruction |= range;
9537
9538 if (inst.operands[1].writeback)
9539 inst.instruction |= LDM_TYPE_2_OR_3;
9540
9541 if (inst.operands[0].writeback)
9542 {
9543 inst.instruction |= WRITE_BACK;
9544 /* Check for unpredictable uses of writeback. */
9545 if (inst.instruction & LOAD_BIT)
9546 {
9547 /* Not allowed in LDM type 2. */
9548 if ((inst.instruction & LDM_TYPE_2_OR_3)
9549 && ((range & (1 << REG_PC)) == 0))
9550 as_warn (_("writeback of base register is UNPREDICTABLE"));
9551 /* Only allowed if base reg not in list for other types. */
9552 else if (range & (1 << base_reg))
9553 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9554 }
9555 else /* STM. */
9556 {
9557 /* Not allowed for type 2. */
9558 if (inst.instruction & LDM_TYPE_2_OR_3)
9559 as_warn (_("writeback of base register is UNPREDICTABLE"));
9560 /* Only allowed if base reg not in list, or first in list. */
9561 else if ((range & (1 << base_reg))
9562 && (range & ((1 << base_reg) - 1)))
9563 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9564 }
9565 }
9566
9567 /* If PUSH/POP has only one register, then use the A2 encoding. */
9568 one_reg = only_one_reg_in_list (range);
9569 if (from_push_pop_mnem && one_reg >= 0)
9570 {
9571 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9572
9573 if (is_push && one_reg == 13 /* SP */)
9574 /* PR 22483: The A2 encoding cannot be used when
9575 pushing the stack pointer as this is UNPREDICTABLE. */
9576 return;
9577
9578 inst.instruction &= A_COND_MASK;
9579 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9580 inst.instruction |= one_reg << 12;
9581 }
9582 }
9583
9584 static void
9585 do_ldmstm (void)
9586 {
9587 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9588 }
9589
9590 /* ARMv5TE load-consecutive (argument parse)
9591 Mode is like LDRH.
9592
9593 LDRccD R, mode
9594 STRccD R, mode. */
9595
9596 static void
9597 do_ldrd (void)
9598 {
9599 constraint (inst.operands[0].reg % 2 != 0,
9600 _("first transfer register must be even"));
9601 constraint (inst.operands[1].present
9602 && inst.operands[1].reg != inst.operands[0].reg + 1,
9603 _("can only transfer two consecutive registers"));
9604 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9605 constraint (!inst.operands[2].isreg, _("'[' expected"));
9606
9607 if (!inst.operands[1].present)
9608 inst.operands[1].reg = inst.operands[0].reg + 1;
9609
9610 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9611 register and the first register written; we have to diagnose
9612 overlap between the base and the second register written here. */
9613
9614 if (inst.operands[2].reg == inst.operands[1].reg
9615 && (inst.operands[2].writeback || inst.operands[2].postind))
9616 as_warn (_("base register written back, and overlaps "
9617 "second transfer register"));
9618
9619 if (!(inst.instruction & V4_STR_BIT))
9620 {
9621 /* For an index-register load, the index register must not overlap the
9622 destination (even if not write-back). */
9623 if (inst.operands[2].immisreg
9624 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9625 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9626 as_warn (_("index register overlaps transfer register"));
9627 }
9628 inst.instruction |= inst.operands[0].reg << 12;
9629 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9630 }
9631
9632 static void
9633 do_ldrex (void)
9634 {
9635 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9636 || inst.operands[1].postind || inst.operands[1].writeback
9637 || inst.operands[1].immisreg || inst.operands[1].shifted
9638 || inst.operands[1].negative
9639 /* This can arise if the programmer has written
9640 strex rN, rM, foo
9641 or if they have mistakenly used a register name as the last
9642 operand, eg:
9643 strex rN, rM, rX
9644 It is very difficult to distinguish between these two cases
9645 because "rX" might actually be a label. ie the register
9646 name has been occluded by a symbol of the same name. So we
9647 just generate a general 'bad addressing mode' type error
9648 message and leave it up to the programmer to discover the
9649 true cause and fix their mistake. */
9650 || (inst.operands[1].reg == REG_PC),
9651 BAD_ADDR_MODE);
9652
9653 constraint (inst.relocs[0].exp.X_op != O_constant
9654 || inst.relocs[0].exp.X_add_number != 0,
9655 _("offset must be zero in ARM encoding"));
9656
9657 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9658
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 inst.instruction |= inst.operands[1].reg << 16;
9661 inst.relocs[0].type = BFD_RELOC_UNUSED;
9662 }
9663
9664 static void
9665 do_ldrexd (void)
9666 {
9667 constraint (inst.operands[0].reg % 2 != 0,
9668 _("even register required"));
9669 constraint (inst.operands[1].present
9670 && inst.operands[1].reg != inst.operands[0].reg + 1,
9671 _("can only load two consecutive registers"));
9672 /* If op 1 were present and equal to PC, this function wouldn't
9673 have been called in the first place. */
9674 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9675
9676 inst.instruction |= inst.operands[0].reg << 12;
9677 inst.instruction |= inst.operands[2].reg << 16;
9678 }
9679
9680 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9681 which is not a multiple of four is UNPREDICTABLE. */
9682 static void
9683 check_ldr_r15_aligned (void)
9684 {
9685 constraint (!(inst.operands[1].immisreg)
9686 && (inst.operands[0].reg == REG_PC
9687 && inst.operands[1].reg == REG_PC
9688 && (inst.relocs[0].exp.X_add_number & 0x3)),
9689 _("ldr to register 15 must be 4-byte aligned"));
9690 }
9691
9692 static void
9693 do_ldst (void)
9694 {
9695 inst.instruction |= inst.operands[0].reg << 12;
9696 if (!inst.operands[1].isreg)
9697 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9698 return;
9699 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9700 check_ldr_r15_aligned ();
9701 }
9702
9703 static void
9704 do_ldstt (void)
9705 {
9706 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9707 reject [Rn,...]. */
9708 if (inst.operands[1].preind)
9709 {
9710 constraint (inst.relocs[0].exp.X_op != O_constant
9711 || inst.relocs[0].exp.X_add_number != 0,
9712 _("this instruction requires a post-indexed address"));
9713
9714 inst.operands[1].preind = 0;
9715 inst.operands[1].postind = 1;
9716 inst.operands[1].writeback = 1;
9717 }
9718 inst.instruction |= inst.operands[0].reg << 12;
9719 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9720 }
9721
9722 /* Halfword and signed-byte load/store operations. */
9723
9724 static void
9725 do_ldstv4 (void)
9726 {
9727 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9728 inst.instruction |= inst.operands[0].reg << 12;
9729 if (!inst.operands[1].isreg)
9730 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9731 return;
9732 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9733 }
9734
9735 static void
9736 do_ldsttv4 (void)
9737 {
9738 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9739 reject [Rn,...]. */
9740 if (inst.operands[1].preind)
9741 {
9742 constraint (inst.relocs[0].exp.X_op != O_constant
9743 || inst.relocs[0].exp.X_add_number != 0,
9744 _("this instruction requires a post-indexed address"));
9745
9746 inst.operands[1].preind = 0;
9747 inst.operands[1].postind = 1;
9748 inst.operands[1].writeback = 1;
9749 }
9750 inst.instruction |= inst.operands[0].reg << 12;
9751 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9752 }
9753
9754 /* Co-processor register load/store.
9755 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9756 static void
9757 do_lstc (void)
9758 {
9759 inst.instruction |= inst.operands[0].reg << 8;
9760 inst.instruction |= inst.operands[1].reg << 12;
9761 encode_arm_cp_address (2, TRUE, TRUE, 0);
9762 }
9763
9764 static void
9765 do_mlas (void)
9766 {
9767 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9768 if (inst.operands[0].reg == inst.operands[1].reg
9769 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9770 && !(inst.instruction & 0x00400000))
9771 as_tsktsk (_("Rd and Rm should be different in mla"));
9772
9773 inst.instruction |= inst.operands[0].reg << 16;
9774 inst.instruction |= inst.operands[1].reg;
9775 inst.instruction |= inst.operands[2].reg << 8;
9776 inst.instruction |= inst.operands[3].reg << 12;
9777 }
9778
9779 static void
9780 do_mov (void)
9781 {
9782 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9783 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9784 THUMB1_RELOC_ONLY);
9785 inst.instruction |= inst.operands[0].reg << 12;
9786 encode_arm_shifter_operand (1);
9787 }
9788
9789 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9790 static void
9791 do_mov16 (void)
9792 {
9793 bfd_vma imm;
9794 bfd_boolean top;
9795
9796 top = (inst.instruction & 0x00400000) != 0;
9797 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9798 _(":lower16: not allowed in this instruction"));
9799 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9800 _(":upper16: not allowed in this instruction"));
9801 inst.instruction |= inst.operands[0].reg << 12;
9802 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9803 {
9804 imm = inst.relocs[0].exp.X_add_number;
9805 /* The value is in two pieces: 0:11, 16:19. */
9806 inst.instruction |= (imm & 0x00000fff);
9807 inst.instruction |= (imm & 0x0000f000) << 4;
9808 }
9809 }
9810
9811 static int
9812 do_vfp_nsyn_mrs (void)
9813 {
9814 if (inst.operands[0].isvec)
9815 {
9816 if (inst.operands[1].reg != 1)
9817 first_error (_("operand 1 must be FPSCR"));
9818 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9819 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9820 do_vfp_nsyn_opcode ("fmstat");
9821 }
9822 else if (inst.operands[1].isvec)
9823 do_vfp_nsyn_opcode ("fmrx");
9824 else
9825 return FAIL;
9826
9827 return SUCCESS;
9828 }
9829
9830 static int
9831 do_vfp_nsyn_msr (void)
9832 {
9833 if (inst.operands[0].isvec)
9834 do_vfp_nsyn_opcode ("fmxr");
9835 else
9836 return FAIL;
9837
9838 return SUCCESS;
9839 }
9840
9841 static void
9842 do_vmrs (void)
9843 {
9844 unsigned Rt = inst.operands[0].reg;
9845
9846 if (thumb_mode && Rt == REG_SP)
9847 {
9848 inst.error = BAD_SP;
9849 return;
9850 }
9851
9852 switch (inst.operands[1].reg)
9853 {
9854 /* MVFR2 is only valid for Armv8-A. */
9855 case 5:
9856 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9857 _(BAD_FPU));
9858 break;
9859
9860 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
9861 case 1: /* fpscr. */
9862 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9863 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9864 _(BAD_FPU));
9865 break;
9866
9867 case 14: /* fpcxt_ns. */
9868 case 15: /* fpcxt_s. */
9869 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
9870 _("selected processor does not support instruction"));
9871 break;
9872
9873 case 2: /* fpscr_nzcvqc. */
9874 case 12: /* vpr. */
9875 case 13: /* p0. */
9876 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
9877 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9878 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9879 _("selected processor does not support instruction"));
9880 if (inst.operands[0].reg != 2
9881 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
9882 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
9883 break;
9884
9885 default:
9886 break;
9887 }
9888
9889 /* APSR_ sets isvec. All other refs to PC are illegal. */
9890 if (!inst.operands[0].isvec && Rt == REG_PC)
9891 {
9892 inst.error = BAD_PC;
9893 return;
9894 }
9895
9896 /* If we get through parsing the register name, we just insert the number
9897 generated into the instruction without further validation. */
9898 inst.instruction |= (inst.operands[1].reg << 16);
9899 inst.instruction |= (Rt << 12);
9900 }
9901
9902 static void
9903 do_vmsr (void)
9904 {
9905 unsigned Rt = inst.operands[1].reg;
9906
9907 if (thumb_mode)
9908 reject_bad_reg (Rt);
9909 else if (Rt == REG_PC)
9910 {
9911 inst.error = BAD_PC;
9912 return;
9913 }
9914
9915 switch (inst.operands[0].reg)
9916 {
9917 /* MVFR2 is only valid for Armv8-A. */
9918 case 5:
9919 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9920 _(BAD_FPU));
9921 break;
9922
9923 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
9924 case 1: /* fpcr. */
9925 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9926 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9927 _(BAD_FPU));
9928 break;
9929
9930 case 14: /* fpcxt_ns. */
9931 case 15: /* fpcxt_s. */
9932 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
9933 _("selected processor does not support instruction"));
9934 break;
9935
9936 case 2: /* fpscr_nzcvqc. */
9937 case 12: /* vpr. */
9938 case 13: /* p0. */
9939 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
9940 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9941 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9942 _("selected processor does not support instruction"));
9943 if (inst.operands[0].reg != 2
9944 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
9945 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
9946 break;
9947
9948 default:
9949 break;
9950 }
9951
9952 /* If we get through parsing the register name, we just insert the number
9953 generated into the instruction without further validation. */
9954 inst.instruction |= (inst.operands[0].reg << 16);
9955 inst.instruction |= (Rt << 12);
9956 }
9957
9958 static void
9959 do_mrs (void)
9960 {
9961 unsigned br;
9962
9963 if (do_vfp_nsyn_mrs () == SUCCESS)
9964 return;
9965
9966 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9967 inst.instruction |= inst.operands[0].reg << 12;
9968
9969 if (inst.operands[1].isreg)
9970 {
9971 br = inst.operands[1].reg;
9972 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9973 as_bad (_("bad register for mrs"));
9974 }
9975 else
9976 {
9977 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9978 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9979 != (PSR_c|PSR_f),
9980 _("'APSR', 'CPSR' or 'SPSR' expected"));
9981 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9982 }
9983
9984 inst.instruction |= br;
9985 }
9986
9987 /* Two possible forms:
9988 "{C|S}PSR_<field>, Rm",
9989 "{C|S}PSR_f, #expression". */
9990
9991 static void
9992 do_msr (void)
9993 {
9994 if (do_vfp_nsyn_msr () == SUCCESS)
9995 return;
9996
9997 inst.instruction |= inst.operands[0].imm;
9998 if (inst.operands[1].isreg)
9999 inst.instruction |= inst.operands[1].reg;
10000 else
10001 {
10002 inst.instruction |= INST_IMMEDIATE;
10003 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10004 inst.relocs[0].pc_rel = 0;
10005 }
10006 }
10007
10008 static void
10009 do_mul (void)
10010 {
10011 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10012
10013 if (!inst.operands[2].present)
10014 inst.operands[2].reg = inst.operands[0].reg;
10015 inst.instruction |= inst.operands[0].reg << 16;
10016 inst.instruction |= inst.operands[1].reg;
10017 inst.instruction |= inst.operands[2].reg << 8;
10018
10019 if (inst.operands[0].reg == inst.operands[1].reg
10020 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10021 as_tsktsk (_("Rd and Rm should be different in mul"));
10022 }
10023
10024 /* Long Multiply Parser
10025 UMULL RdLo, RdHi, Rm, Rs
10026 SMULL RdLo, RdHi, Rm, Rs
10027 UMLAL RdLo, RdHi, Rm, Rs
10028 SMLAL RdLo, RdHi, Rm, Rs. */
10029
10030 static void
10031 do_mull (void)
10032 {
10033 inst.instruction |= inst.operands[0].reg << 12;
10034 inst.instruction |= inst.operands[1].reg << 16;
10035 inst.instruction |= inst.operands[2].reg;
10036 inst.instruction |= inst.operands[3].reg << 8;
10037
10038 /* rdhi and rdlo must be different. */
10039 if (inst.operands[0].reg == inst.operands[1].reg)
10040 as_tsktsk (_("rdhi and rdlo must be different"));
10041
10042 /* rdhi, rdlo and rm must all be different before armv6. */
10043 if ((inst.operands[0].reg == inst.operands[2].reg
10044 || inst.operands[1].reg == inst.operands[2].reg)
10045 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10046 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10047 }
10048
10049 static void
10050 do_nop (void)
10051 {
10052 if (inst.operands[0].present
10053 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10054 {
10055 /* Architectural NOP hints are CPSR sets with no bits selected. */
10056 inst.instruction &= 0xf0000000;
10057 inst.instruction |= 0x0320f000;
10058 if (inst.operands[0].present)
10059 inst.instruction |= inst.operands[0].imm;
10060 }
10061 }
10062
10063 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10064 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10065 Condition defaults to COND_ALWAYS.
10066 Error if Rd, Rn or Rm are R15. */
10067
10068 static void
10069 do_pkhbt (void)
10070 {
10071 inst.instruction |= inst.operands[0].reg << 12;
10072 inst.instruction |= inst.operands[1].reg << 16;
10073 inst.instruction |= inst.operands[2].reg;
10074 if (inst.operands[3].present)
10075 encode_arm_shift (3);
10076 }
10077
10078 /* ARM V6 PKHTB (Argument Parse). */
10079
10080 static void
10081 do_pkhtb (void)
10082 {
10083 if (!inst.operands[3].present)
10084 {
10085 /* If the shift specifier is omitted, turn the instruction
10086 into pkhbt rd, rm, rn. */
10087 inst.instruction &= 0xfff00010;
10088 inst.instruction |= inst.operands[0].reg << 12;
10089 inst.instruction |= inst.operands[1].reg;
10090 inst.instruction |= inst.operands[2].reg << 16;
10091 }
10092 else
10093 {
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= inst.operands[1].reg << 16;
10096 inst.instruction |= inst.operands[2].reg;
10097 encode_arm_shift (3);
10098 }
10099 }
10100
10101 /* ARMv5TE: Preload-Cache
10102 MP Extensions: Preload for write
10103
10104 PLD(W) <addr_mode>
10105
10106 Syntactically, like LDR with B=1, W=0, L=1. */
10107
10108 static void
10109 do_pld (void)
10110 {
10111 constraint (!inst.operands[0].isreg,
10112 _("'[' expected after PLD mnemonic"));
10113 constraint (inst.operands[0].postind,
10114 _("post-indexed expression used in preload instruction"));
10115 constraint (inst.operands[0].writeback,
10116 _("writeback used in preload instruction"));
10117 constraint (!inst.operands[0].preind,
10118 _("unindexed addressing used in preload instruction"));
10119 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10120 }
10121
10122 /* ARMv7: PLI <addr_mode> */
10123 static void
10124 do_pli (void)
10125 {
10126 constraint (!inst.operands[0].isreg,
10127 _("'[' expected after PLI mnemonic"));
10128 constraint (inst.operands[0].postind,
10129 _("post-indexed expression used in preload instruction"));
10130 constraint (inst.operands[0].writeback,
10131 _("writeback used in preload instruction"));
10132 constraint (!inst.operands[0].preind,
10133 _("unindexed addressing used in preload instruction"));
10134 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10135 inst.instruction &= ~PRE_INDEX;
10136 }
10137
10138 static void
10139 do_push_pop (void)
10140 {
10141 constraint (inst.operands[0].writeback,
10142 _("push/pop do not support {reglist}^"));
10143 inst.operands[1] = inst.operands[0];
10144 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10145 inst.operands[0].isreg = 1;
10146 inst.operands[0].writeback = 1;
10147 inst.operands[0].reg = REG_SP;
10148 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10149 }
10150
10151 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10152 word at the specified address and the following word
10153 respectively.
10154 Unconditionally executed.
10155 Error if Rn is R15. */
10156
10157 static void
10158 do_rfe (void)
10159 {
10160 inst.instruction |= inst.operands[0].reg << 16;
10161 if (inst.operands[0].writeback)
10162 inst.instruction |= WRITE_BACK;
10163 }
10164
10165 /* ARM V6 ssat (argument parse). */
10166
10167 static void
10168 do_ssat (void)
10169 {
10170 inst.instruction |= inst.operands[0].reg << 12;
10171 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10172 inst.instruction |= inst.operands[2].reg;
10173
10174 if (inst.operands[3].present)
10175 encode_arm_shift (3);
10176 }
10177
10178 /* ARM V6 usat (argument parse). */
10179
10180 static void
10181 do_usat (void)
10182 {
10183 inst.instruction |= inst.operands[0].reg << 12;
10184 inst.instruction |= inst.operands[1].imm << 16;
10185 inst.instruction |= inst.operands[2].reg;
10186
10187 if (inst.operands[3].present)
10188 encode_arm_shift (3);
10189 }
10190
10191 /* ARM V6 ssat16 (argument parse). */
10192
10193 static void
10194 do_ssat16 (void)
10195 {
10196 inst.instruction |= inst.operands[0].reg << 12;
10197 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10198 inst.instruction |= inst.operands[2].reg;
10199 }
10200
10201 static void
10202 do_usat16 (void)
10203 {
10204 inst.instruction |= inst.operands[0].reg << 12;
10205 inst.instruction |= inst.operands[1].imm << 16;
10206 inst.instruction |= inst.operands[2].reg;
10207 }
10208
10209 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10210 preserving the other bits.
10211
10212 setend <endian_specifier>, where <endian_specifier> is either
10213 BE or LE. */
10214
10215 static void
10216 do_setend (void)
10217 {
10218 if (warn_on_deprecated
10219 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10220 as_tsktsk (_("setend use is deprecated for ARMv8"));
10221
10222 if (inst.operands[0].imm)
10223 inst.instruction |= 0x200;
10224 }
10225
10226 static void
10227 do_shift (void)
10228 {
10229 unsigned int Rm = (inst.operands[1].present
10230 ? inst.operands[1].reg
10231 : inst.operands[0].reg);
10232
10233 inst.instruction |= inst.operands[0].reg << 12;
10234 inst.instruction |= Rm;
10235 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10236 {
10237 inst.instruction |= inst.operands[2].reg << 8;
10238 inst.instruction |= SHIFT_BY_REG;
10239 /* PR 12854: Error on extraneous shifts. */
10240 constraint (inst.operands[2].shifted,
10241 _("extraneous shift as part of operand to shift insn"));
10242 }
10243 else
10244 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10245 }
10246
10247 static void
10248 do_smc (void)
10249 {
10250 unsigned int value = inst.relocs[0].exp.X_add_number;
10251 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10252
10253 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10254 inst.relocs[0].pc_rel = 0;
10255 }
10256
10257 static void
10258 do_hvc (void)
10259 {
10260 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10261 inst.relocs[0].pc_rel = 0;
10262 }
10263
10264 static void
10265 do_swi (void)
10266 {
10267 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10268 inst.relocs[0].pc_rel = 0;
10269 }
10270
10271 static void
10272 do_setpan (void)
10273 {
10274 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10275 _("selected processor does not support SETPAN instruction"));
10276
10277 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10278 }
10279
10280 static void
10281 do_t_setpan (void)
10282 {
10283 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10284 _("selected processor does not support SETPAN instruction"));
10285
10286 inst.instruction |= (inst.operands[0].imm << 3);
10287 }
10288
10289 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10290 SMLAxy{cond} Rd,Rm,Rs,Rn
10291 SMLAWy{cond} Rd,Rm,Rs,Rn
10292 Error if any register is R15. */
10293
10294 static void
10295 do_smla (void)
10296 {
10297 inst.instruction |= inst.operands[0].reg << 16;
10298 inst.instruction |= inst.operands[1].reg;
10299 inst.instruction |= inst.operands[2].reg << 8;
10300 inst.instruction |= inst.operands[3].reg << 12;
10301 }
10302
10303 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10304 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10305 Error if any register is R15.
10306 Warning if Rdlo == Rdhi. */
10307
10308 static void
10309 do_smlal (void)
10310 {
10311 inst.instruction |= inst.operands[0].reg << 12;
10312 inst.instruction |= inst.operands[1].reg << 16;
10313 inst.instruction |= inst.operands[2].reg;
10314 inst.instruction |= inst.operands[3].reg << 8;
10315
10316 if (inst.operands[0].reg == inst.operands[1].reg)
10317 as_tsktsk (_("rdhi and rdlo must be different"));
10318 }
10319
10320 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10321 SMULxy{cond} Rd,Rm,Rs
10322 Error if any register is R15. */
10323
10324 static void
10325 do_smul (void)
10326 {
10327 inst.instruction |= inst.operands[0].reg << 16;
10328 inst.instruction |= inst.operands[1].reg;
10329 inst.instruction |= inst.operands[2].reg << 8;
10330 }
10331
10332 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10333 the same for both ARM and Thumb-2. */
10334
10335 static void
10336 do_srs (void)
10337 {
10338 int reg;
10339
10340 if (inst.operands[0].present)
10341 {
10342 reg = inst.operands[0].reg;
10343 constraint (reg != REG_SP, _("SRS base register must be r13"));
10344 }
10345 else
10346 reg = REG_SP;
10347
10348 inst.instruction |= reg << 16;
10349 inst.instruction |= inst.operands[1].imm;
10350 if (inst.operands[0].writeback || inst.operands[1].writeback)
10351 inst.instruction |= WRITE_BACK;
10352 }
10353
10354 /* ARM V6 strex (argument parse). */
10355
10356 static void
10357 do_strex (void)
10358 {
10359 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10360 || inst.operands[2].postind || inst.operands[2].writeback
10361 || inst.operands[2].immisreg || inst.operands[2].shifted
10362 || inst.operands[2].negative
10363 /* See comment in do_ldrex(). */
10364 || (inst.operands[2].reg == REG_PC),
10365 BAD_ADDR_MODE);
10366
10367 constraint (inst.operands[0].reg == inst.operands[1].reg
10368 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10369
10370 constraint (inst.relocs[0].exp.X_op != O_constant
10371 || inst.relocs[0].exp.X_add_number != 0,
10372 _("offset must be zero in ARM encoding"));
10373
10374 inst.instruction |= inst.operands[0].reg << 12;
10375 inst.instruction |= inst.operands[1].reg;
10376 inst.instruction |= inst.operands[2].reg << 16;
10377 inst.relocs[0].type = BFD_RELOC_UNUSED;
10378 }
10379
10380 static void
10381 do_t_strexbh (void)
10382 {
10383 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10384 || inst.operands[2].postind || inst.operands[2].writeback
10385 || inst.operands[2].immisreg || inst.operands[2].shifted
10386 || inst.operands[2].negative,
10387 BAD_ADDR_MODE);
10388
10389 constraint (inst.operands[0].reg == inst.operands[1].reg
10390 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10391
10392 do_rm_rd_rn ();
10393 }
10394
10395 static void
10396 do_strexd (void)
10397 {
10398 constraint (inst.operands[1].reg % 2 != 0,
10399 _("even register required"));
10400 constraint (inst.operands[2].present
10401 && inst.operands[2].reg != inst.operands[1].reg + 1,
10402 _("can only store two consecutive registers"));
10403 /* If op 2 were present and equal to PC, this function wouldn't
10404 have been called in the first place. */
10405 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10406
10407 constraint (inst.operands[0].reg == inst.operands[1].reg
10408 || inst.operands[0].reg == inst.operands[1].reg + 1
10409 || inst.operands[0].reg == inst.operands[3].reg,
10410 BAD_OVERLAP);
10411
10412 inst.instruction |= inst.operands[0].reg << 12;
10413 inst.instruction |= inst.operands[1].reg;
10414 inst.instruction |= inst.operands[3].reg << 16;
10415 }
10416
10417 /* ARM V8 STRL. */
10418 static void
10419 do_stlex (void)
10420 {
10421 constraint (inst.operands[0].reg == inst.operands[1].reg
10422 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10423
10424 do_rd_rm_rn ();
10425 }
10426
10427 static void
10428 do_t_stlex (void)
10429 {
10430 constraint (inst.operands[0].reg == inst.operands[1].reg
10431 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10432
10433 do_rm_rd_rn ();
10434 }
10435
10436 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10437 extends it to 32-bits, and adds the result to a value in another
10438 register. You can specify a rotation by 0, 8, 16, or 24 bits
10439 before extracting the 16-bit value.
10440 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10441 Condition defaults to COND_ALWAYS.
10442 Error if any register uses R15. */
10443
10444 static void
10445 do_sxtah (void)
10446 {
10447 inst.instruction |= inst.operands[0].reg << 12;
10448 inst.instruction |= inst.operands[1].reg << 16;
10449 inst.instruction |= inst.operands[2].reg;
10450 inst.instruction |= inst.operands[3].imm << 10;
10451 }
10452
10453 /* ARM V6 SXTH.
10454
10455 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10456 Condition defaults to COND_ALWAYS.
10457 Error if any register uses R15. */
10458
10459 static void
10460 do_sxth (void)
10461 {
10462 inst.instruction |= inst.operands[0].reg << 12;
10463 inst.instruction |= inst.operands[1].reg;
10464 inst.instruction |= inst.operands[2].imm << 10;
10465 }
10466 \f
10467 /* VFP instructions. In a logical order: SP variant first, monad
10468 before dyad, arithmetic then move then load/store. */
10469
10470 static void
10471 do_vfp_sp_monadic (void)
10472 {
10473 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10474 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10475 _(BAD_FPU));
10476
10477 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10478 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10479 }
10480
10481 static void
10482 do_vfp_sp_dyadic (void)
10483 {
10484 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10485 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10486 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10487 }
10488
10489 static void
10490 do_vfp_sp_compare_z (void)
10491 {
10492 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10493 }
10494
10495 static void
10496 do_vfp_dp_sp_cvt (void)
10497 {
10498 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10499 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10500 }
10501
10502 static void
10503 do_vfp_sp_dp_cvt (void)
10504 {
10505 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10506 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10507 }
10508
10509 static void
10510 do_vfp_reg_from_sp (void)
10511 {
10512 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10513 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10514 _(BAD_FPU));
10515
10516 inst.instruction |= inst.operands[0].reg << 12;
10517 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10518 }
10519
10520 static void
10521 do_vfp_reg2_from_sp2 (void)
10522 {
10523 constraint (inst.operands[2].imm != 2,
10524 _("only two consecutive VFP SP registers allowed here"));
10525 inst.instruction |= inst.operands[0].reg << 12;
10526 inst.instruction |= inst.operands[1].reg << 16;
10527 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10528 }
10529
10530 static void
10531 do_vfp_sp_from_reg (void)
10532 {
10533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10535 _(BAD_FPU));
10536
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10538 inst.instruction |= inst.operands[1].reg << 12;
10539 }
10540
10541 static void
10542 do_vfp_sp2_from_reg2 (void)
10543 {
10544 constraint (inst.operands[0].imm != 2,
10545 _("only two consecutive VFP SP registers allowed here"));
10546 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10547 inst.instruction |= inst.operands[1].reg << 12;
10548 inst.instruction |= inst.operands[2].reg << 16;
10549 }
10550
10551 static void
10552 do_vfp_sp_ldst (void)
10553 {
10554 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10555 encode_arm_cp_address (1, FALSE, TRUE, 0);
10556 }
10557
10558 static void
10559 do_vfp_dp_ldst (void)
10560 {
10561 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10562 encode_arm_cp_address (1, FALSE, TRUE, 0);
10563 }
10564
10565
10566 static void
10567 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10568 {
10569 if (inst.operands[0].writeback)
10570 inst.instruction |= WRITE_BACK;
10571 else
10572 constraint (ldstm_type != VFP_LDSTMIA,
10573 _("this addressing mode requires base-register writeback"));
10574 inst.instruction |= inst.operands[0].reg << 16;
10575 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10576 inst.instruction |= inst.operands[1].imm;
10577 }
10578
10579 static void
10580 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10581 {
10582 int count;
10583
10584 if (inst.operands[0].writeback)
10585 inst.instruction |= WRITE_BACK;
10586 else
10587 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10588 _("this addressing mode requires base-register writeback"));
10589
10590 inst.instruction |= inst.operands[0].reg << 16;
10591 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10592
10593 count = inst.operands[1].imm << 1;
10594 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10595 count += 1;
10596
10597 inst.instruction |= count;
10598 }
10599
10600 static void
10601 do_vfp_sp_ldstmia (void)
10602 {
10603 vfp_sp_ldstm (VFP_LDSTMIA);
10604 }
10605
10606 static void
10607 do_vfp_sp_ldstmdb (void)
10608 {
10609 vfp_sp_ldstm (VFP_LDSTMDB);
10610 }
10611
10612 static void
10613 do_vfp_dp_ldstmia (void)
10614 {
10615 vfp_dp_ldstm (VFP_LDSTMIA);
10616 }
10617
10618 static void
10619 do_vfp_dp_ldstmdb (void)
10620 {
10621 vfp_dp_ldstm (VFP_LDSTMDB);
10622 }
10623
10624 static void
10625 do_vfp_xp_ldstmia (void)
10626 {
10627 vfp_dp_ldstm (VFP_LDSTMIAX);
10628 }
10629
10630 static void
10631 do_vfp_xp_ldstmdb (void)
10632 {
10633 vfp_dp_ldstm (VFP_LDSTMDBX);
10634 }
10635
10636 static void
10637 do_vfp_dp_rd_rm (void)
10638 {
10639 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10640 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10641 _(BAD_FPU));
10642
10643 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10644 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10645 }
10646
10647 static void
10648 do_vfp_dp_rn_rd (void)
10649 {
10650 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10651 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10652 }
10653
10654 static void
10655 do_vfp_dp_rd_rn (void)
10656 {
10657 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10658 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10659 }
10660
10661 static void
10662 do_vfp_dp_rd_rn_rm (void)
10663 {
10664 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10665 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10666 _(BAD_FPU));
10667
10668 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10669 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10670 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10671 }
10672
10673 static void
10674 do_vfp_dp_rd (void)
10675 {
10676 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10677 }
10678
10679 static void
10680 do_vfp_dp_rm_rd_rn (void)
10681 {
10682 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10683 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10684 _(BAD_FPU));
10685
10686 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10688 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10689 }
10690
10691 /* VFPv3 instructions. */
10692 static void
10693 do_vfp_sp_const (void)
10694 {
10695 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10696 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10697 inst.instruction |= (inst.operands[1].imm & 0x0f);
10698 }
10699
10700 static void
10701 do_vfp_dp_const (void)
10702 {
10703 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10704 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10705 inst.instruction |= (inst.operands[1].imm & 0x0f);
10706 }
10707
10708 static void
10709 vfp_conv (int srcsize)
10710 {
10711 int immbits = srcsize - inst.operands[1].imm;
10712
10713 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10714 {
10715 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10716 i.e. immbits must be in range 0 - 16. */
10717 inst.error = _("immediate value out of range, expected range [0, 16]");
10718 return;
10719 }
10720 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10721 {
10722 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10723 i.e. immbits must be in range 0 - 31. */
10724 inst.error = _("immediate value out of range, expected range [1, 32]");
10725 return;
10726 }
10727
10728 inst.instruction |= (immbits & 1) << 5;
10729 inst.instruction |= (immbits >> 1);
10730 }
10731
10732 static void
10733 do_vfp_sp_conv_16 (void)
10734 {
10735 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10736 vfp_conv (16);
10737 }
10738
10739 static void
10740 do_vfp_dp_conv_16 (void)
10741 {
10742 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10743 vfp_conv (16);
10744 }
10745
10746 static void
10747 do_vfp_sp_conv_32 (void)
10748 {
10749 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10750 vfp_conv (32);
10751 }
10752
10753 static void
10754 do_vfp_dp_conv_32 (void)
10755 {
10756 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10757 vfp_conv (32);
10758 }
10759 \f
10760 /* FPA instructions. Also in a logical order. */
10761
10762 static void
10763 do_fpa_cmp (void)
10764 {
10765 inst.instruction |= inst.operands[0].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767 }
10768
10769 static void
10770 do_fpa_ldmstm (void)
10771 {
10772 inst.instruction |= inst.operands[0].reg << 12;
10773 switch (inst.operands[1].imm)
10774 {
10775 case 1: inst.instruction |= CP_T_X; break;
10776 case 2: inst.instruction |= CP_T_Y; break;
10777 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10778 case 4: break;
10779 default: abort ();
10780 }
10781
10782 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10783 {
10784 /* The instruction specified "ea" or "fd", so we can only accept
10785 [Rn]{!}. The instruction does not really support stacking or
10786 unstacking, so we have to emulate these by setting appropriate
10787 bits and offsets. */
10788 constraint (inst.relocs[0].exp.X_op != O_constant
10789 || inst.relocs[0].exp.X_add_number != 0,
10790 _("this instruction does not support indexing"));
10791
10792 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10793 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10794
10795 if (!(inst.instruction & INDEX_UP))
10796 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10797
10798 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10799 {
10800 inst.operands[2].preind = 0;
10801 inst.operands[2].postind = 1;
10802 }
10803 }
10804
10805 encode_arm_cp_address (2, TRUE, TRUE, 0);
10806 }
10807 \f
10808 /* iWMMXt instructions: strictly in alphabetical order. */
10809
10810 static void
10811 do_iwmmxt_tandorc (void)
10812 {
10813 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10814 }
10815
10816 static void
10817 do_iwmmxt_textrc (void)
10818 {
10819 inst.instruction |= inst.operands[0].reg << 12;
10820 inst.instruction |= inst.operands[1].imm;
10821 }
10822
10823 static void
10824 do_iwmmxt_textrm (void)
10825 {
10826 inst.instruction |= inst.operands[0].reg << 12;
10827 inst.instruction |= inst.operands[1].reg << 16;
10828 inst.instruction |= inst.operands[2].imm;
10829 }
10830
10831 static void
10832 do_iwmmxt_tinsr (void)
10833 {
10834 inst.instruction |= inst.operands[0].reg << 16;
10835 inst.instruction |= inst.operands[1].reg << 12;
10836 inst.instruction |= inst.operands[2].imm;
10837 }
10838
10839 static void
10840 do_iwmmxt_tmia (void)
10841 {
10842 inst.instruction |= inst.operands[0].reg << 5;
10843 inst.instruction |= inst.operands[1].reg;
10844 inst.instruction |= inst.operands[2].reg << 12;
10845 }
10846
10847 static void
10848 do_iwmmxt_waligni (void)
10849 {
10850 inst.instruction |= inst.operands[0].reg << 12;
10851 inst.instruction |= inst.operands[1].reg << 16;
10852 inst.instruction |= inst.operands[2].reg;
10853 inst.instruction |= inst.operands[3].imm << 20;
10854 }
10855
10856 static void
10857 do_iwmmxt_wmerge (void)
10858 {
10859 inst.instruction |= inst.operands[0].reg << 12;
10860 inst.instruction |= inst.operands[1].reg << 16;
10861 inst.instruction |= inst.operands[2].reg;
10862 inst.instruction |= inst.operands[3].imm << 21;
10863 }
10864
10865 static void
10866 do_iwmmxt_wmov (void)
10867 {
10868 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10869 inst.instruction |= inst.operands[0].reg << 12;
10870 inst.instruction |= inst.operands[1].reg << 16;
10871 inst.instruction |= inst.operands[1].reg;
10872 }
10873
10874 static void
10875 do_iwmmxt_wldstbh (void)
10876 {
10877 int reloc;
10878 inst.instruction |= inst.operands[0].reg << 12;
10879 if (thumb_mode)
10880 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10881 else
10882 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10883 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10884 }
10885
10886 static void
10887 do_iwmmxt_wldstw (void)
10888 {
10889 /* RIWR_RIWC clears .isreg for a control register. */
10890 if (!inst.operands[0].isreg)
10891 {
10892 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10893 inst.instruction |= 0xf0000000;
10894 }
10895
10896 inst.instruction |= inst.operands[0].reg << 12;
10897 encode_arm_cp_address (1, TRUE, TRUE, 0);
10898 }
10899
10900 static void
10901 do_iwmmxt_wldstd (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10905 && inst.operands[1].immisreg)
10906 {
10907 inst.instruction &= ~0x1a000ff;
10908 inst.instruction |= (0xfU << 28);
10909 if (inst.operands[1].preind)
10910 inst.instruction |= PRE_INDEX;
10911 if (!inst.operands[1].negative)
10912 inst.instruction |= INDEX_UP;
10913 if (inst.operands[1].writeback)
10914 inst.instruction |= WRITE_BACK;
10915 inst.instruction |= inst.operands[1].reg << 16;
10916 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10917 inst.instruction |= inst.operands[1].imm;
10918 }
10919 else
10920 encode_arm_cp_address (1, TRUE, FALSE, 0);
10921 }
10922
10923 static void
10924 do_iwmmxt_wshufh (void)
10925 {
10926 inst.instruction |= inst.operands[0].reg << 12;
10927 inst.instruction |= inst.operands[1].reg << 16;
10928 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10929 inst.instruction |= (inst.operands[2].imm & 0x0f);
10930 }
10931
10932 static void
10933 do_iwmmxt_wzero (void)
10934 {
10935 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10936 inst.instruction |= inst.operands[0].reg;
10937 inst.instruction |= inst.operands[0].reg << 12;
10938 inst.instruction |= inst.operands[0].reg << 16;
10939 }
10940
10941 static void
10942 do_iwmmxt_wrwrwr_or_imm5 (void)
10943 {
10944 if (inst.operands[2].isreg)
10945 do_rd_rn_rm ();
10946 else {
10947 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10948 _("immediate operand requires iWMMXt2"));
10949 do_rd_rn ();
10950 if (inst.operands[2].imm == 0)
10951 {
10952 switch ((inst.instruction >> 20) & 0xf)
10953 {
10954 case 4:
10955 case 5:
10956 case 6:
10957 case 7:
10958 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10959 inst.operands[2].imm = 16;
10960 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10961 break;
10962 case 8:
10963 case 9:
10964 case 10:
10965 case 11:
10966 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10967 inst.operands[2].imm = 32;
10968 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10969 break;
10970 case 12:
10971 case 13:
10972 case 14:
10973 case 15:
10974 {
10975 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10976 unsigned long wrn;
10977 wrn = (inst.instruction >> 16) & 0xf;
10978 inst.instruction &= 0xff0fff0f;
10979 inst.instruction |= wrn;
10980 /* Bail out here; the instruction is now assembled. */
10981 return;
10982 }
10983 }
10984 }
10985 /* Map 32 -> 0, etc. */
10986 inst.operands[2].imm &= 0x1f;
10987 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10988 }
10989 }
10990 \f
10991 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10992 operations first, then control, shift, and load/store. */
10993
10994 /* Insns like "foo X,Y,Z". */
10995
10996 static void
10997 do_mav_triple (void)
10998 {
10999 inst.instruction |= inst.operands[0].reg << 16;
11000 inst.instruction |= inst.operands[1].reg;
11001 inst.instruction |= inst.operands[2].reg << 12;
11002 }
11003
11004 /* Insns like "foo W,X,Y,Z".
11005 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11006
11007 static void
11008 do_mav_quad (void)
11009 {
11010 inst.instruction |= inst.operands[0].reg << 5;
11011 inst.instruction |= inst.operands[1].reg << 12;
11012 inst.instruction |= inst.operands[2].reg << 16;
11013 inst.instruction |= inst.operands[3].reg;
11014 }
11015
11016 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11017 static void
11018 do_mav_dspsc (void)
11019 {
11020 inst.instruction |= inst.operands[1].reg << 12;
11021 }
11022
11023 /* Maverick shift immediate instructions.
11024 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11025 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11026
11027 static void
11028 do_mav_shift (void)
11029 {
11030 int imm = inst.operands[2].imm;
11031
11032 inst.instruction |= inst.operands[0].reg << 12;
11033 inst.instruction |= inst.operands[1].reg << 16;
11034
11035 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11036 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11037 Bit 4 should be 0. */
11038 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11039
11040 inst.instruction |= imm;
11041 }
11042 \f
11043 /* XScale instructions. Also sorted arithmetic before move. */
11044
11045 /* Xscale multiply-accumulate (argument parse)
11046 MIAcc acc0,Rm,Rs
11047 MIAPHcc acc0,Rm,Rs
11048 MIAxycc acc0,Rm,Rs. */
11049
11050 static void
11051 do_xsc_mia (void)
11052 {
11053 inst.instruction |= inst.operands[1].reg;
11054 inst.instruction |= inst.operands[2].reg << 12;
11055 }
11056
11057 /* Xscale move-accumulator-register (argument parse)
11058
11059 MARcc acc0,RdLo,RdHi. */
11060
11061 static void
11062 do_xsc_mar (void)
11063 {
11064 inst.instruction |= inst.operands[1].reg << 12;
11065 inst.instruction |= inst.operands[2].reg << 16;
11066 }
11067
11068 /* Xscale move-register-accumulator (argument parse)
11069
11070 MRAcc RdLo,RdHi,acc0. */
11071
11072 static void
11073 do_xsc_mra (void)
11074 {
11075 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11076 inst.instruction |= inst.operands[0].reg << 12;
11077 inst.instruction |= inst.operands[1].reg << 16;
11078 }
11079 \f
11080 /* Encoding functions relevant only to Thumb. */
11081
11082 /* inst.operands[i] is a shifted-register operand; encode
11083 it into inst.instruction in the format used by Thumb32. */
11084
11085 static void
11086 encode_thumb32_shifted_operand (int i)
11087 {
11088 unsigned int value = inst.relocs[0].exp.X_add_number;
11089 unsigned int shift = inst.operands[i].shift_kind;
11090
11091 constraint (inst.operands[i].immisreg,
11092 _("shift by register not allowed in thumb mode"));
11093 inst.instruction |= inst.operands[i].reg;
11094 if (shift == SHIFT_RRX)
11095 inst.instruction |= SHIFT_ROR << 4;
11096 else
11097 {
11098 constraint (inst.relocs[0].exp.X_op != O_constant,
11099 _("expression too complex"));
11100
11101 constraint (value > 32
11102 || (value == 32 && (shift == SHIFT_LSL
11103 || shift == SHIFT_ROR)),
11104 _("shift expression is too large"));
11105
11106 if (value == 0)
11107 shift = SHIFT_LSL;
11108 else if (value == 32)
11109 value = 0;
11110
11111 inst.instruction |= shift << 4;
11112 inst.instruction |= (value & 0x1c) << 10;
11113 inst.instruction |= (value & 0x03) << 6;
11114 }
11115 }
11116
11117
11118 /* inst.operands[i] was set up by parse_address. Encode it into a
11119 Thumb32 format load or store instruction. Reject forms that cannot
11120 be used with such instructions. If is_t is true, reject forms that
11121 cannot be used with a T instruction; if is_d is true, reject forms
11122 that cannot be used with a D instruction. If it is a store insn,
11123 reject PC in Rn. */
11124
11125 static void
11126 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11127 {
11128 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11129
11130 constraint (!inst.operands[i].isreg,
11131 _("Instruction does not support =N addresses"));
11132
11133 inst.instruction |= inst.operands[i].reg << 16;
11134 if (inst.operands[i].immisreg)
11135 {
11136 constraint (is_pc, BAD_PC_ADDRESSING);
11137 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11138 constraint (inst.operands[i].negative,
11139 _("Thumb does not support negative register indexing"));
11140 constraint (inst.operands[i].postind,
11141 _("Thumb does not support register post-indexing"));
11142 constraint (inst.operands[i].writeback,
11143 _("Thumb does not support register indexing with writeback"));
11144 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11145 _("Thumb supports only LSL in shifted register indexing"));
11146
11147 inst.instruction |= inst.operands[i].imm;
11148 if (inst.operands[i].shifted)
11149 {
11150 constraint (inst.relocs[0].exp.X_op != O_constant,
11151 _("expression too complex"));
11152 constraint (inst.relocs[0].exp.X_add_number < 0
11153 || inst.relocs[0].exp.X_add_number > 3,
11154 _("shift out of range"));
11155 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11156 }
11157 inst.relocs[0].type = BFD_RELOC_UNUSED;
11158 }
11159 else if (inst.operands[i].preind)
11160 {
11161 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11162 constraint (is_t && inst.operands[i].writeback,
11163 _("cannot use writeback with this instruction"));
11164 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11165 BAD_PC_ADDRESSING);
11166
11167 if (is_d)
11168 {
11169 inst.instruction |= 0x01000000;
11170 if (inst.operands[i].writeback)
11171 inst.instruction |= 0x00200000;
11172 }
11173 else
11174 {
11175 inst.instruction |= 0x00000c00;
11176 if (inst.operands[i].writeback)
11177 inst.instruction |= 0x00000100;
11178 }
11179 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11180 }
11181 else if (inst.operands[i].postind)
11182 {
11183 gas_assert (inst.operands[i].writeback);
11184 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11185 constraint (is_t, _("cannot use post-indexing with this instruction"));
11186
11187 if (is_d)
11188 inst.instruction |= 0x00200000;
11189 else
11190 inst.instruction |= 0x00000900;
11191 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11192 }
11193 else /* unindexed - only for coprocessor */
11194 inst.error = _("instruction does not accept unindexed addressing");
11195 }
11196
11197 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11198 encodings (the latter only in post-V6T2 cores). The index is the
11199 value used in the insns table below. When there is more than one
11200 possible 16-bit encoding for the instruction, this table always
11201 holds variant (1).
11202 Also contains several pseudo-instructions used during relaxation. */
11203 #define T16_32_TAB \
11204 X(_adc, 4140, eb400000), \
11205 X(_adcs, 4140, eb500000), \
11206 X(_add, 1c00, eb000000), \
11207 X(_adds, 1c00, eb100000), \
11208 X(_addi, 0000, f1000000), \
11209 X(_addis, 0000, f1100000), \
11210 X(_add_pc,000f, f20f0000), \
11211 X(_add_sp,000d, f10d0000), \
11212 X(_adr, 000f, f20f0000), \
11213 X(_and, 4000, ea000000), \
11214 X(_ands, 4000, ea100000), \
11215 X(_asr, 1000, fa40f000), \
11216 X(_asrs, 1000, fa50f000), \
11217 X(_b, e000, f000b000), \
11218 X(_bcond, d000, f0008000), \
11219 X(_bf, 0000, f040e001), \
11220 X(_bfcsel,0000, f000e001), \
11221 X(_bfx, 0000, f060e001), \
11222 X(_bfl, 0000, f000c001), \
11223 X(_bflx, 0000, f070e001), \
11224 X(_bic, 4380, ea200000), \
11225 X(_bics, 4380, ea300000), \
11226 X(_cinc, 0000, ea509000), \
11227 X(_cinv, 0000, ea50a000), \
11228 X(_cmn, 42c0, eb100f00), \
11229 X(_cmp, 2800, ebb00f00), \
11230 X(_cneg, 0000, ea50b000), \
11231 X(_cpsie, b660, f3af8400), \
11232 X(_cpsid, b670, f3af8600), \
11233 X(_cpy, 4600, ea4f0000), \
11234 X(_csel, 0000, ea508000), \
11235 X(_cset, 0000, ea5f900f), \
11236 X(_csetm, 0000, ea5fa00f), \
11237 X(_csinc, 0000, ea509000), \
11238 X(_csinv, 0000, ea50a000), \
11239 X(_csneg, 0000, ea50b000), \
11240 X(_dec_sp,80dd, f1ad0d00), \
11241 X(_dls, 0000, f040e001), \
11242 X(_dlstp, 0000, f000e001), \
11243 X(_eor, 4040, ea800000), \
11244 X(_eors, 4040, ea900000), \
11245 X(_inc_sp,00dd, f10d0d00), \
11246 X(_lctp, 0000, f00fe001), \
11247 X(_ldmia, c800, e8900000), \
11248 X(_ldr, 6800, f8500000), \
11249 X(_ldrb, 7800, f8100000), \
11250 X(_ldrh, 8800, f8300000), \
11251 X(_ldrsb, 5600, f9100000), \
11252 X(_ldrsh, 5e00, f9300000), \
11253 X(_ldr_pc,4800, f85f0000), \
11254 X(_ldr_pc2,4800, f85f0000), \
11255 X(_ldr_sp,9800, f85d0000), \
11256 X(_le, 0000, f00fc001), \
11257 X(_letp, 0000, f01fc001), \
11258 X(_lsl, 0000, fa00f000), \
11259 X(_lsls, 0000, fa10f000), \
11260 X(_lsr, 0800, fa20f000), \
11261 X(_lsrs, 0800, fa30f000), \
11262 X(_mov, 2000, ea4f0000), \
11263 X(_movs, 2000, ea5f0000), \
11264 X(_mul, 4340, fb00f000), \
11265 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11266 X(_mvn, 43c0, ea6f0000), \
11267 X(_mvns, 43c0, ea7f0000), \
11268 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11269 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11270 X(_orr, 4300, ea400000), \
11271 X(_orrs, 4300, ea500000), \
11272 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11273 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11274 X(_rev, ba00, fa90f080), \
11275 X(_rev16, ba40, fa90f090), \
11276 X(_revsh, bac0, fa90f0b0), \
11277 X(_ror, 41c0, fa60f000), \
11278 X(_rors, 41c0, fa70f000), \
11279 X(_sbc, 4180, eb600000), \
11280 X(_sbcs, 4180, eb700000), \
11281 X(_stmia, c000, e8800000), \
11282 X(_str, 6000, f8400000), \
11283 X(_strb, 7000, f8000000), \
11284 X(_strh, 8000, f8200000), \
11285 X(_str_sp,9000, f84d0000), \
11286 X(_sub, 1e00, eba00000), \
11287 X(_subs, 1e00, ebb00000), \
11288 X(_subi, 8000, f1a00000), \
11289 X(_subis, 8000, f1b00000), \
11290 X(_sxtb, b240, fa4ff080), \
11291 X(_sxth, b200, fa0ff080), \
11292 X(_tst, 4200, ea100f00), \
11293 X(_uxtb, b2c0, fa5ff080), \
11294 X(_uxth, b280, fa1ff080), \
11295 X(_nop, bf00, f3af8000), \
11296 X(_yield, bf10, f3af8001), \
11297 X(_wfe, bf20, f3af8002), \
11298 X(_wfi, bf30, f3af8003), \
11299 X(_wls, 0000, f040c001), \
11300 X(_wlstp, 0000, f000c001), \
11301 X(_sev, bf40, f3af8004), \
11302 X(_sevl, bf50, f3af8005), \
11303 X(_udf, de00, f7f0a000)
11304
11305 /* To catch errors in encoding functions, the codes are all offset by
11306 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11307 as 16-bit instructions. */
11308 #define X(a,b,c) T_MNEM##a
11309 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11310 #undef X
11311
11312 #define X(a,b,c) 0x##b
11313 static const unsigned short thumb_op16[] = { T16_32_TAB };
11314 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11315 #undef X
11316
11317 #define X(a,b,c) 0x##c
11318 static const unsigned int thumb_op32[] = { T16_32_TAB };
11319 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11320 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11321 #undef X
11322 #undef T16_32_TAB
11323
11324 /* Thumb instruction encoders, in alphabetical order. */
11325
11326 /* ADDW or SUBW. */
11327
11328 static void
11329 do_t_add_sub_w (void)
11330 {
11331 int Rd, Rn;
11332
11333 Rd = inst.operands[0].reg;
11334 Rn = inst.operands[1].reg;
11335
11336 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11337 is the SP-{plus,minus}-immediate form of the instruction. */
11338 if (Rn == REG_SP)
11339 constraint (Rd == REG_PC, BAD_PC);
11340 else
11341 reject_bad_reg (Rd);
11342
11343 inst.instruction |= (Rn << 16) | (Rd << 8);
11344 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11345 }
11346
11347 /* Parse an add or subtract instruction. We get here with inst.instruction
11348 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11349
11350 static void
11351 do_t_add_sub (void)
11352 {
11353 int Rd, Rs, Rn;
11354
11355 Rd = inst.operands[0].reg;
11356 Rs = (inst.operands[1].present
11357 ? inst.operands[1].reg /* Rd, Rs, foo */
11358 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11359
11360 if (Rd == REG_PC)
11361 set_pred_insn_type_last ();
11362
11363 if (unified_syntax)
11364 {
11365 bfd_boolean flags;
11366 bfd_boolean narrow;
11367 int opcode;
11368
11369 flags = (inst.instruction == T_MNEM_adds
11370 || inst.instruction == T_MNEM_subs);
11371 if (flags)
11372 narrow = !in_pred_block ();
11373 else
11374 narrow = in_pred_block ();
11375 if (!inst.operands[2].isreg)
11376 {
11377 int add;
11378
11379 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11380 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11381
11382 add = (inst.instruction == T_MNEM_add
11383 || inst.instruction == T_MNEM_adds);
11384 opcode = 0;
11385 if (inst.size_req != 4)
11386 {
11387 /* Attempt to use a narrow opcode, with relaxation if
11388 appropriate. */
11389 if (Rd == REG_SP && Rs == REG_SP && !flags)
11390 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11391 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11392 opcode = T_MNEM_add_sp;
11393 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11394 opcode = T_MNEM_add_pc;
11395 else if (Rd <= 7 && Rs <= 7 && narrow)
11396 {
11397 if (flags)
11398 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11399 else
11400 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11401 }
11402 if (opcode)
11403 {
11404 inst.instruction = THUMB_OP16(opcode);
11405 inst.instruction |= (Rd << 4) | Rs;
11406 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11407 || (inst.relocs[0].type
11408 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11409 {
11410 if (inst.size_req == 2)
11411 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11412 else
11413 inst.relax = opcode;
11414 }
11415 }
11416 else
11417 constraint (inst.size_req == 2, BAD_HIREG);
11418 }
11419 if (inst.size_req == 4
11420 || (inst.size_req != 2 && !opcode))
11421 {
11422 constraint ((inst.relocs[0].type
11423 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11424 && (inst.relocs[0].type
11425 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11426 THUMB1_RELOC_ONLY);
11427 if (Rd == REG_PC)
11428 {
11429 constraint (add, BAD_PC);
11430 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11431 _("only SUBS PC, LR, #const allowed"));
11432 constraint (inst.relocs[0].exp.X_op != O_constant,
11433 _("expression too complex"));
11434 constraint (inst.relocs[0].exp.X_add_number < 0
11435 || inst.relocs[0].exp.X_add_number > 0xff,
11436 _("immediate value out of range"));
11437 inst.instruction = T2_SUBS_PC_LR
11438 | inst.relocs[0].exp.X_add_number;
11439 inst.relocs[0].type = BFD_RELOC_UNUSED;
11440 return;
11441 }
11442 else if (Rs == REG_PC)
11443 {
11444 /* Always use addw/subw. */
11445 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11446 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11447 }
11448 else
11449 {
11450 inst.instruction = THUMB_OP32 (inst.instruction);
11451 inst.instruction = (inst.instruction & 0xe1ffffff)
11452 | 0x10000000;
11453 if (flags)
11454 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11455 else
11456 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11457 }
11458 inst.instruction |= Rd << 8;
11459 inst.instruction |= Rs << 16;
11460 }
11461 }
11462 else
11463 {
11464 unsigned int value = inst.relocs[0].exp.X_add_number;
11465 unsigned int shift = inst.operands[2].shift_kind;
11466
11467 Rn = inst.operands[2].reg;
11468 /* See if we can do this with a 16-bit instruction. */
11469 if (!inst.operands[2].shifted && inst.size_req != 4)
11470 {
11471 if (Rd > 7 || Rs > 7 || Rn > 7)
11472 narrow = FALSE;
11473
11474 if (narrow)
11475 {
11476 inst.instruction = ((inst.instruction == T_MNEM_adds
11477 || inst.instruction == T_MNEM_add)
11478 ? T_OPCODE_ADD_R3
11479 : T_OPCODE_SUB_R3);
11480 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11481 return;
11482 }
11483
11484 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11485 {
11486 /* Thumb-1 cores (except v6-M) require at least one high
11487 register in a narrow non flag setting add. */
11488 if (Rd > 7 || Rn > 7
11489 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11490 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11491 {
11492 if (Rd == Rn)
11493 {
11494 Rn = Rs;
11495 Rs = Rd;
11496 }
11497 inst.instruction = T_OPCODE_ADD_HI;
11498 inst.instruction |= (Rd & 8) << 4;
11499 inst.instruction |= (Rd & 7);
11500 inst.instruction |= Rn << 3;
11501 return;
11502 }
11503 }
11504 }
11505
11506 constraint (Rd == REG_PC, BAD_PC);
11507 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11508 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11509 constraint (Rs == REG_PC, BAD_PC);
11510 reject_bad_reg (Rn);
11511
11512 /* If we get here, it can't be done in 16 bits. */
11513 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11514 _("shift must be constant"));
11515 inst.instruction = THUMB_OP32 (inst.instruction);
11516 inst.instruction |= Rd << 8;
11517 inst.instruction |= Rs << 16;
11518 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11519 _("shift value over 3 not allowed in thumb mode"));
11520 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11521 _("only LSL shift allowed in thumb mode"));
11522 encode_thumb32_shifted_operand (2);
11523 }
11524 }
11525 else
11526 {
11527 constraint (inst.instruction == T_MNEM_adds
11528 || inst.instruction == T_MNEM_subs,
11529 BAD_THUMB32);
11530
11531 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11532 {
11533 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11534 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11535 BAD_HIREG);
11536
11537 inst.instruction = (inst.instruction == T_MNEM_add
11538 ? 0x0000 : 0x8000);
11539 inst.instruction |= (Rd << 4) | Rs;
11540 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11541 return;
11542 }
11543
11544 Rn = inst.operands[2].reg;
11545 constraint (inst.operands[2].shifted, _("unshifted register required"));
11546
11547 /* We now have Rd, Rs, and Rn set to registers. */
11548 if (Rd > 7 || Rs > 7 || Rn > 7)
11549 {
11550 /* Can't do this for SUB. */
11551 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11552 inst.instruction = T_OPCODE_ADD_HI;
11553 inst.instruction |= (Rd & 8) << 4;
11554 inst.instruction |= (Rd & 7);
11555 if (Rs == Rd)
11556 inst.instruction |= Rn << 3;
11557 else if (Rn == Rd)
11558 inst.instruction |= Rs << 3;
11559 else
11560 constraint (1, _("dest must overlap one source register"));
11561 }
11562 else
11563 {
11564 inst.instruction = (inst.instruction == T_MNEM_add
11565 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11566 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11567 }
11568 }
11569 }
11570
11571 static void
11572 do_t_adr (void)
11573 {
11574 unsigned Rd;
11575
11576 Rd = inst.operands[0].reg;
11577 reject_bad_reg (Rd);
11578
11579 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11580 {
11581 /* Defer to section relaxation. */
11582 inst.relax = inst.instruction;
11583 inst.instruction = THUMB_OP16 (inst.instruction);
11584 inst.instruction |= Rd << 4;
11585 }
11586 else if (unified_syntax && inst.size_req != 2)
11587 {
11588 /* Generate a 32-bit opcode. */
11589 inst.instruction = THUMB_OP32 (inst.instruction);
11590 inst.instruction |= Rd << 8;
11591 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11592 inst.relocs[0].pc_rel = 1;
11593 }
11594 else
11595 {
11596 /* Generate a 16-bit opcode. */
11597 inst.instruction = THUMB_OP16 (inst.instruction);
11598 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11599 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11600 inst.relocs[0].pc_rel = 1;
11601 inst.instruction |= Rd << 4;
11602 }
11603
11604 if (inst.relocs[0].exp.X_op == O_symbol
11605 && inst.relocs[0].exp.X_add_symbol != NULL
11606 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11607 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11608 inst.relocs[0].exp.X_add_number += 1;
11609 }
11610
11611 /* Arithmetic instructions for which there is just one 16-bit
11612 instruction encoding, and it allows only two low registers.
11613 For maximal compatibility with ARM syntax, we allow three register
11614 operands even when Thumb-32 instructions are not available, as long
11615 as the first two are identical. For instance, both "sbc r0,r1" and
11616 "sbc r0,r0,r1" are allowed. */
11617 static void
11618 do_t_arit3 (void)
11619 {
11620 int Rd, Rs, Rn;
11621
11622 Rd = inst.operands[0].reg;
11623 Rs = (inst.operands[1].present
11624 ? inst.operands[1].reg /* Rd, Rs, foo */
11625 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11626 Rn = inst.operands[2].reg;
11627
11628 reject_bad_reg (Rd);
11629 reject_bad_reg (Rs);
11630 if (inst.operands[2].isreg)
11631 reject_bad_reg (Rn);
11632
11633 if (unified_syntax)
11634 {
11635 if (!inst.operands[2].isreg)
11636 {
11637 /* For an immediate, we always generate a 32-bit opcode;
11638 section relaxation will shrink it later if possible. */
11639 inst.instruction = THUMB_OP32 (inst.instruction);
11640 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11641 inst.instruction |= Rd << 8;
11642 inst.instruction |= Rs << 16;
11643 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11644 }
11645 else
11646 {
11647 bfd_boolean narrow;
11648
11649 /* See if we can do this with a 16-bit instruction. */
11650 if (THUMB_SETS_FLAGS (inst.instruction))
11651 narrow = !in_pred_block ();
11652 else
11653 narrow = in_pred_block ();
11654
11655 if (Rd > 7 || Rn > 7 || Rs > 7)
11656 narrow = FALSE;
11657 if (inst.operands[2].shifted)
11658 narrow = FALSE;
11659 if (inst.size_req == 4)
11660 narrow = FALSE;
11661
11662 if (narrow
11663 && Rd == Rs)
11664 {
11665 inst.instruction = THUMB_OP16 (inst.instruction);
11666 inst.instruction |= Rd;
11667 inst.instruction |= Rn << 3;
11668 return;
11669 }
11670
11671 /* If we get here, it can't be done in 16 bits. */
11672 constraint (inst.operands[2].shifted
11673 && inst.operands[2].immisreg,
11674 _("shift must be constant"));
11675 inst.instruction = THUMB_OP32 (inst.instruction);
11676 inst.instruction |= Rd << 8;
11677 inst.instruction |= Rs << 16;
11678 encode_thumb32_shifted_operand (2);
11679 }
11680 }
11681 else
11682 {
11683 /* On its face this is a lie - the instruction does set the
11684 flags. However, the only supported mnemonic in this mode
11685 says it doesn't. */
11686 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11687
11688 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11689 _("unshifted register required"));
11690 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11691 constraint (Rd != Rs,
11692 _("dest and source1 must be the same register"));
11693
11694 inst.instruction = THUMB_OP16 (inst.instruction);
11695 inst.instruction |= Rd;
11696 inst.instruction |= Rn << 3;
11697 }
11698 }
11699
11700 /* Similarly, but for instructions where the arithmetic operation is
11701 commutative, so we can allow either of them to be different from
11702 the destination operand in a 16-bit instruction. For instance, all
11703 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11704 accepted. */
11705 static void
11706 do_t_arit3c (void)
11707 {
11708 int Rd, Rs, Rn;
11709
11710 Rd = inst.operands[0].reg;
11711 Rs = (inst.operands[1].present
11712 ? inst.operands[1].reg /* Rd, Rs, foo */
11713 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11714 Rn = inst.operands[2].reg;
11715
11716 reject_bad_reg (Rd);
11717 reject_bad_reg (Rs);
11718 if (inst.operands[2].isreg)
11719 reject_bad_reg (Rn);
11720
11721 if (unified_syntax)
11722 {
11723 if (!inst.operands[2].isreg)
11724 {
11725 /* For an immediate, we always generate a 32-bit opcode;
11726 section relaxation will shrink it later if possible. */
11727 inst.instruction = THUMB_OP32 (inst.instruction);
11728 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11729 inst.instruction |= Rd << 8;
11730 inst.instruction |= Rs << 16;
11731 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11732 }
11733 else
11734 {
11735 bfd_boolean narrow;
11736
11737 /* See if we can do this with a 16-bit instruction. */
11738 if (THUMB_SETS_FLAGS (inst.instruction))
11739 narrow = !in_pred_block ();
11740 else
11741 narrow = in_pred_block ();
11742
11743 if (Rd > 7 || Rn > 7 || Rs > 7)
11744 narrow = FALSE;
11745 if (inst.operands[2].shifted)
11746 narrow = FALSE;
11747 if (inst.size_req == 4)
11748 narrow = FALSE;
11749
11750 if (narrow)
11751 {
11752 if (Rd == Rs)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rn << 3;
11757 return;
11758 }
11759 if (Rd == Rn)
11760 {
11761 inst.instruction = THUMB_OP16 (inst.instruction);
11762 inst.instruction |= Rd;
11763 inst.instruction |= Rs << 3;
11764 return;
11765 }
11766 }
11767
11768 /* If we get here, it can't be done in 16 bits. */
11769 constraint (inst.operands[2].shifted
11770 && inst.operands[2].immisreg,
11771 _("shift must be constant"));
11772 inst.instruction = THUMB_OP32 (inst.instruction);
11773 inst.instruction |= Rd << 8;
11774 inst.instruction |= Rs << 16;
11775 encode_thumb32_shifted_operand (2);
11776 }
11777 }
11778 else
11779 {
11780 /* On its face this is a lie - the instruction does set the
11781 flags. However, the only supported mnemonic in this mode
11782 says it doesn't. */
11783 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11784
11785 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11786 _("unshifted register required"));
11787 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11788
11789 inst.instruction = THUMB_OP16 (inst.instruction);
11790 inst.instruction |= Rd;
11791
11792 if (Rd == Rs)
11793 inst.instruction |= Rn << 3;
11794 else if (Rd == Rn)
11795 inst.instruction |= Rs << 3;
11796 else
11797 constraint (1, _("dest must overlap one source register"));
11798 }
11799 }
11800
11801 static void
11802 do_t_bfc (void)
11803 {
11804 unsigned Rd;
11805 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11806 constraint (msb > 32, _("bit-field extends past end of register"));
11807 /* The instruction encoding stores the LSB and MSB,
11808 not the LSB and width. */
11809 Rd = inst.operands[0].reg;
11810 reject_bad_reg (Rd);
11811 inst.instruction |= Rd << 8;
11812 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11813 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11814 inst.instruction |= msb - 1;
11815 }
11816
11817 static void
11818 do_t_bfi (void)
11819 {
11820 int Rd, Rn;
11821 unsigned int msb;
11822
11823 Rd = inst.operands[0].reg;
11824 reject_bad_reg (Rd);
11825
11826 /* #0 in second position is alternative syntax for bfc, which is
11827 the same instruction but with REG_PC in the Rm field. */
11828 if (!inst.operands[1].isreg)
11829 Rn = REG_PC;
11830 else
11831 {
11832 Rn = inst.operands[1].reg;
11833 reject_bad_reg (Rn);
11834 }
11835
11836 msb = inst.operands[2].imm + inst.operands[3].imm;
11837 constraint (msb > 32, _("bit-field extends past end of register"));
11838 /* The instruction encoding stores the LSB and MSB,
11839 not the LSB and width. */
11840 inst.instruction |= Rd << 8;
11841 inst.instruction |= Rn << 16;
11842 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11843 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11844 inst.instruction |= msb - 1;
11845 }
11846
11847 static void
11848 do_t_bfx (void)
11849 {
11850 unsigned Rd, Rn;
11851
11852 Rd = inst.operands[0].reg;
11853 Rn = inst.operands[1].reg;
11854
11855 reject_bad_reg (Rd);
11856 reject_bad_reg (Rn);
11857
11858 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11859 _("bit-field extends past end of register"));
11860 inst.instruction |= Rd << 8;
11861 inst.instruction |= Rn << 16;
11862 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11863 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11864 inst.instruction |= inst.operands[3].imm - 1;
11865 }
11866
11867 /* ARM V5 Thumb BLX (argument parse)
11868 BLX <target_addr> which is BLX(1)
11869 BLX <Rm> which is BLX(2)
11870 Unfortunately, there are two different opcodes for this mnemonic.
11871 So, the insns[].value is not used, and the code here zaps values
11872 into inst.instruction.
11873
11874 ??? How to take advantage of the additional two bits of displacement
11875 available in Thumb32 mode? Need new relocation? */
11876
11877 static void
11878 do_t_blx (void)
11879 {
11880 set_pred_insn_type_last ();
11881
11882 if (inst.operands[0].isreg)
11883 {
11884 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11885 /* We have a register, so this is BLX(2). */
11886 inst.instruction |= inst.operands[0].reg << 3;
11887 }
11888 else
11889 {
11890 /* No register. This must be BLX(1). */
11891 inst.instruction = 0xf000e800;
11892 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11893 }
11894 }
11895
11896 static void
11897 do_t_branch (void)
11898 {
11899 int opcode;
11900 int cond;
11901 bfd_reloc_code_real_type reloc;
11902
11903 cond = inst.cond;
11904 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11905
11906 if (in_pred_block ())
11907 {
11908 /* Conditional branches inside IT blocks are encoded as unconditional
11909 branches. */
11910 cond = COND_ALWAYS;
11911 }
11912 else
11913 cond = inst.cond;
11914
11915 if (cond != COND_ALWAYS)
11916 opcode = T_MNEM_bcond;
11917 else
11918 opcode = inst.instruction;
11919
11920 if (unified_syntax
11921 && (inst.size_req == 4
11922 || (inst.size_req != 2
11923 && (inst.operands[0].hasreloc
11924 || inst.relocs[0].exp.X_op == O_constant))))
11925 {
11926 inst.instruction = THUMB_OP32(opcode);
11927 if (cond == COND_ALWAYS)
11928 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11929 else
11930 {
11931 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11932 _("selected architecture does not support "
11933 "wide conditional branch instruction"));
11934
11935 gas_assert (cond != 0xF);
11936 inst.instruction |= cond << 22;
11937 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11938 }
11939 }
11940 else
11941 {
11942 inst.instruction = THUMB_OP16(opcode);
11943 if (cond == COND_ALWAYS)
11944 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11945 else
11946 {
11947 inst.instruction |= cond << 8;
11948 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11949 }
11950 /* Allow section relaxation. */
11951 if (unified_syntax && inst.size_req != 2)
11952 inst.relax = opcode;
11953 }
11954 inst.relocs[0].type = reloc;
11955 inst.relocs[0].pc_rel = 1;
11956 }
11957
11958 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11959 between the two is the maximum immediate allowed - which is passed in
11960 RANGE. */
11961 static void
11962 do_t_bkpt_hlt1 (int range)
11963 {
11964 constraint (inst.cond != COND_ALWAYS,
11965 _("instruction is always unconditional"));
11966 if (inst.operands[0].present)
11967 {
11968 constraint (inst.operands[0].imm > range,
11969 _("immediate value out of range"));
11970 inst.instruction |= inst.operands[0].imm;
11971 }
11972
11973 set_pred_insn_type (NEUTRAL_IT_INSN);
11974 }
11975
11976 static void
11977 do_t_hlt (void)
11978 {
11979 do_t_bkpt_hlt1 (63);
11980 }
11981
11982 static void
11983 do_t_bkpt (void)
11984 {
11985 do_t_bkpt_hlt1 (255);
11986 }
11987
11988 static void
11989 do_t_branch23 (void)
11990 {
11991 set_pred_insn_type_last ();
11992 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11993
11994 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11995 this file. We used to simply ignore the PLT reloc type here --
11996 the branch encoding is now needed to deal with TLSCALL relocs.
11997 So if we see a PLT reloc now, put it back to how it used to be to
11998 keep the preexisting behaviour. */
11999 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12000 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12001
12002 #if defined(OBJ_COFF)
12003 /* If the destination of the branch is a defined symbol which does not have
12004 the THUMB_FUNC attribute, then we must be calling a function which has
12005 the (interfacearm) attribute. We look for the Thumb entry point to that
12006 function and change the branch to refer to that function instead. */
12007 if ( inst.relocs[0].exp.X_op == O_symbol
12008 && inst.relocs[0].exp.X_add_symbol != NULL
12009 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12010 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12011 inst.relocs[0].exp.X_add_symbol
12012 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12013 #endif
12014 }
12015
12016 static void
12017 do_t_bx (void)
12018 {
12019 set_pred_insn_type_last ();
12020 inst.instruction |= inst.operands[0].reg << 3;
12021 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12022 should cause the alignment to be checked once it is known. This is
12023 because BX PC only works if the instruction is word aligned. */
12024 }
12025
12026 static void
12027 do_t_bxj (void)
12028 {
12029 int Rm;
12030
12031 set_pred_insn_type_last ();
12032 Rm = inst.operands[0].reg;
12033 reject_bad_reg (Rm);
12034 inst.instruction |= Rm << 16;
12035 }
12036
12037 static void
12038 do_t_clz (void)
12039 {
12040 unsigned Rd;
12041 unsigned Rm;
12042
12043 Rd = inst.operands[0].reg;
12044 Rm = inst.operands[1].reg;
12045
12046 reject_bad_reg (Rd);
12047 reject_bad_reg (Rm);
12048
12049 inst.instruction |= Rd << 8;
12050 inst.instruction |= Rm << 16;
12051 inst.instruction |= Rm;
12052 }
12053
12054 /* For the Armv8.1-M conditional instructions. */
12055 static void
12056 do_t_cond (void)
12057 {
12058 unsigned Rd, Rn, Rm;
12059 signed int cond;
12060
12061 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12062
12063 Rd = inst.operands[0].reg;
12064 switch (inst.instruction)
12065 {
12066 case T_MNEM_csinc:
12067 case T_MNEM_csinv:
12068 case T_MNEM_csneg:
12069 case T_MNEM_csel:
12070 Rn = inst.operands[1].reg;
12071 Rm = inst.operands[2].reg;
12072 cond = inst.operands[3].imm;
12073 constraint (Rn == REG_SP, BAD_SP);
12074 constraint (Rm == REG_SP, BAD_SP);
12075 break;
12076
12077 case T_MNEM_cinc:
12078 case T_MNEM_cinv:
12079 case T_MNEM_cneg:
12080 Rn = inst.operands[1].reg;
12081 cond = inst.operands[2].imm;
12082 /* Invert the last bit to invert the cond. */
12083 cond = TOGGLE_BIT (cond, 0);
12084 constraint (Rn == REG_SP, BAD_SP);
12085 Rm = Rn;
12086 break;
12087
12088 case T_MNEM_csetm:
12089 case T_MNEM_cset:
12090 cond = inst.operands[1].imm;
12091 /* Invert the last bit to invert the cond. */
12092 cond = TOGGLE_BIT (cond, 0);
12093 Rn = REG_PC;
12094 Rm = REG_PC;
12095 break;
12096
12097 default: abort ();
12098 }
12099
12100 set_pred_insn_type (OUTSIDE_PRED_INSN);
12101 inst.instruction = THUMB_OP32 (inst.instruction);
12102 inst.instruction |= Rd << 8;
12103 inst.instruction |= Rn << 16;
12104 inst.instruction |= Rm;
12105 inst.instruction |= cond << 4;
12106 }
12107
12108 static void
12109 do_t_csdb (void)
12110 {
12111 set_pred_insn_type (OUTSIDE_PRED_INSN);
12112 }
12113
12114 static void
12115 do_t_cps (void)
12116 {
12117 set_pred_insn_type (OUTSIDE_PRED_INSN);
12118 inst.instruction |= inst.operands[0].imm;
12119 }
12120
12121 static void
12122 do_t_cpsi (void)
12123 {
12124 set_pred_insn_type (OUTSIDE_PRED_INSN);
12125 if (unified_syntax
12126 && (inst.operands[1].present || inst.size_req == 4)
12127 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12128 {
12129 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12130 inst.instruction = 0xf3af8000;
12131 inst.instruction |= imod << 9;
12132 inst.instruction |= inst.operands[0].imm << 5;
12133 if (inst.operands[1].present)
12134 inst.instruction |= 0x100 | inst.operands[1].imm;
12135 }
12136 else
12137 {
12138 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12139 && (inst.operands[0].imm & 4),
12140 _("selected processor does not support 'A' form "
12141 "of this instruction"));
12142 constraint (inst.operands[1].present || inst.size_req == 4,
12143 _("Thumb does not support the 2-argument "
12144 "form of this instruction"));
12145 inst.instruction |= inst.operands[0].imm;
12146 }
12147 }
12148
12149 /* THUMB CPY instruction (argument parse). */
12150
12151 static void
12152 do_t_cpy (void)
12153 {
12154 if (inst.size_req == 4)
12155 {
12156 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12157 inst.instruction |= inst.operands[0].reg << 8;
12158 inst.instruction |= inst.operands[1].reg;
12159 }
12160 else
12161 {
12162 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12163 inst.instruction |= (inst.operands[0].reg & 0x7);
12164 inst.instruction |= inst.operands[1].reg << 3;
12165 }
12166 }
12167
12168 static void
12169 do_t_cbz (void)
12170 {
12171 set_pred_insn_type (OUTSIDE_PRED_INSN);
12172 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12173 inst.instruction |= inst.operands[0].reg;
12174 inst.relocs[0].pc_rel = 1;
12175 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12176 }
12177
12178 static void
12179 do_t_dbg (void)
12180 {
12181 inst.instruction |= inst.operands[0].imm;
12182 }
12183
12184 static void
12185 do_t_div (void)
12186 {
12187 unsigned Rd, Rn, Rm;
12188
12189 Rd = inst.operands[0].reg;
12190 Rn = (inst.operands[1].present
12191 ? inst.operands[1].reg : Rd);
12192 Rm = inst.operands[2].reg;
12193
12194 reject_bad_reg (Rd);
12195 reject_bad_reg (Rn);
12196 reject_bad_reg (Rm);
12197
12198 inst.instruction |= Rd << 8;
12199 inst.instruction |= Rn << 16;
12200 inst.instruction |= Rm;
12201 }
12202
12203 static void
12204 do_t_hint (void)
12205 {
12206 if (unified_syntax && inst.size_req == 4)
12207 inst.instruction = THUMB_OP32 (inst.instruction);
12208 else
12209 inst.instruction = THUMB_OP16 (inst.instruction);
12210 }
12211
12212 static void
12213 do_t_it (void)
12214 {
12215 unsigned int cond = inst.operands[0].imm;
12216
12217 set_pred_insn_type (IT_INSN);
12218 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12219 now_pred.cc = cond;
12220 now_pred.warn_deprecated = FALSE;
12221 now_pred.type = SCALAR_PRED;
12222
12223 /* If the condition is a negative condition, invert the mask. */
12224 if ((cond & 0x1) == 0x0)
12225 {
12226 unsigned int mask = inst.instruction & 0x000f;
12227
12228 if ((mask & 0x7) == 0)
12229 {
12230 /* No conversion needed. */
12231 now_pred.block_length = 1;
12232 }
12233 else if ((mask & 0x3) == 0)
12234 {
12235 mask ^= 0x8;
12236 now_pred.block_length = 2;
12237 }
12238 else if ((mask & 0x1) == 0)
12239 {
12240 mask ^= 0xC;
12241 now_pred.block_length = 3;
12242 }
12243 else
12244 {
12245 mask ^= 0xE;
12246 now_pred.block_length = 4;
12247 }
12248
12249 inst.instruction &= 0xfff0;
12250 inst.instruction |= mask;
12251 }
12252
12253 inst.instruction |= cond << 4;
12254 }
12255
12256 /* Helper function used for both push/pop and ldm/stm. */
12257 static void
12258 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12259 bfd_boolean writeback)
12260 {
12261 bfd_boolean load, store;
12262
12263 gas_assert (base != -1 || !do_io);
12264 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12265 store = do_io && !load;
12266
12267 if (mask & (1 << 13))
12268 inst.error = _("SP not allowed in register list");
12269
12270 if (do_io && (mask & (1 << base)) != 0
12271 && writeback)
12272 inst.error = _("having the base register in the register list when "
12273 "using write back is UNPREDICTABLE");
12274
12275 if (load)
12276 {
12277 if (mask & (1 << 15))
12278 {
12279 if (mask & (1 << 14))
12280 inst.error = _("LR and PC should not both be in register list");
12281 else
12282 set_pred_insn_type_last ();
12283 }
12284 }
12285 else if (store)
12286 {
12287 if (mask & (1 << 15))
12288 inst.error = _("PC not allowed in register list");
12289 }
12290
12291 if (do_io && ((mask & (mask - 1)) == 0))
12292 {
12293 /* Single register transfers implemented as str/ldr. */
12294 if (writeback)
12295 {
12296 if (inst.instruction & (1 << 23))
12297 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12298 else
12299 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12300 }
12301 else
12302 {
12303 if (inst.instruction & (1 << 23))
12304 inst.instruction = 0x00800000; /* ia -> [base] */
12305 else
12306 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12307 }
12308
12309 inst.instruction |= 0xf8400000;
12310 if (load)
12311 inst.instruction |= 0x00100000;
12312
12313 mask = ffs (mask) - 1;
12314 mask <<= 12;
12315 }
12316 else if (writeback)
12317 inst.instruction |= WRITE_BACK;
12318
12319 inst.instruction |= mask;
12320 if (do_io)
12321 inst.instruction |= base << 16;
12322 }
12323
12324 static void
12325 do_t_ldmstm (void)
12326 {
12327 /* This really doesn't seem worth it. */
12328 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12329 _("expression too complex"));
12330 constraint (inst.operands[1].writeback,
12331 _("Thumb load/store multiple does not support {reglist}^"));
12332
12333 if (unified_syntax)
12334 {
12335 bfd_boolean narrow;
12336 unsigned mask;
12337
12338 narrow = FALSE;
12339 /* See if we can use a 16-bit instruction. */
12340 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12341 && inst.size_req != 4
12342 && !(inst.operands[1].imm & ~0xff))
12343 {
12344 mask = 1 << inst.operands[0].reg;
12345
12346 if (inst.operands[0].reg <= 7)
12347 {
12348 if (inst.instruction == T_MNEM_stmia
12349 ? inst.operands[0].writeback
12350 : (inst.operands[0].writeback
12351 == !(inst.operands[1].imm & mask)))
12352 {
12353 if (inst.instruction == T_MNEM_stmia
12354 && (inst.operands[1].imm & mask)
12355 && (inst.operands[1].imm & (mask - 1)))
12356 as_warn (_("value stored for r%d is UNKNOWN"),
12357 inst.operands[0].reg);
12358
12359 inst.instruction = THUMB_OP16 (inst.instruction);
12360 inst.instruction |= inst.operands[0].reg << 8;
12361 inst.instruction |= inst.operands[1].imm;
12362 narrow = TRUE;
12363 }
12364 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12365 {
12366 /* This means 1 register in reg list one of 3 situations:
12367 1. Instruction is stmia, but without writeback.
12368 2. lmdia without writeback, but with Rn not in
12369 reglist.
12370 3. ldmia with writeback, but with Rn in reglist.
12371 Case 3 is UNPREDICTABLE behaviour, so we handle
12372 case 1 and 2 which can be converted into a 16-bit
12373 str or ldr. The SP cases are handled below. */
12374 unsigned long opcode;
12375 /* First, record an error for Case 3. */
12376 if (inst.operands[1].imm & mask
12377 && inst.operands[0].writeback)
12378 inst.error =
12379 _("having the base register in the register list when "
12380 "using write back is UNPREDICTABLE");
12381
12382 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12383 : T_MNEM_ldr);
12384 inst.instruction = THUMB_OP16 (opcode);
12385 inst.instruction |= inst.operands[0].reg << 3;
12386 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12387 narrow = TRUE;
12388 }
12389 }
12390 else if (inst.operands[0] .reg == REG_SP)
12391 {
12392 if (inst.operands[0].writeback)
12393 {
12394 inst.instruction =
12395 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12396 ? T_MNEM_push : T_MNEM_pop);
12397 inst.instruction |= inst.operands[1].imm;
12398 narrow = TRUE;
12399 }
12400 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12401 {
12402 inst.instruction =
12403 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12404 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12405 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12406 narrow = TRUE;
12407 }
12408 }
12409 }
12410
12411 if (!narrow)
12412 {
12413 if (inst.instruction < 0xffff)
12414 inst.instruction = THUMB_OP32 (inst.instruction);
12415
12416 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12417 inst.operands[1].imm,
12418 inst.operands[0].writeback);
12419 }
12420 }
12421 else
12422 {
12423 constraint (inst.operands[0].reg > 7
12424 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12425 constraint (inst.instruction != T_MNEM_ldmia
12426 && inst.instruction != T_MNEM_stmia,
12427 _("Thumb-2 instruction only valid in unified syntax"));
12428 if (inst.instruction == T_MNEM_stmia)
12429 {
12430 if (!inst.operands[0].writeback)
12431 as_warn (_("this instruction will write back the base register"));
12432 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12433 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12434 as_warn (_("value stored for r%d is UNKNOWN"),
12435 inst.operands[0].reg);
12436 }
12437 else
12438 {
12439 if (!inst.operands[0].writeback
12440 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12441 as_warn (_("this instruction will write back the base register"));
12442 else if (inst.operands[0].writeback
12443 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12444 as_warn (_("this instruction will not write back the base register"));
12445 }
12446
12447 inst.instruction = THUMB_OP16 (inst.instruction);
12448 inst.instruction |= inst.operands[0].reg << 8;
12449 inst.instruction |= inst.operands[1].imm;
12450 }
12451 }
12452
12453 static void
12454 do_t_ldrex (void)
12455 {
12456 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12457 || inst.operands[1].postind || inst.operands[1].writeback
12458 || inst.operands[1].immisreg || inst.operands[1].shifted
12459 || inst.operands[1].negative,
12460 BAD_ADDR_MODE);
12461
12462 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12463
12464 inst.instruction |= inst.operands[0].reg << 12;
12465 inst.instruction |= inst.operands[1].reg << 16;
12466 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12467 }
12468
12469 static void
12470 do_t_ldrexd (void)
12471 {
12472 if (!inst.operands[1].present)
12473 {
12474 constraint (inst.operands[0].reg == REG_LR,
12475 _("r14 not allowed as first register "
12476 "when second register is omitted"));
12477 inst.operands[1].reg = inst.operands[0].reg + 1;
12478 }
12479 constraint (inst.operands[0].reg == inst.operands[1].reg,
12480 BAD_OVERLAP);
12481
12482 inst.instruction |= inst.operands[0].reg << 12;
12483 inst.instruction |= inst.operands[1].reg << 8;
12484 inst.instruction |= inst.operands[2].reg << 16;
12485 }
12486
12487 static void
12488 do_t_ldst (void)
12489 {
12490 unsigned long opcode;
12491 int Rn;
12492
12493 if (inst.operands[0].isreg
12494 && !inst.operands[0].preind
12495 && inst.operands[0].reg == REG_PC)
12496 set_pred_insn_type_last ();
12497
12498 opcode = inst.instruction;
12499 if (unified_syntax)
12500 {
12501 if (!inst.operands[1].isreg)
12502 {
12503 if (opcode <= 0xffff)
12504 inst.instruction = THUMB_OP32 (opcode);
12505 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12506 return;
12507 }
12508 if (inst.operands[1].isreg
12509 && !inst.operands[1].writeback
12510 && !inst.operands[1].shifted && !inst.operands[1].postind
12511 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12512 && opcode <= 0xffff
12513 && inst.size_req != 4)
12514 {
12515 /* Insn may have a 16-bit form. */
12516 Rn = inst.operands[1].reg;
12517 if (inst.operands[1].immisreg)
12518 {
12519 inst.instruction = THUMB_OP16 (opcode);
12520 /* [Rn, Rik] */
12521 if (Rn <= 7 && inst.operands[1].imm <= 7)
12522 goto op16;
12523 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12524 reject_bad_reg (inst.operands[1].imm);
12525 }
12526 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12527 && opcode != T_MNEM_ldrsb)
12528 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12529 || (Rn == REG_SP && opcode == T_MNEM_str))
12530 {
12531 /* [Rn, #const] */
12532 if (Rn > 7)
12533 {
12534 if (Rn == REG_PC)
12535 {
12536 if (inst.relocs[0].pc_rel)
12537 opcode = T_MNEM_ldr_pc2;
12538 else
12539 opcode = T_MNEM_ldr_pc;
12540 }
12541 else
12542 {
12543 if (opcode == T_MNEM_ldr)
12544 opcode = T_MNEM_ldr_sp;
12545 else
12546 opcode = T_MNEM_str_sp;
12547 }
12548 inst.instruction = inst.operands[0].reg << 8;
12549 }
12550 else
12551 {
12552 inst.instruction = inst.operands[0].reg;
12553 inst.instruction |= inst.operands[1].reg << 3;
12554 }
12555 inst.instruction |= THUMB_OP16 (opcode);
12556 if (inst.size_req == 2)
12557 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12558 else
12559 inst.relax = opcode;
12560 return;
12561 }
12562 }
12563 /* Definitely a 32-bit variant. */
12564
12565 /* Warning for Erratum 752419. */
12566 if (opcode == T_MNEM_ldr
12567 && inst.operands[0].reg == REG_SP
12568 && inst.operands[1].writeback == 1
12569 && !inst.operands[1].immisreg)
12570 {
12571 if (no_cpu_selected ()
12572 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12573 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12574 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12575 as_warn (_("This instruction may be unpredictable "
12576 "if executed on M-profile cores "
12577 "with interrupts enabled."));
12578 }
12579
12580 /* Do some validations regarding addressing modes. */
12581 if (inst.operands[1].immisreg)
12582 reject_bad_reg (inst.operands[1].imm);
12583
12584 constraint (inst.operands[1].writeback == 1
12585 && inst.operands[0].reg == inst.operands[1].reg,
12586 BAD_OVERLAP);
12587
12588 inst.instruction = THUMB_OP32 (opcode);
12589 inst.instruction |= inst.operands[0].reg << 12;
12590 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12591 check_ldr_r15_aligned ();
12592 return;
12593 }
12594
12595 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12596
12597 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12598 {
12599 /* Only [Rn,Rm] is acceptable. */
12600 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12601 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12602 || inst.operands[1].postind || inst.operands[1].shifted
12603 || inst.operands[1].negative,
12604 _("Thumb does not support this addressing mode"));
12605 inst.instruction = THUMB_OP16 (inst.instruction);
12606 goto op16;
12607 }
12608
12609 inst.instruction = THUMB_OP16 (inst.instruction);
12610 if (!inst.operands[1].isreg)
12611 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12612 return;
12613
12614 constraint (!inst.operands[1].preind
12615 || inst.operands[1].shifted
12616 || inst.operands[1].writeback,
12617 _("Thumb does not support this addressing mode"));
12618 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12619 {
12620 constraint (inst.instruction & 0x0600,
12621 _("byte or halfword not valid for base register"));
12622 constraint (inst.operands[1].reg == REG_PC
12623 && !(inst.instruction & THUMB_LOAD_BIT),
12624 _("r15 based store not allowed"));
12625 constraint (inst.operands[1].immisreg,
12626 _("invalid base register for register offset"));
12627
12628 if (inst.operands[1].reg == REG_PC)
12629 inst.instruction = T_OPCODE_LDR_PC;
12630 else if (inst.instruction & THUMB_LOAD_BIT)
12631 inst.instruction = T_OPCODE_LDR_SP;
12632 else
12633 inst.instruction = T_OPCODE_STR_SP;
12634
12635 inst.instruction |= inst.operands[0].reg << 8;
12636 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12637 return;
12638 }
12639
12640 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12641 if (!inst.operands[1].immisreg)
12642 {
12643 /* Immediate offset. */
12644 inst.instruction |= inst.operands[0].reg;
12645 inst.instruction |= inst.operands[1].reg << 3;
12646 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12647 return;
12648 }
12649
12650 /* Register offset. */
12651 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12652 constraint (inst.operands[1].negative,
12653 _("Thumb does not support this addressing mode"));
12654
12655 op16:
12656 switch (inst.instruction)
12657 {
12658 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12659 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12660 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12661 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12662 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12663 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12664 case 0x5600 /* ldrsb */:
12665 case 0x5e00 /* ldrsh */: break;
12666 default: abort ();
12667 }
12668
12669 inst.instruction |= inst.operands[0].reg;
12670 inst.instruction |= inst.operands[1].reg << 3;
12671 inst.instruction |= inst.operands[1].imm << 6;
12672 }
12673
12674 static void
12675 do_t_ldstd (void)
12676 {
12677 if (!inst.operands[1].present)
12678 {
12679 inst.operands[1].reg = inst.operands[0].reg + 1;
12680 constraint (inst.operands[0].reg == REG_LR,
12681 _("r14 not allowed here"));
12682 constraint (inst.operands[0].reg == REG_R12,
12683 _("r12 not allowed here"));
12684 }
12685
12686 if (inst.operands[2].writeback
12687 && (inst.operands[0].reg == inst.operands[2].reg
12688 || inst.operands[1].reg == inst.operands[2].reg))
12689 as_warn (_("base register written back, and overlaps "
12690 "one of transfer registers"));
12691
12692 inst.instruction |= inst.operands[0].reg << 12;
12693 inst.instruction |= inst.operands[1].reg << 8;
12694 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12695 }
12696
12697 static void
12698 do_t_ldstt (void)
12699 {
12700 inst.instruction |= inst.operands[0].reg << 12;
12701 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12702 }
12703
12704 static void
12705 do_t_mla (void)
12706 {
12707 unsigned Rd, Rn, Rm, Ra;
12708
12709 Rd = inst.operands[0].reg;
12710 Rn = inst.operands[1].reg;
12711 Rm = inst.operands[2].reg;
12712 Ra = inst.operands[3].reg;
12713
12714 reject_bad_reg (Rd);
12715 reject_bad_reg (Rn);
12716 reject_bad_reg (Rm);
12717 reject_bad_reg (Ra);
12718
12719 inst.instruction |= Rd << 8;
12720 inst.instruction |= Rn << 16;
12721 inst.instruction |= Rm;
12722 inst.instruction |= Ra << 12;
12723 }
12724
12725 static void
12726 do_t_mlal (void)
12727 {
12728 unsigned RdLo, RdHi, Rn, Rm;
12729
12730 RdLo = inst.operands[0].reg;
12731 RdHi = inst.operands[1].reg;
12732 Rn = inst.operands[2].reg;
12733 Rm = inst.operands[3].reg;
12734
12735 reject_bad_reg (RdLo);
12736 reject_bad_reg (RdHi);
12737 reject_bad_reg (Rn);
12738 reject_bad_reg (Rm);
12739
12740 inst.instruction |= RdLo << 12;
12741 inst.instruction |= RdHi << 8;
12742 inst.instruction |= Rn << 16;
12743 inst.instruction |= Rm;
12744 }
12745
12746 static void
12747 do_t_mov_cmp (void)
12748 {
12749 unsigned Rn, Rm;
12750
12751 Rn = inst.operands[0].reg;
12752 Rm = inst.operands[1].reg;
12753
12754 if (Rn == REG_PC)
12755 set_pred_insn_type_last ();
12756
12757 if (unified_syntax)
12758 {
12759 int r0off = (inst.instruction == T_MNEM_mov
12760 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12761 unsigned long opcode;
12762 bfd_boolean narrow;
12763 bfd_boolean low_regs;
12764
12765 low_regs = (Rn <= 7 && Rm <= 7);
12766 opcode = inst.instruction;
12767 if (in_pred_block ())
12768 narrow = opcode != T_MNEM_movs;
12769 else
12770 narrow = opcode != T_MNEM_movs || low_regs;
12771 if (inst.size_req == 4
12772 || inst.operands[1].shifted)
12773 narrow = FALSE;
12774
12775 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12776 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12777 && !inst.operands[1].shifted
12778 && Rn == REG_PC
12779 && Rm == REG_LR)
12780 {
12781 inst.instruction = T2_SUBS_PC_LR;
12782 return;
12783 }
12784
12785 if (opcode == T_MNEM_cmp)
12786 {
12787 constraint (Rn == REG_PC, BAD_PC);
12788 if (narrow)
12789 {
12790 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12791 but valid. */
12792 warn_deprecated_sp (Rm);
12793 /* R15 was documented as a valid choice for Rm in ARMv6,
12794 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12795 tools reject R15, so we do too. */
12796 constraint (Rm == REG_PC, BAD_PC);
12797 }
12798 else
12799 reject_bad_reg (Rm);
12800 }
12801 else if (opcode == T_MNEM_mov
12802 || opcode == T_MNEM_movs)
12803 {
12804 if (inst.operands[1].isreg)
12805 {
12806 if (opcode == T_MNEM_movs)
12807 {
12808 reject_bad_reg (Rn);
12809 reject_bad_reg (Rm);
12810 }
12811 else if (narrow)
12812 {
12813 /* This is mov.n. */
12814 if ((Rn == REG_SP || Rn == REG_PC)
12815 && (Rm == REG_SP || Rm == REG_PC))
12816 {
12817 as_tsktsk (_("Use of r%u as a source register is "
12818 "deprecated when r%u is the destination "
12819 "register."), Rm, Rn);
12820 }
12821 }
12822 else
12823 {
12824 /* This is mov.w. */
12825 constraint (Rn == REG_PC, BAD_PC);
12826 constraint (Rm == REG_PC, BAD_PC);
12827 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12828 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12829 }
12830 }
12831 else
12832 reject_bad_reg (Rn);
12833 }
12834
12835 if (!inst.operands[1].isreg)
12836 {
12837 /* Immediate operand. */
12838 if (!in_pred_block () && opcode == T_MNEM_mov)
12839 narrow = 0;
12840 if (low_regs && narrow)
12841 {
12842 inst.instruction = THUMB_OP16 (opcode);
12843 inst.instruction |= Rn << 8;
12844 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12845 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12846 {
12847 if (inst.size_req == 2)
12848 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12849 else
12850 inst.relax = opcode;
12851 }
12852 }
12853 else
12854 {
12855 constraint ((inst.relocs[0].type
12856 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12857 && (inst.relocs[0].type
12858 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12859 THUMB1_RELOC_ONLY);
12860
12861 inst.instruction = THUMB_OP32 (inst.instruction);
12862 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12863 inst.instruction |= Rn << r0off;
12864 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12865 }
12866 }
12867 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12868 && (inst.instruction == T_MNEM_mov
12869 || inst.instruction == T_MNEM_movs))
12870 {
12871 /* Register shifts are encoded as separate shift instructions. */
12872 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12873
12874 if (in_pred_block ())
12875 narrow = !flags;
12876 else
12877 narrow = flags;
12878
12879 if (inst.size_req == 4)
12880 narrow = FALSE;
12881
12882 if (!low_regs || inst.operands[1].imm > 7)
12883 narrow = FALSE;
12884
12885 if (Rn != Rm)
12886 narrow = FALSE;
12887
12888 switch (inst.operands[1].shift_kind)
12889 {
12890 case SHIFT_LSL:
12891 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12892 break;
12893 case SHIFT_ASR:
12894 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12895 break;
12896 case SHIFT_LSR:
12897 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12898 break;
12899 case SHIFT_ROR:
12900 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12901 break;
12902 default:
12903 abort ();
12904 }
12905
12906 inst.instruction = opcode;
12907 if (narrow)
12908 {
12909 inst.instruction |= Rn;
12910 inst.instruction |= inst.operands[1].imm << 3;
12911 }
12912 else
12913 {
12914 if (flags)
12915 inst.instruction |= CONDS_BIT;
12916
12917 inst.instruction |= Rn << 8;
12918 inst.instruction |= Rm << 16;
12919 inst.instruction |= inst.operands[1].imm;
12920 }
12921 }
12922 else if (!narrow)
12923 {
12924 /* Some mov with immediate shift have narrow variants.
12925 Register shifts are handled above. */
12926 if (low_regs && inst.operands[1].shifted
12927 && (inst.instruction == T_MNEM_mov
12928 || inst.instruction == T_MNEM_movs))
12929 {
12930 if (in_pred_block ())
12931 narrow = (inst.instruction == T_MNEM_mov);
12932 else
12933 narrow = (inst.instruction == T_MNEM_movs);
12934 }
12935
12936 if (narrow)
12937 {
12938 switch (inst.operands[1].shift_kind)
12939 {
12940 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12941 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12942 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12943 default: narrow = FALSE; break;
12944 }
12945 }
12946
12947 if (narrow)
12948 {
12949 inst.instruction |= Rn;
12950 inst.instruction |= Rm << 3;
12951 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12952 }
12953 else
12954 {
12955 inst.instruction = THUMB_OP32 (inst.instruction);
12956 inst.instruction |= Rn << r0off;
12957 encode_thumb32_shifted_operand (1);
12958 }
12959 }
12960 else
12961 switch (inst.instruction)
12962 {
12963 case T_MNEM_mov:
12964 /* In v4t or v5t a move of two lowregs produces unpredictable
12965 results. Don't allow this. */
12966 if (low_regs)
12967 {
12968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12969 "MOV Rd, Rs with two low registers is not "
12970 "permitted on this architecture");
12971 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12972 arm_ext_v6);
12973 }
12974
12975 inst.instruction = T_OPCODE_MOV_HR;
12976 inst.instruction |= (Rn & 0x8) << 4;
12977 inst.instruction |= (Rn & 0x7);
12978 inst.instruction |= Rm << 3;
12979 break;
12980
12981 case T_MNEM_movs:
12982 /* We know we have low registers at this point.
12983 Generate LSLS Rd, Rs, #0. */
12984 inst.instruction = T_OPCODE_LSL_I;
12985 inst.instruction |= Rn;
12986 inst.instruction |= Rm << 3;
12987 break;
12988
12989 case T_MNEM_cmp:
12990 if (low_regs)
12991 {
12992 inst.instruction = T_OPCODE_CMP_LR;
12993 inst.instruction |= Rn;
12994 inst.instruction |= Rm << 3;
12995 }
12996 else
12997 {
12998 inst.instruction = T_OPCODE_CMP_HR;
12999 inst.instruction |= (Rn & 0x8) << 4;
13000 inst.instruction |= (Rn & 0x7);
13001 inst.instruction |= Rm << 3;
13002 }
13003 break;
13004 }
13005 return;
13006 }
13007
13008 inst.instruction = THUMB_OP16 (inst.instruction);
13009
13010 /* PR 10443: Do not silently ignore shifted operands. */
13011 constraint (inst.operands[1].shifted,
13012 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13013
13014 if (inst.operands[1].isreg)
13015 {
13016 if (Rn < 8 && Rm < 8)
13017 {
13018 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13019 since a MOV instruction produces unpredictable results. */
13020 if (inst.instruction == T_OPCODE_MOV_I8)
13021 inst.instruction = T_OPCODE_ADD_I3;
13022 else
13023 inst.instruction = T_OPCODE_CMP_LR;
13024
13025 inst.instruction |= Rn;
13026 inst.instruction |= Rm << 3;
13027 }
13028 else
13029 {
13030 if (inst.instruction == T_OPCODE_MOV_I8)
13031 inst.instruction = T_OPCODE_MOV_HR;
13032 else
13033 inst.instruction = T_OPCODE_CMP_HR;
13034 do_t_cpy ();
13035 }
13036 }
13037 else
13038 {
13039 constraint (Rn > 7,
13040 _("only lo regs allowed with immediate"));
13041 inst.instruction |= Rn << 8;
13042 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13043 }
13044 }
13045
13046 static void
13047 do_t_mov16 (void)
13048 {
13049 unsigned Rd;
13050 bfd_vma imm;
13051 bfd_boolean top;
13052
13053 top = (inst.instruction & 0x00800000) != 0;
13054 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13055 {
13056 constraint (top, _(":lower16: not allowed in this instruction"));
13057 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13058 }
13059 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13060 {
13061 constraint (!top, _(":upper16: not allowed in this instruction"));
13062 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13063 }
13064
13065 Rd = inst.operands[0].reg;
13066 reject_bad_reg (Rd);
13067
13068 inst.instruction |= Rd << 8;
13069 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13070 {
13071 imm = inst.relocs[0].exp.X_add_number;
13072 inst.instruction |= (imm & 0xf000) << 4;
13073 inst.instruction |= (imm & 0x0800) << 15;
13074 inst.instruction |= (imm & 0x0700) << 4;
13075 inst.instruction |= (imm & 0x00ff);
13076 }
13077 }
13078
13079 static void
13080 do_t_mvn_tst (void)
13081 {
13082 unsigned Rn, Rm;
13083
13084 Rn = inst.operands[0].reg;
13085 Rm = inst.operands[1].reg;
13086
13087 if (inst.instruction == T_MNEM_cmp
13088 || inst.instruction == T_MNEM_cmn)
13089 constraint (Rn == REG_PC, BAD_PC);
13090 else
13091 reject_bad_reg (Rn);
13092 reject_bad_reg (Rm);
13093
13094 if (unified_syntax)
13095 {
13096 int r0off = (inst.instruction == T_MNEM_mvn
13097 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13098 bfd_boolean narrow;
13099
13100 if (inst.size_req == 4
13101 || inst.instruction > 0xffff
13102 || inst.operands[1].shifted
13103 || Rn > 7 || Rm > 7)
13104 narrow = FALSE;
13105 else if (inst.instruction == T_MNEM_cmn
13106 || inst.instruction == T_MNEM_tst)
13107 narrow = TRUE;
13108 else if (THUMB_SETS_FLAGS (inst.instruction))
13109 narrow = !in_pred_block ();
13110 else
13111 narrow = in_pred_block ();
13112
13113 if (!inst.operands[1].isreg)
13114 {
13115 /* For an immediate, we always generate a 32-bit opcode;
13116 section relaxation will shrink it later if possible. */
13117 if (inst.instruction < 0xffff)
13118 inst.instruction = THUMB_OP32 (inst.instruction);
13119 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13120 inst.instruction |= Rn << r0off;
13121 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13122 }
13123 else
13124 {
13125 /* See if we can do this with a 16-bit instruction. */
13126 if (narrow)
13127 {
13128 inst.instruction = THUMB_OP16 (inst.instruction);
13129 inst.instruction |= Rn;
13130 inst.instruction |= Rm << 3;
13131 }
13132 else
13133 {
13134 constraint (inst.operands[1].shifted
13135 && inst.operands[1].immisreg,
13136 _("shift must be constant"));
13137 if (inst.instruction < 0xffff)
13138 inst.instruction = THUMB_OP32 (inst.instruction);
13139 inst.instruction |= Rn << r0off;
13140 encode_thumb32_shifted_operand (1);
13141 }
13142 }
13143 }
13144 else
13145 {
13146 constraint (inst.instruction > 0xffff
13147 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13148 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13149 _("unshifted register required"));
13150 constraint (Rn > 7 || Rm > 7,
13151 BAD_HIREG);
13152
13153 inst.instruction = THUMB_OP16 (inst.instruction);
13154 inst.instruction |= Rn;
13155 inst.instruction |= Rm << 3;
13156 }
13157 }
13158
13159 static void
13160 do_t_mrs (void)
13161 {
13162 unsigned Rd;
13163
13164 if (do_vfp_nsyn_mrs () == SUCCESS)
13165 return;
13166
13167 Rd = inst.operands[0].reg;
13168 reject_bad_reg (Rd);
13169 inst.instruction |= Rd << 8;
13170
13171 if (inst.operands[1].isreg)
13172 {
13173 unsigned br = inst.operands[1].reg;
13174 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13175 as_bad (_("bad register for mrs"));
13176
13177 inst.instruction |= br & (0xf << 16);
13178 inst.instruction |= (br & 0x300) >> 4;
13179 inst.instruction |= (br & SPSR_BIT) >> 2;
13180 }
13181 else
13182 {
13183 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13184
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13186 {
13187 /* PR gas/12698: The constraint is only applied for m_profile.
13188 If the user has specified -march=all, we want to ignore it as
13189 we are building for any CPU type, including non-m variants. */
13190 bfd_boolean m_profile =
13191 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13192 constraint ((flags != 0) && m_profile, _("selected processor does "
13193 "not support requested special purpose register"));
13194 }
13195 else
13196 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13197 devices). */
13198 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13199 _("'APSR', 'CPSR' or 'SPSR' expected"));
13200
13201 inst.instruction |= (flags & SPSR_BIT) >> 2;
13202 inst.instruction |= inst.operands[1].imm & 0xff;
13203 inst.instruction |= 0xf0000;
13204 }
13205 }
13206
13207 static void
13208 do_t_msr (void)
13209 {
13210 int flags;
13211 unsigned Rn;
13212
13213 if (do_vfp_nsyn_msr () == SUCCESS)
13214 return;
13215
13216 constraint (!inst.operands[1].isreg,
13217 _("Thumb encoding does not support an immediate here"));
13218
13219 if (inst.operands[0].isreg)
13220 flags = (int)(inst.operands[0].reg);
13221 else
13222 flags = inst.operands[0].imm;
13223
13224 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13225 {
13226 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13227
13228 /* PR gas/12698: The constraint is only applied for m_profile.
13229 If the user has specified -march=all, we want to ignore it as
13230 we are building for any CPU type, including non-m variants. */
13231 bfd_boolean m_profile =
13232 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13233 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13234 && (bits & ~(PSR_s | PSR_f)) != 0)
13235 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13236 && bits != PSR_f)) && m_profile,
13237 _("selected processor does not support requested special "
13238 "purpose register"));
13239 }
13240 else
13241 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13242 "requested special purpose register"));
13243
13244 Rn = inst.operands[1].reg;
13245 reject_bad_reg (Rn);
13246
13247 inst.instruction |= (flags & SPSR_BIT) >> 2;
13248 inst.instruction |= (flags & 0xf0000) >> 8;
13249 inst.instruction |= (flags & 0x300) >> 4;
13250 inst.instruction |= (flags & 0xff);
13251 inst.instruction |= Rn << 16;
13252 }
13253
13254 static void
13255 do_t_mul (void)
13256 {
13257 bfd_boolean narrow;
13258 unsigned Rd, Rn, Rm;
13259
13260 if (!inst.operands[2].present)
13261 inst.operands[2].reg = inst.operands[0].reg;
13262
13263 Rd = inst.operands[0].reg;
13264 Rn = inst.operands[1].reg;
13265 Rm = inst.operands[2].reg;
13266
13267 if (unified_syntax)
13268 {
13269 if (inst.size_req == 4
13270 || (Rd != Rn
13271 && Rd != Rm)
13272 || Rn > 7
13273 || Rm > 7)
13274 narrow = FALSE;
13275 else if (inst.instruction == T_MNEM_muls)
13276 narrow = !in_pred_block ();
13277 else
13278 narrow = in_pred_block ();
13279 }
13280 else
13281 {
13282 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13283 constraint (Rn > 7 || Rm > 7,
13284 BAD_HIREG);
13285 narrow = TRUE;
13286 }
13287
13288 if (narrow)
13289 {
13290 /* 16-bit MULS/Conditional MUL. */
13291 inst.instruction = THUMB_OP16 (inst.instruction);
13292 inst.instruction |= Rd;
13293
13294 if (Rd == Rn)
13295 inst.instruction |= Rm << 3;
13296 else if (Rd == Rm)
13297 inst.instruction |= Rn << 3;
13298 else
13299 constraint (1, _("dest must overlap one source register"));
13300 }
13301 else
13302 {
13303 constraint (inst.instruction != T_MNEM_mul,
13304 _("Thumb-2 MUL must not set flags"));
13305 /* 32-bit MUL. */
13306 inst.instruction = THUMB_OP32 (inst.instruction);
13307 inst.instruction |= Rd << 8;
13308 inst.instruction |= Rn << 16;
13309 inst.instruction |= Rm << 0;
13310
13311 reject_bad_reg (Rd);
13312 reject_bad_reg (Rn);
13313 reject_bad_reg (Rm);
13314 }
13315 }
13316
13317 static void
13318 do_t_mull (void)
13319 {
13320 unsigned RdLo, RdHi, Rn, Rm;
13321
13322 RdLo = inst.operands[0].reg;
13323 RdHi = inst.operands[1].reg;
13324 Rn = inst.operands[2].reg;
13325 Rm = inst.operands[3].reg;
13326
13327 reject_bad_reg (RdLo);
13328 reject_bad_reg (RdHi);
13329 reject_bad_reg (Rn);
13330 reject_bad_reg (Rm);
13331
13332 inst.instruction |= RdLo << 12;
13333 inst.instruction |= RdHi << 8;
13334 inst.instruction |= Rn << 16;
13335 inst.instruction |= Rm;
13336
13337 if (RdLo == RdHi)
13338 as_tsktsk (_("rdhi and rdlo must be different"));
13339 }
13340
13341 static void
13342 do_t_nop (void)
13343 {
13344 set_pred_insn_type (NEUTRAL_IT_INSN);
13345
13346 if (unified_syntax)
13347 {
13348 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13349 {
13350 inst.instruction = THUMB_OP32 (inst.instruction);
13351 inst.instruction |= inst.operands[0].imm;
13352 }
13353 else
13354 {
13355 /* PR9722: Check for Thumb2 availability before
13356 generating a thumb2 nop instruction. */
13357 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13358 {
13359 inst.instruction = THUMB_OP16 (inst.instruction);
13360 inst.instruction |= inst.operands[0].imm << 4;
13361 }
13362 else
13363 inst.instruction = 0x46c0;
13364 }
13365 }
13366 else
13367 {
13368 constraint (inst.operands[0].present,
13369 _("Thumb does not support NOP with hints"));
13370 inst.instruction = 0x46c0;
13371 }
13372 }
13373
13374 static void
13375 do_t_neg (void)
13376 {
13377 if (unified_syntax)
13378 {
13379 bfd_boolean narrow;
13380
13381 if (THUMB_SETS_FLAGS (inst.instruction))
13382 narrow = !in_pred_block ();
13383 else
13384 narrow = in_pred_block ();
13385 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13386 narrow = FALSE;
13387 if (inst.size_req == 4)
13388 narrow = FALSE;
13389
13390 if (!narrow)
13391 {
13392 inst.instruction = THUMB_OP32 (inst.instruction);
13393 inst.instruction |= inst.operands[0].reg << 8;
13394 inst.instruction |= inst.operands[1].reg << 16;
13395 }
13396 else
13397 {
13398 inst.instruction = THUMB_OP16 (inst.instruction);
13399 inst.instruction |= inst.operands[0].reg;
13400 inst.instruction |= inst.operands[1].reg << 3;
13401 }
13402 }
13403 else
13404 {
13405 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13406 BAD_HIREG);
13407 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13408
13409 inst.instruction = THUMB_OP16 (inst.instruction);
13410 inst.instruction |= inst.operands[0].reg;
13411 inst.instruction |= inst.operands[1].reg << 3;
13412 }
13413 }
13414
13415 static void
13416 do_t_orn (void)
13417 {
13418 unsigned Rd, Rn;
13419
13420 Rd = inst.operands[0].reg;
13421 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13422
13423 reject_bad_reg (Rd);
13424 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13425 reject_bad_reg (Rn);
13426
13427 inst.instruction |= Rd << 8;
13428 inst.instruction |= Rn << 16;
13429
13430 if (!inst.operands[2].isreg)
13431 {
13432 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13433 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13434 }
13435 else
13436 {
13437 unsigned Rm;
13438
13439 Rm = inst.operands[2].reg;
13440 reject_bad_reg (Rm);
13441
13442 constraint (inst.operands[2].shifted
13443 && inst.operands[2].immisreg,
13444 _("shift must be constant"));
13445 encode_thumb32_shifted_operand (2);
13446 }
13447 }
13448
13449 static void
13450 do_t_pkhbt (void)
13451 {
13452 unsigned Rd, Rn, Rm;
13453
13454 Rd = inst.operands[0].reg;
13455 Rn = inst.operands[1].reg;
13456 Rm = inst.operands[2].reg;
13457
13458 reject_bad_reg (Rd);
13459 reject_bad_reg (Rn);
13460 reject_bad_reg (Rm);
13461
13462 inst.instruction |= Rd << 8;
13463 inst.instruction |= Rn << 16;
13464 inst.instruction |= Rm;
13465 if (inst.operands[3].present)
13466 {
13467 unsigned int val = inst.relocs[0].exp.X_add_number;
13468 constraint (inst.relocs[0].exp.X_op != O_constant,
13469 _("expression too complex"));
13470 inst.instruction |= (val & 0x1c) << 10;
13471 inst.instruction |= (val & 0x03) << 6;
13472 }
13473 }
13474
13475 static void
13476 do_t_pkhtb (void)
13477 {
13478 if (!inst.operands[3].present)
13479 {
13480 unsigned Rtmp;
13481
13482 inst.instruction &= ~0x00000020;
13483
13484 /* PR 10168. Swap the Rm and Rn registers. */
13485 Rtmp = inst.operands[1].reg;
13486 inst.operands[1].reg = inst.operands[2].reg;
13487 inst.operands[2].reg = Rtmp;
13488 }
13489 do_t_pkhbt ();
13490 }
13491
13492 static void
13493 do_t_pld (void)
13494 {
13495 if (inst.operands[0].immisreg)
13496 reject_bad_reg (inst.operands[0].imm);
13497
13498 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13499 }
13500
13501 static void
13502 do_t_push_pop (void)
13503 {
13504 unsigned mask;
13505
13506 constraint (inst.operands[0].writeback,
13507 _("push/pop do not support {reglist}^"));
13508 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13509 _("expression too complex"));
13510
13511 mask = inst.operands[0].imm;
13512 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13513 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13514 else if (inst.size_req != 4
13515 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13516 ? REG_LR : REG_PC)))
13517 {
13518 inst.instruction = THUMB_OP16 (inst.instruction);
13519 inst.instruction |= THUMB_PP_PC_LR;
13520 inst.instruction |= mask & 0xff;
13521 }
13522 else if (unified_syntax)
13523 {
13524 inst.instruction = THUMB_OP32 (inst.instruction);
13525 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13526 }
13527 else
13528 {
13529 inst.error = _("invalid register list to push/pop instruction");
13530 return;
13531 }
13532 }
13533
13534 static void
13535 do_t_clrm (void)
13536 {
13537 if (unified_syntax)
13538 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13539 else
13540 {
13541 inst.error = _("invalid register list to push/pop instruction");
13542 return;
13543 }
13544 }
13545
13546 static void
13547 do_t_vscclrm (void)
13548 {
13549 if (inst.operands[0].issingle)
13550 {
13551 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13552 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13553 inst.instruction |= inst.operands[0].imm;
13554 }
13555 else
13556 {
13557 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13558 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13559 inst.instruction |= 1 << 8;
13560 inst.instruction |= inst.operands[0].imm << 1;
13561 }
13562 }
13563
13564 static void
13565 do_t_rbit (void)
13566 {
13567 unsigned Rd, Rm;
13568
13569 Rd = inst.operands[0].reg;
13570 Rm = inst.operands[1].reg;
13571
13572 reject_bad_reg (Rd);
13573 reject_bad_reg (Rm);
13574
13575 inst.instruction |= Rd << 8;
13576 inst.instruction |= Rm << 16;
13577 inst.instruction |= Rm;
13578 }
13579
13580 static void
13581 do_t_rev (void)
13582 {
13583 unsigned Rd, Rm;
13584
13585 Rd = inst.operands[0].reg;
13586 Rm = inst.operands[1].reg;
13587
13588 reject_bad_reg (Rd);
13589 reject_bad_reg (Rm);
13590
13591 if (Rd <= 7 && Rm <= 7
13592 && inst.size_req != 4)
13593 {
13594 inst.instruction = THUMB_OP16 (inst.instruction);
13595 inst.instruction |= Rd;
13596 inst.instruction |= Rm << 3;
13597 }
13598 else if (unified_syntax)
13599 {
13600 inst.instruction = THUMB_OP32 (inst.instruction);
13601 inst.instruction |= Rd << 8;
13602 inst.instruction |= Rm << 16;
13603 inst.instruction |= Rm;
13604 }
13605 else
13606 inst.error = BAD_HIREG;
13607 }
13608
13609 static void
13610 do_t_rrx (void)
13611 {
13612 unsigned Rd, Rm;
13613
13614 Rd = inst.operands[0].reg;
13615 Rm = inst.operands[1].reg;
13616
13617 reject_bad_reg (Rd);
13618 reject_bad_reg (Rm);
13619
13620 inst.instruction |= Rd << 8;
13621 inst.instruction |= Rm;
13622 }
13623
13624 static void
13625 do_t_rsb (void)
13626 {
13627 unsigned Rd, Rs;
13628
13629 Rd = inst.operands[0].reg;
13630 Rs = (inst.operands[1].present
13631 ? inst.operands[1].reg /* Rd, Rs, foo */
13632 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13633
13634 reject_bad_reg (Rd);
13635 reject_bad_reg (Rs);
13636 if (inst.operands[2].isreg)
13637 reject_bad_reg (inst.operands[2].reg);
13638
13639 inst.instruction |= Rd << 8;
13640 inst.instruction |= Rs << 16;
13641 if (!inst.operands[2].isreg)
13642 {
13643 bfd_boolean narrow;
13644
13645 if ((inst.instruction & 0x00100000) != 0)
13646 narrow = !in_pred_block ();
13647 else
13648 narrow = in_pred_block ();
13649
13650 if (Rd > 7 || Rs > 7)
13651 narrow = FALSE;
13652
13653 if (inst.size_req == 4 || !unified_syntax)
13654 narrow = FALSE;
13655
13656 if (inst.relocs[0].exp.X_op != O_constant
13657 || inst.relocs[0].exp.X_add_number != 0)
13658 narrow = FALSE;
13659
13660 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13661 relaxation, but it doesn't seem worth the hassle. */
13662 if (narrow)
13663 {
13664 inst.relocs[0].type = BFD_RELOC_UNUSED;
13665 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13666 inst.instruction |= Rs << 3;
13667 inst.instruction |= Rd;
13668 }
13669 else
13670 {
13671 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13672 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13673 }
13674 }
13675 else
13676 encode_thumb32_shifted_operand (2);
13677 }
13678
13679 static void
13680 do_t_setend (void)
13681 {
13682 if (warn_on_deprecated
13683 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13684 as_tsktsk (_("setend use is deprecated for ARMv8"));
13685
13686 set_pred_insn_type (OUTSIDE_PRED_INSN);
13687 if (inst.operands[0].imm)
13688 inst.instruction |= 0x8;
13689 }
13690
13691 static void
13692 do_t_shift (void)
13693 {
13694 if (!inst.operands[1].present)
13695 inst.operands[1].reg = inst.operands[0].reg;
13696
13697 if (unified_syntax)
13698 {
13699 bfd_boolean narrow;
13700 int shift_kind;
13701
13702 switch (inst.instruction)
13703 {
13704 case T_MNEM_asr:
13705 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13706 case T_MNEM_lsl:
13707 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13708 case T_MNEM_lsr:
13709 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13710 case T_MNEM_ror:
13711 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13712 default: abort ();
13713 }
13714
13715 if (THUMB_SETS_FLAGS (inst.instruction))
13716 narrow = !in_pred_block ();
13717 else
13718 narrow = in_pred_block ();
13719 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13720 narrow = FALSE;
13721 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13722 narrow = FALSE;
13723 if (inst.operands[2].isreg
13724 && (inst.operands[1].reg != inst.operands[0].reg
13725 || inst.operands[2].reg > 7))
13726 narrow = FALSE;
13727 if (inst.size_req == 4)
13728 narrow = FALSE;
13729
13730 reject_bad_reg (inst.operands[0].reg);
13731 reject_bad_reg (inst.operands[1].reg);
13732
13733 if (!narrow)
13734 {
13735 if (inst.operands[2].isreg)
13736 {
13737 reject_bad_reg (inst.operands[2].reg);
13738 inst.instruction = THUMB_OP32 (inst.instruction);
13739 inst.instruction |= inst.operands[0].reg << 8;
13740 inst.instruction |= inst.operands[1].reg << 16;
13741 inst.instruction |= inst.operands[2].reg;
13742
13743 /* PR 12854: Error on extraneous shifts. */
13744 constraint (inst.operands[2].shifted,
13745 _("extraneous shift as part of operand to shift insn"));
13746 }
13747 else
13748 {
13749 inst.operands[1].shifted = 1;
13750 inst.operands[1].shift_kind = shift_kind;
13751 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13752 ? T_MNEM_movs : T_MNEM_mov);
13753 inst.instruction |= inst.operands[0].reg << 8;
13754 encode_thumb32_shifted_operand (1);
13755 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13756 inst.relocs[0].type = BFD_RELOC_UNUSED;
13757 }
13758 }
13759 else
13760 {
13761 if (inst.operands[2].isreg)
13762 {
13763 switch (shift_kind)
13764 {
13765 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13766 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13767 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13768 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13769 default: abort ();
13770 }
13771
13772 inst.instruction |= inst.operands[0].reg;
13773 inst.instruction |= inst.operands[2].reg << 3;
13774
13775 /* PR 12854: Error on extraneous shifts. */
13776 constraint (inst.operands[2].shifted,
13777 _("extraneous shift as part of operand to shift insn"));
13778 }
13779 else
13780 {
13781 switch (shift_kind)
13782 {
13783 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13784 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13785 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13786 default: abort ();
13787 }
13788 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13789 inst.instruction |= inst.operands[0].reg;
13790 inst.instruction |= inst.operands[1].reg << 3;
13791 }
13792 }
13793 }
13794 else
13795 {
13796 constraint (inst.operands[0].reg > 7
13797 || inst.operands[1].reg > 7, BAD_HIREG);
13798 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13799
13800 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13801 {
13802 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13803 constraint (inst.operands[0].reg != inst.operands[1].reg,
13804 _("source1 and dest must be same register"));
13805
13806 switch (inst.instruction)
13807 {
13808 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13809 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13810 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13811 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13812 default: abort ();
13813 }
13814
13815 inst.instruction |= inst.operands[0].reg;
13816 inst.instruction |= inst.operands[2].reg << 3;
13817
13818 /* PR 12854: Error on extraneous shifts. */
13819 constraint (inst.operands[2].shifted,
13820 _("extraneous shift as part of operand to shift insn"));
13821 }
13822 else
13823 {
13824 switch (inst.instruction)
13825 {
13826 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13827 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13828 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13829 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13830 default: abort ();
13831 }
13832 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13833 inst.instruction |= inst.operands[0].reg;
13834 inst.instruction |= inst.operands[1].reg << 3;
13835 }
13836 }
13837 }
13838
13839 static void
13840 do_t_simd (void)
13841 {
13842 unsigned Rd, Rn, Rm;
13843
13844 Rd = inst.operands[0].reg;
13845 Rn = inst.operands[1].reg;
13846 Rm = inst.operands[2].reg;
13847
13848 reject_bad_reg (Rd);
13849 reject_bad_reg (Rn);
13850 reject_bad_reg (Rm);
13851
13852 inst.instruction |= Rd << 8;
13853 inst.instruction |= Rn << 16;
13854 inst.instruction |= Rm;
13855 }
13856
13857 static void
13858 do_t_simd2 (void)
13859 {
13860 unsigned Rd, Rn, Rm;
13861
13862 Rd = inst.operands[0].reg;
13863 Rm = inst.operands[1].reg;
13864 Rn = inst.operands[2].reg;
13865
13866 reject_bad_reg (Rd);
13867 reject_bad_reg (Rn);
13868 reject_bad_reg (Rm);
13869
13870 inst.instruction |= Rd << 8;
13871 inst.instruction |= Rn << 16;
13872 inst.instruction |= Rm;
13873 }
13874
13875 static void
13876 do_t_smc (void)
13877 {
13878 unsigned int value = inst.relocs[0].exp.X_add_number;
13879 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13880 _("SMC is not permitted on this architecture"));
13881 constraint (inst.relocs[0].exp.X_op != O_constant,
13882 _("expression too complex"));
13883 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
13884
13885 inst.relocs[0].type = BFD_RELOC_UNUSED;
13886 inst.instruction |= (value & 0x000f) << 16;
13887
13888 /* PR gas/15623: SMC instructions must be last in an IT block. */
13889 set_pred_insn_type_last ();
13890 }
13891
13892 static void
13893 do_t_hvc (void)
13894 {
13895 unsigned int value = inst.relocs[0].exp.X_add_number;
13896
13897 inst.relocs[0].type = BFD_RELOC_UNUSED;
13898 inst.instruction |= (value & 0x0fff);
13899 inst.instruction |= (value & 0xf000) << 4;
13900 }
13901
13902 static void
13903 do_t_ssat_usat (int bias)
13904 {
13905 unsigned Rd, Rn;
13906
13907 Rd = inst.operands[0].reg;
13908 Rn = inst.operands[2].reg;
13909
13910 reject_bad_reg (Rd);
13911 reject_bad_reg (Rn);
13912
13913 inst.instruction |= Rd << 8;
13914 inst.instruction |= inst.operands[1].imm - bias;
13915 inst.instruction |= Rn << 16;
13916
13917 if (inst.operands[3].present)
13918 {
13919 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13920
13921 inst.relocs[0].type = BFD_RELOC_UNUSED;
13922
13923 constraint (inst.relocs[0].exp.X_op != O_constant,
13924 _("expression too complex"));
13925
13926 if (shift_amount != 0)
13927 {
13928 constraint (shift_amount > 31,
13929 _("shift expression is too large"));
13930
13931 if (inst.operands[3].shift_kind == SHIFT_ASR)
13932 inst.instruction |= 0x00200000; /* sh bit. */
13933
13934 inst.instruction |= (shift_amount & 0x1c) << 10;
13935 inst.instruction |= (shift_amount & 0x03) << 6;
13936 }
13937 }
13938 }
13939
13940 static void
13941 do_t_ssat (void)
13942 {
13943 do_t_ssat_usat (1);
13944 }
13945
13946 static void
13947 do_t_ssat16 (void)
13948 {
13949 unsigned Rd, Rn;
13950
13951 Rd = inst.operands[0].reg;
13952 Rn = inst.operands[2].reg;
13953
13954 reject_bad_reg (Rd);
13955 reject_bad_reg (Rn);
13956
13957 inst.instruction |= Rd << 8;
13958 inst.instruction |= inst.operands[1].imm - 1;
13959 inst.instruction |= Rn << 16;
13960 }
13961
13962 static void
13963 do_t_strex (void)
13964 {
13965 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13966 || inst.operands[2].postind || inst.operands[2].writeback
13967 || inst.operands[2].immisreg || inst.operands[2].shifted
13968 || inst.operands[2].negative,
13969 BAD_ADDR_MODE);
13970
13971 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13972
13973 inst.instruction |= inst.operands[0].reg << 8;
13974 inst.instruction |= inst.operands[1].reg << 12;
13975 inst.instruction |= inst.operands[2].reg << 16;
13976 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13977 }
13978
13979 static void
13980 do_t_strexd (void)
13981 {
13982 if (!inst.operands[2].present)
13983 inst.operands[2].reg = inst.operands[1].reg + 1;
13984
13985 constraint (inst.operands[0].reg == inst.operands[1].reg
13986 || inst.operands[0].reg == inst.operands[2].reg
13987 || inst.operands[0].reg == inst.operands[3].reg,
13988 BAD_OVERLAP);
13989
13990 inst.instruction |= inst.operands[0].reg;
13991 inst.instruction |= inst.operands[1].reg << 12;
13992 inst.instruction |= inst.operands[2].reg << 8;
13993 inst.instruction |= inst.operands[3].reg << 16;
13994 }
13995
13996 static void
13997 do_t_sxtah (void)
13998 {
13999 unsigned Rd, Rn, Rm;
14000
14001 Rd = inst.operands[0].reg;
14002 Rn = inst.operands[1].reg;
14003 Rm = inst.operands[2].reg;
14004
14005 reject_bad_reg (Rd);
14006 reject_bad_reg (Rn);
14007 reject_bad_reg (Rm);
14008
14009 inst.instruction |= Rd << 8;
14010 inst.instruction |= Rn << 16;
14011 inst.instruction |= Rm;
14012 inst.instruction |= inst.operands[3].imm << 4;
14013 }
14014
14015 static void
14016 do_t_sxth (void)
14017 {
14018 unsigned Rd, Rm;
14019
14020 Rd = inst.operands[0].reg;
14021 Rm = inst.operands[1].reg;
14022
14023 reject_bad_reg (Rd);
14024 reject_bad_reg (Rm);
14025
14026 if (inst.instruction <= 0xffff
14027 && inst.size_req != 4
14028 && Rd <= 7 && Rm <= 7
14029 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14030 {
14031 inst.instruction = THUMB_OP16 (inst.instruction);
14032 inst.instruction |= Rd;
14033 inst.instruction |= Rm << 3;
14034 }
14035 else if (unified_syntax)
14036 {
14037 if (inst.instruction <= 0xffff)
14038 inst.instruction = THUMB_OP32 (inst.instruction);
14039 inst.instruction |= Rd << 8;
14040 inst.instruction |= Rm;
14041 inst.instruction |= inst.operands[2].imm << 4;
14042 }
14043 else
14044 {
14045 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14046 _("Thumb encoding does not support rotation"));
14047 constraint (1, BAD_HIREG);
14048 }
14049 }
14050
14051 static void
14052 do_t_swi (void)
14053 {
14054 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14055 }
14056
14057 static void
14058 do_t_tb (void)
14059 {
14060 unsigned Rn, Rm;
14061 int half;
14062
14063 half = (inst.instruction & 0x10) != 0;
14064 set_pred_insn_type_last ();
14065 constraint (inst.operands[0].immisreg,
14066 _("instruction requires register index"));
14067
14068 Rn = inst.operands[0].reg;
14069 Rm = inst.operands[0].imm;
14070
14071 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14072 constraint (Rn == REG_SP, BAD_SP);
14073 reject_bad_reg (Rm);
14074
14075 constraint (!half && inst.operands[0].shifted,
14076 _("instruction does not allow shifted index"));
14077 inst.instruction |= (Rn << 16) | Rm;
14078 }
14079
14080 static void
14081 do_t_udf (void)
14082 {
14083 if (!inst.operands[0].present)
14084 inst.operands[0].imm = 0;
14085
14086 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14087 {
14088 constraint (inst.size_req == 2,
14089 _("immediate value out of range"));
14090 inst.instruction = THUMB_OP32 (inst.instruction);
14091 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14092 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14093 }
14094 else
14095 {
14096 inst.instruction = THUMB_OP16 (inst.instruction);
14097 inst.instruction |= inst.operands[0].imm;
14098 }
14099
14100 set_pred_insn_type (NEUTRAL_IT_INSN);
14101 }
14102
14103
14104 static void
14105 do_t_usat (void)
14106 {
14107 do_t_ssat_usat (0);
14108 }
14109
14110 static void
14111 do_t_usat16 (void)
14112 {
14113 unsigned Rd, Rn;
14114
14115 Rd = inst.operands[0].reg;
14116 Rn = inst.operands[2].reg;
14117
14118 reject_bad_reg (Rd);
14119 reject_bad_reg (Rn);
14120
14121 inst.instruction |= Rd << 8;
14122 inst.instruction |= inst.operands[1].imm;
14123 inst.instruction |= Rn << 16;
14124 }
14125
14126 /* Checking the range of the branch offset (VAL) with NBITS bits
14127 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14128 static int
14129 v8_1_branch_value_check (int val, int nbits, int is_signed)
14130 {
14131 gas_assert (nbits > 0 && nbits <= 32);
14132 if (is_signed)
14133 {
14134 int cmp = (1 << (nbits - 1));
14135 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14136 return FAIL;
14137 }
14138 else
14139 {
14140 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14141 return FAIL;
14142 }
14143 return SUCCESS;
14144 }
14145
14146 /* For branches in Armv8.1-M Mainline. */
14147 static void
14148 do_t_branch_future (void)
14149 {
14150 unsigned long insn = inst.instruction;
14151
14152 inst.instruction = THUMB_OP32 (inst.instruction);
14153 if (inst.operands[0].hasreloc == 0)
14154 {
14155 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14156 as_bad (BAD_BRANCH_OFF);
14157
14158 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14159 }
14160 else
14161 {
14162 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14163 inst.relocs[0].pc_rel = 1;
14164 }
14165
14166 switch (insn)
14167 {
14168 case T_MNEM_bf:
14169 if (inst.operands[1].hasreloc == 0)
14170 {
14171 int val = inst.operands[1].imm;
14172 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14173 as_bad (BAD_BRANCH_OFF);
14174
14175 int immA = (val & 0x0001f000) >> 12;
14176 int immB = (val & 0x00000ffc) >> 2;
14177 int immC = (val & 0x00000002) >> 1;
14178 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14179 }
14180 else
14181 {
14182 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14183 inst.relocs[1].pc_rel = 1;
14184 }
14185 break;
14186
14187 case T_MNEM_bfl:
14188 if (inst.operands[1].hasreloc == 0)
14189 {
14190 int val = inst.operands[1].imm;
14191 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14192 as_bad (BAD_BRANCH_OFF);
14193
14194 int immA = (val & 0x0007f000) >> 12;
14195 int immB = (val & 0x00000ffc) >> 2;
14196 int immC = (val & 0x00000002) >> 1;
14197 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14198 }
14199 else
14200 {
14201 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14202 inst.relocs[1].pc_rel = 1;
14203 }
14204 break;
14205
14206 case T_MNEM_bfcsel:
14207 /* Operand 1. */
14208 if (inst.operands[1].hasreloc == 0)
14209 {
14210 int val = inst.operands[1].imm;
14211 int immA = (val & 0x00001000) >> 12;
14212 int immB = (val & 0x00000ffc) >> 2;
14213 int immC = (val & 0x00000002) >> 1;
14214 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14215 }
14216 else
14217 {
14218 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14219 inst.relocs[1].pc_rel = 1;
14220 }
14221
14222 /* Operand 2. */
14223 if (inst.operands[2].hasreloc == 0)
14224 {
14225 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14226 int val2 = inst.operands[2].imm;
14227 int val0 = inst.operands[0].imm & 0x1f;
14228 int diff = val2 - val0;
14229 if (diff == 4)
14230 inst.instruction |= 1 << 17; /* T bit. */
14231 else if (diff != 2)
14232 as_bad (_("out of range label-relative fixup value"));
14233 }
14234 else
14235 {
14236 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14237 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14238 inst.relocs[2].pc_rel = 1;
14239 }
14240
14241 /* Operand 3. */
14242 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14243 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14244 break;
14245
14246 case T_MNEM_bfx:
14247 case T_MNEM_bflx:
14248 inst.instruction |= inst.operands[1].reg << 16;
14249 break;
14250
14251 default: abort ();
14252 }
14253 }
14254
14255 /* Helper function for do_t_loloop to handle relocations. */
14256 static void
14257 v8_1_loop_reloc (int is_le)
14258 {
14259 if (inst.relocs[0].exp.X_op == O_constant)
14260 {
14261 int value = inst.relocs[0].exp.X_add_number;
14262 value = (is_le) ? -value : value;
14263
14264 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14265 as_bad (BAD_BRANCH_OFF);
14266
14267 int imml, immh;
14268
14269 immh = (value & 0x00000ffc) >> 2;
14270 imml = (value & 0x00000002) >> 1;
14271
14272 inst.instruction |= (imml << 11) | (immh << 1);
14273 }
14274 else
14275 {
14276 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14277 inst.relocs[0].pc_rel = 1;
14278 }
14279 }
14280
14281 /* For shifts in MVE. */
14282 static void
14283 do_mve_scalar_shift (void)
14284 {
14285 if (!inst.operands[2].present)
14286 {
14287 inst.operands[2] = inst.operands[1];
14288 inst.operands[1].reg = 0xf;
14289 }
14290
14291 inst.instruction |= inst.operands[0].reg << 16;
14292 inst.instruction |= inst.operands[1].reg << 8;
14293
14294 if (inst.operands[2].isreg)
14295 {
14296 /* Assuming Rm is already checked not to be 11x1. */
14297 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14298 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14299 inst.instruction |= inst.operands[2].reg << 12;
14300 }
14301 else
14302 {
14303 /* Assuming imm is already checked as [1,32]. */
14304 unsigned int value = inst.operands[2].imm;
14305 inst.instruction |= (value & 0x1c) << 10;
14306 inst.instruction |= (value & 0x03) << 6;
14307 /* Change last 4 bits from 0xd to 0xf. */
14308 inst.instruction |= 0x2;
14309 }
14310 }
14311
14312 /* MVE instruction encoder helpers. */
14313 #define M_MNEM_vabav 0xee800f01
14314 #define M_MNEM_vmladav 0xeef00e00
14315 #define M_MNEM_vmladava 0xeef00e20
14316 #define M_MNEM_vmladavx 0xeef01e00
14317 #define M_MNEM_vmladavax 0xeef01e20
14318 #define M_MNEM_vmlsdav 0xeef00e01
14319 #define M_MNEM_vmlsdava 0xeef00e21
14320 #define M_MNEM_vmlsdavx 0xeef01e01
14321 #define M_MNEM_vmlsdavax 0xeef01e21
14322 #define M_MNEM_vmullt 0xee011e00
14323 #define M_MNEM_vmullb 0xee010e00
14324 #define M_MNEM_vst20 0xfc801e00
14325 #define M_MNEM_vst21 0xfc801e20
14326 #define M_MNEM_vst40 0xfc801e01
14327 #define M_MNEM_vst41 0xfc801e21
14328 #define M_MNEM_vst42 0xfc801e41
14329 #define M_MNEM_vst43 0xfc801e61
14330 #define M_MNEM_vld20 0xfc901e00
14331 #define M_MNEM_vld21 0xfc901e20
14332 #define M_MNEM_vld40 0xfc901e01
14333 #define M_MNEM_vld41 0xfc901e21
14334 #define M_MNEM_vld42 0xfc901e41
14335 #define M_MNEM_vld43 0xfc901e61
14336 #define M_MNEM_vstrb 0xec000e00
14337 #define M_MNEM_vstrh 0xec000e10
14338 #define M_MNEM_vstrw 0xec000e40
14339 #define M_MNEM_vstrd 0xec000e50
14340 #define M_MNEM_vldrb 0xec100e00
14341 #define M_MNEM_vldrh 0xec100e10
14342 #define M_MNEM_vldrw 0xec100e40
14343 #define M_MNEM_vldrd 0xec100e50
14344 #define M_MNEM_vmovlt 0xeea01f40
14345 #define M_MNEM_vmovlb 0xeea00f40
14346 #define M_MNEM_vmovnt 0xfe311e81
14347 #define M_MNEM_vmovnb 0xfe310e81
14348 #define M_MNEM_vadc 0xee300f00
14349 #define M_MNEM_vadci 0xee301f00
14350 #define M_MNEM_vbrsr 0xfe011e60
14351 #define M_MNEM_vaddlv 0xee890f00
14352 #define M_MNEM_vaddlva 0xee890f20
14353 #define M_MNEM_vaddv 0xeef10f00
14354 #define M_MNEM_vaddva 0xeef10f20
14355 #define M_MNEM_vddup 0xee011f6e
14356 #define M_MNEM_vdwdup 0xee011f60
14357 #define M_MNEM_vidup 0xee010f6e
14358 #define M_MNEM_viwdup 0xee010f60
14359 #define M_MNEM_vmaxv 0xeee20f00
14360 #define M_MNEM_vmaxav 0xeee00f00
14361 #define M_MNEM_vminv 0xeee20f80
14362 #define M_MNEM_vminav 0xeee00f80
14363 #define M_MNEM_vmlaldav 0xee800e00
14364 #define M_MNEM_vmlaldava 0xee800e20
14365 #define M_MNEM_vmlaldavx 0xee801e00
14366 #define M_MNEM_vmlaldavax 0xee801e20
14367 #define M_MNEM_vmlsldav 0xee800e01
14368 #define M_MNEM_vmlsldava 0xee800e21
14369 #define M_MNEM_vmlsldavx 0xee801e01
14370 #define M_MNEM_vmlsldavax 0xee801e21
14371 #define M_MNEM_vrmlaldavhx 0xee801f00
14372 #define M_MNEM_vrmlaldavhax 0xee801f20
14373 #define M_MNEM_vrmlsldavh 0xfe800e01
14374 #define M_MNEM_vrmlsldavha 0xfe800e21
14375 #define M_MNEM_vrmlsldavhx 0xfe801e01
14376 #define M_MNEM_vrmlsldavhax 0xfe801e21
14377 #define M_MNEM_vqmovnt 0xee331e01
14378 #define M_MNEM_vqmovnb 0xee330e01
14379 #define M_MNEM_vqmovunt 0xee311e81
14380 #define M_MNEM_vqmovunb 0xee310e81
14381 #define M_MNEM_vshrnt 0xee801fc1
14382 #define M_MNEM_vshrnb 0xee800fc1
14383 #define M_MNEM_vrshrnt 0xfe801fc1
14384 #define M_MNEM_vqshrnt 0xee801f40
14385 #define M_MNEM_vqshrnb 0xee800f40
14386 #define M_MNEM_vqshrunt 0xee801fc0
14387 #define M_MNEM_vqshrunb 0xee800fc0
14388 #define M_MNEM_vrshrnb 0xfe800fc1
14389 #define M_MNEM_vqrshrnt 0xee801f41
14390 #define M_MNEM_vqrshrnb 0xee800f41
14391 #define M_MNEM_vqrshrunt 0xfe801fc0
14392 #define M_MNEM_vqrshrunb 0xfe800fc0
14393
14394 /* Neon instruction encoder helpers. */
14395
14396 /* Encodings for the different types for various Neon opcodes. */
14397
14398 /* An "invalid" code for the following tables. */
14399 #define N_INV -1u
14400
14401 struct neon_tab_entry
14402 {
14403 unsigned integer;
14404 unsigned float_or_poly;
14405 unsigned scalar_or_imm;
14406 };
14407
14408 /* Map overloaded Neon opcodes to their respective encodings. */
14409 #define NEON_ENC_TAB \
14410 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14411 X(vabdl, 0x0800700, N_INV, N_INV), \
14412 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14413 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14414 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14415 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14416 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14417 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14418 X(vaddl, 0x0800000, N_INV, N_INV), \
14419 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14420 X(vsubl, 0x0800200, N_INV, N_INV), \
14421 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14422 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14423 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14424 /* Register variants of the following two instructions are encoded as
14425 vcge / vcgt with the operands reversed. */ \
14426 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14427 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14428 X(vfma, N_INV, 0x0000c10, N_INV), \
14429 X(vfms, N_INV, 0x0200c10, N_INV), \
14430 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14431 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14432 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14433 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14434 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14435 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14436 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14437 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14438 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14439 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14440 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14441 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14442 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14443 X(vshl, 0x0000400, N_INV, 0x0800510), \
14444 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14445 X(vand, 0x0000110, N_INV, 0x0800030), \
14446 X(vbic, 0x0100110, N_INV, 0x0800030), \
14447 X(veor, 0x1000110, N_INV, N_INV), \
14448 X(vorn, 0x0300110, N_INV, 0x0800010), \
14449 X(vorr, 0x0200110, N_INV, 0x0800010), \
14450 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14451 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14452 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14453 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14454 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14455 X(vst1, 0x0000000, 0x0800000, N_INV), \
14456 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14457 X(vst2, 0x0000100, 0x0800100, N_INV), \
14458 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14459 X(vst3, 0x0000200, 0x0800200, N_INV), \
14460 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14461 X(vst4, 0x0000300, 0x0800300, N_INV), \
14462 X(vmovn, 0x1b20200, N_INV, N_INV), \
14463 X(vtrn, 0x1b20080, N_INV, N_INV), \
14464 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14465 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14466 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14467 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14468 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14469 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14470 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14471 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14472 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14473 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14474 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14475 X(vseleq, 0xe000a00, N_INV, N_INV), \
14476 X(vselvs, 0xe100a00, N_INV, N_INV), \
14477 X(vselge, 0xe200a00, N_INV, N_INV), \
14478 X(vselgt, 0xe300a00, N_INV, N_INV), \
14479 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14480 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14481 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14482 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14483 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14484 X(aes, 0x3b00300, N_INV, N_INV), \
14485 X(sha3op, 0x2000c00, N_INV, N_INV), \
14486 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14487 X(sha2op, 0x3ba0380, N_INV, N_INV)
14488
14489 enum neon_opc
14490 {
14491 #define X(OPC,I,F,S) N_MNEM_##OPC
14492 NEON_ENC_TAB
14493 #undef X
14494 };
14495
14496 static const struct neon_tab_entry neon_enc_tab[] =
14497 {
14498 #define X(OPC,I,F,S) { (I), (F), (S) }
14499 NEON_ENC_TAB
14500 #undef X
14501 };
14502
14503 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14504 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14505 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14506 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14507 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14508 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14509 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14510 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14511 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14512 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14513 #define NEON_ENC_SINGLE_(X) \
14514 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14515 #define NEON_ENC_DOUBLE_(X) \
14516 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14517 #define NEON_ENC_FPV8_(X) \
14518 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14519
14520 #define NEON_ENCODE(type, inst) \
14521 do \
14522 { \
14523 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14524 inst.is_neon = 1; \
14525 } \
14526 while (0)
14527
14528 #define check_neon_suffixes \
14529 do \
14530 { \
14531 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14532 { \
14533 as_bad (_("invalid neon suffix for non neon instruction")); \
14534 return; \
14535 } \
14536 } \
14537 while (0)
14538
14539 /* Define shapes for instruction operands. The following mnemonic characters
14540 are used in this table:
14541
14542 F - VFP S<n> register
14543 D - Neon D<n> register
14544 Q - Neon Q<n> register
14545 I - Immediate
14546 S - Scalar
14547 R - ARM register
14548 L - D<n> register list
14549
14550 This table is used to generate various data:
14551 - enumerations of the form NS_DDR to be used as arguments to
14552 neon_select_shape.
14553 - a table classifying shapes into single, double, quad, mixed.
14554 - a table used to drive neon_select_shape. */
14555
14556 #define NEON_SHAPE_DEF \
14557 X(4, (R, R, Q, Q), QUAD), \
14558 X(4, (Q, R, R, I), QUAD), \
14559 X(4, (R, R, S, S), QUAD), \
14560 X(4, (S, S, R, R), QUAD), \
14561 X(3, (Q, R, I), QUAD), \
14562 X(3, (I, Q, Q), QUAD), \
14563 X(3, (I, Q, R), QUAD), \
14564 X(3, (R, Q, Q), QUAD), \
14565 X(3, (D, D, D), DOUBLE), \
14566 X(3, (Q, Q, Q), QUAD), \
14567 X(3, (D, D, I), DOUBLE), \
14568 X(3, (Q, Q, I), QUAD), \
14569 X(3, (D, D, S), DOUBLE), \
14570 X(3, (Q, Q, S), QUAD), \
14571 X(3, (Q, Q, R), QUAD), \
14572 X(3, (R, R, Q), QUAD), \
14573 X(2, (R, Q), QUAD), \
14574 X(2, (D, D), DOUBLE), \
14575 X(2, (Q, Q), QUAD), \
14576 X(2, (D, S), DOUBLE), \
14577 X(2, (Q, S), QUAD), \
14578 X(2, (D, R), DOUBLE), \
14579 X(2, (Q, R), QUAD), \
14580 X(2, (D, I), DOUBLE), \
14581 X(2, (Q, I), QUAD), \
14582 X(3, (D, L, D), DOUBLE), \
14583 X(2, (D, Q), MIXED), \
14584 X(2, (Q, D), MIXED), \
14585 X(3, (D, Q, I), MIXED), \
14586 X(3, (Q, D, I), MIXED), \
14587 X(3, (Q, D, D), MIXED), \
14588 X(3, (D, Q, Q), MIXED), \
14589 X(3, (Q, Q, D), MIXED), \
14590 X(3, (Q, D, S), MIXED), \
14591 X(3, (D, Q, S), MIXED), \
14592 X(4, (D, D, D, I), DOUBLE), \
14593 X(4, (Q, Q, Q, I), QUAD), \
14594 X(4, (D, D, S, I), DOUBLE), \
14595 X(4, (Q, Q, S, I), QUAD), \
14596 X(2, (F, F), SINGLE), \
14597 X(3, (F, F, F), SINGLE), \
14598 X(2, (F, I), SINGLE), \
14599 X(2, (F, D), MIXED), \
14600 X(2, (D, F), MIXED), \
14601 X(3, (F, F, I), MIXED), \
14602 X(4, (R, R, F, F), SINGLE), \
14603 X(4, (F, F, R, R), SINGLE), \
14604 X(3, (D, R, R), DOUBLE), \
14605 X(3, (R, R, D), DOUBLE), \
14606 X(2, (S, R), SINGLE), \
14607 X(2, (R, S), SINGLE), \
14608 X(2, (F, R), SINGLE), \
14609 X(2, (R, F), SINGLE), \
14610 /* Used for MVE tail predicated loop instructions. */\
14611 X(2, (R, R), QUAD), \
14612 /* Half float shape supported so far. */\
14613 X (2, (H, D), MIXED), \
14614 X (2, (D, H), MIXED), \
14615 X (2, (H, F), MIXED), \
14616 X (2, (F, H), MIXED), \
14617 X (2, (H, H), HALF), \
14618 X (2, (H, R), HALF), \
14619 X (2, (R, H), HALF), \
14620 X (2, (H, I), HALF), \
14621 X (3, (H, H, H), HALF), \
14622 X (3, (H, F, I), MIXED), \
14623 X (3, (F, H, I), MIXED), \
14624 X (3, (D, H, H), MIXED), \
14625 X (3, (D, H, S), MIXED)
14626
14627 #define S2(A,B) NS_##A##B
14628 #define S3(A,B,C) NS_##A##B##C
14629 #define S4(A,B,C,D) NS_##A##B##C##D
14630
14631 #define X(N, L, C) S##N L
14632
14633 enum neon_shape
14634 {
14635 NEON_SHAPE_DEF,
14636 NS_NULL
14637 };
14638
14639 #undef X
14640 #undef S2
14641 #undef S3
14642 #undef S4
14643
14644 enum neon_shape_class
14645 {
14646 SC_HALF,
14647 SC_SINGLE,
14648 SC_DOUBLE,
14649 SC_QUAD,
14650 SC_MIXED
14651 };
14652
14653 #define X(N, L, C) SC_##C
14654
14655 static enum neon_shape_class neon_shape_class[] =
14656 {
14657 NEON_SHAPE_DEF
14658 };
14659
14660 #undef X
14661
14662 enum neon_shape_el
14663 {
14664 SE_H,
14665 SE_F,
14666 SE_D,
14667 SE_Q,
14668 SE_I,
14669 SE_S,
14670 SE_R,
14671 SE_L
14672 };
14673
14674 /* Register widths of above. */
14675 static unsigned neon_shape_el_size[] =
14676 {
14677 16,
14678 32,
14679 64,
14680 128,
14681 0,
14682 32,
14683 32,
14684 0
14685 };
14686
14687 struct neon_shape_info
14688 {
14689 unsigned els;
14690 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14691 };
14692
14693 #define S2(A,B) { SE_##A, SE_##B }
14694 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14695 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14696
14697 #define X(N, L, C) { N, S##N L }
14698
14699 static struct neon_shape_info neon_shape_tab[] =
14700 {
14701 NEON_SHAPE_DEF
14702 };
14703
14704 #undef X
14705 #undef S2
14706 #undef S3
14707 #undef S4
14708
14709 /* Bit masks used in type checking given instructions.
14710 'N_EQK' means the type must be the same as (or based on in some way) the key
14711 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14712 set, various other bits can be set as well in order to modify the meaning of
14713 the type constraint. */
14714
14715 enum neon_type_mask
14716 {
14717 N_S8 = 0x0000001,
14718 N_S16 = 0x0000002,
14719 N_S32 = 0x0000004,
14720 N_S64 = 0x0000008,
14721 N_U8 = 0x0000010,
14722 N_U16 = 0x0000020,
14723 N_U32 = 0x0000040,
14724 N_U64 = 0x0000080,
14725 N_I8 = 0x0000100,
14726 N_I16 = 0x0000200,
14727 N_I32 = 0x0000400,
14728 N_I64 = 0x0000800,
14729 N_8 = 0x0001000,
14730 N_16 = 0x0002000,
14731 N_32 = 0x0004000,
14732 N_64 = 0x0008000,
14733 N_P8 = 0x0010000,
14734 N_P16 = 0x0020000,
14735 N_F16 = 0x0040000,
14736 N_F32 = 0x0080000,
14737 N_F64 = 0x0100000,
14738 N_P64 = 0x0200000,
14739 N_KEY = 0x1000000, /* Key element (main type specifier). */
14740 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14741 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14742 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14743 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14744 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14745 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14746 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14747 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14748 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14749 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14750 N_UTYP = 0,
14751 N_MAX_NONSPECIAL = N_P64
14752 };
14753
14754 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14755
14756 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14757 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14758 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14759 #define N_S_32 (N_S8 | N_S16 | N_S32)
14760 #define N_F_16_32 (N_F16 | N_F32)
14761 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14762 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14763 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14764 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14765 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14766 #define N_F_MVE (N_F16 | N_F32)
14767 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14768
14769 /* Pass this as the first type argument to neon_check_type to ignore types
14770 altogether. */
14771 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14772
14773 /* Select a "shape" for the current instruction (describing register types or
14774 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14775 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14776 function of operand parsing, so this function doesn't need to be called.
14777 Shapes should be listed in order of decreasing length. */
14778
14779 static enum neon_shape
14780 neon_select_shape (enum neon_shape shape, ...)
14781 {
14782 va_list ap;
14783 enum neon_shape first_shape = shape;
14784
14785 /* Fix missing optional operands. FIXME: we don't know at this point how
14786 many arguments we should have, so this makes the assumption that we have
14787 > 1. This is true of all current Neon opcodes, I think, but may not be
14788 true in the future. */
14789 if (!inst.operands[1].present)
14790 inst.operands[1] = inst.operands[0];
14791
14792 va_start (ap, shape);
14793
14794 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14795 {
14796 unsigned j;
14797 int matches = 1;
14798
14799 for (j = 0; j < neon_shape_tab[shape].els; j++)
14800 {
14801 if (!inst.operands[j].present)
14802 {
14803 matches = 0;
14804 break;
14805 }
14806
14807 switch (neon_shape_tab[shape].el[j])
14808 {
14809 /* If a .f16, .16, .u16, .s16 type specifier is given over
14810 a VFP single precision register operand, it's essentially
14811 means only half of the register is used.
14812
14813 If the type specifier is given after the mnemonics, the
14814 information is stored in inst.vectype. If the type specifier
14815 is given after register operand, the information is stored
14816 in inst.operands[].vectype.
14817
14818 When there is only one type specifier, and all the register
14819 operands are the same type of hardware register, the type
14820 specifier applies to all register operands.
14821
14822 If no type specifier is given, the shape is inferred from
14823 operand information.
14824
14825 for example:
14826 vadd.f16 s0, s1, s2: NS_HHH
14827 vabs.f16 s0, s1: NS_HH
14828 vmov.f16 s0, r1: NS_HR
14829 vmov.f16 r0, s1: NS_RH
14830 vcvt.f16 r0, s1: NS_RH
14831 vcvt.f16.s32 s2, s2, #29: NS_HFI
14832 vcvt.f16.s32 s2, s2: NS_HF
14833 */
14834 case SE_H:
14835 if (!(inst.operands[j].isreg
14836 && inst.operands[j].isvec
14837 && inst.operands[j].issingle
14838 && !inst.operands[j].isquad
14839 && ((inst.vectype.elems == 1
14840 && inst.vectype.el[0].size == 16)
14841 || (inst.vectype.elems > 1
14842 && inst.vectype.el[j].size == 16)
14843 || (inst.vectype.elems == 0
14844 && inst.operands[j].vectype.type != NT_invtype
14845 && inst.operands[j].vectype.size == 16))))
14846 matches = 0;
14847 break;
14848
14849 case SE_F:
14850 if (!(inst.operands[j].isreg
14851 && inst.operands[j].isvec
14852 && inst.operands[j].issingle
14853 && !inst.operands[j].isquad
14854 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14855 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14856 || (inst.vectype.elems == 0
14857 && (inst.operands[j].vectype.size == 32
14858 || inst.operands[j].vectype.type == NT_invtype)))))
14859 matches = 0;
14860 break;
14861
14862 case SE_D:
14863 if (!(inst.operands[j].isreg
14864 && inst.operands[j].isvec
14865 && !inst.operands[j].isquad
14866 && !inst.operands[j].issingle))
14867 matches = 0;
14868 break;
14869
14870 case SE_R:
14871 if (!(inst.operands[j].isreg
14872 && !inst.operands[j].isvec))
14873 matches = 0;
14874 break;
14875
14876 case SE_Q:
14877 if (!(inst.operands[j].isreg
14878 && inst.operands[j].isvec
14879 && inst.operands[j].isquad
14880 && !inst.operands[j].issingle))
14881 matches = 0;
14882 break;
14883
14884 case SE_I:
14885 if (!(!inst.operands[j].isreg
14886 && !inst.operands[j].isscalar))
14887 matches = 0;
14888 break;
14889
14890 case SE_S:
14891 if (!(!inst.operands[j].isreg
14892 && inst.operands[j].isscalar))
14893 matches = 0;
14894 break;
14895
14896 case SE_L:
14897 break;
14898 }
14899 if (!matches)
14900 break;
14901 }
14902 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14903 /* We've matched all the entries in the shape table, and we don't
14904 have any left over operands which have not been matched. */
14905 break;
14906 }
14907
14908 va_end (ap);
14909
14910 if (shape == NS_NULL && first_shape != NS_NULL)
14911 first_error (_("invalid instruction shape"));
14912
14913 return shape;
14914 }
14915
14916 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14917 means the Q bit should be set). */
14918
14919 static int
14920 neon_quad (enum neon_shape shape)
14921 {
14922 return neon_shape_class[shape] == SC_QUAD;
14923 }
14924
14925 static void
14926 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14927 unsigned *g_size)
14928 {
14929 /* Allow modification to be made to types which are constrained to be
14930 based on the key element, based on bits set alongside N_EQK. */
14931 if ((typebits & N_EQK) != 0)
14932 {
14933 if ((typebits & N_HLF) != 0)
14934 *g_size /= 2;
14935 else if ((typebits & N_DBL) != 0)
14936 *g_size *= 2;
14937 if ((typebits & N_SGN) != 0)
14938 *g_type = NT_signed;
14939 else if ((typebits & N_UNS) != 0)
14940 *g_type = NT_unsigned;
14941 else if ((typebits & N_INT) != 0)
14942 *g_type = NT_integer;
14943 else if ((typebits & N_FLT) != 0)
14944 *g_type = NT_float;
14945 else if ((typebits & N_SIZ) != 0)
14946 *g_type = NT_untyped;
14947 }
14948 }
14949
14950 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14951 operand type, i.e. the single type specified in a Neon instruction when it
14952 is the only one given. */
14953
14954 static struct neon_type_el
14955 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14956 {
14957 struct neon_type_el dest = *key;
14958
14959 gas_assert ((thisarg & N_EQK) != 0);
14960
14961 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14962
14963 return dest;
14964 }
14965
14966 /* Convert Neon type and size into compact bitmask representation. */
14967
14968 static enum neon_type_mask
14969 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14970 {
14971 switch (type)
14972 {
14973 case NT_untyped:
14974 switch (size)
14975 {
14976 case 8: return N_8;
14977 case 16: return N_16;
14978 case 32: return N_32;
14979 case 64: return N_64;
14980 default: ;
14981 }
14982 break;
14983
14984 case NT_integer:
14985 switch (size)
14986 {
14987 case 8: return N_I8;
14988 case 16: return N_I16;
14989 case 32: return N_I32;
14990 case 64: return N_I64;
14991 default: ;
14992 }
14993 break;
14994
14995 case NT_float:
14996 switch (size)
14997 {
14998 case 16: return N_F16;
14999 case 32: return N_F32;
15000 case 64: return N_F64;
15001 default: ;
15002 }
15003 break;
15004
15005 case NT_poly:
15006 switch (size)
15007 {
15008 case 8: return N_P8;
15009 case 16: return N_P16;
15010 case 64: return N_P64;
15011 default: ;
15012 }
15013 break;
15014
15015 case NT_signed:
15016 switch (size)
15017 {
15018 case 8: return N_S8;
15019 case 16: return N_S16;
15020 case 32: return N_S32;
15021 case 64: return N_S64;
15022 default: ;
15023 }
15024 break;
15025
15026 case NT_unsigned:
15027 switch (size)
15028 {
15029 case 8: return N_U8;
15030 case 16: return N_U16;
15031 case 32: return N_U32;
15032 case 64: return N_U64;
15033 default: ;
15034 }
15035 break;
15036
15037 default: ;
15038 }
15039
15040 return N_UTYP;
15041 }
15042
15043 /* Convert compact Neon bitmask type representation to a type and size. Only
15044 handles the case where a single bit is set in the mask. */
15045
15046 static int
15047 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15048 enum neon_type_mask mask)
15049 {
15050 if ((mask & N_EQK) != 0)
15051 return FAIL;
15052
15053 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15054 *size = 8;
15055 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
15056 *size = 16;
15057 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15058 *size = 32;
15059 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15060 *size = 64;
15061 else
15062 return FAIL;
15063
15064 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15065 *type = NT_signed;
15066 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15067 *type = NT_unsigned;
15068 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15069 *type = NT_integer;
15070 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15071 *type = NT_untyped;
15072 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15073 *type = NT_poly;
15074 else if ((mask & (N_F_ALL)) != 0)
15075 *type = NT_float;
15076 else
15077 return FAIL;
15078
15079 return SUCCESS;
15080 }
15081
15082 /* Modify a bitmask of allowed types. This is only needed for type
15083 relaxation. */
15084
15085 static unsigned
15086 modify_types_allowed (unsigned allowed, unsigned mods)
15087 {
15088 unsigned size;
15089 enum neon_el_type type;
15090 unsigned destmask;
15091 int i;
15092
15093 destmask = 0;
15094
15095 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15096 {
15097 if (el_type_of_type_chk (&type, &size,
15098 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15099 {
15100 neon_modify_type_size (mods, &type, &size);
15101 destmask |= type_chk_of_el_type (type, size);
15102 }
15103 }
15104
15105 return destmask;
15106 }
15107
15108 /* Check type and return type classification.
15109 The manual states (paraphrase): If one datatype is given, it indicates the
15110 type given in:
15111 - the second operand, if there is one
15112 - the operand, if there is no second operand
15113 - the result, if there are no operands.
15114 This isn't quite good enough though, so we use a concept of a "key" datatype
15115 which is set on a per-instruction basis, which is the one which matters when
15116 only one data type is written.
15117 Note: this function has side-effects (e.g. filling in missing operands). All
15118 Neon instructions should call it before performing bit encoding. */
15119
15120 static struct neon_type_el
15121 neon_check_type (unsigned els, enum neon_shape ns, ...)
15122 {
15123 va_list ap;
15124 unsigned i, pass, key_el = 0;
15125 unsigned types[NEON_MAX_TYPE_ELS];
15126 enum neon_el_type k_type = NT_invtype;
15127 unsigned k_size = -1u;
15128 struct neon_type_el badtype = {NT_invtype, -1};
15129 unsigned key_allowed = 0;
15130
15131 /* Optional registers in Neon instructions are always (not) in operand 1.
15132 Fill in the missing operand here, if it was omitted. */
15133 if (els > 1 && !inst.operands[1].present)
15134 inst.operands[1] = inst.operands[0];
15135
15136 /* Suck up all the varargs. */
15137 va_start (ap, ns);
15138 for (i = 0; i < els; i++)
15139 {
15140 unsigned thisarg = va_arg (ap, unsigned);
15141 if (thisarg == N_IGNORE_TYPE)
15142 {
15143 va_end (ap);
15144 return badtype;
15145 }
15146 types[i] = thisarg;
15147 if ((thisarg & N_KEY) != 0)
15148 key_el = i;
15149 }
15150 va_end (ap);
15151
15152 if (inst.vectype.elems > 0)
15153 for (i = 0; i < els; i++)
15154 if (inst.operands[i].vectype.type != NT_invtype)
15155 {
15156 first_error (_("types specified in both the mnemonic and operands"));
15157 return badtype;
15158 }
15159
15160 /* Duplicate inst.vectype elements here as necessary.
15161 FIXME: No idea if this is exactly the same as the ARM assembler,
15162 particularly when an insn takes one register and one non-register
15163 operand. */
15164 if (inst.vectype.elems == 1 && els > 1)
15165 {
15166 unsigned j;
15167 inst.vectype.elems = els;
15168 inst.vectype.el[key_el] = inst.vectype.el[0];
15169 for (j = 0; j < els; j++)
15170 if (j != key_el)
15171 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15172 types[j]);
15173 }
15174 else if (inst.vectype.elems == 0 && els > 0)
15175 {
15176 unsigned j;
15177 /* No types were given after the mnemonic, so look for types specified
15178 after each operand. We allow some flexibility here; as long as the
15179 "key" operand has a type, we can infer the others. */
15180 for (j = 0; j < els; j++)
15181 if (inst.operands[j].vectype.type != NT_invtype)
15182 inst.vectype.el[j] = inst.operands[j].vectype;
15183
15184 if (inst.operands[key_el].vectype.type != NT_invtype)
15185 {
15186 for (j = 0; j < els; j++)
15187 if (inst.operands[j].vectype.type == NT_invtype)
15188 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15189 types[j]);
15190 }
15191 else
15192 {
15193 first_error (_("operand types can't be inferred"));
15194 return badtype;
15195 }
15196 }
15197 else if (inst.vectype.elems != els)
15198 {
15199 first_error (_("type specifier has the wrong number of parts"));
15200 return badtype;
15201 }
15202
15203 for (pass = 0; pass < 2; pass++)
15204 {
15205 for (i = 0; i < els; i++)
15206 {
15207 unsigned thisarg = types[i];
15208 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15209 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15210 enum neon_el_type g_type = inst.vectype.el[i].type;
15211 unsigned g_size = inst.vectype.el[i].size;
15212
15213 /* Decay more-specific signed & unsigned types to sign-insensitive
15214 integer types if sign-specific variants are unavailable. */
15215 if ((g_type == NT_signed || g_type == NT_unsigned)
15216 && (types_allowed & N_SU_ALL) == 0)
15217 g_type = NT_integer;
15218
15219 /* If only untyped args are allowed, decay any more specific types to
15220 them. Some instructions only care about signs for some element
15221 sizes, so handle that properly. */
15222 if (((types_allowed & N_UNT) == 0)
15223 && ((g_size == 8 && (types_allowed & N_8) != 0)
15224 || (g_size == 16 && (types_allowed & N_16) != 0)
15225 || (g_size == 32 && (types_allowed & N_32) != 0)
15226 || (g_size == 64 && (types_allowed & N_64) != 0)))
15227 g_type = NT_untyped;
15228
15229 if (pass == 0)
15230 {
15231 if ((thisarg & N_KEY) != 0)
15232 {
15233 k_type = g_type;
15234 k_size = g_size;
15235 key_allowed = thisarg & ~N_KEY;
15236
15237 /* Check architecture constraint on FP16 extension. */
15238 if (k_size == 16
15239 && k_type == NT_float
15240 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15241 {
15242 inst.error = _(BAD_FP16);
15243 return badtype;
15244 }
15245 }
15246 }
15247 else
15248 {
15249 if ((thisarg & N_VFP) != 0)
15250 {
15251 enum neon_shape_el regshape;
15252 unsigned regwidth, match;
15253
15254 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15255 if (ns == NS_NULL)
15256 {
15257 first_error (_("invalid instruction shape"));
15258 return badtype;
15259 }
15260 regshape = neon_shape_tab[ns].el[i];
15261 regwidth = neon_shape_el_size[regshape];
15262
15263 /* In VFP mode, operands must match register widths. If we
15264 have a key operand, use its width, else use the width of
15265 the current operand. */
15266 if (k_size != -1u)
15267 match = k_size;
15268 else
15269 match = g_size;
15270
15271 /* FP16 will use a single precision register. */
15272 if (regwidth == 32 && match == 16)
15273 {
15274 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15275 match = regwidth;
15276 else
15277 {
15278 inst.error = _(BAD_FP16);
15279 return badtype;
15280 }
15281 }
15282
15283 if (regwidth != match)
15284 {
15285 first_error (_("operand size must match register width"));
15286 return badtype;
15287 }
15288 }
15289
15290 if ((thisarg & N_EQK) == 0)
15291 {
15292 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15293
15294 if ((given_type & types_allowed) == 0)
15295 {
15296 first_error (BAD_SIMD_TYPE);
15297 return badtype;
15298 }
15299 }
15300 else
15301 {
15302 enum neon_el_type mod_k_type = k_type;
15303 unsigned mod_k_size = k_size;
15304 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15305 if (g_type != mod_k_type || g_size != mod_k_size)
15306 {
15307 first_error (_("inconsistent types in Neon instruction"));
15308 return badtype;
15309 }
15310 }
15311 }
15312 }
15313 }
15314
15315 return inst.vectype.el[key_el];
15316 }
15317
15318 /* Neon-style VFP instruction forwarding. */
15319
15320 /* Thumb VFP instructions have 0xE in the condition field. */
15321
15322 static void
15323 do_vfp_cond_or_thumb (void)
15324 {
15325 inst.is_neon = 1;
15326
15327 if (thumb_mode)
15328 inst.instruction |= 0xe0000000;
15329 else
15330 inst.instruction |= inst.cond << 28;
15331 }
15332
15333 /* Look up and encode a simple mnemonic, for use as a helper function for the
15334 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15335 etc. It is assumed that operand parsing has already been done, and that the
15336 operands are in the form expected by the given opcode (this isn't necessarily
15337 the same as the form in which they were parsed, hence some massaging must
15338 take place before this function is called).
15339 Checks current arch version against that in the looked-up opcode. */
15340
15341 static void
15342 do_vfp_nsyn_opcode (const char *opname)
15343 {
15344 const struct asm_opcode *opcode;
15345
15346 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15347
15348 if (!opcode)
15349 abort ();
15350
15351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15352 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15353 _(BAD_FPU));
15354
15355 inst.is_neon = 1;
15356
15357 if (thumb_mode)
15358 {
15359 inst.instruction = opcode->tvalue;
15360 opcode->tencode ();
15361 }
15362 else
15363 {
15364 inst.instruction = (inst.cond << 28) | opcode->avalue;
15365 opcode->aencode ();
15366 }
15367 }
15368
15369 static void
15370 do_vfp_nsyn_add_sub (enum neon_shape rs)
15371 {
15372 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15373
15374 if (rs == NS_FFF || rs == NS_HHH)
15375 {
15376 if (is_add)
15377 do_vfp_nsyn_opcode ("fadds");
15378 else
15379 do_vfp_nsyn_opcode ("fsubs");
15380
15381 /* ARMv8.2 fp16 instruction. */
15382 if (rs == NS_HHH)
15383 do_scalar_fp16_v82_encode ();
15384 }
15385 else
15386 {
15387 if (is_add)
15388 do_vfp_nsyn_opcode ("faddd");
15389 else
15390 do_vfp_nsyn_opcode ("fsubd");
15391 }
15392 }
15393
15394 /* Check operand types to see if this is a VFP instruction, and if so call
15395 PFN (). */
15396
15397 static int
15398 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15399 {
15400 enum neon_shape rs;
15401 struct neon_type_el et;
15402
15403 switch (args)
15404 {
15405 case 2:
15406 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15407 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15408 break;
15409
15410 case 3:
15411 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15412 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15413 N_F_ALL | N_KEY | N_VFP);
15414 break;
15415
15416 default:
15417 abort ();
15418 }
15419
15420 if (et.type != NT_invtype)
15421 {
15422 pfn (rs);
15423 return SUCCESS;
15424 }
15425
15426 inst.error = NULL;
15427 return FAIL;
15428 }
15429
15430 static void
15431 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15432 {
15433 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15434
15435 if (rs == NS_FFF || rs == NS_HHH)
15436 {
15437 if (is_mla)
15438 do_vfp_nsyn_opcode ("fmacs");
15439 else
15440 do_vfp_nsyn_opcode ("fnmacs");
15441
15442 /* ARMv8.2 fp16 instruction. */
15443 if (rs == NS_HHH)
15444 do_scalar_fp16_v82_encode ();
15445 }
15446 else
15447 {
15448 if (is_mla)
15449 do_vfp_nsyn_opcode ("fmacd");
15450 else
15451 do_vfp_nsyn_opcode ("fnmacd");
15452 }
15453 }
15454
15455 static void
15456 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15457 {
15458 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15459
15460 if (rs == NS_FFF || rs == NS_HHH)
15461 {
15462 if (is_fma)
15463 do_vfp_nsyn_opcode ("ffmas");
15464 else
15465 do_vfp_nsyn_opcode ("ffnmas");
15466
15467 /* ARMv8.2 fp16 instruction. */
15468 if (rs == NS_HHH)
15469 do_scalar_fp16_v82_encode ();
15470 }
15471 else
15472 {
15473 if (is_fma)
15474 do_vfp_nsyn_opcode ("ffmad");
15475 else
15476 do_vfp_nsyn_opcode ("ffnmad");
15477 }
15478 }
15479
15480 static void
15481 do_vfp_nsyn_mul (enum neon_shape rs)
15482 {
15483 if (rs == NS_FFF || rs == NS_HHH)
15484 {
15485 do_vfp_nsyn_opcode ("fmuls");
15486
15487 /* ARMv8.2 fp16 instruction. */
15488 if (rs == NS_HHH)
15489 do_scalar_fp16_v82_encode ();
15490 }
15491 else
15492 do_vfp_nsyn_opcode ("fmuld");
15493 }
15494
15495 static void
15496 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15497 {
15498 int is_neg = (inst.instruction & 0x80) != 0;
15499 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15500
15501 if (rs == NS_FF || rs == NS_HH)
15502 {
15503 if (is_neg)
15504 do_vfp_nsyn_opcode ("fnegs");
15505 else
15506 do_vfp_nsyn_opcode ("fabss");
15507
15508 /* ARMv8.2 fp16 instruction. */
15509 if (rs == NS_HH)
15510 do_scalar_fp16_v82_encode ();
15511 }
15512 else
15513 {
15514 if (is_neg)
15515 do_vfp_nsyn_opcode ("fnegd");
15516 else
15517 do_vfp_nsyn_opcode ("fabsd");
15518 }
15519 }
15520
15521 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15522 insns belong to Neon, and are handled elsewhere. */
15523
15524 static void
15525 do_vfp_nsyn_ldm_stm (int is_dbmode)
15526 {
15527 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15528 if (is_ldm)
15529 {
15530 if (is_dbmode)
15531 do_vfp_nsyn_opcode ("fldmdbs");
15532 else
15533 do_vfp_nsyn_opcode ("fldmias");
15534 }
15535 else
15536 {
15537 if (is_dbmode)
15538 do_vfp_nsyn_opcode ("fstmdbs");
15539 else
15540 do_vfp_nsyn_opcode ("fstmias");
15541 }
15542 }
15543
15544 static void
15545 do_vfp_nsyn_sqrt (void)
15546 {
15547 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15548 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15549
15550 if (rs == NS_FF || rs == NS_HH)
15551 {
15552 do_vfp_nsyn_opcode ("fsqrts");
15553
15554 /* ARMv8.2 fp16 instruction. */
15555 if (rs == NS_HH)
15556 do_scalar_fp16_v82_encode ();
15557 }
15558 else
15559 do_vfp_nsyn_opcode ("fsqrtd");
15560 }
15561
15562 static void
15563 do_vfp_nsyn_div (void)
15564 {
15565 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15566 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15567 N_F_ALL | N_KEY | N_VFP);
15568
15569 if (rs == NS_FFF || rs == NS_HHH)
15570 {
15571 do_vfp_nsyn_opcode ("fdivs");
15572
15573 /* ARMv8.2 fp16 instruction. */
15574 if (rs == NS_HHH)
15575 do_scalar_fp16_v82_encode ();
15576 }
15577 else
15578 do_vfp_nsyn_opcode ("fdivd");
15579 }
15580
15581 static void
15582 do_vfp_nsyn_nmul (void)
15583 {
15584 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15585 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15586 N_F_ALL | N_KEY | N_VFP);
15587
15588 if (rs == NS_FFF || rs == NS_HHH)
15589 {
15590 NEON_ENCODE (SINGLE, inst);
15591 do_vfp_sp_dyadic ();
15592
15593 /* ARMv8.2 fp16 instruction. */
15594 if (rs == NS_HHH)
15595 do_scalar_fp16_v82_encode ();
15596 }
15597 else
15598 {
15599 NEON_ENCODE (DOUBLE, inst);
15600 do_vfp_dp_rd_rn_rm ();
15601 }
15602 do_vfp_cond_or_thumb ();
15603
15604 }
15605
15606 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15607 (0, 1, 2, 3). */
15608
15609 static unsigned
15610 neon_logbits (unsigned x)
15611 {
15612 return ffs (x) - 4;
15613 }
15614
15615 #define LOW4(R) ((R) & 0xf)
15616 #define HI1(R) (((R) >> 4) & 1)
15617
15618 static unsigned
15619 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15620 {
15621 switch (et.type)
15622 {
15623 default:
15624 first_error (BAD_EL_TYPE);
15625 return 0;
15626 case NT_float:
15627 switch (inst.operands[0].imm)
15628 {
15629 default:
15630 first_error (_("invalid condition"));
15631 return 0;
15632 case 0x0:
15633 /* eq. */
15634 return 0;
15635 case 0x1:
15636 /* ne. */
15637 return 1;
15638 case 0xa:
15639 /* ge/ */
15640 return 4;
15641 case 0xb:
15642 /* lt. */
15643 return 5;
15644 case 0xc:
15645 /* gt. */
15646 return 6;
15647 case 0xd:
15648 /* le. */
15649 return 7;
15650 }
15651 case NT_integer:
15652 /* only accept eq and ne. */
15653 if (inst.operands[0].imm > 1)
15654 {
15655 first_error (_("invalid condition"));
15656 return 0;
15657 }
15658 return inst.operands[0].imm;
15659 case NT_unsigned:
15660 if (inst.operands[0].imm == 0x2)
15661 return 2;
15662 else if (inst.operands[0].imm == 0x8)
15663 return 3;
15664 else
15665 {
15666 first_error (_("invalid condition"));
15667 return 0;
15668 }
15669 case NT_signed:
15670 switch (inst.operands[0].imm)
15671 {
15672 default:
15673 first_error (_("invalid condition"));
15674 return 0;
15675 case 0xa:
15676 /* ge. */
15677 return 4;
15678 case 0xb:
15679 /* lt. */
15680 return 5;
15681 case 0xc:
15682 /* gt. */
15683 return 6;
15684 case 0xd:
15685 /* le. */
15686 return 7;
15687 }
15688 }
15689 /* Should be unreachable. */
15690 abort ();
15691 }
15692
15693 static void
15694 do_mve_vpt (void)
15695 {
15696 /* We are dealing with a vector predicated block. */
15697 if (inst.operands[0].present)
15698 {
15699 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15700 struct neon_type_el et
15701 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15702 N_EQK);
15703
15704 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15705
15706 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15707
15708 if (et.type == NT_invtype)
15709 return;
15710
15711 if (et.type == NT_float)
15712 {
15713 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15714 BAD_FPU);
15715 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15716 inst.instruction |= (et.size == 16) << 28;
15717 inst.instruction |= 0x3 << 20;
15718 }
15719 else
15720 {
15721 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15722 BAD_EL_TYPE);
15723 inst.instruction |= 1 << 28;
15724 inst.instruction |= neon_logbits (et.size) << 20;
15725 }
15726
15727 if (inst.operands[2].isquad)
15728 {
15729 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15730 inst.instruction |= LOW4 (inst.operands[2].reg);
15731 inst.instruction |= (fcond & 0x2) >> 1;
15732 }
15733 else
15734 {
15735 if (inst.operands[2].reg == REG_SP)
15736 as_tsktsk (MVE_BAD_SP);
15737 inst.instruction |= 1 << 6;
15738 inst.instruction |= (fcond & 0x2) << 4;
15739 inst.instruction |= inst.operands[2].reg;
15740 }
15741 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15742 inst.instruction |= (fcond & 0x4) << 10;
15743 inst.instruction |= (fcond & 0x1) << 7;
15744
15745 }
15746 set_pred_insn_type (VPT_INSN);
15747 now_pred.cc = 0;
15748 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15749 | ((inst.instruction & 0xe000) >> 13);
15750 now_pred.warn_deprecated = FALSE;
15751 now_pred.type = VECTOR_PRED;
15752 inst.is_neon = 1;
15753 }
15754
15755 static void
15756 do_mve_vcmp (void)
15757 {
15758 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15759 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15760 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15761 if (!inst.operands[2].present)
15762 first_error (_("MVE vector or ARM register expected"));
15763 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15764
15765 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15766 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15767 && inst.operands[1].isquad)
15768 {
15769 inst.instruction = N_MNEM_vcmp;
15770 inst.cond = 0x10;
15771 }
15772
15773 if (inst.cond > COND_ALWAYS)
15774 inst.pred_insn_type = INSIDE_VPT_INSN;
15775 else
15776 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15777
15778 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15779 struct neon_type_el et
15780 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15781 N_EQK);
15782
15783 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15784 && !inst.operands[2].iszr, BAD_PC);
15785
15786 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15787
15788 inst.instruction = 0xee010f00;
15789 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15790 inst.instruction |= (fcond & 0x4) << 10;
15791 inst.instruction |= (fcond & 0x1) << 7;
15792 if (et.type == NT_float)
15793 {
15794 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15795 BAD_FPU);
15796 inst.instruction |= (et.size == 16) << 28;
15797 inst.instruction |= 0x3 << 20;
15798 }
15799 else
15800 {
15801 inst.instruction |= 1 << 28;
15802 inst.instruction |= neon_logbits (et.size) << 20;
15803 }
15804 if (inst.operands[2].isquad)
15805 {
15806 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15807 inst.instruction |= (fcond & 0x2) >> 1;
15808 inst.instruction |= LOW4 (inst.operands[2].reg);
15809 }
15810 else
15811 {
15812 if (inst.operands[2].reg == REG_SP)
15813 as_tsktsk (MVE_BAD_SP);
15814 inst.instruction |= 1 << 6;
15815 inst.instruction |= (fcond & 0x2) << 4;
15816 inst.instruction |= inst.operands[2].reg;
15817 }
15818
15819 inst.is_neon = 1;
15820 return;
15821 }
15822
15823 static void
15824 do_mve_vmaxa_vmina (void)
15825 {
15826 if (inst.cond > COND_ALWAYS)
15827 inst.pred_insn_type = INSIDE_VPT_INSN;
15828 else
15829 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15830
15831 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15832 struct neon_type_el et
15833 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15834
15835 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15836 inst.instruction |= neon_logbits (et.size) << 18;
15837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15838 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15839 inst.instruction |= LOW4 (inst.operands[1].reg);
15840 inst.is_neon = 1;
15841 }
15842
15843 static void
15844 do_mve_vfmas (void)
15845 {
15846 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15847 struct neon_type_el et
15848 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15849
15850 if (inst.cond > COND_ALWAYS)
15851 inst.pred_insn_type = INSIDE_VPT_INSN;
15852 else
15853 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15854
15855 if (inst.operands[2].reg == REG_SP)
15856 as_tsktsk (MVE_BAD_SP);
15857 else if (inst.operands[2].reg == REG_PC)
15858 as_tsktsk (MVE_BAD_PC);
15859
15860 inst.instruction |= (et.size == 16) << 28;
15861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15862 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15863 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15864 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15865 inst.instruction |= inst.operands[2].reg;
15866 inst.is_neon = 1;
15867 }
15868
15869 static void
15870 do_mve_viddup (void)
15871 {
15872 if (inst.cond > COND_ALWAYS)
15873 inst.pred_insn_type = INSIDE_VPT_INSN;
15874 else
15875 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15876
15877 unsigned imm = inst.relocs[0].exp.X_add_number;
15878 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15879 _("immediate must be either 1, 2, 4 or 8"));
15880
15881 enum neon_shape rs;
15882 struct neon_type_el et;
15883 unsigned Rm;
15884 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15885 {
15886 rs = neon_select_shape (NS_QRI, NS_NULL);
15887 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15888 Rm = 7;
15889 }
15890 else
15891 {
15892 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15893 if (inst.operands[2].reg == REG_SP)
15894 as_tsktsk (MVE_BAD_SP);
15895 else if (inst.operands[2].reg == REG_PC)
15896 first_error (BAD_PC);
15897
15898 rs = neon_select_shape (NS_QRRI, NS_NULL);
15899 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15900 Rm = inst.operands[2].reg >> 1;
15901 }
15902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15903 inst.instruction |= neon_logbits (et.size) << 20;
15904 inst.instruction |= inst.operands[1].reg << 16;
15905 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15906 inst.instruction |= (imm > 2) << 7;
15907 inst.instruction |= Rm << 1;
15908 inst.instruction |= (imm == 2 || imm == 8);
15909 inst.is_neon = 1;
15910 }
15911
15912 static void
15913 do_mve_vmlas (void)
15914 {
15915 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15916 struct neon_type_el et
15917 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15918
15919 if (inst.operands[2].reg == REG_PC)
15920 as_tsktsk (MVE_BAD_PC);
15921 else if (inst.operands[2].reg == REG_SP)
15922 as_tsktsk (MVE_BAD_SP);
15923
15924 if (inst.cond > COND_ALWAYS)
15925 inst.pred_insn_type = INSIDE_VPT_INSN;
15926 else
15927 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15928
15929 inst.instruction |= (et.type == NT_unsigned) << 28;
15930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15931 inst.instruction |= neon_logbits (et.size) << 20;
15932 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15933 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15934 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15935 inst.instruction |= inst.operands[2].reg;
15936 inst.is_neon = 1;
15937 }
15938
15939 static void
15940 do_mve_vshll (void)
15941 {
15942 struct neon_type_el et
15943 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
15944
15945 if (inst.cond > COND_ALWAYS)
15946 inst.pred_insn_type = INSIDE_VPT_INSN;
15947 else
15948 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15949
15950 int imm = inst.operands[2].imm;
15951 constraint (imm < 1 || (unsigned)imm > et.size,
15952 _("immediate value out of range"));
15953
15954 if ((unsigned)imm == et.size)
15955 {
15956 inst.instruction |= neon_logbits (et.size) << 18;
15957 inst.instruction |= 0x110001;
15958 }
15959 else
15960 {
15961 inst.instruction |= (et.size + imm) << 16;
15962 inst.instruction |= 0x800140;
15963 }
15964
15965 inst.instruction |= (et.type == NT_unsigned) << 28;
15966 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15967 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15968 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15969 inst.instruction |= LOW4 (inst.operands[1].reg);
15970 inst.is_neon = 1;
15971 }
15972
15973 static void
15974 do_mve_vshlc (void)
15975 {
15976 if (inst.cond > COND_ALWAYS)
15977 inst.pred_insn_type = INSIDE_VPT_INSN;
15978 else
15979 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15980
15981 if (inst.operands[1].reg == REG_PC)
15982 as_tsktsk (MVE_BAD_PC);
15983 else if (inst.operands[1].reg == REG_SP)
15984 as_tsktsk (MVE_BAD_SP);
15985
15986 int imm = inst.operands[2].imm;
15987 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
15988
15989 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15990 inst.instruction |= (imm & 0x1f) << 16;
15991 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15992 inst.instruction |= inst.operands[1].reg;
15993 inst.is_neon = 1;
15994 }
15995
15996 static void
15997 do_mve_vshrn (void)
15998 {
15999 unsigned types;
16000 switch (inst.instruction)
16001 {
16002 case M_MNEM_vshrnt:
16003 case M_MNEM_vshrnb:
16004 case M_MNEM_vrshrnt:
16005 case M_MNEM_vrshrnb:
16006 types = N_I16 | N_I32;
16007 break;
16008 case M_MNEM_vqshrnt:
16009 case M_MNEM_vqshrnb:
16010 case M_MNEM_vqrshrnt:
16011 case M_MNEM_vqrshrnb:
16012 types = N_U16 | N_U32 | N_S16 | N_S32;
16013 break;
16014 case M_MNEM_vqshrunt:
16015 case M_MNEM_vqshrunb:
16016 case M_MNEM_vqrshrunt:
16017 case M_MNEM_vqrshrunb:
16018 types = N_S16 | N_S32;
16019 break;
16020 default:
16021 abort ();
16022 }
16023
16024 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16025
16026 if (inst.cond > COND_ALWAYS)
16027 inst.pred_insn_type = INSIDE_VPT_INSN;
16028 else
16029 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16030
16031 unsigned Qd = inst.operands[0].reg;
16032 unsigned Qm = inst.operands[1].reg;
16033 unsigned imm = inst.operands[2].imm;
16034 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16035 et.size == 16
16036 ? _("immediate operand expected in the range [1,8]")
16037 : _("immediate operand expected in the range [1,16]"));
16038
16039 inst.instruction |= (et.type == NT_unsigned) << 28;
16040 inst.instruction |= HI1 (Qd) << 22;
16041 inst.instruction |= (et.size - imm) << 16;
16042 inst.instruction |= LOW4 (Qd) << 12;
16043 inst.instruction |= HI1 (Qm) << 5;
16044 inst.instruction |= LOW4 (Qm);
16045 inst.is_neon = 1;
16046 }
16047
16048 static void
16049 do_mve_vqmovn (void)
16050 {
16051 struct neon_type_el et;
16052 if (inst.instruction == M_MNEM_vqmovnt
16053 || inst.instruction == M_MNEM_vqmovnb)
16054 et = neon_check_type (2, NS_QQ, N_EQK,
16055 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16056 else
16057 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16058
16059 if (inst.cond > COND_ALWAYS)
16060 inst.pred_insn_type = INSIDE_VPT_INSN;
16061 else
16062 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16063
16064 inst.instruction |= (et.type == NT_unsigned) << 28;
16065 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16066 inst.instruction |= (et.size == 32) << 18;
16067 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16068 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16069 inst.instruction |= LOW4 (inst.operands[1].reg);
16070 inst.is_neon = 1;
16071 }
16072
16073 static void
16074 do_mve_vpsel (void)
16075 {
16076 neon_select_shape (NS_QQQ, NS_NULL);
16077
16078 if (inst.cond > COND_ALWAYS)
16079 inst.pred_insn_type = INSIDE_VPT_INSN;
16080 else
16081 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16082
16083 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16084 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16087 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16088 inst.instruction |= LOW4 (inst.operands[2].reg);
16089 inst.is_neon = 1;
16090 }
16091
16092 static void
16093 do_mve_vpnot (void)
16094 {
16095 if (inst.cond > COND_ALWAYS)
16096 inst.pred_insn_type = INSIDE_VPT_INSN;
16097 else
16098 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16099 }
16100
16101 static void
16102 do_mve_vmaxnma_vminnma (void)
16103 {
16104 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16105 struct neon_type_el et
16106 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16107
16108 if (inst.cond > COND_ALWAYS)
16109 inst.pred_insn_type = INSIDE_VPT_INSN;
16110 else
16111 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16112
16113 inst.instruction |= (et.size == 16) << 28;
16114 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16115 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16116 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16117 inst.instruction |= LOW4 (inst.operands[1].reg);
16118 inst.is_neon = 1;
16119 }
16120
16121 static void
16122 do_mve_vcmul (void)
16123 {
16124 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16125 struct neon_type_el et
16126 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16127
16128 if (inst.cond > COND_ALWAYS)
16129 inst.pred_insn_type = INSIDE_VPT_INSN;
16130 else
16131 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16132
16133 unsigned rot = inst.relocs[0].exp.X_add_number;
16134 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16135 _("immediate out of range"));
16136
16137 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16138 || inst.operands[0].reg == inst.operands[2].reg))
16139 as_tsktsk (BAD_MVE_SRCDEST);
16140
16141 inst.instruction |= (et.size == 32) << 28;
16142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16143 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16145 inst.instruction |= (rot > 90) << 12;
16146 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16147 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16148 inst.instruction |= LOW4 (inst.operands[2].reg);
16149 inst.instruction |= (rot == 90 || rot == 270);
16150 inst.is_neon = 1;
16151 }
16152
16153 /* To handle the Low Overhead Loop instructions
16154 in Armv8.1-M Mainline and MVE. */
16155 static void
16156 do_t_loloop (void)
16157 {
16158 unsigned long insn = inst.instruction;
16159
16160 inst.instruction = THUMB_OP32 (inst.instruction);
16161
16162 if (insn == T_MNEM_lctp)
16163 return;
16164
16165 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16166
16167 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16168 {
16169 struct neon_type_el et
16170 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16171 inst.instruction |= neon_logbits (et.size) << 20;
16172 inst.is_neon = 1;
16173 }
16174
16175 switch (insn)
16176 {
16177 case T_MNEM_letp:
16178 constraint (!inst.operands[0].present,
16179 _("expected LR"));
16180 /* fall through. */
16181 case T_MNEM_le:
16182 /* le <label>. */
16183 if (!inst.operands[0].present)
16184 inst.instruction |= 1 << 21;
16185
16186 v8_1_loop_reloc (TRUE);
16187 break;
16188
16189 case T_MNEM_wls:
16190 case T_MNEM_wlstp:
16191 v8_1_loop_reloc (FALSE);
16192 /* fall through. */
16193 case T_MNEM_dlstp:
16194 case T_MNEM_dls:
16195 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16196
16197 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16198 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16199 else if (inst.operands[1].reg == REG_PC)
16200 as_tsktsk (MVE_BAD_PC);
16201 if (inst.operands[1].reg == REG_SP)
16202 as_tsktsk (MVE_BAD_SP);
16203
16204 inst.instruction |= (inst.operands[1].reg << 16);
16205 break;
16206
16207 default:
16208 abort ();
16209 }
16210 }
16211
16212
16213 static void
16214 do_vfp_nsyn_cmp (void)
16215 {
16216 enum neon_shape rs;
16217 if (!inst.operands[0].isreg)
16218 {
16219 do_mve_vcmp ();
16220 return;
16221 }
16222 else
16223 {
16224 constraint (inst.operands[2].present, BAD_SYNTAX);
16225 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16226 BAD_FPU);
16227 }
16228
16229 if (inst.operands[1].isreg)
16230 {
16231 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16232 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16233
16234 if (rs == NS_FF || rs == NS_HH)
16235 {
16236 NEON_ENCODE (SINGLE, inst);
16237 do_vfp_sp_monadic ();
16238 }
16239 else
16240 {
16241 NEON_ENCODE (DOUBLE, inst);
16242 do_vfp_dp_rd_rm ();
16243 }
16244 }
16245 else
16246 {
16247 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16248 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16249
16250 switch (inst.instruction & 0x0fffffff)
16251 {
16252 case N_MNEM_vcmp:
16253 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16254 break;
16255 case N_MNEM_vcmpe:
16256 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16257 break;
16258 default:
16259 abort ();
16260 }
16261
16262 if (rs == NS_FI || rs == NS_HI)
16263 {
16264 NEON_ENCODE (SINGLE, inst);
16265 do_vfp_sp_compare_z ();
16266 }
16267 else
16268 {
16269 NEON_ENCODE (DOUBLE, inst);
16270 do_vfp_dp_rd ();
16271 }
16272 }
16273 do_vfp_cond_or_thumb ();
16274
16275 /* ARMv8.2 fp16 instruction. */
16276 if (rs == NS_HI || rs == NS_HH)
16277 do_scalar_fp16_v82_encode ();
16278 }
16279
16280 static void
16281 nsyn_insert_sp (void)
16282 {
16283 inst.operands[1] = inst.operands[0];
16284 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16285 inst.operands[0].reg = REG_SP;
16286 inst.operands[0].isreg = 1;
16287 inst.operands[0].writeback = 1;
16288 inst.operands[0].present = 1;
16289 }
16290
16291 static void
16292 do_vfp_nsyn_push (void)
16293 {
16294 nsyn_insert_sp ();
16295
16296 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16297 _("register list must contain at least 1 and at most 16 "
16298 "registers"));
16299
16300 if (inst.operands[1].issingle)
16301 do_vfp_nsyn_opcode ("fstmdbs");
16302 else
16303 do_vfp_nsyn_opcode ("fstmdbd");
16304 }
16305
16306 static void
16307 do_vfp_nsyn_pop (void)
16308 {
16309 nsyn_insert_sp ();
16310
16311 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16312 _("register list must contain at least 1 and at most 16 "
16313 "registers"));
16314
16315 if (inst.operands[1].issingle)
16316 do_vfp_nsyn_opcode ("fldmias");
16317 else
16318 do_vfp_nsyn_opcode ("fldmiad");
16319 }
16320
16321 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16322 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16323
16324 static void
16325 neon_dp_fixup (struct arm_it* insn)
16326 {
16327 unsigned int i = insn->instruction;
16328 insn->is_neon = 1;
16329
16330 if (thumb_mode)
16331 {
16332 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16333 if (i & (1 << 24))
16334 i |= 1 << 28;
16335
16336 i &= ~(1 << 24);
16337
16338 i |= 0xef000000;
16339 }
16340 else
16341 i |= 0xf2000000;
16342
16343 insn->instruction = i;
16344 }
16345
16346 static void
16347 mve_encode_qqr (int size, int U, int fp)
16348 {
16349 if (inst.operands[2].reg == REG_SP)
16350 as_tsktsk (MVE_BAD_SP);
16351 else if (inst.operands[2].reg == REG_PC)
16352 as_tsktsk (MVE_BAD_PC);
16353
16354 if (fp)
16355 {
16356 /* vadd. */
16357 if (((unsigned)inst.instruction) == 0xd00)
16358 inst.instruction = 0xee300f40;
16359 /* vsub. */
16360 else if (((unsigned)inst.instruction) == 0x200d00)
16361 inst.instruction = 0xee301f40;
16362 /* vmul. */
16363 else if (((unsigned)inst.instruction) == 0x1000d10)
16364 inst.instruction = 0xee310e60;
16365
16366 /* Setting size which is 1 for F16 and 0 for F32. */
16367 inst.instruction |= (size == 16) << 28;
16368 }
16369 else
16370 {
16371 /* vadd. */
16372 if (((unsigned)inst.instruction) == 0x800)
16373 inst.instruction = 0xee010f40;
16374 /* vsub. */
16375 else if (((unsigned)inst.instruction) == 0x1000800)
16376 inst.instruction = 0xee011f40;
16377 /* vhadd. */
16378 else if (((unsigned)inst.instruction) == 0)
16379 inst.instruction = 0xee000f40;
16380 /* vhsub. */
16381 else if (((unsigned)inst.instruction) == 0x200)
16382 inst.instruction = 0xee001f40;
16383 /* vmla. */
16384 else if (((unsigned)inst.instruction) == 0x900)
16385 inst.instruction = 0xee010e40;
16386 /* vmul. */
16387 else if (((unsigned)inst.instruction) == 0x910)
16388 inst.instruction = 0xee011e60;
16389 /* vqadd. */
16390 else if (((unsigned)inst.instruction) == 0x10)
16391 inst.instruction = 0xee000f60;
16392 /* vqsub. */
16393 else if (((unsigned)inst.instruction) == 0x210)
16394 inst.instruction = 0xee001f60;
16395 /* vqrdmlah. */
16396 else if (((unsigned)inst.instruction) == 0x3000b10)
16397 inst.instruction = 0xee000e40;
16398 /* vqdmulh. */
16399 else if (((unsigned)inst.instruction) == 0x0000b00)
16400 inst.instruction = 0xee010e60;
16401 /* vqrdmulh. */
16402 else if (((unsigned)inst.instruction) == 0x1000b00)
16403 inst.instruction = 0xfe010e60;
16404
16405 /* Set U-bit. */
16406 inst.instruction |= U << 28;
16407
16408 /* Setting bits for size. */
16409 inst.instruction |= neon_logbits (size) << 20;
16410 }
16411 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16412 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16413 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16414 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16415 inst.instruction |= inst.operands[2].reg;
16416 inst.is_neon = 1;
16417 }
16418
16419 static void
16420 mve_encode_rqq (unsigned bit28, unsigned size)
16421 {
16422 inst.instruction |= bit28 << 28;
16423 inst.instruction |= neon_logbits (size) << 20;
16424 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16425 inst.instruction |= inst.operands[0].reg << 12;
16426 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16427 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16428 inst.instruction |= LOW4 (inst.operands[2].reg);
16429 inst.is_neon = 1;
16430 }
16431
16432 static void
16433 mve_encode_qqq (int ubit, int size)
16434 {
16435
16436 inst.instruction |= (ubit != 0) << 28;
16437 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16438 inst.instruction |= neon_logbits (size) << 20;
16439 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16440 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16441 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16442 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16443 inst.instruction |= LOW4 (inst.operands[2].reg);
16444
16445 inst.is_neon = 1;
16446 }
16447
16448 static void
16449 mve_encode_rq (unsigned bit28, unsigned size)
16450 {
16451 inst.instruction |= bit28 << 28;
16452 inst.instruction |= neon_logbits (size) << 18;
16453 inst.instruction |= inst.operands[0].reg << 12;
16454 inst.instruction |= LOW4 (inst.operands[1].reg);
16455 inst.is_neon = 1;
16456 }
16457
16458 static void
16459 mve_encode_rrqq (unsigned U, unsigned size)
16460 {
16461 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16462
16463 inst.instruction |= U << 28;
16464 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16465 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16466 inst.instruction |= (size == 32) << 16;
16467 inst.instruction |= inst.operands[0].reg << 12;
16468 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16469 inst.instruction |= inst.operands[3].reg;
16470 inst.is_neon = 1;
16471 }
16472
16473 /* Encode insns with bit pattern:
16474
16475 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16476 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16477
16478 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16479 different meaning for some instruction. */
16480
16481 static void
16482 neon_three_same (int isquad, int ubit, int size)
16483 {
16484 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16486 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16487 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16488 inst.instruction |= LOW4 (inst.operands[2].reg);
16489 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16490 inst.instruction |= (isquad != 0) << 6;
16491 inst.instruction |= (ubit != 0) << 24;
16492 if (size != -1)
16493 inst.instruction |= neon_logbits (size) << 20;
16494
16495 neon_dp_fixup (&inst);
16496 }
16497
16498 /* Encode instructions of the form:
16499
16500 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16501 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16502
16503 Don't write size if SIZE == -1. */
16504
16505 static void
16506 neon_two_same (int qbit, int ubit, int size)
16507 {
16508 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16509 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16510 inst.instruction |= LOW4 (inst.operands[1].reg);
16511 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16512 inst.instruction |= (qbit != 0) << 6;
16513 inst.instruction |= (ubit != 0) << 24;
16514
16515 if (size != -1)
16516 inst.instruction |= neon_logbits (size) << 18;
16517
16518 neon_dp_fixup (&inst);
16519 }
16520
16521 enum vfp_or_neon_is_neon_bits
16522 {
16523 NEON_CHECK_CC = 1,
16524 NEON_CHECK_ARCH = 2,
16525 NEON_CHECK_ARCH8 = 4
16526 };
16527
16528 /* Call this function if an instruction which may have belonged to the VFP or
16529 Neon instruction sets, but turned out to be a Neon instruction (due to the
16530 operand types involved, etc.). We have to check and/or fix-up a couple of
16531 things:
16532
16533 - Make sure the user hasn't attempted to make a Neon instruction
16534 conditional.
16535 - Alter the value in the condition code field if necessary.
16536 - Make sure that the arch supports Neon instructions.
16537
16538 Which of these operations take place depends on bits from enum
16539 vfp_or_neon_is_neon_bits.
16540
16541 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16542 current instruction's condition is COND_ALWAYS, the condition field is
16543 changed to inst.uncond_value. This is necessary because instructions shared
16544 between VFP and Neon may be conditional for the VFP variants only, and the
16545 unconditional Neon version must have, e.g., 0xF in the condition field. */
16546
16547 static int
16548 vfp_or_neon_is_neon (unsigned check)
16549 {
16550 /* Conditions are always legal in Thumb mode (IT blocks). */
16551 if (!thumb_mode && (check & NEON_CHECK_CC))
16552 {
16553 if (inst.cond != COND_ALWAYS)
16554 {
16555 first_error (_(BAD_COND));
16556 return FAIL;
16557 }
16558 if (inst.uncond_value != -1)
16559 inst.instruction |= inst.uncond_value << 28;
16560 }
16561
16562
16563 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16564 || ((check & NEON_CHECK_ARCH8)
16565 && !mark_feature_used (&fpu_neon_ext_armv8)))
16566 {
16567 first_error (_(BAD_FPU));
16568 return FAIL;
16569 }
16570
16571 return SUCCESS;
16572 }
16573
16574
16575 /* Return TRUE if the SIMD instruction is available for the current
16576 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16577 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16578 vfp_or_neon_is_neon for the NEON specific checks. */
16579
16580 static bfd_boolean
16581 check_simd_pred_availability (int fp, unsigned check)
16582 {
16583 if (inst.cond > COND_ALWAYS)
16584 {
16585 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16586 {
16587 inst.error = BAD_FPU;
16588 return FALSE;
16589 }
16590 inst.pred_insn_type = INSIDE_VPT_INSN;
16591 }
16592 else if (inst.cond < COND_ALWAYS)
16593 {
16594 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16595 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16596 else if (vfp_or_neon_is_neon (check) == FAIL)
16597 return FALSE;
16598 }
16599 else
16600 {
16601 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16602 && vfp_or_neon_is_neon (check) == FAIL)
16603 return FALSE;
16604
16605 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16606 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16607 }
16608 return TRUE;
16609 }
16610
16611 /* Neon instruction encoders, in approximate order of appearance. */
16612
16613 static void
16614 do_neon_dyadic_i_su (void)
16615 {
16616 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16617 return;
16618
16619 enum neon_shape rs;
16620 struct neon_type_el et;
16621 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16622 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16623 else
16624 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16625
16626 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16627
16628
16629 if (rs != NS_QQR)
16630 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16631 else
16632 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16633 }
16634
16635 static void
16636 do_neon_dyadic_i64_su (void)
16637 {
16638 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16639 return;
16640 enum neon_shape rs;
16641 struct neon_type_el et;
16642 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16643 {
16644 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16645 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16646 }
16647 else
16648 {
16649 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16650 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16651 }
16652 if (rs == NS_QQR)
16653 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16654 else
16655 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16656 }
16657
16658 static void
16659 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16660 unsigned immbits)
16661 {
16662 unsigned size = et.size >> 3;
16663 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16664 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16665 inst.instruction |= LOW4 (inst.operands[1].reg);
16666 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16667 inst.instruction |= (isquad != 0) << 6;
16668 inst.instruction |= immbits << 16;
16669 inst.instruction |= (size >> 3) << 7;
16670 inst.instruction |= (size & 0x7) << 19;
16671 if (write_ubit)
16672 inst.instruction |= (uval != 0) << 24;
16673
16674 neon_dp_fixup (&inst);
16675 }
16676
16677 static void
16678 do_neon_shl (void)
16679 {
16680 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16681 return;
16682
16683 if (!inst.operands[2].isreg)
16684 {
16685 enum neon_shape rs;
16686 struct neon_type_el et;
16687 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16688 {
16689 rs = neon_select_shape (NS_QQI, NS_NULL);
16690 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16691 }
16692 else
16693 {
16694 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16695 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16696 }
16697 int imm = inst.operands[2].imm;
16698
16699 constraint (imm < 0 || (unsigned)imm >= et.size,
16700 _("immediate out of range for shift"));
16701 NEON_ENCODE (IMMED, inst);
16702 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16703 }
16704 else
16705 {
16706 enum neon_shape rs;
16707 struct neon_type_el et;
16708 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16709 {
16710 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16711 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16712 }
16713 else
16714 {
16715 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16716 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16717 }
16718
16719
16720 if (rs == NS_QQR)
16721 {
16722 constraint (inst.operands[0].reg != inst.operands[1].reg,
16723 _("invalid instruction shape"));
16724 if (inst.operands[2].reg == REG_SP)
16725 as_tsktsk (MVE_BAD_SP);
16726 else if (inst.operands[2].reg == REG_PC)
16727 as_tsktsk (MVE_BAD_PC);
16728
16729 inst.instruction = 0xee311e60;
16730 inst.instruction |= (et.type == NT_unsigned) << 28;
16731 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16732 inst.instruction |= neon_logbits (et.size) << 18;
16733 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16734 inst.instruction |= inst.operands[2].reg;
16735 inst.is_neon = 1;
16736 }
16737 else
16738 {
16739 unsigned int tmp;
16740
16741 /* VSHL/VQSHL 3-register variants have syntax such as:
16742 vshl.xx Dd, Dm, Dn
16743 whereas other 3-register operations encoded by neon_three_same have
16744 syntax like:
16745 vadd.xx Dd, Dn, Dm
16746 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16747 operands[2].reg here. */
16748 tmp = inst.operands[2].reg;
16749 inst.operands[2].reg = inst.operands[1].reg;
16750 inst.operands[1].reg = tmp;
16751 NEON_ENCODE (INTEGER, inst);
16752 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16753 }
16754 }
16755 }
16756
16757 static void
16758 do_neon_qshl (void)
16759 {
16760 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16761 return;
16762
16763 if (!inst.operands[2].isreg)
16764 {
16765 enum neon_shape rs;
16766 struct neon_type_el et;
16767 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16768 {
16769 rs = neon_select_shape (NS_QQI, NS_NULL);
16770 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16771 }
16772 else
16773 {
16774 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16775 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16776 }
16777 int imm = inst.operands[2].imm;
16778
16779 constraint (imm < 0 || (unsigned)imm >= et.size,
16780 _("immediate out of range for shift"));
16781 NEON_ENCODE (IMMED, inst);
16782 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16783 }
16784 else
16785 {
16786 enum neon_shape rs;
16787 struct neon_type_el et;
16788
16789 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16790 {
16791 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16792 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16793 }
16794 else
16795 {
16796 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16797 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16798 }
16799
16800 if (rs == NS_QQR)
16801 {
16802 constraint (inst.operands[0].reg != inst.operands[1].reg,
16803 _("invalid instruction shape"));
16804 if (inst.operands[2].reg == REG_SP)
16805 as_tsktsk (MVE_BAD_SP);
16806 else if (inst.operands[2].reg == REG_PC)
16807 as_tsktsk (MVE_BAD_PC);
16808
16809 inst.instruction = 0xee311ee0;
16810 inst.instruction |= (et.type == NT_unsigned) << 28;
16811 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16812 inst.instruction |= neon_logbits (et.size) << 18;
16813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16814 inst.instruction |= inst.operands[2].reg;
16815 inst.is_neon = 1;
16816 }
16817 else
16818 {
16819 unsigned int tmp;
16820
16821 /* See note in do_neon_shl. */
16822 tmp = inst.operands[2].reg;
16823 inst.operands[2].reg = inst.operands[1].reg;
16824 inst.operands[1].reg = tmp;
16825 NEON_ENCODE (INTEGER, inst);
16826 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16827 }
16828 }
16829 }
16830
16831 static void
16832 do_neon_rshl (void)
16833 {
16834 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16835 return;
16836
16837 enum neon_shape rs;
16838 struct neon_type_el et;
16839 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16840 {
16841 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16842 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16843 }
16844 else
16845 {
16846 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16847 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16848 }
16849
16850 unsigned int tmp;
16851
16852 if (rs == NS_QQR)
16853 {
16854 if (inst.operands[2].reg == REG_PC)
16855 as_tsktsk (MVE_BAD_PC);
16856 else if (inst.operands[2].reg == REG_SP)
16857 as_tsktsk (MVE_BAD_SP);
16858
16859 constraint (inst.operands[0].reg != inst.operands[1].reg,
16860 _("invalid instruction shape"));
16861
16862 if (inst.instruction == 0x0000510)
16863 /* We are dealing with vqrshl. */
16864 inst.instruction = 0xee331ee0;
16865 else
16866 /* We are dealing with vrshl. */
16867 inst.instruction = 0xee331e60;
16868
16869 inst.instruction |= (et.type == NT_unsigned) << 28;
16870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16871 inst.instruction |= neon_logbits (et.size) << 18;
16872 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16873 inst.instruction |= inst.operands[2].reg;
16874 inst.is_neon = 1;
16875 }
16876 else
16877 {
16878 tmp = inst.operands[2].reg;
16879 inst.operands[2].reg = inst.operands[1].reg;
16880 inst.operands[1].reg = tmp;
16881 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16882 }
16883 }
16884
16885 static int
16886 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16887 {
16888 /* Handle .I8 pseudo-instructions. */
16889 if (size == 8)
16890 {
16891 /* Unfortunately, this will make everything apart from zero out-of-range.
16892 FIXME is this the intended semantics? There doesn't seem much point in
16893 accepting .I8 if so. */
16894 immediate |= immediate << 8;
16895 size = 16;
16896 }
16897
16898 if (size >= 32)
16899 {
16900 if (immediate == (immediate & 0x000000ff))
16901 {
16902 *immbits = immediate;
16903 return 0x1;
16904 }
16905 else if (immediate == (immediate & 0x0000ff00))
16906 {
16907 *immbits = immediate >> 8;
16908 return 0x3;
16909 }
16910 else if (immediate == (immediate & 0x00ff0000))
16911 {
16912 *immbits = immediate >> 16;
16913 return 0x5;
16914 }
16915 else if (immediate == (immediate & 0xff000000))
16916 {
16917 *immbits = immediate >> 24;
16918 return 0x7;
16919 }
16920 if ((immediate & 0xffff) != (immediate >> 16))
16921 goto bad_immediate;
16922 immediate &= 0xffff;
16923 }
16924
16925 if (immediate == (immediate & 0x000000ff))
16926 {
16927 *immbits = immediate;
16928 return 0x9;
16929 }
16930 else if (immediate == (immediate & 0x0000ff00))
16931 {
16932 *immbits = immediate >> 8;
16933 return 0xb;
16934 }
16935
16936 bad_immediate:
16937 first_error (_("immediate value out of range"));
16938 return FAIL;
16939 }
16940
16941 static void
16942 do_neon_logic (void)
16943 {
16944 if (inst.operands[2].present && inst.operands[2].isreg)
16945 {
16946 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16947 if (rs == NS_QQQ
16948 && !check_simd_pred_availability (FALSE,
16949 NEON_CHECK_ARCH | NEON_CHECK_CC))
16950 return;
16951 else if (rs != NS_QQQ
16952 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16953 first_error (BAD_FPU);
16954
16955 neon_check_type (3, rs, N_IGNORE_TYPE);
16956 /* U bit and size field were set as part of the bitmask. */
16957 NEON_ENCODE (INTEGER, inst);
16958 neon_three_same (neon_quad (rs), 0, -1);
16959 }
16960 else
16961 {
16962 const int three_ops_form = (inst.operands[2].present
16963 && !inst.operands[2].isreg);
16964 const int immoperand = (three_ops_form ? 2 : 1);
16965 enum neon_shape rs = (three_ops_form
16966 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16967 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16968 /* Because neon_select_shape makes the second operand a copy of the first
16969 if the second operand is not present. */
16970 if (rs == NS_QQI
16971 && !check_simd_pred_availability (FALSE,
16972 NEON_CHECK_ARCH | NEON_CHECK_CC))
16973 return;
16974 else if (rs != NS_QQI
16975 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16976 first_error (BAD_FPU);
16977
16978 struct neon_type_el et;
16979 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16980 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16981 else
16982 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16983 | N_KEY, N_EQK);
16984
16985 if (et.type == NT_invtype)
16986 return;
16987 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16988 unsigned immbits;
16989 int cmode;
16990
16991
16992 if (three_ops_form)
16993 constraint (inst.operands[0].reg != inst.operands[1].reg,
16994 _("first and second operands shall be the same register"));
16995
16996 NEON_ENCODE (IMMED, inst);
16997
16998 immbits = inst.operands[immoperand].imm;
16999 if (et.size == 64)
17000 {
17001 /* .i64 is a pseudo-op, so the immediate must be a repeating
17002 pattern. */
17003 if (immbits != (inst.operands[immoperand].regisimm ?
17004 inst.operands[immoperand].reg : 0))
17005 {
17006 /* Set immbits to an invalid constant. */
17007 immbits = 0xdeadbeef;
17008 }
17009 }
17010
17011 switch (opcode)
17012 {
17013 case N_MNEM_vbic:
17014 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17015 break;
17016
17017 case N_MNEM_vorr:
17018 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17019 break;
17020
17021 case N_MNEM_vand:
17022 /* Pseudo-instruction for VBIC. */
17023 neon_invert_size (&immbits, 0, et.size);
17024 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17025 break;
17026
17027 case N_MNEM_vorn:
17028 /* Pseudo-instruction for VORR. */
17029 neon_invert_size (&immbits, 0, et.size);
17030 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17031 break;
17032
17033 default:
17034 abort ();
17035 }
17036
17037 if (cmode == FAIL)
17038 return;
17039
17040 inst.instruction |= neon_quad (rs) << 6;
17041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17043 inst.instruction |= cmode << 8;
17044 neon_write_immbits (immbits);
17045
17046 neon_dp_fixup (&inst);
17047 }
17048 }
17049
17050 static void
17051 do_neon_bitfield (void)
17052 {
17053 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17054 neon_check_type (3, rs, N_IGNORE_TYPE);
17055 neon_three_same (neon_quad (rs), 0, -1);
17056 }
17057
17058 static void
17059 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17060 unsigned destbits)
17061 {
17062 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17063 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17064 types | N_KEY);
17065 if (et.type == NT_float)
17066 {
17067 NEON_ENCODE (FLOAT, inst);
17068 if (rs == NS_QQR)
17069 mve_encode_qqr (et.size, 0, 1);
17070 else
17071 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17072 }
17073 else
17074 {
17075 NEON_ENCODE (INTEGER, inst);
17076 if (rs == NS_QQR)
17077 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17078 else
17079 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17080 }
17081 }
17082
17083
17084 static void
17085 do_neon_dyadic_if_su_d (void)
17086 {
17087 /* This version only allow D registers, but that constraint is enforced during
17088 operand parsing so we don't need to do anything extra here. */
17089 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17090 }
17091
17092 static void
17093 do_neon_dyadic_if_i_d (void)
17094 {
17095 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17096 affected if we specify unsigned args. */
17097 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17098 }
17099
17100 static void
17101 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17102 {
17103 constraint (size < 32, BAD_ADDR_MODE);
17104 constraint (size != elsize, BAD_EL_TYPE);
17105 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17106 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17107 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17108 _("destination register and offset register may not be the"
17109 " same"));
17110
17111 int imm = inst.relocs[0].exp.X_add_number;
17112 int add = 1;
17113 if (imm < 0)
17114 {
17115 add = 0;
17116 imm = -imm;
17117 }
17118 constraint ((imm % (size / 8) != 0)
17119 || imm > (0x7f << neon_logbits (size)),
17120 (size == 32) ? _("immediate must be a multiple of 4 in the"
17121 " range of +/-[0,508]")
17122 : _("immediate must be a multiple of 8 in the"
17123 " range of +/-[0,1016]"));
17124 inst.instruction |= 0x11 << 24;
17125 inst.instruction |= add << 23;
17126 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17127 inst.instruction |= inst.operands[1].writeback << 21;
17128 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17130 inst.instruction |= 1 << 12;
17131 inst.instruction |= (size == 64) << 8;
17132 inst.instruction &= 0xffffff00;
17133 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17134 inst.instruction |= imm >> neon_logbits (size);
17135 }
17136
17137 static void
17138 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17139 {
17140 unsigned os = inst.operands[1].imm >> 5;
17141 constraint (os != 0 && size == 8,
17142 _("can not shift offsets when accessing less than half-word"));
17143 constraint (os && os != neon_logbits (size),
17144 _("shift immediate must be 1, 2 or 3 for half-word, word"
17145 " or double-word accesses respectively"));
17146 if (inst.operands[1].reg == REG_PC)
17147 as_tsktsk (MVE_BAD_PC);
17148
17149 switch (size)
17150 {
17151 case 8:
17152 constraint (elsize >= 64, BAD_EL_TYPE);
17153 break;
17154 case 16:
17155 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17156 break;
17157 case 32:
17158 case 64:
17159 constraint (elsize != size, BAD_EL_TYPE);
17160 break;
17161 default:
17162 break;
17163 }
17164 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17165 BAD_ADDR_MODE);
17166 if (load)
17167 {
17168 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17169 _("destination register and offset register may not be"
17170 " the same"));
17171 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
17172 BAD_EL_TYPE);
17173 constraint (inst.vectype.el[0].type != NT_unsigned
17174 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
17175 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
17176 }
17177 else
17178 {
17179 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
17180 }
17181
17182 inst.instruction |= 1 << 23;
17183 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17184 inst.instruction |= inst.operands[1].reg << 16;
17185 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17186 inst.instruction |= neon_logbits (elsize) << 7;
17187 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17188 inst.instruction |= LOW4 (inst.operands[1].imm);
17189 inst.instruction |= !!os;
17190 }
17191
17192 static void
17193 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17194 {
17195 enum neon_el_type type = inst.vectype.el[0].type;
17196
17197 constraint (size >= 64, BAD_ADDR_MODE);
17198 switch (size)
17199 {
17200 case 16:
17201 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17202 break;
17203 case 32:
17204 constraint (elsize != size, BAD_EL_TYPE);
17205 break;
17206 default:
17207 break;
17208 }
17209 if (load)
17210 {
17211 constraint (elsize != size && type != NT_unsigned
17212 && type != NT_signed, BAD_EL_TYPE);
17213 }
17214 else
17215 {
17216 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17217 }
17218
17219 int imm = inst.relocs[0].exp.X_add_number;
17220 int add = 1;
17221 if (imm < 0)
17222 {
17223 add = 0;
17224 imm = -imm;
17225 }
17226
17227 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17228 {
17229 switch (size)
17230 {
17231 case 8:
17232 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17233 break;
17234 case 16:
17235 constraint (1, _("immediate must be a multiple of 2 in the"
17236 " range of +/-[0,254]"));
17237 break;
17238 case 32:
17239 constraint (1, _("immediate must be a multiple of 4 in the"
17240 " range of +/-[0,508]"));
17241 break;
17242 }
17243 }
17244
17245 if (size != elsize)
17246 {
17247 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17248 constraint (inst.operands[0].reg > 14,
17249 _("MVE vector register in the range [Q0..Q7] expected"));
17250 inst.instruction |= (load && type == NT_unsigned) << 28;
17251 inst.instruction |= (size == 16) << 19;
17252 inst.instruction |= neon_logbits (elsize) << 7;
17253 }
17254 else
17255 {
17256 if (inst.operands[1].reg == REG_PC)
17257 as_tsktsk (MVE_BAD_PC);
17258 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17259 as_tsktsk (MVE_BAD_SP);
17260 inst.instruction |= 1 << 12;
17261 inst.instruction |= neon_logbits (size) << 7;
17262 }
17263 inst.instruction |= inst.operands[1].preind << 24;
17264 inst.instruction |= add << 23;
17265 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17266 inst.instruction |= inst.operands[1].writeback << 21;
17267 inst.instruction |= inst.operands[1].reg << 16;
17268 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17269 inst.instruction &= 0xffffff80;
17270 inst.instruction |= imm >> neon_logbits (size);
17271
17272 }
17273
17274 static void
17275 do_mve_vstr_vldr (void)
17276 {
17277 unsigned size;
17278 int load = 0;
17279
17280 if (inst.cond > COND_ALWAYS)
17281 inst.pred_insn_type = INSIDE_VPT_INSN;
17282 else
17283 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17284
17285 switch (inst.instruction)
17286 {
17287 default:
17288 gas_assert (0);
17289 break;
17290 case M_MNEM_vldrb:
17291 load = 1;
17292 /* fall through. */
17293 case M_MNEM_vstrb:
17294 size = 8;
17295 break;
17296 case M_MNEM_vldrh:
17297 load = 1;
17298 /* fall through. */
17299 case M_MNEM_vstrh:
17300 size = 16;
17301 break;
17302 case M_MNEM_vldrw:
17303 load = 1;
17304 /* fall through. */
17305 case M_MNEM_vstrw:
17306 size = 32;
17307 break;
17308 case M_MNEM_vldrd:
17309 load = 1;
17310 /* fall through. */
17311 case M_MNEM_vstrd:
17312 size = 64;
17313 break;
17314 }
17315 unsigned elsize = inst.vectype.el[0].size;
17316
17317 if (inst.operands[1].isquad)
17318 {
17319 /* We are dealing with [Q, imm]{!} cases. */
17320 do_mve_vstr_vldr_QI (size, elsize, load);
17321 }
17322 else
17323 {
17324 if (inst.operands[1].immisreg == 2)
17325 {
17326 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17327 do_mve_vstr_vldr_RQ (size, elsize, load);
17328 }
17329 else if (!inst.operands[1].immisreg)
17330 {
17331 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17332 do_mve_vstr_vldr_RI (size, elsize, load);
17333 }
17334 else
17335 constraint (1, BAD_ADDR_MODE);
17336 }
17337
17338 inst.is_neon = 1;
17339 }
17340
17341 static void
17342 do_mve_vst_vld (void)
17343 {
17344 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17345 return;
17346
17347 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17348 || inst.relocs[0].exp.X_add_number != 0
17349 || inst.operands[1].immisreg != 0,
17350 BAD_ADDR_MODE);
17351 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17352 if (inst.operands[1].reg == REG_PC)
17353 as_tsktsk (MVE_BAD_PC);
17354 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17355 as_tsktsk (MVE_BAD_SP);
17356
17357
17358 /* These instructions are one of the "exceptions" mentioned in
17359 handle_pred_state. They are MVE instructions that are not VPT compatible
17360 and do not accept a VPT code, thus appending such a code is a syntax
17361 error. */
17362 if (inst.cond > COND_ALWAYS)
17363 first_error (BAD_SYNTAX);
17364 /* If we append a scalar condition code we can set this to
17365 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17366 else if (inst.cond < COND_ALWAYS)
17367 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17368 else
17369 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17370
17371 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17372 inst.instruction |= inst.operands[1].writeback << 21;
17373 inst.instruction |= inst.operands[1].reg << 16;
17374 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17375 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17376 inst.is_neon = 1;
17377 }
17378
17379 static void
17380 do_mve_vaddlv (void)
17381 {
17382 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17383 struct neon_type_el et
17384 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17385
17386 if (et.type == NT_invtype)
17387 first_error (BAD_EL_TYPE);
17388
17389 if (inst.cond > COND_ALWAYS)
17390 inst.pred_insn_type = INSIDE_VPT_INSN;
17391 else
17392 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17393
17394 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17395
17396 inst.instruction |= (et.type == NT_unsigned) << 28;
17397 inst.instruction |= inst.operands[1].reg << 19;
17398 inst.instruction |= inst.operands[0].reg << 12;
17399 inst.instruction |= inst.operands[2].reg;
17400 inst.is_neon = 1;
17401 }
17402
17403 static void
17404 do_neon_dyadic_if_su (void)
17405 {
17406 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17407 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17408 N_SUF_32 | N_KEY);
17409
17410 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17411 || inst.instruction == ((unsigned) N_MNEM_vmin))
17412 && et.type == NT_float
17413 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17414
17415 if (!check_simd_pred_availability (et.type == NT_float,
17416 NEON_CHECK_ARCH | NEON_CHECK_CC))
17417 return;
17418
17419 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17420 }
17421
17422 static void
17423 do_neon_addsub_if_i (void)
17424 {
17425 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17426 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17427 return;
17428
17429 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17430 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17431 N_EQK, N_IF_32 | N_I64 | N_KEY);
17432
17433 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17434 /* If we are parsing Q registers and the element types match MVE, which NEON
17435 also supports, then we must check whether this is an instruction that can
17436 be used by both MVE/NEON. This distinction can be made based on whether
17437 they are predicated or not. */
17438 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17439 {
17440 if (!check_simd_pred_availability (et.type == NT_float,
17441 NEON_CHECK_ARCH | NEON_CHECK_CC))
17442 return;
17443 }
17444 else
17445 {
17446 /* If they are either in a D register or are using an unsupported. */
17447 if (rs != NS_QQR
17448 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17449 return;
17450 }
17451
17452 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17453 affected if we specify unsigned args. */
17454 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17455 }
17456
17457 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17458 result to be:
17459 V<op> A,B (A is operand 0, B is operand 2)
17460 to mean:
17461 V<op> A,B,A
17462 not:
17463 V<op> A,B,B
17464 so handle that case specially. */
17465
17466 static void
17467 neon_exchange_operands (void)
17468 {
17469 if (inst.operands[1].present)
17470 {
17471 void *scratch = xmalloc (sizeof (inst.operands[0]));
17472
17473 /* Swap operands[1] and operands[2]. */
17474 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17475 inst.operands[1] = inst.operands[2];
17476 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17477 free (scratch);
17478 }
17479 else
17480 {
17481 inst.operands[1] = inst.operands[2];
17482 inst.operands[2] = inst.operands[0];
17483 }
17484 }
17485
17486 static void
17487 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17488 {
17489 if (inst.operands[2].isreg)
17490 {
17491 if (invert)
17492 neon_exchange_operands ();
17493 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17494 }
17495 else
17496 {
17497 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17498 struct neon_type_el et = neon_check_type (2, rs,
17499 N_EQK | N_SIZ, immtypes | N_KEY);
17500
17501 NEON_ENCODE (IMMED, inst);
17502 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17503 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17504 inst.instruction |= LOW4 (inst.operands[1].reg);
17505 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17506 inst.instruction |= neon_quad (rs) << 6;
17507 inst.instruction |= (et.type == NT_float) << 10;
17508 inst.instruction |= neon_logbits (et.size) << 18;
17509
17510 neon_dp_fixup (&inst);
17511 }
17512 }
17513
17514 static void
17515 do_neon_cmp (void)
17516 {
17517 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17518 }
17519
17520 static void
17521 do_neon_cmp_inv (void)
17522 {
17523 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17524 }
17525
17526 static void
17527 do_neon_ceq (void)
17528 {
17529 neon_compare (N_IF_32, N_IF_32, FALSE);
17530 }
17531
17532 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17533 scalars, which are encoded in 5 bits, M : Rm.
17534 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17535 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17536 index in M.
17537
17538 Dot Product instructions are similar to multiply instructions except elsize
17539 should always be 32.
17540
17541 This function translates SCALAR, which is GAS's internal encoding of indexed
17542 scalar register, to raw encoding. There is also register and index range
17543 check based on ELSIZE. */
17544
17545 static unsigned
17546 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17547 {
17548 unsigned regno = NEON_SCALAR_REG (scalar);
17549 unsigned elno = NEON_SCALAR_INDEX (scalar);
17550
17551 switch (elsize)
17552 {
17553 case 16:
17554 if (regno > 7 || elno > 3)
17555 goto bad_scalar;
17556 return regno | (elno << 3);
17557
17558 case 32:
17559 if (regno > 15 || elno > 1)
17560 goto bad_scalar;
17561 return regno | (elno << 4);
17562
17563 default:
17564 bad_scalar:
17565 first_error (_("scalar out of range for multiply instruction"));
17566 }
17567
17568 return 0;
17569 }
17570
17571 /* Encode multiply / multiply-accumulate scalar instructions. */
17572
17573 static void
17574 neon_mul_mac (struct neon_type_el et, int ubit)
17575 {
17576 unsigned scalar;
17577
17578 /* Give a more helpful error message if we have an invalid type. */
17579 if (et.type == NT_invtype)
17580 return;
17581
17582 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17583 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17584 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17585 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17586 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17587 inst.instruction |= LOW4 (scalar);
17588 inst.instruction |= HI1 (scalar) << 5;
17589 inst.instruction |= (et.type == NT_float) << 8;
17590 inst.instruction |= neon_logbits (et.size) << 20;
17591 inst.instruction |= (ubit != 0) << 24;
17592
17593 neon_dp_fixup (&inst);
17594 }
17595
17596 static void
17597 do_neon_mac_maybe_scalar (void)
17598 {
17599 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17600 return;
17601
17602 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17603 return;
17604
17605 if (inst.operands[2].isscalar)
17606 {
17607 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17608 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17609 struct neon_type_el et = neon_check_type (3, rs,
17610 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17611 NEON_ENCODE (SCALAR, inst);
17612 neon_mul_mac (et, neon_quad (rs));
17613 }
17614 else if (!inst.operands[2].isvec)
17615 {
17616 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17617
17618 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17619 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17620
17621 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17622 }
17623 else
17624 {
17625 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17626 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17627 affected if we specify unsigned args. */
17628 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17629 }
17630 }
17631
17632 static void
17633 do_neon_fmac (void)
17634 {
17635 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17636 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17637 return;
17638
17639 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17640 return;
17641
17642 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17643 {
17644 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17645 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17646 N_EQK);
17647
17648 if (rs == NS_QQR)
17649 {
17650 if (inst.operands[2].reg == REG_SP)
17651 as_tsktsk (MVE_BAD_SP);
17652 else if (inst.operands[2].reg == REG_PC)
17653 as_tsktsk (MVE_BAD_PC);
17654
17655 inst.instruction = 0xee310e40;
17656 inst.instruction |= (et.size == 16) << 28;
17657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17658 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17659 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17660 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17661 inst.instruction |= inst.operands[2].reg;
17662 inst.is_neon = 1;
17663 return;
17664 }
17665 }
17666 else
17667 {
17668 constraint (!inst.operands[2].isvec, BAD_FPU);
17669 }
17670
17671 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17672 }
17673
17674 static void
17675 do_neon_tst (void)
17676 {
17677 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17678 struct neon_type_el et = neon_check_type (3, rs,
17679 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17680 neon_three_same (neon_quad (rs), 0, et.size);
17681 }
17682
17683 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17684 same types as the MAC equivalents. The polynomial type for this instruction
17685 is encoded the same as the integer type. */
17686
17687 static void
17688 do_neon_mul (void)
17689 {
17690 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17691 return;
17692
17693 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17694 return;
17695
17696 if (inst.operands[2].isscalar)
17697 {
17698 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17699 do_neon_mac_maybe_scalar ();
17700 }
17701 else
17702 {
17703 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17704 {
17705 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17706 struct neon_type_el et
17707 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17708 if (et.type == NT_float)
17709 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17710 BAD_FPU);
17711
17712 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17713 }
17714 else
17715 {
17716 constraint (!inst.operands[2].isvec, BAD_FPU);
17717 neon_dyadic_misc (NT_poly,
17718 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17719 }
17720 }
17721 }
17722
17723 static void
17724 do_neon_qdmulh (void)
17725 {
17726 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17727 return;
17728
17729 if (inst.operands[2].isscalar)
17730 {
17731 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17732 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17733 struct neon_type_el et = neon_check_type (3, rs,
17734 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17735 NEON_ENCODE (SCALAR, inst);
17736 neon_mul_mac (et, neon_quad (rs));
17737 }
17738 else
17739 {
17740 enum neon_shape rs;
17741 struct neon_type_el et;
17742 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17743 {
17744 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17745 et = neon_check_type (3, rs,
17746 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17747 }
17748 else
17749 {
17750 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17751 et = neon_check_type (3, rs,
17752 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17753 }
17754
17755 NEON_ENCODE (INTEGER, inst);
17756 if (rs == NS_QQR)
17757 mve_encode_qqr (et.size, 0, 0);
17758 else
17759 /* The U bit (rounding) comes from bit mask. */
17760 neon_three_same (neon_quad (rs), 0, et.size);
17761 }
17762 }
17763
17764 static void
17765 do_mve_vaddv (void)
17766 {
17767 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17768 struct neon_type_el et
17769 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17770
17771 if (et.type == NT_invtype)
17772 first_error (BAD_EL_TYPE);
17773
17774 if (inst.cond > COND_ALWAYS)
17775 inst.pred_insn_type = INSIDE_VPT_INSN;
17776 else
17777 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17778
17779 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17780
17781 mve_encode_rq (et.type == NT_unsigned, et.size);
17782 }
17783
17784 static void
17785 do_mve_vhcadd (void)
17786 {
17787 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17788 struct neon_type_el et
17789 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17790
17791 if (inst.cond > COND_ALWAYS)
17792 inst.pred_insn_type = INSIDE_VPT_INSN;
17793 else
17794 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17795
17796 unsigned rot = inst.relocs[0].exp.X_add_number;
17797 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17798
17799 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17800 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17801 "operand makes instruction UNPREDICTABLE"));
17802
17803 mve_encode_qqq (0, et.size);
17804 inst.instruction |= (rot == 270) << 12;
17805 inst.is_neon = 1;
17806 }
17807
17808 static void
17809 do_mve_vqdmull (void)
17810 {
17811 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17812 struct neon_type_el et
17813 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17814
17815 if (et.size == 32
17816 && (inst.operands[0].reg == inst.operands[1].reg
17817 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17818 as_tsktsk (BAD_MVE_SRCDEST);
17819
17820 if (inst.cond > COND_ALWAYS)
17821 inst.pred_insn_type = INSIDE_VPT_INSN;
17822 else
17823 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17824
17825 if (rs == NS_QQQ)
17826 {
17827 mve_encode_qqq (et.size == 32, 64);
17828 inst.instruction |= 1;
17829 }
17830 else
17831 {
17832 mve_encode_qqr (64, et.size == 32, 0);
17833 inst.instruction |= 0x3 << 5;
17834 }
17835 }
17836
17837 static void
17838 do_mve_vadc (void)
17839 {
17840 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17841 struct neon_type_el et
17842 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17843
17844 if (et.type == NT_invtype)
17845 first_error (BAD_EL_TYPE);
17846
17847 if (inst.cond > COND_ALWAYS)
17848 inst.pred_insn_type = INSIDE_VPT_INSN;
17849 else
17850 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17851
17852 mve_encode_qqq (0, 64);
17853 }
17854
17855 static void
17856 do_mve_vbrsr (void)
17857 {
17858 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17859 struct neon_type_el et
17860 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17861
17862 if (inst.cond > COND_ALWAYS)
17863 inst.pred_insn_type = INSIDE_VPT_INSN;
17864 else
17865 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17866
17867 mve_encode_qqr (et.size, 0, 0);
17868 }
17869
17870 static void
17871 do_mve_vsbc (void)
17872 {
17873 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17874
17875 if (inst.cond > COND_ALWAYS)
17876 inst.pred_insn_type = INSIDE_VPT_INSN;
17877 else
17878 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17879
17880 mve_encode_qqq (1, 64);
17881 }
17882
17883 static void
17884 do_mve_vmulh (void)
17885 {
17886 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17887 struct neon_type_el et
17888 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17889
17890 if (inst.cond > COND_ALWAYS)
17891 inst.pred_insn_type = INSIDE_VPT_INSN;
17892 else
17893 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17894
17895 mve_encode_qqq (et.type == NT_unsigned, et.size);
17896 }
17897
17898 static void
17899 do_mve_vqdmlah (void)
17900 {
17901 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17902 struct neon_type_el et
17903 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
17904
17905 if (inst.cond > COND_ALWAYS)
17906 inst.pred_insn_type = INSIDE_VPT_INSN;
17907 else
17908 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17909
17910 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17911 }
17912
17913 static void
17914 do_mve_vqdmladh (void)
17915 {
17916 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17917 struct neon_type_el et
17918 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17919
17920 if (inst.cond > COND_ALWAYS)
17921 inst.pred_insn_type = INSIDE_VPT_INSN;
17922 else
17923 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17924
17925 mve_encode_qqq (0, et.size);
17926 }
17927
17928
17929 static void
17930 do_mve_vmull (void)
17931 {
17932
17933 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17934 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17935 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17936 && inst.cond == COND_ALWAYS
17937 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17938 {
17939 if (rs == NS_QQQ)
17940 {
17941
17942 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17943 N_SUF_32 | N_F64 | N_P8
17944 | N_P16 | N_I_MVE | N_KEY);
17945 if (((et.type == NT_poly) && et.size == 8
17946 && ARM_CPU_IS_ANY (cpu_variant))
17947 || (et.type == NT_integer) || (et.type == NT_float))
17948 goto neon_vmul;
17949 }
17950 else
17951 goto neon_vmul;
17952 }
17953
17954 constraint (rs != NS_QQQ, BAD_FPU);
17955 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17956 N_SU_32 | N_P8 | N_P16 | N_KEY);
17957
17958 /* We are dealing with MVE's vmullt. */
17959 if (et.size == 32
17960 && (inst.operands[0].reg == inst.operands[1].reg
17961 || inst.operands[0].reg == inst.operands[2].reg))
17962 as_tsktsk (BAD_MVE_SRCDEST);
17963
17964 if (inst.cond > COND_ALWAYS)
17965 inst.pred_insn_type = INSIDE_VPT_INSN;
17966 else
17967 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17968
17969 if (et.type == NT_poly)
17970 mve_encode_qqq (neon_logbits (et.size), 64);
17971 else
17972 mve_encode_qqq (et.type == NT_unsigned, et.size);
17973
17974 return;
17975
17976 neon_vmul:
17977 inst.instruction = N_MNEM_vmul;
17978 inst.cond = 0xb;
17979 if (thumb_mode)
17980 inst.pred_insn_type = INSIDE_IT_INSN;
17981 do_neon_mul ();
17982 }
17983
17984 static void
17985 do_mve_vabav (void)
17986 {
17987 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17988
17989 if (rs == NS_NULL)
17990 return;
17991
17992 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17993 return;
17994
17995 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17996 | N_S16 | N_S32 | N_U8 | N_U16
17997 | N_U32);
17998
17999 if (inst.cond > COND_ALWAYS)
18000 inst.pred_insn_type = INSIDE_VPT_INSN;
18001 else
18002 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18003
18004 mve_encode_rqq (et.type == NT_unsigned, et.size);
18005 }
18006
18007 static void
18008 do_mve_vmladav (void)
18009 {
18010 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18011 struct neon_type_el et = neon_check_type (3, rs,
18012 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18013
18014 if (et.type == NT_unsigned
18015 && (inst.instruction == M_MNEM_vmladavx
18016 || inst.instruction == M_MNEM_vmladavax
18017 || inst.instruction == M_MNEM_vmlsdav
18018 || inst.instruction == M_MNEM_vmlsdava
18019 || inst.instruction == M_MNEM_vmlsdavx
18020 || inst.instruction == M_MNEM_vmlsdavax))
18021 first_error (BAD_SIMD_TYPE);
18022
18023 constraint (inst.operands[2].reg > 14,
18024 _("MVE vector register in the range [Q0..Q7] expected"));
18025
18026 if (inst.cond > COND_ALWAYS)
18027 inst.pred_insn_type = INSIDE_VPT_INSN;
18028 else
18029 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18030
18031 if (inst.instruction == M_MNEM_vmlsdav
18032 || inst.instruction == M_MNEM_vmlsdava
18033 || inst.instruction == M_MNEM_vmlsdavx
18034 || inst.instruction == M_MNEM_vmlsdavax)
18035 inst.instruction |= (et.size == 8) << 28;
18036 else
18037 inst.instruction |= (et.size == 8) << 8;
18038
18039 mve_encode_rqq (et.type == NT_unsigned, 64);
18040 inst.instruction |= (et.size == 32) << 16;
18041 }
18042
18043 static void
18044 do_mve_vmlaldav (void)
18045 {
18046 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18047 struct neon_type_el et
18048 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18049 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18050
18051 if (et.type == NT_unsigned
18052 && (inst.instruction == M_MNEM_vmlsldav
18053 || inst.instruction == M_MNEM_vmlsldava
18054 || inst.instruction == M_MNEM_vmlsldavx
18055 || inst.instruction == M_MNEM_vmlsldavax))
18056 first_error (BAD_SIMD_TYPE);
18057
18058 if (inst.cond > COND_ALWAYS)
18059 inst.pred_insn_type = INSIDE_VPT_INSN;
18060 else
18061 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18062
18063 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18064 }
18065
18066 static void
18067 do_mve_vrmlaldavh (void)
18068 {
18069 struct neon_type_el et;
18070 if (inst.instruction == M_MNEM_vrmlsldavh
18071 || inst.instruction == M_MNEM_vrmlsldavha
18072 || inst.instruction == M_MNEM_vrmlsldavhx
18073 || inst.instruction == M_MNEM_vrmlsldavhax)
18074 {
18075 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18076 if (inst.operands[1].reg == REG_SP)
18077 as_tsktsk (MVE_BAD_SP);
18078 }
18079 else
18080 {
18081 if (inst.instruction == M_MNEM_vrmlaldavhx
18082 || inst.instruction == M_MNEM_vrmlaldavhax)
18083 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18084 else
18085 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18086 N_U32 | N_S32 | N_KEY);
18087 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18088 with vmax/min instructions, making the use of SP in assembly really
18089 nonsensical, so instead of issuing a warning like we do for other uses
18090 of SP for the odd register operand we error out. */
18091 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18092 }
18093
18094 /* Make sure we still check the second operand is an odd one and that PC is
18095 disallowed. This because we are parsing for any GPR operand, to be able
18096 to distinguish between giving a warning or an error for SP as described
18097 above. */
18098 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18099 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18100
18101 if (inst.cond > COND_ALWAYS)
18102 inst.pred_insn_type = INSIDE_VPT_INSN;
18103 else
18104 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18105
18106 mve_encode_rrqq (et.type == NT_unsigned, 0);
18107 }
18108
18109
18110 static void
18111 do_mve_vmaxnmv (void)
18112 {
18113 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18114 struct neon_type_el et
18115 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18116
18117 if (inst.cond > COND_ALWAYS)
18118 inst.pred_insn_type = INSIDE_VPT_INSN;
18119 else
18120 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18121
18122 if (inst.operands[0].reg == REG_SP)
18123 as_tsktsk (MVE_BAD_SP);
18124 else if (inst.operands[0].reg == REG_PC)
18125 as_tsktsk (MVE_BAD_PC);
18126
18127 mve_encode_rq (et.size == 16, 64);
18128 }
18129
18130 static void
18131 do_mve_vmaxv (void)
18132 {
18133 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18134 struct neon_type_el et;
18135
18136 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18137 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18138 else
18139 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18140
18141 if (inst.cond > COND_ALWAYS)
18142 inst.pred_insn_type = INSIDE_VPT_INSN;
18143 else
18144 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18145
18146 if (inst.operands[0].reg == REG_SP)
18147 as_tsktsk (MVE_BAD_SP);
18148 else if (inst.operands[0].reg == REG_PC)
18149 as_tsktsk (MVE_BAD_PC);
18150
18151 mve_encode_rq (et.type == NT_unsigned, et.size);
18152 }
18153
18154
18155 static void
18156 do_neon_qrdmlah (void)
18157 {
18158 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18159 return;
18160 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18161 {
18162 /* Check we're on the correct architecture. */
18163 if (!mark_feature_used (&fpu_neon_ext_armv8))
18164 inst.error
18165 = _("instruction form not available on this architecture.");
18166 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18167 {
18168 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18169 record_feature_use (&fpu_neon_ext_v8_1);
18170 }
18171 if (inst.operands[2].isscalar)
18172 {
18173 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18174 struct neon_type_el et = neon_check_type (3, rs,
18175 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18176 NEON_ENCODE (SCALAR, inst);
18177 neon_mul_mac (et, neon_quad (rs));
18178 }
18179 else
18180 {
18181 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18182 struct neon_type_el et = neon_check_type (3, rs,
18183 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18184 NEON_ENCODE (INTEGER, inst);
18185 /* The U bit (rounding) comes from bit mask. */
18186 neon_three_same (neon_quad (rs), 0, et.size);
18187 }
18188 }
18189 else
18190 {
18191 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18192 struct neon_type_el et
18193 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18194
18195 NEON_ENCODE (INTEGER, inst);
18196 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18197 }
18198 }
18199
18200 static void
18201 do_neon_fcmp_absolute (void)
18202 {
18203 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18204 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18205 N_F_16_32 | N_KEY);
18206 /* Size field comes from bit mask. */
18207 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18208 }
18209
18210 static void
18211 do_neon_fcmp_absolute_inv (void)
18212 {
18213 neon_exchange_operands ();
18214 do_neon_fcmp_absolute ();
18215 }
18216
18217 static void
18218 do_neon_step (void)
18219 {
18220 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18221 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18222 N_F_16_32 | N_KEY);
18223 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18224 }
18225
18226 static void
18227 do_neon_abs_neg (void)
18228 {
18229 enum neon_shape rs;
18230 struct neon_type_el et;
18231
18232 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18233 return;
18234
18235 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18236 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18237
18238 if (!check_simd_pred_availability (et.type == NT_float,
18239 NEON_CHECK_ARCH | NEON_CHECK_CC))
18240 return;
18241
18242 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18243 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18244 inst.instruction |= LOW4 (inst.operands[1].reg);
18245 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18246 inst.instruction |= neon_quad (rs) << 6;
18247 inst.instruction |= (et.type == NT_float) << 10;
18248 inst.instruction |= neon_logbits (et.size) << 18;
18249
18250 neon_dp_fixup (&inst);
18251 }
18252
18253 static void
18254 do_neon_sli (void)
18255 {
18256 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18257 return;
18258
18259 enum neon_shape rs;
18260 struct neon_type_el et;
18261 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18262 {
18263 rs = neon_select_shape (NS_QQI, NS_NULL);
18264 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18265 }
18266 else
18267 {
18268 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18269 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18270 }
18271
18272
18273 int imm = inst.operands[2].imm;
18274 constraint (imm < 0 || (unsigned)imm >= et.size,
18275 _("immediate out of range for insert"));
18276 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18277 }
18278
18279 static void
18280 do_neon_sri (void)
18281 {
18282 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18283 return;
18284
18285 enum neon_shape rs;
18286 struct neon_type_el et;
18287 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18288 {
18289 rs = neon_select_shape (NS_QQI, NS_NULL);
18290 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18291 }
18292 else
18293 {
18294 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18295 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18296 }
18297
18298 int imm = inst.operands[2].imm;
18299 constraint (imm < 1 || (unsigned)imm > et.size,
18300 _("immediate out of range for insert"));
18301 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18302 }
18303
18304 static void
18305 do_neon_qshlu_imm (void)
18306 {
18307 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18308 return;
18309
18310 enum neon_shape rs;
18311 struct neon_type_el et;
18312 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18313 {
18314 rs = neon_select_shape (NS_QQI, NS_NULL);
18315 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18316 }
18317 else
18318 {
18319 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18320 et = neon_check_type (2, rs, N_EQK | N_UNS,
18321 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18322 }
18323
18324 int imm = inst.operands[2].imm;
18325 constraint (imm < 0 || (unsigned)imm >= et.size,
18326 _("immediate out of range for shift"));
18327 /* Only encodes the 'U present' variant of the instruction.
18328 In this case, signed types have OP (bit 8) set to 0.
18329 Unsigned types have OP set to 1. */
18330 inst.instruction |= (et.type == NT_unsigned) << 8;
18331 /* The rest of the bits are the same as other immediate shifts. */
18332 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18333 }
18334
18335 static void
18336 do_neon_qmovn (void)
18337 {
18338 struct neon_type_el et = neon_check_type (2, NS_DQ,
18339 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18340 /* Saturating move where operands can be signed or unsigned, and the
18341 destination has the same signedness. */
18342 NEON_ENCODE (INTEGER, inst);
18343 if (et.type == NT_unsigned)
18344 inst.instruction |= 0xc0;
18345 else
18346 inst.instruction |= 0x80;
18347 neon_two_same (0, 1, et.size / 2);
18348 }
18349
18350 static void
18351 do_neon_qmovun (void)
18352 {
18353 struct neon_type_el et = neon_check_type (2, NS_DQ,
18354 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18355 /* Saturating move with unsigned results. Operands must be signed. */
18356 NEON_ENCODE (INTEGER, inst);
18357 neon_two_same (0, 1, et.size / 2);
18358 }
18359
18360 static void
18361 do_neon_rshift_sat_narrow (void)
18362 {
18363 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18364 or unsigned. If operands are unsigned, results must also be unsigned. */
18365 struct neon_type_el et = neon_check_type (2, NS_DQI,
18366 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18367 int imm = inst.operands[2].imm;
18368 /* This gets the bounds check, size encoding and immediate bits calculation
18369 right. */
18370 et.size /= 2;
18371
18372 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18373 VQMOVN.I<size> <Dd>, <Qm>. */
18374 if (imm == 0)
18375 {
18376 inst.operands[2].present = 0;
18377 inst.instruction = N_MNEM_vqmovn;
18378 do_neon_qmovn ();
18379 return;
18380 }
18381
18382 constraint (imm < 1 || (unsigned)imm > et.size,
18383 _("immediate out of range"));
18384 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18385 }
18386
18387 static void
18388 do_neon_rshift_sat_narrow_u (void)
18389 {
18390 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18391 or unsigned. If operands are unsigned, results must also be unsigned. */
18392 struct neon_type_el et = neon_check_type (2, NS_DQI,
18393 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18394 int imm = inst.operands[2].imm;
18395 /* This gets the bounds check, size encoding and immediate bits calculation
18396 right. */
18397 et.size /= 2;
18398
18399 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18400 VQMOVUN.I<size> <Dd>, <Qm>. */
18401 if (imm == 0)
18402 {
18403 inst.operands[2].present = 0;
18404 inst.instruction = N_MNEM_vqmovun;
18405 do_neon_qmovun ();
18406 return;
18407 }
18408
18409 constraint (imm < 1 || (unsigned)imm > et.size,
18410 _("immediate out of range"));
18411 /* FIXME: The manual is kind of unclear about what value U should have in
18412 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18413 must be 1. */
18414 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18415 }
18416
18417 static void
18418 do_neon_movn (void)
18419 {
18420 struct neon_type_el et = neon_check_type (2, NS_DQ,
18421 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18422 NEON_ENCODE (INTEGER, inst);
18423 neon_two_same (0, 1, et.size / 2);
18424 }
18425
18426 static void
18427 do_neon_rshift_narrow (void)
18428 {
18429 struct neon_type_el et = neon_check_type (2, NS_DQI,
18430 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18431 int imm = inst.operands[2].imm;
18432 /* This gets the bounds check, size encoding and immediate bits calculation
18433 right. */
18434 et.size /= 2;
18435
18436 /* If immediate is zero then we are a pseudo-instruction for
18437 VMOVN.I<size> <Dd>, <Qm> */
18438 if (imm == 0)
18439 {
18440 inst.operands[2].present = 0;
18441 inst.instruction = N_MNEM_vmovn;
18442 do_neon_movn ();
18443 return;
18444 }
18445
18446 constraint (imm < 1 || (unsigned)imm > et.size,
18447 _("immediate out of range for narrowing operation"));
18448 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18449 }
18450
18451 static void
18452 do_neon_shll (void)
18453 {
18454 /* FIXME: Type checking when lengthening. */
18455 struct neon_type_el et = neon_check_type (2, NS_QDI,
18456 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18457 unsigned imm = inst.operands[2].imm;
18458
18459 if (imm == et.size)
18460 {
18461 /* Maximum shift variant. */
18462 NEON_ENCODE (INTEGER, inst);
18463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18465 inst.instruction |= LOW4 (inst.operands[1].reg);
18466 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18467 inst.instruction |= neon_logbits (et.size) << 18;
18468
18469 neon_dp_fixup (&inst);
18470 }
18471 else
18472 {
18473 /* A more-specific type check for non-max versions. */
18474 et = neon_check_type (2, NS_QDI,
18475 N_EQK | N_DBL, N_SU_32 | N_KEY);
18476 NEON_ENCODE (IMMED, inst);
18477 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18478 }
18479 }
18480
18481 /* Check the various types for the VCVT instruction, and return which version
18482 the current instruction is. */
18483
18484 #define CVT_FLAVOUR_VAR \
18485 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18486 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18487 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18488 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18489 /* Half-precision conversions. */ \
18490 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18491 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18492 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18493 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18494 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18495 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18496 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18497 Compared with single/double precision variants, only the co-processor \
18498 field is different, so the encoding flow is reused here. */ \
18499 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18500 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18501 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18502 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18503 /* VFP instructions. */ \
18504 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18505 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18506 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18507 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18508 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18509 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18510 /* VFP instructions with bitshift. */ \
18511 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18512 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18513 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18514 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18515 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18516 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18517 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18518 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18519
18520 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18521 neon_cvt_flavour_##C,
18522
18523 /* The different types of conversions we can do. */
18524 enum neon_cvt_flavour
18525 {
18526 CVT_FLAVOUR_VAR
18527 neon_cvt_flavour_invalid,
18528 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18529 };
18530
18531 #undef CVT_VAR
18532
18533 static enum neon_cvt_flavour
18534 get_neon_cvt_flavour (enum neon_shape rs)
18535 {
18536 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18537 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18538 if (et.type != NT_invtype) \
18539 { \
18540 inst.error = NULL; \
18541 return (neon_cvt_flavour_##C); \
18542 }
18543
18544 struct neon_type_el et;
18545 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18546 || rs == NS_FF) ? N_VFP : 0;
18547 /* The instruction versions which take an immediate take one register
18548 argument, which is extended to the width of the full register. Thus the
18549 "source" and "destination" registers must have the same width. Hack that
18550 here by making the size equal to the key (wider, in this case) operand. */
18551 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18552
18553 CVT_FLAVOUR_VAR;
18554
18555 return neon_cvt_flavour_invalid;
18556 #undef CVT_VAR
18557 }
18558
18559 enum neon_cvt_mode
18560 {
18561 neon_cvt_mode_a,
18562 neon_cvt_mode_n,
18563 neon_cvt_mode_p,
18564 neon_cvt_mode_m,
18565 neon_cvt_mode_z,
18566 neon_cvt_mode_x,
18567 neon_cvt_mode_r
18568 };
18569
18570 /* Neon-syntax VFP conversions. */
18571
18572 static void
18573 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18574 {
18575 const char *opname = 0;
18576
18577 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18578 || rs == NS_FHI || rs == NS_HFI)
18579 {
18580 /* Conversions with immediate bitshift. */
18581 const char *enc[] =
18582 {
18583 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18584 CVT_FLAVOUR_VAR
18585 NULL
18586 #undef CVT_VAR
18587 };
18588
18589 if (flavour < (int) ARRAY_SIZE (enc))
18590 {
18591 opname = enc[flavour];
18592 constraint (inst.operands[0].reg != inst.operands[1].reg,
18593 _("operands 0 and 1 must be the same register"));
18594 inst.operands[1] = inst.operands[2];
18595 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18596 }
18597 }
18598 else
18599 {
18600 /* Conversions without bitshift. */
18601 const char *enc[] =
18602 {
18603 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18604 CVT_FLAVOUR_VAR
18605 NULL
18606 #undef CVT_VAR
18607 };
18608
18609 if (flavour < (int) ARRAY_SIZE (enc))
18610 opname = enc[flavour];
18611 }
18612
18613 if (opname)
18614 do_vfp_nsyn_opcode (opname);
18615
18616 /* ARMv8.2 fp16 VCVT instruction. */
18617 if (flavour == neon_cvt_flavour_s32_f16
18618 || flavour == neon_cvt_flavour_u32_f16
18619 || flavour == neon_cvt_flavour_f16_u32
18620 || flavour == neon_cvt_flavour_f16_s32)
18621 do_scalar_fp16_v82_encode ();
18622 }
18623
18624 static void
18625 do_vfp_nsyn_cvtz (void)
18626 {
18627 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18628 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18629 const char *enc[] =
18630 {
18631 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18632 CVT_FLAVOUR_VAR
18633 NULL
18634 #undef CVT_VAR
18635 };
18636
18637 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18638 do_vfp_nsyn_opcode (enc[flavour]);
18639 }
18640
18641 static void
18642 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18643 enum neon_cvt_mode mode)
18644 {
18645 int sz, op;
18646 int rm;
18647
18648 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18649 D register operands. */
18650 if (flavour == neon_cvt_flavour_s32_f64
18651 || flavour == neon_cvt_flavour_u32_f64)
18652 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18653 _(BAD_FPU));
18654
18655 if (flavour == neon_cvt_flavour_s32_f16
18656 || flavour == neon_cvt_flavour_u32_f16)
18657 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18658 _(BAD_FP16));
18659
18660 set_pred_insn_type (OUTSIDE_PRED_INSN);
18661
18662 switch (flavour)
18663 {
18664 case neon_cvt_flavour_s32_f64:
18665 sz = 1;
18666 op = 1;
18667 break;
18668 case neon_cvt_flavour_s32_f32:
18669 sz = 0;
18670 op = 1;
18671 break;
18672 case neon_cvt_flavour_s32_f16:
18673 sz = 0;
18674 op = 1;
18675 break;
18676 case neon_cvt_flavour_u32_f64:
18677 sz = 1;
18678 op = 0;
18679 break;
18680 case neon_cvt_flavour_u32_f32:
18681 sz = 0;
18682 op = 0;
18683 break;
18684 case neon_cvt_flavour_u32_f16:
18685 sz = 0;
18686 op = 0;
18687 break;
18688 default:
18689 first_error (_("invalid instruction shape"));
18690 return;
18691 }
18692
18693 switch (mode)
18694 {
18695 case neon_cvt_mode_a: rm = 0; break;
18696 case neon_cvt_mode_n: rm = 1; break;
18697 case neon_cvt_mode_p: rm = 2; break;
18698 case neon_cvt_mode_m: rm = 3; break;
18699 default: first_error (_("invalid rounding mode")); return;
18700 }
18701
18702 NEON_ENCODE (FPV8, inst);
18703 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18704 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18705 inst.instruction |= sz << 8;
18706
18707 /* ARMv8.2 fp16 VCVT instruction. */
18708 if (flavour == neon_cvt_flavour_s32_f16
18709 ||flavour == neon_cvt_flavour_u32_f16)
18710 do_scalar_fp16_v82_encode ();
18711 inst.instruction |= op << 7;
18712 inst.instruction |= rm << 16;
18713 inst.instruction |= 0xf0000000;
18714 inst.is_neon = TRUE;
18715 }
18716
18717 static void
18718 do_neon_cvt_1 (enum neon_cvt_mode mode)
18719 {
18720 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18721 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18722 NS_FH, NS_HF, NS_FHI, NS_HFI,
18723 NS_NULL);
18724 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18725
18726 if (flavour == neon_cvt_flavour_invalid)
18727 return;
18728
18729 /* PR11109: Handle round-to-zero for VCVT conversions. */
18730 if (mode == neon_cvt_mode_z
18731 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18732 && (flavour == neon_cvt_flavour_s16_f16
18733 || flavour == neon_cvt_flavour_u16_f16
18734 || flavour == neon_cvt_flavour_s32_f32
18735 || flavour == neon_cvt_flavour_u32_f32
18736 || flavour == neon_cvt_flavour_s32_f64
18737 || flavour == neon_cvt_flavour_u32_f64)
18738 && (rs == NS_FD || rs == NS_FF))
18739 {
18740 do_vfp_nsyn_cvtz ();
18741 return;
18742 }
18743
18744 /* ARMv8.2 fp16 VCVT conversions. */
18745 if (mode == neon_cvt_mode_z
18746 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18747 && (flavour == neon_cvt_flavour_s32_f16
18748 || flavour == neon_cvt_flavour_u32_f16)
18749 && (rs == NS_FH))
18750 {
18751 do_vfp_nsyn_cvtz ();
18752 do_scalar_fp16_v82_encode ();
18753 return;
18754 }
18755
18756 /* VFP rather than Neon conversions. */
18757 if (flavour >= neon_cvt_flavour_first_fp)
18758 {
18759 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18760 do_vfp_nsyn_cvt (rs, flavour);
18761 else
18762 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18763
18764 return;
18765 }
18766
18767 switch (rs)
18768 {
18769 case NS_QQI:
18770 if (mode == neon_cvt_mode_z
18771 && (flavour == neon_cvt_flavour_f16_s16
18772 || flavour == neon_cvt_flavour_f16_u16
18773 || flavour == neon_cvt_flavour_s16_f16
18774 || flavour == neon_cvt_flavour_u16_f16
18775 || flavour == neon_cvt_flavour_f32_u32
18776 || flavour == neon_cvt_flavour_f32_s32
18777 || flavour == neon_cvt_flavour_s32_f32
18778 || flavour == neon_cvt_flavour_u32_f32))
18779 {
18780 if (!check_simd_pred_availability (TRUE,
18781 NEON_CHECK_CC | NEON_CHECK_ARCH))
18782 return;
18783 }
18784 else if (mode == neon_cvt_mode_n)
18785 {
18786 /* We are dealing with vcvt with the 'ne' condition. */
18787 inst.cond = 0x1;
18788 inst.instruction = N_MNEM_vcvt;
18789 do_neon_cvt_1 (neon_cvt_mode_z);
18790 return;
18791 }
18792 /* fall through. */
18793 case NS_DDI:
18794 {
18795 unsigned immbits;
18796 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18797 0x0000100, 0x1000100, 0x0, 0x1000000};
18798
18799 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18800 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18801 return;
18802
18803 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18804 {
18805 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18806 _("immediate value out of range"));
18807 switch (flavour)
18808 {
18809 case neon_cvt_flavour_f16_s16:
18810 case neon_cvt_flavour_f16_u16:
18811 case neon_cvt_flavour_s16_f16:
18812 case neon_cvt_flavour_u16_f16:
18813 constraint (inst.operands[2].imm > 16,
18814 _("immediate value out of range"));
18815 break;
18816 case neon_cvt_flavour_f32_u32:
18817 case neon_cvt_flavour_f32_s32:
18818 case neon_cvt_flavour_s32_f32:
18819 case neon_cvt_flavour_u32_f32:
18820 constraint (inst.operands[2].imm > 32,
18821 _("immediate value out of range"));
18822 break;
18823 default:
18824 inst.error = BAD_FPU;
18825 return;
18826 }
18827 }
18828
18829 /* Fixed-point conversion with #0 immediate is encoded as an
18830 integer conversion. */
18831 if (inst.operands[2].present && inst.operands[2].imm == 0)
18832 goto int_encode;
18833 NEON_ENCODE (IMMED, inst);
18834 if (flavour != neon_cvt_flavour_invalid)
18835 inst.instruction |= enctab[flavour];
18836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18838 inst.instruction |= LOW4 (inst.operands[1].reg);
18839 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18840 inst.instruction |= neon_quad (rs) << 6;
18841 inst.instruction |= 1 << 21;
18842 if (flavour < neon_cvt_flavour_s16_f16)
18843 {
18844 inst.instruction |= 1 << 21;
18845 immbits = 32 - inst.operands[2].imm;
18846 inst.instruction |= immbits << 16;
18847 }
18848 else
18849 {
18850 inst.instruction |= 3 << 20;
18851 immbits = 16 - inst.operands[2].imm;
18852 inst.instruction |= immbits << 16;
18853 inst.instruction &= ~(1 << 9);
18854 }
18855
18856 neon_dp_fixup (&inst);
18857 }
18858 break;
18859
18860 case NS_QQ:
18861 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18862 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18863 && (flavour == neon_cvt_flavour_s16_f16
18864 || flavour == neon_cvt_flavour_u16_f16
18865 || flavour == neon_cvt_flavour_s32_f32
18866 || flavour == neon_cvt_flavour_u32_f32))
18867 {
18868 if (!check_simd_pred_availability (TRUE,
18869 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18870 return;
18871 }
18872 else if (mode == neon_cvt_mode_z
18873 && (flavour == neon_cvt_flavour_f16_s16
18874 || flavour == neon_cvt_flavour_f16_u16
18875 || flavour == neon_cvt_flavour_s16_f16
18876 || flavour == neon_cvt_flavour_u16_f16
18877 || flavour == neon_cvt_flavour_f32_u32
18878 || flavour == neon_cvt_flavour_f32_s32
18879 || flavour == neon_cvt_flavour_s32_f32
18880 || flavour == neon_cvt_flavour_u32_f32))
18881 {
18882 if (!check_simd_pred_availability (TRUE,
18883 NEON_CHECK_CC | NEON_CHECK_ARCH))
18884 return;
18885 }
18886 /* fall through. */
18887 case NS_DD:
18888 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18889 {
18890
18891 NEON_ENCODE (FLOAT, inst);
18892 if (!check_simd_pred_availability (TRUE,
18893 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18894 return;
18895
18896 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18897 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18898 inst.instruction |= LOW4 (inst.operands[1].reg);
18899 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18900 inst.instruction |= neon_quad (rs) << 6;
18901 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18902 || flavour == neon_cvt_flavour_u32_f32) << 7;
18903 inst.instruction |= mode << 8;
18904 if (flavour == neon_cvt_flavour_u16_f16
18905 || flavour == neon_cvt_flavour_s16_f16)
18906 /* Mask off the original size bits and reencode them. */
18907 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18908
18909 if (thumb_mode)
18910 inst.instruction |= 0xfc000000;
18911 else
18912 inst.instruction |= 0xf0000000;
18913 }
18914 else
18915 {
18916 int_encode:
18917 {
18918 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18919 0x100, 0x180, 0x0, 0x080};
18920
18921 NEON_ENCODE (INTEGER, inst);
18922
18923 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18924 {
18925 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18926 return;
18927 }
18928
18929 if (flavour != neon_cvt_flavour_invalid)
18930 inst.instruction |= enctab[flavour];
18931
18932 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18933 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18934 inst.instruction |= LOW4 (inst.operands[1].reg);
18935 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18936 inst.instruction |= neon_quad (rs) << 6;
18937 if (flavour >= neon_cvt_flavour_s16_f16
18938 && flavour <= neon_cvt_flavour_f16_u16)
18939 /* Half precision. */
18940 inst.instruction |= 1 << 18;
18941 else
18942 inst.instruction |= 2 << 18;
18943
18944 neon_dp_fixup (&inst);
18945 }
18946 }
18947 break;
18948
18949 /* Half-precision conversions for Advanced SIMD -- neon. */
18950 case NS_QD:
18951 case NS_DQ:
18952 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18953 return;
18954
18955 if ((rs == NS_DQ)
18956 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18957 {
18958 as_bad (_("operand size must match register width"));
18959 break;
18960 }
18961
18962 if ((rs == NS_QD)
18963 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18964 {
18965 as_bad (_("operand size must match register width"));
18966 break;
18967 }
18968
18969 if (rs == NS_DQ)
18970 inst.instruction = 0x3b60600;
18971 else
18972 inst.instruction = 0x3b60700;
18973
18974 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18975 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18976 inst.instruction |= LOW4 (inst.operands[1].reg);
18977 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18978 neon_dp_fixup (&inst);
18979 break;
18980
18981 default:
18982 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18983 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18984 do_vfp_nsyn_cvt (rs, flavour);
18985 else
18986 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18987 }
18988 }
18989
18990 static void
18991 do_neon_cvtr (void)
18992 {
18993 do_neon_cvt_1 (neon_cvt_mode_x);
18994 }
18995
18996 static void
18997 do_neon_cvt (void)
18998 {
18999 do_neon_cvt_1 (neon_cvt_mode_z);
19000 }
19001
19002 static void
19003 do_neon_cvta (void)
19004 {
19005 do_neon_cvt_1 (neon_cvt_mode_a);
19006 }
19007
19008 static void
19009 do_neon_cvtn (void)
19010 {
19011 do_neon_cvt_1 (neon_cvt_mode_n);
19012 }
19013
19014 static void
19015 do_neon_cvtp (void)
19016 {
19017 do_neon_cvt_1 (neon_cvt_mode_p);
19018 }
19019
19020 static void
19021 do_neon_cvtm (void)
19022 {
19023 do_neon_cvt_1 (neon_cvt_mode_m);
19024 }
19025
19026 static void
19027 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19028 {
19029 if (is_double)
19030 mark_feature_used (&fpu_vfp_ext_armv8);
19031
19032 encode_arm_vfp_reg (inst.operands[0].reg,
19033 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19034 encode_arm_vfp_reg (inst.operands[1].reg,
19035 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19036 inst.instruction |= to ? 0x10000 : 0;
19037 inst.instruction |= t ? 0x80 : 0;
19038 inst.instruction |= is_double ? 0x100 : 0;
19039 do_vfp_cond_or_thumb ();
19040 }
19041
19042 static void
19043 do_neon_cvttb_1 (bfd_boolean t)
19044 {
19045 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19046 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19047
19048 if (rs == NS_NULL)
19049 return;
19050 else if (rs == NS_QQ || rs == NS_QQI)
19051 {
19052 int single_to_half = 0;
19053 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19054 return;
19055
19056 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19057
19058 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19059 && (flavour == neon_cvt_flavour_u16_f16
19060 || flavour == neon_cvt_flavour_s16_f16
19061 || flavour == neon_cvt_flavour_f16_s16
19062 || flavour == neon_cvt_flavour_f16_u16
19063 || flavour == neon_cvt_flavour_u32_f32
19064 || flavour == neon_cvt_flavour_s32_f32
19065 || flavour == neon_cvt_flavour_f32_s32
19066 || flavour == neon_cvt_flavour_f32_u32))
19067 {
19068 inst.cond = 0xf;
19069 inst.instruction = N_MNEM_vcvt;
19070 set_pred_insn_type (INSIDE_VPT_INSN);
19071 do_neon_cvt_1 (neon_cvt_mode_z);
19072 return;
19073 }
19074 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19075 single_to_half = 1;
19076 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19077 {
19078 first_error (BAD_FPU);
19079 return;
19080 }
19081
19082 inst.instruction = 0xee3f0e01;
19083 inst.instruction |= single_to_half << 28;
19084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19085 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19086 inst.instruction |= t << 12;
19087 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19088 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19089 inst.is_neon = 1;
19090 }
19091 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19092 {
19093 inst.error = NULL;
19094 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19095 }
19096 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19097 {
19098 inst.error = NULL;
19099 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19100 }
19101 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19102 {
19103 /* The VCVTB and VCVTT instructions with D-register operands
19104 don't work for SP only targets. */
19105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19106 _(BAD_FPU));
19107
19108 inst.error = NULL;
19109 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19110 }
19111 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19112 {
19113 /* The VCVTB and VCVTT instructions with D-register operands
19114 don't work for SP only targets. */
19115 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19116 _(BAD_FPU));
19117
19118 inst.error = NULL;
19119 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19120 }
19121 else
19122 return;
19123 }
19124
19125 static void
19126 do_neon_cvtb (void)
19127 {
19128 do_neon_cvttb_1 (FALSE);
19129 }
19130
19131
19132 static void
19133 do_neon_cvtt (void)
19134 {
19135 do_neon_cvttb_1 (TRUE);
19136 }
19137
19138 static void
19139 neon_move_immediate (void)
19140 {
19141 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19142 struct neon_type_el et = neon_check_type (2, rs,
19143 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19144 unsigned immlo, immhi = 0, immbits;
19145 int op, cmode, float_p;
19146
19147 constraint (et.type == NT_invtype,
19148 _("operand size must be specified for immediate VMOV"));
19149
19150 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19151 op = (inst.instruction & (1 << 5)) != 0;
19152
19153 immlo = inst.operands[1].imm;
19154 if (inst.operands[1].regisimm)
19155 immhi = inst.operands[1].reg;
19156
19157 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19158 _("immediate has bits set outside the operand size"));
19159
19160 float_p = inst.operands[1].immisfloat;
19161
19162 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19163 et.size, et.type)) == FAIL)
19164 {
19165 /* Invert relevant bits only. */
19166 neon_invert_size (&immlo, &immhi, et.size);
19167 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19168 with one or the other; those cases are caught by
19169 neon_cmode_for_move_imm. */
19170 op = !op;
19171 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19172 &op, et.size, et.type)) == FAIL)
19173 {
19174 first_error (_("immediate out of range"));
19175 return;
19176 }
19177 }
19178
19179 inst.instruction &= ~(1 << 5);
19180 inst.instruction |= op << 5;
19181
19182 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19183 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19184 inst.instruction |= neon_quad (rs) << 6;
19185 inst.instruction |= cmode << 8;
19186
19187 neon_write_immbits (immbits);
19188 }
19189
19190 static void
19191 do_neon_mvn (void)
19192 {
19193 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19194 return;
19195
19196 if (inst.operands[1].isreg)
19197 {
19198 enum neon_shape rs;
19199 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19200 rs = neon_select_shape (NS_QQ, NS_NULL);
19201 else
19202 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19203
19204 NEON_ENCODE (INTEGER, inst);
19205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19207 inst.instruction |= LOW4 (inst.operands[1].reg);
19208 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19209 inst.instruction |= neon_quad (rs) << 6;
19210 }
19211 else
19212 {
19213 NEON_ENCODE (IMMED, inst);
19214 neon_move_immediate ();
19215 }
19216
19217 neon_dp_fixup (&inst);
19218
19219 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19220 {
19221 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19222 constraint ((inst.instruction & 0xd00) == 0xd00,
19223 _("immediate value out of range"));
19224 }
19225 }
19226
19227 /* Encode instructions of form:
19228
19229 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19230 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19231
19232 static void
19233 neon_mixed_length (struct neon_type_el et, unsigned size)
19234 {
19235 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19236 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19237 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19238 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19239 inst.instruction |= LOW4 (inst.operands[2].reg);
19240 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19241 inst.instruction |= (et.type == NT_unsigned) << 24;
19242 inst.instruction |= neon_logbits (size) << 20;
19243
19244 neon_dp_fixup (&inst);
19245 }
19246
19247 static void
19248 do_neon_dyadic_long (void)
19249 {
19250 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19251 if (rs == NS_QDD)
19252 {
19253 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19254 return;
19255
19256 NEON_ENCODE (INTEGER, inst);
19257 /* FIXME: Type checking for lengthening op. */
19258 struct neon_type_el et = neon_check_type (3, NS_QDD,
19259 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19260 neon_mixed_length (et, et.size);
19261 }
19262 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19263 && (inst.cond == 0xf || inst.cond == 0x10))
19264 {
19265 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19266 in an IT block with le/lt conditions. */
19267
19268 if (inst.cond == 0xf)
19269 inst.cond = 0xb;
19270 else if (inst.cond == 0x10)
19271 inst.cond = 0xd;
19272
19273 inst.pred_insn_type = INSIDE_IT_INSN;
19274
19275 if (inst.instruction == N_MNEM_vaddl)
19276 {
19277 inst.instruction = N_MNEM_vadd;
19278 do_neon_addsub_if_i ();
19279 }
19280 else if (inst.instruction == N_MNEM_vsubl)
19281 {
19282 inst.instruction = N_MNEM_vsub;
19283 do_neon_addsub_if_i ();
19284 }
19285 else if (inst.instruction == N_MNEM_vabdl)
19286 {
19287 inst.instruction = N_MNEM_vabd;
19288 do_neon_dyadic_if_su ();
19289 }
19290 }
19291 else
19292 first_error (BAD_FPU);
19293 }
19294
19295 static void
19296 do_neon_abal (void)
19297 {
19298 struct neon_type_el et = neon_check_type (3, NS_QDD,
19299 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19300 neon_mixed_length (et, et.size);
19301 }
19302
19303 static void
19304 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19305 {
19306 if (inst.operands[2].isscalar)
19307 {
19308 struct neon_type_el et = neon_check_type (3, NS_QDS,
19309 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19310 NEON_ENCODE (SCALAR, inst);
19311 neon_mul_mac (et, et.type == NT_unsigned);
19312 }
19313 else
19314 {
19315 struct neon_type_el et = neon_check_type (3, NS_QDD,
19316 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19317 NEON_ENCODE (INTEGER, inst);
19318 neon_mixed_length (et, et.size);
19319 }
19320 }
19321
19322 static void
19323 do_neon_mac_maybe_scalar_long (void)
19324 {
19325 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19326 }
19327
19328 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19329 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19330
19331 static unsigned
19332 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19333 {
19334 unsigned regno = NEON_SCALAR_REG (scalar);
19335 unsigned elno = NEON_SCALAR_INDEX (scalar);
19336
19337 if (quad_p)
19338 {
19339 if (regno > 7 || elno > 3)
19340 goto bad_scalar;
19341
19342 return ((regno & 0x7)
19343 | ((elno & 0x1) << 3)
19344 | (((elno >> 1) & 0x1) << 5));
19345 }
19346 else
19347 {
19348 if (regno > 15 || elno > 1)
19349 goto bad_scalar;
19350
19351 return (((regno & 0x1) << 5)
19352 | ((regno >> 1) & 0x7)
19353 | ((elno & 0x1) << 3));
19354 }
19355
19356 bad_scalar:
19357 first_error (_("scalar out of range for multiply instruction"));
19358 return 0;
19359 }
19360
19361 static void
19362 do_neon_fmac_maybe_scalar_long (int subtype)
19363 {
19364 enum neon_shape rs;
19365 int high8;
19366 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19367 field (bits[21:20]) has different meaning. For scalar index variant, it's
19368 used to differentiate add and subtract, otherwise it's with fixed value
19369 0x2. */
19370 int size = -1;
19371
19372 if (inst.cond != COND_ALWAYS)
19373 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19374 "behaviour is UNPREDICTABLE"));
19375
19376 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19377 _(BAD_FP16));
19378
19379 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19380 _(BAD_FPU));
19381
19382 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19383 be a scalar index register. */
19384 if (inst.operands[2].isscalar)
19385 {
19386 high8 = 0xfe000000;
19387 if (subtype)
19388 size = 16;
19389 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19390 }
19391 else
19392 {
19393 high8 = 0xfc000000;
19394 size = 32;
19395 if (subtype)
19396 inst.instruction |= (0x1 << 23);
19397 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19398 }
19399
19400 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19401
19402 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19403 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19404 so we simply pass -1 as size. */
19405 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19406 neon_three_same (quad_p, 0, size);
19407
19408 /* Undo neon_dp_fixup. Redo the high eight bits. */
19409 inst.instruction &= 0x00ffffff;
19410 inst.instruction |= high8;
19411
19412 #define LOW1(R) ((R) & 0x1)
19413 #define HI4(R) (((R) >> 1) & 0xf)
19414 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19415 whether the instruction is in Q form and whether Vm is a scalar indexed
19416 operand. */
19417 if (inst.operands[2].isscalar)
19418 {
19419 unsigned rm
19420 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19421 inst.instruction &= 0xffffffd0;
19422 inst.instruction |= rm;
19423
19424 if (!quad_p)
19425 {
19426 /* Redo Rn as well. */
19427 inst.instruction &= 0xfff0ff7f;
19428 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19429 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19430 }
19431 }
19432 else if (!quad_p)
19433 {
19434 /* Redo Rn and Rm. */
19435 inst.instruction &= 0xfff0ff50;
19436 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19437 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19438 inst.instruction |= HI4 (inst.operands[2].reg);
19439 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19440 }
19441 }
19442
19443 static void
19444 do_neon_vfmal (void)
19445 {
19446 return do_neon_fmac_maybe_scalar_long (0);
19447 }
19448
19449 static void
19450 do_neon_vfmsl (void)
19451 {
19452 return do_neon_fmac_maybe_scalar_long (1);
19453 }
19454
19455 static void
19456 do_neon_dyadic_wide (void)
19457 {
19458 struct neon_type_el et = neon_check_type (3, NS_QQD,
19459 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19460 neon_mixed_length (et, et.size);
19461 }
19462
19463 static void
19464 do_neon_dyadic_narrow (void)
19465 {
19466 struct neon_type_el et = neon_check_type (3, NS_QDD,
19467 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19468 /* Operand sign is unimportant, and the U bit is part of the opcode,
19469 so force the operand type to integer. */
19470 et.type = NT_integer;
19471 neon_mixed_length (et, et.size / 2);
19472 }
19473
19474 static void
19475 do_neon_mul_sat_scalar_long (void)
19476 {
19477 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19478 }
19479
19480 static void
19481 do_neon_vmull (void)
19482 {
19483 if (inst.operands[2].isscalar)
19484 do_neon_mac_maybe_scalar_long ();
19485 else
19486 {
19487 struct neon_type_el et = neon_check_type (3, NS_QDD,
19488 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19489
19490 if (et.type == NT_poly)
19491 NEON_ENCODE (POLY, inst);
19492 else
19493 NEON_ENCODE (INTEGER, inst);
19494
19495 /* For polynomial encoding the U bit must be zero, and the size must
19496 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19497 obviously, as 0b10). */
19498 if (et.size == 64)
19499 {
19500 /* Check we're on the correct architecture. */
19501 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19502 inst.error =
19503 _("Instruction form not available on this architecture.");
19504
19505 et.size = 32;
19506 }
19507
19508 neon_mixed_length (et, et.size);
19509 }
19510 }
19511
19512 static void
19513 do_neon_ext (void)
19514 {
19515 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19516 struct neon_type_el et = neon_check_type (3, rs,
19517 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19518 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19519
19520 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19521 _("shift out of range"));
19522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19524 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19525 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19526 inst.instruction |= LOW4 (inst.operands[2].reg);
19527 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19528 inst.instruction |= neon_quad (rs) << 6;
19529 inst.instruction |= imm << 8;
19530
19531 neon_dp_fixup (&inst);
19532 }
19533
19534 static void
19535 do_neon_rev (void)
19536 {
19537 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19538 return;
19539
19540 enum neon_shape rs;
19541 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19542 rs = neon_select_shape (NS_QQ, NS_NULL);
19543 else
19544 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19545
19546 struct neon_type_el et = neon_check_type (2, rs,
19547 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19548
19549 unsigned op = (inst.instruction >> 7) & 3;
19550 /* N (width of reversed regions) is encoded as part of the bitmask. We
19551 extract it here to check the elements to be reversed are smaller.
19552 Otherwise we'd get a reserved instruction. */
19553 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19554
19555 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19556 && inst.operands[0].reg == inst.operands[1].reg)
19557 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19558 " operands makes instruction UNPREDICTABLE"));
19559
19560 gas_assert (elsize != 0);
19561 constraint (et.size >= elsize,
19562 _("elements must be smaller than reversal region"));
19563 neon_two_same (neon_quad (rs), 1, et.size);
19564 }
19565
19566 static void
19567 do_neon_dup (void)
19568 {
19569 if (inst.operands[1].isscalar)
19570 {
19571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19572 BAD_FPU);
19573 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19574 struct neon_type_el et = neon_check_type (2, rs,
19575 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19576 unsigned sizebits = et.size >> 3;
19577 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19578 int logsize = neon_logbits (et.size);
19579 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19580
19581 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19582 return;
19583
19584 NEON_ENCODE (SCALAR, inst);
19585 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19586 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19587 inst.instruction |= LOW4 (dm);
19588 inst.instruction |= HI1 (dm) << 5;
19589 inst.instruction |= neon_quad (rs) << 6;
19590 inst.instruction |= x << 17;
19591 inst.instruction |= sizebits << 16;
19592
19593 neon_dp_fixup (&inst);
19594 }
19595 else
19596 {
19597 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19598 struct neon_type_el et = neon_check_type (2, rs,
19599 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19600 if (rs == NS_QR)
19601 {
19602 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19603 return;
19604 }
19605 else
19606 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19607 BAD_FPU);
19608
19609 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19610 {
19611 if (inst.operands[1].reg == REG_SP)
19612 as_tsktsk (MVE_BAD_SP);
19613 else if (inst.operands[1].reg == REG_PC)
19614 as_tsktsk (MVE_BAD_PC);
19615 }
19616
19617 /* Duplicate ARM register to lanes of vector. */
19618 NEON_ENCODE (ARMREG, inst);
19619 switch (et.size)
19620 {
19621 case 8: inst.instruction |= 0x400000; break;
19622 case 16: inst.instruction |= 0x000020; break;
19623 case 32: inst.instruction |= 0x000000; break;
19624 default: break;
19625 }
19626 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19627 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19628 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19629 inst.instruction |= neon_quad (rs) << 21;
19630 /* The encoding for this instruction is identical for the ARM and Thumb
19631 variants, except for the condition field. */
19632 do_vfp_cond_or_thumb ();
19633 }
19634 }
19635
19636 static void
19637 do_mve_mov (int toQ)
19638 {
19639 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19640 return;
19641 if (inst.cond > COND_ALWAYS)
19642 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19643
19644 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19645 if (toQ)
19646 {
19647 Q0 = 0;
19648 Q1 = 1;
19649 Rt = 2;
19650 Rt2 = 3;
19651 }
19652
19653 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19654 _("Index one must be [2,3] and index two must be two less than"
19655 " index one."));
19656 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19657 _("General purpose registers may not be the same"));
19658 constraint (inst.operands[Rt].reg == REG_SP
19659 || inst.operands[Rt2].reg == REG_SP,
19660 BAD_SP);
19661 constraint (inst.operands[Rt].reg == REG_PC
19662 || inst.operands[Rt2].reg == REG_PC,
19663 BAD_PC);
19664
19665 inst.instruction = 0xec000f00;
19666 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19667 inst.instruction |= !!toQ << 20;
19668 inst.instruction |= inst.operands[Rt2].reg << 16;
19669 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19670 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19671 inst.instruction |= inst.operands[Rt].reg;
19672 }
19673
19674 static void
19675 do_mve_movn (void)
19676 {
19677 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19678 return;
19679
19680 if (inst.cond > COND_ALWAYS)
19681 inst.pred_insn_type = INSIDE_VPT_INSN;
19682 else
19683 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19684
19685 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19686 | N_KEY);
19687
19688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19689 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19690 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19692 inst.instruction |= LOW4 (inst.operands[1].reg);
19693 inst.is_neon = 1;
19694
19695 }
19696
19697 /* VMOV has particularly many variations. It can be one of:
19698 0. VMOV<c><q> <Qd>, <Qm>
19699 1. VMOV<c><q> <Dd>, <Dm>
19700 (Register operations, which are VORR with Rm = Rn.)
19701 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19702 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19703 (Immediate loads.)
19704 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19705 (ARM register to scalar.)
19706 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19707 (Two ARM registers to vector.)
19708 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19709 (Scalar to ARM register.)
19710 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19711 (Vector to two ARM registers.)
19712 8. VMOV.F32 <Sd>, <Sm>
19713 9. VMOV.F64 <Dd>, <Dm>
19714 (VFP register moves.)
19715 10. VMOV.F32 <Sd>, #imm
19716 11. VMOV.F64 <Dd>, #imm
19717 (VFP float immediate load.)
19718 12. VMOV <Rd>, <Sm>
19719 (VFP single to ARM reg.)
19720 13. VMOV <Sd>, <Rm>
19721 (ARM reg to VFP single.)
19722 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19723 (Two ARM regs to two VFP singles.)
19724 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19725 (Two VFP singles to two ARM regs.)
19726 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19727 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19728 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19729 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19730
19731 These cases can be disambiguated using neon_select_shape, except cases 1/9
19732 and 3/11 which depend on the operand type too.
19733
19734 All the encoded bits are hardcoded by this function.
19735
19736 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19737 Cases 5, 7 may be used with VFPv2 and above.
19738
19739 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19740 can specify a type where it doesn't make sense to, and is ignored). */
19741
19742 static void
19743 do_neon_mov (void)
19744 {
19745 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19746 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19747 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19748 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19749 NS_NULL);
19750 struct neon_type_el et;
19751 const char *ldconst = 0;
19752
19753 switch (rs)
19754 {
19755 case NS_DD: /* case 1/9. */
19756 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19757 /* It is not an error here if no type is given. */
19758 inst.error = NULL;
19759 if (et.type == NT_float && et.size == 64)
19760 {
19761 do_vfp_nsyn_opcode ("fcpyd");
19762 break;
19763 }
19764 /* fall through. */
19765
19766 case NS_QQ: /* case 0/1. */
19767 {
19768 if (!check_simd_pred_availability (FALSE,
19769 NEON_CHECK_CC | NEON_CHECK_ARCH))
19770 return;
19771 /* The architecture manual I have doesn't explicitly state which
19772 value the U bit should have for register->register moves, but
19773 the equivalent VORR instruction has U = 0, so do that. */
19774 inst.instruction = 0x0200110;
19775 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19776 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19777 inst.instruction |= LOW4 (inst.operands[1].reg);
19778 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19779 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19780 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19781 inst.instruction |= neon_quad (rs) << 6;
19782
19783 neon_dp_fixup (&inst);
19784 }
19785 break;
19786
19787 case NS_DI: /* case 3/11. */
19788 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19789 inst.error = NULL;
19790 if (et.type == NT_float && et.size == 64)
19791 {
19792 /* case 11 (fconstd). */
19793 ldconst = "fconstd";
19794 goto encode_fconstd;
19795 }
19796 /* fall through. */
19797
19798 case NS_QI: /* case 2/3. */
19799 if (!check_simd_pred_availability (FALSE,
19800 NEON_CHECK_CC | NEON_CHECK_ARCH))
19801 return;
19802 inst.instruction = 0x0800010;
19803 neon_move_immediate ();
19804 neon_dp_fixup (&inst);
19805 break;
19806
19807 case NS_SR: /* case 4. */
19808 {
19809 unsigned bcdebits = 0;
19810 int logsize;
19811 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19812 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19813
19814 /* .<size> is optional here, defaulting to .32. */
19815 if (inst.vectype.elems == 0
19816 && inst.operands[0].vectype.type == NT_invtype
19817 && inst.operands[1].vectype.type == NT_invtype)
19818 {
19819 inst.vectype.el[0].type = NT_untyped;
19820 inst.vectype.el[0].size = 32;
19821 inst.vectype.elems = 1;
19822 }
19823
19824 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19825 logsize = neon_logbits (et.size);
19826
19827 if (et.size != 32)
19828 {
19829 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19830 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19831 return;
19832 }
19833 else
19834 {
19835 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19836 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19837 _(BAD_FPU));
19838 }
19839
19840 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19841 {
19842 if (inst.operands[1].reg == REG_SP)
19843 as_tsktsk (MVE_BAD_SP);
19844 else if (inst.operands[1].reg == REG_PC)
19845 as_tsktsk (MVE_BAD_PC);
19846 }
19847 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19848
19849 constraint (et.type == NT_invtype, _("bad type for scalar"));
19850 constraint (x >= size / et.size, _("scalar index out of range"));
19851
19852
19853 switch (et.size)
19854 {
19855 case 8: bcdebits = 0x8; break;
19856 case 16: bcdebits = 0x1; break;
19857 case 32: bcdebits = 0x0; break;
19858 default: ;
19859 }
19860
19861 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19862
19863 inst.instruction = 0xe000b10;
19864 do_vfp_cond_or_thumb ();
19865 inst.instruction |= LOW4 (dn) << 16;
19866 inst.instruction |= HI1 (dn) << 7;
19867 inst.instruction |= inst.operands[1].reg << 12;
19868 inst.instruction |= (bcdebits & 3) << 5;
19869 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19870 inst.instruction |= (x >> (3-logsize)) << 16;
19871 }
19872 break;
19873
19874 case NS_DRR: /* case 5 (fmdrr). */
19875 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19876 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19877 _(BAD_FPU));
19878
19879 inst.instruction = 0xc400b10;
19880 do_vfp_cond_or_thumb ();
19881 inst.instruction |= LOW4 (inst.operands[0].reg);
19882 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19883 inst.instruction |= inst.operands[1].reg << 12;
19884 inst.instruction |= inst.operands[2].reg << 16;
19885 break;
19886
19887 case NS_RS: /* case 6. */
19888 {
19889 unsigned logsize;
19890 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19891 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19892 unsigned abcdebits = 0;
19893
19894 /* .<dt> is optional here, defaulting to .32. */
19895 if (inst.vectype.elems == 0
19896 && inst.operands[0].vectype.type == NT_invtype
19897 && inst.operands[1].vectype.type == NT_invtype)
19898 {
19899 inst.vectype.el[0].type = NT_untyped;
19900 inst.vectype.el[0].size = 32;
19901 inst.vectype.elems = 1;
19902 }
19903
19904 et = neon_check_type (2, NS_NULL,
19905 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19906 logsize = neon_logbits (et.size);
19907
19908 if (et.size != 32)
19909 {
19910 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19911 && vfp_or_neon_is_neon (NEON_CHECK_CC
19912 | NEON_CHECK_ARCH) == FAIL)
19913 return;
19914 }
19915 else
19916 {
19917 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19918 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19919 _(BAD_FPU));
19920 }
19921
19922 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19923 {
19924 if (inst.operands[0].reg == REG_SP)
19925 as_tsktsk (MVE_BAD_SP);
19926 else if (inst.operands[0].reg == REG_PC)
19927 as_tsktsk (MVE_BAD_PC);
19928 }
19929
19930 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19931
19932 constraint (et.type == NT_invtype, _("bad type for scalar"));
19933 constraint (x >= size / et.size, _("scalar index out of range"));
19934
19935 switch (et.size)
19936 {
19937 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19938 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19939 case 32: abcdebits = 0x00; break;
19940 default: ;
19941 }
19942
19943 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19944 inst.instruction = 0xe100b10;
19945 do_vfp_cond_or_thumb ();
19946 inst.instruction |= LOW4 (dn) << 16;
19947 inst.instruction |= HI1 (dn) << 7;
19948 inst.instruction |= inst.operands[0].reg << 12;
19949 inst.instruction |= (abcdebits & 3) << 5;
19950 inst.instruction |= (abcdebits >> 2) << 21;
19951 inst.instruction |= (x >> (3-logsize)) << 16;
19952 }
19953 break;
19954
19955 case NS_RRD: /* case 7 (fmrrd). */
19956 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19957 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19958 _(BAD_FPU));
19959
19960 inst.instruction = 0xc500b10;
19961 do_vfp_cond_or_thumb ();
19962 inst.instruction |= inst.operands[0].reg << 12;
19963 inst.instruction |= inst.operands[1].reg << 16;
19964 inst.instruction |= LOW4 (inst.operands[2].reg);
19965 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19966 break;
19967
19968 case NS_FF: /* case 8 (fcpys). */
19969 do_vfp_nsyn_opcode ("fcpys");
19970 break;
19971
19972 case NS_HI:
19973 case NS_FI: /* case 10 (fconsts). */
19974 ldconst = "fconsts";
19975 encode_fconstd:
19976 if (!inst.operands[1].immisfloat)
19977 {
19978 unsigned new_imm;
19979 /* Immediate has to fit in 8 bits so float is enough. */
19980 float imm = (float) inst.operands[1].imm;
19981 memcpy (&new_imm, &imm, sizeof (float));
19982 /* But the assembly may have been written to provide an integer
19983 bit pattern that equates to a float, so check that the
19984 conversion has worked. */
19985 if (is_quarter_float (new_imm))
19986 {
19987 if (is_quarter_float (inst.operands[1].imm))
19988 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19989
19990 inst.operands[1].imm = new_imm;
19991 inst.operands[1].immisfloat = 1;
19992 }
19993 }
19994
19995 if (is_quarter_float (inst.operands[1].imm))
19996 {
19997 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19998 do_vfp_nsyn_opcode (ldconst);
19999
20000 /* ARMv8.2 fp16 vmov.f16 instruction. */
20001 if (rs == NS_HI)
20002 do_scalar_fp16_v82_encode ();
20003 }
20004 else
20005 first_error (_("immediate out of range"));
20006 break;
20007
20008 case NS_RH:
20009 case NS_RF: /* case 12 (fmrs). */
20010 do_vfp_nsyn_opcode ("fmrs");
20011 /* ARMv8.2 fp16 vmov.f16 instruction. */
20012 if (rs == NS_RH)
20013 do_scalar_fp16_v82_encode ();
20014 break;
20015
20016 case NS_HR:
20017 case NS_FR: /* case 13 (fmsr). */
20018 do_vfp_nsyn_opcode ("fmsr");
20019 /* ARMv8.2 fp16 vmov.f16 instruction. */
20020 if (rs == NS_HR)
20021 do_scalar_fp16_v82_encode ();
20022 break;
20023
20024 case NS_RRSS:
20025 do_mve_mov (0);
20026 break;
20027 case NS_SSRR:
20028 do_mve_mov (1);
20029 break;
20030
20031 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20032 (one of which is a list), but we have parsed four. Do some fiddling to
20033 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20034 expect. */
20035 case NS_RRFF: /* case 14 (fmrrs). */
20036 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20037 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20038 _(BAD_FPU));
20039 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20040 _("VFP registers must be adjacent"));
20041 inst.operands[2].imm = 2;
20042 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20043 do_vfp_nsyn_opcode ("fmrrs");
20044 break;
20045
20046 case NS_FFRR: /* case 15 (fmsrr). */
20047 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20048 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20049 _(BAD_FPU));
20050 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20051 _("VFP registers must be adjacent"));
20052 inst.operands[1] = inst.operands[2];
20053 inst.operands[2] = inst.operands[3];
20054 inst.operands[0].imm = 2;
20055 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20056 do_vfp_nsyn_opcode ("fmsrr");
20057 break;
20058
20059 case NS_NULL:
20060 /* neon_select_shape has determined that the instruction
20061 shape is wrong and has already set the error message. */
20062 break;
20063
20064 default:
20065 abort ();
20066 }
20067 }
20068
20069 static void
20070 do_mve_movl (void)
20071 {
20072 if (!(inst.operands[0].present && inst.operands[0].isquad
20073 && inst.operands[1].present && inst.operands[1].isquad
20074 && !inst.operands[2].present))
20075 {
20076 inst.instruction = 0;
20077 inst.cond = 0xb;
20078 if (thumb_mode)
20079 set_pred_insn_type (INSIDE_IT_INSN);
20080 do_neon_mov ();
20081 return;
20082 }
20083
20084 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20085 return;
20086
20087 if (inst.cond != COND_ALWAYS)
20088 inst.pred_insn_type = INSIDE_VPT_INSN;
20089
20090 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20091 | N_S16 | N_U16 | N_KEY);
20092
20093 inst.instruction |= (et.type == NT_unsigned) << 28;
20094 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20095 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20096 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20097 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20098 inst.instruction |= LOW4 (inst.operands[1].reg);
20099 inst.is_neon = 1;
20100 }
20101
20102 static void
20103 do_neon_rshift_round_imm (void)
20104 {
20105 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20106 return;
20107
20108 enum neon_shape rs;
20109 struct neon_type_el et;
20110
20111 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20112 {
20113 rs = neon_select_shape (NS_QQI, NS_NULL);
20114 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20115 }
20116 else
20117 {
20118 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20119 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20120 }
20121 int imm = inst.operands[2].imm;
20122
20123 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20124 if (imm == 0)
20125 {
20126 inst.operands[2].present = 0;
20127 do_neon_mov ();
20128 return;
20129 }
20130
20131 constraint (imm < 1 || (unsigned)imm > et.size,
20132 _("immediate out of range for shift"));
20133 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20134 et.size - imm);
20135 }
20136
20137 static void
20138 do_neon_movhf (void)
20139 {
20140 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20141 constraint (rs != NS_HH, _("invalid suffix"));
20142
20143 if (inst.cond != COND_ALWAYS)
20144 {
20145 if (thumb_mode)
20146 {
20147 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20148 " the behaviour is UNPREDICTABLE"));
20149 }
20150 else
20151 {
20152 inst.error = BAD_COND;
20153 return;
20154 }
20155 }
20156
20157 do_vfp_sp_monadic ();
20158
20159 inst.is_neon = 1;
20160 inst.instruction |= 0xf0000000;
20161 }
20162
20163 static void
20164 do_neon_movl (void)
20165 {
20166 struct neon_type_el et = neon_check_type (2, NS_QD,
20167 N_EQK | N_DBL, N_SU_32 | N_KEY);
20168 unsigned sizebits = et.size >> 3;
20169 inst.instruction |= sizebits << 19;
20170 neon_two_same (0, et.type == NT_unsigned, -1);
20171 }
20172
20173 static void
20174 do_neon_trn (void)
20175 {
20176 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20177 struct neon_type_el et = neon_check_type (2, rs,
20178 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20179 NEON_ENCODE (INTEGER, inst);
20180 neon_two_same (neon_quad (rs), 1, et.size);
20181 }
20182
20183 static void
20184 do_neon_zip_uzp (void)
20185 {
20186 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20187 struct neon_type_el et = neon_check_type (2, rs,
20188 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20189 if (rs == NS_DD && et.size == 32)
20190 {
20191 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20192 inst.instruction = N_MNEM_vtrn;
20193 do_neon_trn ();
20194 return;
20195 }
20196 neon_two_same (neon_quad (rs), 1, et.size);
20197 }
20198
20199 static void
20200 do_neon_sat_abs_neg (void)
20201 {
20202 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20203 return;
20204
20205 enum neon_shape rs;
20206 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20207 rs = neon_select_shape (NS_QQ, NS_NULL);
20208 else
20209 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20210 struct neon_type_el et = neon_check_type (2, rs,
20211 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20212 neon_two_same (neon_quad (rs), 1, et.size);
20213 }
20214
20215 static void
20216 do_neon_pair_long (void)
20217 {
20218 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20219 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20220 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20221 inst.instruction |= (et.type == NT_unsigned) << 7;
20222 neon_two_same (neon_quad (rs), 1, et.size);
20223 }
20224
20225 static void
20226 do_neon_recip_est (void)
20227 {
20228 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20229 struct neon_type_el et = neon_check_type (2, rs,
20230 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20231 inst.instruction |= (et.type == NT_float) << 8;
20232 neon_two_same (neon_quad (rs), 1, et.size);
20233 }
20234
20235 static void
20236 do_neon_cls (void)
20237 {
20238 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20239 return;
20240
20241 enum neon_shape rs;
20242 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20243 rs = neon_select_shape (NS_QQ, NS_NULL);
20244 else
20245 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20246
20247 struct neon_type_el et = neon_check_type (2, rs,
20248 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20249 neon_two_same (neon_quad (rs), 1, et.size);
20250 }
20251
20252 static void
20253 do_neon_clz (void)
20254 {
20255 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20256 return;
20257
20258 enum neon_shape rs;
20259 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20260 rs = neon_select_shape (NS_QQ, NS_NULL);
20261 else
20262 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20263
20264 struct neon_type_el et = neon_check_type (2, rs,
20265 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20266 neon_two_same (neon_quad (rs), 1, et.size);
20267 }
20268
20269 static void
20270 do_neon_cnt (void)
20271 {
20272 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20273 struct neon_type_el et = neon_check_type (2, rs,
20274 N_EQK | N_INT, N_8 | N_KEY);
20275 neon_two_same (neon_quad (rs), 1, et.size);
20276 }
20277
20278 static void
20279 do_neon_swp (void)
20280 {
20281 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20282 neon_two_same (neon_quad (rs), 1, -1);
20283 }
20284
20285 static void
20286 do_neon_tbl_tbx (void)
20287 {
20288 unsigned listlenbits;
20289 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20290
20291 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20292 {
20293 first_error (_("bad list length for table lookup"));
20294 return;
20295 }
20296
20297 listlenbits = inst.operands[1].imm - 1;
20298 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20299 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20300 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20301 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20302 inst.instruction |= LOW4 (inst.operands[2].reg);
20303 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20304 inst.instruction |= listlenbits << 8;
20305
20306 neon_dp_fixup (&inst);
20307 }
20308
20309 static void
20310 do_neon_ldm_stm (void)
20311 {
20312 /* P, U and L bits are part of bitmask. */
20313 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20314 unsigned offsetbits = inst.operands[1].imm * 2;
20315
20316 if (inst.operands[1].issingle)
20317 {
20318 do_vfp_nsyn_ldm_stm (is_dbmode);
20319 return;
20320 }
20321
20322 constraint (is_dbmode && !inst.operands[0].writeback,
20323 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20324
20325 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20326 _("register list must contain at least 1 and at most 16 "
20327 "registers"));
20328
20329 inst.instruction |= inst.operands[0].reg << 16;
20330 inst.instruction |= inst.operands[0].writeback << 21;
20331 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20332 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20333
20334 inst.instruction |= offsetbits;
20335
20336 do_vfp_cond_or_thumb ();
20337 }
20338
20339 static void
20340 do_neon_ldr_str (void)
20341 {
20342 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20343
20344 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20345 And is UNPREDICTABLE in thumb mode. */
20346 if (!is_ldr
20347 && inst.operands[1].reg == REG_PC
20348 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20349 {
20350 if (thumb_mode)
20351 inst.error = _("Use of PC here is UNPREDICTABLE");
20352 else if (warn_on_deprecated)
20353 as_tsktsk (_("Use of PC here is deprecated"));
20354 }
20355
20356 if (inst.operands[0].issingle)
20357 {
20358 if (is_ldr)
20359 do_vfp_nsyn_opcode ("flds");
20360 else
20361 do_vfp_nsyn_opcode ("fsts");
20362
20363 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20364 if (inst.vectype.el[0].size == 16)
20365 do_scalar_fp16_v82_encode ();
20366 }
20367 else
20368 {
20369 if (is_ldr)
20370 do_vfp_nsyn_opcode ("fldd");
20371 else
20372 do_vfp_nsyn_opcode ("fstd");
20373 }
20374 }
20375
20376 static void
20377 do_t_vldr_vstr_sysreg (void)
20378 {
20379 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20380 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20381
20382 /* Use of PC is UNPREDICTABLE. */
20383 if (inst.operands[1].reg == REG_PC)
20384 inst.error = _("Use of PC here is UNPREDICTABLE");
20385
20386 if (inst.operands[1].immisreg)
20387 inst.error = _("instruction does not accept register index");
20388
20389 if (!inst.operands[1].isreg)
20390 inst.error = _("instruction does not accept PC-relative addressing");
20391
20392 if (abs (inst.operands[1].imm) >= (1 << 7))
20393 inst.error = _("immediate value out of range");
20394
20395 inst.instruction = 0xec000f80;
20396 if (is_vldr)
20397 inst.instruction |= 1 << sysreg_vldr_bitno;
20398 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20399 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20400 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20401 }
20402
20403 static void
20404 do_vldr_vstr (void)
20405 {
20406 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20407
20408 /* VLDR/VSTR (System Register). */
20409 if (sysreg_op)
20410 {
20411 if (!mark_feature_used (&arm_ext_v8_1m_main))
20412 as_bad (_("Instruction not permitted on this architecture"));
20413
20414 do_t_vldr_vstr_sysreg ();
20415 }
20416 /* VLDR/VSTR. */
20417 else
20418 {
20419 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20420 as_bad (_("Instruction not permitted on this architecture"));
20421 do_neon_ldr_str ();
20422 }
20423 }
20424
20425 /* "interleave" version also handles non-interleaving register VLD1/VST1
20426 instructions. */
20427
20428 static void
20429 do_neon_ld_st_interleave (void)
20430 {
20431 struct neon_type_el et = neon_check_type (1, NS_NULL,
20432 N_8 | N_16 | N_32 | N_64);
20433 unsigned alignbits = 0;
20434 unsigned idx;
20435 /* The bits in this table go:
20436 0: register stride of one (0) or two (1)
20437 1,2: register list length, minus one (1, 2, 3, 4).
20438 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20439 We use -1 for invalid entries. */
20440 const int typetable[] =
20441 {
20442 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20443 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20444 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20445 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20446 };
20447 int typebits;
20448
20449 if (et.type == NT_invtype)
20450 return;
20451
20452 if (inst.operands[1].immisalign)
20453 switch (inst.operands[1].imm >> 8)
20454 {
20455 case 64: alignbits = 1; break;
20456 case 128:
20457 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20458 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20459 goto bad_alignment;
20460 alignbits = 2;
20461 break;
20462 case 256:
20463 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20464 goto bad_alignment;
20465 alignbits = 3;
20466 break;
20467 default:
20468 bad_alignment:
20469 first_error (_("bad alignment"));
20470 return;
20471 }
20472
20473 inst.instruction |= alignbits << 4;
20474 inst.instruction |= neon_logbits (et.size) << 6;
20475
20476 /* Bits [4:6] of the immediate in a list specifier encode register stride
20477 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20478 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20479 up the right value for "type" in a table based on this value and the given
20480 list style, then stick it back. */
20481 idx = ((inst.operands[0].imm >> 4) & 7)
20482 | (((inst.instruction >> 8) & 3) << 3);
20483
20484 typebits = typetable[idx];
20485
20486 constraint (typebits == -1, _("bad list type for instruction"));
20487 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20488 BAD_EL_TYPE);
20489
20490 inst.instruction &= ~0xf00;
20491 inst.instruction |= typebits << 8;
20492 }
20493
20494 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20495 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20496 otherwise. The variable arguments are a list of pairs of legal (size, align)
20497 values, terminated with -1. */
20498
20499 static int
20500 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20501 {
20502 va_list ap;
20503 int result = FAIL, thissize, thisalign;
20504
20505 if (!inst.operands[1].immisalign)
20506 {
20507 *do_alignment = 0;
20508 return SUCCESS;
20509 }
20510
20511 va_start (ap, do_alignment);
20512
20513 do
20514 {
20515 thissize = va_arg (ap, int);
20516 if (thissize == -1)
20517 break;
20518 thisalign = va_arg (ap, int);
20519
20520 if (size == thissize && align == thisalign)
20521 result = SUCCESS;
20522 }
20523 while (result != SUCCESS);
20524
20525 va_end (ap);
20526
20527 if (result == SUCCESS)
20528 *do_alignment = 1;
20529 else
20530 first_error (_("unsupported alignment for instruction"));
20531
20532 return result;
20533 }
20534
20535 static void
20536 do_neon_ld_st_lane (void)
20537 {
20538 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20539 int align_good, do_alignment = 0;
20540 int logsize = neon_logbits (et.size);
20541 int align = inst.operands[1].imm >> 8;
20542 int n = (inst.instruction >> 8) & 3;
20543 int max_el = 64 / et.size;
20544
20545 if (et.type == NT_invtype)
20546 return;
20547
20548 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20549 _("bad list length"));
20550 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20551 _("scalar index out of range"));
20552 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20553 && et.size == 8,
20554 _("stride of 2 unavailable when element size is 8"));
20555
20556 switch (n)
20557 {
20558 case 0: /* VLD1 / VST1. */
20559 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20560 32, 32, -1);
20561 if (align_good == FAIL)
20562 return;
20563 if (do_alignment)
20564 {
20565 unsigned alignbits = 0;
20566 switch (et.size)
20567 {
20568 case 16: alignbits = 0x1; break;
20569 case 32: alignbits = 0x3; break;
20570 default: ;
20571 }
20572 inst.instruction |= alignbits << 4;
20573 }
20574 break;
20575
20576 case 1: /* VLD2 / VST2. */
20577 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20578 16, 32, 32, 64, -1);
20579 if (align_good == FAIL)
20580 return;
20581 if (do_alignment)
20582 inst.instruction |= 1 << 4;
20583 break;
20584
20585 case 2: /* VLD3 / VST3. */
20586 constraint (inst.operands[1].immisalign,
20587 _("can't use alignment with this instruction"));
20588 break;
20589
20590 case 3: /* VLD4 / VST4. */
20591 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20592 16, 64, 32, 64, 32, 128, -1);
20593 if (align_good == FAIL)
20594 return;
20595 if (do_alignment)
20596 {
20597 unsigned alignbits = 0;
20598 switch (et.size)
20599 {
20600 case 8: alignbits = 0x1; break;
20601 case 16: alignbits = 0x1; break;
20602 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20603 default: ;
20604 }
20605 inst.instruction |= alignbits << 4;
20606 }
20607 break;
20608
20609 default: ;
20610 }
20611
20612 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20613 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20614 inst.instruction |= 1 << (4 + logsize);
20615
20616 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20617 inst.instruction |= logsize << 10;
20618 }
20619
20620 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20621
20622 static void
20623 do_neon_ld_dup (void)
20624 {
20625 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20626 int align_good, do_alignment = 0;
20627
20628 if (et.type == NT_invtype)
20629 return;
20630
20631 switch ((inst.instruction >> 8) & 3)
20632 {
20633 case 0: /* VLD1. */
20634 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20635 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20636 &do_alignment, 16, 16, 32, 32, -1);
20637 if (align_good == FAIL)
20638 return;
20639 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20640 {
20641 case 1: break;
20642 case 2: inst.instruction |= 1 << 5; break;
20643 default: first_error (_("bad list length")); return;
20644 }
20645 inst.instruction |= neon_logbits (et.size) << 6;
20646 break;
20647
20648 case 1: /* VLD2. */
20649 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20650 &do_alignment, 8, 16, 16, 32, 32, 64,
20651 -1);
20652 if (align_good == FAIL)
20653 return;
20654 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20655 _("bad list length"));
20656 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20657 inst.instruction |= 1 << 5;
20658 inst.instruction |= neon_logbits (et.size) << 6;
20659 break;
20660
20661 case 2: /* VLD3. */
20662 constraint (inst.operands[1].immisalign,
20663 _("can't use alignment with this instruction"));
20664 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20665 _("bad list length"));
20666 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20667 inst.instruction |= 1 << 5;
20668 inst.instruction |= neon_logbits (et.size) << 6;
20669 break;
20670
20671 case 3: /* VLD4. */
20672 {
20673 int align = inst.operands[1].imm >> 8;
20674 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20675 16, 64, 32, 64, 32, 128, -1);
20676 if (align_good == FAIL)
20677 return;
20678 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20679 _("bad list length"));
20680 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20681 inst.instruction |= 1 << 5;
20682 if (et.size == 32 && align == 128)
20683 inst.instruction |= 0x3 << 6;
20684 else
20685 inst.instruction |= neon_logbits (et.size) << 6;
20686 }
20687 break;
20688
20689 default: ;
20690 }
20691
20692 inst.instruction |= do_alignment << 4;
20693 }
20694
20695 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20696 apart from bits [11:4]. */
20697
20698 static void
20699 do_neon_ldx_stx (void)
20700 {
20701 if (inst.operands[1].isreg)
20702 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20703
20704 switch (NEON_LANE (inst.operands[0].imm))
20705 {
20706 case NEON_INTERLEAVE_LANES:
20707 NEON_ENCODE (INTERLV, inst);
20708 do_neon_ld_st_interleave ();
20709 break;
20710
20711 case NEON_ALL_LANES:
20712 NEON_ENCODE (DUP, inst);
20713 if (inst.instruction == N_INV)
20714 {
20715 first_error ("only loads support such operands");
20716 break;
20717 }
20718 do_neon_ld_dup ();
20719 break;
20720
20721 default:
20722 NEON_ENCODE (LANE, inst);
20723 do_neon_ld_st_lane ();
20724 }
20725
20726 /* L bit comes from bit mask. */
20727 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20729 inst.instruction |= inst.operands[1].reg << 16;
20730
20731 if (inst.operands[1].postind)
20732 {
20733 int postreg = inst.operands[1].imm & 0xf;
20734 constraint (!inst.operands[1].immisreg,
20735 _("post-index must be a register"));
20736 constraint (postreg == 0xd || postreg == 0xf,
20737 _("bad register for post-index"));
20738 inst.instruction |= postreg;
20739 }
20740 else
20741 {
20742 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20743 constraint (inst.relocs[0].exp.X_op != O_constant
20744 || inst.relocs[0].exp.X_add_number != 0,
20745 BAD_ADDR_MODE);
20746
20747 if (inst.operands[1].writeback)
20748 {
20749 inst.instruction |= 0xd;
20750 }
20751 else
20752 inst.instruction |= 0xf;
20753 }
20754
20755 if (thumb_mode)
20756 inst.instruction |= 0xf9000000;
20757 else
20758 inst.instruction |= 0xf4000000;
20759 }
20760
20761 /* FP v8. */
20762 static void
20763 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20764 {
20765 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20766 D register operands. */
20767 if (neon_shape_class[rs] == SC_DOUBLE)
20768 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20769 _(BAD_FPU));
20770
20771 NEON_ENCODE (FPV8, inst);
20772
20773 if (rs == NS_FFF || rs == NS_HHH)
20774 {
20775 do_vfp_sp_dyadic ();
20776
20777 /* ARMv8.2 fp16 instruction. */
20778 if (rs == NS_HHH)
20779 do_scalar_fp16_v82_encode ();
20780 }
20781 else
20782 do_vfp_dp_rd_rn_rm ();
20783
20784 if (rs == NS_DDD)
20785 inst.instruction |= 0x100;
20786
20787 inst.instruction |= 0xf0000000;
20788 }
20789
20790 static void
20791 do_vsel (void)
20792 {
20793 set_pred_insn_type (OUTSIDE_PRED_INSN);
20794
20795 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20796 first_error (_("invalid instruction shape"));
20797 }
20798
20799 static void
20800 do_vmaxnm (void)
20801 {
20802 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20803 set_pred_insn_type (OUTSIDE_PRED_INSN);
20804
20805 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20806 return;
20807
20808 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20809 return;
20810
20811 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20812 }
20813
20814 static void
20815 do_vrint_1 (enum neon_cvt_mode mode)
20816 {
20817 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20818 struct neon_type_el et;
20819
20820 if (rs == NS_NULL)
20821 return;
20822
20823 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20824 D register operands. */
20825 if (neon_shape_class[rs] == SC_DOUBLE)
20826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20827 _(BAD_FPU));
20828
20829 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20830 | N_VFP);
20831 if (et.type != NT_invtype)
20832 {
20833 /* VFP encodings. */
20834 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20835 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20836 set_pred_insn_type (OUTSIDE_PRED_INSN);
20837
20838 NEON_ENCODE (FPV8, inst);
20839 if (rs == NS_FF || rs == NS_HH)
20840 do_vfp_sp_monadic ();
20841 else
20842 do_vfp_dp_rd_rm ();
20843
20844 switch (mode)
20845 {
20846 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20847 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20848 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20849 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20850 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20851 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20852 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20853 default: abort ();
20854 }
20855
20856 inst.instruction |= (rs == NS_DD) << 8;
20857 do_vfp_cond_or_thumb ();
20858
20859 /* ARMv8.2 fp16 vrint instruction. */
20860 if (rs == NS_HH)
20861 do_scalar_fp16_v82_encode ();
20862 }
20863 else
20864 {
20865 /* Neon encodings (or something broken...). */
20866 inst.error = NULL;
20867 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20868
20869 if (et.type == NT_invtype)
20870 return;
20871
20872 if (!check_simd_pred_availability (TRUE,
20873 NEON_CHECK_CC | NEON_CHECK_ARCH8))
20874 return;
20875
20876 NEON_ENCODE (FLOAT, inst);
20877
20878 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20879 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20880 inst.instruction |= LOW4 (inst.operands[1].reg);
20881 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20882 inst.instruction |= neon_quad (rs) << 6;
20883 /* Mask off the original size bits and reencode them. */
20884 inst.instruction = ((inst.instruction & 0xfff3ffff)
20885 | neon_logbits (et.size) << 18);
20886
20887 switch (mode)
20888 {
20889 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20890 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20891 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20892 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20893 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20894 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20895 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20896 default: abort ();
20897 }
20898
20899 if (thumb_mode)
20900 inst.instruction |= 0xfc000000;
20901 else
20902 inst.instruction |= 0xf0000000;
20903 }
20904 }
20905
20906 static void
20907 do_vrintx (void)
20908 {
20909 do_vrint_1 (neon_cvt_mode_x);
20910 }
20911
20912 static void
20913 do_vrintz (void)
20914 {
20915 do_vrint_1 (neon_cvt_mode_z);
20916 }
20917
20918 static void
20919 do_vrintr (void)
20920 {
20921 do_vrint_1 (neon_cvt_mode_r);
20922 }
20923
20924 static void
20925 do_vrinta (void)
20926 {
20927 do_vrint_1 (neon_cvt_mode_a);
20928 }
20929
20930 static void
20931 do_vrintn (void)
20932 {
20933 do_vrint_1 (neon_cvt_mode_n);
20934 }
20935
20936 static void
20937 do_vrintp (void)
20938 {
20939 do_vrint_1 (neon_cvt_mode_p);
20940 }
20941
20942 static void
20943 do_vrintm (void)
20944 {
20945 do_vrint_1 (neon_cvt_mode_m);
20946 }
20947
20948 static unsigned
20949 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20950 {
20951 unsigned regno = NEON_SCALAR_REG (opnd);
20952 unsigned elno = NEON_SCALAR_INDEX (opnd);
20953
20954 if (elsize == 16 && elno < 2 && regno < 16)
20955 return regno | (elno << 4);
20956 else if (elsize == 32 && elno == 0)
20957 return regno;
20958
20959 first_error (_("scalar out of range"));
20960 return 0;
20961 }
20962
20963 static void
20964 do_vcmla (void)
20965 {
20966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20967 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20968 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20969 constraint (inst.relocs[0].exp.X_op != O_constant,
20970 _("expression too complex"));
20971 unsigned rot = inst.relocs[0].exp.X_add_number;
20972 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20973 _("immediate out of range"));
20974 rot /= 90;
20975
20976 if (!check_simd_pred_availability (TRUE,
20977 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20978 return;
20979
20980 if (inst.operands[2].isscalar)
20981 {
20982 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20983 first_error (_("invalid instruction shape"));
20984 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20985 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20986 N_KEY | N_F16 | N_F32).size;
20987 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20988 inst.is_neon = 1;
20989 inst.instruction = 0xfe000800;
20990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20992 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20993 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20994 inst.instruction |= LOW4 (m);
20995 inst.instruction |= HI1 (m) << 5;
20996 inst.instruction |= neon_quad (rs) << 6;
20997 inst.instruction |= rot << 20;
20998 inst.instruction |= (size == 32) << 23;
20999 }
21000 else
21001 {
21002 enum neon_shape rs;
21003 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21004 rs = neon_select_shape (NS_QQQI, NS_NULL);
21005 else
21006 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21007
21008 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21009 N_KEY | N_F16 | N_F32).size;
21010 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21011 && (inst.operands[0].reg == inst.operands[1].reg
21012 || inst.operands[0].reg == inst.operands[2].reg))
21013 as_tsktsk (BAD_MVE_SRCDEST);
21014
21015 neon_three_same (neon_quad (rs), 0, -1);
21016 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21017 inst.instruction |= 0xfc200800;
21018 inst.instruction |= rot << 23;
21019 inst.instruction |= (size == 32) << 20;
21020 }
21021 }
21022
21023 static void
21024 do_vcadd (void)
21025 {
21026 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21027 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21028 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21029 constraint (inst.relocs[0].exp.X_op != O_constant,
21030 _("expression too complex"));
21031
21032 unsigned rot = inst.relocs[0].exp.X_add_number;
21033 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21034 enum neon_shape rs;
21035 struct neon_type_el et;
21036 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21037 {
21038 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21039 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21040 }
21041 else
21042 {
21043 rs = neon_select_shape (NS_QQQI, NS_NULL);
21044 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21045 | N_I16 | N_I32);
21046 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21047 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21048 "operand makes instruction UNPREDICTABLE"));
21049 }
21050
21051 if (et.type == NT_invtype)
21052 return;
21053
21054 if (!check_simd_pred_availability (et.type == NT_float,
21055 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21056 return;
21057
21058 if (et.type == NT_float)
21059 {
21060 neon_three_same (neon_quad (rs), 0, -1);
21061 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21062 inst.instruction |= 0xfc800800;
21063 inst.instruction |= (rot == 270) << 24;
21064 inst.instruction |= (et.size == 32) << 20;
21065 }
21066 else
21067 {
21068 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21069 inst.instruction = 0xfe000f00;
21070 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21071 inst.instruction |= neon_logbits (et.size) << 20;
21072 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21073 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21074 inst.instruction |= (rot == 270) << 12;
21075 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21076 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21077 inst.instruction |= LOW4 (inst.operands[2].reg);
21078 inst.is_neon = 1;
21079 }
21080 }
21081
21082 /* Dot Product instructions encoding support. */
21083
21084 static void
21085 do_neon_dotproduct (int unsigned_p)
21086 {
21087 enum neon_shape rs;
21088 unsigned scalar_oprd2 = 0;
21089 int high8;
21090
21091 if (inst.cond != COND_ALWAYS)
21092 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21093 "is UNPREDICTABLE"));
21094
21095 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21096 _(BAD_FPU));
21097
21098 /* Dot Product instructions are in three-same D/Q register format or the third
21099 operand can be a scalar index register. */
21100 if (inst.operands[2].isscalar)
21101 {
21102 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21103 high8 = 0xfe000000;
21104 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21105 }
21106 else
21107 {
21108 high8 = 0xfc000000;
21109 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21110 }
21111
21112 if (unsigned_p)
21113 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21114 else
21115 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21116
21117 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21118 Product instruction, so we pass 0 as the "ubit" parameter. And the
21119 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21120 neon_three_same (neon_quad (rs), 0, 32);
21121
21122 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21123 different NEON three-same encoding. */
21124 inst.instruction &= 0x00ffffff;
21125 inst.instruction |= high8;
21126 /* Encode 'U' bit which indicates signedness. */
21127 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21128 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21129 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21130 the instruction encoding. */
21131 if (inst.operands[2].isscalar)
21132 {
21133 inst.instruction &= 0xffffffd0;
21134 inst.instruction |= LOW4 (scalar_oprd2);
21135 inst.instruction |= HI1 (scalar_oprd2) << 5;
21136 }
21137 }
21138
21139 /* Dot Product instructions for signed integer. */
21140
21141 static void
21142 do_neon_dotproduct_s (void)
21143 {
21144 return do_neon_dotproduct (0);
21145 }
21146
21147 /* Dot Product instructions for unsigned integer. */
21148
21149 static void
21150 do_neon_dotproduct_u (void)
21151 {
21152 return do_neon_dotproduct (1);
21153 }
21154
21155 /* Crypto v1 instructions. */
21156 static void
21157 do_crypto_2op_1 (unsigned elttype, int op)
21158 {
21159 set_pred_insn_type (OUTSIDE_PRED_INSN);
21160
21161 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21162 == NT_invtype)
21163 return;
21164
21165 inst.error = NULL;
21166
21167 NEON_ENCODE (INTEGER, inst);
21168 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21169 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21170 inst.instruction |= LOW4 (inst.operands[1].reg);
21171 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21172 if (op != -1)
21173 inst.instruction |= op << 6;
21174
21175 if (thumb_mode)
21176 inst.instruction |= 0xfc000000;
21177 else
21178 inst.instruction |= 0xf0000000;
21179 }
21180
21181 static void
21182 do_crypto_3op_1 (int u, int op)
21183 {
21184 set_pred_insn_type (OUTSIDE_PRED_INSN);
21185
21186 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21187 N_32 | N_UNT | N_KEY).type == NT_invtype)
21188 return;
21189
21190 inst.error = NULL;
21191
21192 NEON_ENCODE (INTEGER, inst);
21193 neon_three_same (1, u, 8 << op);
21194 }
21195
21196 static void
21197 do_aese (void)
21198 {
21199 do_crypto_2op_1 (N_8, 0);
21200 }
21201
21202 static void
21203 do_aesd (void)
21204 {
21205 do_crypto_2op_1 (N_8, 1);
21206 }
21207
21208 static void
21209 do_aesmc (void)
21210 {
21211 do_crypto_2op_1 (N_8, 2);
21212 }
21213
21214 static void
21215 do_aesimc (void)
21216 {
21217 do_crypto_2op_1 (N_8, 3);
21218 }
21219
21220 static void
21221 do_sha1c (void)
21222 {
21223 do_crypto_3op_1 (0, 0);
21224 }
21225
21226 static void
21227 do_sha1p (void)
21228 {
21229 do_crypto_3op_1 (0, 1);
21230 }
21231
21232 static void
21233 do_sha1m (void)
21234 {
21235 do_crypto_3op_1 (0, 2);
21236 }
21237
21238 static void
21239 do_sha1su0 (void)
21240 {
21241 do_crypto_3op_1 (0, 3);
21242 }
21243
21244 static void
21245 do_sha256h (void)
21246 {
21247 do_crypto_3op_1 (1, 0);
21248 }
21249
21250 static void
21251 do_sha256h2 (void)
21252 {
21253 do_crypto_3op_1 (1, 1);
21254 }
21255
21256 static void
21257 do_sha256su1 (void)
21258 {
21259 do_crypto_3op_1 (1, 2);
21260 }
21261
21262 static void
21263 do_sha1h (void)
21264 {
21265 do_crypto_2op_1 (N_32, -1);
21266 }
21267
21268 static void
21269 do_sha1su1 (void)
21270 {
21271 do_crypto_2op_1 (N_32, 0);
21272 }
21273
21274 static void
21275 do_sha256su0 (void)
21276 {
21277 do_crypto_2op_1 (N_32, 1);
21278 }
21279
21280 static void
21281 do_crc32_1 (unsigned int poly, unsigned int sz)
21282 {
21283 unsigned int Rd = inst.operands[0].reg;
21284 unsigned int Rn = inst.operands[1].reg;
21285 unsigned int Rm = inst.operands[2].reg;
21286
21287 set_pred_insn_type (OUTSIDE_PRED_INSN);
21288 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21289 inst.instruction |= LOW4 (Rn) << 16;
21290 inst.instruction |= LOW4 (Rm);
21291 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21292 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21293
21294 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21295 as_warn (UNPRED_REG ("r15"));
21296 }
21297
21298 static void
21299 do_crc32b (void)
21300 {
21301 do_crc32_1 (0, 0);
21302 }
21303
21304 static void
21305 do_crc32h (void)
21306 {
21307 do_crc32_1 (0, 1);
21308 }
21309
21310 static void
21311 do_crc32w (void)
21312 {
21313 do_crc32_1 (0, 2);
21314 }
21315
21316 static void
21317 do_crc32cb (void)
21318 {
21319 do_crc32_1 (1, 0);
21320 }
21321
21322 static void
21323 do_crc32ch (void)
21324 {
21325 do_crc32_1 (1, 1);
21326 }
21327
21328 static void
21329 do_crc32cw (void)
21330 {
21331 do_crc32_1 (1, 2);
21332 }
21333
21334 static void
21335 do_vjcvt (void)
21336 {
21337 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21338 _(BAD_FPU));
21339 neon_check_type (2, NS_FD, N_S32, N_F64);
21340 do_vfp_sp_dp_cvt ();
21341 do_vfp_cond_or_thumb ();
21342 }
21343
21344 \f
21345 /* Overall per-instruction processing. */
21346
21347 /* We need to be able to fix up arbitrary expressions in some statements.
21348 This is so that we can handle symbols that are an arbitrary distance from
21349 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21350 which returns part of an address in a form which will be valid for
21351 a data instruction. We do this by pushing the expression into a symbol
21352 in the expr_section, and creating a fix for that. */
21353
21354 static void
21355 fix_new_arm (fragS * frag,
21356 int where,
21357 short int size,
21358 expressionS * exp,
21359 int pc_rel,
21360 int reloc)
21361 {
21362 fixS * new_fix;
21363
21364 switch (exp->X_op)
21365 {
21366 case O_constant:
21367 if (pc_rel)
21368 {
21369 /* Create an absolute valued symbol, so we have something to
21370 refer to in the object file. Unfortunately for us, gas's
21371 generic expression parsing will already have folded out
21372 any use of .set foo/.type foo %function that may have
21373 been used to set type information of the target location,
21374 that's being specified symbolically. We have to presume
21375 the user knows what they are doing. */
21376 char name[16 + 8];
21377 symbolS *symbol;
21378
21379 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21380
21381 symbol = symbol_find_or_make (name);
21382 S_SET_SEGMENT (symbol, absolute_section);
21383 symbol_set_frag (symbol, &zero_address_frag);
21384 S_SET_VALUE (symbol, exp->X_add_number);
21385 exp->X_op = O_symbol;
21386 exp->X_add_symbol = symbol;
21387 exp->X_add_number = 0;
21388 }
21389 /* FALLTHROUGH */
21390 case O_symbol:
21391 case O_add:
21392 case O_subtract:
21393 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21394 (enum bfd_reloc_code_real) reloc);
21395 break;
21396
21397 default:
21398 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21399 pc_rel, (enum bfd_reloc_code_real) reloc);
21400 break;
21401 }
21402
21403 /* Mark whether the fix is to a THUMB instruction, or an ARM
21404 instruction. */
21405 new_fix->tc_fix_data = thumb_mode;
21406 }
21407
21408 /* Create a frg for an instruction requiring relaxation. */
21409 static void
21410 output_relax_insn (void)
21411 {
21412 char * to;
21413 symbolS *sym;
21414 int offset;
21415
21416 /* The size of the instruction is unknown, so tie the debug info to the
21417 start of the instruction. */
21418 dwarf2_emit_insn (0);
21419
21420 switch (inst.relocs[0].exp.X_op)
21421 {
21422 case O_symbol:
21423 sym = inst.relocs[0].exp.X_add_symbol;
21424 offset = inst.relocs[0].exp.X_add_number;
21425 break;
21426 case O_constant:
21427 sym = NULL;
21428 offset = inst.relocs[0].exp.X_add_number;
21429 break;
21430 default:
21431 sym = make_expr_symbol (&inst.relocs[0].exp);
21432 offset = 0;
21433 break;
21434 }
21435 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21436 inst.relax, sym, offset, NULL/*offset, opcode*/);
21437 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21438 }
21439
21440 /* Write a 32-bit thumb instruction to buf. */
21441 static void
21442 put_thumb32_insn (char * buf, unsigned long insn)
21443 {
21444 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21445 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21446 }
21447
21448 static void
21449 output_inst (const char * str)
21450 {
21451 char * to = NULL;
21452
21453 if (inst.error)
21454 {
21455 as_bad ("%s -- `%s'", inst.error, str);
21456 return;
21457 }
21458 if (inst.relax)
21459 {
21460 output_relax_insn ();
21461 return;
21462 }
21463 if (inst.size == 0)
21464 return;
21465
21466 to = frag_more (inst.size);
21467 /* PR 9814: Record the thumb mode into the current frag so that we know
21468 what type of NOP padding to use, if necessary. We override any previous
21469 setting so that if the mode has changed then the NOPS that we use will
21470 match the encoding of the last instruction in the frag. */
21471 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21472
21473 if (thumb_mode && (inst.size > THUMB_SIZE))
21474 {
21475 gas_assert (inst.size == (2 * THUMB_SIZE));
21476 put_thumb32_insn (to, inst.instruction);
21477 }
21478 else if (inst.size > INSN_SIZE)
21479 {
21480 gas_assert (inst.size == (2 * INSN_SIZE));
21481 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21482 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21483 }
21484 else
21485 md_number_to_chars (to, inst.instruction, inst.size);
21486
21487 int r;
21488 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21489 {
21490 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21491 fix_new_arm (frag_now, to - frag_now->fr_literal,
21492 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21493 inst.relocs[r].type);
21494 }
21495
21496 dwarf2_emit_insn (inst.size);
21497 }
21498
21499 static char *
21500 output_it_inst (int cond, int mask, char * to)
21501 {
21502 unsigned long instruction = 0xbf00;
21503
21504 mask &= 0xf;
21505 instruction |= mask;
21506 instruction |= cond << 4;
21507
21508 if (to == NULL)
21509 {
21510 to = frag_more (2);
21511 #ifdef OBJ_ELF
21512 dwarf2_emit_insn (2);
21513 #endif
21514 }
21515
21516 md_number_to_chars (to, instruction, 2);
21517
21518 return to;
21519 }
21520
21521 /* Tag values used in struct asm_opcode's tag field. */
21522 enum opcode_tag
21523 {
21524 OT_unconditional, /* Instruction cannot be conditionalized.
21525 The ARM condition field is still 0xE. */
21526 OT_unconditionalF, /* Instruction cannot be conditionalized
21527 and carries 0xF in its ARM condition field. */
21528 OT_csuffix, /* Instruction takes a conditional suffix. */
21529 OT_csuffixF, /* Some forms of the instruction take a scalar
21530 conditional suffix, others place 0xF where the
21531 condition field would be, others take a vector
21532 conditional suffix. */
21533 OT_cinfix3, /* Instruction takes a conditional infix,
21534 beginning at character index 3. (In
21535 unified mode, it becomes a suffix.) */
21536 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21537 tsts, cmps, cmns, and teqs. */
21538 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21539 character index 3, even in unified mode. Used for
21540 legacy instructions where suffix and infix forms
21541 may be ambiguous. */
21542 OT_csuf_or_in3, /* Instruction takes either a conditional
21543 suffix or an infix at character index 3. */
21544 OT_odd_infix_unc, /* This is the unconditional variant of an
21545 instruction that takes a conditional infix
21546 at an unusual position. In unified mode,
21547 this variant will accept a suffix. */
21548 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21549 are the conditional variants of instructions that
21550 take conditional infixes in unusual positions.
21551 The infix appears at character index
21552 (tag - OT_odd_infix_0). These are not accepted
21553 in unified mode. */
21554 };
21555
21556 /* Subroutine of md_assemble, responsible for looking up the primary
21557 opcode from the mnemonic the user wrote. STR points to the
21558 beginning of the mnemonic.
21559
21560 This is not simply a hash table lookup, because of conditional
21561 variants. Most instructions have conditional variants, which are
21562 expressed with a _conditional affix_ to the mnemonic. If we were
21563 to encode each conditional variant as a literal string in the opcode
21564 table, it would have approximately 20,000 entries.
21565
21566 Most mnemonics take this affix as a suffix, and in unified syntax,
21567 'most' is upgraded to 'all'. However, in the divided syntax, some
21568 instructions take the affix as an infix, notably the s-variants of
21569 the arithmetic instructions. Of those instructions, all but six
21570 have the infix appear after the third character of the mnemonic.
21571
21572 Accordingly, the algorithm for looking up primary opcodes given
21573 an identifier is:
21574
21575 1. Look up the identifier in the opcode table.
21576 If we find a match, go to step U.
21577
21578 2. Look up the last two characters of the identifier in the
21579 conditions table. If we find a match, look up the first N-2
21580 characters of the identifier in the opcode table. If we
21581 find a match, go to step CE.
21582
21583 3. Look up the fourth and fifth characters of the identifier in
21584 the conditions table. If we find a match, extract those
21585 characters from the identifier, and look up the remaining
21586 characters in the opcode table. If we find a match, go
21587 to step CM.
21588
21589 4. Fail.
21590
21591 U. Examine the tag field of the opcode structure, in case this is
21592 one of the six instructions with its conditional infix in an
21593 unusual place. If it is, the tag tells us where to find the
21594 infix; look it up in the conditions table and set inst.cond
21595 accordingly. Otherwise, this is an unconditional instruction.
21596 Again set inst.cond accordingly. Return the opcode structure.
21597
21598 CE. Examine the tag field to make sure this is an instruction that
21599 should receive a conditional suffix. If it is not, fail.
21600 Otherwise, set inst.cond from the suffix we already looked up,
21601 and return the opcode structure.
21602
21603 CM. Examine the tag field to make sure this is an instruction that
21604 should receive a conditional infix after the third character.
21605 If it is not, fail. Otherwise, undo the edits to the current
21606 line of input and proceed as for case CE. */
21607
21608 static const struct asm_opcode *
21609 opcode_lookup (char **str)
21610 {
21611 char *end, *base;
21612 char *affix;
21613 const struct asm_opcode *opcode;
21614 const struct asm_cond *cond;
21615 char save[2];
21616
21617 /* Scan up to the end of the mnemonic, which must end in white space,
21618 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21619 for (base = end = *str; *end != '\0'; end++)
21620 if (*end == ' ' || *end == '.')
21621 break;
21622
21623 if (end == base)
21624 return NULL;
21625
21626 /* Handle a possible width suffix and/or Neon type suffix. */
21627 if (end[0] == '.')
21628 {
21629 int offset = 2;
21630
21631 /* The .w and .n suffixes are only valid if the unified syntax is in
21632 use. */
21633 if (unified_syntax && end[1] == 'w')
21634 inst.size_req = 4;
21635 else if (unified_syntax && end[1] == 'n')
21636 inst.size_req = 2;
21637 else
21638 offset = 0;
21639
21640 inst.vectype.elems = 0;
21641
21642 *str = end + offset;
21643
21644 if (end[offset] == '.')
21645 {
21646 /* See if we have a Neon type suffix (possible in either unified or
21647 non-unified ARM syntax mode). */
21648 if (parse_neon_type (&inst.vectype, str) == FAIL)
21649 return NULL;
21650 }
21651 else if (end[offset] != '\0' && end[offset] != ' ')
21652 return NULL;
21653 }
21654 else
21655 *str = end;
21656
21657 /* Look for unaffixed or special-case affixed mnemonic. */
21658 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21659 end - base);
21660 if (opcode)
21661 {
21662 /* step U */
21663 if (opcode->tag < OT_odd_infix_0)
21664 {
21665 inst.cond = COND_ALWAYS;
21666 return opcode;
21667 }
21668
21669 if (warn_on_deprecated && unified_syntax)
21670 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21671 affix = base + (opcode->tag - OT_odd_infix_0);
21672 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21673 gas_assert (cond);
21674
21675 inst.cond = cond->value;
21676 return opcode;
21677 }
21678 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21679 {
21680 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21681 */
21682 if (end - base < 2)
21683 return NULL;
21684 affix = end - 1;
21685 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21686 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21687 affix - base);
21688 /* If this opcode can not be vector predicated then don't accept it with a
21689 vector predication code. */
21690 if (opcode && !opcode->mayBeVecPred)
21691 opcode = NULL;
21692 }
21693 if (!opcode || !cond)
21694 {
21695 /* Cannot have a conditional suffix on a mnemonic of less than two
21696 characters. */
21697 if (end - base < 3)
21698 return NULL;
21699
21700 /* Look for suffixed mnemonic. */
21701 affix = end - 2;
21702 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21703 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21704 affix - base);
21705 }
21706
21707 if (opcode && cond)
21708 {
21709 /* step CE */
21710 switch (opcode->tag)
21711 {
21712 case OT_cinfix3_legacy:
21713 /* Ignore conditional suffixes matched on infix only mnemonics. */
21714 break;
21715
21716 case OT_cinfix3:
21717 case OT_cinfix3_deprecated:
21718 case OT_odd_infix_unc:
21719 if (!unified_syntax)
21720 return NULL;
21721 /* Fall through. */
21722
21723 case OT_csuffix:
21724 case OT_csuffixF:
21725 case OT_csuf_or_in3:
21726 inst.cond = cond->value;
21727 return opcode;
21728
21729 case OT_unconditional:
21730 case OT_unconditionalF:
21731 if (thumb_mode)
21732 inst.cond = cond->value;
21733 else
21734 {
21735 /* Delayed diagnostic. */
21736 inst.error = BAD_COND;
21737 inst.cond = COND_ALWAYS;
21738 }
21739 return opcode;
21740
21741 default:
21742 return NULL;
21743 }
21744 }
21745
21746 /* Cannot have a usual-position infix on a mnemonic of less than
21747 six characters (five would be a suffix). */
21748 if (end - base < 6)
21749 return NULL;
21750
21751 /* Look for infixed mnemonic in the usual position. */
21752 affix = base + 3;
21753 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21754 if (!cond)
21755 return NULL;
21756
21757 memcpy (save, affix, 2);
21758 memmove (affix, affix + 2, (end - affix) - 2);
21759 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21760 (end - base) - 2);
21761 memmove (affix + 2, affix, (end - affix) - 2);
21762 memcpy (affix, save, 2);
21763
21764 if (opcode
21765 && (opcode->tag == OT_cinfix3
21766 || opcode->tag == OT_cinfix3_deprecated
21767 || opcode->tag == OT_csuf_or_in3
21768 || opcode->tag == OT_cinfix3_legacy))
21769 {
21770 /* Step CM. */
21771 if (warn_on_deprecated && unified_syntax
21772 && (opcode->tag == OT_cinfix3
21773 || opcode->tag == OT_cinfix3_deprecated))
21774 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21775
21776 inst.cond = cond->value;
21777 return opcode;
21778 }
21779
21780 return NULL;
21781 }
21782
21783 /* This function generates an initial IT instruction, leaving its block
21784 virtually open for the new instructions. Eventually,
21785 the mask will be updated by now_pred_add_mask () each time
21786 a new instruction needs to be included in the IT block.
21787 Finally, the block is closed with close_automatic_it_block ().
21788 The block closure can be requested either from md_assemble (),
21789 a tencode (), or due to a label hook. */
21790
21791 static void
21792 new_automatic_it_block (int cond)
21793 {
21794 now_pred.state = AUTOMATIC_PRED_BLOCK;
21795 now_pred.mask = 0x18;
21796 now_pred.cc = cond;
21797 now_pred.block_length = 1;
21798 mapping_state (MAP_THUMB);
21799 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21800 now_pred.warn_deprecated = FALSE;
21801 now_pred.insn_cond = TRUE;
21802 }
21803
21804 /* Close an automatic IT block.
21805 See comments in new_automatic_it_block (). */
21806
21807 static void
21808 close_automatic_it_block (void)
21809 {
21810 now_pred.mask = 0x10;
21811 now_pred.block_length = 0;
21812 }
21813
21814 /* Update the mask of the current automatically-generated IT
21815 instruction. See comments in new_automatic_it_block (). */
21816
21817 static void
21818 now_pred_add_mask (int cond)
21819 {
21820 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21821 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21822 | ((bitvalue) << (nbit)))
21823 const int resulting_bit = (cond & 1);
21824
21825 now_pred.mask &= 0xf;
21826 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21827 resulting_bit,
21828 (5 - now_pred.block_length));
21829 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21830 1,
21831 ((5 - now_pred.block_length) - 1));
21832 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21833
21834 #undef CLEAR_BIT
21835 #undef SET_BIT_VALUE
21836 }
21837
21838 /* The IT blocks handling machinery is accessed through the these functions:
21839 it_fsm_pre_encode () from md_assemble ()
21840 set_pred_insn_type () optional, from the tencode functions
21841 set_pred_insn_type_last () ditto
21842 in_pred_block () ditto
21843 it_fsm_post_encode () from md_assemble ()
21844 force_automatic_it_block_close () from label handling functions
21845
21846 Rationale:
21847 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21848 initializing the IT insn type with a generic initial value depending
21849 on the inst.condition.
21850 2) During the tencode function, two things may happen:
21851 a) The tencode function overrides the IT insn type by
21852 calling either set_pred_insn_type (type) or
21853 set_pred_insn_type_last ().
21854 b) The tencode function queries the IT block state by
21855 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21856
21857 Both set_pred_insn_type and in_pred_block run the internal FSM state
21858 handling function (handle_pred_state), because: a) setting the IT insn
21859 type may incur in an invalid state (exiting the function),
21860 and b) querying the state requires the FSM to be updated.
21861 Specifically we want to avoid creating an IT block for conditional
21862 branches, so it_fsm_pre_encode is actually a guess and we can't
21863 determine whether an IT block is required until the tencode () routine
21864 has decided what type of instruction this actually it.
21865 Because of this, if set_pred_insn_type and in_pred_block have to be
21866 used, set_pred_insn_type has to be called first.
21867
21868 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21869 that determines the insn IT type depending on the inst.cond code.
21870 When a tencode () routine encodes an instruction that can be
21871 either outside an IT block, or, in the case of being inside, has to be
21872 the last one, set_pred_insn_type_last () will determine the proper
21873 IT instruction type based on the inst.cond code. Otherwise,
21874 set_pred_insn_type can be called for overriding that logic or
21875 for covering other cases.
21876
21877 Calling handle_pred_state () may not transition the IT block state to
21878 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21879 still queried. Instead, if the FSM determines that the state should
21880 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21881 after the tencode () function: that's what it_fsm_post_encode () does.
21882
21883 Since in_pred_block () calls the state handling function to get an
21884 updated state, an error may occur (due to invalid insns combination).
21885 In that case, inst.error is set.
21886 Therefore, inst.error has to be checked after the execution of
21887 the tencode () routine.
21888
21889 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21890 any pending state change (if any) that didn't take place in
21891 handle_pred_state () as explained above. */
21892
21893 static void
21894 it_fsm_pre_encode (void)
21895 {
21896 if (inst.cond != COND_ALWAYS)
21897 inst.pred_insn_type = INSIDE_IT_INSN;
21898 else
21899 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21900
21901 now_pred.state_handled = 0;
21902 }
21903
21904 /* IT state FSM handling function. */
21905 /* MVE instructions and non-MVE instructions are handled differently because of
21906 the introduction of VPT blocks.
21907 Specifications say that any non-MVE instruction inside a VPT block is
21908 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21909 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21910 few exceptions we have MVE_UNPREDICABLE_INSN.
21911 The error messages provided depending on the different combinations possible
21912 are described in the cases below:
21913 For 'most' MVE instructions:
21914 1) In an IT block, with an IT code: syntax error
21915 2) In an IT block, with a VPT code: error: must be in a VPT block
21916 3) In an IT block, with no code: warning: UNPREDICTABLE
21917 4) In a VPT block, with an IT code: syntax error
21918 5) In a VPT block, with a VPT code: OK!
21919 6) In a VPT block, with no code: error: missing code
21920 7) Outside a pred block, with an IT code: error: syntax error
21921 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21922 9) Outside a pred block, with no code: OK!
21923 For non-MVE instructions:
21924 10) In an IT block, with an IT code: OK!
21925 11) In an IT block, with a VPT code: syntax error
21926 12) In an IT block, with no code: error: missing code
21927 13) In a VPT block, with an IT code: error: should be in an IT block
21928 14) In a VPT block, with a VPT code: syntax error
21929 15) In a VPT block, with no code: UNPREDICTABLE
21930 16) Outside a pred block, with an IT code: error: should be in an IT block
21931 17) Outside a pred block, with a VPT code: syntax error
21932 18) Outside a pred block, with no code: OK!
21933 */
21934
21935
21936 static int
21937 handle_pred_state (void)
21938 {
21939 now_pred.state_handled = 1;
21940 now_pred.insn_cond = FALSE;
21941
21942 switch (now_pred.state)
21943 {
21944 case OUTSIDE_PRED_BLOCK:
21945 switch (inst.pred_insn_type)
21946 {
21947 case MVE_UNPREDICABLE_INSN:
21948 case MVE_OUTSIDE_PRED_INSN:
21949 if (inst.cond < COND_ALWAYS)
21950 {
21951 /* Case 7: Outside a pred block, with an IT code: error: syntax
21952 error. */
21953 inst.error = BAD_SYNTAX;
21954 return FAIL;
21955 }
21956 /* Case 9: Outside a pred block, with no code: OK! */
21957 break;
21958 case OUTSIDE_PRED_INSN:
21959 if (inst.cond > COND_ALWAYS)
21960 {
21961 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21962 */
21963 inst.error = BAD_SYNTAX;
21964 return FAIL;
21965 }
21966 /* Case 18: Outside a pred block, with no code: OK! */
21967 break;
21968
21969 case INSIDE_VPT_INSN:
21970 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21971 a VPT block. */
21972 inst.error = BAD_OUT_VPT;
21973 return FAIL;
21974
21975 case INSIDE_IT_INSN:
21976 case INSIDE_IT_LAST_INSN:
21977 if (inst.cond < COND_ALWAYS)
21978 {
21979 /* Case 16: Outside a pred block, with an IT code: error: should
21980 be in an IT block. */
21981 if (thumb_mode == 0)
21982 {
21983 if (unified_syntax
21984 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21985 as_tsktsk (_("Warning: conditional outside an IT block"\
21986 " for Thumb."));
21987 }
21988 else
21989 {
21990 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21991 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21992 {
21993 /* Automatically generate the IT instruction. */
21994 new_automatic_it_block (inst.cond);
21995 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21996 close_automatic_it_block ();
21997 }
21998 else
21999 {
22000 inst.error = BAD_OUT_IT;
22001 return FAIL;
22002 }
22003 }
22004 break;
22005 }
22006 else if (inst.cond > COND_ALWAYS)
22007 {
22008 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22009 */
22010 inst.error = BAD_SYNTAX;
22011 return FAIL;
22012 }
22013 else
22014 gas_assert (0);
22015 case IF_INSIDE_IT_LAST_INSN:
22016 case NEUTRAL_IT_INSN:
22017 break;
22018
22019 case VPT_INSN:
22020 if (inst.cond != COND_ALWAYS)
22021 first_error (BAD_SYNTAX);
22022 now_pred.state = MANUAL_PRED_BLOCK;
22023 now_pred.block_length = 0;
22024 now_pred.type = VECTOR_PRED;
22025 now_pred.cc = 0;
22026 break;
22027 case IT_INSN:
22028 now_pred.state = MANUAL_PRED_BLOCK;
22029 now_pred.block_length = 0;
22030 now_pred.type = SCALAR_PRED;
22031 break;
22032 }
22033 break;
22034
22035 case AUTOMATIC_PRED_BLOCK:
22036 /* Three things may happen now:
22037 a) We should increment current it block size;
22038 b) We should close current it block (closing insn or 4 insns);
22039 c) We should close current it block and start a new one (due
22040 to incompatible conditions or
22041 4 insns-length block reached). */
22042
22043 switch (inst.pred_insn_type)
22044 {
22045 case INSIDE_VPT_INSN:
22046 case VPT_INSN:
22047 case MVE_UNPREDICABLE_INSN:
22048 case MVE_OUTSIDE_PRED_INSN:
22049 gas_assert (0);
22050 case OUTSIDE_PRED_INSN:
22051 /* The closure of the block shall happen immediately,
22052 so any in_pred_block () call reports the block as closed. */
22053 force_automatic_it_block_close ();
22054 break;
22055
22056 case INSIDE_IT_INSN:
22057 case INSIDE_IT_LAST_INSN:
22058 case IF_INSIDE_IT_LAST_INSN:
22059 now_pred.block_length++;
22060
22061 if (now_pred.block_length > 4
22062 || !now_pred_compatible (inst.cond))
22063 {
22064 force_automatic_it_block_close ();
22065 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
22066 new_automatic_it_block (inst.cond);
22067 }
22068 else
22069 {
22070 now_pred.insn_cond = TRUE;
22071 now_pred_add_mask (inst.cond);
22072 }
22073
22074 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22075 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22076 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
22077 close_automatic_it_block ();
22078 break;
22079
22080 case NEUTRAL_IT_INSN:
22081 now_pred.block_length++;
22082 now_pred.insn_cond = TRUE;
22083
22084 if (now_pred.block_length > 4)
22085 force_automatic_it_block_close ();
22086 else
22087 now_pred_add_mask (now_pred.cc & 1);
22088 break;
22089
22090 case IT_INSN:
22091 close_automatic_it_block ();
22092 now_pred.state = MANUAL_PRED_BLOCK;
22093 break;
22094 }
22095 break;
22096
22097 case MANUAL_PRED_BLOCK:
22098 {
22099 int cond, is_last;
22100 if (now_pred.type == SCALAR_PRED)
22101 {
22102 /* Check conditional suffixes. */
22103 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22104 now_pred.mask <<= 1;
22105 now_pred.mask &= 0x1f;
22106 is_last = (now_pred.mask == 0x10);
22107 }
22108 else
22109 {
22110 now_pred.cc ^= (now_pred.mask >> 4);
22111 cond = now_pred.cc + 0xf;
22112 now_pred.mask <<= 1;
22113 now_pred.mask &= 0x1f;
22114 is_last = now_pred.mask == 0x10;
22115 }
22116 now_pred.insn_cond = TRUE;
22117
22118 switch (inst.pred_insn_type)
22119 {
22120 case OUTSIDE_PRED_INSN:
22121 if (now_pred.type == SCALAR_PRED)
22122 {
22123 if (inst.cond == COND_ALWAYS)
22124 {
22125 /* Case 12: In an IT block, with no code: error: missing
22126 code. */
22127 inst.error = BAD_NOT_IT;
22128 return FAIL;
22129 }
22130 else if (inst.cond > COND_ALWAYS)
22131 {
22132 /* Case 11: In an IT block, with a VPT code: syntax error.
22133 */
22134 inst.error = BAD_SYNTAX;
22135 return FAIL;
22136 }
22137 else if (thumb_mode)
22138 {
22139 /* This is for some special cases where a non-MVE
22140 instruction is not allowed in an IT block, such as cbz,
22141 but are put into one with a condition code.
22142 You could argue this should be a syntax error, but we
22143 gave the 'not allowed in IT block' diagnostic in the
22144 past so we will keep doing so. */
22145 inst.error = BAD_NOT_IT;
22146 return FAIL;
22147 }
22148 break;
22149 }
22150 else
22151 {
22152 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22153 as_tsktsk (MVE_NOT_VPT);
22154 return SUCCESS;
22155 }
22156 case MVE_OUTSIDE_PRED_INSN:
22157 if (now_pred.type == SCALAR_PRED)
22158 {
22159 if (inst.cond == COND_ALWAYS)
22160 {
22161 /* Case 3: In an IT block, with no code: warning:
22162 UNPREDICTABLE. */
22163 as_tsktsk (MVE_NOT_IT);
22164 return SUCCESS;
22165 }
22166 else if (inst.cond < COND_ALWAYS)
22167 {
22168 /* Case 1: In an IT block, with an IT code: syntax error.
22169 */
22170 inst.error = BAD_SYNTAX;
22171 return FAIL;
22172 }
22173 else
22174 gas_assert (0);
22175 }
22176 else
22177 {
22178 if (inst.cond < COND_ALWAYS)
22179 {
22180 /* Case 4: In a VPT block, with an IT code: syntax error.
22181 */
22182 inst.error = BAD_SYNTAX;
22183 return FAIL;
22184 }
22185 else if (inst.cond == COND_ALWAYS)
22186 {
22187 /* Case 6: In a VPT block, with no code: error: missing
22188 code. */
22189 inst.error = BAD_NOT_VPT;
22190 return FAIL;
22191 }
22192 else
22193 {
22194 gas_assert (0);
22195 }
22196 }
22197 case MVE_UNPREDICABLE_INSN:
22198 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22199 return SUCCESS;
22200 case INSIDE_IT_INSN:
22201 if (inst.cond > COND_ALWAYS)
22202 {
22203 /* Case 11: In an IT block, with a VPT code: syntax error. */
22204 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22205 inst.error = BAD_SYNTAX;
22206 return FAIL;
22207 }
22208 else if (now_pred.type == SCALAR_PRED)
22209 {
22210 /* Case 10: In an IT block, with an IT code: OK! */
22211 if (cond != inst.cond)
22212 {
22213 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22214 BAD_VPT_COND;
22215 return FAIL;
22216 }
22217 }
22218 else
22219 {
22220 /* Case 13: In a VPT block, with an IT code: error: should be
22221 in an IT block. */
22222 inst.error = BAD_OUT_IT;
22223 return FAIL;
22224 }
22225 break;
22226
22227 case INSIDE_VPT_INSN:
22228 if (now_pred.type == SCALAR_PRED)
22229 {
22230 /* Case 2: In an IT block, with a VPT code: error: must be in a
22231 VPT block. */
22232 inst.error = BAD_OUT_VPT;
22233 return FAIL;
22234 }
22235 /* Case 5: In a VPT block, with a VPT code: OK! */
22236 else if (cond != inst.cond)
22237 {
22238 inst.error = BAD_VPT_COND;
22239 return FAIL;
22240 }
22241 break;
22242 case INSIDE_IT_LAST_INSN:
22243 case IF_INSIDE_IT_LAST_INSN:
22244 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22245 {
22246 /* Case 4: In a VPT block, with an IT code: syntax error. */
22247 /* Case 11: In an IT block, with a VPT code: syntax error. */
22248 inst.error = BAD_SYNTAX;
22249 return FAIL;
22250 }
22251 else if (cond != inst.cond)
22252 {
22253 inst.error = BAD_IT_COND;
22254 return FAIL;
22255 }
22256 if (!is_last)
22257 {
22258 inst.error = BAD_BRANCH;
22259 return FAIL;
22260 }
22261 break;
22262
22263 case NEUTRAL_IT_INSN:
22264 /* The BKPT instruction is unconditional even in a IT or VPT
22265 block. */
22266 break;
22267
22268 case IT_INSN:
22269 if (now_pred.type == SCALAR_PRED)
22270 {
22271 inst.error = BAD_IT_IT;
22272 return FAIL;
22273 }
22274 /* fall through. */
22275 case VPT_INSN:
22276 if (inst.cond == COND_ALWAYS)
22277 {
22278 /* Executing a VPT/VPST instruction inside an IT block or a
22279 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22280 */
22281 if (now_pred.type == SCALAR_PRED)
22282 as_tsktsk (MVE_NOT_IT);
22283 else
22284 as_tsktsk (MVE_NOT_VPT);
22285 return SUCCESS;
22286 }
22287 else
22288 {
22289 /* VPT/VPST do not accept condition codes. */
22290 inst.error = BAD_SYNTAX;
22291 return FAIL;
22292 }
22293 }
22294 }
22295 break;
22296 }
22297
22298 return SUCCESS;
22299 }
22300
22301 struct depr_insn_mask
22302 {
22303 unsigned long pattern;
22304 unsigned long mask;
22305 const char* description;
22306 };
22307
22308 /* List of 16-bit instruction patterns deprecated in an IT block in
22309 ARMv8. */
22310 static const struct depr_insn_mask depr_it_insns[] = {
22311 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22312 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22313 { 0xa000, 0xb800, N_("ADR") },
22314 { 0x4800, 0xf800, N_("Literal loads") },
22315 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22316 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22317 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22318 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22319 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22320 { 0, 0, NULL }
22321 };
22322
22323 static void
22324 it_fsm_post_encode (void)
22325 {
22326 int is_last;
22327
22328 if (!now_pred.state_handled)
22329 handle_pred_state ();
22330
22331 if (now_pred.insn_cond
22332 && !now_pred.warn_deprecated
22333 && warn_on_deprecated
22334 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22335 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22336 {
22337 if (inst.instruction >= 0x10000)
22338 {
22339 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22340 "performance deprecated in ARMv8-A and ARMv8-R"));
22341 now_pred.warn_deprecated = TRUE;
22342 }
22343 else
22344 {
22345 const struct depr_insn_mask *p = depr_it_insns;
22346
22347 while (p->mask != 0)
22348 {
22349 if ((inst.instruction & p->mask) == p->pattern)
22350 {
22351 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22352 "instructions of the following class are "
22353 "performance deprecated in ARMv8-A and "
22354 "ARMv8-R: %s"), p->description);
22355 now_pred.warn_deprecated = TRUE;
22356 break;
22357 }
22358
22359 ++p;
22360 }
22361 }
22362
22363 if (now_pred.block_length > 1)
22364 {
22365 as_tsktsk (_("IT blocks containing more than one conditional "
22366 "instruction are performance deprecated in ARMv8-A and "
22367 "ARMv8-R"));
22368 now_pred.warn_deprecated = TRUE;
22369 }
22370 }
22371
22372 is_last = (now_pred.mask == 0x10);
22373 if (is_last)
22374 {
22375 now_pred.state = OUTSIDE_PRED_BLOCK;
22376 now_pred.mask = 0;
22377 }
22378 }
22379
22380 static void
22381 force_automatic_it_block_close (void)
22382 {
22383 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22384 {
22385 close_automatic_it_block ();
22386 now_pred.state = OUTSIDE_PRED_BLOCK;
22387 now_pred.mask = 0;
22388 }
22389 }
22390
22391 static int
22392 in_pred_block (void)
22393 {
22394 if (!now_pred.state_handled)
22395 handle_pred_state ();
22396
22397 return now_pred.state != OUTSIDE_PRED_BLOCK;
22398 }
22399
22400 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22401 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22402 here, hence the "known" in the function name. */
22403
22404 static bfd_boolean
22405 known_t32_only_insn (const struct asm_opcode *opcode)
22406 {
22407 /* Original Thumb-1 wide instruction. */
22408 if (opcode->tencode == do_t_blx
22409 || opcode->tencode == do_t_branch23
22410 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22411 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22412 return TRUE;
22413
22414 /* Wide-only instruction added to ARMv8-M Baseline. */
22415 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22416 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22417 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22418 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22419 return TRUE;
22420
22421 return FALSE;
22422 }
22423
22424 /* Whether wide instruction variant can be used if available for a valid OPCODE
22425 in ARCH. */
22426
22427 static bfd_boolean
22428 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22429 {
22430 if (known_t32_only_insn (opcode))
22431 return TRUE;
22432
22433 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22434 of variant T3 of B.W is checked in do_t_branch. */
22435 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22436 && opcode->tencode == do_t_branch)
22437 return TRUE;
22438
22439 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22440 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22441 && opcode->tencode == do_t_mov_cmp
22442 /* Make sure CMP instruction is not affected. */
22443 && opcode->aencode == do_mov)
22444 return TRUE;
22445
22446 /* Wide instruction variants of all instructions with narrow *and* wide
22447 variants become available with ARMv6t2. Other opcodes are either
22448 narrow-only or wide-only and are thus available if OPCODE is valid. */
22449 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22450 return TRUE;
22451
22452 /* OPCODE with narrow only instruction variant or wide variant not
22453 available. */
22454 return FALSE;
22455 }
22456
22457 void
22458 md_assemble (char *str)
22459 {
22460 char *p = str;
22461 const struct asm_opcode * opcode;
22462
22463 /* Align the previous label if needed. */
22464 if (last_label_seen != NULL)
22465 {
22466 symbol_set_frag (last_label_seen, frag_now);
22467 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22468 S_SET_SEGMENT (last_label_seen, now_seg);
22469 }
22470
22471 memset (&inst, '\0', sizeof (inst));
22472 int r;
22473 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22474 inst.relocs[r].type = BFD_RELOC_UNUSED;
22475
22476 opcode = opcode_lookup (&p);
22477 if (!opcode)
22478 {
22479 /* It wasn't an instruction, but it might be a register alias of
22480 the form alias .req reg, or a Neon .dn/.qn directive. */
22481 if (! create_register_alias (str, p)
22482 && ! create_neon_reg_alias (str, p))
22483 as_bad (_("bad instruction `%s'"), str);
22484
22485 return;
22486 }
22487
22488 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22489 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22490
22491 /* The value which unconditional instructions should have in place of the
22492 condition field. */
22493 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22494
22495 if (thumb_mode)
22496 {
22497 arm_feature_set variant;
22498
22499 variant = cpu_variant;
22500 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22501 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22502 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22503 /* Check that this instruction is supported for this CPU. */
22504 if (!opcode->tvariant
22505 || (thumb_mode == 1
22506 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22507 {
22508 if (opcode->tencode == do_t_swi)
22509 as_bad (_("SVC is not permitted on this architecture"));
22510 else
22511 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22512 return;
22513 }
22514 if (inst.cond != COND_ALWAYS && !unified_syntax
22515 && opcode->tencode != do_t_branch)
22516 {
22517 as_bad (_("Thumb does not support conditional execution"));
22518 return;
22519 }
22520
22521 /* Two things are addressed here:
22522 1) Implicit require narrow instructions on Thumb-1.
22523 This avoids relaxation accidentally introducing Thumb-2
22524 instructions.
22525 2) Reject wide instructions in non Thumb-2 cores.
22526
22527 Only instructions with narrow and wide variants need to be handled
22528 but selecting all non wide-only instructions is easier. */
22529 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22530 && !t32_insn_ok (variant, opcode))
22531 {
22532 if (inst.size_req == 0)
22533 inst.size_req = 2;
22534 else if (inst.size_req == 4)
22535 {
22536 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22537 as_bad (_("selected processor does not support 32bit wide "
22538 "variant of instruction `%s'"), str);
22539 else
22540 as_bad (_("selected processor does not support `%s' in "
22541 "Thumb-2 mode"), str);
22542 return;
22543 }
22544 }
22545
22546 inst.instruction = opcode->tvalue;
22547
22548 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22549 {
22550 /* Prepare the pred_insn_type for those encodings that don't set
22551 it. */
22552 it_fsm_pre_encode ();
22553
22554 opcode->tencode ();
22555
22556 it_fsm_post_encode ();
22557 }
22558
22559 if (!(inst.error || inst.relax))
22560 {
22561 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22562 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22563 if (inst.size_req && inst.size_req != inst.size)
22564 {
22565 as_bad (_("cannot honor width suffix -- `%s'"), str);
22566 return;
22567 }
22568 }
22569
22570 /* Something has gone badly wrong if we try to relax a fixed size
22571 instruction. */
22572 gas_assert (inst.size_req == 0 || !inst.relax);
22573
22574 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22575 *opcode->tvariant);
22576 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22577 set those bits when Thumb-2 32-bit instructions are seen. The impact
22578 of relaxable instructions will be considered later after we finish all
22579 relaxation. */
22580 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22581 variant = arm_arch_none;
22582 else
22583 variant = cpu_variant;
22584 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22585 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22586 arm_ext_v6t2);
22587
22588 check_neon_suffixes;
22589
22590 if (!inst.error)
22591 {
22592 mapping_state (MAP_THUMB);
22593 }
22594 }
22595 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22596 {
22597 bfd_boolean is_bx;
22598
22599 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22600 is_bx = (opcode->aencode == do_bx);
22601
22602 /* Check that this instruction is supported for this CPU. */
22603 if (!(is_bx && fix_v4bx)
22604 && !(opcode->avariant &&
22605 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22606 {
22607 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22608 return;
22609 }
22610 if (inst.size_req)
22611 {
22612 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22613 return;
22614 }
22615
22616 inst.instruction = opcode->avalue;
22617 if (opcode->tag == OT_unconditionalF)
22618 inst.instruction |= 0xFU << 28;
22619 else
22620 inst.instruction |= inst.cond << 28;
22621 inst.size = INSN_SIZE;
22622 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22623 {
22624 it_fsm_pre_encode ();
22625 opcode->aencode ();
22626 it_fsm_post_encode ();
22627 }
22628 /* Arm mode bx is marked as both v4T and v5 because it's still required
22629 on a hypothetical non-thumb v5 core. */
22630 if (is_bx)
22631 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22632 else
22633 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22634 *opcode->avariant);
22635
22636 check_neon_suffixes;
22637
22638 if (!inst.error)
22639 {
22640 mapping_state (MAP_ARM);
22641 }
22642 }
22643 else
22644 {
22645 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22646 "-- `%s'"), str);
22647 return;
22648 }
22649 output_inst (str);
22650 }
22651
22652 static void
22653 check_pred_blocks_finished (void)
22654 {
22655 #ifdef OBJ_ELF
22656 asection *sect;
22657
22658 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22659 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22660 == MANUAL_PRED_BLOCK)
22661 {
22662 if (now_pred.type == SCALAR_PRED)
22663 as_warn (_("section '%s' finished with an open IT block."),
22664 sect->name);
22665 else
22666 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22667 sect->name);
22668 }
22669 #else
22670 if (now_pred.state == MANUAL_PRED_BLOCK)
22671 {
22672 if (now_pred.type == SCALAR_PRED)
22673 as_warn (_("file finished with an open IT block."));
22674 else
22675 as_warn (_("file finished with an open VPT/VPST block."));
22676 }
22677 #endif
22678 }
22679
22680 /* Various frobbings of labels and their addresses. */
22681
22682 void
22683 arm_start_line_hook (void)
22684 {
22685 last_label_seen = NULL;
22686 }
22687
22688 void
22689 arm_frob_label (symbolS * sym)
22690 {
22691 last_label_seen = sym;
22692
22693 ARM_SET_THUMB (sym, thumb_mode);
22694
22695 #if defined OBJ_COFF || defined OBJ_ELF
22696 ARM_SET_INTERWORK (sym, support_interwork);
22697 #endif
22698
22699 force_automatic_it_block_close ();
22700
22701 /* Note - do not allow local symbols (.Lxxx) to be labelled
22702 as Thumb functions. This is because these labels, whilst
22703 they exist inside Thumb code, are not the entry points for
22704 possible ARM->Thumb calls. Also, these labels can be used
22705 as part of a computed goto or switch statement. eg gcc
22706 can generate code that looks like this:
22707
22708 ldr r2, [pc, .Laaa]
22709 lsl r3, r3, #2
22710 ldr r2, [r3, r2]
22711 mov pc, r2
22712
22713 .Lbbb: .word .Lxxx
22714 .Lccc: .word .Lyyy
22715 ..etc...
22716 .Laaa: .word Lbbb
22717
22718 The first instruction loads the address of the jump table.
22719 The second instruction converts a table index into a byte offset.
22720 The third instruction gets the jump address out of the table.
22721 The fourth instruction performs the jump.
22722
22723 If the address stored at .Laaa is that of a symbol which has the
22724 Thumb_Func bit set, then the linker will arrange for this address
22725 to have the bottom bit set, which in turn would mean that the
22726 address computation performed by the third instruction would end
22727 up with the bottom bit set. Since the ARM is capable of unaligned
22728 word loads, the instruction would then load the incorrect address
22729 out of the jump table, and chaos would ensue. */
22730 if (label_is_thumb_function_name
22731 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22732 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22733 {
22734 /* When the address of a Thumb function is taken the bottom
22735 bit of that address should be set. This will allow
22736 interworking between Arm and Thumb functions to work
22737 correctly. */
22738
22739 THUMB_SET_FUNC (sym, 1);
22740
22741 label_is_thumb_function_name = FALSE;
22742 }
22743
22744 dwarf2_emit_label (sym);
22745 }
22746
22747 bfd_boolean
22748 arm_data_in_code (void)
22749 {
22750 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22751 {
22752 *input_line_pointer = '/';
22753 input_line_pointer += 5;
22754 *input_line_pointer = 0;
22755 return TRUE;
22756 }
22757
22758 return FALSE;
22759 }
22760
22761 char *
22762 arm_canonicalize_symbol_name (char * name)
22763 {
22764 int len;
22765
22766 if (thumb_mode && (len = strlen (name)) > 5
22767 && streq (name + len - 5, "/data"))
22768 *(name + len - 5) = 0;
22769
22770 return name;
22771 }
22772 \f
22773 /* Table of all register names defined by default. The user can
22774 define additional names with .req. Note that all register names
22775 should appear in both upper and lowercase variants. Some registers
22776 also have mixed-case names. */
22777
22778 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22779 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22780 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22781 #define REGSET(p,t) \
22782 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22783 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22784 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22785 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22786 #define REGSETH(p,t) \
22787 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22788 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22789 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22790 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22791 #define REGSET2(p,t) \
22792 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22793 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22794 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22795 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22796 #define SPLRBANK(base,bank,t) \
22797 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22798 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22799 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22800 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22801 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22802 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22803
22804 static const struct reg_entry reg_names[] =
22805 {
22806 /* ARM integer registers. */
22807 REGSET(r, RN), REGSET(R, RN),
22808
22809 /* ATPCS synonyms. */
22810 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22811 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22812 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22813
22814 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22815 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22816 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22817
22818 /* Well-known aliases. */
22819 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22820 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22821
22822 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22823 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22824
22825 /* Defining the new Zero register from ARMv8.1-M. */
22826 REGDEF(zr,15,ZR),
22827 REGDEF(ZR,15,ZR),
22828
22829 /* Coprocessor numbers. */
22830 REGSET(p, CP), REGSET(P, CP),
22831
22832 /* Coprocessor register numbers. The "cr" variants are for backward
22833 compatibility. */
22834 REGSET(c, CN), REGSET(C, CN),
22835 REGSET(cr, CN), REGSET(CR, CN),
22836
22837 /* ARM banked registers. */
22838 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22839 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22840 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22841 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22842 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22843 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22844 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22845
22846 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22847 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22848 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22849 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22850 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22851 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22852 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22853 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22854
22855 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22856 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22857 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22858 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22859 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22860 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22861 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22862 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22863 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22864
22865 /* FPA registers. */
22866 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22867 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22868
22869 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22870 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22871
22872 /* VFP SP registers. */
22873 REGSET(s,VFS), REGSET(S,VFS),
22874 REGSETH(s,VFS), REGSETH(S,VFS),
22875
22876 /* VFP DP Registers. */
22877 REGSET(d,VFD), REGSET(D,VFD),
22878 /* Extra Neon DP registers. */
22879 REGSETH(d,VFD), REGSETH(D,VFD),
22880
22881 /* Neon QP registers. */
22882 REGSET2(q,NQ), REGSET2(Q,NQ),
22883
22884 /* VFP control registers. */
22885 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22886 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22887 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22888 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22889 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22890 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22891 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22892 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
22893 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
22894 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
22895 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
22896
22897 /* Maverick DSP coprocessor registers. */
22898 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22899 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22900
22901 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22902 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22903 REGDEF(dspsc,0,DSPSC),
22904
22905 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22906 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22907 REGDEF(DSPSC,0,DSPSC),
22908
22909 /* iWMMXt data registers - p0, c0-15. */
22910 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22911
22912 /* iWMMXt control registers - p1, c0-3. */
22913 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22914 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22915 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22916 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22917
22918 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22919 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22920 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22921 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22922 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22923
22924 /* XScale accumulator registers. */
22925 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22926 };
22927 #undef REGDEF
22928 #undef REGNUM
22929 #undef REGSET
22930
22931 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22932 within psr_required_here. */
22933 static const struct asm_psr psrs[] =
22934 {
22935 /* Backward compatibility notation. Note that "all" is no longer
22936 truly all possible PSR bits. */
22937 {"all", PSR_c | PSR_f},
22938 {"flg", PSR_f},
22939 {"ctl", PSR_c},
22940
22941 /* Individual flags. */
22942 {"f", PSR_f},
22943 {"c", PSR_c},
22944 {"x", PSR_x},
22945 {"s", PSR_s},
22946
22947 /* Combinations of flags. */
22948 {"fs", PSR_f | PSR_s},
22949 {"fx", PSR_f | PSR_x},
22950 {"fc", PSR_f | PSR_c},
22951 {"sf", PSR_s | PSR_f},
22952 {"sx", PSR_s | PSR_x},
22953 {"sc", PSR_s | PSR_c},
22954 {"xf", PSR_x | PSR_f},
22955 {"xs", PSR_x | PSR_s},
22956 {"xc", PSR_x | PSR_c},
22957 {"cf", PSR_c | PSR_f},
22958 {"cs", PSR_c | PSR_s},
22959 {"cx", PSR_c | PSR_x},
22960 {"fsx", PSR_f | PSR_s | PSR_x},
22961 {"fsc", PSR_f | PSR_s | PSR_c},
22962 {"fxs", PSR_f | PSR_x | PSR_s},
22963 {"fxc", PSR_f | PSR_x | PSR_c},
22964 {"fcs", PSR_f | PSR_c | PSR_s},
22965 {"fcx", PSR_f | PSR_c | PSR_x},
22966 {"sfx", PSR_s | PSR_f | PSR_x},
22967 {"sfc", PSR_s | PSR_f | PSR_c},
22968 {"sxf", PSR_s | PSR_x | PSR_f},
22969 {"sxc", PSR_s | PSR_x | PSR_c},
22970 {"scf", PSR_s | PSR_c | PSR_f},
22971 {"scx", PSR_s | PSR_c | PSR_x},
22972 {"xfs", PSR_x | PSR_f | PSR_s},
22973 {"xfc", PSR_x | PSR_f | PSR_c},
22974 {"xsf", PSR_x | PSR_s | PSR_f},
22975 {"xsc", PSR_x | PSR_s | PSR_c},
22976 {"xcf", PSR_x | PSR_c | PSR_f},
22977 {"xcs", PSR_x | PSR_c | PSR_s},
22978 {"cfs", PSR_c | PSR_f | PSR_s},
22979 {"cfx", PSR_c | PSR_f | PSR_x},
22980 {"csf", PSR_c | PSR_s | PSR_f},
22981 {"csx", PSR_c | PSR_s | PSR_x},
22982 {"cxf", PSR_c | PSR_x | PSR_f},
22983 {"cxs", PSR_c | PSR_x | PSR_s},
22984 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22985 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22986 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22987 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22988 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22989 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22990 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22991 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22992 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22993 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22994 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22995 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22996 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22997 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22998 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22999 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23000 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23001 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23002 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23003 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23004 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23005 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23006 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23007 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23008 };
23009
23010 /* Table of V7M psr names. */
23011 static const struct asm_psr v7m_psrs[] =
23012 {
23013 {"apsr", 0x0 }, {"APSR", 0x0 },
23014 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23015 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23016 {"psr", 0x3 }, {"PSR", 0x3 },
23017 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23018 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23019 {"epsr", 0x6 }, {"EPSR", 0x6 },
23020 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23021 {"msp", 0x8 }, {"MSP", 0x8 },
23022 {"psp", 0x9 }, {"PSP", 0x9 },
23023 {"msplim", 0xa }, {"MSPLIM", 0xa },
23024 {"psplim", 0xb }, {"PSPLIM", 0xb },
23025 {"primask", 0x10}, {"PRIMASK", 0x10},
23026 {"basepri", 0x11}, {"BASEPRI", 0x11},
23027 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23028 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23029 {"control", 0x14}, {"CONTROL", 0x14},
23030 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23031 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23032 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23033 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23034 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23035 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23036 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23037 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23038 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
23039 };
23040
23041 /* Table of all shift-in-operand names. */
23042 static const struct asm_shift_name shift_names [] =
23043 {
23044 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23045 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23046 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23047 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23048 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
23049 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23050 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
23051 };
23052
23053 /* Table of all explicit relocation names. */
23054 #ifdef OBJ_ELF
23055 static struct reloc_entry reloc_names[] =
23056 {
23057 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23058 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23059 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23060 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23061 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23062 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23063 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23064 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23065 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23066 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
23067 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
23068 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23069 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
23070 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
23071 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
23072 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
23073 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
23074 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23075 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23076 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23077 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23078 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23079 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
23080 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23081 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23082 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23083 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
23084 };
23085 #endif
23086
23087 /* Table of all conditional affixes. */
23088 static const struct asm_cond conds[] =
23089 {
23090 {"eq", 0x0},
23091 {"ne", 0x1},
23092 {"cs", 0x2}, {"hs", 0x2},
23093 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23094 {"mi", 0x4},
23095 {"pl", 0x5},
23096 {"vs", 0x6},
23097 {"vc", 0x7},
23098 {"hi", 0x8},
23099 {"ls", 0x9},
23100 {"ge", 0xa},
23101 {"lt", 0xb},
23102 {"gt", 0xc},
23103 {"le", 0xd},
23104 {"al", 0xe}
23105 };
23106 static const struct asm_cond vconds[] =
23107 {
23108 {"t", 0xf},
23109 {"e", 0x10}
23110 };
23111
23112 #define UL_BARRIER(L,U,CODE,FEAT) \
23113 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23114 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
23115
23116 static struct asm_barrier_opt barrier_opt_names[] =
23117 {
23118 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23119 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23120 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23121 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23122 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23123 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23124 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23125 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23126 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23127 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23128 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23129 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23130 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23131 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23132 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23133 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
23134 };
23135
23136 #undef UL_BARRIER
23137
23138 /* Table of ARM-format instructions. */
23139
23140 /* Macros for gluing together operand strings. N.B. In all cases
23141 other than OPS0, the trailing OP_stop comes from default
23142 zero-initialization of the unspecified elements of the array. */
23143 #define OPS0() { OP_stop, }
23144 #define OPS1(a) { OP_##a, }
23145 #define OPS2(a,b) { OP_##a,OP_##b, }
23146 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23147 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23148 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23149 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23150
23151 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23152 This is useful when mixing operands for ARM and THUMB, i.e. using the
23153 MIX_ARM_THUMB_OPERANDS macro.
23154 In order to use these macros, prefix the number of operands with _
23155 e.g. _3. */
23156 #define OPS_1(a) { a, }
23157 #define OPS_2(a,b) { a,b, }
23158 #define OPS_3(a,b,c) { a,b,c, }
23159 #define OPS_4(a,b,c,d) { a,b,c,d, }
23160 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23161 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23162
23163 /* These macros abstract out the exact format of the mnemonic table and
23164 save some repeated characters. */
23165
23166 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23167 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23168 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23169 THUMB_VARIANT, do_##ae, do_##te, 0 }
23170
23171 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23172 a T_MNEM_xyz enumerator. */
23173 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23174 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23175 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23176 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23177
23178 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23179 infix after the third character. */
23180 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23181 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23182 THUMB_VARIANT, do_##ae, do_##te, 0 }
23183 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23184 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23185 THUMB_VARIANT, do_##ae, do_##te, 0 }
23186 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23187 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23188 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23189 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23190 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23191 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23192 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23193 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23194
23195 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23196 field is still 0xE. Many of the Thumb variants can be executed
23197 conditionally, so this is checked separately. */
23198 #define TUE(mnem, op, top, nops, ops, ae, te) \
23199 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23200 THUMB_VARIANT, do_##ae, do_##te, 0 }
23201
23202 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23203 Used by mnemonics that have very minimal differences in the encoding for
23204 ARM and Thumb variants and can be handled in a common function. */
23205 #define TUEc(mnem, op, top, nops, ops, en) \
23206 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23207 THUMB_VARIANT, do_##en, do_##en, 0 }
23208
23209 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23210 condition code field. */
23211 #define TUF(mnem, op, top, nops, ops, ae, te) \
23212 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23213 THUMB_VARIANT, do_##ae, do_##te, 0 }
23214
23215 /* ARM-only variants of all the above. */
23216 #define CE(mnem, op, nops, ops, ae) \
23217 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23218
23219 #define C3(mnem, op, nops, ops, ae) \
23220 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23221
23222 /* Thumb-only variants of TCE and TUE. */
23223 #define ToC(mnem, top, nops, ops, te) \
23224 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23225 do_##te, 0 }
23226
23227 #define ToU(mnem, top, nops, ops, te) \
23228 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23229 NULL, do_##te, 0 }
23230
23231 /* T_MNEM_xyz enumerator variants of ToC. */
23232 #define toC(mnem, top, nops, ops, te) \
23233 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23234 do_##te, 0 }
23235
23236 /* T_MNEM_xyz enumerator variants of ToU. */
23237 #define toU(mnem, top, nops, ops, te) \
23238 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23239 NULL, do_##te, 0 }
23240
23241 /* Legacy mnemonics that always have conditional infix after the third
23242 character. */
23243 #define CL(mnem, op, nops, ops, ae) \
23244 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23245 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23246
23247 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23248 #define cCE(mnem, op, nops, ops, ae) \
23249 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23250
23251 /* mov instructions that are shared between coprocessor and MVE. */
23252 #define mcCE(mnem, op, nops, ops, ae) \
23253 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23254
23255 /* Legacy coprocessor instructions where conditional infix and conditional
23256 suffix are ambiguous. For consistency this includes all FPA instructions,
23257 not just the potentially ambiguous ones. */
23258 #define cCL(mnem, op, nops, ops, ae) \
23259 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23260 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23261
23262 /* Coprocessor, takes either a suffix or a position-3 infix
23263 (for an FPA corner case). */
23264 #define C3E(mnem, op, nops, ops, ae) \
23265 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23266 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23267
23268 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23269 { m1 #m2 m3, OPS##nops ops, \
23270 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23271 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23272
23273 #define CM(m1, m2, op, nops, ops, ae) \
23274 xCM_ (m1, , m2, op, nops, ops, ae), \
23275 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23276 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23277 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23278 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23279 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23280 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23281 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23282 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23283 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23284 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23285 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23286 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23287 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23288 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23289 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23290 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23291 xCM_ (m1, le, m2, op, nops, ops, ae), \
23292 xCM_ (m1, al, m2, op, nops, ops, ae)
23293
23294 #define UE(mnem, op, nops, ops, ae) \
23295 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23296
23297 #define UF(mnem, op, nops, ops, ae) \
23298 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23299
23300 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23301 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23302 use the same encoding function for each. */
23303 #define NUF(mnem, op, nops, ops, enc) \
23304 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23305 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23306
23307 /* Neon data processing, version which indirects through neon_enc_tab for
23308 the various overloaded versions of opcodes. */
23309 #define nUF(mnem, op, nops, ops, enc) \
23310 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23311 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23312
23313 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23314 version. */
23315 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23316 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23317 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23318
23319 #define NCE(mnem, op, nops, ops, enc) \
23320 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23321
23322 #define NCEF(mnem, op, nops, ops, enc) \
23323 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23324
23325 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23326 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23327 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23328 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23329
23330 #define nCE(mnem, op, nops, ops, enc) \
23331 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23332
23333 #define nCEF(mnem, op, nops, ops, enc) \
23334 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23335
23336 /* */
23337 #define mCEF(mnem, op, nops, ops, enc) \
23338 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23339 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23340
23341
23342 /* nCEF but for MVE predicated instructions. */
23343 #define mnCEF(mnem, op, nops, ops, enc) \
23344 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23345
23346 /* nCE but for MVE predicated instructions. */
23347 #define mnCE(mnem, op, nops, ops, enc) \
23348 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23349
23350 /* NUF but for potentially MVE predicated instructions. */
23351 #define MNUF(mnem, op, nops, ops, enc) \
23352 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23353 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23354
23355 /* nUF but for potentially MVE predicated instructions. */
23356 #define mnUF(mnem, op, nops, ops, enc) \
23357 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23358 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23359
23360 /* ToC but for potentially MVE predicated instructions. */
23361 #define mToC(mnem, top, nops, ops, te) \
23362 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23363 do_##te, 1 }
23364
23365 /* NCE but for MVE predicated instructions. */
23366 #define MNCE(mnem, op, nops, ops, enc) \
23367 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23368
23369 /* NCEF but for MVE predicated instructions. */
23370 #define MNCEF(mnem, op, nops, ops, enc) \
23371 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23372 #define do_0 0
23373
23374 static const struct asm_opcode insns[] =
23375 {
23376 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23377 #define THUMB_VARIANT & arm_ext_v4t
23378 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23379 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23380 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23381 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23382 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23383 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23384 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23385 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23386 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23387 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23388 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23389 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23390 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23391 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23392 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23393 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23394
23395 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23396 for setting PSR flag bits. They are obsolete in V6 and do not
23397 have Thumb equivalents. */
23398 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23399 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23400 CL("tstp", 110f000, 2, (RR, SH), cmp),
23401 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23402 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23403 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23404 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23405 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23406 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23407
23408 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23409 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23410 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23411 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23412
23413 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23414 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23415 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23416 OP_RRnpc),
23417 OP_ADDRGLDR),ldst, t_ldst),
23418 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23419
23420 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23421 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23422 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23423 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23424 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23425 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23426
23427 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23428 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23429
23430 /* Pseudo ops. */
23431 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23432 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23433 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23434 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23435
23436 /* Thumb-compatibility pseudo ops. */
23437 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23438 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23439 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23440 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23441 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23442 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23443 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23444 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23445 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23446 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23447 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23448 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23449
23450 /* These may simplify to neg. */
23451 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23452 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23453
23454 #undef THUMB_VARIANT
23455 #define THUMB_VARIANT & arm_ext_os
23456
23457 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23458 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23459
23460 #undef THUMB_VARIANT
23461 #define THUMB_VARIANT & arm_ext_v6
23462
23463 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23464
23465 /* V1 instructions with no Thumb analogue prior to V6T2. */
23466 #undef THUMB_VARIANT
23467 #define THUMB_VARIANT & arm_ext_v6t2
23468
23469 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23470 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23471 CL("teqp", 130f000, 2, (RR, SH), cmp),
23472
23473 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23474 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23475 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23476 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23477
23478 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23479 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23480
23481 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23482 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23483
23484 /* V1 instructions with no Thumb analogue at all. */
23485 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23486 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23487
23488 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23489 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23490 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23491 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23492 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23493 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23494 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23495 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23496
23497 #undef ARM_VARIANT
23498 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23499 #undef THUMB_VARIANT
23500 #define THUMB_VARIANT & arm_ext_v4t
23501
23502 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23503 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23504
23505 #undef THUMB_VARIANT
23506 #define THUMB_VARIANT & arm_ext_v6t2
23507
23508 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23509 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23510
23511 /* Generic coprocessor instructions. */
23512 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23513 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23514 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23515 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23516 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23517 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23518 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23519
23520 #undef ARM_VARIANT
23521 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23522
23523 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23524 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23525
23526 #undef ARM_VARIANT
23527 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23528 #undef THUMB_VARIANT
23529 #define THUMB_VARIANT & arm_ext_msr
23530
23531 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23532 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23533
23534 #undef ARM_VARIANT
23535 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23536 #undef THUMB_VARIANT
23537 #define THUMB_VARIANT & arm_ext_v6t2
23538
23539 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23540 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23541 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23542 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23543 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23544 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23545 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23546 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23547
23548 #undef ARM_VARIANT
23549 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23550 #undef THUMB_VARIANT
23551 #define THUMB_VARIANT & arm_ext_v4t
23552
23553 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23554 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23555 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23556 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23557 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23558 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23559
23560 #undef ARM_VARIANT
23561 #define ARM_VARIANT & arm_ext_v4t_5
23562
23563 /* ARM Architecture 4T. */
23564 /* Note: bx (and blx) are required on V5, even if the processor does
23565 not support Thumb. */
23566 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23567
23568 #undef ARM_VARIANT
23569 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23570 #undef THUMB_VARIANT
23571 #define THUMB_VARIANT & arm_ext_v5t
23572
23573 /* Note: blx has 2 variants; the .value coded here is for
23574 BLX(2). Only this variant has conditional execution. */
23575 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23576 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23577
23578 #undef THUMB_VARIANT
23579 #define THUMB_VARIANT & arm_ext_v6t2
23580
23581 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23582 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23583 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23584 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23585 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23586 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23587 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23588 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23589
23590 #undef ARM_VARIANT
23591 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23592 #undef THUMB_VARIANT
23593 #define THUMB_VARIANT & arm_ext_v5exp
23594
23595 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23596 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23597 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23598 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23599
23600 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23601 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23602
23603 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23604 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23605 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23606 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23607
23608 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23609 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23610 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23611 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23612
23613 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23614 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23615
23616 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23617 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23618 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23619 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23620
23621 #undef ARM_VARIANT
23622 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23623 #undef THUMB_VARIANT
23624 #define THUMB_VARIANT & arm_ext_v6t2
23625
23626 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23627 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23628 ldrd, t_ldstd),
23629 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23630 ADDRGLDRS), ldrd, t_ldstd),
23631
23632 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23633 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23634
23635 #undef ARM_VARIANT
23636 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23637
23638 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23639
23640 #undef ARM_VARIANT
23641 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23642 #undef THUMB_VARIANT
23643 #define THUMB_VARIANT & arm_ext_v6
23644
23645 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23646 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23647 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23648 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23649 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23650 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23651 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23652 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23653 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23654 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23655
23656 #undef THUMB_VARIANT
23657 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23658
23659 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23660 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23661 strex, t_strex),
23662 #undef THUMB_VARIANT
23663 #define THUMB_VARIANT & arm_ext_v6t2
23664
23665 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23666 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23667
23668 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23669 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23670
23671 /* ARM V6 not included in V7M. */
23672 #undef THUMB_VARIANT
23673 #define THUMB_VARIANT & arm_ext_v6_notm
23674 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23675 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23676 UF(rfeib, 9900a00, 1, (RRw), rfe),
23677 UF(rfeda, 8100a00, 1, (RRw), rfe),
23678 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23679 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23680 UF(rfefa, 8100a00, 1, (RRw), rfe),
23681 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23682 UF(rfeed, 9900a00, 1, (RRw), rfe),
23683 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23684 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23685 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23686 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23687 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23688 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23689 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23690 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23691 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23692 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23693
23694 /* ARM V6 not included in V7M (eg. integer SIMD). */
23695 #undef THUMB_VARIANT
23696 #define THUMB_VARIANT & arm_ext_v6_dsp
23697 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23698 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23699 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23700 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23701 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23702 /* Old name for QASX. */
23703 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23704 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23705 /* Old name for QSAX. */
23706 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23707 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23708 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23709 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23710 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23711 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23712 /* Old name for SASX. */
23713 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23714 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23715 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23716 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23717 /* Old name for SHASX. */
23718 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23719 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23720 /* Old name for SHSAX. */
23721 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23722 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23723 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23724 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23725 /* Old name for SSAX. */
23726 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23727 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23728 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23729 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23730 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23731 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23732 /* Old name for UASX. */
23733 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23734 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23735 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23736 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23737 /* Old name for UHASX. */
23738 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23739 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23740 /* Old name for UHSAX. */
23741 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23742 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23743 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23744 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23745 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23746 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23747 /* Old name for UQASX. */
23748 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23749 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23750 /* Old name for UQSAX. */
23751 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23752 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23753 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23754 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23755 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23756 /* Old name for USAX. */
23757 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23758 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23759 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23760 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23761 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23762 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23763 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23764 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23765 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23766 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23767 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23768 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23769 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23770 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23771 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23772 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23773 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23774 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23775 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23776 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23777 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23778 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23779 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23780 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23781 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23782 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23783 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23784 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23785 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23786 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23787 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23788 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23789 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23790 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23791
23792 #undef ARM_VARIANT
23793 #define ARM_VARIANT & arm_ext_v6k_v6t2
23794 #undef THUMB_VARIANT
23795 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23796
23797 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23798 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23799 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23800 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23801
23802 #undef THUMB_VARIANT
23803 #define THUMB_VARIANT & arm_ext_v6_notm
23804 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23805 ldrexd, t_ldrexd),
23806 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23807 RRnpcb), strexd, t_strexd),
23808
23809 #undef THUMB_VARIANT
23810 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23811 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23812 rd_rn, rd_rn),
23813 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23814 rd_rn, rd_rn),
23815 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23816 strex, t_strexbh),
23817 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23818 strex, t_strexbh),
23819 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23820
23821 #undef ARM_VARIANT
23822 #define ARM_VARIANT & arm_ext_sec
23823 #undef THUMB_VARIANT
23824 #define THUMB_VARIANT & arm_ext_sec
23825
23826 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23827
23828 #undef ARM_VARIANT
23829 #define ARM_VARIANT & arm_ext_virt
23830 #undef THUMB_VARIANT
23831 #define THUMB_VARIANT & arm_ext_virt
23832
23833 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23834 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23835
23836 #undef ARM_VARIANT
23837 #define ARM_VARIANT & arm_ext_pan
23838 #undef THUMB_VARIANT
23839 #define THUMB_VARIANT & arm_ext_pan
23840
23841 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23842
23843 #undef ARM_VARIANT
23844 #define ARM_VARIANT & arm_ext_v6t2
23845 #undef THUMB_VARIANT
23846 #define THUMB_VARIANT & arm_ext_v6t2
23847
23848 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23849 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23850 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23851 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23852
23853 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23854 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23855
23856 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23857 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23858 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23859 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23860
23861 #undef ARM_VARIANT
23862 #define ARM_VARIANT & arm_ext_v3
23863 #undef THUMB_VARIANT
23864 #define THUMB_VARIANT & arm_ext_v6t2
23865
23866 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23867 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23868 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23869
23870 #undef ARM_VARIANT
23871 #define ARM_VARIANT & arm_ext_v6t2
23872 #undef THUMB_VARIANT
23873 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23874 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23875 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23876
23877 /* Thumb-only instructions. */
23878 #undef ARM_VARIANT
23879 #define ARM_VARIANT NULL
23880 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23881 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23882
23883 /* ARM does not really have an IT instruction, so always allow it.
23884 The opcode is copied from Thumb in order to allow warnings in
23885 -mimplicit-it=[never | arm] modes. */
23886 #undef ARM_VARIANT
23887 #define ARM_VARIANT & arm_ext_v1
23888 #undef THUMB_VARIANT
23889 #define THUMB_VARIANT & arm_ext_v6t2
23890
23891 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23892 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23893 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23894 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23895 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23896 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23897 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23898 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23899 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23900 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23901 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23902 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23903 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23904 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23905 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23906 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23907 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23908 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23909
23910 /* Thumb2 only instructions. */
23911 #undef ARM_VARIANT
23912 #define ARM_VARIANT NULL
23913
23914 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23915 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23916 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23917 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23918 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23919 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23920
23921 /* Hardware division instructions. */
23922 #undef ARM_VARIANT
23923 #define ARM_VARIANT & arm_ext_adiv
23924 #undef THUMB_VARIANT
23925 #define THUMB_VARIANT & arm_ext_div
23926
23927 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23928 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23929
23930 /* ARM V6M/V7 instructions. */
23931 #undef ARM_VARIANT
23932 #define ARM_VARIANT & arm_ext_barrier
23933 #undef THUMB_VARIANT
23934 #define THUMB_VARIANT & arm_ext_barrier
23935
23936 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23937 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23938 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23939
23940 /* ARM V7 instructions. */
23941 #undef ARM_VARIANT
23942 #define ARM_VARIANT & arm_ext_v7
23943 #undef THUMB_VARIANT
23944 #define THUMB_VARIANT & arm_ext_v7
23945
23946 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23947 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23948
23949 #undef ARM_VARIANT
23950 #define ARM_VARIANT & arm_ext_mp
23951 #undef THUMB_VARIANT
23952 #define THUMB_VARIANT & arm_ext_mp
23953
23954 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23955
23956 /* AArchv8 instructions. */
23957 #undef ARM_VARIANT
23958 #define ARM_VARIANT & arm_ext_v8
23959
23960 /* Instructions shared between armv8-a and armv8-m. */
23961 #undef THUMB_VARIANT
23962 #define THUMB_VARIANT & arm_ext_atomics
23963
23964 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23965 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23966 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23967 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23968 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23969 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23970 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23971 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23972 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23973 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23974 stlex, t_stlex),
23975 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23976 stlex, t_stlex),
23977 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23978 stlex, t_stlex),
23979 #undef THUMB_VARIANT
23980 #define THUMB_VARIANT & arm_ext_v8
23981
23982 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23983 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23984 ldrexd, t_ldrexd),
23985 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23986 strexd, t_strexd),
23987
23988 /* Defined in V8 but is in undefined encoding space for earlier
23989 architectures. However earlier architectures are required to treat
23990 this instuction as a semihosting trap as well. Hence while not explicitly
23991 defined as such, it is in fact correct to define the instruction for all
23992 architectures. */
23993 #undef THUMB_VARIANT
23994 #define THUMB_VARIANT & arm_ext_v1
23995 #undef ARM_VARIANT
23996 #define ARM_VARIANT & arm_ext_v1
23997 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23998
23999 /* ARMv8 T32 only. */
24000 #undef ARM_VARIANT
24001 #define ARM_VARIANT NULL
24002 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24003 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24004 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24005
24006 /* FP for ARMv8. */
24007 #undef ARM_VARIANT
24008 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24009 #undef THUMB_VARIANT
24010 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24011
24012 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24013 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24014 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24015 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24016 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24017 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24018 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24019 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24020 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24021 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24022 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24023
24024 /* Crypto v1 extensions. */
24025 #undef ARM_VARIANT
24026 #define ARM_VARIANT & fpu_crypto_ext_armv8
24027 #undef THUMB_VARIANT
24028 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24029
24030 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24031 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24032 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24033 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
24034 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24035 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24036 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24037 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24038 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24039 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24040 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
24041 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24042 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24043 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
24044
24045 #undef ARM_VARIANT
24046 #define ARM_VARIANT & crc_ext_armv8
24047 #undef THUMB_VARIANT
24048 #define THUMB_VARIANT & crc_ext_armv8
24049 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24050 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24051 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24052 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24053 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24054 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24055
24056 /* ARMv8.2 RAS extension. */
24057 #undef ARM_VARIANT
24058 #define ARM_VARIANT & arm_ext_ras
24059 #undef THUMB_VARIANT
24060 #define THUMB_VARIANT & arm_ext_ras
24061 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24062
24063 #undef ARM_VARIANT
24064 #define ARM_VARIANT & arm_ext_v8_3
24065 #undef THUMB_VARIANT
24066 #define THUMB_VARIANT & arm_ext_v8_3
24067 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24068
24069 #undef ARM_VARIANT
24070 #define ARM_VARIANT & fpu_neon_ext_dotprod
24071 #undef THUMB_VARIANT
24072 #define THUMB_VARIANT & fpu_neon_ext_dotprod
24073 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24074 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24075
24076 #undef ARM_VARIANT
24077 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
24078 #undef THUMB_VARIANT
24079 #define THUMB_VARIANT NULL
24080
24081 cCE("wfs", e200110, 1, (RR), rd),
24082 cCE("rfs", e300110, 1, (RR), rd),
24083 cCE("wfc", e400110, 1, (RR), rd),
24084 cCE("rfc", e500110, 1, (RR), rd),
24085
24086 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24087 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24088 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24089 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24090
24091 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24092 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24093 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24094 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24095
24096 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24097 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24098 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24099 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24100 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24101 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24102 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24103 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24104 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24105 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24106 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24107 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24108
24109 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24110 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24111 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24112 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24113 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24114 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24115 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24116 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24117 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24118 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24119 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24120 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24121
24122 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24123 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24124 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24125 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24126 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24127 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24128 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24129 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24130 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24131 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24132 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24133 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24134
24135 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24136 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24137 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24138 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24139 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24140 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24141 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24142 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24143 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24144 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24145 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24146 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24147
24148 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24149 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24150 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24151 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24152 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24153 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24154 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24155 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24156 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24157 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24158 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24159 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24160
24161 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24162 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24163 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24164 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24165 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24166 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24167 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24168 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24169 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24170 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24171 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24172 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24173
24174 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24175 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24176 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24177 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24178 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24179 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24180 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24181 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24182 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24183 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24184 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24185 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24186
24187 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24188 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24189 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24190 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24191 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24192 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24193 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24194 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24195 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24196 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24197 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24198 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24199
24200 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24201 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24202 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24203 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24204 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24205 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24206 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24207 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24208 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24209 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24210 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24211 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24212
24213 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24214 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24215 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24216 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24217 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24218 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24219 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24220 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24221 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24222 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24223 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24224 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24225
24226 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24227 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24228 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24229 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24230 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24231 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24232 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24233 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24234 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24235 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24236 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24237 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24238
24239 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24240 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24241 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24242 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24243 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24244 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24245 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24246 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24247 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24248 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24249 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24250 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24251
24252 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24253 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24254 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24255 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24256 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24257 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24258 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24259 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24260 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24261 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24262 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24263 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24264
24265 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24266 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24267 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24268 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24269 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24270 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24271 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24272 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24273 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24274 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24275 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24276 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24277
24278 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24279 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24280 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24281 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24282 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24283 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24284 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24285 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24286 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24287 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24288 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24289 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24290
24291 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24292 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24293 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24294 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24295 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24296 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24297 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24298 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24299 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24300 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24301 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24302 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24303
24304 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24305 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24306 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24307 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24308 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24309 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24310 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24311 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24312 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24313 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24314 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24315 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24316
24317 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24318 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24319 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24320 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24321 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24322 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24323 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24324 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24325 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24326 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24327 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24328 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24329
24330 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24331 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24332 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24333 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24334 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24335 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24336 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24337 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24338 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24339 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24340 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24341 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24342
24343 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24344 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24345 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24346 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24347 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24348 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24349 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24350 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24351 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24352 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24353 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24354 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24355
24356 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24357 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24358 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24359 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24360 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24361 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24362 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24363 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24364 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24365 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24366 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24367 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24368
24369 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24370 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24371 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24372 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24373 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24374 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24375 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24376 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24377 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24378 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24379 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24380 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24381
24382 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24383 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24384 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24385 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24386 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24387 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24388 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24389 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24390 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24391 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24392 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24393 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24394
24395 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24396 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24397 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24398 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24399 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24400 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24401 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24402 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24403 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24404 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24405 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24406 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24407
24408 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24409 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24410 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24411 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24412 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24413 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24414 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24415 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24416 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24417 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24418 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24419 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24420
24421 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24422 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24423 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24424 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24425 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24426 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24427 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24428 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24429 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24430 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24431 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24432 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24433
24434 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24435 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24436 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24437 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24438 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24439 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24440 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24441 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24442 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24443 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24444 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24445 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24446
24447 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24448 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24449 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24450 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24451 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24452 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24453 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24454 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24455 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24456 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24457 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24458 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24459
24460 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24461 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24462 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24463 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24464 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24465 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24466 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24467 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24468 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24469 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24470 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24471 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24472
24473 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24474 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24475 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24476 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24477
24478 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24479 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24480 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24481 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24482 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24483 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24484 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24485 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24486 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24487 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24488 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24489 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24490
24491 /* The implementation of the FIX instruction is broken on some
24492 assemblers, in that it accepts a precision specifier as well as a
24493 rounding specifier, despite the fact that this is meaningless.
24494 To be more compatible, we accept it as well, though of course it
24495 does not set any bits. */
24496 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24497 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24498 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24499 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24500 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24501 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24502 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24503 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24504 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24505 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24506 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24507 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24508 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24509
24510 /* Instructions that were new with the real FPA, call them V2. */
24511 #undef ARM_VARIANT
24512 #define ARM_VARIANT & fpu_fpa_ext_v2
24513
24514 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24515 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24516 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24517 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24518 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24519 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24520
24521 #undef ARM_VARIANT
24522 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24523 #undef THUMB_VARIANT
24524 #define THUMB_VARIANT & arm_ext_v6t2
24525 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24526 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24527 #undef THUMB_VARIANT
24528
24529 /* Moves and type conversions. */
24530 cCE("fmstat", ef1fa10, 0, (), noargs),
24531 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24532 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24533 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24534 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24535 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24536 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24537 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24538 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24539
24540 /* Memory operations. */
24541 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24542 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24543 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24544 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24545 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24546 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24547 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24548 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24549 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24550 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24551 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24552 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24553 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24554 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24555 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24556 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24557 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24558 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24559
24560 /* Monadic operations. */
24561 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24562 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24563 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24564
24565 /* Dyadic operations. */
24566 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24567 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24568 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24569 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24570 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24571 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24572 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24573 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24574 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24575
24576 /* Comparisons. */
24577 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24578 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24579 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24580 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24581
24582 /* Double precision load/store are still present on single precision
24583 implementations. */
24584 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24585 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24586 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24587 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24588 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24589 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24590 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24591 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24592 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24593 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24594
24595 #undef ARM_VARIANT
24596 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24597
24598 /* Moves and type conversions. */
24599 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24600 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24601 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24602 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24603 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24604 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24605 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24606 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24607 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24608 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24609 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24610 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24611
24612 /* Monadic operations. */
24613 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24614 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24615 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24616
24617 /* Dyadic operations. */
24618 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24619 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24620 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24621 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24622 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24623 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24624 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24625 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24626 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24627
24628 /* Comparisons. */
24629 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24630 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24631 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24632 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24633
24634 /* Instructions which may belong to either the Neon or VFP instruction sets.
24635 Individual encoder functions perform additional architecture checks. */
24636 #undef ARM_VARIANT
24637 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24638 #undef THUMB_VARIANT
24639 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24640
24641 /* These mnemonics are unique to VFP. */
24642 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24643 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24644 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24645 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24646 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24647 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24648 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24649 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24650
24651 /* Mnemonics shared by Neon and VFP. */
24652 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24653
24654 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24655 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24656 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24657 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24658 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24659 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24660
24661 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24662 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24663 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24664 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24665
24666
24667 /* NOTE: All VMOV encoding is special-cased! */
24668 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24669
24670 #undef THUMB_VARIANT
24671 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24672 by different feature bits. Since we are setting the Thumb guard, we can
24673 require Thumb-1 which makes it a nop guard and set the right feature bit in
24674 do_vldr_vstr (). */
24675 #define THUMB_VARIANT & arm_ext_v4t
24676 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24677 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24678
24679 #undef ARM_VARIANT
24680 #define ARM_VARIANT & arm_ext_fp16
24681 #undef THUMB_VARIANT
24682 #define THUMB_VARIANT & arm_ext_fp16
24683 /* New instructions added from v8.2, allowing the extraction and insertion of
24684 the upper 16 bits of a 32-bit vector register. */
24685 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24686 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24687
24688 /* New backported fma/fms instructions optional in v8.2. */
24689 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24690 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24691
24692 #undef THUMB_VARIANT
24693 #define THUMB_VARIANT & fpu_neon_ext_v1
24694 #undef ARM_VARIANT
24695 #define ARM_VARIANT & fpu_neon_ext_v1
24696
24697 /* Data processing with three registers of the same length. */
24698 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24699 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24700 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24701 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24702 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24703 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24704 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24705 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24706 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24707 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24708 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24709 /* If not immediate, fall back to neon_dyadic_i64_su.
24710 shl should accept I8 I16 I32 I64,
24711 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24712 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24713 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
24714 /* Logic ops, types optional & ignored. */
24715 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24716 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24717 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24718 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24719 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24720 /* Bitfield ops, untyped. */
24721 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24722 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24723 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24724 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24725 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24726 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24727 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24728 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24729 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24730 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24731 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24732 back to neon_dyadic_if_su. */
24733 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24734 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24735 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24736 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24737 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24738 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24739 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24740 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24741 /* Comparison. Type I8 I16 I32 F32. */
24742 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24743 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24744 /* As above, D registers only. */
24745 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24746 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24747 /* Int and float variants, signedness unimportant. */
24748 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24749 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24750 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24751 /* Add/sub take types I8 I16 I32 I64 F32. */
24752 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24753 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24754 /* vtst takes sizes 8, 16, 32. */
24755 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24756 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24757 /* VMUL takes I8 I16 I32 F32 P8. */
24758 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24759 /* VQD{R}MULH takes S16 S32. */
24760 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24761 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24762 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24763 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24764 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24765 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24766 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24767 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24768 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24769 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24770 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24771 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24772 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24773 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24774 /* ARM v8.1 extension. */
24775 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24776 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24777 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24778
24779 /* Two address, int/float. Types S8 S16 S32 F32. */
24780 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24781 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24782
24783 /* Data processing with two registers and a shift amount. */
24784 /* Right shifts, and variants with rounding.
24785 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24786 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24787 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24788 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24789 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24790 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24791 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24792 /* Shift and insert. Sizes accepted 8 16 32 64. */
24793 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24794 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24795 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24796 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24797 /* Right shift immediate, saturating & narrowing, with rounding variants.
24798 Types accepted S16 S32 S64 U16 U32 U64. */
24799 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24800 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24801 /* As above, unsigned. Types accepted S16 S32 S64. */
24802 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24803 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24804 /* Right shift narrowing. Types accepted I16 I32 I64. */
24805 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24806 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24807 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24808 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24809 /* CVT with optional immediate for fixed-point variant. */
24810 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24811
24812 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24813
24814 /* Data processing, three registers of different lengths. */
24815 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24816 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24817 /* If not scalar, fall back to neon_dyadic_long.
24818 Vector types as above, scalar types S16 S32 U16 U32. */
24819 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24820 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24821 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24822 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24823 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24824 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24825 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24826 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24827 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24828 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24829 /* Saturating doubling multiplies. Types S16 S32. */
24830 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24831 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24832 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24833 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24834 S16 S32 U16 U32. */
24835 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24836
24837 /* Extract. Size 8. */
24838 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24839 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24840
24841 /* Two registers, miscellaneous. */
24842 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24843 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24844 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24845 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24846 /* Vector replicate. Sizes 8 16 32. */
24847 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24848 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24849 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24850 /* VMOVN. Types I16 I32 I64. */
24851 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24852 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24853 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24854 /* VQMOVUN. Types S16 S32 S64. */
24855 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24856 /* VZIP / VUZP. Sizes 8 16 32. */
24857 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24858 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24859 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24860 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24861 /* VQABS / VQNEG. Types S8 S16 S32. */
24862 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24863 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24864 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24865 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24866 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24867 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24868 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24869 /* Reciprocal estimates. Types U32 F16 F32. */
24870 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24871 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24872 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24873 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24874 /* VCLS. Types S8 S16 S32. */
24875 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24876 /* VCLZ. Types I8 I16 I32. */
24877 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24878 /* VCNT. Size 8. */
24879 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24880 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24881 /* Two address, untyped. */
24882 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24883 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24884 /* VTRN. Sizes 8 16 32. */
24885 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24886 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24887
24888 /* Table lookup. Size 8. */
24889 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24890 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24891
24892 #undef THUMB_VARIANT
24893 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24894 #undef ARM_VARIANT
24895 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24896
24897 /* Neon element/structure load/store. */
24898 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24899 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24900 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24901 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24902 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24903 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24904 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24905 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24906
24907 #undef THUMB_VARIANT
24908 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24909 #undef ARM_VARIANT
24910 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24911 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24912 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24913 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24914 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24915 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24916 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24917 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24918 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24919 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24920
24921 #undef THUMB_VARIANT
24922 #define THUMB_VARIANT & fpu_vfp_ext_v3
24923 #undef ARM_VARIANT
24924 #define ARM_VARIANT & fpu_vfp_ext_v3
24925
24926 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24927 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24928 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24929 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24930 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24931 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24932 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24933 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24934 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24935
24936 #undef ARM_VARIANT
24937 #define ARM_VARIANT & fpu_vfp_ext_fma
24938 #undef THUMB_VARIANT
24939 #define THUMB_VARIANT & fpu_vfp_ext_fma
24940 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24941 VFP FMA variant; NEON and VFP FMA always includes the NEON
24942 FMA instructions. */
24943 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24944 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24945
24946 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24947 the v form should always be used. */
24948 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24949 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24950 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24951 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24952 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24953 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24954
24955 #undef THUMB_VARIANT
24956 #undef ARM_VARIANT
24957 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24958
24959 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24960 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24961 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24962 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24963 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24964 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24965 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24966 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24967
24968 #undef ARM_VARIANT
24969 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24970
24971 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24972 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24973 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24974 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24975 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24976 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24977 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24978 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24979 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24980 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24981 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24982 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24983 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24984 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24985 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24986 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24987 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24988 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24989 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24990 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24991 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24992 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24993 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24994 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24995 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24996 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24997 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24998 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24999 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25000 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25001 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25002 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25003 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25004 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25005 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25006 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25007 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25008 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25009 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25010 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25011 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25012 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25013 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25014 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25015 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25016 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25017 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25018 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25019 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25020 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25021 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25022 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25023 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25024 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25025 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25026 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25027 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25028 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25029 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25030 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25031 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25032 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25033 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25034 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25035 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25036 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25037 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25038 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25039 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25040 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25041 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25042 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25043 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25044 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25045 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25046 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25047 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25048 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25049 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25050 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25051 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25052 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25053 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25054 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25055 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25056 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25057 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25058 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25059 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25060 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25061 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25062 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25063 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25064 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25065 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25066 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25067 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25068 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25069 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25070 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25071 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25072 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25073 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25074 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25075 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25076 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25077 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25078 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25079 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25080 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25081 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25082 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25083 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25084 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25085 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25086 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25087 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25088 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25089 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25090 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25091 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25092 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25093 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25094 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25095 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25096 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25097 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25098 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25099 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25100 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25101 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25102 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25103 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25104 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25105 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25106 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25107 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25108 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25109 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25110 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25111 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25112 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25113 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25114 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25115 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25116 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25117 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25118 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25119 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25120 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25121 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25122 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25123 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25124 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25125 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25126 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25127 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25128 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25129 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25130 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25131 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25132 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
25133
25134 #undef ARM_VARIANT
25135 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25136
25137 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25138 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25139 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25140 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25141 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25142 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25143 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25144 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25145 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25146 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25147 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25148 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25149 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25150 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25151 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25152 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25153 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25154 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25155 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25156 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25157 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25158 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25159 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25160 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25161 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25162 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25163 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25164 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25165 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25166 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25167 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25168 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25169 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25170 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25171 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25172 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25173 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25174 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25175 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25176 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25177 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25178 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25179 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25180 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25181 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25182 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25183 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25184 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25185 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25186 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25187 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25188 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25189 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25190 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25191 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25192 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25193 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25194
25195 #undef ARM_VARIANT
25196 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25197
25198 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25199 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25200 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25201 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25202 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25203 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25204 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25205 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25206 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25207 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25208 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25209 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25210 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25211 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25212 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25213 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25214 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25215 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25216 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25217 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25218 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25219 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25220 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25221 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25222 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25223 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25224 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25225 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25226 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25227 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25228 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25229 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25230 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25231 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25232 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25233 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25234 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25235 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25236 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25237 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25238 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25239 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25240 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25241 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25242 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25243 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25244 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25245 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25246 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25247 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25248 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25249 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25250 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25251 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25252 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25253 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25254 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25255 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25256 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25257 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25258 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25259 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25260 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25261 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25262 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25263 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25264 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25265 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25266 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25267 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25268 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25269 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25270 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25271 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25272 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25273 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25274
25275 /* ARMv8.5-A instructions. */
25276 #undef ARM_VARIANT
25277 #define ARM_VARIANT & arm_ext_sb
25278 #undef THUMB_VARIANT
25279 #define THUMB_VARIANT & arm_ext_sb
25280 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25281
25282 #undef ARM_VARIANT
25283 #define ARM_VARIANT & arm_ext_predres
25284 #undef THUMB_VARIANT
25285 #define THUMB_VARIANT & arm_ext_predres
25286 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25287 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25288 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25289
25290 /* ARMv8-M instructions. */
25291 #undef ARM_VARIANT
25292 #define ARM_VARIANT NULL
25293 #undef THUMB_VARIANT
25294 #define THUMB_VARIANT & arm_ext_v8m
25295 ToU("sg", e97fe97f, 0, (), noargs),
25296 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25297 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25298 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25299 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25300 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25301 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25302
25303 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25304 instructions behave as nop if no VFP is present. */
25305 #undef THUMB_VARIANT
25306 #define THUMB_VARIANT & arm_ext_v8m_main
25307 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25308 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25309
25310 /* Armv8.1-M Mainline instructions. */
25311 #undef THUMB_VARIANT
25312 #define THUMB_VARIANT & arm_ext_v8_1m_main
25313 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25314 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25315 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25316 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25317 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25318 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25319 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25320 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25321 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25322
25323 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25324 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25325 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25326 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25327 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25328
25329 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25330 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25331 toU("le", _le, 2, (oLR, EXP), t_loloop),
25332
25333 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25334 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25335
25336 #undef THUMB_VARIANT
25337 #define THUMB_VARIANT & mve_ext
25338 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25339 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25340 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25341 ToC("uqrshll", ea51010d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25342 ToC("sqrshrl", ea51012d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25343 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25344 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25345 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25346 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25347 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25348 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25349 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25350 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25351 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25352 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25353
25354 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25355 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25356 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25357 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25358 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25359 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25360 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25361 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25362 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25363 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25364 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25365 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25366 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25367 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25368 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25369
25370 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25371 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25372 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25373 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25374 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25375 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25376 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25377 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25378 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25379 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25380 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25381 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25382 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25383 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25384 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25385
25386 /* MVE and MVE FP only. */
25387 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25388 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25389 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25390 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25391 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25392 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25393 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25394 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25395 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25396 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25397 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25398 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25399 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25400 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25401 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25402 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25403 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25404
25405 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25406 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25407 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25408 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25409 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25410 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25411 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25412 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25413 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25414 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25415 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25416 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25417 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25418 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25419 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25420 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25421 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25422 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25423 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25424 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25425
25426 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25427 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25428 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25429 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25430 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25431 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25432 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25433 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25434 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25435 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25436 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25437 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25438 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25439 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25440 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25441 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25442 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25443
25444 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25445 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25446 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25447 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25448 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25449 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25450 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25451 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25452 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25453 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25454 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25455 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25456 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25457 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25458 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25459 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25460 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25461 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25462 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25463 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25464
25465 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25466 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25467 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25468 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25469 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25470
25471 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25472 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25473 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25474 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25475 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25476 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25477 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25478 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25479 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25480 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25481 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25482 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25483 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25484 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25485 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25486 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25487 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25488
25489 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25490 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25491 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25492 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25493 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25494 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25495 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25496 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25497 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25498 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25499 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25500 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25501
25502 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25503 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25504 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25505
25506 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25507 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25508 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25509 toU("lctp", _lctp, 0, (), t_loloop),
25510
25511 #undef THUMB_VARIANT
25512 #define THUMB_VARIANT & mve_fp_ext
25513 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25514 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25515 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25516 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25517 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25518 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25519 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25520 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25521
25522 #undef ARM_VARIANT
25523 #define ARM_VARIANT & fpu_vfp_ext_v1
25524 #undef THUMB_VARIANT
25525 #define THUMB_VARIANT & arm_ext_v6t2
25526 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25527 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25528
25529 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25530
25531 #undef ARM_VARIANT
25532 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25533
25534 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25535 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25536 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25537 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25538
25539 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25540 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25541 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25542
25543 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25544 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25545
25546 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25547 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25548
25549 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25550 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25551
25552 #undef ARM_VARIANT
25553 #define ARM_VARIANT & fpu_vfp_ext_v2
25554
25555 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25556 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25557 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25558 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25559
25560 #undef ARM_VARIANT
25561 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25562 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25563 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25564 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25565 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25566 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25567 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25568
25569 #undef ARM_VARIANT
25570 #define ARM_VARIANT & fpu_neon_ext_v1
25571 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25572 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25573 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25574 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25575 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25576 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25577 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25578 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25579 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25580 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25581 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25582 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25583 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25584 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25585 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25586 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25587 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25588 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25589 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25590 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25591 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25592 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25593 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25594 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25595 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25596 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25597 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25598 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25599 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25600 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25601 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25602 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25603 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25604 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
25605 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25606 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25607 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
25608
25609 #undef ARM_VARIANT
25610 #define ARM_VARIANT & arm_ext_v8_3
25611 #undef THUMB_VARIANT
25612 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25613 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25614 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25615 };
25616 #undef ARM_VARIANT
25617 #undef THUMB_VARIANT
25618 #undef TCE
25619 #undef TUE
25620 #undef TUF
25621 #undef TCC
25622 #undef cCE
25623 #undef cCL
25624 #undef C3E
25625 #undef C3
25626 #undef CE
25627 #undef CM
25628 #undef CL
25629 #undef UE
25630 #undef UF
25631 #undef UT
25632 #undef NUF
25633 #undef nUF
25634 #undef NCE
25635 #undef nCE
25636 #undef OPS0
25637 #undef OPS1
25638 #undef OPS2
25639 #undef OPS3
25640 #undef OPS4
25641 #undef OPS5
25642 #undef OPS6
25643 #undef do_0
25644 #undef ToC
25645 #undef toC
25646 #undef ToU
25647 #undef toU
25648 \f
25649 /* MD interface: bits in the object file. */
25650
25651 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25652 for use in the a.out file, and stores them in the array pointed to by buf.
25653 This knows about the endian-ness of the target machine and does
25654 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25655 2 (short) and 4 (long) Floating numbers are put out as a series of
25656 LITTLENUMS (shorts, here at least). */
25657
25658 void
25659 md_number_to_chars (char * buf, valueT val, int n)
25660 {
25661 if (target_big_endian)
25662 number_to_chars_bigendian (buf, val, n);
25663 else
25664 number_to_chars_littleendian (buf, val, n);
25665 }
25666
25667 static valueT
25668 md_chars_to_number (char * buf, int n)
25669 {
25670 valueT result = 0;
25671 unsigned char * where = (unsigned char *) buf;
25672
25673 if (target_big_endian)
25674 {
25675 while (n--)
25676 {
25677 result <<= 8;
25678 result |= (*where++ & 255);
25679 }
25680 }
25681 else
25682 {
25683 while (n--)
25684 {
25685 result <<= 8;
25686 result |= (where[n] & 255);
25687 }
25688 }
25689
25690 return result;
25691 }
25692
25693 /* MD interface: Sections. */
25694
25695 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25696 that an rs_machine_dependent frag may reach. */
25697
25698 unsigned int
25699 arm_frag_max_var (fragS *fragp)
25700 {
25701 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25702 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25703
25704 Note that we generate relaxable instructions even for cases that don't
25705 really need it, like an immediate that's a trivial constant. So we're
25706 overestimating the instruction size for some of those cases. Rather
25707 than putting more intelligence here, it would probably be better to
25708 avoid generating a relaxation frag in the first place when it can be
25709 determined up front that a short instruction will suffice. */
25710
25711 gas_assert (fragp->fr_type == rs_machine_dependent);
25712 return INSN_SIZE;
25713 }
25714
25715 /* Estimate the size of a frag before relaxing. Assume everything fits in
25716 2 bytes. */
25717
25718 int
25719 md_estimate_size_before_relax (fragS * fragp,
25720 segT segtype ATTRIBUTE_UNUSED)
25721 {
25722 fragp->fr_var = 2;
25723 return 2;
25724 }
25725
25726 /* Convert a machine dependent frag. */
25727
25728 void
25729 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25730 {
25731 unsigned long insn;
25732 unsigned long old_op;
25733 char *buf;
25734 expressionS exp;
25735 fixS *fixp;
25736 int reloc_type;
25737 int pc_rel;
25738 int opcode;
25739
25740 buf = fragp->fr_literal + fragp->fr_fix;
25741
25742 old_op = bfd_get_16(abfd, buf);
25743 if (fragp->fr_symbol)
25744 {
25745 exp.X_op = O_symbol;
25746 exp.X_add_symbol = fragp->fr_symbol;
25747 }
25748 else
25749 {
25750 exp.X_op = O_constant;
25751 }
25752 exp.X_add_number = fragp->fr_offset;
25753 opcode = fragp->fr_subtype;
25754 switch (opcode)
25755 {
25756 case T_MNEM_ldr_pc:
25757 case T_MNEM_ldr_pc2:
25758 case T_MNEM_ldr_sp:
25759 case T_MNEM_str_sp:
25760 case T_MNEM_ldr:
25761 case T_MNEM_ldrb:
25762 case T_MNEM_ldrh:
25763 case T_MNEM_str:
25764 case T_MNEM_strb:
25765 case T_MNEM_strh:
25766 if (fragp->fr_var == 4)
25767 {
25768 insn = THUMB_OP32 (opcode);
25769 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25770 {
25771 insn |= (old_op & 0x700) << 4;
25772 }
25773 else
25774 {
25775 insn |= (old_op & 7) << 12;
25776 insn |= (old_op & 0x38) << 13;
25777 }
25778 insn |= 0x00000c00;
25779 put_thumb32_insn (buf, insn);
25780 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25781 }
25782 else
25783 {
25784 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25785 }
25786 pc_rel = (opcode == T_MNEM_ldr_pc2);
25787 break;
25788 case T_MNEM_adr:
25789 if (fragp->fr_var == 4)
25790 {
25791 insn = THUMB_OP32 (opcode);
25792 insn |= (old_op & 0xf0) << 4;
25793 put_thumb32_insn (buf, insn);
25794 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25795 }
25796 else
25797 {
25798 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25799 exp.X_add_number -= 4;
25800 }
25801 pc_rel = 1;
25802 break;
25803 case T_MNEM_mov:
25804 case T_MNEM_movs:
25805 case T_MNEM_cmp:
25806 case T_MNEM_cmn:
25807 if (fragp->fr_var == 4)
25808 {
25809 int r0off = (opcode == T_MNEM_mov
25810 || opcode == T_MNEM_movs) ? 0 : 8;
25811 insn = THUMB_OP32 (opcode);
25812 insn = (insn & 0xe1ffffff) | 0x10000000;
25813 insn |= (old_op & 0x700) << r0off;
25814 put_thumb32_insn (buf, insn);
25815 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25816 }
25817 else
25818 {
25819 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25820 }
25821 pc_rel = 0;
25822 break;
25823 case T_MNEM_b:
25824 if (fragp->fr_var == 4)
25825 {
25826 insn = THUMB_OP32(opcode);
25827 put_thumb32_insn (buf, insn);
25828 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25829 }
25830 else
25831 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25832 pc_rel = 1;
25833 break;
25834 case T_MNEM_bcond:
25835 if (fragp->fr_var == 4)
25836 {
25837 insn = THUMB_OP32(opcode);
25838 insn |= (old_op & 0xf00) << 14;
25839 put_thumb32_insn (buf, insn);
25840 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25841 }
25842 else
25843 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25844 pc_rel = 1;
25845 break;
25846 case T_MNEM_add_sp:
25847 case T_MNEM_add_pc:
25848 case T_MNEM_inc_sp:
25849 case T_MNEM_dec_sp:
25850 if (fragp->fr_var == 4)
25851 {
25852 /* ??? Choose between add and addw. */
25853 insn = THUMB_OP32 (opcode);
25854 insn |= (old_op & 0xf0) << 4;
25855 put_thumb32_insn (buf, insn);
25856 if (opcode == T_MNEM_add_pc)
25857 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25858 else
25859 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25860 }
25861 else
25862 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25863 pc_rel = 0;
25864 break;
25865
25866 case T_MNEM_addi:
25867 case T_MNEM_addis:
25868 case T_MNEM_subi:
25869 case T_MNEM_subis:
25870 if (fragp->fr_var == 4)
25871 {
25872 insn = THUMB_OP32 (opcode);
25873 insn |= (old_op & 0xf0) << 4;
25874 insn |= (old_op & 0xf) << 16;
25875 put_thumb32_insn (buf, insn);
25876 if (insn & (1 << 20))
25877 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25878 else
25879 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25880 }
25881 else
25882 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25883 pc_rel = 0;
25884 break;
25885 default:
25886 abort ();
25887 }
25888 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25889 (enum bfd_reloc_code_real) reloc_type);
25890 fixp->fx_file = fragp->fr_file;
25891 fixp->fx_line = fragp->fr_line;
25892 fragp->fr_fix += fragp->fr_var;
25893
25894 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25895 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25896 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25897 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25898 }
25899
25900 /* Return the size of a relaxable immediate operand instruction.
25901 SHIFT and SIZE specify the form of the allowable immediate. */
25902 static int
25903 relax_immediate (fragS *fragp, int size, int shift)
25904 {
25905 offsetT offset;
25906 offsetT mask;
25907 offsetT low;
25908
25909 /* ??? Should be able to do better than this. */
25910 if (fragp->fr_symbol)
25911 return 4;
25912
25913 low = (1 << shift) - 1;
25914 mask = (1 << (shift + size)) - (1 << shift);
25915 offset = fragp->fr_offset;
25916 /* Force misaligned offsets to 32-bit variant. */
25917 if (offset & low)
25918 return 4;
25919 if (offset & ~mask)
25920 return 4;
25921 return 2;
25922 }
25923
25924 /* Get the address of a symbol during relaxation. */
25925 static addressT
25926 relaxed_symbol_addr (fragS *fragp, long stretch)
25927 {
25928 fragS *sym_frag;
25929 addressT addr;
25930 symbolS *sym;
25931
25932 sym = fragp->fr_symbol;
25933 sym_frag = symbol_get_frag (sym);
25934 know (S_GET_SEGMENT (sym) != absolute_section
25935 || sym_frag == &zero_address_frag);
25936 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25937
25938 /* If frag has yet to be reached on this pass, assume it will
25939 move by STRETCH just as we did. If this is not so, it will
25940 be because some frag between grows, and that will force
25941 another pass. */
25942
25943 if (stretch != 0
25944 && sym_frag->relax_marker != fragp->relax_marker)
25945 {
25946 fragS *f;
25947
25948 /* Adjust stretch for any alignment frag. Note that if have
25949 been expanding the earlier code, the symbol may be
25950 defined in what appears to be an earlier frag. FIXME:
25951 This doesn't handle the fr_subtype field, which specifies
25952 a maximum number of bytes to skip when doing an
25953 alignment. */
25954 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25955 {
25956 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25957 {
25958 if (stretch < 0)
25959 stretch = - ((- stretch)
25960 & ~ ((1 << (int) f->fr_offset) - 1));
25961 else
25962 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25963 if (stretch == 0)
25964 break;
25965 }
25966 }
25967 if (f != NULL)
25968 addr += stretch;
25969 }
25970
25971 return addr;
25972 }
25973
25974 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25975 load. */
25976 static int
25977 relax_adr (fragS *fragp, asection *sec, long stretch)
25978 {
25979 addressT addr;
25980 offsetT val;
25981
25982 /* Assume worst case for symbols not known to be in the same section. */
25983 if (fragp->fr_symbol == NULL
25984 || !S_IS_DEFINED (fragp->fr_symbol)
25985 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25986 || S_IS_WEAK (fragp->fr_symbol))
25987 return 4;
25988
25989 val = relaxed_symbol_addr (fragp, stretch);
25990 addr = fragp->fr_address + fragp->fr_fix;
25991 addr = (addr + 4) & ~3;
25992 /* Force misaligned targets to 32-bit variant. */
25993 if (val & 3)
25994 return 4;
25995 val -= addr;
25996 if (val < 0 || val > 1020)
25997 return 4;
25998 return 2;
25999 }
26000
26001 /* Return the size of a relaxable add/sub immediate instruction. */
26002 static int
26003 relax_addsub (fragS *fragp, asection *sec)
26004 {
26005 char *buf;
26006 int op;
26007
26008 buf = fragp->fr_literal + fragp->fr_fix;
26009 op = bfd_get_16(sec->owner, buf);
26010 if ((op & 0xf) == ((op >> 4) & 0xf))
26011 return relax_immediate (fragp, 8, 0);
26012 else
26013 return relax_immediate (fragp, 3, 0);
26014 }
26015
26016 /* Return TRUE iff the definition of symbol S could be pre-empted
26017 (overridden) at link or load time. */
26018 static bfd_boolean
26019 symbol_preemptible (symbolS *s)
26020 {
26021 /* Weak symbols can always be pre-empted. */
26022 if (S_IS_WEAK (s))
26023 return TRUE;
26024
26025 /* Non-global symbols cannot be pre-empted. */
26026 if (! S_IS_EXTERNAL (s))
26027 return FALSE;
26028
26029 #ifdef OBJ_ELF
26030 /* In ELF, a global symbol can be marked protected, or private. In that
26031 case it can't be pre-empted (other definitions in the same link unit
26032 would violate the ODR). */
26033 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26034 return FALSE;
26035 #endif
26036
26037 /* Other global symbols might be pre-empted. */
26038 return TRUE;
26039 }
26040
26041 /* Return the size of a relaxable branch instruction. BITS is the
26042 size of the offset field in the narrow instruction. */
26043
26044 static int
26045 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
26046 {
26047 addressT addr;
26048 offsetT val;
26049 offsetT limit;
26050
26051 /* Assume worst case for symbols not known to be in the same section. */
26052 if (!S_IS_DEFINED (fragp->fr_symbol)
26053 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26054 || S_IS_WEAK (fragp->fr_symbol))
26055 return 4;
26056
26057 #ifdef OBJ_ELF
26058 /* A branch to a function in ARM state will require interworking. */
26059 if (S_IS_DEFINED (fragp->fr_symbol)
26060 && ARM_IS_FUNC (fragp->fr_symbol))
26061 return 4;
26062 #endif
26063
26064 if (symbol_preemptible (fragp->fr_symbol))
26065 return 4;
26066
26067 val = relaxed_symbol_addr (fragp, stretch);
26068 addr = fragp->fr_address + fragp->fr_fix + 4;
26069 val -= addr;
26070
26071 /* Offset is a signed value *2 */
26072 limit = 1 << bits;
26073 if (val >= limit || val < -limit)
26074 return 4;
26075 return 2;
26076 }
26077
26078
26079 /* Relax a machine dependent frag. This returns the amount by which
26080 the current size of the frag should change. */
26081
26082 int
26083 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
26084 {
26085 int oldsize;
26086 int newsize;
26087
26088 oldsize = fragp->fr_var;
26089 switch (fragp->fr_subtype)
26090 {
26091 case T_MNEM_ldr_pc2:
26092 newsize = relax_adr (fragp, sec, stretch);
26093 break;
26094 case T_MNEM_ldr_pc:
26095 case T_MNEM_ldr_sp:
26096 case T_MNEM_str_sp:
26097 newsize = relax_immediate (fragp, 8, 2);
26098 break;
26099 case T_MNEM_ldr:
26100 case T_MNEM_str:
26101 newsize = relax_immediate (fragp, 5, 2);
26102 break;
26103 case T_MNEM_ldrh:
26104 case T_MNEM_strh:
26105 newsize = relax_immediate (fragp, 5, 1);
26106 break;
26107 case T_MNEM_ldrb:
26108 case T_MNEM_strb:
26109 newsize = relax_immediate (fragp, 5, 0);
26110 break;
26111 case T_MNEM_adr:
26112 newsize = relax_adr (fragp, sec, stretch);
26113 break;
26114 case T_MNEM_mov:
26115 case T_MNEM_movs:
26116 case T_MNEM_cmp:
26117 case T_MNEM_cmn:
26118 newsize = relax_immediate (fragp, 8, 0);
26119 break;
26120 case T_MNEM_b:
26121 newsize = relax_branch (fragp, sec, 11, stretch);
26122 break;
26123 case T_MNEM_bcond:
26124 newsize = relax_branch (fragp, sec, 8, stretch);
26125 break;
26126 case T_MNEM_add_sp:
26127 case T_MNEM_add_pc:
26128 newsize = relax_immediate (fragp, 8, 2);
26129 break;
26130 case T_MNEM_inc_sp:
26131 case T_MNEM_dec_sp:
26132 newsize = relax_immediate (fragp, 7, 2);
26133 break;
26134 case T_MNEM_addi:
26135 case T_MNEM_addis:
26136 case T_MNEM_subi:
26137 case T_MNEM_subis:
26138 newsize = relax_addsub (fragp, sec);
26139 break;
26140 default:
26141 abort ();
26142 }
26143
26144 fragp->fr_var = newsize;
26145 /* Freeze wide instructions that are at or before the same location as
26146 in the previous pass. This avoids infinite loops.
26147 Don't freeze them unconditionally because targets may be artificially
26148 misaligned by the expansion of preceding frags. */
26149 if (stretch <= 0 && newsize > 2)
26150 {
26151 md_convert_frag (sec->owner, sec, fragp);
26152 frag_wane (fragp);
26153 }
26154
26155 return newsize - oldsize;
26156 }
26157
26158 /* Round up a section size to the appropriate boundary. */
26159
26160 valueT
26161 md_section_align (segT segment ATTRIBUTE_UNUSED,
26162 valueT size)
26163 {
26164 return size;
26165 }
26166
26167 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26168 of an rs_align_code fragment. */
26169
26170 void
26171 arm_handle_align (fragS * fragP)
26172 {
26173 static unsigned char const arm_noop[2][2][4] =
26174 {
26175 { /* ARMv1 */
26176 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26177 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26178 },
26179 { /* ARMv6k */
26180 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26181 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26182 },
26183 };
26184 static unsigned char const thumb_noop[2][2][2] =
26185 {
26186 { /* Thumb-1 */
26187 {0xc0, 0x46}, /* LE */
26188 {0x46, 0xc0}, /* BE */
26189 },
26190 { /* Thumb-2 */
26191 {0x00, 0xbf}, /* LE */
26192 {0xbf, 0x00} /* BE */
26193 }
26194 };
26195 static unsigned char const wide_thumb_noop[2][4] =
26196 { /* Wide Thumb-2 */
26197 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26198 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26199 };
26200
26201 unsigned bytes, fix, noop_size;
26202 char * p;
26203 const unsigned char * noop;
26204 const unsigned char *narrow_noop = NULL;
26205 #ifdef OBJ_ELF
26206 enum mstate state;
26207 #endif
26208
26209 if (fragP->fr_type != rs_align_code)
26210 return;
26211
26212 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26213 p = fragP->fr_literal + fragP->fr_fix;
26214 fix = 0;
26215
26216 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26217 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26218
26219 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26220
26221 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26222 {
26223 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26224 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26225 {
26226 narrow_noop = thumb_noop[1][target_big_endian];
26227 noop = wide_thumb_noop[target_big_endian];
26228 }
26229 else
26230 noop = thumb_noop[0][target_big_endian];
26231 noop_size = 2;
26232 #ifdef OBJ_ELF
26233 state = MAP_THUMB;
26234 #endif
26235 }
26236 else
26237 {
26238 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26239 ? selected_cpu : arm_arch_none,
26240 arm_ext_v6k) != 0]
26241 [target_big_endian];
26242 noop_size = 4;
26243 #ifdef OBJ_ELF
26244 state = MAP_ARM;
26245 #endif
26246 }
26247
26248 fragP->fr_var = noop_size;
26249
26250 if (bytes & (noop_size - 1))
26251 {
26252 fix = bytes & (noop_size - 1);
26253 #ifdef OBJ_ELF
26254 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26255 #endif
26256 memset (p, 0, fix);
26257 p += fix;
26258 bytes -= fix;
26259 }
26260
26261 if (narrow_noop)
26262 {
26263 if (bytes & noop_size)
26264 {
26265 /* Insert a narrow noop. */
26266 memcpy (p, narrow_noop, noop_size);
26267 p += noop_size;
26268 bytes -= noop_size;
26269 fix += noop_size;
26270 }
26271
26272 /* Use wide noops for the remainder */
26273 noop_size = 4;
26274 }
26275
26276 while (bytes >= noop_size)
26277 {
26278 memcpy (p, noop, noop_size);
26279 p += noop_size;
26280 bytes -= noop_size;
26281 fix += noop_size;
26282 }
26283
26284 fragP->fr_fix += fix;
26285 }
26286
26287 /* Called from md_do_align. Used to create an alignment
26288 frag in a code section. */
26289
26290 void
26291 arm_frag_align_code (int n, int max)
26292 {
26293 char * p;
26294
26295 /* We assume that there will never be a requirement
26296 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26297 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26298 {
26299 char err_msg[128];
26300
26301 sprintf (err_msg,
26302 _("alignments greater than %d bytes not supported in .text sections."),
26303 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26304 as_fatal ("%s", err_msg);
26305 }
26306
26307 p = frag_var (rs_align_code,
26308 MAX_MEM_FOR_RS_ALIGN_CODE,
26309 1,
26310 (relax_substateT) max,
26311 (symbolS *) NULL,
26312 (offsetT) n,
26313 (char *) NULL);
26314 *p = 0;
26315 }
26316
26317 /* Perform target specific initialisation of a frag.
26318 Note - despite the name this initialisation is not done when the frag
26319 is created, but only when its type is assigned. A frag can be created
26320 and used a long time before its type is set, so beware of assuming that
26321 this initialisation is performed first. */
26322
26323 #ifndef OBJ_ELF
26324 void
26325 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26326 {
26327 /* Record whether this frag is in an ARM or a THUMB area. */
26328 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26329 }
26330
26331 #else /* OBJ_ELF is defined. */
26332 void
26333 arm_init_frag (fragS * fragP, int max_chars)
26334 {
26335 bfd_boolean frag_thumb_mode;
26336
26337 /* If the current ARM vs THUMB mode has not already
26338 been recorded into this frag then do so now. */
26339 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26340 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26341
26342 /* PR 21809: Do not set a mapping state for debug sections
26343 - it just confuses other tools. */
26344 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26345 return;
26346
26347 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26348
26349 /* Record a mapping symbol for alignment frags. We will delete this
26350 later if the alignment ends up empty. */
26351 switch (fragP->fr_type)
26352 {
26353 case rs_align:
26354 case rs_align_test:
26355 case rs_fill:
26356 mapping_state_2 (MAP_DATA, max_chars);
26357 break;
26358 case rs_align_code:
26359 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26360 break;
26361 default:
26362 break;
26363 }
26364 }
26365
26366 /* When we change sections we need to issue a new mapping symbol. */
26367
26368 void
26369 arm_elf_change_section (void)
26370 {
26371 /* Link an unlinked unwind index table section to the .text section. */
26372 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26373 && elf_linked_to_section (now_seg) == NULL)
26374 elf_linked_to_section (now_seg) = text_section;
26375 }
26376
26377 int
26378 arm_elf_section_type (const char * str, size_t len)
26379 {
26380 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26381 return SHT_ARM_EXIDX;
26382
26383 return -1;
26384 }
26385 \f
26386 /* Code to deal with unwinding tables. */
26387
26388 static void add_unwind_adjustsp (offsetT);
26389
26390 /* Generate any deferred unwind frame offset. */
26391
26392 static void
26393 flush_pending_unwind (void)
26394 {
26395 offsetT offset;
26396
26397 offset = unwind.pending_offset;
26398 unwind.pending_offset = 0;
26399 if (offset != 0)
26400 add_unwind_adjustsp (offset);
26401 }
26402
26403 /* Add an opcode to this list for this function. Two-byte opcodes should
26404 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26405 order. */
26406
26407 static void
26408 add_unwind_opcode (valueT op, int length)
26409 {
26410 /* Add any deferred stack adjustment. */
26411 if (unwind.pending_offset)
26412 flush_pending_unwind ();
26413
26414 unwind.sp_restored = 0;
26415
26416 if (unwind.opcode_count + length > unwind.opcode_alloc)
26417 {
26418 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26419 if (unwind.opcodes)
26420 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26421 unwind.opcode_alloc);
26422 else
26423 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26424 }
26425 while (length > 0)
26426 {
26427 length--;
26428 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26429 op >>= 8;
26430 unwind.opcode_count++;
26431 }
26432 }
26433
26434 /* Add unwind opcodes to adjust the stack pointer. */
26435
26436 static void
26437 add_unwind_adjustsp (offsetT offset)
26438 {
26439 valueT op;
26440
26441 if (offset > 0x200)
26442 {
26443 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26444 char bytes[5];
26445 int n;
26446 valueT o;
26447
26448 /* Long form: 0xb2, uleb128. */
26449 /* This might not fit in a word so add the individual bytes,
26450 remembering the list is built in reverse order. */
26451 o = (valueT) ((offset - 0x204) >> 2);
26452 if (o == 0)
26453 add_unwind_opcode (0, 1);
26454
26455 /* Calculate the uleb128 encoding of the offset. */
26456 n = 0;
26457 while (o)
26458 {
26459 bytes[n] = o & 0x7f;
26460 o >>= 7;
26461 if (o)
26462 bytes[n] |= 0x80;
26463 n++;
26464 }
26465 /* Add the insn. */
26466 for (; n; n--)
26467 add_unwind_opcode (bytes[n - 1], 1);
26468 add_unwind_opcode (0xb2, 1);
26469 }
26470 else if (offset > 0x100)
26471 {
26472 /* Two short opcodes. */
26473 add_unwind_opcode (0x3f, 1);
26474 op = (offset - 0x104) >> 2;
26475 add_unwind_opcode (op, 1);
26476 }
26477 else if (offset > 0)
26478 {
26479 /* Short opcode. */
26480 op = (offset - 4) >> 2;
26481 add_unwind_opcode (op, 1);
26482 }
26483 else if (offset < 0)
26484 {
26485 offset = -offset;
26486 while (offset > 0x100)
26487 {
26488 add_unwind_opcode (0x7f, 1);
26489 offset -= 0x100;
26490 }
26491 op = ((offset - 4) >> 2) | 0x40;
26492 add_unwind_opcode (op, 1);
26493 }
26494 }
26495
26496 /* Finish the list of unwind opcodes for this function. */
26497
26498 static void
26499 finish_unwind_opcodes (void)
26500 {
26501 valueT op;
26502
26503 if (unwind.fp_used)
26504 {
26505 /* Adjust sp as necessary. */
26506 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26507 flush_pending_unwind ();
26508
26509 /* After restoring sp from the frame pointer. */
26510 op = 0x90 | unwind.fp_reg;
26511 add_unwind_opcode (op, 1);
26512 }
26513 else
26514 flush_pending_unwind ();
26515 }
26516
26517
26518 /* Start an exception table entry. If idx is nonzero this is an index table
26519 entry. */
26520
26521 static void
26522 start_unwind_section (const segT text_seg, int idx)
26523 {
26524 const char * text_name;
26525 const char * prefix;
26526 const char * prefix_once;
26527 const char * group_name;
26528 char * sec_name;
26529 int type;
26530 int flags;
26531 int linkonce;
26532
26533 if (idx)
26534 {
26535 prefix = ELF_STRING_ARM_unwind;
26536 prefix_once = ELF_STRING_ARM_unwind_once;
26537 type = SHT_ARM_EXIDX;
26538 }
26539 else
26540 {
26541 prefix = ELF_STRING_ARM_unwind_info;
26542 prefix_once = ELF_STRING_ARM_unwind_info_once;
26543 type = SHT_PROGBITS;
26544 }
26545
26546 text_name = segment_name (text_seg);
26547 if (streq (text_name, ".text"))
26548 text_name = "";
26549
26550 if (strncmp (text_name, ".gnu.linkonce.t.",
26551 strlen (".gnu.linkonce.t.")) == 0)
26552 {
26553 prefix = prefix_once;
26554 text_name += strlen (".gnu.linkonce.t.");
26555 }
26556
26557 sec_name = concat (prefix, text_name, (char *) NULL);
26558
26559 flags = SHF_ALLOC;
26560 linkonce = 0;
26561 group_name = 0;
26562
26563 /* Handle COMDAT group. */
26564 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
26565 {
26566 group_name = elf_group_name (text_seg);
26567 if (group_name == NULL)
26568 {
26569 as_bad (_("Group section `%s' has no group signature"),
26570 segment_name (text_seg));
26571 ignore_rest_of_line ();
26572 return;
26573 }
26574 flags |= SHF_GROUP;
26575 linkonce = 1;
26576 }
26577
26578 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26579 linkonce, 0);
26580
26581 /* Set the section link for index tables. */
26582 if (idx)
26583 elf_linked_to_section (now_seg) = text_seg;
26584 }
26585
26586
26587 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26588 personality routine data. Returns zero, or the index table value for
26589 an inline entry. */
26590
26591 static valueT
26592 create_unwind_entry (int have_data)
26593 {
26594 int size;
26595 addressT where;
26596 char *ptr;
26597 /* The current word of data. */
26598 valueT data;
26599 /* The number of bytes left in this word. */
26600 int n;
26601
26602 finish_unwind_opcodes ();
26603
26604 /* Remember the current text section. */
26605 unwind.saved_seg = now_seg;
26606 unwind.saved_subseg = now_subseg;
26607
26608 start_unwind_section (now_seg, 0);
26609
26610 if (unwind.personality_routine == NULL)
26611 {
26612 if (unwind.personality_index == -2)
26613 {
26614 if (have_data)
26615 as_bad (_("handlerdata in cantunwind frame"));
26616 return 1; /* EXIDX_CANTUNWIND. */
26617 }
26618
26619 /* Use a default personality routine if none is specified. */
26620 if (unwind.personality_index == -1)
26621 {
26622 if (unwind.opcode_count > 3)
26623 unwind.personality_index = 1;
26624 else
26625 unwind.personality_index = 0;
26626 }
26627
26628 /* Space for the personality routine entry. */
26629 if (unwind.personality_index == 0)
26630 {
26631 if (unwind.opcode_count > 3)
26632 as_bad (_("too many unwind opcodes for personality routine 0"));
26633
26634 if (!have_data)
26635 {
26636 /* All the data is inline in the index table. */
26637 data = 0x80;
26638 n = 3;
26639 while (unwind.opcode_count > 0)
26640 {
26641 unwind.opcode_count--;
26642 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26643 n--;
26644 }
26645
26646 /* Pad with "finish" opcodes. */
26647 while (n--)
26648 data = (data << 8) | 0xb0;
26649
26650 return data;
26651 }
26652 size = 0;
26653 }
26654 else
26655 /* We get two opcodes "free" in the first word. */
26656 size = unwind.opcode_count - 2;
26657 }
26658 else
26659 {
26660 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26661 if (unwind.personality_index != -1)
26662 {
26663 as_bad (_("attempt to recreate an unwind entry"));
26664 return 1;
26665 }
26666
26667 /* An extra byte is required for the opcode count. */
26668 size = unwind.opcode_count + 1;
26669 }
26670
26671 size = (size + 3) >> 2;
26672 if (size > 0xff)
26673 as_bad (_("too many unwind opcodes"));
26674
26675 frag_align (2, 0, 0);
26676 record_alignment (now_seg, 2);
26677 unwind.table_entry = expr_build_dot ();
26678
26679 /* Allocate the table entry. */
26680 ptr = frag_more ((size << 2) + 4);
26681 /* PR 13449: Zero the table entries in case some of them are not used. */
26682 memset (ptr, 0, (size << 2) + 4);
26683 where = frag_now_fix () - ((size << 2) + 4);
26684
26685 switch (unwind.personality_index)
26686 {
26687 case -1:
26688 /* ??? Should this be a PLT generating relocation? */
26689 /* Custom personality routine. */
26690 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26691 BFD_RELOC_ARM_PREL31);
26692
26693 where += 4;
26694 ptr += 4;
26695
26696 /* Set the first byte to the number of additional words. */
26697 data = size > 0 ? size - 1 : 0;
26698 n = 3;
26699 break;
26700
26701 /* ABI defined personality routines. */
26702 case 0:
26703 /* Three opcodes bytes are packed into the first word. */
26704 data = 0x80;
26705 n = 3;
26706 break;
26707
26708 case 1:
26709 case 2:
26710 /* The size and first two opcode bytes go in the first word. */
26711 data = ((0x80 + unwind.personality_index) << 8) | size;
26712 n = 2;
26713 break;
26714
26715 default:
26716 /* Should never happen. */
26717 abort ();
26718 }
26719
26720 /* Pack the opcodes into words (MSB first), reversing the list at the same
26721 time. */
26722 while (unwind.opcode_count > 0)
26723 {
26724 if (n == 0)
26725 {
26726 md_number_to_chars (ptr, data, 4);
26727 ptr += 4;
26728 n = 4;
26729 data = 0;
26730 }
26731 unwind.opcode_count--;
26732 n--;
26733 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26734 }
26735
26736 /* Finish off the last word. */
26737 if (n < 4)
26738 {
26739 /* Pad with "finish" opcodes. */
26740 while (n--)
26741 data = (data << 8) | 0xb0;
26742
26743 md_number_to_chars (ptr, data, 4);
26744 }
26745
26746 if (!have_data)
26747 {
26748 /* Add an empty descriptor if there is no user-specified data. */
26749 ptr = frag_more (4);
26750 md_number_to_chars (ptr, 0, 4);
26751 }
26752
26753 return 0;
26754 }
26755
26756
26757 /* Initialize the DWARF-2 unwind information for this procedure. */
26758
26759 void
26760 tc_arm_frame_initial_instructions (void)
26761 {
26762 cfi_add_CFA_def_cfa (REG_SP, 0);
26763 }
26764 #endif /* OBJ_ELF */
26765
26766 /* Convert REGNAME to a DWARF-2 register number. */
26767
26768 int
26769 tc_arm_regname_to_dw2regnum (char *regname)
26770 {
26771 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26772 if (reg != FAIL)
26773 return reg;
26774
26775 /* PR 16694: Allow VFP registers as well. */
26776 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26777 if (reg != FAIL)
26778 return 64 + reg;
26779
26780 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26781 if (reg != FAIL)
26782 return reg + 256;
26783
26784 return FAIL;
26785 }
26786
26787 #ifdef TE_PE
26788 void
26789 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26790 {
26791 expressionS exp;
26792
26793 exp.X_op = O_secrel;
26794 exp.X_add_symbol = symbol;
26795 exp.X_add_number = 0;
26796 emit_expr (&exp, size);
26797 }
26798 #endif
26799
26800 /* MD interface: Symbol and relocation handling. */
26801
26802 /* Return the address within the segment that a PC-relative fixup is
26803 relative to. For ARM, PC-relative fixups applied to instructions
26804 are generally relative to the location of the fixup plus 8 bytes.
26805 Thumb branches are offset by 4, and Thumb loads relative to PC
26806 require special handling. */
26807
26808 long
26809 md_pcrel_from_section (fixS * fixP, segT seg)
26810 {
26811 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26812
26813 /* If this is pc-relative and we are going to emit a relocation
26814 then we just want to put out any pipeline compensation that the linker
26815 will need. Otherwise we want to use the calculated base.
26816 For WinCE we skip the bias for externals as well, since this
26817 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26818 if (fixP->fx_pcrel
26819 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26820 || (arm_force_relocation (fixP)
26821 #ifdef TE_WINCE
26822 && !S_IS_EXTERNAL (fixP->fx_addsy)
26823 #endif
26824 )))
26825 base = 0;
26826
26827
26828 switch (fixP->fx_r_type)
26829 {
26830 /* PC relative addressing on the Thumb is slightly odd as the
26831 bottom two bits of the PC are forced to zero for the
26832 calculation. This happens *after* application of the
26833 pipeline offset. However, Thumb adrl already adjusts for
26834 this, so we need not do it again. */
26835 case BFD_RELOC_ARM_THUMB_ADD:
26836 return base & ~3;
26837
26838 case BFD_RELOC_ARM_THUMB_OFFSET:
26839 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26840 case BFD_RELOC_ARM_T32_ADD_PC12:
26841 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26842 return (base + 4) & ~3;
26843
26844 /* Thumb branches are simply offset by +4. */
26845 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26846 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26847 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26848 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26849 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26850 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26851 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26852 case BFD_RELOC_ARM_THUMB_BF17:
26853 case BFD_RELOC_ARM_THUMB_BF19:
26854 case BFD_RELOC_ARM_THUMB_BF13:
26855 case BFD_RELOC_ARM_THUMB_LOOP12:
26856 return base + 4;
26857
26858 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26859 if (fixP->fx_addsy
26860 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26861 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26862 && ARM_IS_FUNC (fixP->fx_addsy)
26863 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26864 base = fixP->fx_where + fixP->fx_frag->fr_address;
26865 return base + 4;
26866
26867 /* BLX is like branches above, but forces the low two bits of PC to
26868 zero. */
26869 case BFD_RELOC_THUMB_PCREL_BLX:
26870 if (fixP->fx_addsy
26871 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26872 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26873 && THUMB_IS_FUNC (fixP->fx_addsy)
26874 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26875 base = fixP->fx_where + fixP->fx_frag->fr_address;
26876 return (base + 4) & ~3;
26877
26878 /* ARM mode branches are offset by +8. However, the Windows CE
26879 loader expects the relocation not to take this into account. */
26880 case BFD_RELOC_ARM_PCREL_BLX:
26881 if (fixP->fx_addsy
26882 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26883 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26884 && ARM_IS_FUNC (fixP->fx_addsy)
26885 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26886 base = fixP->fx_where + fixP->fx_frag->fr_address;
26887 return base + 8;
26888
26889 case BFD_RELOC_ARM_PCREL_CALL:
26890 if (fixP->fx_addsy
26891 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26892 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26893 && THUMB_IS_FUNC (fixP->fx_addsy)
26894 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26895 base = fixP->fx_where + fixP->fx_frag->fr_address;
26896 return base + 8;
26897
26898 case BFD_RELOC_ARM_PCREL_BRANCH:
26899 case BFD_RELOC_ARM_PCREL_JUMP:
26900 case BFD_RELOC_ARM_PLT32:
26901 #ifdef TE_WINCE
26902 /* When handling fixups immediately, because we have already
26903 discovered the value of a symbol, or the address of the frag involved
26904 we must account for the offset by +8, as the OS loader will never see the reloc.
26905 see fixup_segment() in write.c
26906 The S_IS_EXTERNAL test handles the case of global symbols.
26907 Those need the calculated base, not just the pipe compensation the linker will need. */
26908 if (fixP->fx_pcrel
26909 && fixP->fx_addsy != NULL
26910 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26911 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26912 return base + 8;
26913 return base;
26914 #else
26915 return base + 8;
26916 #endif
26917
26918
26919 /* ARM mode loads relative to PC are also offset by +8. Unlike
26920 branches, the Windows CE loader *does* expect the relocation
26921 to take this into account. */
26922 case BFD_RELOC_ARM_OFFSET_IMM:
26923 case BFD_RELOC_ARM_OFFSET_IMM8:
26924 case BFD_RELOC_ARM_HWLITERAL:
26925 case BFD_RELOC_ARM_LITERAL:
26926 case BFD_RELOC_ARM_CP_OFF_IMM:
26927 return base + 8;
26928
26929
26930 /* Other PC-relative relocations are un-offset. */
26931 default:
26932 return base;
26933 }
26934 }
26935
26936 static bfd_boolean flag_warn_syms = TRUE;
26937
26938 bfd_boolean
26939 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26940 {
26941 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26942 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26943 does mean that the resulting code might be very confusing to the reader.
26944 Also this warning can be triggered if the user omits an operand before
26945 an immediate address, eg:
26946
26947 LDR =foo
26948
26949 GAS treats this as an assignment of the value of the symbol foo to a
26950 symbol LDR, and so (without this code) it will not issue any kind of
26951 warning or error message.
26952
26953 Note - ARM instructions are case-insensitive but the strings in the hash
26954 table are all stored in lower case, so we must first ensure that name is
26955 lower case too. */
26956 if (flag_warn_syms && arm_ops_hsh)
26957 {
26958 char * nbuf = strdup (name);
26959 char * p;
26960
26961 for (p = nbuf; *p; p++)
26962 *p = TOLOWER (*p);
26963 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26964 {
26965 static struct hash_control * already_warned = NULL;
26966
26967 if (already_warned == NULL)
26968 already_warned = hash_new ();
26969 /* Only warn about the symbol once. To keep the code
26970 simple we let hash_insert do the lookup for us. */
26971 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26972 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26973 }
26974 else
26975 free (nbuf);
26976 }
26977
26978 return FALSE;
26979 }
26980
26981 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26982 Otherwise we have no need to default values of symbols. */
26983
26984 symbolS *
26985 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26986 {
26987 #ifdef OBJ_ELF
26988 if (name[0] == '_' && name[1] == 'G'
26989 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26990 {
26991 if (!GOT_symbol)
26992 {
26993 if (symbol_find (name))
26994 as_bad (_("GOT already in the symbol table"));
26995
26996 GOT_symbol = symbol_new (name, undefined_section,
26997 (valueT) 0, & zero_address_frag);
26998 }
26999
27000 return GOT_symbol;
27001 }
27002 #endif
27003
27004 return NULL;
27005 }
27006
27007 /* Subroutine of md_apply_fix. Check to see if an immediate can be
27008 computed as two separate immediate values, added together. We
27009 already know that this value cannot be computed by just one ARM
27010 instruction. */
27011
27012 static unsigned int
27013 validate_immediate_twopart (unsigned int val,
27014 unsigned int * highpart)
27015 {
27016 unsigned int a;
27017 unsigned int i;
27018
27019 for (i = 0; i < 32; i += 2)
27020 if (((a = rotate_left (val, i)) & 0xff) != 0)
27021 {
27022 if (a & 0xff00)
27023 {
27024 if (a & ~ 0xffff)
27025 continue;
27026 * highpart = (a >> 8) | ((i + 24) << 7);
27027 }
27028 else if (a & 0xff0000)
27029 {
27030 if (a & 0xff000000)
27031 continue;
27032 * highpart = (a >> 16) | ((i + 16) << 7);
27033 }
27034 else
27035 {
27036 gas_assert (a & 0xff000000);
27037 * highpart = (a >> 24) | ((i + 8) << 7);
27038 }
27039
27040 return (a & 0xff) | (i << 7);
27041 }
27042
27043 return FAIL;
27044 }
27045
27046 static int
27047 validate_offset_imm (unsigned int val, int hwse)
27048 {
27049 if ((hwse && val > 255) || val > 4095)
27050 return FAIL;
27051 return val;
27052 }
27053
27054 /* Subroutine of md_apply_fix. Do those data_ops which can take a
27055 negative immediate constant by altering the instruction. A bit of
27056 a hack really.
27057 MOV <-> MVN
27058 AND <-> BIC
27059 ADC <-> SBC
27060 by inverting the second operand, and
27061 ADD <-> SUB
27062 CMP <-> CMN
27063 by negating the second operand. */
27064
27065 static int
27066 negate_data_op (unsigned long * instruction,
27067 unsigned long value)
27068 {
27069 int op, new_inst;
27070 unsigned long negated, inverted;
27071
27072 negated = encode_arm_immediate (-value);
27073 inverted = encode_arm_immediate (~value);
27074
27075 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27076 switch (op)
27077 {
27078 /* First negates. */
27079 case OPCODE_SUB: /* ADD <-> SUB */
27080 new_inst = OPCODE_ADD;
27081 value = negated;
27082 break;
27083
27084 case OPCODE_ADD:
27085 new_inst = OPCODE_SUB;
27086 value = negated;
27087 break;
27088
27089 case OPCODE_CMP: /* CMP <-> CMN */
27090 new_inst = OPCODE_CMN;
27091 value = negated;
27092 break;
27093
27094 case OPCODE_CMN:
27095 new_inst = OPCODE_CMP;
27096 value = negated;
27097 break;
27098
27099 /* Now Inverted ops. */
27100 case OPCODE_MOV: /* MOV <-> MVN */
27101 new_inst = OPCODE_MVN;
27102 value = inverted;
27103 break;
27104
27105 case OPCODE_MVN:
27106 new_inst = OPCODE_MOV;
27107 value = inverted;
27108 break;
27109
27110 case OPCODE_AND: /* AND <-> BIC */
27111 new_inst = OPCODE_BIC;
27112 value = inverted;
27113 break;
27114
27115 case OPCODE_BIC:
27116 new_inst = OPCODE_AND;
27117 value = inverted;
27118 break;
27119
27120 case OPCODE_ADC: /* ADC <-> SBC */
27121 new_inst = OPCODE_SBC;
27122 value = inverted;
27123 break;
27124
27125 case OPCODE_SBC:
27126 new_inst = OPCODE_ADC;
27127 value = inverted;
27128 break;
27129
27130 /* We cannot do anything. */
27131 default:
27132 return FAIL;
27133 }
27134
27135 if (value == (unsigned) FAIL)
27136 return FAIL;
27137
27138 *instruction &= OPCODE_MASK;
27139 *instruction |= new_inst << DATA_OP_SHIFT;
27140 return value;
27141 }
27142
27143 /* Like negate_data_op, but for Thumb-2. */
27144
27145 static unsigned int
27146 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
27147 {
27148 int op, new_inst;
27149 int rd;
27150 unsigned int negated, inverted;
27151
27152 negated = encode_thumb32_immediate (-value);
27153 inverted = encode_thumb32_immediate (~value);
27154
27155 rd = (*instruction >> 8) & 0xf;
27156 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27157 switch (op)
27158 {
27159 /* ADD <-> SUB. Includes CMP <-> CMN. */
27160 case T2_OPCODE_SUB:
27161 new_inst = T2_OPCODE_ADD;
27162 value = negated;
27163 break;
27164
27165 case T2_OPCODE_ADD:
27166 new_inst = T2_OPCODE_SUB;
27167 value = negated;
27168 break;
27169
27170 /* ORR <-> ORN. Includes MOV <-> MVN. */
27171 case T2_OPCODE_ORR:
27172 new_inst = T2_OPCODE_ORN;
27173 value = inverted;
27174 break;
27175
27176 case T2_OPCODE_ORN:
27177 new_inst = T2_OPCODE_ORR;
27178 value = inverted;
27179 break;
27180
27181 /* AND <-> BIC. TST has no inverted equivalent. */
27182 case T2_OPCODE_AND:
27183 new_inst = T2_OPCODE_BIC;
27184 if (rd == 15)
27185 value = FAIL;
27186 else
27187 value = inverted;
27188 break;
27189
27190 case T2_OPCODE_BIC:
27191 new_inst = T2_OPCODE_AND;
27192 value = inverted;
27193 break;
27194
27195 /* ADC <-> SBC */
27196 case T2_OPCODE_ADC:
27197 new_inst = T2_OPCODE_SBC;
27198 value = inverted;
27199 break;
27200
27201 case T2_OPCODE_SBC:
27202 new_inst = T2_OPCODE_ADC;
27203 value = inverted;
27204 break;
27205
27206 /* We cannot do anything. */
27207 default:
27208 return FAIL;
27209 }
27210
27211 if (value == (unsigned int)FAIL)
27212 return FAIL;
27213
27214 *instruction &= T2_OPCODE_MASK;
27215 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27216 return value;
27217 }
27218
27219 /* Read a 32-bit thumb instruction from buf. */
27220
27221 static unsigned long
27222 get_thumb32_insn (char * buf)
27223 {
27224 unsigned long insn;
27225 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27226 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27227
27228 return insn;
27229 }
27230
27231 /* We usually want to set the low bit on the address of thumb function
27232 symbols. In particular .word foo - . should have the low bit set.
27233 Generic code tries to fold the difference of two symbols to
27234 a constant. Prevent this and force a relocation when the first symbols
27235 is a thumb function. */
27236
27237 bfd_boolean
27238 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27239 {
27240 if (op == O_subtract
27241 && l->X_op == O_symbol
27242 && r->X_op == O_symbol
27243 && THUMB_IS_FUNC (l->X_add_symbol))
27244 {
27245 l->X_op = O_subtract;
27246 l->X_op_symbol = r->X_add_symbol;
27247 l->X_add_number -= r->X_add_number;
27248 return TRUE;
27249 }
27250
27251 /* Process as normal. */
27252 return FALSE;
27253 }
27254
27255 /* Encode Thumb2 unconditional branches and calls. The encoding
27256 for the 2 are identical for the immediate values. */
27257
27258 static void
27259 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27260 {
27261 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27262 offsetT newval;
27263 offsetT newval2;
27264 addressT S, I1, I2, lo, hi;
27265
27266 S = (value >> 24) & 0x01;
27267 I1 = (value >> 23) & 0x01;
27268 I2 = (value >> 22) & 0x01;
27269 hi = (value >> 12) & 0x3ff;
27270 lo = (value >> 1) & 0x7ff;
27271 newval = md_chars_to_number (buf, THUMB_SIZE);
27272 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27273 newval |= (S << 10) | hi;
27274 newval2 &= ~T2I1I2MASK;
27275 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27276 md_number_to_chars (buf, newval, THUMB_SIZE);
27277 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27278 }
27279
27280 void
27281 md_apply_fix (fixS * fixP,
27282 valueT * valP,
27283 segT seg)
27284 {
27285 offsetT value = * valP;
27286 offsetT newval;
27287 unsigned int newimm;
27288 unsigned long temp;
27289 int sign;
27290 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27291
27292 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27293
27294 /* Note whether this will delete the relocation. */
27295
27296 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27297 fixP->fx_done = 1;
27298
27299 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27300 consistency with the behaviour on 32-bit hosts. Remember value
27301 for emit_reloc. */
27302 value &= 0xffffffff;
27303 value ^= 0x80000000;
27304 value -= 0x80000000;
27305
27306 *valP = value;
27307 fixP->fx_addnumber = value;
27308
27309 /* Same treatment for fixP->fx_offset. */
27310 fixP->fx_offset &= 0xffffffff;
27311 fixP->fx_offset ^= 0x80000000;
27312 fixP->fx_offset -= 0x80000000;
27313
27314 switch (fixP->fx_r_type)
27315 {
27316 case BFD_RELOC_NONE:
27317 /* This will need to go in the object file. */
27318 fixP->fx_done = 0;
27319 break;
27320
27321 case BFD_RELOC_ARM_IMMEDIATE:
27322 /* We claim that this fixup has been processed here,
27323 even if in fact we generate an error because we do
27324 not have a reloc for it, so tc_gen_reloc will reject it. */
27325 fixP->fx_done = 1;
27326
27327 if (fixP->fx_addsy)
27328 {
27329 const char *msg = 0;
27330
27331 if (! S_IS_DEFINED (fixP->fx_addsy))
27332 msg = _("undefined symbol %s used as an immediate value");
27333 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27334 msg = _("symbol %s is in a different section");
27335 else if (S_IS_WEAK (fixP->fx_addsy))
27336 msg = _("symbol %s is weak and may be overridden later");
27337
27338 if (msg)
27339 {
27340 as_bad_where (fixP->fx_file, fixP->fx_line,
27341 msg, S_GET_NAME (fixP->fx_addsy));
27342 break;
27343 }
27344 }
27345
27346 temp = md_chars_to_number (buf, INSN_SIZE);
27347
27348 /* If the offset is negative, we should use encoding A2 for ADR. */
27349 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27350 newimm = negate_data_op (&temp, value);
27351 else
27352 {
27353 newimm = encode_arm_immediate (value);
27354
27355 /* If the instruction will fail, see if we can fix things up by
27356 changing the opcode. */
27357 if (newimm == (unsigned int) FAIL)
27358 newimm = negate_data_op (&temp, value);
27359 /* MOV accepts both ARM modified immediate (A1 encoding) and
27360 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27361 When disassembling, MOV is preferred when there is no encoding
27362 overlap. */
27363 if (newimm == (unsigned int) FAIL
27364 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27365 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27366 && !((temp >> SBIT_SHIFT) & 0x1)
27367 && value >= 0 && value <= 0xffff)
27368 {
27369 /* Clear bits[23:20] to change encoding from A1 to A2. */
27370 temp &= 0xff0fffff;
27371 /* Encoding high 4bits imm. Code below will encode the remaining
27372 low 12bits. */
27373 temp |= (value & 0x0000f000) << 4;
27374 newimm = value & 0x00000fff;
27375 }
27376 }
27377
27378 if (newimm == (unsigned int) FAIL)
27379 {
27380 as_bad_where (fixP->fx_file, fixP->fx_line,
27381 _("invalid constant (%lx) after fixup"),
27382 (unsigned long) value);
27383 break;
27384 }
27385
27386 newimm |= (temp & 0xfffff000);
27387 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27388 break;
27389
27390 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27391 {
27392 unsigned int highpart = 0;
27393 unsigned int newinsn = 0xe1a00000; /* nop. */
27394
27395 if (fixP->fx_addsy)
27396 {
27397 const char *msg = 0;
27398
27399 if (! S_IS_DEFINED (fixP->fx_addsy))
27400 msg = _("undefined symbol %s used as an immediate value");
27401 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27402 msg = _("symbol %s is in a different section");
27403 else if (S_IS_WEAK (fixP->fx_addsy))
27404 msg = _("symbol %s is weak and may be overridden later");
27405
27406 if (msg)
27407 {
27408 as_bad_where (fixP->fx_file, fixP->fx_line,
27409 msg, S_GET_NAME (fixP->fx_addsy));
27410 break;
27411 }
27412 }
27413
27414 newimm = encode_arm_immediate (value);
27415 temp = md_chars_to_number (buf, INSN_SIZE);
27416
27417 /* If the instruction will fail, see if we can fix things up by
27418 changing the opcode. */
27419 if (newimm == (unsigned int) FAIL
27420 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27421 {
27422 /* No ? OK - try using two ADD instructions to generate
27423 the value. */
27424 newimm = validate_immediate_twopart (value, & highpart);
27425
27426 /* Yes - then make sure that the second instruction is
27427 also an add. */
27428 if (newimm != (unsigned int) FAIL)
27429 newinsn = temp;
27430 /* Still No ? Try using a negated value. */
27431 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27432 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27433 /* Otherwise - give up. */
27434 else
27435 {
27436 as_bad_where (fixP->fx_file, fixP->fx_line,
27437 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27438 (long) value);
27439 break;
27440 }
27441
27442 /* Replace the first operand in the 2nd instruction (which
27443 is the PC) with the destination register. We have
27444 already added in the PC in the first instruction and we
27445 do not want to do it again. */
27446 newinsn &= ~ 0xf0000;
27447 newinsn |= ((newinsn & 0x0f000) << 4);
27448 }
27449
27450 newimm |= (temp & 0xfffff000);
27451 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27452
27453 highpart |= (newinsn & 0xfffff000);
27454 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27455 }
27456 break;
27457
27458 case BFD_RELOC_ARM_OFFSET_IMM:
27459 if (!fixP->fx_done && seg->use_rela_p)
27460 value = 0;
27461 /* Fall through. */
27462
27463 case BFD_RELOC_ARM_LITERAL:
27464 sign = value > 0;
27465
27466 if (value < 0)
27467 value = - value;
27468
27469 if (validate_offset_imm (value, 0) == FAIL)
27470 {
27471 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27472 as_bad_where (fixP->fx_file, fixP->fx_line,
27473 _("invalid literal constant: pool needs to be closer"));
27474 else
27475 as_bad_where (fixP->fx_file, fixP->fx_line,
27476 _("bad immediate value for offset (%ld)"),
27477 (long) value);
27478 break;
27479 }
27480
27481 newval = md_chars_to_number (buf, INSN_SIZE);
27482 if (value == 0)
27483 newval &= 0xfffff000;
27484 else
27485 {
27486 newval &= 0xff7ff000;
27487 newval |= value | (sign ? INDEX_UP : 0);
27488 }
27489 md_number_to_chars (buf, newval, INSN_SIZE);
27490 break;
27491
27492 case BFD_RELOC_ARM_OFFSET_IMM8:
27493 case BFD_RELOC_ARM_HWLITERAL:
27494 sign = value > 0;
27495
27496 if (value < 0)
27497 value = - value;
27498
27499 if (validate_offset_imm (value, 1) == FAIL)
27500 {
27501 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27502 as_bad_where (fixP->fx_file, fixP->fx_line,
27503 _("invalid literal constant: pool needs to be closer"));
27504 else
27505 as_bad_where (fixP->fx_file, fixP->fx_line,
27506 _("bad immediate value for 8-bit offset (%ld)"),
27507 (long) value);
27508 break;
27509 }
27510
27511 newval = md_chars_to_number (buf, INSN_SIZE);
27512 if (value == 0)
27513 newval &= 0xfffff0f0;
27514 else
27515 {
27516 newval &= 0xff7ff0f0;
27517 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27518 }
27519 md_number_to_chars (buf, newval, INSN_SIZE);
27520 break;
27521
27522 case BFD_RELOC_ARM_T32_OFFSET_U8:
27523 if (value < 0 || value > 1020 || value % 4 != 0)
27524 as_bad_where (fixP->fx_file, fixP->fx_line,
27525 _("bad immediate value for offset (%ld)"), (long) value);
27526 value /= 4;
27527
27528 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27529 newval |= value;
27530 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27531 break;
27532
27533 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27534 /* This is a complicated relocation used for all varieties of Thumb32
27535 load/store instruction with immediate offset:
27536
27537 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
27538 *4, optional writeback(W)
27539 (doubleword load/store)
27540
27541 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27542 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27543 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27544 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27545 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27546
27547 Uppercase letters indicate bits that are already encoded at
27548 this point. Lowercase letters are our problem. For the
27549 second block of instructions, the secondary opcode nybble
27550 (bits 8..11) is present, and bit 23 is zero, even if this is
27551 a PC-relative operation. */
27552 newval = md_chars_to_number (buf, THUMB_SIZE);
27553 newval <<= 16;
27554 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
27555
27556 if ((newval & 0xf0000000) == 0xe0000000)
27557 {
27558 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27559 if (value >= 0)
27560 newval |= (1 << 23);
27561 else
27562 value = -value;
27563 if (value % 4 != 0)
27564 {
27565 as_bad_where (fixP->fx_file, fixP->fx_line,
27566 _("offset not a multiple of 4"));
27567 break;
27568 }
27569 value /= 4;
27570 if (value > 0xff)
27571 {
27572 as_bad_where (fixP->fx_file, fixP->fx_line,
27573 _("offset out of range"));
27574 break;
27575 }
27576 newval &= ~0xff;
27577 }
27578 else if ((newval & 0x000f0000) == 0x000f0000)
27579 {
27580 /* PC-relative, 12-bit offset. */
27581 if (value >= 0)
27582 newval |= (1 << 23);
27583 else
27584 value = -value;
27585 if (value > 0xfff)
27586 {
27587 as_bad_where (fixP->fx_file, fixP->fx_line,
27588 _("offset out of range"));
27589 break;
27590 }
27591 newval &= ~0xfff;
27592 }
27593 else if ((newval & 0x00000100) == 0x00000100)
27594 {
27595 /* Writeback: 8-bit, +/- offset. */
27596 if (value >= 0)
27597 newval |= (1 << 9);
27598 else
27599 value = -value;
27600 if (value > 0xff)
27601 {
27602 as_bad_where (fixP->fx_file, fixP->fx_line,
27603 _("offset out of range"));
27604 break;
27605 }
27606 newval &= ~0xff;
27607 }
27608 else if ((newval & 0x00000f00) == 0x00000e00)
27609 {
27610 /* T-instruction: positive 8-bit offset. */
27611 if (value < 0 || value > 0xff)
27612 {
27613 as_bad_where (fixP->fx_file, fixP->fx_line,
27614 _("offset out of range"));
27615 break;
27616 }
27617 newval &= ~0xff;
27618 newval |= value;
27619 }
27620 else
27621 {
27622 /* Positive 12-bit or negative 8-bit offset. */
27623 int limit;
27624 if (value >= 0)
27625 {
27626 newval |= (1 << 23);
27627 limit = 0xfff;
27628 }
27629 else
27630 {
27631 value = -value;
27632 limit = 0xff;
27633 }
27634 if (value > limit)
27635 {
27636 as_bad_where (fixP->fx_file, fixP->fx_line,
27637 _("offset out of range"));
27638 break;
27639 }
27640 newval &= ~limit;
27641 }
27642
27643 newval |= value;
27644 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27645 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27646 break;
27647
27648 case BFD_RELOC_ARM_SHIFT_IMM:
27649 newval = md_chars_to_number (buf, INSN_SIZE);
27650 if (((unsigned long) value) > 32
27651 || (value == 32
27652 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27653 {
27654 as_bad_where (fixP->fx_file, fixP->fx_line,
27655 _("shift expression is too large"));
27656 break;
27657 }
27658
27659 if (value == 0)
27660 /* Shifts of zero must be done as lsl. */
27661 newval &= ~0x60;
27662 else if (value == 32)
27663 value = 0;
27664 newval &= 0xfffff07f;
27665 newval |= (value & 0x1f) << 7;
27666 md_number_to_chars (buf, newval, INSN_SIZE);
27667 break;
27668
27669 case BFD_RELOC_ARM_T32_IMMEDIATE:
27670 case BFD_RELOC_ARM_T32_ADD_IMM:
27671 case BFD_RELOC_ARM_T32_IMM12:
27672 case BFD_RELOC_ARM_T32_ADD_PC12:
27673 /* We claim that this fixup has been processed here,
27674 even if in fact we generate an error because we do
27675 not have a reloc for it, so tc_gen_reloc will reject it. */
27676 fixP->fx_done = 1;
27677
27678 if (fixP->fx_addsy
27679 && ! S_IS_DEFINED (fixP->fx_addsy))
27680 {
27681 as_bad_where (fixP->fx_file, fixP->fx_line,
27682 _("undefined symbol %s used as an immediate value"),
27683 S_GET_NAME (fixP->fx_addsy));
27684 break;
27685 }
27686
27687 newval = md_chars_to_number (buf, THUMB_SIZE);
27688 newval <<= 16;
27689 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27690
27691 newimm = FAIL;
27692 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27693 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27694 Thumb2 modified immediate encoding (T2). */
27695 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27696 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27697 {
27698 newimm = encode_thumb32_immediate (value);
27699 if (newimm == (unsigned int) FAIL)
27700 newimm = thumb32_negate_data_op (&newval, value);
27701 }
27702 if (newimm == (unsigned int) FAIL)
27703 {
27704 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27705 {
27706 /* Turn add/sum into addw/subw. */
27707 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27708 newval = (newval & 0xfeffffff) | 0x02000000;
27709 /* No flat 12-bit imm encoding for addsw/subsw. */
27710 if ((newval & 0x00100000) == 0)
27711 {
27712 /* 12 bit immediate for addw/subw. */
27713 if (value < 0)
27714 {
27715 value = -value;
27716 newval ^= 0x00a00000;
27717 }
27718 if (value > 0xfff)
27719 newimm = (unsigned int) FAIL;
27720 else
27721 newimm = value;
27722 }
27723 }
27724 else
27725 {
27726 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27727 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27728 disassembling, MOV is preferred when there is no encoding
27729 overlap. */
27730 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27731 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27732 but with the Rn field [19:16] set to 1111. */
27733 && (((newval >> 16) & 0xf) == 0xf)
27734 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27735 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27736 && value >= 0 && value <= 0xffff)
27737 {
27738 /* Toggle bit[25] to change encoding from T2 to T3. */
27739 newval ^= 1 << 25;
27740 /* Clear bits[19:16]. */
27741 newval &= 0xfff0ffff;
27742 /* Encoding high 4bits imm. Code below will encode the
27743 remaining low 12bits. */
27744 newval |= (value & 0x0000f000) << 4;
27745 newimm = value & 0x00000fff;
27746 }
27747 }
27748 }
27749
27750 if (newimm == (unsigned int)FAIL)
27751 {
27752 as_bad_where (fixP->fx_file, fixP->fx_line,
27753 _("invalid constant (%lx) after fixup"),
27754 (unsigned long) value);
27755 break;
27756 }
27757
27758 newval |= (newimm & 0x800) << 15;
27759 newval |= (newimm & 0x700) << 4;
27760 newval |= (newimm & 0x0ff);
27761
27762 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27763 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27764 break;
27765
27766 case BFD_RELOC_ARM_SMC:
27767 if (((unsigned long) value) > 0xf)
27768 as_bad_where (fixP->fx_file, fixP->fx_line,
27769 _("invalid smc expression"));
27770
27771 newval = md_chars_to_number (buf, INSN_SIZE);
27772 newval |= (value & 0xf);
27773 md_number_to_chars (buf, newval, INSN_SIZE);
27774 break;
27775
27776 case BFD_RELOC_ARM_HVC:
27777 if (((unsigned long) value) > 0xffff)
27778 as_bad_where (fixP->fx_file, fixP->fx_line,
27779 _("invalid hvc expression"));
27780 newval = md_chars_to_number (buf, INSN_SIZE);
27781 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27782 md_number_to_chars (buf, newval, INSN_SIZE);
27783 break;
27784
27785 case BFD_RELOC_ARM_SWI:
27786 if (fixP->tc_fix_data != 0)
27787 {
27788 if (((unsigned long) value) > 0xff)
27789 as_bad_where (fixP->fx_file, fixP->fx_line,
27790 _("invalid swi expression"));
27791 newval = md_chars_to_number (buf, THUMB_SIZE);
27792 newval |= value;
27793 md_number_to_chars (buf, newval, THUMB_SIZE);
27794 }
27795 else
27796 {
27797 if (((unsigned long) value) > 0x00ffffff)
27798 as_bad_where (fixP->fx_file, fixP->fx_line,
27799 _("invalid swi expression"));
27800 newval = md_chars_to_number (buf, INSN_SIZE);
27801 newval |= value;
27802 md_number_to_chars (buf, newval, INSN_SIZE);
27803 }
27804 break;
27805
27806 case BFD_RELOC_ARM_MULTI:
27807 if (((unsigned long) value) > 0xffff)
27808 as_bad_where (fixP->fx_file, fixP->fx_line,
27809 _("invalid expression in load/store multiple"));
27810 newval = value | md_chars_to_number (buf, INSN_SIZE);
27811 md_number_to_chars (buf, newval, INSN_SIZE);
27812 break;
27813
27814 #ifdef OBJ_ELF
27815 case BFD_RELOC_ARM_PCREL_CALL:
27816
27817 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27818 && fixP->fx_addsy
27819 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27820 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27821 && THUMB_IS_FUNC (fixP->fx_addsy))
27822 /* Flip the bl to blx. This is a simple flip
27823 bit here because we generate PCREL_CALL for
27824 unconditional bls. */
27825 {
27826 newval = md_chars_to_number (buf, INSN_SIZE);
27827 newval = newval | 0x10000000;
27828 md_number_to_chars (buf, newval, INSN_SIZE);
27829 temp = 1;
27830 fixP->fx_done = 1;
27831 }
27832 else
27833 temp = 3;
27834 goto arm_branch_common;
27835
27836 case BFD_RELOC_ARM_PCREL_JUMP:
27837 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27838 && fixP->fx_addsy
27839 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27840 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27841 && THUMB_IS_FUNC (fixP->fx_addsy))
27842 {
27843 /* This would map to a bl<cond>, b<cond>,
27844 b<always> to a Thumb function. We
27845 need to force a relocation for this particular
27846 case. */
27847 newval = md_chars_to_number (buf, INSN_SIZE);
27848 fixP->fx_done = 0;
27849 }
27850 /* Fall through. */
27851
27852 case BFD_RELOC_ARM_PLT32:
27853 #endif
27854 case BFD_RELOC_ARM_PCREL_BRANCH:
27855 temp = 3;
27856 goto arm_branch_common;
27857
27858 case BFD_RELOC_ARM_PCREL_BLX:
27859
27860 temp = 1;
27861 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27862 && fixP->fx_addsy
27863 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27864 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27865 && ARM_IS_FUNC (fixP->fx_addsy))
27866 {
27867 /* Flip the blx to a bl and warn. */
27868 const char *name = S_GET_NAME (fixP->fx_addsy);
27869 newval = 0xeb000000;
27870 as_warn_where (fixP->fx_file, fixP->fx_line,
27871 _("blx to '%s' an ARM ISA state function changed to bl"),
27872 name);
27873 md_number_to_chars (buf, newval, INSN_SIZE);
27874 temp = 3;
27875 fixP->fx_done = 1;
27876 }
27877
27878 #ifdef OBJ_ELF
27879 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27880 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27881 #endif
27882
27883 arm_branch_common:
27884 /* We are going to store value (shifted right by two) in the
27885 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27886 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27887 also be clear. */
27888 if (value & temp)
27889 as_bad_where (fixP->fx_file, fixP->fx_line,
27890 _("misaligned branch destination"));
27891 if ((value & (offsetT)0xfe000000) != (offsetT)0
27892 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27893 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27894
27895 if (fixP->fx_done || !seg->use_rela_p)
27896 {
27897 newval = md_chars_to_number (buf, INSN_SIZE);
27898 newval |= (value >> 2) & 0x00ffffff;
27899 /* Set the H bit on BLX instructions. */
27900 if (temp == 1)
27901 {
27902 if (value & 2)
27903 newval |= 0x01000000;
27904 else
27905 newval &= ~0x01000000;
27906 }
27907 md_number_to_chars (buf, newval, INSN_SIZE);
27908 }
27909 break;
27910
27911 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27912 /* CBZ can only branch forward. */
27913
27914 /* Attempts to use CBZ to branch to the next instruction
27915 (which, strictly speaking, are prohibited) will be turned into
27916 no-ops.
27917
27918 FIXME: It may be better to remove the instruction completely and
27919 perform relaxation. */
27920 if (value == -2)
27921 {
27922 newval = md_chars_to_number (buf, THUMB_SIZE);
27923 newval = 0xbf00; /* NOP encoding T1 */
27924 md_number_to_chars (buf, newval, THUMB_SIZE);
27925 }
27926 else
27927 {
27928 if (value & ~0x7e)
27929 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27930
27931 if (fixP->fx_done || !seg->use_rela_p)
27932 {
27933 newval = md_chars_to_number (buf, THUMB_SIZE);
27934 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27935 md_number_to_chars (buf, newval, THUMB_SIZE);
27936 }
27937 }
27938 break;
27939
27940 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27941 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27942 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27943
27944 if (fixP->fx_done || !seg->use_rela_p)
27945 {
27946 newval = md_chars_to_number (buf, THUMB_SIZE);
27947 newval |= (value & 0x1ff) >> 1;
27948 md_number_to_chars (buf, newval, THUMB_SIZE);
27949 }
27950 break;
27951
27952 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27953 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27954 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27955
27956 if (fixP->fx_done || !seg->use_rela_p)
27957 {
27958 newval = md_chars_to_number (buf, THUMB_SIZE);
27959 newval |= (value & 0xfff) >> 1;
27960 md_number_to_chars (buf, newval, THUMB_SIZE);
27961 }
27962 break;
27963
27964 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27965 if (fixP->fx_addsy
27966 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27967 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27968 && ARM_IS_FUNC (fixP->fx_addsy)
27969 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27970 {
27971 /* Force a relocation for a branch 20 bits wide. */
27972 fixP->fx_done = 0;
27973 }
27974 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27975 as_bad_where (fixP->fx_file, fixP->fx_line,
27976 _("conditional branch out of range"));
27977
27978 if (fixP->fx_done || !seg->use_rela_p)
27979 {
27980 offsetT newval2;
27981 addressT S, J1, J2, lo, hi;
27982
27983 S = (value & 0x00100000) >> 20;
27984 J2 = (value & 0x00080000) >> 19;
27985 J1 = (value & 0x00040000) >> 18;
27986 hi = (value & 0x0003f000) >> 12;
27987 lo = (value & 0x00000ffe) >> 1;
27988
27989 newval = md_chars_to_number (buf, THUMB_SIZE);
27990 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27991 newval |= (S << 10) | hi;
27992 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27993 md_number_to_chars (buf, newval, THUMB_SIZE);
27994 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27995 }
27996 break;
27997
27998 case BFD_RELOC_THUMB_PCREL_BLX:
27999 /* If there is a blx from a thumb state function to
28000 another thumb function flip this to a bl and warn
28001 about it. */
28002
28003 if (fixP->fx_addsy
28004 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28005 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28006 && THUMB_IS_FUNC (fixP->fx_addsy))
28007 {
28008 const char *name = S_GET_NAME (fixP->fx_addsy);
28009 as_warn_where (fixP->fx_file, fixP->fx_line,
28010 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28011 name);
28012 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28013 newval = newval | 0x1000;
28014 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28015 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28016 fixP->fx_done = 1;
28017 }
28018
28019
28020 goto thumb_bl_common;
28021
28022 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28023 /* A bl from Thumb state ISA to an internal ARM state function
28024 is converted to a blx. */
28025 if (fixP->fx_addsy
28026 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28027 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28028 && ARM_IS_FUNC (fixP->fx_addsy)
28029 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28030 {
28031 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28032 newval = newval & ~0x1000;
28033 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28034 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28035 fixP->fx_done = 1;
28036 }
28037
28038 thumb_bl_common:
28039
28040 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28041 /* For a BLX instruction, make sure that the relocation is rounded up
28042 to a word boundary. This follows the semantics of the instruction
28043 which specifies that bit 1 of the target address will come from bit
28044 1 of the base address. */
28045 value = (value + 3) & ~ 3;
28046
28047 #ifdef OBJ_ELF
28048 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28049 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28050 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28051 #endif
28052
28053 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
28054 {
28055 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
28056 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28057 else if ((value & ~0x1ffffff)
28058 && ((value & ~0x1ffffff) != ~0x1ffffff))
28059 as_bad_where (fixP->fx_file, fixP->fx_line,
28060 _("Thumb2 branch out of range"));
28061 }
28062
28063 if (fixP->fx_done || !seg->use_rela_p)
28064 encode_thumb2_b_bl_offset (buf, value);
28065
28066 break;
28067
28068 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28069 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
28070 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28071
28072 if (fixP->fx_done || !seg->use_rela_p)
28073 encode_thumb2_b_bl_offset (buf, value);
28074
28075 break;
28076
28077 case BFD_RELOC_8:
28078 if (fixP->fx_done || !seg->use_rela_p)
28079 *buf = value;
28080 break;
28081
28082 case BFD_RELOC_16:
28083 if (fixP->fx_done || !seg->use_rela_p)
28084 md_number_to_chars (buf, value, 2);
28085 break;
28086
28087 #ifdef OBJ_ELF
28088 case BFD_RELOC_ARM_TLS_CALL:
28089 case BFD_RELOC_ARM_THM_TLS_CALL:
28090 case BFD_RELOC_ARM_TLS_DESCSEQ:
28091 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28092 case BFD_RELOC_ARM_TLS_GOTDESC:
28093 case BFD_RELOC_ARM_TLS_GD32:
28094 case BFD_RELOC_ARM_TLS_LE32:
28095 case BFD_RELOC_ARM_TLS_IE32:
28096 case BFD_RELOC_ARM_TLS_LDM32:
28097 case BFD_RELOC_ARM_TLS_LDO32:
28098 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28099 break;
28100
28101 /* Same handling as above, but with the arm_fdpic guard. */
28102 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28103 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28104 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28105 if (arm_fdpic)
28106 {
28107 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28108 }
28109 else
28110 {
28111 as_bad_where (fixP->fx_file, fixP->fx_line,
28112 _("Relocation supported only in FDPIC mode"));
28113 }
28114 break;
28115
28116 case BFD_RELOC_ARM_GOT32:
28117 case BFD_RELOC_ARM_GOTOFF:
28118 break;
28119
28120 case BFD_RELOC_ARM_GOT_PREL:
28121 if (fixP->fx_done || !seg->use_rela_p)
28122 md_number_to_chars (buf, value, 4);
28123 break;
28124
28125 case BFD_RELOC_ARM_TARGET2:
28126 /* TARGET2 is not partial-inplace, so we need to write the
28127 addend here for REL targets, because it won't be written out
28128 during reloc processing later. */
28129 if (fixP->fx_done || !seg->use_rela_p)
28130 md_number_to_chars (buf, fixP->fx_offset, 4);
28131 break;
28132
28133 /* Relocations for FDPIC. */
28134 case BFD_RELOC_ARM_GOTFUNCDESC:
28135 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28136 case BFD_RELOC_ARM_FUNCDESC:
28137 if (arm_fdpic)
28138 {
28139 if (fixP->fx_done || !seg->use_rela_p)
28140 md_number_to_chars (buf, 0, 4);
28141 }
28142 else
28143 {
28144 as_bad_where (fixP->fx_file, fixP->fx_line,
28145 _("Relocation supported only in FDPIC mode"));
28146 }
28147 break;
28148 #endif
28149
28150 case BFD_RELOC_RVA:
28151 case BFD_RELOC_32:
28152 case BFD_RELOC_ARM_TARGET1:
28153 case BFD_RELOC_ARM_ROSEGREL32:
28154 case BFD_RELOC_ARM_SBREL32:
28155 case BFD_RELOC_32_PCREL:
28156 #ifdef TE_PE
28157 case BFD_RELOC_32_SECREL:
28158 #endif
28159 if (fixP->fx_done || !seg->use_rela_p)
28160 #ifdef TE_WINCE
28161 /* For WinCE we only do this for pcrel fixups. */
28162 if (fixP->fx_done || fixP->fx_pcrel)
28163 #endif
28164 md_number_to_chars (buf, value, 4);
28165 break;
28166
28167 #ifdef OBJ_ELF
28168 case BFD_RELOC_ARM_PREL31:
28169 if (fixP->fx_done || !seg->use_rela_p)
28170 {
28171 newval = md_chars_to_number (buf, 4) & 0x80000000;
28172 if ((value ^ (value >> 1)) & 0x40000000)
28173 {
28174 as_bad_where (fixP->fx_file, fixP->fx_line,
28175 _("rel31 relocation overflow"));
28176 }
28177 newval |= value & 0x7fffffff;
28178 md_number_to_chars (buf, newval, 4);
28179 }
28180 break;
28181 #endif
28182
28183 case BFD_RELOC_ARM_CP_OFF_IMM:
28184 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28185 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28186 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28187 newval = md_chars_to_number (buf, INSN_SIZE);
28188 else
28189 newval = get_thumb32_insn (buf);
28190 if ((newval & 0x0f200f00) == 0x0d000900)
28191 {
28192 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28193 has permitted values that are multiples of 2, in the range 0
28194 to 510. */
28195 if (value < -510 || value > 510 || (value & 1))
28196 as_bad_where (fixP->fx_file, fixP->fx_line,
28197 _("co-processor offset out of range"));
28198 }
28199 else if ((newval & 0xfe001f80) == 0xec000f80)
28200 {
28201 if (value < -511 || value > 512 || (value & 3))
28202 as_bad_where (fixP->fx_file, fixP->fx_line,
28203 _("co-processor offset out of range"));
28204 }
28205 else if (value < -1023 || value > 1023 || (value & 3))
28206 as_bad_where (fixP->fx_file, fixP->fx_line,
28207 _("co-processor offset out of range"));
28208 cp_off_common:
28209 sign = value > 0;
28210 if (value < 0)
28211 value = -value;
28212 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28213 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28214 newval = md_chars_to_number (buf, INSN_SIZE);
28215 else
28216 newval = get_thumb32_insn (buf);
28217 if (value == 0)
28218 {
28219 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28220 newval &= 0xffffff80;
28221 else
28222 newval &= 0xffffff00;
28223 }
28224 else
28225 {
28226 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28227 newval &= 0xff7fff80;
28228 else
28229 newval &= 0xff7fff00;
28230 if ((newval & 0x0f200f00) == 0x0d000900)
28231 {
28232 /* This is a fp16 vstr/vldr.
28233
28234 It requires the immediate offset in the instruction is shifted
28235 left by 1 to be a half-word offset.
28236
28237 Here, left shift by 1 first, and later right shift by 2
28238 should get the right offset. */
28239 value <<= 1;
28240 }
28241 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28242 }
28243 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28244 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28245 md_number_to_chars (buf, newval, INSN_SIZE);
28246 else
28247 put_thumb32_insn (buf, newval);
28248 break;
28249
28250 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28251 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28252 if (value < -255 || value > 255)
28253 as_bad_where (fixP->fx_file, fixP->fx_line,
28254 _("co-processor offset out of range"));
28255 value *= 4;
28256 goto cp_off_common;
28257
28258 case BFD_RELOC_ARM_THUMB_OFFSET:
28259 newval = md_chars_to_number (buf, THUMB_SIZE);
28260 /* Exactly what ranges, and where the offset is inserted depends
28261 on the type of instruction, we can establish this from the
28262 top 4 bits. */
28263 switch (newval >> 12)
28264 {
28265 case 4: /* PC load. */
28266 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28267 forced to zero for these loads; md_pcrel_from has already
28268 compensated for this. */
28269 if (value & 3)
28270 as_bad_where (fixP->fx_file, fixP->fx_line,
28271 _("invalid offset, target not word aligned (0x%08lX)"),
28272 (((unsigned long) fixP->fx_frag->fr_address
28273 + (unsigned long) fixP->fx_where) & ~3)
28274 + (unsigned long) value);
28275
28276 if (value & ~0x3fc)
28277 as_bad_where (fixP->fx_file, fixP->fx_line,
28278 _("invalid offset, value too big (0x%08lX)"),
28279 (long) value);
28280
28281 newval |= value >> 2;
28282 break;
28283
28284 case 9: /* SP load/store. */
28285 if (value & ~0x3fc)
28286 as_bad_where (fixP->fx_file, fixP->fx_line,
28287 _("invalid offset, value too big (0x%08lX)"),
28288 (long) value);
28289 newval |= value >> 2;
28290 break;
28291
28292 case 6: /* Word load/store. */
28293 if (value & ~0x7c)
28294 as_bad_where (fixP->fx_file, fixP->fx_line,
28295 _("invalid offset, value too big (0x%08lX)"),
28296 (long) value);
28297 newval |= value << 4; /* 6 - 2. */
28298 break;
28299
28300 case 7: /* Byte load/store. */
28301 if (value & ~0x1f)
28302 as_bad_where (fixP->fx_file, fixP->fx_line,
28303 _("invalid offset, value too big (0x%08lX)"),
28304 (long) value);
28305 newval |= value << 6;
28306 break;
28307
28308 case 8: /* Halfword load/store. */
28309 if (value & ~0x3e)
28310 as_bad_where (fixP->fx_file, fixP->fx_line,
28311 _("invalid offset, value too big (0x%08lX)"),
28312 (long) value);
28313 newval |= value << 5; /* 6 - 1. */
28314 break;
28315
28316 default:
28317 as_bad_where (fixP->fx_file, fixP->fx_line,
28318 "Unable to process relocation for thumb opcode: %lx",
28319 (unsigned long) newval);
28320 break;
28321 }
28322 md_number_to_chars (buf, newval, THUMB_SIZE);
28323 break;
28324
28325 case BFD_RELOC_ARM_THUMB_ADD:
28326 /* This is a complicated relocation, since we use it for all of
28327 the following immediate relocations:
28328
28329 3bit ADD/SUB
28330 8bit ADD/SUB
28331 9bit ADD/SUB SP word-aligned
28332 10bit ADD PC/SP word-aligned
28333
28334 The type of instruction being processed is encoded in the
28335 instruction field:
28336
28337 0x8000 SUB
28338 0x00F0 Rd
28339 0x000F Rs
28340 */
28341 newval = md_chars_to_number (buf, THUMB_SIZE);
28342 {
28343 int rd = (newval >> 4) & 0xf;
28344 int rs = newval & 0xf;
28345 int subtract = !!(newval & 0x8000);
28346
28347 /* Check for HI regs, only very restricted cases allowed:
28348 Adjusting SP, and using PC or SP to get an address. */
28349 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28350 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28351 as_bad_where (fixP->fx_file, fixP->fx_line,
28352 _("invalid Hi register with immediate"));
28353
28354 /* If value is negative, choose the opposite instruction. */
28355 if (value < 0)
28356 {
28357 value = -value;
28358 subtract = !subtract;
28359 if (value < 0)
28360 as_bad_where (fixP->fx_file, fixP->fx_line,
28361 _("immediate value out of range"));
28362 }
28363
28364 if (rd == REG_SP)
28365 {
28366 if (value & ~0x1fc)
28367 as_bad_where (fixP->fx_file, fixP->fx_line,
28368 _("invalid immediate for stack address calculation"));
28369 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28370 newval |= value >> 2;
28371 }
28372 else if (rs == REG_PC || rs == REG_SP)
28373 {
28374 /* PR gas/18541. If the addition is for a defined symbol
28375 within range of an ADR instruction then accept it. */
28376 if (subtract
28377 && value == 4
28378 && fixP->fx_addsy != NULL)
28379 {
28380 subtract = 0;
28381
28382 if (! S_IS_DEFINED (fixP->fx_addsy)
28383 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28384 || S_IS_WEAK (fixP->fx_addsy))
28385 {
28386 as_bad_where (fixP->fx_file, fixP->fx_line,
28387 _("address calculation needs a strongly defined nearby symbol"));
28388 }
28389 else
28390 {
28391 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28392
28393 /* Round up to the next 4-byte boundary. */
28394 if (v & 3)
28395 v = (v + 3) & ~ 3;
28396 else
28397 v += 4;
28398 v = S_GET_VALUE (fixP->fx_addsy) - v;
28399
28400 if (v & ~0x3fc)
28401 {
28402 as_bad_where (fixP->fx_file, fixP->fx_line,
28403 _("symbol too far away"));
28404 }
28405 else
28406 {
28407 fixP->fx_done = 1;
28408 value = v;
28409 }
28410 }
28411 }
28412
28413 if (subtract || value & ~0x3fc)
28414 as_bad_where (fixP->fx_file, fixP->fx_line,
28415 _("invalid immediate for address calculation (value = 0x%08lX)"),
28416 (unsigned long) (subtract ? - value : value));
28417 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28418 newval |= rd << 8;
28419 newval |= value >> 2;
28420 }
28421 else if (rs == rd)
28422 {
28423 if (value & ~0xff)
28424 as_bad_where (fixP->fx_file, fixP->fx_line,
28425 _("immediate value out of range"));
28426 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28427 newval |= (rd << 8) | value;
28428 }
28429 else
28430 {
28431 if (value & ~0x7)
28432 as_bad_where (fixP->fx_file, fixP->fx_line,
28433 _("immediate value out of range"));
28434 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28435 newval |= rd | (rs << 3) | (value << 6);
28436 }
28437 }
28438 md_number_to_chars (buf, newval, THUMB_SIZE);
28439 break;
28440
28441 case BFD_RELOC_ARM_THUMB_IMM:
28442 newval = md_chars_to_number (buf, THUMB_SIZE);
28443 if (value < 0 || value > 255)
28444 as_bad_where (fixP->fx_file, fixP->fx_line,
28445 _("invalid immediate: %ld is out of range"),
28446 (long) value);
28447 newval |= value;
28448 md_number_to_chars (buf, newval, THUMB_SIZE);
28449 break;
28450
28451 case BFD_RELOC_ARM_THUMB_SHIFT:
28452 /* 5bit shift value (0..32). LSL cannot take 32. */
28453 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28454 temp = newval & 0xf800;
28455 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28456 as_bad_where (fixP->fx_file, fixP->fx_line,
28457 _("invalid shift value: %ld"), (long) value);
28458 /* Shifts of zero must be encoded as LSL. */
28459 if (value == 0)
28460 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28461 /* Shifts of 32 are encoded as zero. */
28462 else if (value == 32)
28463 value = 0;
28464 newval |= value << 6;
28465 md_number_to_chars (buf, newval, THUMB_SIZE);
28466 break;
28467
28468 case BFD_RELOC_VTABLE_INHERIT:
28469 case BFD_RELOC_VTABLE_ENTRY:
28470 fixP->fx_done = 0;
28471 return;
28472
28473 case BFD_RELOC_ARM_MOVW:
28474 case BFD_RELOC_ARM_MOVT:
28475 case BFD_RELOC_ARM_THUMB_MOVW:
28476 case BFD_RELOC_ARM_THUMB_MOVT:
28477 if (fixP->fx_done || !seg->use_rela_p)
28478 {
28479 /* REL format relocations are limited to a 16-bit addend. */
28480 if (!fixP->fx_done)
28481 {
28482 if (value < -0x8000 || value > 0x7fff)
28483 as_bad_where (fixP->fx_file, fixP->fx_line,
28484 _("offset out of range"));
28485 }
28486 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28487 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28488 {
28489 value >>= 16;
28490 }
28491
28492 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28493 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28494 {
28495 newval = get_thumb32_insn (buf);
28496 newval &= 0xfbf08f00;
28497 newval |= (value & 0xf000) << 4;
28498 newval |= (value & 0x0800) << 15;
28499 newval |= (value & 0x0700) << 4;
28500 newval |= (value & 0x00ff);
28501 put_thumb32_insn (buf, newval);
28502 }
28503 else
28504 {
28505 newval = md_chars_to_number (buf, 4);
28506 newval &= 0xfff0f000;
28507 newval |= value & 0x0fff;
28508 newval |= (value & 0xf000) << 4;
28509 md_number_to_chars (buf, newval, 4);
28510 }
28511 }
28512 return;
28513
28514 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28515 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28516 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28517 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28518 gas_assert (!fixP->fx_done);
28519 {
28520 bfd_vma insn;
28521 bfd_boolean is_mov;
28522 bfd_vma encoded_addend = value;
28523
28524 /* Check that addend can be encoded in instruction. */
28525 if (!seg->use_rela_p && (value < 0 || value > 255))
28526 as_bad_where (fixP->fx_file, fixP->fx_line,
28527 _("the offset 0x%08lX is not representable"),
28528 (unsigned long) encoded_addend);
28529
28530 /* Extract the instruction. */
28531 insn = md_chars_to_number (buf, THUMB_SIZE);
28532 is_mov = (insn & 0xf800) == 0x2000;
28533
28534 /* Encode insn. */
28535 if (is_mov)
28536 {
28537 if (!seg->use_rela_p)
28538 insn |= encoded_addend;
28539 }
28540 else
28541 {
28542 int rd, rs;
28543
28544 /* Extract the instruction. */
28545 /* Encoding is the following
28546 0x8000 SUB
28547 0x00F0 Rd
28548 0x000F Rs
28549 */
28550 /* The following conditions must be true :
28551 - ADD
28552 - Rd == Rs
28553 - Rd <= 7
28554 */
28555 rd = (insn >> 4) & 0xf;
28556 rs = insn & 0xf;
28557 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28558 as_bad_where (fixP->fx_file, fixP->fx_line,
28559 _("Unable to process relocation for thumb opcode: %lx"),
28560 (unsigned long) insn);
28561
28562 /* Encode as ADD immediate8 thumb 1 code. */
28563 insn = 0x3000 | (rd << 8);
28564
28565 /* Place the encoded addend into the first 8 bits of the
28566 instruction. */
28567 if (!seg->use_rela_p)
28568 insn |= encoded_addend;
28569 }
28570
28571 /* Update the instruction. */
28572 md_number_to_chars (buf, insn, THUMB_SIZE);
28573 }
28574 break;
28575
28576 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28577 case BFD_RELOC_ARM_ALU_PC_G0:
28578 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28579 case BFD_RELOC_ARM_ALU_PC_G1:
28580 case BFD_RELOC_ARM_ALU_PC_G2:
28581 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28582 case BFD_RELOC_ARM_ALU_SB_G0:
28583 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28584 case BFD_RELOC_ARM_ALU_SB_G1:
28585 case BFD_RELOC_ARM_ALU_SB_G2:
28586 gas_assert (!fixP->fx_done);
28587 if (!seg->use_rela_p)
28588 {
28589 bfd_vma insn;
28590 bfd_vma encoded_addend;
28591 bfd_vma addend_abs = llabs (value);
28592
28593 /* Check that the absolute value of the addend can be
28594 expressed as an 8-bit constant plus a rotation. */
28595 encoded_addend = encode_arm_immediate (addend_abs);
28596 if (encoded_addend == (unsigned int) FAIL)
28597 as_bad_where (fixP->fx_file, fixP->fx_line,
28598 _("the offset 0x%08lX is not representable"),
28599 (unsigned long) addend_abs);
28600
28601 /* Extract the instruction. */
28602 insn = md_chars_to_number (buf, INSN_SIZE);
28603
28604 /* If the addend is positive, use an ADD instruction.
28605 Otherwise use a SUB. Take care not to destroy the S bit. */
28606 insn &= 0xff1fffff;
28607 if (value < 0)
28608 insn |= 1 << 22;
28609 else
28610 insn |= 1 << 23;
28611
28612 /* Place the encoded addend into the first 12 bits of the
28613 instruction. */
28614 insn &= 0xfffff000;
28615 insn |= encoded_addend;
28616
28617 /* Update the instruction. */
28618 md_number_to_chars (buf, insn, INSN_SIZE);
28619 }
28620 break;
28621
28622 case BFD_RELOC_ARM_LDR_PC_G0:
28623 case BFD_RELOC_ARM_LDR_PC_G1:
28624 case BFD_RELOC_ARM_LDR_PC_G2:
28625 case BFD_RELOC_ARM_LDR_SB_G0:
28626 case BFD_RELOC_ARM_LDR_SB_G1:
28627 case BFD_RELOC_ARM_LDR_SB_G2:
28628 gas_assert (!fixP->fx_done);
28629 if (!seg->use_rela_p)
28630 {
28631 bfd_vma insn;
28632 bfd_vma addend_abs = llabs (value);
28633
28634 /* Check that the absolute value of the addend can be
28635 encoded in 12 bits. */
28636 if (addend_abs >= 0x1000)
28637 as_bad_where (fixP->fx_file, fixP->fx_line,
28638 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28639 (unsigned long) addend_abs);
28640
28641 /* Extract the instruction. */
28642 insn = md_chars_to_number (buf, INSN_SIZE);
28643
28644 /* If the addend is negative, clear bit 23 of the instruction.
28645 Otherwise set it. */
28646 if (value < 0)
28647 insn &= ~(1 << 23);
28648 else
28649 insn |= 1 << 23;
28650
28651 /* Place the absolute value of the addend into the first 12 bits
28652 of the instruction. */
28653 insn &= 0xfffff000;
28654 insn |= addend_abs;
28655
28656 /* Update the instruction. */
28657 md_number_to_chars (buf, insn, INSN_SIZE);
28658 }
28659 break;
28660
28661 case BFD_RELOC_ARM_LDRS_PC_G0:
28662 case BFD_RELOC_ARM_LDRS_PC_G1:
28663 case BFD_RELOC_ARM_LDRS_PC_G2:
28664 case BFD_RELOC_ARM_LDRS_SB_G0:
28665 case BFD_RELOC_ARM_LDRS_SB_G1:
28666 case BFD_RELOC_ARM_LDRS_SB_G2:
28667 gas_assert (!fixP->fx_done);
28668 if (!seg->use_rela_p)
28669 {
28670 bfd_vma insn;
28671 bfd_vma addend_abs = llabs (value);
28672
28673 /* Check that the absolute value of the addend can be
28674 encoded in 8 bits. */
28675 if (addend_abs >= 0x100)
28676 as_bad_where (fixP->fx_file, fixP->fx_line,
28677 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28678 (unsigned long) addend_abs);
28679
28680 /* Extract the instruction. */
28681 insn = md_chars_to_number (buf, INSN_SIZE);
28682
28683 /* If the addend is negative, clear bit 23 of the instruction.
28684 Otherwise set it. */
28685 if (value < 0)
28686 insn &= ~(1 << 23);
28687 else
28688 insn |= 1 << 23;
28689
28690 /* Place the first four bits of the absolute value of the addend
28691 into the first 4 bits of the instruction, and the remaining
28692 four into bits 8 .. 11. */
28693 insn &= 0xfffff0f0;
28694 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28695
28696 /* Update the instruction. */
28697 md_number_to_chars (buf, insn, INSN_SIZE);
28698 }
28699 break;
28700
28701 case BFD_RELOC_ARM_LDC_PC_G0:
28702 case BFD_RELOC_ARM_LDC_PC_G1:
28703 case BFD_RELOC_ARM_LDC_PC_G2:
28704 case BFD_RELOC_ARM_LDC_SB_G0:
28705 case BFD_RELOC_ARM_LDC_SB_G1:
28706 case BFD_RELOC_ARM_LDC_SB_G2:
28707 gas_assert (!fixP->fx_done);
28708 if (!seg->use_rela_p)
28709 {
28710 bfd_vma insn;
28711 bfd_vma addend_abs = llabs (value);
28712
28713 /* Check that the absolute value of the addend is a multiple of
28714 four and, when divided by four, fits in 8 bits. */
28715 if (addend_abs & 0x3)
28716 as_bad_where (fixP->fx_file, fixP->fx_line,
28717 _("bad offset 0x%08lX (must be word-aligned)"),
28718 (unsigned long) addend_abs);
28719
28720 if ((addend_abs >> 2) > 0xff)
28721 as_bad_where (fixP->fx_file, fixP->fx_line,
28722 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28723 (unsigned long) addend_abs);
28724
28725 /* Extract the instruction. */
28726 insn = md_chars_to_number (buf, INSN_SIZE);
28727
28728 /* If the addend is negative, clear bit 23 of the instruction.
28729 Otherwise set it. */
28730 if (value < 0)
28731 insn &= ~(1 << 23);
28732 else
28733 insn |= 1 << 23;
28734
28735 /* Place the addend (divided by four) into the first eight
28736 bits of the instruction. */
28737 insn &= 0xfffffff0;
28738 insn |= addend_abs >> 2;
28739
28740 /* Update the instruction. */
28741 md_number_to_chars (buf, insn, INSN_SIZE);
28742 }
28743 break;
28744
28745 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28746 if (fixP->fx_addsy
28747 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28748 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28749 && ARM_IS_FUNC (fixP->fx_addsy)
28750 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28751 {
28752 /* Force a relocation for a branch 5 bits wide. */
28753 fixP->fx_done = 0;
28754 }
28755 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28756 as_bad_where (fixP->fx_file, fixP->fx_line,
28757 BAD_BRANCH_OFF);
28758
28759 if (fixP->fx_done || !seg->use_rela_p)
28760 {
28761 addressT boff = value >> 1;
28762
28763 newval = md_chars_to_number (buf, THUMB_SIZE);
28764 newval |= (boff << 7);
28765 md_number_to_chars (buf, newval, THUMB_SIZE);
28766 }
28767 break;
28768
28769 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28770 if (fixP->fx_addsy
28771 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28772 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28773 && ARM_IS_FUNC (fixP->fx_addsy)
28774 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28775 {
28776 fixP->fx_done = 0;
28777 }
28778 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28779 as_bad_where (fixP->fx_file, fixP->fx_line,
28780 _("branch out of range"));
28781
28782 if (fixP->fx_done || !seg->use_rela_p)
28783 {
28784 newval = md_chars_to_number (buf, THUMB_SIZE);
28785
28786 addressT boff = ((newval & 0x0780) >> 7) << 1;
28787 addressT diff = value - boff;
28788
28789 if (diff == 4)
28790 {
28791 newval |= 1 << 1; /* T bit. */
28792 }
28793 else if (diff != 2)
28794 {
28795 as_bad_where (fixP->fx_file, fixP->fx_line,
28796 _("out of range label-relative fixup value"));
28797 }
28798 md_number_to_chars (buf, newval, THUMB_SIZE);
28799 }
28800 break;
28801
28802 case BFD_RELOC_ARM_THUMB_BF17:
28803 if (fixP->fx_addsy
28804 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28805 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28806 && ARM_IS_FUNC (fixP->fx_addsy)
28807 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28808 {
28809 /* Force a relocation for a branch 17 bits wide. */
28810 fixP->fx_done = 0;
28811 }
28812
28813 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28814 as_bad_where (fixP->fx_file, fixP->fx_line,
28815 BAD_BRANCH_OFF);
28816
28817 if (fixP->fx_done || !seg->use_rela_p)
28818 {
28819 offsetT newval2;
28820 addressT immA, immB, immC;
28821
28822 immA = (value & 0x0001f000) >> 12;
28823 immB = (value & 0x00000ffc) >> 2;
28824 immC = (value & 0x00000002) >> 1;
28825
28826 newval = md_chars_to_number (buf, THUMB_SIZE);
28827 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28828 newval |= immA;
28829 newval2 |= (immC << 11) | (immB << 1);
28830 md_number_to_chars (buf, newval, THUMB_SIZE);
28831 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28832 }
28833 break;
28834
28835 case BFD_RELOC_ARM_THUMB_BF19:
28836 if (fixP->fx_addsy
28837 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28838 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28839 && ARM_IS_FUNC (fixP->fx_addsy)
28840 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28841 {
28842 /* Force a relocation for a branch 19 bits wide. */
28843 fixP->fx_done = 0;
28844 }
28845
28846 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28847 as_bad_where (fixP->fx_file, fixP->fx_line,
28848 BAD_BRANCH_OFF);
28849
28850 if (fixP->fx_done || !seg->use_rela_p)
28851 {
28852 offsetT newval2;
28853 addressT immA, immB, immC;
28854
28855 immA = (value & 0x0007f000) >> 12;
28856 immB = (value & 0x00000ffc) >> 2;
28857 immC = (value & 0x00000002) >> 1;
28858
28859 newval = md_chars_to_number (buf, THUMB_SIZE);
28860 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28861 newval |= immA;
28862 newval2 |= (immC << 11) | (immB << 1);
28863 md_number_to_chars (buf, newval, THUMB_SIZE);
28864 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28865 }
28866 break;
28867
28868 case BFD_RELOC_ARM_THUMB_BF13:
28869 if (fixP->fx_addsy
28870 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28871 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28872 && ARM_IS_FUNC (fixP->fx_addsy)
28873 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28874 {
28875 /* Force a relocation for a branch 13 bits wide. */
28876 fixP->fx_done = 0;
28877 }
28878
28879 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28880 as_bad_where (fixP->fx_file, fixP->fx_line,
28881 BAD_BRANCH_OFF);
28882
28883 if (fixP->fx_done || !seg->use_rela_p)
28884 {
28885 offsetT newval2;
28886 addressT immA, immB, immC;
28887
28888 immA = (value & 0x00001000) >> 12;
28889 immB = (value & 0x00000ffc) >> 2;
28890 immC = (value & 0x00000002) >> 1;
28891
28892 newval = md_chars_to_number (buf, THUMB_SIZE);
28893 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28894 newval |= immA;
28895 newval2 |= (immC << 11) | (immB << 1);
28896 md_number_to_chars (buf, newval, THUMB_SIZE);
28897 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28898 }
28899 break;
28900
28901 case BFD_RELOC_ARM_THUMB_LOOP12:
28902 if (fixP->fx_addsy
28903 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28904 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28905 && ARM_IS_FUNC (fixP->fx_addsy)
28906 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28907 {
28908 /* Force a relocation for a branch 12 bits wide. */
28909 fixP->fx_done = 0;
28910 }
28911
28912 bfd_vma insn = get_thumb32_insn (buf);
28913 /* le lr, <label>, le <label> or letp lr, <label> */
28914 if (((insn & 0xffffffff) == 0xf00fc001)
28915 || ((insn & 0xffffffff) == 0xf02fc001)
28916 || ((insn & 0xffffffff) == 0xf01fc001))
28917 value = -value;
28918
28919 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28920 as_bad_where (fixP->fx_file, fixP->fx_line,
28921 BAD_BRANCH_OFF);
28922 if (fixP->fx_done || !seg->use_rela_p)
28923 {
28924 addressT imml, immh;
28925
28926 immh = (value & 0x00000ffc) >> 2;
28927 imml = (value & 0x00000002) >> 1;
28928
28929 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28930 newval |= (imml << 11) | (immh << 1);
28931 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28932 }
28933 break;
28934
28935 case BFD_RELOC_ARM_V4BX:
28936 /* This will need to go in the object file. */
28937 fixP->fx_done = 0;
28938 break;
28939
28940 case BFD_RELOC_UNUSED:
28941 default:
28942 as_bad_where (fixP->fx_file, fixP->fx_line,
28943 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28944 }
28945 }
28946
28947 /* Translate internal representation of relocation info to BFD target
28948 format. */
28949
28950 arelent *
28951 tc_gen_reloc (asection *section, fixS *fixp)
28952 {
28953 arelent * reloc;
28954 bfd_reloc_code_real_type code;
28955
28956 reloc = XNEW (arelent);
28957
28958 reloc->sym_ptr_ptr = XNEW (asymbol *);
28959 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28960 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28961
28962 if (fixp->fx_pcrel)
28963 {
28964 if (section->use_rela_p)
28965 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28966 else
28967 fixp->fx_offset = reloc->address;
28968 }
28969 reloc->addend = fixp->fx_offset;
28970
28971 switch (fixp->fx_r_type)
28972 {
28973 case BFD_RELOC_8:
28974 if (fixp->fx_pcrel)
28975 {
28976 code = BFD_RELOC_8_PCREL;
28977 break;
28978 }
28979 /* Fall through. */
28980
28981 case BFD_RELOC_16:
28982 if (fixp->fx_pcrel)
28983 {
28984 code = BFD_RELOC_16_PCREL;
28985 break;
28986 }
28987 /* Fall through. */
28988
28989 case BFD_RELOC_32:
28990 if (fixp->fx_pcrel)
28991 {
28992 code = BFD_RELOC_32_PCREL;
28993 break;
28994 }
28995 /* Fall through. */
28996
28997 case BFD_RELOC_ARM_MOVW:
28998 if (fixp->fx_pcrel)
28999 {
29000 code = BFD_RELOC_ARM_MOVW_PCREL;
29001 break;
29002 }
29003 /* Fall through. */
29004
29005 case BFD_RELOC_ARM_MOVT:
29006 if (fixp->fx_pcrel)
29007 {
29008 code = BFD_RELOC_ARM_MOVT_PCREL;
29009 break;
29010 }
29011 /* Fall through. */
29012
29013 case BFD_RELOC_ARM_THUMB_MOVW:
29014 if (fixp->fx_pcrel)
29015 {
29016 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29017 break;
29018 }
29019 /* Fall through. */
29020
29021 case BFD_RELOC_ARM_THUMB_MOVT:
29022 if (fixp->fx_pcrel)
29023 {
29024 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29025 break;
29026 }
29027 /* Fall through. */
29028
29029 case BFD_RELOC_NONE:
29030 case BFD_RELOC_ARM_PCREL_BRANCH:
29031 case BFD_RELOC_ARM_PCREL_BLX:
29032 case BFD_RELOC_RVA:
29033 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29034 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29035 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29036 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29037 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29038 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29039 case BFD_RELOC_VTABLE_ENTRY:
29040 case BFD_RELOC_VTABLE_INHERIT:
29041 #ifdef TE_PE
29042 case BFD_RELOC_32_SECREL:
29043 #endif
29044 code = fixp->fx_r_type;
29045 break;
29046
29047 case BFD_RELOC_THUMB_PCREL_BLX:
29048 #ifdef OBJ_ELF
29049 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29050 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29051 else
29052 #endif
29053 code = BFD_RELOC_THUMB_PCREL_BLX;
29054 break;
29055
29056 case BFD_RELOC_ARM_LITERAL:
29057 case BFD_RELOC_ARM_HWLITERAL:
29058 /* If this is called then the a literal has
29059 been referenced across a section boundary. */
29060 as_bad_where (fixp->fx_file, fixp->fx_line,
29061 _("literal referenced across section boundary"));
29062 return NULL;
29063
29064 #ifdef OBJ_ELF
29065 case BFD_RELOC_ARM_TLS_CALL:
29066 case BFD_RELOC_ARM_THM_TLS_CALL:
29067 case BFD_RELOC_ARM_TLS_DESCSEQ:
29068 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29069 case BFD_RELOC_ARM_GOT32:
29070 case BFD_RELOC_ARM_GOTOFF:
29071 case BFD_RELOC_ARM_GOT_PREL:
29072 case BFD_RELOC_ARM_PLT32:
29073 case BFD_RELOC_ARM_TARGET1:
29074 case BFD_RELOC_ARM_ROSEGREL32:
29075 case BFD_RELOC_ARM_SBREL32:
29076 case BFD_RELOC_ARM_PREL31:
29077 case BFD_RELOC_ARM_TARGET2:
29078 case BFD_RELOC_ARM_TLS_LDO32:
29079 case BFD_RELOC_ARM_PCREL_CALL:
29080 case BFD_RELOC_ARM_PCREL_JUMP:
29081 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29082 case BFD_RELOC_ARM_ALU_PC_G0:
29083 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29084 case BFD_RELOC_ARM_ALU_PC_G1:
29085 case BFD_RELOC_ARM_ALU_PC_G2:
29086 case BFD_RELOC_ARM_LDR_PC_G0:
29087 case BFD_RELOC_ARM_LDR_PC_G1:
29088 case BFD_RELOC_ARM_LDR_PC_G2:
29089 case BFD_RELOC_ARM_LDRS_PC_G0:
29090 case BFD_RELOC_ARM_LDRS_PC_G1:
29091 case BFD_RELOC_ARM_LDRS_PC_G2:
29092 case BFD_RELOC_ARM_LDC_PC_G0:
29093 case BFD_RELOC_ARM_LDC_PC_G1:
29094 case BFD_RELOC_ARM_LDC_PC_G2:
29095 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29096 case BFD_RELOC_ARM_ALU_SB_G0:
29097 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29098 case BFD_RELOC_ARM_ALU_SB_G1:
29099 case BFD_RELOC_ARM_ALU_SB_G2:
29100 case BFD_RELOC_ARM_LDR_SB_G0:
29101 case BFD_RELOC_ARM_LDR_SB_G1:
29102 case BFD_RELOC_ARM_LDR_SB_G2:
29103 case BFD_RELOC_ARM_LDRS_SB_G0:
29104 case BFD_RELOC_ARM_LDRS_SB_G1:
29105 case BFD_RELOC_ARM_LDRS_SB_G2:
29106 case BFD_RELOC_ARM_LDC_SB_G0:
29107 case BFD_RELOC_ARM_LDC_SB_G1:
29108 case BFD_RELOC_ARM_LDC_SB_G2:
29109 case BFD_RELOC_ARM_V4BX:
29110 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29111 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29112 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29113 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29114 case BFD_RELOC_ARM_GOTFUNCDESC:
29115 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29116 case BFD_RELOC_ARM_FUNCDESC:
29117 case BFD_RELOC_ARM_THUMB_BF17:
29118 case BFD_RELOC_ARM_THUMB_BF19:
29119 case BFD_RELOC_ARM_THUMB_BF13:
29120 code = fixp->fx_r_type;
29121 break;
29122
29123 case BFD_RELOC_ARM_TLS_GOTDESC:
29124 case BFD_RELOC_ARM_TLS_GD32:
29125 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29126 case BFD_RELOC_ARM_TLS_LE32:
29127 case BFD_RELOC_ARM_TLS_IE32:
29128 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29129 case BFD_RELOC_ARM_TLS_LDM32:
29130 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29131 /* BFD will include the symbol's address in the addend.
29132 But we don't want that, so subtract it out again here. */
29133 if (!S_IS_COMMON (fixp->fx_addsy))
29134 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29135 code = fixp->fx_r_type;
29136 break;
29137 #endif
29138
29139 case BFD_RELOC_ARM_IMMEDIATE:
29140 as_bad_where (fixp->fx_file, fixp->fx_line,
29141 _("internal relocation (type: IMMEDIATE) not fixed up"));
29142 return NULL;
29143
29144 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29145 as_bad_where (fixp->fx_file, fixp->fx_line,
29146 _("ADRL used for a symbol not defined in the same file"));
29147 return NULL;
29148
29149 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29150 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29151 case BFD_RELOC_ARM_THUMB_LOOP12:
29152 as_bad_where (fixp->fx_file, fixp->fx_line,
29153 _("%s used for a symbol not defined in the same file"),
29154 bfd_get_reloc_code_name (fixp->fx_r_type));
29155 return NULL;
29156
29157 case BFD_RELOC_ARM_OFFSET_IMM:
29158 if (section->use_rela_p)
29159 {
29160 code = fixp->fx_r_type;
29161 break;
29162 }
29163
29164 if (fixp->fx_addsy != NULL
29165 && !S_IS_DEFINED (fixp->fx_addsy)
29166 && S_IS_LOCAL (fixp->fx_addsy))
29167 {
29168 as_bad_where (fixp->fx_file, fixp->fx_line,
29169 _("undefined local label `%s'"),
29170 S_GET_NAME (fixp->fx_addsy));
29171 return NULL;
29172 }
29173
29174 as_bad_where (fixp->fx_file, fixp->fx_line,
29175 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29176 return NULL;
29177
29178 default:
29179 {
29180 const char * type;
29181
29182 switch (fixp->fx_r_type)
29183 {
29184 case BFD_RELOC_NONE: type = "NONE"; break;
29185 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29186 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29187 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29188 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29189 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29190 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29191 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29192 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29193 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29194 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29195 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29196 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29197 default: type = _("<unknown>"); break;
29198 }
29199 as_bad_where (fixp->fx_file, fixp->fx_line,
29200 _("cannot represent %s relocation in this object file format"),
29201 type);
29202 return NULL;
29203 }
29204 }
29205
29206 #ifdef OBJ_ELF
29207 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29208 && GOT_symbol
29209 && fixp->fx_addsy == GOT_symbol)
29210 {
29211 code = BFD_RELOC_ARM_GOTPC;
29212 reloc->addend = fixp->fx_offset = reloc->address;
29213 }
29214 #endif
29215
29216 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29217
29218 if (reloc->howto == NULL)
29219 {
29220 as_bad_where (fixp->fx_file, fixp->fx_line,
29221 _("cannot represent %s relocation in this object file format"),
29222 bfd_get_reloc_code_name (code));
29223 return NULL;
29224 }
29225
29226 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29227 vtable entry to be used in the relocation's section offset. */
29228 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29229 reloc->address = fixp->fx_offset;
29230
29231 return reloc;
29232 }
29233
29234 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29235
29236 void
29237 cons_fix_new_arm (fragS * frag,
29238 int where,
29239 int size,
29240 expressionS * exp,
29241 bfd_reloc_code_real_type reloc)
29242 {
29243 int pcrel = 0;
29244
29245 /* Pick a reloc.
29246 FIXME: @@ Should look at CPU word size. */
29247 switch (size)
29248 {
29249 case 1:
29250 reloc = BFD_RELOC_8;
29251 break;
29252 case 2:
29253 reloc = BFD_RELOC_16;
29254 break;
29255 case 4:
29256 default:
29257 reloc = BFD_RELOC_32;
29258 break;
29259 case 8:
29260 reloc = BFD_RELOC_64;
29261 break;
29262 }
29263
29264 #ifdef TE_PE
29265 if (exp->X_op == O_secrel)
29266 {
29267 exp->X_op = O_symbol;
29268 reloc = BFD_RELOC_32_SECREL;
29269 }
29270 #endif
29271
29272 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29273 }
29274
29275 #if defined (OBJ_COFF)
29276 void
29277 arm_validate_fix (fixS * fixP)
29278 {
29279 /* If the destination of the branch is a defined symbol which does not have
29280 the THUMB_FUNC attribute, then we must be calling a function which has
29281 the (interfacearm) attribute. We look for the Thumb entry point to that
29282 function and change the branch to refer to that function instead. */
29283 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29284 && fixP->fx_addsy != NULL
29285 && S_IS_DEFINED (fixP->fx_addsy)
29286 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29287 {
29288 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29289 }
29290 }
29291 #endif
29292
29293
29294 int
29295 arm_force_relocation (struct fix * fixp)
29296 {
29297 #if defined (OBJ_COFF) && defined (TE_PE)
29298 if (fixp->fx_r_type == BFD_RELOC_RVA)
29299 return 1;
29300 #endif
29301
29302 /* In case we have a call or a branch to a function in ARM ISA mode from
29303 a thumb function or vice-versa force the relocation. These relocations
29304 are cleared off for some cores that might have blx and simple transformations
29305 are possible. */
29306
29307 #ifdef OBJ_ELF
29308 switch (fixp->fx_r_type)
29309 {
29310 case BFD_RELOC_ARM_PCREL_JUMP:
29311 case BFD_RELOC_ARM_PCREL_CALL:
29312 case BFD_RELOC_THUMB_PCREL_BLX:
29313 if (THUMB_IS_FUNC (fixp->fx_addsy))
29314 return 1;
29315 break;
29316
29317 case BFD_RELOC_ARM_PCREL_BLX:
29318 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29319 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29320 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29321 if (ARM_IS_FUNC (fixp->fx_addsy))
29322 return 1;
29323 break;
29324
29325 default:
29326 break;
29327 }
29328 #endif
29329
29330 /* Resolve these relocations even if the symbol is extern or weak.
29331 Technically this is probably wrong due to symbol preemption.
29332 In practice these relocations do not have enough range to be useful
29333 at dynamic link time, and some code (e.g. in the Linux kernel)
29334 expects these references to be resolved. */
29335 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29336 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29337 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29338 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29339 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29340 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29341 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29342 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29343 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29344 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29345 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29346 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29347 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29348 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29349 return 0;
29350
29351 /* Always leave these relocations for the linker. */
29352 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29353 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29354 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29355 return 1;
29356
29357 /* Always generate relocations against function symbols. */
29358 if (fixp->fx_r_type == BFD_RELOC_32
29359 && fixp->fx_addsy
29360 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29361 return 1;
29362
29363 return generic_force_reloc (fixp);
29364 }
29365
29366 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29367 /* Relocations against function names must be left unadjusted,
29368 so that the linker can use this information to generate interworking
29369 stubs. The MIPS version of this function
29370 also prevents relocations that are mips-16 specific, but I do not
29371 know why it does this.
29372
29373 FIXME:
29374 There is one other problem that ought to be addressed here, but
29375 which currently is not: Taking the address of a label (rather
29376 than a function) and then later jumping to that address. Such
29377 addresses also ought to have their bottom bit set (assuming that
29378 they reside in Thumb code), but at the moment they will not. */
29379
29380 bfd_boolean
29381 arm_fix_adjustable (fixS * fixP)
29382 {
29383 if (fixP->fx_addsy == NULL)
29384 return 1;
29385
29386 /* Preserve relocations against symbols with function type. */
29387 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29388 return FALSE;
29389
29390 if (THUMB_IS_FUNC (fixP->fx_addsy)
29391 && fixP->fx_subsy == NULL)
29392 return FALSE;
29393
29394 /* We need the symbol name for the VTABLE entries. */
29395 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29396 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29397 return FALSE;
29398
29399 /* Don't allow symbols to be discarded on GOT related relocs. */
29400 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29401 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29402 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29403 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29404 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29405 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29406 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29407 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29408 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29409 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29410 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29411 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29412 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29413 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29414 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29415 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29416 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29417 return FALSE;
29418
29419 /* Similarly for group relocations. */
29420 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29421 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29422 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29423 return FALSE;
29424
29425 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29426 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29427 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29428 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29429 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29430 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29431 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29432 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29433 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29434 return FALSE;
29435
29436 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29437 offsets, so keep these symbols. */
29438 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29439 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29440 return FALSE;
29441
29442 return TRUE;
29443 }
29444 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29445
29446 #ifdef OBJ_ELF
29447 const char *
29448 elf32_arm_target_format (void)
29449 {
29450 #ifdef TE_SYMBIAN
29451 return (target_big_endian
29452 ? "elf32-bigarm-symbian"
29453 : "elf32-littlearm-symbian");
29454 #elif defined (TE_VXWORKS)
29455 return (target_big_endian
29456 ? "elf32-bigarm-vxworks"
29457 : "elf32-littlearm-vxworks");
29458 #elif defined (TE_NACL)
29459 return (target_big_endian
29460 ? "elf32-bigarm-nacl"
29461 : "elf32-littlearm-nacl");
29462 #else
29463 if (arm_fdpic)
29464 {
29465 if (target_big_endian)
29466 return "elf32-bigarm-fdpic";
29467 else
29468 return "elf32-littlearm-fdpic";
29469 }
29470 else
29471 {
29472 if (target_big_endian)
29473 return "elf32-bigarm";
29474 else
29475 return "elf32-littlearm";
29476 }
29477 #endif
29478 }
29479
29480 void
29481 armelf_frob_symbol (symbolS * symp,
29482 int * puntp)
29483 {
29484 elf_frob_symbol (symp, puntp);
29485 }
29486 #endif
29487
29488 /* MD interface: Finalization. */
29489
29490 void
29491 arm_cleanup (void)
29492 {
29493 literal_pool * pool;
29494
29495 /* Ensure that all the predication blocks are properly closed. */
29496 check_pred_blocks_finished ();
29497
29498 for (pool = list_of_pools; pool; pool = pool->next)
29499 {
29500 /* Put it at the end of the relevant section. */
29501 subseg_set (pool->section, pool->sub_section);
29502 #ifdef OBJ_ELF
29503 arm_elf_change_section ();
29504 #endif
29505 s_ltorg (0);
29506 }
29507 }
29508
29509 #ifdef OBJ_ELF
29510 /* Remove any excess mapping symbols generated for alignment frags in
29511 SEC. We may have created a mapping symbol before a zero byte
29512 alignment; remove it if there's a mapping symbol after the
29513 alignment. */
29514 static void
29515 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29516 void *dummy ATTRIBUTE_UNUSED)
29517 {
29518 segment_info_type *seginfo = seg_info (sec);
29519 fragS *fragp;
29520
29521 if (seginfo == NULL || seginfo->frchainP == NULL)
29522 return;
29523
29524 for (fragp = seginfo->frchainP->frch_root;
29525 fragp != NULL;
29526 fragp = fragp->fr_next)
29527 {
29528 symbolS *sym = fragp->tc_frag_data.last_map;
29529 fragS *next = fragp->fr_next;
29530
29531 /* Variable-sized frags have been converted to fixed size by
29532 this point. But if this was variable-sized to start with,
29533 there will be a fixed-size frag after it. So don't handle
29534 next == NULL. */
29535 if (sym == NULL || next == NULL)
29536 continue;
29537
29538 if (S_GET_VALUE (sym) < next->fr_address)
29539 /* Not at the end of this frag. */
29540 continue;
29541 know (S_GET_VALUE (sym) == next->fr_address);
29542
29543 do
29544 {
29545 if (next->tc_frag_data.first_map != NULL)
29546 {
29547 /* Next frag starts with a mapping symbol. Discard this
29548 one. */
29549 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29550 break;
29551 }
29552
29553 if (next->fr_next == NULL)
29554 {
29555 /* This mapping symbol is at the end of the section. Discard
29556 it. */
29557 know (next->fr_fix == 0 && next->fr_var == 0);
29558 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29559 break;
29560 }
29561
29562 /* As long as we have empty frags without any mapping symbols,
29563 keep looking. */
29564 /* If the next frag is non-empty and does not start with a
29565 mapping symbol, then this mapping symbol is required. */
29566 if (next->fr_address != next->fr_next->fr_address)
29567 break;
29568
29569 next = next->fr_next;
29570 }
29571 while (next != NULL);
29572 }
29573 }
29574 #endif
29575
29576 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29577 ARM ones. */
29578
29579 void
29580 arm_adjust_symtab (void)
29581 {
29582 #ifdef OBJ_COFF
29583 symbolS * sym;
29584
29585 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29586 {
29587 if (ARM_IS_THUMB (sym))
29588 {
29589 if (THUMB_IS_FUNC (sym))
29590 {
29591 /* Mark the symbol as a Thumb function. */
29592 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29593 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29594 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29595
29596 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29597 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29598 else
29599 as_bad (_("%s: unexpected function type: %d"),
29600 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29601 }
29602 else switch (S_GET_STORAGE_CLASS (sym))
29603 {
29604 case C_EXT:
29605 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29606 break;
29607 case C_STAT:
29608 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29609 break;
29610 case C_LABEL:
29611 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29612 break;
29613 default:
29614 /* Do nothing. */
29615 break;
29616 }
29617 }
29618
29619 if (ARM_IS_INTERWORK (sym))
29620 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29621 }
29622 #endif
29623 #ifdef OBJ_ELF
29624 symbolS * sym;
29625 char bind;
29626
29627 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29628 {
29629 if (ARM_IS_THUMB (sym))
29630 {
29631 elf_symbol_type * elf_sym;
29632
29633 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29634 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29635
29636 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29637 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29638 {
29639 /* If it's a .thumb_func, declare it as so,
29640 otherwise tag label as .code 16. */
29641 if (THUMB_IS_FUNC (sym))
29642 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29643 ST_BRANCH_TO_THUMB);
29644 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29645 elf_sym->internal_elf_sym.st_info =
29646 ELF_ST_INFO (bind, STT_ARM_16BIT);
29647 }
29648 }
29649 }
29650
29651 /* Remove any overlapping mapping symbols generated by alignment frags. */
29652 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29653 /* Now do generic ELF adjustments. */
29654 elf_adjust_symtab ();
29655 #endif
29656 }
29657
29658 /* MD interface: Initialization. */
29659
29660 static void
29661 set_constant_flonums (void)
29662 {
29663 int i;
29664
29665 for (i = 0; i < NUM_FLOAT_VALS; i++)
29666 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29667 abort ();
29668 }
29669
29670 /* Auto-select Thumb mode if it's the only available instruction set for the
29671 given architecture. */
29672
29673 static void
29674 autoselect_thumb_from_cpu_variant (void)
29675 {
29676 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29677 opcode_select (16);
29678 }
29679
29680 void
29681 md_begin (void)
29682 {
29683 unsigned mach;
29684 unsigned int i;
29685
29686 if ( (arm_ops_hsh = hash_new ()) == NULL
29687 || (arm_cond_hsh = hash_new ()) == NULL
29688 || (arm_vcond_hsh = hash_new ()) == NULL
29689 || (arm_shift_hsh = hash_new ()) == NULL
29690 || (arm_psr_hsh = hash_new ()) == NULL
29691 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29692 || (arm_reg_hsh = hash_new ()) == NULL
29693 || (arm_reloc_hsh = hash_new ()) == NULL
29694 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29695 as_fatal (_("virtual memory exhausted"));
29696
29697 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29698 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29699 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29700 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29701 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29702 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29703 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29704 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29705 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29706 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29707 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29708 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29709 (void *) (v7m_psrs + i));
29710 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29711 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29712 for (i = 0;
29713 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29714 i++)
29715 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29716 (void *) (barrier_opt_names + i));
29717 #ifdef OBJ_ELF
29718 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29719 {
29720 struct reloc_entry * entry = reloc_names + i;
29721
29722 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29723 /* This makes encode_branch() use the EABI versions of this relocation. */
29724 entry->reloc = BFD_RELOC_UNUSED;
29725
29726 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29727 }
29728 #endif
29729
29730 set_constant_flonums ();
29731
29732 /* Set the cpu variant based on the command-line options. We prefer
29733 -mcpu= over -march= if both are set (as for GCC); and we prefer
29734 -mfpu= over any other way of setting the floating point unit.
29735 Use of legacy options with new options are faulted. */
29736 if (legacy_cpu)
29737 {
29738 if (mcpu_cpu_opt || march_cpu_opt)
29739 as_bad (_("use of old and new-style options to set CPU type"));
29740
29741 selected_arch = *legacy_cpu;
29742 }
29743 else if (mcpu_cpu_opt)
29744 {
29745 selected_arch = *mcpu_cpu_opt;
29746 selected_ext = *mcpu_ext_opt;
29747 }
29748 else if (march_cpu_opt)
29749 {
29750 selected_arch = *march_cpu_opt;
29751 selected_ext = *march_ext_opt;
29752 }
29753 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29754
29755 if (legacy_fpu)
29756 {
29757 if (mfpu_opt)
29758 as_bad (_("use of old and new-style options to set FPU type"));
29759
29760 selected_fpu = *legacy_fpu;
29761 }
29762 else if (mfpu_opt)
29763 selected_fpu = *mfpu_opt;
29764 else
29765 {
29766 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29767 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29768 /* Some environments specify a default FPU. If they don't, infer it
29769 from the processor. */
29770 if (mcpu_fpu_opt)
29771 selected_fpu = *mcpu_fpu_opt;
29772 else if (march_fpu_opt)
29773 selected_fpu = *march_fpu_opt;
29774 #else
29775 selected_fpu = fpu_default;
29776 #endif
29777 }
29778
29779 if (ARM_FEATURE_ZERO (selected_fpu))
29780 {
29781 if (!no_cpu_selected ())
29782 selected_fpu = fpu_default;
29783 else
29784 selected_fpu = fpu_arch_fpa;
29785 }
29786
29787 #ifdef CPU_DEFAULT
29788 if (ARM_FEATURE_ZERO (selected_arch))
29789 {
29790 selected_arch = cpu_default;
29791 selected_cpu = selected_arch;
29792 }
29793 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29794 #else
29795 /* Autodection of feature mode: allow all features in cpu_variant but leave
29796 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29797 after all instruction have been processed and we can decide what CPU
29798 should be selected. */
29799 if (ARM_FEATURE_ZERO (selected_arch))
29800 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29801 else
29802 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29803 #endif
29804
29805 autoselect_thumb_from_cpu_variant ();
29806
29807 arm_arch_used = thumb_arch_used = arm_arch_none;
29808
29809 #if defined OBJ_COFF || defined OBJ_ELF
29810 {
29811 unsigned int flags = 0;
29812
29813 #if defined OBJ_ELF
29814 flags = meabi_flags;
29815
29816 switch (meabi_flags)
29817 {
29818 case EF_ARM_EABI_UNKNOWN:
29819 #endif
29820 /* Set the flags in the private structure. */
29821 if (uses_apcs_26) flags |= F_APCS26;
29822 if (support_interwork) flags |= F_INTERWORK;
29823 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29824 if (pic_code) flags |= F_PIC;
29825 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29826 flags |= F_SOFT_FLOAT;
29827
29828 switch (mfloat_abi_opt)
29829 {
29830 case ARM_FLOAT_ABI_SOFT:
29831 case ARM_FLOAT_ABI_SOFTFP:
29832 flags |= F_SOFT_FLOAT;
29833 break;
29834
29835 case ARM_FLOAT_ABI_HARD:
29836 if (flags & F_SOFT_FLOAT)
29837 as_bad (_("hard-float conflicts with specified fpu"));
29838 break;
29839 }
29840
29841 /* Using pure-endian doubles (even if soft-float). */
29842 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29843 flags |= F_VFP_FLOAT;
29844
29845 #if defined OBJ_ELF
29846 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29847 flags |= EF_ARM_MAVERICK_FLOAT;
29848 break;
29849
29850 case EF_ARM_EABI_VER4:
29851 case EF_ARM_EABI_VER5:
29852 /* No additional flags to set. */
29853 break;
29854
29855 default:
29856 abort ();
29857 }
29858 #endif
29859 bfd_set_private_flags (stdoutput, flags);
29860
29861 /* We have run out flags in the COFF header to encode the
29862 status of ATPCS support, so instead we create a dummy,
29863 empty, debug section called .arm.atpcs. */
29864 if (atpcs)
29865 {
29866 asection * sec;
29867
29868 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29869
29870 if (sec != NULL)
29871 {
29872 bfd_set_section_flags
29873 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29874 bfd_set_section_size (stdoutput, sec, 0);
29875 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29876 }
29877 }
29878 }
29879 #endif
29880
29881 /* Record the CPU type as well. */
29882 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29883 mach = bfd_mach_arm_iWMMXt2;
29884 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29885 mach = bfd_mach_arm_iWMMXt;
29886 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29887 mach = bfd_mach_arm_XScale;
29888 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29889 mach = bfd_mach_arm_ep9312;
29890 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29891 mach = bfd_mach_arm_5TE;
29892 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29893 {
29894 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29895 mach = bfd_mach_arm_5T;
29896 else
29897 mach = bfd_mach_arm_5;
29898 }
29899 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29900 {
29901 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29902 mach = bfd_mach_arm_4T;
29903 else
29904 mach = bfd_mach_arm_4;
29905 }
29906 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29907 mach = bfd_mach_arm_3M;
29908 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29909 mach = bfd_mach_arm_3;
29910 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29911 mach = bfd_mach_arm_2a;
29912 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29913 mach = bfd_mach_arm_2;
29914 else
29915 mach = bfd_mach_arm_unknown;
29916
29917 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29918 }
29919
29920 /* Command line processing. */
29921
29922 /* md_parse_option
29923 Invocation line includes a switch not recognized by the base assembler.
29924 See if it's a processor-specific option.
29925
29926 This routine is somewhat complicated by the need for backwards
29927 compatibility (since older releases of gcc can't be changed).
29928 The new options try to make the interface as compatible as
29929 possible with GCC.
29930
29931 New options (supported) are:
29932
29933 -mcpu=<cpu name> Assemble for selected processor
29934 -march=<architecture name> Assemble for selected architecture
29935 -mfpu=<fpu architecture> Assemble for selected FPU.
29936 -EB/-mbig-endian Big-endian
29937 -EL/-mlittle-endian Little-endian
29938 -k Generate PIC code
29939 -mthumb Start in Thumb mode
29940 -mthumb-interwork Code supports ARM/Thumb interworking
29941
29942 -m[no-]warn-deprecated Warn about deprecated features
29943 -m[no-]warn-syms Warn when symbols match instructions
29944
29945 For now we will also provide support for:
29946
29947 -mapcs-32 32-bit Program counter
29948 -mapcs-26 26-bit Program counter
29949 -macps-float Floats passed in FP registers
29950 -mapcs-reentrant Reentrant code
29951 -matpcs
29952 (sometime these will probably be replaced with -mapcs=<list of options>
29953 and -matpcs=<list of options>)
29954
29955 The remaining options are only supported for back-wards compatibility.
29956 Cpu variants, the arm part is optional:
29957 -m[arm]1 Currently not supported.
29958 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29959 -m[arm]3 Arm 3 processor
29960 -m[arm]6[xx], Arm 6 processors
29961 -m[arm]7[xx][t][[d]m] Arm 7 processors
29962 -m[arm]8[10] Arm 8 processors
29963 -m[arm]9[20][tdmi] Arm 9 processors
29964 -mstrongarm[110[0]] StrongARM processors
29965 -mxscale XScale processors
29966 -m[arm]v[2345[t[e]]] Arm architectures
29967 -mall All (except the ARM1)
29968 FP variants:
29969 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29970 -mfpe-old (No float load/store multiples)
29971 -mvfpxd VFP Single precision
29972 -mvfp All VFP
29973 -mno-fpu Disable all floating point instructions
29974
29975 The following CPU names are recognized:
29976 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29977 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29978 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29979 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29980 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29981 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29982 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29983
29984 */
29985
29986 const char * md_shortopts = "m:k";
29987
29988 #ifdef ARM_BI_ENDIAN
29989 #define OPTION_EB (OPTION_MD_BASE + 0)
29990 #define OPTION_EL (OPTION_MD_BASE + 1)
29991 #else
29992 #if TARGET_BYTES_BIG_ENDIAN
29993 #define OPTION_EB (OPTION_MD_BASE + 0)
29994 #else
29995 #define OPTION_EL (OPTION_MD_BASE + 1)
29996 #endif
29997 #endif
29998 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29999 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
30000
30001 struct option md_longopts[] =
30002 {
30003 #ifdef OPTION_EB
30004 {"EB", no_argument, NULL, OPTION_EB},
30005 #endif
30006 #ifdef OPTION_EL
30007 {"EL", no_argument, NULL, OPTION_EL},
30008 #endif
30009 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
30010 #ifdef OBJ_ELF
30011 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30012 #endif
30013 {NULL, no_argument, NULL, 0}
30014 };
30015
30016 size_t md_longopts_size = sizeof (md_longopts);
30017
30018 struct arm_option_table
30019 {
30020 const char * option; /* Option name to match. */
30021 const char * help; /* Help information. */
30022 int * var; /* Variable to change. */
30023 int value; /* What to change it to. */
30024 const char * deprecated; /* If non-null, print this message. */
30025 };
30026
30027 struct arm_option_table arm_opts[] =
30028 {
30029 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30030 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30031 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30032 &support_interwork, 1, NULL},
30033 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30034 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30035 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30036 1, NULL},
30037 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30038 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30039 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30040 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30041 NULL},
30042
30043 /* These are recognized by the assembler, but have no affect on code. */
30044 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30045 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
30046
30047 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30048 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30049 &warn_on_deprecated, 0, NULL},
30050 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30051 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
30052 {NULL, NULL, NULL, 0, NULL}
30053 };
30054
30055 struct arm_legacy_option_table
30056 {
30057 const char * option; /* Option name to match. */
30058 const arm_feature_set ** var; /* Variable to change. */
30059 const arm_feature_set value; /* What to change it to. */
30060 const char * deprecated; /* If non-null, print this message. */
30061 };
30062
30063 const struct arm_legacy_option_table arm_legacy_opts[] =
30064 {
30065 /* DON'T add any new processors to this list -- we want the whole list
30066 to go away... Add them to the processors table instead. */
30067 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30068 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30069 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30070 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30071 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30072 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30073 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30074 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30075 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30076 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30077 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30078 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30079 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30080 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30081 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30082 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30083 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30084 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30085 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30086 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30087 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30088 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30089 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30090 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30091 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30092 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30093 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30094 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30095 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30096 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30097 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30098 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30099 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30100 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30101 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30102 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30103 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30104 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30105 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30106 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30107 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30108 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30109 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30110 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30111 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30112 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30113 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30114 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30115 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30116 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30117 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30118 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30119 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30120 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30121 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30122 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30123 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30124 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30125 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30126 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30127 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30128 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30129 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30130 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30131 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30132 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30133 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30134 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30135 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30136 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
30137 N_("use -mcpu=strongarm110")},
30138 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
30139 N_("use -mcpu=strongarm1100")},
30140 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
30141 N_("use -mcpu=strongarm1110")},
30142 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30143 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30144 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
30145
30146 /* Architecture variants -- don't add any more to this list either. */
30147 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30148 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30149 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30150 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30151 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30152 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30153 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30154 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30155 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30156 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30157 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30158 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30159 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30160 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30161 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30162 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30163 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30164 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30165
30166 /* Floating point variants -- don't add any more to this list either. */
30167 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30168 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30169 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30170 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30171 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30172
30173 {NULL, NULL, ARM_ARCH_NONE, NULL}
30174 };
30175
30176 struct arm_cpu_option_table
30177 {
30178 const char * name;
30179 size_t name_len;
30180 const arm_feature_set value;
30181 const arm_feature_set ext;
30182 /* For some CPUs we assume an FPU unless the user explicitly sets
30183 -mfpu=... */
30184 const arm_feature_set default_fpu;
30185 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30186 case. */
30187 const char * canonical_name;
30188 };
30189
30190 /* This list should, at a minimum, contain all the cpu names
30191 recognized by GCC. */
30192 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30193
30194 static const struct arm_cpu_option_table arm_cpus[] =
30195 {
30196 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30197 ARM_ARCH_NONE,
30198 FPU_ARCH_FPA),
30199 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30200 ARM_ARCH_NONE,
30201 FPU_ARCH_FPA),
30202 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30203 ARM_ARCH_NONE,
30204 FPU_ARCH_FPA),
30205 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30206 ARM_ARCH_NONE,
30207 FPU_ARCH_FPA),
30208 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30209 ARM_ARCH_NONE,
30210 FPU_ARCH_FPA),
30211 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30212 ARM_ARCH_NONE,
30213 FPU_ARCH_FPA),
30214 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30215 ARM_ARCH_NONE,
30216 FPU_ARCH_FPA),
30217 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30218 ARM_ARCH_NONE,
30219 FPU_ARCH_FPA),
30220 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30221 ARM_ARCH_NONE,
30222 FPU_ARCH_FPA),
30223 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30224 ARM_ARCH_NONE,
30225 FPU_ARCH_FPA),
30226 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30227 ARM_ARCH_NONE,
30228 FPU_ARCH_FPA),
30229 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30230 ARM_ARCH_NONE,
30231 FPU_ARCH_FPA),
30232 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30233 ARM_ARCH_NONE,
30234 FPU_ARCH_FPA),
30235 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30236 ARM_ARCH_NONE,
30237 FPU_ARCH_FPA),
30238 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30239 ARM_ARCH_NONE,
30240 FPU_ARCH_FPA),
30241 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30242 ARM_ARCH_NONE,
30243 FPU_ARCH_FPA),
30244 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30245 ARM_ARCH_NONE,
30246 FPU_ARCH_FPA),
30247 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30248 ARM_ARCH_NONE,
30249 FPU_ARCH_FPA),
30250 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30251 ARM_ARCH_NONE,
30252 FPU_ARCH_FPA),
30253 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30254 ARM_ARCH_NONE,
30255 FPU_ARCH_FPA),
30256 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30257 ARM_ARCH_NONE,
30258 FPU_ARCH_FPA),
30259 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30260 ARM_ARCH_NONE,
30261 FPU_ARCH_FPA),
30262 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30263 ARM_ARCH_NONE,
30264 FPU_ARCH_FPA),
30265 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30266 ARM_ARCH_NONE,
30267 FPU_ARCH_FPA),
30268 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30269 ARM_ARCH_NONE,
30270 FPU_ARCH_FPA),
30271 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30272 ARM_ARCH_NONE,
30273 FPU_ARCH_FPA),
30274 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30275 ARM_ARCH_NONE,
30276 FPU_ARCH_FPA),
30277 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30278 ARM_ARCH_NONE,
30279 FPU_ARCH_FPA),
30280 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30281 ARM_ARCH_NONE,
30282 FPU_ARCH_FPA),
30283 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30284 ARM_ARCH_NONE,
30285 FPU_ARCH_FPA),
30286 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30287 ARM_ARCH_NONE,
30288 FPU_ARCH_FPA),
30289 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30290 ARM_ARCH_NONE,
30291 FPU_ARCH_FPA),
30292 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30293 ARM_ARCH_NONE,
30294 FPU_ARCH_FPA),
30295 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30296 ARM_ARCH_NONE,
30297 FPU_ARCH_FPA),
30298 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30299 ARM_ARCH_NONE,
30300 FPU_ARCH_FPA),
30301 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30302 ARM_ARCH_NONE,
30303 FPU_ARCH_FPA),
30304 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30305 ARM_ARCH_NONE,
30306 FPU_ARCH_FPA),
30307 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30308 ARM_ARCH_NONE,
30309 FPU_ARCH_FPA),
30310 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30311 ARM_ARCH_NONE,
30312 FPU_ARCH_FPA),
30313 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30314 ARM_ARCH_NONE,
30315 FPU_ARCH_FPA),
30316 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30317 ARM_ARCH_NONE,
30318 FPU_ARCH_FPA),
30319 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30320 ARM_ARCH_NONE,
30321 FPU_ARCH_FPA),
30322 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30323 ARM_ARCH_NONE,
30324 FPU_ARCH_FPA),
30325 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30326 ARM_ARCH_NONE,
30327 FPU_ARCH_FPA),
30328 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30329 ARM_ARCH_NONE,
30330 FPU_ARCH_FPA),
30331 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30332 ARM_ARCH_NONE,
30333 FPU_ARCH_FPA),
30334
30335 /* For V5 or later processors we default to using VFP; but the user
30336 should really set the FPU type explicitly. */
30337 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30338 ARM_ARCH_NONE,
30339 FPU_ARCH_VFP_V2),
30340 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30341 ARM_ARCH_NONE,
30342 FPU_ARCH_VFP_V2),
30343 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30344 ARM_ARCH_NONE,
30345 FPU_ARCH_VFP_V2),
30346 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30347 ARM_ARCH_NONE,
30348 FPU_ARCH_VFP_V2),
30349 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30350 ARM_ARCH_NONE,
30351 FPU_ARCH_VFP_V2),
30352 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30353 ARM_ARCH_NONE,
30354 FPU_ARCH_VFP_V2),
30355 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30356 ARM_ARCH_NONE,
30357 FPU_ARCH_VFP_V2),
30358 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30359 ARM_ARCH_NONE,
30360 FPU_ARCH_VFP_V2),
30361 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30362 ARM_ARCH_NONE,
30363 FPU_ARCH_VFP_V2),
30364 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30365 ARM_ARCH_NONE,
30366 FPU_ARCH_VFP_V2),
30367 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30368 ARM_ARCH_NONE,
30369 FPU_ARCH_VFP_V2),
30370 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30371 ARM_ARCH_NONE,
30372 FPU_ARCH_VFP_V2),
30373 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30374 ARM_ARCH_NONE,
30375 FPU_ARCH_VFP_V1),
30376 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30377 ARM_ARCH_NONE,
30378 FPU_ARCH_VFP_V1),
30379 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30380 ARM_ARCH_NONE,
30381 FPU_ARCH_VFP_V2),
30382 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30383 ARM_ARCH_NONE,
30384 FPU_ARCH_VFP_V2),
30385 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30386 ARM_ARCH_NONE,
30387 FPU_ARCH_VFP_V1),
30388 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30389 ARM_ARCH_NONE,
30390 FPU_ARCH_VFP_V2),
30391 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30392 ARM_ARCH_NONE,
30393 FPU_ARCH_VFP_V2),
30394 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30395 ARM_ARCH_NONE,
30396 FPU_ARCH_VFP_V2),
30397 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30398 ARM_ARCH_NONE,
30399 FPU_ARCH_VFP_V2),
30400 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30401 ARM_ARCH_NONE,
30402 FPU_ARCH_VFP_V2),
30403 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30404 ARM_ARCH_NONE,
30405 FPU_ARCH_VFP_V2),
30406 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30407 ARM_ARCH_NONE,
30408 FPU_ARCH_VFP_V2),
30409 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30410 ARM_ARCH_NONE,
30411 FPU_ARCH_VFP_V2),
30412 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30413 ARM_ARCH_NONE,
30414 FPU_ARCH_VFP_V2),
30415 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30416 ARM_ARCH_NONE,
30417 FPU_NONE),
30418 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30419 ARM_ARCH_NONE,
30420 FPU_NONE),
30421 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30422 ARM_ARCH_NONE,
30423 FPU_ARCH_VFP_V2),
30424 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30425 ARM_ARCH_NONE,
30426 FPU_ARCH_VFP_V2),
30427 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30428 ARM_ARCH_NONE,
30429 FPU_ARCH_VFP_V2),
30430 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30431 ARM_ARCH_NONE,
30432 FPU_NONE),
30433 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30434 ARM_ARCH_NONE,
30435 FPU_NONE),
30436 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30437 ARM_ARCH_NONE,
30438 FPU_ARCH_VFP_V2),
30439 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30440 ARM_ARCH_NONE,
30441 FPU_NONE),
30442 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30443 ARM_ARCH_NONE,
30444 FPU_ARCH_VFP_V2),
30445 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30446 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30447 FPU_NONE),
30448 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30449 ARM_ARCH_NONE,
30450 FPU_ARCH_NEON_VFP_V4),
30451 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30452 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30453 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30454 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30455 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30456 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30457 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30458 ARM_ARCH_NONE,
30459 FPU_ARCH_NEON_VFP_V4),
30460 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30461 ARM_ARCH_NONE,
30462 FPU_ARCH_NEON_VFP_V4),
30463 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30464 ARM_ARCH_NONE,
30465 FPU_ARCH_NEON_VFP_V4),
30466 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30467 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30468 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30469 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30470 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30471 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30472 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30473 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30474 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30475 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30476 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30477 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30478 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30479 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30480 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30481 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30482 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30483 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30484 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30485 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30486 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30487 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30488 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30489 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30490 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30491 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30492 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30493 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30494 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30495 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30496 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30497 ARM_ARCH_NONE,
30498 FPU_NONE),
30499 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30500 ARM_ARCH_NONE,
30501 FPU_ARCH_VFP_V3D16),
30502 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30503 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30504 FPU_NONE),
30505 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30506 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30507 FPU_ARCH_VFP_V3D16),
30508 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30509 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30510 FPU_ARCH_VFP_V3D16),
30511 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30512 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30513 FPU_ARCH_NEON_VFP_ARMV8),
30514 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30515 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30516 FPU_NONE),
30517 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30518 ARM_ARCH_NONE,
30519 FPU_NONE),
30520 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30521 ARM_ARCH_NONE,
30522 FPU_NONE),
30523 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30524 ARM_ARCH_NONE,
30525 FPU_NONE),
30526 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30527 ARM_ARCH_NONE,
30528 FPU_NONE),
30529 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30530 ARM_ARCH_NONE,
30531 FPU_NONE),
30532 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30533 ARM_ARCH_NONE,
30534 FPU_NONE),
30535 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30536 ARM_ARCH_NONE,
30537 FPU_NONE),
30538 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30539 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30540 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30541 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30542 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30543 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30544 /* ??? XSCALE is really an architecture. */
30545 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30546 ARM_ARCH_NONE,
30547 FPU_ARCH_VFP_V2),
30548
30549 /* ??? iwmmxt is not a processor. */
30550 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30551 ARM_ARCH_NONE,
30552 FPU_ARCH_VFP_V2),
30553 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30554 ARM_ARCH_NONE,
30555 FPU_ARCH_VFP_V2),
30556 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30557 ARM_ARCH_NONE,
30558 FPU_ARCH_VFP_V2),
30559
30560 /* Maverick. */
30561 ARM_CPU_OPT ("ep9312", "ARM920T",
30562 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30563 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30564
30565 /* Marvell processors. */
30566 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30567 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30568 FPU_ARCH_VFP_V3D16),
30569 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30570 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30571 FPU_ARCH_NEON_VFP_V4),
30572
30573 /* APM X-Gene family. */
30574 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30575 ARM_ARCH_NONE,
30576 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30577 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30578 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30579 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30580
30581 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30582 };
30583 #undef ARM_CPU_OPT
30584
30585 struct arm_ext_table
30586 {
30587 const char * name;
30588 size_t name_len;
30589 const arm_feature_set merge;
30590 const arm_feature_set clear;
30591 };
30592
30593 struct arm_arch_option_table
30594 {
30595 const char * name;
30596 size_t name_len;
30597 const arm_feature_set value;
30598 const arm_feature_set default_fpu;
30599 const struct arm_ext_table * ext_table;
30600 };
30601
30602 /* Used to add support for +E and +noE extension. */
30603 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30604 /* Used to add support for a +E extension. */
30605 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30606 /* Used to add support for a +noE extension. */
30607 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30608
30609 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30610 ~0 & ~FPU_ENDIAN_PURE)
30611
30612 static const struct arm_ext_table armv5te_ext_table[] =
30613 {
30614 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30615 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30616 };
30617
30618 static const struct arm_ext_table armv7_ext_table[] =
30619 {
30620 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30621 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30622 };
30623
30624 static const struct arm_ext_table armv7ve_ext_table[] =
30625 {
30626 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30627 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30628 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30629 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30630 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30631 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30632 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30633
30634 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30635 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30636
30637 /* Aliases for +simd. */
30638 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30639
30640 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30641 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30642 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30643
30644 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30645 };
30646
30647 static const struct arm_ext_table armv7a_ext_table[] =
30648 {
30649 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30650 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30651 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30652 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30653 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30654 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30655 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30656
30657 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30658 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30659
30660 /* Aliases for +simd. */
30661 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30662 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30663
30664 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30665 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30666
30667 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30668 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30669 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30670 };
30671
30672 static const struct arm_ext_table armv7r_ext_table[] =
30673 {
30674 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30675 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30676 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30677 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30678 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30679 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30680 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30681 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30682 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30683 };
30684
30685 static const struct arm_ext_table armv7em_ext_table[] =
30686 {
30687 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30688 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30689 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30690 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30691 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30692 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30693 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30694 };
30695
30696 static const struct arm_ext_table armv8a_ext_table[] =
30697 {
30698 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30699 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30700 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30701 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30702
30703 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30704 should use the +simd option to turn on FP. */
30705 ARM_REMOVE ("fp", ALL_FP),
30706 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30707 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30708 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30709 };
30710
30711
30712 static const struct arm_ext_table armv81a_ext_table[] =
30713 {
30714 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30715 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30716 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30717
30718 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30719 should use the +simd option to turn on FP. */
30720 ARM_REMOVE ("fp", ALL_FP),
30721 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30722 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30723 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30724 };
30725
30726 static const struct arm_ext_table armv82a_ext_table[] =
30727 {
30728 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30729 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30730 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30731 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30732 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30733 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30734
30735 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30736 should use the +simd option to turn on FP. */
30737 ARM_REMOVE ("fp", ALL_FP),
30738 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30739 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30740 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30741 };
30742
30743 static const struct arm_ext_table armv84a_ext_table[] =
30744 {
30745 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30746 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30747 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30748 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30749
30750 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30751 should use the +simd option to turn on FP. */
30752 ARM_REMOVE ("fp", ALL_FP),
30753 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30754 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30755 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30756 };
30757
30758 static const struct arm_ext_table armv85a_ext_table[] =
30759 {
30760 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30761 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30762 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30763 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30764
30765 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30766 should use the +simd option to turn on FP. */
30767 ARM_REMOVE ("fp", ALL_FP),
30768 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30769 };
30770
30771 static const struct arm_ext_table armv8m_main_ext_table[] =
30772 {
30773 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30774 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30775 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30776 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30777 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30778 };
30779
30780 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30781 {
30782 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30783 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30784 ARM_EXT ("fp",
30785 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30786 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30787 ALL_FP),
30788 ARM_ADD ("fp.dp",
30789 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30790 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30791 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30792 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30793 ARM_ADD ("mve.fp",
30794 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30795 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30796 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30797 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30798 };
30799
30800 static const struct arm_ext_table armv8r_ext_table[] =
30801 {
30802 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30803 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30804 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30805 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30806 ARM_REMOVE ("fp", ALL_FP),
30807 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30808 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30809 };
30810
30811 /* This list should, at a minimum, contain all the architecture names
30812 recognized by GCC. */
30813 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30814 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30815 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30816
30817 static const struct arm_arch_option_table arm_archs[] =
30818 {
30819 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30820 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30821 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30822 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30823 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30824 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30825 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30826 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30827 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30828 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30829 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30830 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30831 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30832 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30833 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30834 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30835 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30836 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30837 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30838 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30839 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30840 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30841 kept to preserve existing behaviour. */
30842 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30843 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30844 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30845 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30846 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30847 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30848 kept to preserve existing behaviour. */
30849 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30850 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30851 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30852 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30853 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30854 /* The official spelling of the ARMv7 profile variants is the dashed form.
30855 Accept the non-dashed form for compatibility with old toolchains. */
30856 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30857 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30858 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30859 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30860 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30861 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30862 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30863 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30864 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30865 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30866 armv8m_main),
30867 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30868 armv8_1m_main),
30869 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30870 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30871 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30872 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30873 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30874 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30875 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30876 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30877 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30878 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30879 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30880 };
30881 #undef ARM_ARCH_OPT
30882
30883 /* ISA extensions in the co-processor and main instruction set space. */
30884
30885 struct arm_option_extension_value_table
30886 {
30887 const char * name;
30888 size_t name_len;
30889 const arm_feature_set merge_value;
30890 const arm_feature_set clear_value;
30891 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30892 indicates that an extension is available for all architectures while
30893 ARM_ANY marks an empty entry. */
30894 const arm_feature_set allowed_archs[2];
30895 };
30896
30897 /* The following table must be in alphabetical order with a NULL last entry. */
30898
30899 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30900 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30901
30902 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30903 use the context sensitive approach using arm_ext_table's. */
30904 static const struct arm_option_extension_value_table arm_extensions[] =
30905 {
30906 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30907 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30908 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30909 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30910 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30911 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30912 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30913 ARM_ARCH_V8_2A),
30914 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30915 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30916 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30917 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30918 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30919 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30920 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30921 ARM_ARCH_V8_2A),
30922 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30923 | ARM_EXT2_FP16_FML),
30924 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30925 | ARM_EXT2_FP16_FML),
30926 ARM_ARCH_V8_2A),
30927 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30928 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30929 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30930 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30931 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30932 Thumb divide instruction. Due to this having the same name as the
30933 previous entry, this will be ignored when doing command-line parsing and
30934 only considered by build attribute selection code. */
30935 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30936 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30937 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30938 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30939 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30940 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30941 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30942 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30943 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30944 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30945 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30946 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30947 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30948 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30949 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30950 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30951 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30952 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30953 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30954 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30955 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30956 ARM_ARCH_V8A),
30957 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30958 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30959 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30960 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30961 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30962 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30963 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30964 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30965 ARM_ARCH_V8A),
30966 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30967 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30968 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30969 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30970 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30971 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30972 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30973 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30974 | ARM_EXT_DIV),
30975 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30976 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30977 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30978 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30979 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30980 };
30981 #undef ARM_EXT_OPT
30982
30983 /* ISA floating-point and Advanced SIMD extensions. */
30984 struct arm_option_fpu_value_table
30985 {
30986 const char * name;
30987 const arm_feature_set value;
30988 };
30989
30990 /* This list should, at a minimum, contain all the fpu names
30991 recognized by GCC. */
30992 static const struct arm_option_fpu_value_table arm_fpus[] =
30993 {
30994 {"softfpa", FPU_NONE},
30995 {"fpe", FPU_ARCH_FPE},
30996 {"fpe2", FPU_ARCH_FPE},
30997 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30998 {"fpa", FPU_ARCH_FPA},
30999 {"fpa10", FPU_ARCH_FPA},
31000 {"fpa11", FPU_ARCH_FPA},
31001 {"arm7500fe", FPU_ARCH_FPA},
31002 {"softvfp", FPU_ARCH_VFP},
31003 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31004 {"vfp", FPU_ARCH_VFP_V2},
31005 {"vfp9", FPU_ARCH_VFP_V2},
31006 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
31007 {"vfp10", FPU_ARCH_VFP_V2},
31008 {"vfp10-r0", FPU_ARCH_VFP_V1},
31009 {"vfpxd", FPU_ARCH_VFP_V1xD},
31010 {"vfpv2", FPU_ARCH_VFP_V2},
31011 {"vfpv3", FPU_ARCH_VFP_V3},
31012 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
31013 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
31014 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31015 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31016 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
31017 {"arm1020t", FPU_ARCH_VFP_V1},
31018 {"arm1020e", FPU_ARCH_VFP_V2},
31019 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
31020 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31021 {"maverick", FPU_ARCH_MAVERICK},
31022 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31023 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31024 {"neon-fp16", FPU_ARCH_NEON_FP16},
31025 {"vfpv4", FPU_ARCH_VFP_V4},
31026 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
31027 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
31028 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31029 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
31030 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
31031 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31032 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31033 {"crypto-neon-fp-armv8",
31034 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
31035 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
31036 {"crypto-neon-fp-armv8.1",
31037 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
31038 {NULL, ARM_ARCH_NONE}
31039 };
31040
31041 struct arm_option_value_table
31042 {
31043 const char *name;
31044 long value;
31045 };
31046
31047 static const struct arm_option_value_table arm_float_abis[] =
31048 {
31049 {"hard", ARM_FLOAT_ABI_HARD},
31050 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31051 {"soft", ARM_FLOAT_ABI_SOFT},
31052 {NULL, 0}
31053 };
31054
31055 #ifdef OBJ_ELF
31056 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
31057 static const struct arm_option_value_table arm_eabis[] =
31058 {
31059 {"gnu", EF_ARM_EABI_UNKNOWN},
31060 {"4", EF_ARM_EABI_VER4},
31061 {"5", EF_ARM_EABI_VER5},
31062 {NULL, 0}
31063 };
31064 #endif
31065
31066 struct arm_long_option_table
31067 {
31068 const char * option; /* Substring to match. */
31069 const char * help; /* Help information. */
31070 int (* func) (const char * subopt); /* Function to decode sub-option. */
31071 const char * deprecated; /* If non-null, print this message. */
31072 };
31073
31074 static bfd_boolean
31075 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
31076 arm_feature_set *ext_set,
31077 const struct arm_ext_table *ext_table)
31078 {
31079 /* We insist on extensions being specified in alphabetical order, and with
31080 extensions being added before being removed. We achieve this by having
31081 the global ARM_EXTENSIONS table in alphabetical order, and using the
31082 ADDING_VALUE variable to indicate whether we are adding an extension (1)
31083 or removing it (0) and only allowing it to change in the order
31084 -1 -> 1 -> 0. */
31085 const struct arm_option_extension_value_table * opt = NULL;
31086 const arm_feature_set arm_any = ARM_ANY;
31087 int adding_value = -1;
31088
31089 while (str != NULL && *str != 0)
31090 {
31091 const char *ext;
31092 size_t len;
31093
31094 if (*str != '+')
31095 {
31096 as_bad (_("invalid architectural extension"));
31097 return FALSE;
31098 }
31099
31100 str++;
31101 ext = strchr (str, '+');
31102
31103 if (ext != NULL)
31104 len = ext - str;
31105 else
31106 len = strlen (str);
31107
31108 if (len >= 2 && strncmp (str, "no", 2) == 0)
31109 {
31110 if (adding_value != 0)
31111 {
31112 adding_value = 0;
31113 opt = arm_extensions;
31114 }
31115
31116 len -= 2;
31117 str += 2;
31118 }
31119 else if (len > 0)
31120 {
31121 if (adding_value == -1)
31122 {
31123 adding_value = 1;
31124 opt = arm_extensions;
31125 }
31126 else if (adding_value != 1)
31127 {
31128 as_bad (_("must specify extensions to add before specifying "
31129 "those to remove"));
31130 return FALSE;
31131 }
31132 }
31133
31134 if (len == 0)
31135 {
31136 as_bad (_("missing architectural extension"));
31137 return FALSE;
31138 }
31139
31140 gas_assert (adding_value != -1);
31141 gas_assert (opt != NULL);
31142
31143 if (ext_table != NULL)
31144 {
31145 const struct arm_ext_table * ext_opt = ext_table;
31146 bfd_boolean found = FALSE;
31147 for (; ext_opt->name != NULL; ext_opt++)
31148 if (ext_opt->name_len == len
31149 && strncmp (ext_opt->name, str, len) == 0)
31150 {
31151 if (adding_value)
31152 {
31153 if (ARM_FEATURE_ZERO (ext_opt->merge))
31154 /* TODO: Option not supported. When we remove the
31155 legacy table this case should error out. */
31156 continue;
31157
31158 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31159 }
31160 else
31161 {
31162 if (ARM_FEATURE_ZERO (ext_opt->clear))
31163 /* TODO: Option not supported. When we remove the
31164 legacy table this case should error out. */
31165 continue;
31166 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31167 }
31168 found = TRUE;
31169 break;
31170 }
31171 if (found)
31172 {
31173 str = ext;
31174 continue;
31175 }
31176 }
31177
31178 /* Scan over the options table trying to find an exact match. */
31179 for (; opt->name != NULL; opt++)
31180 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31181 {
31182 int i, nb_allowed_archs =
31183 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31184 /* Check we can apply the extension to this architecture. */
31185 for (i = 0; i < nb_allowed_archs; i++)
31186 {
31187 /* Empty entry. */
31188 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31189 continue;
31190 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31191 break;
31192 }
31193 if (i == nb_allowed_archs)
31194 {
31195 as_bad (_("extension does not apply to the base architecture"));
31196 return FALSE;
31197 }
31198
31199 /* Add or remove the extension. */
31200 if (adding_value)
31201 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31202 else
31203 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31204
31205 /* Allowing Thumb division instructions for ARMv7 in autodetection
31206 rely on this break so that duplicate extensions (extensions
31207 with the same name as a previous extension in the list) are not
31208 considered for command-line parsing. */
31209 break;
31210 }
31211
31212 if (opt->name == NULL)
31213 {
31214 /* Did we fail to find an extension because it wasn't specified in
31215 alphabetical order, or because it does not exist? */
31216
31217 for (opt = arm_extensions; opt->name != NULL; opt++)
31218 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31219 break;
31220
31221 if (opt->name == NULL)
31222 as_bad (_("unknown architectural extension `%s'"), str);
31223 else
31224 as_bad (_("architectural extensions must be specified in "
31225 "alphabetical order"));
31226
31227 return FALSE;
31228 }
31229 else
31230 {
31231 /* We should skip the extension we've just matched the next time
31232 round. */
31233 opt++;
31234 }
31235
31236 str = ext;
31237 };
31238
31239 return TRUE;
31240 }
31241
31242 static bfd_boolean
31243 arm_parse_cpu (const char *str)
31244 {
31245 const struct arm_cpu_option_table *opt;
31246 const char *ext = strchr (str, '+');
31247 size_t len;
31248
31249 if (ext != NULL)
31250 len = ext - str;
31251 else
31252 len = strlen (str);
31253
31254 if (len == 0)
31255 {
31256 as_bad (_("missing cpu name `%s'"), str);
31257 return FALSE;
31258 }
31259
31260 for (opt = arm_cpus; opt->name != NULL; opt++)
31261 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31262 {
31263 mcpu_cpu_opt = &opt->value;
31264 if (mcpu_ext_opt == NULL)
31265 mcpu_ext_opt = XNEW (arm_feature_set);
31266 *mcpu_ext_opt = opt->ext;
31267 mcpu_fpu_opt = &opt->default_fpu;
31268 if (opt->canonical_name)
31269 {
31270 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31271 strcpy (selected_cpu_name, opt->canonical_name);
31272 }
31273 else
31274 {
31275 size_t i;
31276
31277 if (len >= sizeof selected_cpu_name)
31278 len = (sizeof selected_cpu_name) - 1;
31279
31280 for (i = 0; i < len; i++)
31281 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31282 selected_cpu_name[i] = 0;
31283 }
31284
31285 if (ext != NULL)
31286 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31287
31288 return TRUE;
31289 }
31290
31291 as_bad (_("unknown cpu `%s'"), str);
31292 return FALSE;
31293 }
31294
31295 static bfd_boolean
31296 arm_parse_arch (const char *str)
31297 {
31298 const struct arm_arch_option_table *opt;
31299 const char *ext = strchr (str, '+');
31300 size_t len;
31301
31302 if (ext != NULL)
31303 len = ext - str;
31304 else
31305 len = strlen (str);
31306
31307 if (len == 0)
31308 {
31309 as_bad (_("missing architecture name `%s'"), str);
31310 return FALSE;
31311 }
31312
31313 for (opt = arm_archs; opt->name != NULL; opt++)
31314 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31315 {
31316 march_cpu_opt = &opt->value;
31317 if (march_ext_opt == NULL)
31318 march_ext_opt = XNEW (arm_feature_set);
31319 *march_ext_opt = arm_arch_none;
31320 march_fpu_opt = &opt->default_fpu;
31321 strcpy (selected_cpu_name, opt->name);
31322
31323 if (ext != NULL)
31324 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31325 opt->ext_table);
31326
31327 return TRUE;
31328 }
31329
31330 as_bad (_("unknown architecture `%s'\n"), str);
31331 return FALSE;
31332 }
31333
31334 static bfd_boolean
31335 arm_parse_fpu (const char * str)
31336 {
31337 const struct arm_option_fpu_value_table * opt;
31338
31339 for (opt = arm_fpus; opt->name != NULL; opt++)
31340 if (streq (opt->name, str))
31341 {
31342 mfpu_opt = &opt->value;
31343 return TRUE;
31344 }
31345
31346 as_bad (_("unknown floating point format `%s'\n"), str);
31347 return FALSE;
31348 }
31349
31350 static bfd_boolean
31351 arm_parse_float_abi (const char * str)
31352 {
31353 const struct arm_option_value_table * opt;
31354
31355 for (opt = arm_float_abis; opt->name != NULL; opt++)
31356 if (streq (opt->name, str))
31357 {
31358 mfloat_abi_opt = opt->value;
31359 return TRUE;
31360 }
31361
31362 as_bad (_("unknown floating point abi `%s'\n"), str);
31363 return FALSE;
31364 }
31365
31366 #ifdef OBJ_ELF
31367 static bfd_boolean
31368 arm_parse_eabi (const char * str)
31369 {
31370 const struct arm_option_value_table *opt;
31371
31372 for (opt = arm_eabis; opt->name != NULL; opt++)
31373 if (streq (opt->name, str))
31374 {
31375 meabi_flags = opt->value;
31376 return TRUE;
31377 }
31378 as_bad (_("unknown EABI `%s'\n"), str);
31379 return FALSE;
31380 }
31381 #endif
31382
31383 static bfd_boolean
31384 arm_parse_it_mode (const char * str)
31385 {
31386 bfd_boolean ret = TRUE;
31387
31388 if (streq ("arm", str))
31389 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31390 else if (streq ("thumb", str))
31391 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31392 else if (streq ("always", str))
31393 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31394 else if (streq ("never", str))
31395 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31396 else
31397 {
31398 as_bad (_("unknown implicit IT mode `%s', should be "\
31399 "arm, thumb, always, or never."), str);
31400 ret = FALSE;
31401 }
31402
31403 return ret;
31404 }
31405
31406 static bfd_boolean
31407 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31408 {
31409 codecomposer_syntax = TRUE;
31410 arm_comment_chars[0] = ';';
31411 arm_line_separator_chars[0] = 0;
31412 return TRUE;
31413 }
31414
31415 struct arm_long_option_table arm_long_opts[] =
31416 {
31417 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31418 arm_parse_cpu, NULL},
31419 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31420 arm_parse_arch, NULL},
31421 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31422 arm_parse_fpu, NULL},
31423 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31424 arm_parse_float_abi, NULL},
31425 #ifdef OBJ_ELF
31426 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31427 arm_parse_eabi, NULL},
31428 #endif
31429 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31430 arm_parse_it_mode, NULL},
31431 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31432 arm_ccs_mode, NULL},
31433 {NULL, NULL, 0, NULL}
31434 };
31435
31436 int
31437 md_parse_option (int c, const char * arg)
31438 {
31439 struct arm_option_table *opt;
31440 const struct arm_legacy_option_table *fopt;
31441 struct arm_long_option_table *lopt;
31442
31443 switch (c)
31444 {
31445 #ifdef OPTION_EB
31446 case OPTION_EB:
31447 target_big_endian = 1;
31448 break;
31449 #endif
31450
31451 #ifdef OPTION_EL
31452 case OPTION_EL:
31453 target_big_endian = 0;
31454 break;
31455 #endif
31456
31457 case OPTION_FIX_V4BX:
31458 fix_v4bx = TRUE;
31459 break;
31460
31461 #ifdef OBJ_ELF
31462 case OPTION_FDPIC:
31463 arm_fdpic = TRUE;
31464 break;
31465 #endif /* OBJ_ELF */
31466
31467 case 'a':
31468 /* Listing option. Just ignore these, we don't support additional
31469 ones. */
31470 return 0;
31471
31472 default:
31473 for (opt = arm_opts; opt->option != NULL; opt++)
31474 {
31475 if (c == opt->option[0]
31476 && ((arg == NULL && opt->option[1] == 0)
31477 || streq (arg, opt->option + 1)))
31478 {
31479 /* If the option is deprecated, tell the user. */
31480 if (warn_on_deprecated && opt->deprecated != NULL)
31481 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31482 arg ? arg : "", _(opt->deprecated));
31483
31484 if (opt->var != NULL)
31485 *opt->var = opt->value;
31486
31487 return 1;
31488 }
31489 }
31490
31491 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31492 {
31493 if (c == fopt->option[0]
31494 && ((arg == NULL && fopt->option[1] == 0)
31495 || streq (arg, fopt->option + 1)))
31496 {
31497 /* If the option is deprecated, tell the user. */
31498 if (warn_on_deprecated && fopt->deprecated != NULL)
31499 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31500 arg ? arg : "", _(fopt->deprecated));
31501
31502 if (fopt->var != NULL)
31503 *fopt->var = &fopt->value;
31504
31505 return 1;
31506 }
31507 }
31508
31509 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31510 {
31511 /* These options are expected to have an argument. */
31512 if (c == lopt->option[0]
31513 && arg != NULL
31514 && strncmp (arg, lopt->option + 1,
31515 strlen (lopt->option + 1)) == 0)
31516 {
31517 /* If the option is deprecated, tell the user. */
31518 if (warn_on_deprecated && lopt->deprecated != NULL)
31519 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31520 _(lopt->deprecated));
31521
31522 /* Call the sup-option parser. */
31523 return lopt->func (arg + strlen (lopt->option) - 1);
31524 }
31525 }
31526
31527 return 0;
31528 }
31529
31530 return 1;
31531 }
31532
31533 void
31534 md_show_usage (FILE * fp)
31535 {
31536 struct arm_option_table *opt;
31537 struct arm_long_option_table *lopt;
31538
31539 fprintf (fp, _(" ARM-specific assembler options:\n"));
31540
31541 for (opt = arm_opts; opt->option != NULL; opt++)
31542 if (opt->help != NULL)
31543 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
31544
31545 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31546 if (lopt->help != NULL)
31547 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
31548
31549 #ifdef OPTION_EB
31550 fprintf (fp, _("\
31551 -EB assemble code for a big-endian cpu\n"));
31552 #endif
31553
31554 #ifdef OPTION_EL
31555 fprintf (fp, _("\
31556 -EL assemble code for a little-endian cpu\n"));
31557 #endif
31558
31559 fprintf (fp, _("\
31560 --fix-v4bx Allow BX in ARMv4 code\n"));
31561
31562 #ifdef OBJ_ELF
31563 fprintf (fp, _("\
31564 --fdpic generate an FDPIC object file\n"));
31565 #endif /* OBJ_ELF */
31566 }
31567
31568 #ifdef OBJ_ELF
31569
31570 typedef struct
31571 {
31572 int val;
31573 arm_feature_set flags;
31574 } cpu_arch_ver_table;
31575
31576 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31577 chronologically for architectures, with an exception for ARMv6-M and
31578 ARMv6S-M due to legacy reasons. No new architecture should have a
31579 special case. This allows for build attribute selection results to be
31580 stable when new architectures are added. */
31581 static const cpu_arch_ver_table cpu_arch_ver[] =
31582 {
31583 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31584 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31585 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31586 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31587 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31588 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31589 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31590 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31591 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31592 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31593 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31594 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31595 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31596 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31597 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31598 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31599 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31600 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31601 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31602 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31603 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31604 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31605 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31606 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31607
31608 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31609 always selected build attributes to match those of ARMv6-M
31610 (resp. ARMv6S-M). However, due to these architectures being a strict
31611 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31612 would be selected when fully respecting chronology of architectures.
31613 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31614 move them before ARMv7 architectures. */
31615 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31616 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31617
31618 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31619 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31620 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31621 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31622 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31623 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31624 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31625 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31626 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31627 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31628 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31629 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31630 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31631 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31632 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31633 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31634 {-1, ARM_ARCH_NONE}
31635 };
31636
31637 /* Set an attribute if it has not already been set by the user. */
31638
31639 static void
31640 aeabi_set_attribute_int (int tag, int value)
31641 {
31642 if (tag < 1
31643 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31644 || !attributes_set_explicitly[tag])
31645 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31646 }
31647
31648 static void
31649 aeabi_set_attribute_string (int tag, const char *value)
31650 {
31651 if (tag < 1
31652 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31653 || !attributes_set_explicitly[tag])
31654 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31655 }
31656
31657 /* Return whether features in the *NEEDED feature set are available via
31658 extensions for the architecture whose feature set is *ARCH_FSET. */
31659
31660 static bfd_boolean
31661 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31662 const arm_feature_set *needed)
31663 {
31664 int i, nb_allowed_archs;
31665 arm_feature_set ext_fset;
31666 const struct arm_option_extension_value_table *opt;
31667
31668 ext_fset = arm_arch_none;
31669 for (opt = arm_extensions; opt->name != NULL; opt++)
31670 {
31671 /* Extension does not provide any feature we need. */
31672 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31673 continue;
31674
31675 nb_allowed_archs =
31676 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31677 for (i = 0; i < nb_allowed_archs; i++)
31678 {
31679 /* Empty entry. */
31680 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31681 break;
31682
31683 /* Extension is available, add it. */
31684 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31685 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31686 }
31687 }
31688
31689 /* Can we enable all features in *needed? */
31690 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31691 }
31692
31693 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31694 a given architecture feature set *ARCH_EXT_FSET including extension feature
31695 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31696 - if true, check for an exact match of the architecture modulo extensions;
31697 - otherwise, select build attribute value of the first superset
31698 architecture released so that results remains stable when new architectures
31699 are added.
31700 For -march/-mcpu=all the build attribute value of the most featureful
31701 architecture is returned. Tag_CPU_arch_profile result is returned in
31702 PROFILE. */
31703
31704 static int
31705 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31706 const arm_feature_set *ext_fset,
31707 char *profile, int exact_match)
31708 {
31709 arm_feature_set arch_fset;
31710 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31711
31712 /* Select most featureful architecture with all its extensions if building
31713 for -march=all as the feature sets used to set build attributes. */
31714 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31715 {
31716 /* Force revisiting of decision for each new architecture. */
31717 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31718 *profile = 'A';
31719 return TAG_CPU_ARCH_V8;
31720 }
31721
31722 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31723
31724 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31725 {
31726 arm_feature_set known_arch_fset;
31727
31728 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31729 if (exact_match)
31730 {
31731 /* Base architecture match user-specified architecture and
31732 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31733 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31734 {
31735 p_ver_ret = p_ver;
31736 goto found;
31737 }
31738 /* Base architecture match user-specified architecture only
31739 (eg. ARMv6-M in the same case as above). Record it in case we
31740 find a match with above condition. */
31741 else if (p_ver_ret == NULL
31742 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31743 p_ver_ret = p_ver;
31744 }
31745 else
31746 {
31747
31748 /* Architecture has all features wanted. */
31749 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31750 {
31751 arm_feature_set added_fset;
31752
31753 /* Compute features added by this architecture over the one
31754 recorded in p_ver_ret. */
31755 if (p_ver_ret != NULL)
31756 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31757 p_ver_ret->flags);
31758 /* First architecture that match incl. with extensions, or the
31759 only difference in features over the recorded match is
31760 features that were optional and are now mandatory. */
31761 if (p_ver_ret == NULL
31762 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31763 {
31764 p_ver_ret = p_ver;
31765 goto found;
31766 }
31767 }
31768 else if (p_ver_ret == NULL)
31769 {
31770 arm_feature_set needed_ext_fset;
31771
31772 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31773
31774 /* Architecture has all features needed when using some
31775 extensions. Record it and continue searching in case there
31776 exist an architecture providing all needed features without
31777 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31778 OS extension). */
31779 if (have_ext_for_needed_feat_p (&known_arch_fset,
31780 &needed_ext_fset))
31781 p_ver_ret = p_ver;
31782 }
31783 }
31784 }
31785
31786 if (p_ver_ret == NULL)
31787 return -1;
31788
31789 found:
31790 /* Tag_CPU_arch_profile. */
31791 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31792 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31793 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31794 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31795 *profile = 'A';
31796 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31797 *profile = 'R';
31798 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31799 *profile = 'M';
31800 else
31801 *profile = '\0';
31802 return p_ver_ret->val;
31803 }
31804
31805 /* Set the public EABI object attributes. */
31806
31807 static void
31808 aeabi_set_public_attributes (void)
31809 {
31810 char profile = '\0';
31811 int arch = -1;
31812 int virt_sec = 0;
31813 int fp16_optional = 0;
31814 int skip_exact_match = 0;
31815 arm_feature_set flags, flags_arch, flags_ext;
31816
31817 /* Autodetection mode, choose the architecture based the instructions
31818 actually used. */
31819 if (no_cpu_selected ())
31820 {
31821 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31822
31823 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31824 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31825
31826 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31827 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31828
31829 /* Code run during relaxation relies on selected_cpu being set. */
31830 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31831 flags_ext = arm_arch_none;
31832 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31833 selected_ext = flags_ext;
31834 selected_cpu = flags;
31835 }
31836 /* Otherwise, choose the architecture based on the capabilities of the
31837 requested cpu. */
31838 else
31839 {
31840 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31841 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31842 flags_ext = selected_ext;
31843 flags = selected_cpu;
31844 }
31845 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31846
31847 /* Allow the user to override the reported architecture. */
31848 if (!ARM_FEATURE_ZERO (selected_object_arch))
31849 {
31850 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31851 flags_ext = arm_arch_none;
31852 }
31853 else
31854 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31855
31856 /* When this function is run again after relaxation has happened there is no
31857 way to determine whether an architecture or CPU was specified by the user:
31858 - selected_cpu is set above for relaxation to work;
31859 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31860 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31861 Therefore, if not in -march=all case we first try an exact match and fall
31862 back to autodetection. */
31863 if (!skip_exact_match)
31864 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31865 if (arch == -1)
31866 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31867 if (arch == -1)
31868 as_bad (_("no architecture contains all the instructions used\n"));
31869
31870 /* Tag_CPU_name. */
31871 if (selected_cpu_name[0])
31872 {
31873 char *q;
31874
31875 q = selected_cpu_name;
31876 if (strncmp (q, "armv", 4) == 0)
31877 {
31878 int i;
31879
31880 q += 4;
31881 for (i = 0; q[i]; i++)
31882 q[i] = TOUPPER (q[i]);
31883 }
31884 aeabi_set_attribute_string (Tag_CPU_name, q);
31885 }
31886
31887 /* Tag_CPU_arch. */
31888 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31889
31890 /* Tag_CPU_arch_profile. */
31891 if (profile != '\0')
31892 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31893
31894 /* Tag_DSP_extension. */
31895 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31896 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31897
31898 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31899 /* Tag_ARM_ISA_use. */
31900 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31901 || ARM_FEATURE_ZERO (flags_arch))
31902 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31903
31904 /* Tag_THUMB_ISA_use. */
31905 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31906 || ARM_FEATURE_ZERO (flags_arch))
31907 {
31908 int thumb_isa_use;
31909
31910 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31911 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31912 thumb_isa_use = 3;
31913 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31914 thumb_isa_use = 2;
31915 else
31916 thumb_isa_use = 1;
31917 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31918 }
31919
31920 /* Tag_VFP_arch. */
31921 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31922 aeabi_set_attribute_int (Tag_VFP_arch,
31923 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31924 ? 7 : 8);
31925 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31926 aeabi_set_attribute_int (Tag_VFP_arch,
31927 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31928 ? 5 : 6);
31929 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31930 {
31931 fp16_optional = 1;
31932 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31933 }
31934 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31935 {
31936 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31937 fp16_optional = 1;
31938 }
31939 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31940 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31941 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31942 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31943 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31944
31945 /* Tag_ABI_HardFP_use. */
31946 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31947 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31948 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31949
31950 /* Tag_WMMX_arch. */
31951 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31952 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31953 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31954 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31955
31956 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31957 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31958 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31959 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31960 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31961 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31962 {
31963 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31964 {
31965 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31966 }
31967 else
31968 {
31969 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31970 fp16_optional = 1;
31971 }
31972 }
31973
31974 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31975 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31976 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31977 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31978
31979 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31980 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31981 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31982
31983 /* Tag_DIV_use.
31984
31985 We set Tag_DIV_use to two when integer divide instructions have been used
31986 in ARM state, or when Thumb integer divide instructions have been used,
31987 but we have no architecture profile set, nor have we any ARM instructions.
31988
31989 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31990 by the base architecture.
31991
31992 For new architectures we will have to check these tests. */
31993 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31994 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31995 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31996 aeabi_set_attribute_int (Tag_DIV_use, 0);
31997 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31998 || (profile == '\0'
31999 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32000 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
32001 aeabi_set_attribute_int (Tag_DIV_use, 2);
32002
32003 /* Tag_MP_extension_use. */
32004 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32005 aeabi_set_attribute_int (Tag_MPextension_use, 1);
32006
32007 /* Tag Virtualization_use. */
32008 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
32009 virt_sec |= 1;
32010 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32011 virt_sec |= 2;
32012 if (virt_sec != 0)
32013 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
32014 }
32015
32016 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
32017 finished and free extension feature bits which will not be used anymore. */
32018
32019 void
32020 arm_md_post_relax (void)
32021 {
32022 aeabi_set_public_attributes ();
32023 XDELETE (mcpu_ext_opt);
32024 mcpu_ext_opt = NULL;
32025 XDELETE (march_ext_opt);
32026 march_ext_opt = NULL;
32027 }
32028
32029 /* Add the default contents for the .ARM.attributes section. */
32030
32031 void
32032 arm_md_end (void)
32033 {
32034 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32035 return;
32036
32037 aeabi_set_public_attributes ();
32038 }
32039 #endif /* OBJ_ELF */
32040
32041 /* Parse a .cpu directive. */
32042
32043 static void
32044 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32045 {
32046 const struct arm_cpu_option_table *opt;
32047 char *name;
32048 char saved_char;
32049
32050 name = input_line_pointer;
32051 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32052 input_line_pointer++;
32053 saved_char = *input_line_pointer;
32054 *input_line_pointer = 0;
32055
32056 /* Skip the first "all" entry. */
32057 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32058 if (streq (opt->name, name))
32059 {
32060 selected_arch = opt->value;
32061 selected_ext = opt->ext;
32062 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32063 if (opt->canonical_name)
32064 strcpy (selected_cpu_name, opt->canonical_name);
32065 else
32066 {
32067 int i;
32068 for (i = 0; opt->name[i]; i++)
32069 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32070
32071 selected_cpu_name[i] = 0;
32072 }
32073 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32074
32075 *input_line_pointer = saved_char;
32076 demand_empty_rest_of_line ();
32077 return;
32078 }
32079 as_bad (_("unknown cpu `%s'"), name);
32080 *input_line_pointer = saved_char;
32081 ignore_rest_of_line ();
32082 }
32083
32084 /* Parse a .arch directive. */
32085
32086 static void
32087 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32088 {
32089 const struct arm_arch_option_table *opt;
32090 char saved_char;
32091 char *name;
32092
32093 name = input_line_pointer;
32094 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32095 input_line_pointer++;
32096 saved_char = *input_line_pointer;
32097 *input_line_pointer = 0;
32098
32099 /* Skip the first "all" entry. */
32100 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32101 if (streq (opt->name, name))
32102 {
32103 selected_arch = opt->value;
32104 selected_ext = arm_arch_none;
32105 selected_cpu = selected_arch;
32106 strcpy (selected_cpu_name, opt->name);
32107 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32108 *input_line_pointer = saved_char;
32109 demand_empty_rest_of_line ();
32110 return;
32111 }
32112
32113 as_bad (_("unknown architecture `%s'\n"), name);
32114 *input_line_pointer = saved_char;
32115 ignore_rest_of_line ();
32116 }
32117
32118 /* Parse a .object_arch directive. */
32119
32120 static void
32121 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32122 {
32123 const struct arm_arch_option_table *opt;
32124 char saved_char;
32125 char *name;
32126
32127 name = input_line_pointer;
32128 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32129 input_line_pointer++;
32130 saved_char = *input_line_pointer;
32131 *input_line_pointer = 0;
32132
32133 /* Skip the first "all" entry. */
32134 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32135 if (streq (opt->name, name))
32136 {
32137 selected_object_arch = opt->value;
32138 *input_line_pointer = saved_char;
32139 demand_empty_rest_of_line ();
32140 return;
32141 }
32142
32143 as_bad (_("unknown architecture `%s'\n"), name);
32144 *input_line_pointer = saved_char;
32145 ignore_rest_of_line ();
32146 }
32147
32148 /* Parse a .arch_extension directive. */
32149
32150 static void
32151 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32152 {
32153 const struct arm_option_extension_value_table *opt;
32154 char saved_char;
32155 char *name;
32156 int adding_value = 1;
32157
32158 name = input_line_pointer;
32159 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32160 input_line_pointer++;
32161 saved_char = *input_line_pointer;
32162 *input_line_pointer = 0;
32163
32164 if (strlen (name) >= 2
32165 && strncmp (name, "no", 2) == 0)
32166 {
32167 adding_value = 0;
32168 name += 2;
32169 }
32170
32171 for (opt = arm_extensions; opt->name != NULL; opt++)
32172 if (streq (opt->name, name))
32173 {
32174 int i, nb_allowed_archs =
32175 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32176 for (i = 0; i < nb_allowed_archs; i++)
32177 {
32178 /* Empty entry. */
32179 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32180 continue;
32181 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32182 break;
32183 }
32184
32185 if (i == nb_allowed_archs)
32186 {
32187 as_bad (_("architectural extension `%s' is not allowed for the "
32188 "current base architecture"), name);
32189 break;
32190 }
32191
32192 if (adding_value)
32193 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32194 opt->merge_value);
32195 else
32196 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32197
32198 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32199 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32200 *input_line_pointer = saved_char;
32201 demand_empty_rest_of_line ();
32202 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32203 on this return so that duplicate extensions (extensions with the
32204 same name as a previous extension in the list) are not considered
32205 for command-line parsing. */
32206 return;
32207 }
32208
32209 if (opt->name == NULL)
32210 as_bad (_("unknown architecture extension `%s'\n"), name);
32211
32212 *input_line_pointer = saved_char;
32213 ignore_rest_of_line ();
32214 }
32215
32216 /* Parse a .fpu directive. */
32217
32218 static void
32219 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32220 {
32221 const struct arm_option_fpu_value_table *opt;
32222 char saved_char;
32223 char *name;
32224
32225 name = input_line_pointer;
32226 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32227 input_line_pointer++;
32228 saved_char = *input_line_pointer;
32229 *input_line_pointer = 0;
32230
32231 for (opt = arm_fpus; opt->name != NULL; opt++)
32232 if (streq (opt->name, name))
32233 {
32234 selected_fpu = opt->value;
32235 #ifndef CPU_DEFAULT
32236 if (no_cpu_selected ())
32237 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32238 else
32239 #endif
32240 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32241 *input_line_pointer = saved_char;
32242 demand_empty_rest_of_line ();
32243 return;
32244 }
32245
32246 as_bad (_("unknown floating point format `%s'\n"), name);
32247 *input_line_pointer = saved_char;
32248 ignore_rest_of_line ();
32249 }
32250
32251 /* Copy symbol information. */
32252
32253 void
32254 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32255 {
32256 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32257 }
32258
32259 #ifdef OBJ_ELF
32260 /* Given a symbolic attribute NAME, return the proper integer value.
32261 Returns -1 if the attribute is not known. */
32262
32263 int
32264 arm_convert_symbolic_attribute (const char *name)
32265 {
32266 static const struct
32267 {
32268 const char * name;
32269 const int tag;
32270 }
32271 attribute_table[] =
32272 {
32273 /* When you modify this table you should
32274 also modify the list in doc/c-arm.texi. */
32275 #define T(tag) {#tag, tag}
32276 T (Tag_CPU_raw_name),
32277 T (Tag_CPU_name),
32278 T (Tag_CPU_arch),
32279 T (Tag_CPU_arch_profile),
32280 T (Tag_ARM_ISA_use),
32281 T (Tag_THUMB_ISA_use),
32282 T (Tag_FP_arch),
32283 T (Tag_VFP_arch),
32284 T (Tag_WMMX_arch),
32285 T (Tag_Advanced_SIMD_arch),
32286 T (Tag_PCS_config),
32287 T (Tag_ABI_PCS_R9_use),
32288 T (Tag_ABI_PCS_RW_data),
32289 T (Tag_ABI_PCS_RO_data),
32290 T (Tag_ABI_PCS_GOT_use),
32291 T (Tag_ABI_PCS_wchar_t),
32292 T (Tag_ABI_FP_rounding),
32293 T (Tag_ABI_FP_denormal),
32294 T (Tag_ABI_FP_exceptions),
32295 T (Tag_ABI_FP_user_exceptions),
32296 T (Tag_ABI_FP_number_model),
32297 T (Tag_ABI_align_needed),
32298 T (Tag_ABI_align8_needed),
32299 T (Tag_ABI_align_preserved),
32300 T (Tag_ABI_align8_preserved),
32301 T (Tag_ABI_enum_size),
32302 T (Tag_ABI_HardFP_use),
32303 T (Tag_ABI_VFP_args),
32304 T (Tag_ABI_WMMX_args),
32305 T (Tag_ABI_optimization_goals),
32306 T (Tag_ABI_FP_optimization_goals),
32307 T (Tag_compatibility),
32308 T (Tag_CPU_unaligned_access),
32309 T (Tag_FP_HP_extension),
32310 T (Tag_VFP_HP_extension),
32311 T (Tag_ABI_FP_16bit_format),
32312 T (Tag_MPextension_use),
32313 T (Tag_DIV_use),
32314 T (Tag_nodefaults),
32315 T (Tag_also_compatible_with),
32316 T (Tag_conformance),
32317 T (Tag_T2EE_use),
32318 T (Tag_Virtualization_use),
32319 T (Tag_DSP_extension),
32320 T (Tag_MVE_arch),
32321 /* We deliberately do not include Tag_MPextension_use_legacy. */
32322 #undef T
32323 };
32324 unsigned int i;
32325
32326 if (name == NULL)
32327 return -1;
32328
32329 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32330 if (streq (name, attribute_table[i].name))
32331 return attribute_table[i].tag;
32332
32333 return -1;
32334 }
32335
32336 /* Apply sym value for relocations only in the case that they are for
32337 local symbols in the same segment as the fixup and you have the
32338 respective architectural feature for blx and simple switches. */
32339
32340 int
32341 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32342 {
32343 if (fixP->fx_addsy
32344 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32345 /* PR 17444: If the local symbol is in a different section then a reloc
32346 will always be generated for it, so applying the symbol value now
32347 will result in a double offset being stored in the relocation. */
32348 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32349 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32350 {
32351 switch (fixP->fx_r_type)
32352 {
32353 case BFD_RELOC_ARM_PCREL_BLX:
32354 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32355 if (ARM_IS_FUNC (fixP->fx_addsy))
32356 return 1;
32357 break;
32358
32359 case BFD_RELOC_ARM_PCREL_CALL:
32360 case BFD_RELOC_THUMB_PCREL_BLX:
32361 if (THUMB_IS_FUNC (fixP->fx_addsy))
32362 return 1;
32363 break;
32364
32365 default:
32366 break;
32367 }
32368
32369 }
32370 return 0;
32371 }
32372 #endif /* OBJ_ELF */
This page took 0.753695 seconds and 5 git commands to generate.