[PATCH 24/57][Arm][GAS] Add support for MVE instructions: vmlas, vmulh and vrmulh
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
6933 OP_REGLST, /* ARM register list */
6934 OP_CLRMLST, /* CLRM register list */
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
6943
6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
6954 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6955 scalar, or ARM register. */
6956 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6957 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6958 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6959 OP_VMOV, /* Neon VMOV operands. */
6960 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6961 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6962 OP_RNDQMQ_Ibig,
6963 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6964 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6965 OP_VLDR, /* VLDR operand. */
6966
6967 OP_I0, /* immediate zero */
6968 OP_I7, /* immediate value 0 .. 7 */
6969 OP_I15, /* 0 .. 15 */
6970 OP_I16, /* 1 .. 16 */
6971 OP_I16z, /* 0 .. 16 */
6972 OP_I31, /* 0 .. 31 */
6973 OP_I31w, /* 0 .. 31, optional trailing ! */
6974 OP_I32, /* 1 .. 32 */
6975 OP_I32z, /* 0 .. 32 */
6976 OP_I63, /* 0 .. 63 */
6977 OP_I63s, /* -64 .. 63 */
6978 OP_I64, /* 1 .. 64 */
6979 OP_I64z, /* 0 .. 64 */
6980 OP_I255, /* 0 .. 255 */
6981
6982 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6983 OP_I7b, /* 0 .. 7 */
6984 OP_I15b, /* 0 .. 15 */
6985 OP_I31b, /* 0 .. 31 */
6986
6987 OP_SH, /* shifter operand */
6988 OP_SHG, /* shifter operand with possible group relocation */
6989 OP_ADDR, /* Memory address expression (any mode) */
6990 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6991 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6992 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6993 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6994 OP_EXP, /* arbitrary expression */
6995 OP_EXPi, /* same, with optional immediate prefix */
6996 OP_EXPr, /* same, with optional relocation suffix */
6997 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6998 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6999 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7000 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7001
7002 OP_CPSF, /* CPS flags */
7003 OP_ENDI, /* Endianness specifier */
7004 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7005 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7006 OP_COND, /* conditional code */
7007 OP_TB, /* Table branch. */
7008
7009 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7010
7011 OP_RRnpc_I0, /* ARM register or literal 0 */
7012 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7013 OP_RR_EXi, /* ARM register or expression with imm prefix */
7014 OP_RF_IF, /* FPA register or immediate */
7015 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7016 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7017
7018 /* Optional operands. */
7019 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7020 OP_oI31b, /* 0 .. 31 */
7021 OP_oI32b, /* 1 .. 32 */
7022 OP_oI32z, /* 0 .. 32 */
7023 OP_oIffffb, /* 0 .. 65535 */
7024 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7025
7026 OP_oRR, /* ARM register */
7027 OP_oLR, /* ARM LR register */
7028 OP_oRRnpc, /* ARM register, not the PC */
7029 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7030 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7031 OP_oRND, /* Optional Neon double precision register */
7032 OP_oRNQ, /* Optional Neon quad precision register */
7033 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7034 OP_oRNDQ, /* Optional Neon double or quad precision register */
7035 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7036 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7037 register. */
7038 OP_oSHll, /* LSL immediate */
7039 OP_oSHar, /* ASR immediate */
7040 OP_oSHllar, /* LSL or ASR immediate */
7041 OP_oROR, /* ROR 0/8/16/24 */
7042 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7043
7044 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7045
7046 /* Some pre-defined mixed (ARM/THUMB) operands. */
7047 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7048 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7049 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7050
7051 OP_FIRST_OPTIONAL = OP_oI7b
7052 };
7053
7054 /* Generic instruction operand parser. This does no encoding and no
7055 semantic validation; it merely squirrels values away in the inst
7056 structure. Returns SUCCESS or FAIL depending on whether the
7057 specified grammar matched. */
7058 static int
7059 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7060 {
7061 unsigned const int *upat = pattern;
7062 char *backtrack_pos = 0;
7063 const char *backtrack_error = 0;
7064 int i, val = 0, backtrack_index = 0;
7065 enum arm_reg_type rtype;
7066 parse_operand_result result;
7067 unsigned int op_parse_code;
7068 bfd_boolean partial_match;
7069
7070 #define po_char_or_fail(chr) \
7071 do \
7072 { \
7073 if (skip_past_char (&str, chr) == FAIL) \
7074 goto bad_args; \
7075 } \
7076 while (0)
7077
7078 #define po_reg_or_fail(regtype) \
7079 do \
7080 { \
7081 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7082 & inst.operands[i].vectype); \
7083 if (val == FAIL) \
7084 { \
7085 first_error (_(reg_expected_msgs[regtype])); \
7086 goto failure; \
7087 } \
7088 inst.operands[i].reg = val; \
7089 inst.operands[i].isreg = 1; \
7090 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7091 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7092 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7093 || rtype == REG_TYPE_VFD \
7094 || rtype == REG_TYPE_NQ); \
7095 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7096 } \
7097 while (0)
7098
7099 #define po_reg_or_goto(regtype, label) \
7100 do \
7101 { \
7102 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7103 & inst.operands[i].vectype); \
7104 if (val == FAIL) \
7105 goto label; \
7106 \
7107 inst.operands[i].reg = val; \
7108 inst.operands[i].isreg = 1; \
7109 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7110 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7111 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7112 || rtype == REG_TYPE_VFD \
7113 || rtype == REG_TYPE_NQ); \
7114 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7115 } \
7116 while (0)
7117
7118 #define po_imm_or_fail(min, max, popt) \
7119 do \
7120 { \
7121 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7122 goto failure; \
7123 inst.operands[i].imm = val; \
7124 } \
7125 while (0)
7126
7127 #define po_scalar_or_goto(elsz, label, reg_type) \
7128 do \
7129 { \
7130 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7131 reg_type); \
7132 if (val == FAIL) \
7133 goto label; \
7134 inst.operands[i].reg = val; \
7135 inst.operands[i].isscalar = 1; \
7136 } \
7137 while (0)
7138
7139 #define po_misc_or_fail(expr) \
7140 do \
7141 { \
7142 if (expr) \
7143 goto failure; \
7144 } \
7145 while (0)
7146
7147 #define po_misc_or_fail_no_backtrack(expr) \
7148 do \
7149 { \
7150 result = expr; \
7151 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7152 backtrack_pos = 0; \
7153 if (result != PARSE_OPERAND_SUCCESS) \
7154 goto failure; \
7155 } \
7156 while (0)
7157
7158 #define po_barrier_or_imm(str) \
7159 do \
7160 { \
7161 val = parse_barrier (&str); \
7162 if (val == FAIL && ! ISALPHA (*str)) \
7163 goto immediate; \
7164 if (val == FAIL \
7165 /* ISB can only take SY as an option. */ \
7166 || ((inst.instruction & 0xf0) == 0x60 \
7167 && val != 0xf)) \
7168 { \
7169 inst.error = _("invalid barrier type"); \
7170 backtrack_pos = 0; \
7171 goto failure; \
7172 } \
7173 } \
7174 while (0)
7175
7176 skip_whitespace (str);
7177
7178 for (i = 0; upat[i] != OP_stop; i++)
7179 {
7180 op_parse_code = upat[i];
7181 if (op_parse_code >= 1<<16)
7182 op_parse_code = thumb ? (op_parse_code >> 16)
7183 : (op_parse_code & ((1<<16)-1));
7184
7185 if (op_parse_code >= OP_FIRST_OPTIONAL)
7186 {
7187 /* Remember where we are in case we need to backtrack. */
7188 backtrack_pos = str;
7189 backtrack_error = inst.error;
7190 backtrack_index = i;
7191 }
7192
7193 if (i > 0 && (i > 1 || inst.operands[0].present))
7194 po_char_or_fail (',');
7195
7196 switch (op_parse_code)
7197 {
7198 /* Registers */
7199 case OP_oRRnpc:
7200 case OP_oRRnpcsp:
7201 case OP_RRnpc:
7202 case OP_RRnpcsp:
7203 case OP_oRR:
7204 case OP_RRe:
7205 case OP_RRo:
7206 case OP_LR:
7207 case OP_oLR:
7208 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7209 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7210 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7211 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7212 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7213 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7214 case OP_oRND:
7215 case OP_RNDMQR:
7216 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7217 break;
7218 try_rndmq:
7219 case OP_RNDMQ:
7220 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7221 break;
7222 try_rnd:
7223 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7224 case OP_RVC:
7225 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7226 break;
7227 /* Also accept generic coprocessor regs for unknown registers. */
7228 coproc_reg:
7229 po_reg_or_fail (REG_TYPE_CN);
7230 break;
7231 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7232 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7233 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7234 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7235 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7236 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7237 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7238 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7239 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7240 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7241 case OP_oRNQ:
7242 case OP_RNQMQ:
7243 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7244 break;
7245 try_nq:
7246 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7247 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7248 case OP_RNDQMQR:
7249 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7250 break;
7251 try_rndqmq:
7252 case OP_oRNDQMQ:
7253 case OP_RNDQMQ:
7254 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7255 break;
7256 try_rndq:
7257 case OP_oRNDQ:
7258 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7259 case OP_RVSDMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7261 break;
7262 try_rvsd:
7263 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7264 case OP_RVSD_COND:
7265 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7266 break;
7267 case OP_oRNSDQ:
7268 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7269 case OP_RNSDQMQR:
7270 po_reg_or_goto (REG_TYPE_RN, try_mq);
7271 break;
7272 try_mq:
7273 case OP_oRNSDQMQ:
7274 case OP_RNSDQMQ:
7275 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7276 break;
7277 try_nsdq2:
7278 po_reg_or_fail (REG_TYPE_NSDQ);
7279 inst.error = 0;
7280 break;
7281 case OP_RMQ:
7282 po_reg_or_fail (REG_TYPE_MQ);
7283 break;
7284 /* Neon scalar. Using an element size of 8 means that some invalid
7285 scalars are accepted here, so deal with those in later code. */
7286 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7287
7288 case OP_RNDQ_I0:
7289 {
7290 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7291 break;
7292 try_imm0:
7293 po_imm_or_fail (0, 0, TRUE);
7294 }
7295 break;
7296
7297 case OP_RVSD_I0:
7298 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7299 break;
7300
7301 case OP_RSVDMQ_FI0:
7302 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7303 break;
7304 try_rsvd_fi0:
7305 case OP_RSVD_FI0:
7306 {
7307 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7308 break;
7309 try_ifimm0:
7310 if (parse_ifimm_zero (&str))
7311 inst.operands[i].imm = 0;
7312 else
7313 {
7314 inst.error
7315 = _("only floating point zero is allowed as immediate value");
7316 goto failure;
7317 }
7318 }
7319 break;
7320
7321 case OP_RR_RNSC:
7322 {
7323 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7324 break;
7325 try_rr:
7326 po_reg_or_fail (REG_TYPE_RN);
7327 }
7328 break;
7329
7330 case OP_RNSDQ_RNSC_MQ_RR:
7331 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7332 break;
7333 try_rnsdq_rnsc_mq:
7334 case OP_RNSDQ_RNSC_MQ:
7335 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7336 break;
7337 try_rnsdq_rnsc:
7338 case OP_RNSDQ_RNSC:
7339 {
7340 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7341 inst.error = 0;
7342 break;
7343 try_nsdq:
7344 po_reg_or_fail (REG_TYPE_NSDQ);
7345 inst.error = 0;
7346 }
7347 break;
7348
7349 case OP_RNSD_RNSC:
7350 {
7351 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7352 break;
7353 try_s_scalar:
7354 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7355 break;
7356 try_nsd:
7357 po_reg_or_fail (REG_TYPE_NSD);
7358 }
7359 break;
7360
7361 case OP_RNDQMQ_RNSC:
7362 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7363 break;
7364 try_rndq_rnsc:
7365 case OP_RNDQ_RNSC:
7366 {
7367 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7368 break;
7369 try_ndq:
7370 po_reg_or_fail (REG_TYPE_NDQ);
7371 }
7372 break;
7373
7374 case OP_RND_RNSC:
7375 {
7376 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7377 break;
7378 try_vfd:
7379 po_reg_or_fail (REG_TYPE_VFD);
7380 }
7381 break;
7382
7383 case OP_VMOV:
7384 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7385 not careful then bad things might happen. */
7386 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7387 break;
7388
7389 case OP_RNDQMQ_Ibig:
7390 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7391 break;
7392 try_rndq_ibig:
7393 case OP_RNDQ_Ibig:
7394 {
7395 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7396 break;
7397 try_immbig:
7398 /* There's a possibility of getting a 64-bit immediate here, so
7399 we need special handling. */
7400 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7401 == FAIL)
7402 {
7403 inst.error = _("immediate value is out of range");
7404 goto failure;
7405 }
7406 }
7407 break;
7408
7409 case OP_RNDQ_I63b:
7410 {
7411 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7412 break;
7413 try_shimm:
7414 po_imm_or_fail (0, 63, TRUE);
7415 }
7416 break;
7417
7418 case OP_RRnpcb:
7419 po_char_or_fail ('[');
7420 po_reg_or_fail (REG_TYPE_RN);
7421 po_char_or_fail (']');
7422 break;
7423
7424 case OP_RRnpctw:
7425 case OP_RRw:
7426 case OP_oRRw:
7427 po_reg_or_fail (REG_TYPE_RN);
7428 if (skip_past_char (&str, '!') == SUCCESS)
7429 inst.operands[i].writeback = 1;
7430 break;
7431
7432 /* Immediates */
7433 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7434 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7435 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7436 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7437 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7438 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7439 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7440 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7441 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7442 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7443 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7444 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7445
7446 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7447 case OP_oI7b:
7448 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7449 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7450 case OP_oI31b:
7451 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7452 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7453 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7454 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7455
7456 /* Immediate variants */
7457 case OP_oI255c:
7458 po_char_or_fail ('{');
7459 po_imm_or_fail (0, 255, TRUE);
7460 po_char_or_fail ('}');
7461 break;
7462
7463 case OP_I31w:
7464 /* The expression parser chokes on a trailing !, so we have
7465 to find it first and zap it. */
7466 {
7467 char *s = str;
7468 while (*s && *s != ',')
7469 s++;
7470 if (s[-1] == '!')
7471 {
7472 s[-1] = '\0';
7473 inst.operands[i].writeback = 1;
7474 }
7475 po_imm_or_fail (0, 31, TRUE);
7476 if (str == s - 1)
7477 str = s;
7478 }
7479 break;
7480
7481 /* Expressions */
7482 case OP_EXPi: EXPi:
7483 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7484 GE_OPT_PREFIX));
7485 break;
7486
7487 case OP_EXP:
7488 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7489 GE_NO_PREFIX));
7490 break;
7491
7492 case OP_EXPr: EXPr:
7493 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7494 GE_NO_PREFIX));
7495 if (inst.relocs[0].exp.X_op == O_symbol)
7496 {
7497 val = parse_reloc (&str);
7498 if (val == -1)
7499 {
7500 inst.error = _("unrecognized relocation suffix");
7501 goto failure;
7502 }
7503 else if (val != BFD_RELOC_UNUSED)
7504 {
7505 inst.operands[i].imm = val;
7506 inst.operands[i].hasreloc = 1;
7507 }
7508 }
7509 break;
7510
7511 case OP_EXPs:
7512 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7513 GE_NO_PREFIX));
7514 if (inst.relocs[i].exp.X_op == O_symbol)
7515 {
7516 inst.operands[i].hasreloc = 1;
7517 }
7518 else if (inst.relocs[i].exp.X_op == O_constant)
7519 {
7520 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7521 inst.operands[i].hasreloc = 0;
7522 }
7523 break;
7524
7525 /* Operand for MOVW or MOVT. */
7526 case OP_HALF:
7527 po_misc_or_fail (parse_half (&str));
7528 break;
7529
7530 /* Register or expression. */
7531 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7532 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7533
7534 /* Register or immediate. */
7535 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7536 I0: po_imm_or_fail (0, 0, FALSE); break;
7537
7538 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7539 IF:
7540 if (!is_immediate_prefix (*str))
7541 goto bad_args;
7542 str++;
7543 val = parse_fpa_immediate (&str);
7544 if (val == FAIL)
7545 goto failure;
7546 /* FPA immediates are encoded as registers 8-15.
7547 parse_fpa_immediate has already applied the offset. */
7548 inst.operands[i].reg = val;
7549 inst.operands[i].isreg = 1;
7550 break;
7551
7552 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7553 I32z: po_imm_or_fail (0, 32, FALSE); break;
7554
7555 /* Two kinds of register. */
7556 case OP_RIWR_RIWC:
7557 {
7558 struct reg_entry *rege = arm_reg_parse_multi (&str);
7559 if (!rege
7560 || (rege->type != REG_TYPE_MMXWR
7561 && rege->type != REG_TYPE_MMXWC
7562 && rege->type != REG_TYPE_MMXWCG))
7563 {
7564 inst.error = _("iWMMXt data or control register expected");
7565 goto failure;
7566 }
7567 inst.operands[i].reg = rege->number;
7568 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7569 }
7570 break;
7571
7572 case OP_RIWC_RIWG:
7573 {
7574 struct reg_entry *rege = arm_reg_parse_multi (&str);
7575 if (!rege
7576 || (rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = 1;
7584 }
7585 break;
7586
7587 /* Misc */
7588 case OP_CPSF: val = parse_cps_flags (&str); break;
7589 case OP_ENDI: val = parse_endian_specifier (&str); break;
7590 case OP_oROR: val = parse_ror (&str); break;
7591 try_cond:
7592 case OP_COND: val = parse_cond (&str); break;
7593 case OP_oBARRIER_I15:
7594 po_barrier_or_imm (str); break;
7595 immediate:
7596 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7597 goto failure;
7598 break;
7599
7600 case OP_wPSR:
7601 case OP_rPSR:
7602 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7603 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7604 {
7605 inst.error = _("Banked registers are not available with this "
7606 "architecture.");
7607 goto failure;
7608 }
7609 break;
7610 try_psr:
7611 val = parse_psr (&str, op_parse_code == OP_wPSR);
7612 break;
7613
7614 case OP_VLDR:
7615 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7616 break;
7617 try_sysreg:
7618 val = parse_sys_vldr_vstr (&str);
7619 break;
7620
7621 case OP_APSR_RR:
7622 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7623 break;
7624 try_apsr:
7625 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7626 instruction). */
7627 if (strncasecmp (str, "APSR_", 5) == 0)
7628 {
7629 unsigned found = 0;
7630 str += 5;
7631 while (found < 15)
7632 switch (*str++)
7633 {
7634 case 'c': found = (found & 1) ? 16 : found | 1; break;
7635 case 'n': found = (found & 2) ? 16 : found | 2; break;
7636 case 'z': found = (found & 4) ? 16 : found | 4; break;
7637 case 'v': found = (found & 8) ? 16 : found | 8; break;
7638 default: found = 16;
7639 }
7640 if (found != 15)
7641 goto failure;
7642 inst.operands[i].isvec = 1;
7643 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7644 inst.operands[i].reg = REG_PC;
7645 }
7646 else
7647 goto failure;
7648 break;
7649
7650 case OP_TB:
7651 po_misc_or_fail (parse_tb (&str));
7652 break;
7653
7654 /* Register lists. */
7655 case OP_REGLST:
7656 val = parse_reg_list (&str, REGLIST_RN);
7657 if (*str == '^')
7658 {
7659 inst.operands[i].writeback = 1;
7660 str++;
7661 }
7662 break;
7663
7664 case OP_CLRMLST:
7665 val = parse_reg_list (&str, REGLIST_CLRM);
7666 break;
7667
7668 case OP_VRSLST:
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7670 &partial_match);
7671 break;
7672
7673 case OP_VRDLST:
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7675 &partial_match);
7676 break;
7677
7678 case OP_VRSDLST:
7679 /* Allow Q registers too. */
7680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7681 REGLIST_NEON_D, &partial_match);
7682 if (val == FAIL)
7683 {
7684 inst.error = NULL;
7685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7686 REGLIST_VFP_S, &partial_match);
7687 inst.operands[i].issingle = 1;
7688 }
7689 break;
7690
7691 case OP_VRSDVLST:
7692 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7693 REGLIST_VFP_D_VPR, &partial_match);
7694 if (val == FAIL && !partial_match)
7695 {
7696 inst.error = NULL;
7697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7698 REGLIST_VFP_S_VPR, &partial_match);
7699 inst.operands[i].issingle = 1;
7700 }
7701 break;
7702
7703 case OP_NRDLST:
7704 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7705 REGLIST_NEON_D, &partial_match);
7706 break;
7707
7708 case OP_MSTRLST4:
7709 case OP_MSTRLST2:
7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7711 1, &inst.operands[i].vectype);
7712 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7713 goto failure;
7714 break;
7715 case OP_NSTRLST:
7716 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7717 0, &inst.operands[i].vectype);
7718 break;
7719
7720 /* Addressing modes */
7721 case OP_ADDRMVE:
7722 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7723 break;
7724
7725 case OP_ADDR:
7726 po_misc_or_fail (parse_address (&str, i));
7727 break;
7728
7729 case OP_ADDRGLDR:
7730 po_misc_or_fail_no_backtrack (
7731 parse_address_group_reloc (&str, i, GROUP_LDR));
7732 break;
7733
7734 case OP_ADDRGLDRS:
7735 po_misc_or_fail_no_backtrack (
7736 parse_address_group_reloc (&str, i, GROUP_LDRS));
7737 break;
7738
7739 case OP_ADDRGLDC:
7740 po_misc_or_fail_no_backtrack (
7741 parse_address_group_reloc (&str, i, GROUP_LDC));
7742 break;
7743
7744 case OP_SH:
7745 po_misc_or_fail (parse_shifter_operand (&str, i));
7746 break;
7747
7748 case OP_SHG:
7749 po_misc_or_fail_no_backtrack (
7750 parse_shifter_operand_group_reloc (&str, i));
7751 break;
7752
7753 case OP_oSHll:
7754 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7755 break;
7756
7757 case OP_oSHar:
7758 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7759 break;
7760
7761 case OP_oSHllar:
7762 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7763 break;
7764
7765 case OP_RMQRZ:
7766 case OP_oRMQRZ:
7767 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7768 break;
7769 try_rr_zr:
7770 po_reg_or_goto (REG_TYPE_RN, ZR);
7771 break;
7772 ZR:
7773 po_reg_or_fail (REG_TYPE_ZR);
7774 break;
7775
7776 default:
7777 as_fatal (_("unhandled operand code %d"), op_parse_code);
7778 }
7779
7780 /* Various value-based sanity checks and shared operations. We
7781 do not signal immediate failures for the register constraints;
7782 this allows a syntax error to take precedence. */
7783 switch (op_parse_code)
7784 {
7785 case OP_oRRnpc:
7786 case OP_RRnpc:
7787 case OP_RRnpcb:
7788 case OP_RRw:
7789 case OP_oRRw:
7790 case OP_RRnpc_I0:
7791 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7792 inst.error = BAD_PC;
7793 break;
7794
7795 case OP_oRRnpcsp:
7796 case OP_RRnpcsp:
7797 if (inst.operands[i].isreg)
7798 {
7799 if (inst.operands[i].reg == REG_PC)
7800 inst.error = BAD_PC;
7801 else if (inst.operands[i].reg == REG_SP
7802 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7803 relaxed since ARMv8-A. */
7804 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7805 {
7806 gas_assert (thumb);
7807 inst.error = BAD_SP;
7808 }
7809 }
7810 break;
7811
7812 case OP_RRnpctw:
7813 if (inst.operands[i].isreg
7814 && inst.operands[i].reg == REG_PC
7815 && (inst.operands[i].writeback || thumb))
7816 inst.error = BAD_PC;
7817 break;
7818
7819 case OP_RVSD_COND:
7820 case OP_VLDR:
7821 if (inst.operands[i].isreg)
7822 break;
7823 /* fall through. */
7824
7825 case OP_CPSF:
7826 case OP_ENDI:
7827 case OP_oROR:
7828 case OP_wPSR:
7829 case OP_rPSR:
7830 case OP_COND:
7831 case OP_oBARRIER_I15:
7832 case OP_REGLST:
7833 case OP_CLRMLST:
7834 case OP_VRSLST:
7835 case OP_VRDLST:
7836 case OP_VRSDLST:
7837 case OP_VRSDVLST:
7838 case OP_NRDLST:
7839 case OP_NSTRLST:
7840 case OP_MSTRLST2:
7841 case OP_MSTRLST4:
7842 if (val == FAIL)
7843 goto failure;
7844 inst.operands[i].imm = val;
7845 break;
7846
7847 case OP_LR:
7848 case OP_oLR:
7849 if (inst.operands[i].reg != REG_LR)
7850 inst.error = _("operand must be LR register");
7851 break;
7852
7853 case OP_RMQRZ:
7854 case OP_oRMQRZ:
7855 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7856 inst.error = BAD_PC;
7857 break;
7858
7859 case OP_RRe:
7860 if (inst.operands[i].isreg
7861 && (inst.operands[i].reg & 0x00000001) != 0)
7862 inst.error = BAD_ODD;
7863 break;
7864
7865 case OP_RRo:
7866 if (inst.operands[i].isreg)
7867 {
7868 if ((inst.operands[i].reg & 0x00000001) != 1)
7869 inst.error = BAD_EVEN;
7870 else if (inst.operands[i].reg == REG_SP)
7871 as_tsktsk (MVE_BAD_SP);
7872 else if (inst.operands[i].reg == REG_PC)
7873 inst.error = BAD_PC;
7874 }
7875 break;
7876
7877 default:
7878 break;
7879 }
7880
7881 /* If we get here, this operand was successfully parsed. */
7882 inst.operands[i].present = 1;
7883 continue;
7884
7885 bad_args:
7886 inst.error = BAD_ARGS;
7887
7888 failure:
7889 if (!backtrack_pos)
7890 {
7891 /* The parse routine should already have set inst.error, but set a
7892 default here just in case. */
7893 if (!inst.error)
7894 inst.error = BAD_SYNTAX;
7895 return FAIL;
7896 }
7897
7898 /* Do not backtrack over a trailing optional argument that
7899 absorbed some text. We will only fail again, with the
7900 'garbage following instruction' error message, which is
7901 probably less helpful than the current one. */
7902 if (backtrack_index == i && backtrack_pos != str
7903 && upat[i+1] == OP_stop)
7904 {
7905 if (!inst.error)
7906 inst.error = BAD_SYNTAX;
7907 return FAIL;
7908 }
7909
7910 /* Try again, skipping the optional argument at backtrack_pos. */
7911 str = backtrack_pos;
7912 inst.error = backtrack_error;
7913 inst.operands[backtrack_index].present = 0;
7914 i = backtrack_index;
7915 backtrack_pos = 0;
7916 }
7917
7918 /* Check that we have parsed all the arguments. */
7919 if (*str != '\0' && !inst.error)
7920 inst.error = _("garbage following instruction");
7921
7922 return inst.error ? FAIL : SUCCESS;
7923 }
7924
7925 #undef po_char_or_fail
7926 #undef po_reg_or_fail
7927 #undef po_reg_or_goto
7928 #undef po_imm_or_fail
7929 #undef po_scalar_or_fail
7930 #undef po_barrier_or_imm
7931
7932 /* Shorthand macro for instruction encoding functions issuing errors. */
7933 #define constraint(expr, err) \
7934 do \
7935 { \
7936 if (expr) \
7937 { \
7938 inst.error = err; \
7939 return; \
7940 } \
7941 } \
7942 while (0)
7943
7944 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7945 instructions are unpredictable if these registers are used. This
7946 is the BadReg predicate in ARM's Thumb-2 documentation.
7947
7948 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7949 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7950 #define reject_bad_reg(reg) \
7951 do \
7952 if (reg == REG_PC) \
7953 { \
7954 inst.error = BAD_PC; \
7955 return; \
7956 } \
7957 else if (reg == REG_SP \
7958 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7959 { \
7960 inst.error = BAD_SP; \
7961 return; \
7962 } \
7963 while (0)
7964
7965 /* If REG is R13 (the stack pointer), warn that its use is
7966 deprecated. */
7967 #define warn_deprecated_sp(reg) \
7968 do \
7969 if (warn_on_deprecated && reg == REG_SP) \
7970 as_tsktsk (_("use of r13 is deprecated")); \
7971 while (0)
7972
7973 /* Functions for operand encoding. ARM, then Thumb. */
7974
7975 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7976
7977 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7978
7979 The only binary encoding difference is the Coprocessor number. Coprocessor
7980 9 is used for half-precision calculations or conversions. The format of the
7981 instruction is the same as the equivalent Coprocessor 10 instruction that
7982 exists for Single-Precision operation. */
7983
7984 static void
7985 do_scalar_fp16_v82_encode (void)
7986 {
7987 if (inst.cond < COND_ALWAYS)
7988 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7989 " the behaviour is UNPREDICTABLE"));
7990 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7991 _(BAD_FP16));
7992
7993 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7994 mark_feature_used (&arm_ext_fp16);
7995 }
7996
7997 /* If VAL can be encoded in the immediate field of an ARM instruction,
7998 return the encoded form. Otherwise, return FAIL. */
7999
8000 static unsigned int
8001 encode_arm_immediate (unsigned int val)
8002 {
8003 unsigned int a, i;
8004
8005 if (val <= 0xff)
8006 return val;
8007
8008 for (i = 2; i < 32; i += 2)
8009 if ((a = rotate_left (val, i)) <= 0xff)
8010 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8011
8012 return FAIL;
8013 }
8014
8015 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8016 return the encoded form. Otherwise, return FAIL. */
8017 static unsigned int
8018 encode_thumb32_immediate (unsigned int val)
8019 {
8020 unsigned int a, i;
8021
8022 if (val <= 0xff)
8023 return val;
8024
8025 for (i = 1; i <= 24; i++)
8026 {
8027 a = val >> i;
8028 if ((val & ~(0xff << i)) == 0)
8029 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8030 }
8031
8032 a = val & 0xff;
8033 if (val == ((a << 16) | a))
8034 return 0x100 | a;
8035 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8036 return 0x300 | a;
8037
8038 a = val & 0xff00;
8039 if (val == ((a << 16) | a))
8040 return 0x200 | (a >> 8);
8041
8042 return FAIL;
8043 }
8044 /* Encode a VFP SP or DP register number into inst.instruction. */
8045
8046 static void
8047 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8048 {
8049 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8050 && reg > 15)
8051 {
8052 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8053 {
8054 if (thumb_mode)
8055 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8056 fpu_vfp_ext_d32);
8057 else
8058 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8059 fpu_vfp_ext_d32);
8060 }
8061 else
8062 {
8063 first_error (_("D register out of range for selected VFP version"));
8064 return;
8065 }
8066 }
8067
8068 switch (pos)
8069 {
8070 case VFP_REG_Sd:
8071 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8072 break;
8073
8074 case VFP_REG_Sn:
8075 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8076 break;
8077
8078 case VFP_REG_Sm:
8079 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8080 break;
8081
8082 case VFP_REG_Dd:
8083 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8084 break;
8085
8086 case VFP_REG_Dn:
8087 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8088 break;
8089
8090 case VFP_REG_Dm:
8091 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8092 break;
8093
8094 default:
8095 abort ();
8096 }
8097 }
8098
8099 /* Encode a <shift> in an ARM-format instruction. The immediate,
8100 if any, is handled by md_apply_fix. */
8101 static void
8102 encode_arm_shift (int i)
8103 {
8104 /* register-shifted register. */
8105 if (inst.operands[i].immisreg)
8106 {
8107 int op_index;
8108 for (op_index = 0; op_index <= i; ++op_index)
8109 {
8110 /* Check the operand only when it's presented. In pre-UAL syntax,
8111 if the destination register is the same as the first operand, two
8112 register form of the instruction can be used. */
8113 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8114 && inst.operands[op_index].reg == REG_PC)
8115 as_warn (UNPRED_REG ("r15"));
8116 }
8117
8118 if (inst.operands[i].imm == REG_PC)
8119 as_warn (UNPRED_REG ("r15"));
8120 }
8121
8122 if (inst.operands[i].shift_kind == SHIFT_RRX)
8123 inst.instruction |= SHIFT_ROR << 5;
8124 else
8125 {
8126 inst.instruction |= inst.operands[i].shift_kind << 5;
8127 if (inst.operands[i].immisreg)
8128 {
8129 inst.instruction |= SHIFT_BY_REG;
8130 inst.instruction |= inst.operands[i].imm << 8;
8131 }
8132 else
8133 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8134 }
8135 }
8136
8137 static void
8138 encode_arm_shifter_operand (int i)
8139 {
8140 if (inst.operands[i].isreg)
8141 {
8142 inst.instruction |= inst.operands[i].reg;
8143 encode_arm_shift (i);
8144 }
8145 else
8146 {
8147 inst.instruction |= INST_IMMEDIATE;
8148 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8149 inst.instruction |= inst.operands[i].imm;
8150 }
8151 }
8152
8153 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8154 static void
8155 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8156 {
8157 /* PR 14260:
8158 Generate an error if the operand is not a register. */
8159 constraint (!inst.operands[i].isreg,
8160 _("Instruction does not support =N addresses"));
8161
8162 inst.instruction |= inst.operands[i].reg << 16;
8163
8164 if (inst.operands[i].preind)
8165 {
8166 if (is_t)
8167 {
8168 inst.error = _("instruction does not accept preindexed addressing");
8169 return;
8170 }
8171 inst.instruction |= PRE_INDEX;
8172 if (inst.operands[i].writeback)
8173 inst.instruction |= WRITE_BACK;
8174
8175 }
8176 else if (inst.operands[i].postind)
8177 {
8178 gas_assert (inst.operands[i].writeback);
8179 if (is_t)
8180 inst.instruction |= WRITE_BACK;
8181 }
8182 else /* unindexed - only for coprocessor */
8183 {
8184 inst.error = _("instruction does not accept unindexed addressing");
8185 return;
8186 }
8187
8188 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8189 && (((inst.instruction & 0x000f0000) >> 16)
8190 == ((inst.instruction & 0x0000f000) >> 12)))
8191 as_warn ((inst.instruction & LOAD_BIT)
8192 ? _("destination register same as write-back base")
8193 : _("source register same as write-back base"));
8194 }
8195
8196 /* inst.operands[i] was set up by parse_address. Encode it into an
8197 ARM-format mode 2 load or store instruction. If is_t is true,
8198 reject forms that cannot be used with a T instruction (i.e. not
8199 post-indexed). */
8200 static void
8201 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8202 {
8203 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8204
8205 encode_arm_addr_mode_common (i, is_t);
8206
8207 if (inst.operands[i].immisreg)
8208 {
8209 constraint ((inst.operands[i].imm == REG_PC
8210 || (is_pc && inst.operands[i].writeback)),
8211 BAD_PC_ADDRESSING);
8212 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8213 inst.instruction |= inst.operands[i].imm;
8214 if (!inst.operands[i].negative)
8215 inst.instruction |= INDEX_UP;
8216 if (inst.operands[i].shifted)
8217 {
8218 if (inst.operands[i].shift_kind == SHIFT_RRX)
8219 inst.instruction |= SHIFT_ROR << 5;
8220 else
8221 {
8222 inst.instruction |= inst.operands[i].shift_kind << 5;
8223 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8224 }
8225 }
8226 }
8227 else /* immediate offset in inst.relocs[0] */
8228 {
8229 if (is_pc && !inst.relocs[0].pc_rel)
8230 {
8231 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8232
8233 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8234 cannot use PC in addressing.
8235 PC cannot be used in writeback addressing, either. */
8236 constraint ((is_t || inst.operands[i].writeback),
8237 BAD_PC_ADDRESSING);
8238
8239 /* Use of PC in str is deprecated for ARMv7. */
8240 if (warn_on_deprecated
8241 && !is_load
8242 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8243 as_tsktsk (_("use of PC in this instruction is deprecated"));
8244 }
8245
8246 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8247 {
8248 /* Prefer + for zero encoded value. */
8249 if (!inst.operands[i].negative)
8250 inst.instruction |= INDEX_UP;
8251 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8252 }
8253 }
8254 }
8255
8256 /* inst.operands[i] was set up by parse_address. Encode it into an
8257 ARM-format mode 3 load or store instruction. Reject forms that
8258 cannot be used with such instructions. If is_t is true, reject
8259 forms that cannot be used with a T instruction (i.e. not
8260 post-indexed). */
8261 static void
8262 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8263 {
8264 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8265 {
8266 inst.error = _("instruction does not accept scaled register index");
8267 return;
8268 }
8269
8270 encode_arm_addr_mode_common (i, is_t);
8271
8272 if (inst.operands[i].immisreg)
8273 {
8274 constraint ((inst.operands[i].imm == REG_PC
8275 || (is_t && inst.operands[i].reg == REG_PC)),
8276 BAD_PC_ADDRESSING);
8277 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8278 BAD_PC_WRITEBACK);
8279 inst.instruction |= inst.operands[i].imm;
8280 if (!inst.operands[i].negative)
8281 inst.instruction |= INDEX_UP;
8282 }
8283 else /* immediate offset in inst.relocs[0] */
8284 {
8285 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8286 && inst.operands[i].writeback),
8287 BAD_PC_WRITEBACK);
8288 inst.instruction |= HWOFFSET_IMM;
8289 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8290 {
8291 /* Prefer + for zero encoded value. */
8292 if (!inst.operands[i].negative)
8293 inst.instruction |= INDEX_UP;
8294
8295 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8296 }
8297 }
8298 }
8299
8300 /* Write immediate bits [7:0] to the following locations:
8301
8302 |28/24|23 19|18 16|15 4|3 0|
8303 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8304
8305 This function is used by VMOV/VMVN/VORR/VBIC. */
8306
8307 static void
8308 neon_write_immbits (unsigned immbits)
8309 {
8310 inst.instruction |= immbits & 0xf;
8311 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8312 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8313 }
8314
8315 /* Invert low-order SIZE bits of XHI:XLO. */
8316
8317 static void
8318 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8319 {
8320 unsigned immlo = xlo ? *xlo : 0;
8321 unsigned immhi = xhi ? *xhi : 0;
8322
8323 switch (size)
8324 {
8325 case 8:
8326 immlo = (~immlo) & 0xff;
8327 break;
8328
8329 case 16:
8330 immlo = (~immlo) & 0xffff;
8331 break;
8332
8333 case 64:
8334 immhi = (~immhi) & 0xffffffff;
8335 /* fall through. */
8336
8337 case 32:
8338 immlo = (~immlo) & 0xffffffff;
8339 break;
8340
8341 default:
8342 abort ();
8343 }
8344
8345 if (xlo)
8346 *xlo = immlo;
8347
8348 if (xhi)
8349 *xhi = immhi;
8350 }
8351
8352 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8353 A, B, C, D. */
8354
8355 static int
8356 neon_bits_same_in_bytes (unsigned imm)
8357 {
8358 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8359 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8360 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8361 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8362 }
8363
8364 /* For immediate of above form, return 0bABCD. */
8365
8366 static unsigned
8367 neon_squash_bits (unsigned imm)
8368 {
8369 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8370 | ((imm & 0x01000000) >> 21);
8371 }
8372
8373 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8374
8375 static unsigned
8376 neon_qfloat_bits (unsigned imm)
8377 {
8378 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8379 }
8380
8381 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8382 the instruction. *OP is passed as the initial value of the op field, and
8383 may be set to a different value depending on the constant (i.e.
8384 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8385 MVN). If the immediate looks like a repeated pattern then also
8386 try smaller element sizes. */
8387
8388 static int
8389 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8390 unsigned *immbits, int *op, int size,
8391 enum neon_el_type type)
8392 {
8393 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8394 float. */
8395 if (type == NT_float && !float_p)
8396 return FAIL;
8397
8398 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8399 {
8400 if (size != 32 || *op == 1)
8401 return FAIL;
8402 *immbits = neon_qfloat_bits (immlo);
8403 return 0xf;
8404 }
8405
8406 if (size == 64)
8407 {
8408 if (neon_bits_same_in_bytes (immhi)
8409 && neon_bits_same_in_bytes (immlo))
8410 {
8411 if (*op == 1)
8412 return FAIL;
8413 *immbits = (neon_squash_bits (immhi) << 4)
8414 | neon_squash_bits (immlo);
8415 *op = 1;
8416 return 0xe;
8417 }
8418
8419 if (immhi != immlo)
8420 return FAIL;
8421 }
8422
8423 if (size >= 32)
8424 {
8425 if (immlo == (immlo & 0x000000ff))
8426 {
8427 *immbits = immlo;
8428 return 0x0;
8429 }
8430 else if (immlo == (immlo & 0x0000ff00))
8431 {
8432 *immbits = immlo >> 8;
8433 return 0x2;
8434 }
8435 else if (immlo == (immlo & 0x00ff0000))
8436 {
8437 *immbits = immlo >> 16;
8438 return 0x4;
8439 }
8440 else if (immlo == (immlo & 0xff000000))
8441 {
8442 *immbits = immlo >> 24;
8443 return 0x6;
8444 }
8445 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8446 {
8447 *immbits = (immlo >> 8) & 0xff;
8448 return 0xc;
8449 }
8450 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8451 {
8452 *immbits = (immlo >> 16) & 0xff;
8453 return 0xd;
8454 }
8455
8456 if ((immlo & 0xffff) != (immlo >> 16))
8457 return FAIL;
8458 immlo &= 0xffff;
8459 }
8460
8461 if (size >= 16)
8462 {
8463 if (immlo == (immlo & 0x000000ff))
8464 {
8465 *immbits = immlo;
8466 return 0x8;
8467 }
8468 else if (immlo == (immlo & 0x0000ff00))
8469 {
8470 *immbits = immlo >> 8;
8471 return 0xa;
8472 }
8473
8474 if ((immlo & 0xff) != (immlo >> 8))
8475 return FAIL;
8476 immlo &= 0xff;
8477 }
8478
8479 if (immlo == (immlo & 0x000000ff))
8480 {
8481 /* Don't allow MVN with 8-bit immediate. */
8482 if (*op == 1)
8483 return FAIL;
8484 *immbits = immlo;
8485 return 0xe;
8486 }
8487
8488 return FAIL;
8489 }
8490
8491 #if defined BFD_HOST_64_BIT
8492 /* Returns TRUE if double precision value V may be cast
8493 to single precision without loss of accuracy. */
8494
8495 static bfd_boolean
8496 is_double_a_single (bfd_int64_t v)
8497 {
8498 int exp = (int)((v >> 52) & 0x7FF);
8499 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8500
8501 return (exp == 0 || exp == 0x7FF
8502 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8503 && (mantissa & 0x1FFFFFFFl) == 0;
8504 }
8505
8506 /* Returns a double precision value casted to single precision
8507 (ignoring the least significant bits in exponent and mantissa). */
8508
8509 static int
8510 double_to_single (bfd_int64_t v)
8511 {
8512 int sign = (int) ((v >> 63) & 1l);
8513 int exp = (int) ((v >> 52) & 0x7FF);
8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8515
8516 if (exp == 0x7FF)
8517 exp = 0xFF;
8518 else
8519 {
8520 exp = exp - 1023 + 127;
8521 if (exp >= 0xFF)
8522 {
8523 /* Infinity. */
8524 exp = 0x7F;
8525 mantissa = 0;
8526 }
8527 else if (exp < 0)
8528 {
8529 /* No denormalized numbers. */
8530 exp = 0;
8531 mantissa = 0;
8532 }
8533 }
8534 mantissa >>= 29;
8535 return (sign << 31) | (exp << 23) | mantissa;
8536 }
8537 #endif /* BFD_HOST_64_BIT */
8538
8539 enum lit_type
8540 {
8541 CONST_THUMB,
8542 CONST_ARM,
8543 CONST_VEC
8544 };
8545
8546 static void do_vfp_nsyn_opcode (const char *);
8547
8548 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8549 Determine whether it can be performed with a move instruction; if
8550 it can, convert inst.instruction to that move instruction and
8551 return TRUE; if it can't, convert inst.instruction to a literal-pool
8552 load and return FALSE. If this is not a valid thing to do in the
8553 current context, set inst.error and return TRUE.
8554
8555 inst.operands[i] describes the destination register. */
8556
8557 static bfd_boolean
8558 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8559 {
8560 unsigned long tbit;
8561 bfd_boolean thumb_p = (t == CONST_THUMB);
8562 bfd_boolean arm_p = (t == CONST_ARM);
8563
8564 if (thumb_p)
8565 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8566 else
8567 tbit = LOAD_BIT;
8568
8569 if ((inst.instruction & tbit) == 0)
8570 {
8571 inst.error = _("invalid pseudo operation");
8572 return TRUE;
8573 }
8574
8575 if (inst.relocs[0].exp.X_op != O_constant
8576 && inst.relocs[0].exp.X_op != O_symbol
8577 && inst.relocs[0].exp.X_op != O_big)
8578 {
8579 inst.error = _("constant expression expected");
8580 return TRUE;
8581 }
8582
8583 if (inst.relocs[0].exp.X_op == O_constant
8584 || inst.relocs[0].exp.X_op == O_big)
8585 {
8586 #if defined BFD_HOST_64_BIT
8587 bfd_int64_t v;
8588 #else
8589 offsetT v;
8590 #endif
8591 if (inst.relocs[0].exp.X_op == O_big)
8592 {
8593 LITTLENUM_TYPE w[X_PRECISION];
8594 LITTLENUM_TYPE * l;
8595
8596 if (inst.relocs[0].exp.X_add_number == -1)
8597 {
8598 gen_to_words (w, X_PRECISION, E_PRECISION);
8599 l = w;
8600 /* FIXME: Should we check words w[2..5] ? */
8601 }
8602 else
8603 l = generic_bignum;
8604
8605 #if defined BFD_HOST_64_BIT
8606 v =
8607 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8608 << LITTLENUM_NUMBER_OF_BITS)
8609 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8610 << LITTLENUM_NUMBER_OF_BITS)
8611 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8612 << LITTLENUM_NUMBER_OF_BITS)
8613 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8614 #else
8615 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8616 | (l[0] & LITTLENUM_MASK);
8617 #endif
8618 }
8619 else
8620 v = inst.relocs[0].exp.X_add_number;
8621
8622 if (!inst.operands[i].issingle)
8623 {
8624 if (thumb_p)
8625 {
8626 /* LDR should not use lead in a flag-setting instruction being
8627 chosen so we do not check whether movs can be used. */
8628
8629 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8630 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8631 && inst.operands[i].reg != 13
8632 && inst.operands[i].reg != 15)
8633 {
8634 /* Check if on thumb2 it can be done with a mov.w, mvn or
8635 movw instruction. */
8636 unsigned int newimm;
8637 bfd_boolean isNegated;
8638
8639 newimm = encode_thumb32_immediate (v);
8640 if (newimm != (unsigned int) FAIL)
8641 isNegated = FALSE;
8642 else
8643 {
8644 newimm = encode_thumb32_immediate (~v);
8645 if (newimm != (unsigned int) FAIL)
8646 isNegated = TRUE;
8647 }
8648
8649 /* The number can be loaded with a mov.w or mvn
8650 instruction. */
8651 if (newimm != (unsigned int) FAIL
8652 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8653 {
8654 inst.instruction = (0xf04f0000 /* MOV.W. */
8655 | (inst.operands[i].reg << 8));
8656 /* Change to MOVN. */
8657 inst.instruction |= (isNegated ? 0x200000 : 0);
8658 inst.instruction |= (newimm & 0x800) << 15;
8659 inst.instruction |= (newimm & 0x700) << 4;
8660 inst.instruction |= (newimm & 0x0ff);
8661 return TRUE;
8662 }
8663 /* The number can be loaded with a movw instruction. */
8664 else if ((v & ~0xFFFF) == 0
8665 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8666 {
8667 int imm = v & 0xFFFF;
8668
8669 inst.instruction = 0xf2400000; /* MOVW. */
8670 inst.instruction |= (inst.operands[i].reg << 8);
8671 inst.instruction |= (imm & 0xf000) << 4;
8672 inst.instruction |= (imm & 0x0800) << 15;
8673 inst.instruction |= (imm & 0x0700) << 4;
8674 inst.instruction |= (imm & 0x00ff);
8675 return TRUE;
8676 }
8677 }
8678 }
8679 else if (arm_p)
8680 {
8681 int value = encode_arm_immediate (v);
8682
8683 if (value != FAIL)
8684 {
8685 /* This can be done with a mov instruction. */
8686 inst.instruction &= LITERAL_MASK;
8687 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8688 inst.instruction |= value & 0xfff;
8689 return TRUE;
8690 }
8691
8692 value = encode_arm_immediate (~ v);
8693 if (value != FAIL)
8694 {
8695 /* This can be done with a mvn instruction. */
8696 inst.instruction &= LITERAL_MASK;
8697 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8698 inst.instruction |= value & 0xfff;
8699 return TRUE;
8700 }
8701 }
8702 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8703 {
8704 int op = 0;
8705 unsigned immbits = 0;
8706 unsigned immlo = inst.operands[1].imm;
8707 unsigned immhi = inst.operands[1].regisimm
8708 ? inst.operands[1].reg
8709 : inst.relocs[0].exp.X_unsigned
8710 ? 0
8711 : ((bfd_int64_t)((int) immlo)) >> 32;
8712 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8713 &op, 64, NT_invtype);
8714
8715 if (cmode == FAIL)
8716 {
8717 neon_invert_size (&immlo, &immhi, 64);
8718 op = !op;
8719 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8720 &op, 64, NT_invtype);
8721 }
8722
8723 if (cmode != FAIL)
8724 {
8725 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8726 | (1 << 23)
8727 | (cmode << 8)
8728 | (op << 5)
8729 | (1 << 4);
8730
8731 /* Fill other bits in vmov encoding for both thumb and arm. */
8732 if (thumb_mode)
8733 inst.instruction |= (0x7U << 29) | (0xF << 24);
8734 else
8735 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8736 neon_write_immbits (immbits);
8737 return TRUE;
8738 }
8739 }
8740 }
8741
8742 if (t == CONST_VEC)
8743 {
8744 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8745 if (inst.operands[i].issingle
8746 && is_quarter_float (inst.operands[1].imm)
8747 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8748 {
8749 inst.operands[1].imm =
8750 neon_qfloat_bits (v);
8751 do_vfp_nsyn_opcode ("fconsts");
8752 return TRUE;
8753 }
8754
8755 /* If our host does not support a 64-bit type then we cannot perform
8756 the following optimization. This mean that there will be a
8757 discrepancy between the output produced by an assembler built for
8758 a 32-bit-only host and the output produced from a 64-bit host, but
8759 this cannot be helped. */
8760 #if defined BFD_HOST_64_BIT
8761 else if (!inst.operands[1].issingle
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8763 {
8764 if (is_double_a_single (v)
8765 && is_quarter_float (double_to_single (v)))
8766 {
8767 inst.operands[1].imm =
8768 neon_qfloat_bits (double_to_single (v));
8769 do_vfp_nsyn_opcode ("fconstd");
8770 return TRUE;
8771 }
8772 }
8773 #endif
8774 }
8775 }
8776
8777 if (add_to_lit_pool ((!inst.operands[i].isvec
8778 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8779 return TRUE;
8780
8781 inst.operands[1].reg = REG_PC;
8782 inst.operands[1].isreg = 1;
8783 inst.operands[1].preind = 1;
8784 inst.relocs[0].pc_rel = 1;
8785 inst.relocs[0].type = (thumb_p
8786 ? BFD_RELOC_ARM_THUMB_OFFSET
8787 : (mode_3
8788 ? BFD_RELOC_ARM_HWLITERAL
8789 : BFD_RELOC_ARM_LITERAL));
8790 return FALSE;
8791 }
8792
8793 /* inst.operands[i] was set up by parse_address. Encode it into an
8794 ARM-format instruction. Reject all forms which cannot be encoded
8795 into a coprocessor load/store instruction. If wb_ok is false,
8796 reject use of writeback; if unind_ok is false, reject use of
8797 unindexed addressing. If reloc_override is not 0, use it instead
8798 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8799 (in which case it is preserved). */
8800
8801 static int
8802 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8803 {
8804 if (!inst.operands[i].isreg)
8805 {
8806 /* PR 18256 */
8807 if (! inst.operands[0].isvec)
8808 {
8809 inst.error = _("invalid co-processor operand");
8810 return FAIL;
8811 }
8812 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8813 return SUCCESS;
8814 }
8815
8816 inst.instruction |= inst.operands[i].reg << 16;
8817
8818 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8819
8820 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8821 {
8822 gas_assert (!inst.operands[i].writeback);
8823 if (!unind_ok)
8824 {
8825 inst.error = _("instruction does not support unindexed addressing");
8826 return FAIL;
8827 }
8828 inst.instruction |= inst.operands[i].imm;
8829 inst.instruction |= INDEX_UP;
8830 return SUCCESS;
8831 }
8832
8833 if (inst.operands[i].preind)
8834 inst.instruction |= PRE_INDEX;
8835
8836 if (inst.operands[i].writeback)
8837 {
8838 if (inst.operands[i].reg == REG_PC)
8839 {
8840 inst.error = _("pc may not be used with write-back");
8841 return FAIL;
8842 }
8843 if (!wb_ok)
8844 {
8845 inst.error = _("instruction does not support writeback");
8846 return FAIL;
8847 }
8848 inst.instruction |= WRITE_BACK;
8849 }
8850
8851 if (reloc_override)
8852 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8853 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8854 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8855 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8856 {
8857 if (thumb_mode)
8858 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8859 else
8860 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8861 }
8862
8863 /* Prefer + for zero encoded value. */
8864 if (!inst.operands[i].negative)
8865 inst.instruction |= INDEX_UP;
8866
8867 return SUCCESS;
8868 }
8869
8870 /* Functions for instruction encoding, sorted by sub-architecture.
8871 First some generics; their names are taken from the conventional
8872 bit positions for register arguments in ARM format instructions. */
8873
8874 static void
8875 do_noargs (void)
8876 {
8877 }
8878
8879 static void
8880 do_rd (void)
8881 {
8882 inst.instruction |= inst.operands[0].reg << 12;
8883 }
8884
8885 static void
8886 do_rn (void)
8887 {
8888 inst.instruction |= inst.operands[0].reg << 16;
8889 }
8890
8891 static void
8892 do_rd_rm (void)
8893 {
8894 inst.instruction |= inst.operands[0].reg << 12;
8895 inst.instruction |= inst.operands[1].reg;
8896 }
8897
8898 static void
8899 do_rm_rn (void)
8900 {
8901 inst.instruction |= inst.operands[0].reg;
8902 inst.instruction |= inst.operands[1].reg << 16;
8903 }
8904
8905 static void
8906 do_rd_rn (void)
8907 {
8908 inst.instruction |= inst.operands[0].reg << 12;
8909 inst.instruction |= inst.operands[1].reg << 16;
8910 }
8911
8912 static void
8913 do_rn_rd (void)
8914 {
8915 inst.instruction |= inst.operands[0].reg << 16;
8916 inst.instruction |= inst.operands[1].reg << 12;
8917 }
8918
8919 static void
8920 do_tt (void)
8921 {
8922 inst.instruction |= inst.operands[0].reg << 8;
8923 inst.instruction |= inst.operands[1].reg << 16;
8924 }
8925
8926 static bfd_boolean
8927 check_obsolete (const arm_feature_set *feature, const char *msg)
8928 {
8929 if (ARM_CPU_IS_ANY (cpu_variant))
8930 {
8931 as_tsktsk ("%s", msg);
8932 return TRUE;
8933 }
8934 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8935 {
8936 as_bad ("%s", msg);
8937 return TRUE;
8938 }
8939
8940 return FALSE;
8941 }
8942
8943 static void
8944 do_rd_rm_rn (void)
8945 {
8946 unsigned Rn = inst.operands[2].reg;
8947 /* Enforce restrictions on SWP instruction. */
8948 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8949 {
8950 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8951 _("Rn must not overlap other operands"));
8952
8953 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8954 */
8955 if (!check_obsolete (&arm_ext_v8,
8956 _("swp{b} use is obsoleted for ARMv8 and later"))
8957 && warn_on_deprecated
8958 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8959 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8960 }
8961
8962 inst.instruction |= inst.operands[0].reg << 12;
8963 inst.instruction |= inst.operands[1].reg;
8964 inst.instruction |= Rn << 16;
8965 }
8966
8967 static void
8968 do_rd_rn_rm (void)
8969 {
8970 inst.instruction |= inst.operands[0].reg << 12;
8971 inst.instruction |= inst.operands[1].reg << 16;
8972 inst.instruction |= inst.operands[2].reg;
8973 }
8974
8975 static void
8976 do_rm_rd_rn (void)
8977 {
8978 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8979 constraint (((inst.relocs[0].exp.X_op != O_constant
8980 && inst.relocs[0].exp.X_op != O_illegal)
8981 || inst.relocs[0].exp.X_add_number != 0),
8982 BAD_ADDR_MODE);
8983 inst.instruction |= inst.operands[0].reg;
8984 inst.instruction |= inst.operands[1].reg << 12;
8985 inst.instruction |= inst.operands[2].reg << 16;
8986 }
8987
8988 static void
8989 do_imm0 (void)
8990 {
8991 inst.instruction |= inst.operands[0].imm;
8992 }
8993
8994 static void
8995 do_rd_cpaddr (void)
8996 {
8997 inst.instruction |= inst.operands[0].reg << 12;
8998 encode_arm_cp_address (1, TRUE, TRUE, 0);
8999 }
9000
9001 /* ARM instructions, in alphabetical order by function name (except
9002 that wrapper functions appear immediately after the function they
9003 wrap). */
9004
9005 /* This is a pseudo-op of the form "adr rd, label" to be converted
9006 into a relative address of the form "add rd, pc, #label-.-8". */
9007
9008 static void
9009 do_adr (void)
9010 {
9011 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9012
9013 /* Frag hacking will turn this into a sub instruction if the offset turns
9014 out to be negative. */
9015 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9016 inst.relocs[0].pc_rel = 1;
9017 inst.relocs[0].exp.X_add_number -= 8;
9018
9019 if (support_interwork
9020 && inst.relocs[0].exp.X_op == O_symbol
9021 && inst.relocs[0].exp.X_add_symbol != NULL
9022 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9023 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9024 inst.relocs[0].exp.X_add_number |= 1;
9025 }
9026
9027 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9028 into a relative address of the form:
9029 add rd, pc, #low(label-.-8)"
9030 add rd, rd, #high(label-.-8)" */
9031
9032 static void
9033 do_adrl (void)
9034 {
9035 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9036
9037 /* Frag hacking will turn this into a sub instruction if the offset turns
9038 out to be negative. */
9039 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9040 inst.relocs[0].pc_rel = 1;
9041 inst.size = INSN_SIZE * 2;
9042 inst.relocs[0].exp.X_add_number -= 8;
9043
9044 if (support_interwork
9045 && inst.relocs[0].exp.X_op == O_symbol
9046 && inst.relocs[0].exp.X_add_symbol != NULL
9047 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9048 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9049 inst.relocs[0].exp.X_add_number |= 1;
9050 }
9051
9052 static void
9053 do_arit (void)
9054 {
9055 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9056 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9057 THUMB1_RELOC_ONLY);
9058 if (!inst.operands[1].present)
9059 inst.operands[1].reg = inst.operands[0].reg;
9060 inst.instruction |= inst.operands[0].reg << 12;
9061 inst.instruction |= inst.operands[1].reg << 16;
9062 encode_arm_shifter_operand (2);
9063 }
9064
9065 static void
9066 do_barrier (void)
9067 {
9068 if (inst.operands[0].present)
9069 inst.instruction |= inst.operands[0].imm;
9070 else
9071 inst.instruction |= 0xf;
9072 }
9073
9074 static void
9075 do_bfc (void)
9076 {
9077 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9078 constraint (msb > 32, _("bit-field extends past end of register"));
9079 /* The instruction encoding stores the LSB and MSB,
9080 not the LSB and width. */
9081 inst.instruction |= inst.operands[0].reg << 12;
9082 inst.instruction |= inst.operands[1].imm << 7;
9083 inst.instruction |= (msb - 1) << 16;
9084 }
9085
9086 static void
9087 do_bfi (void)
9088 {
9089 unsigned int msb;
9090
9091 /* #0 in second position is alternative syntax for bfc, which is
9092 the same instruction but with REG_PC in the Rm field. */
9093 if (!inst.operands[1].isreg)
9094 inst.operands[1].reg = REG_PC;
9095
9096 msb = inst.operands[2].imm + inst.operands[3].imm;
9097 constraint (msb > 32, _("bit-field extends past end of register"));
9098 /* The instruction encoding stores the LSB and MSB,
9099 not the LSB and width. */
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (msb - 1) << 16;
9104 }
9105
9106 static void
9107 do_bfx (void)
9108 {
9109 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9110 _("bit-field extends past end of register"));
9111 inst.instruction |= inst.operands[0].reg << 12;
9112 inst.instruction |= inst.operands[1].reg;
9113 inst.instruction |= inst.operands[2].imm << 7;
9114 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9115 }
9116
9117 /* ARM V5 breakpoint instruction (argument parse)
9118 BKPT <16 bit unsigned immediate>
9119 Instruction is not conditional.
9120 The bit pattern given in insns[] has the COND_ALWAYS condition,
9121 and it is an error if the caller tried to override that. */
9122
9123 static void
9124 do_bkpt (void)
9125 {
9126 /* Top 12 of 16 bits to bits 19:8. */
9127 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9128
9129 /* Bottom 4 of 16 bits to bits 3:0. */
9130 inst.instruction |= inst.operands[0].imm & 0xf;
9131 }
9132
9133 static void
9134 encode_branch (int default_reloc)
9135 {
9136 if (inst.operands[0].hasreloc)
9137 {
9138 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9139 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9140 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9141 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9142 ? BFD_RELOC_ARM_PLT32
9143 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9144 }
9145 else
9146 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9147 inst.relocs[0].pc_rel = 1;
9148 }
9149
9150 static void
9151 do_branch (void)
9152 {
9153 #ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9156 else
9157 #endif
9158 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9159 }
9160
9161 static void
9162 do_bl (void)
9163 {
9164 #ifdef OBJ_ELF
9165 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9166 {
9167 if (inst.cond == COND_ALWAYS)
9168 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9169 else
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 }
9172 else
9173 #endif
9174 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9175 }
9176
9177 /* ARM V5 branch-link-exchange instruction (argument parse)
9178 BLX <target_addr> ie BLX(1)
9179 BLX{<condition>} <Rm> ie BLX(2)
9180 Unfortunately, there are two different opcodes for this mnemonic.
9181 So, the insns[].value is not used, and the code here zaps values
9182 into inst.instruction.
9183 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9184
9185 static void
9186 do_blx (void)
9187 {
9188 if (inst.operands[0].isreg)
9189 {
9190 /* Arg is a register; the opcode provided by insns[] is correct.
9191 It is not illegal to do "blx pc", just useless. */
9192 if (inst.operands[0].reg == REG_PC)
9193 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9194
9195 inst.instruction |= inst.operands[0].reg;
9196 }
9197 else
9198 {
9199 /* Arg is an address; this instruction cannot be executed
9200 conditionally, and the opcode must be adjusted.
9201 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9202 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9203 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9204 inst.instruction = 0xfa000000;
9205 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9206 }
9207 }
9208
9209 static void
9210 do_bx (void)
9211 {
9212 bfd_boolean want_reloc;
9213
9214 if (inst.operands[0].reg == REG_PC)
9215 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9216
9217 inst.instruction |= inst.operands[0].reg;
9218 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9219 it is for ARMv4t or earlier. */
9220 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9221 if (!ARM_FEATURE_ZERO (selected_object_arch)
9222 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9223 want_reloc = TRUE;
9224
9225 #ifdef OBJ_ELF
9226 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9227 #endif
9228 want_reloc = FALSE;
9229
9230 if (want_reloc)
9231 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9232 }
9233
9234
9235 /* ARM v5TEJ. Jump to Jazelle code. */
9236
9237 static void
9238 do_bxj (void)
9239 {
9240 if (inst.operands[0].reg == REG_PC)
9241 as_tsktsk (_("use of r15 in bxj is not really useful"));
9242
9243 inst.instruction |= inst.operands[0].reg;
9244 }
9245
9246 /* Co-processor data operation:
9247 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9248 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9249 static void
9250 do_cdp (void)
9251 {
9252 inst.instruction |= inst.operands[0].reg << 8;
9253 inst.instruction |= inst.operands[1].imm << 20;
9254 inst.instruction |= inst.operands[2].reg << 12;
9255 inst.instruction |= inst.operands[3].reg << 16;
9256 inst.instruction |= inst.operands[4].reg;
9257 inst.instruction |= inst.operands[5].imm << 5;
9258 }
9259
9260 static void
9261 do_cmp (void)
9262 {
9263 inst.instruction |= inst.operands[0].reg << 16;
9264 encode_arm_shifter_operand (1);
9265 }
9266
9267 /* Transfer between coprocessor and ARM registers.
9268 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9269 MRC2
9270 MCR{cond}
9271 MCR2
9272
9273 No special properties. */
9274
9275 struct deprecated_coproc_regs_s
9276 {
9277 unsigned cp;
9278 int opc1;
9279 unsigned crn;
9280 unsigned crm;
9281 int opc2;
9282 arm_feature_set deprecated;
9283 arm_feature_set obsoleted;
9284 const char *dep_msg;
9285 const char *obs_msg;
9286 };
9287
9288 #define DEPR_ACCESS_V8 \
9289 N_("This coprocessor register access is deprecated in ARMv8")
9290
9291 /* Table of all deprecated coprocessor registers. */
9292 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9293 {
9294 {15, 0, 7, 10, 5, /* CP15DMB. */
9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9296 DEPR_ACCESS_V8, NULL},
9297 {15, 0, 7, 10, 4, /* CP15DSB. */
9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9299 DEPR_ACCESS_V8, NULL},
9300 {15, 0, 7, 5, 4, /* CP15ISB. */
9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9302 DEPR_ACCESS_V8, NULL},
9303 {14, 6, 1, 0, 0, /* TEEHBR. */
9304 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9305 DEPR_ACCESS_V8, NULL},
9306 {14, 6, 0, 0, 0, /* TEECR. */
9307 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9308 DEPR_ACCESS_V8, NULL},
9309 };
9310
9311 #undef DEPR_ACCESS_V8
9312
9313 static const size_t deprecated_coproc_reg_count =
9314 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9315
9316 static void
9317 do_co_reg (void)
9318 {
9319 unsigned Rd;
9320 size_t i;
9321
9322 Rd = inst.operands[2].reg;
9323 if (thumb_mode)
9324 {
9325 if (inst.instruction == 0xee000010
9326 || inst.instruction == 0xfe000010)
9327 /* MCR, MCR2 */
9328 reject_bad_reg (Rd);
9329 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9330 /* MRC, MRC2 */
9331 constraint (Rd == REG_SP, BAD_SP);
9332 }
9333 else
9334 {
9335 /* MCR */
9336 if (inst.instruction == 0xe000010)
9337 constraint (Rd == REG_PC, BAD_PC);
9338 }
9339
9340 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9341 {
9342 const struct deprecated_coproc_regs_s *r =
9343 deprecated_coproc_regs + i;
9344
9345 if (inst.operands[0].reg == r->cp
9346 && inst.operands[1].imm == r->opc1
9347 && inst.operands[3].reg == r->crn
9348 && inst.operands[4].reg == r->crm
9349 && inst.operands[5].imm == r->opc2)
9350 {
9351 if (! ARM_CPU_IS_ANY (cpu_variant)
9352 && warn_on_deprecated
9353 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9354 as_tsktsk ("%s", r->dep_msg);
9355 }
9356 }
9357
9358 inst.instruction |= inst.operands[0].reg << 8;
9359 inst.instruction |= inst.operands[1].imm << 21;
9360 inst.instruction |= Rd << 12;
9361 inst.instruction |= inst.operands[3].reg << 16;
9362 inst.instruction |= inst.operands[4].reg;
9363 inst.instruction |= inst.operands[5].imm << 5;
9364 }
9365
9366 /* Transfer between coprocessor register and pair of ARM registers.
9367 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9368 MCRR2
9369 MRRC{cond}
9370 MRRC2
9371
9372 Two XScale instructions are special cases of these:
9373
9374 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9375 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9376
9377 Result unpredictable if Rd or Rn is R15. */
9378
9379 static void
9380 do_co_reg2c (void)
9381 {
9382 unsigned Rd, Rn;
9383
9384 Rd = inst.operands[2].reg;
9385 Rn = inst.operands[3].reg;
9386
9387 if (thumb_mode)
9388 {
9389 reject_bad_reg (Rd);
9390 reject_bad_reg (Rn);
9391 }
9392 else
9393 {
9394 constraint (Rd == REG_PC, BAD_PC);
9395 constraint (Rn == REG_PC, BAD_PC);
9396 }
9397
9398 /* Only check the MRRC{2} variants. */
9399 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9400 {
9401 /* If Rd == Rn, error that the operation is
9402 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9403 constraint (Rd == Rn, BAD_OVERLAP);
9404 }
9405
9406 inst.instruction |= inst.operands[0].reg << 8;
9407 inst.instruction |= inst.operands[1].imm << 4;
9408 inst.instruction |= Rd << 12;
9409 inst.instruction |= Rn << 16;
9410 inst.instruction |= inst.operands[4].reg;
9411 }
9412
9413 static void
9414 do_cpsi (void)
9415 {
9416 inst.instruction |= inst.operands[0].imm << 6;
9417 if (inst.operands[1].present)
9418 {
9419 inst.instruction |= CPSI_MMOD;
9420 inst.instruction |= inst.operands[1].imm;
9421 }
9422 }
9423
9424 static void
9425 do_dbg (void)
9426 {
9427 inst.instruction |= inst.operands[0].imm;
9428 }
9429
9430 static void
9431 do_div (void)
9432 {
9433 unsigned Rd, Rn, Rm;
9434
9435 Rd = inst.operands[0].reg;
9436 Rn = (inst.operands[1].present
9437 ? inst.operands[1].reg : Rd);
9438 Rm = inst.operands[2].reg;
9439
9440 constraint ((Rd == REG_PC), BAD_PC);
9441 constraint ((Rn == REG_PC), BAD_PC);
9442 constraint ((Rm == REG_PC), BAD_PC);
9443
9444 inst.instruction |= Rd << 16;
9445 inst.instruction |= Rn << 0;
9446 inst.instruction |= Rm << 8;
9447 }
9448
9449 static void
9450 do_it (void)
9451 {
9452 /* There is no IT instruction in ARM mode. We
9453 process it to do the validation as if in
9454 thumb mode, just in case the code gets
9455 assembled for thumb using the unified syntax. */
9456
9457 inst.size = 0;
9458 if (unified_syntax)
9459 {
9460 set_pred_insn_type (IT_INSN);
9461 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9462 now_pred.cc = inst.operands[0].imm;
9463 }
9464 }
9465
9466 /* If there is only one register in the register list,
9467 then return its register number. Otherwise return -1. */
9468 static int
9469 only_one_reg_in_list (int range)
9470 {
9471 int i = ffs (range) - 1;
9472 return (i > 15 || range != (1 << i)) ? -1 : i;
9473 }
9474
9475 static void
9476 encode_ldmstm(int from_push_pop_mnem)
9477 {
9478 int base_reg = inst.operands[0].reg;
9479 int range = inst.operands[1].imm;
9480 int one_reg;
9481
9482 inst.instruction |= base_reg << 16;
9483 inst.instruction |= range;
9484
9485 if (inst.operands[1].writeback)
9486 inst.instruction |= LDM_TYPE_2_OR_3;
9487
9488 if (inst.operands[0].writeback)
9489 {
9490 inst.instruction |= WRITE_BACK;
9491 /* Check for unpredictable uses of writeback. */
9492 if (inst.instruction & LOAD_BIT)
9493 {
9494 /* Not allowed in LDM type 2. */
9495 if ((inst.instruction & LDM_TYPE_2_OR_3)
9496 && ((range & (1 << REG_PC)) == 0))
9497 as_warn (_("writeback of base register is UNPREDICTABLE"));
9498 /* Only allowed if base reg not in list for other types. */
9499 else if (range & (1 << base_reg))
9500 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9501 }
9502 else /* STM. */
9503 {
9504 /* Not allowed for type 2. */
9505 if (inst.instruction & LDM_TYPE_2_OR_3)
9506 as_warn (_("writeback of base register is UNPREDICTABLE"));
9507 /* Only allowed if base reg not in list, or first in list. */
9508 else if ((range & (1 << base_reg))
9509 && (range & ((1 << base_reg) - 1)))
9510 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9511 }
9512 }
9513
9514 /* If PUSH/POP has only one register, then use the A2 encoding. */
9515 one_reg = only_one_reg_in_list (range);
9516 if (from_push_pop_mnem && one_reg >= 0)
9517 {
9518 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9519
9520 if (is_push && one_reg == 13 /* SP */)
9521 /* PR 22483: The A2 encoding cannot be used when
9522 pushing the stack pointer as this is UNPREDICTABLE. */
9523 return;
9524
9525 inst.instruction &= A_COND_MASK;
9526 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9527 inst.instruction |= one_reg << 12;
9528 }
9529 }
9530
9531 static void
9532 do_ldmstm (void)
9533 {
9534 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9535 }
9536
9537 /* ARMv5TE load-consecutive (argument parse)
9538 Mode is like LDRH.
9539
9540 LDRccD R, mode
9541 STRccD R, mode. */
9542
9543 static void
9544 do_ldrd (void)
9545 {
9546 constraint (inst.operands[0].reg % 2 != 0,
9547 _("first transfer register must be even"));
9548 constraint (inst.operands[1].present
9549 && inst.operands[1].reg != inst.operands[0].reg + 1,
9550 _("can only transfer two consecutive registers"));
9551 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9552 constraint (!inst.operands[2].isreg, _("'[' expected"));
9553
9554 if (!inst.operands[1].present)
9555 inst.operands[1].reg = inst.operands[0].reg + 1;
9556
9557 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9558 register and the first register written; we have to diagnose
9559 overlap between the base and the second register written here. */
9560
9561 if (inst.operands[2].reg == inst.operands[1].reg
9562 && (inst.operands[2].writeback || inst.operands[2].postind))
9563 as_warn (_("base register written back, and overlaps "
9564 "second transfer register"));
9565
9566 if (!(inst.instruction & V4_STR_BIT))
9567 {
9568 /* For an index-register load, the index register must not overlap the
9569 destination (even if not write-back). */
9570 if (inst.operands[2].immisreg
9571 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9572 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9573 as_warn (_("index register overlaps transfer register"));
9574 }
9575 inst.instruction |= inst.operands[0].reg << 12;
9576 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9577 }
9578
9579 static void
9580 do_ldrex (void)
9581 {
9582 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9583 || inst.operands[1].postind || inst.operands[1].writeback
9584 || inst.operands[1].immisreg || inst.operands[1].shifted
9585 || inst.operands[1].negative
9586 /* This can arise if the programmer has written
9587 strex rN, rM, foo
9588 or if they have mistakenly used a register name as the last
9589 operand, eg:
9590 strex rN, rM, rX
9591 It is very difficult to distinguish between these two cases
9592 because "rX" might actually be a label. ie the register
9593 name has been occluded by a symbol of the same name. So we
9594 just generate a general 'bad addressing mode' type error
9595 message and leave it up to the programmer to discover the
9596 true cause and fix their mistake. */
9597 || (inst.operands[1].reg == REG_PC),
9598 BAD_ADDR_MODE);
9599
9600 constraint (inst.relocs[0].exp.X_op != O_constant
9601 || inst.relocs[0].exp.X_add_number != 0,
9602 _("offset must be zero in ARM encoding"));
9603
9604 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9605
9606 inst.instruction |= inst.operands[0].reg << 12;
9607 inst.instruction |= inst.operands[1].reg << 16;
9608 inst.relocs[0].type = BFD_RELOC_UNUSED;
9609 }
9610
9611 static void
9612 do_ldrexd (void)
9613 {
9614 constraint (inst.operands[0].reg % 2 != 0,
9615 _("even register required"));
9616 constraint (inst.operands[1].present
9617 && inst.operands[1].reg != inst.operands[0].reg + 1,
9618 _("can only load two consecutive registers"));
9619 /* If op 1 were present and equal to PC, this function wouldn't
9620 have been called in the first place. */
9621 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9622
9623 inst.instruction |= inst.operands[0].reg << 12;
9624 inst.instruction |= inst.operands[2].reg << 16;
9625 }
9626
9627 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9628 which is not a multiple of four is UNPREDICTABLE. */
9629 static void
9630 check_ldr_r15_aligned (void)
9631 {
9632 constraint (!(inst.operands[1].immisreg)
9633 && (inst.operands[0].reg == REG_PC
9634 && inst.operands[1].reg == REG_PC
9635 && (inst.relocs[0].exp.X_add_number & 0x3)),
9636 _("ldr to register 15 must be 4-byte aligned"));
9637 }
9638
9639 static void
9640 do_ldst (void)
9641 {
9642 inst.instruction |= inst.operands[0].reg << 12;
9643 if (!inst.operands[1].isreg)
9644 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9645 return;
9646 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9647 check_ldr_r15_aligned ();
9648 }
9649
9650 static void
9651 do_ldstt (void)
9652 {
9653 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9654 reject [Rn,...]. */
9655 if (inst.operands[1].preind)
9656 {
9657 constraint (inst.relocs[0].exp.X_op != O_constant
9658 || inst.relocs[0].exp.X_add_number != 0,
9659 _("this instruction requires a post-indexed address"));
9660
9661 inst.operands[1].preind = 0;
9662 inst.operands[1].postind = 1;
9663 inst.operands[1].writeback = 1;
9664 }
9665 inst.instruction |= inst.operands[0].reg << 12;
9666 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9667 }
9668
9669 /* Halfword and signed-byte load/store operations. */
9670
9671 static void
9672 do_ldstv4 (void)
9673 {
9674 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 if (!inst.operands[1].isreg)
9677 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9678 return;
9679 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9680 }
9681
9682 static void
9683 do_ldsttv4 (void)
9684 {
9685 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9686 reject [Rn,...]. */
9687 if (inst.operands[1].preind)
9688 {
9689 constraint (inst.relocs[0].exp.X_op != O_constant
9690 || inst.relocs[0].exp.X_add_number != 0,
9691 _("this instruction requires a post-indexed address"));
9692
9693 inst.operands[1].preind = 0;
9694 inst.operands[1].postind = 1;
9695 inst.operands[1].writeback = 1;
9696 }
9697 inst.instruction |= inst.operands[0].reg << 12;
9698 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9699 }
9700
9701 /* Co-processor register load/store.
9702 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9703 static void
9704 do_lstc (void)
9705 {
9706 inst.instruction |= inst.operands[0].reg << 8;
9707 inst.instruction |= inst.operands[1].reg << 12;
9708 encode_arm_cp_address (2, TRUE, TRUE, 0);
9709 }
9710
9711 static void
9712 do_mlas (void)
9713 {
9714 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9715 if (inst.operands[0].reg == inst.operands[1].reg
9716 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9717 && !(inst.instruction & 0x00400000))
9718 as_tsktsk (_("Rd and Rm should be different in mla"));
9719
9720 inst.instruction |= inst.operands[0].reg << 16;
9721 inst.instruction |= inst.operands[1].reg;
9722 inst.instruction |= inst.operands[2].reg << 8;
9723 inst.instruction |= inst.operands[3].reg << 12;
9724 }
9725
9726 static void
9727 do_mov (void)
9728 {
9729 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9730 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9731 THUMB1_RELOC_ONLY);
9732 inst.instruction |= inst.operands[0].reg << 12;
9733 encode_arm_shifter_operand (1);
9734 }
9735
9736 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9737 static void
9738 do_mov16 (void)
9739 {
9740 bfd_vma imm;
9741 bfd_boolean top;
9742
9743 top = (inst.instruction & 0x00400000) != 0;
9744 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9745 _(":lower16: not allowed in this instruction"));
9746 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9747 _(":upper16: not allowed in this instruction"));
9748 inst.instruction |= inst.operands[0].reg << 12;
9749 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9750 {
9751 imm = inst.relocs[0].exp.X_add_number;
9752 /* The value is in two pieces: 0:11, 16:19. */
9753 inst.instruction |= (imm & 0x00000fff);
9754 inst.instruction |= (imm & 0x0000f000) << 4;
9755 }
9756 }
9757
9758 static int
9759 do_vfp_nsyn_mrs (void)
9760 {
9761 if (inst.operands[0].isvec)
9762 {
9763 if (inst.operands[1].reg != 1)
9764 first_error (_("operand 1 must be FPSCR"));
9765 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9766 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9767 do_vfp_nsyn_opcode ("fmstat");
9768 }
9769 else if (inst.operands[1].isvec)
9770 do_vfp_nsyn_opcode ("fmrx");
9771 else
9772 return FAIL;
9773
9774 return SUCCESS;
9775 }
9776
9777 static int
9778 do_vfp_nsyn_msr (void)
9779 {
9780 if (inst.operands[0].isvec)
9781 do_vfp_nsyn_opcode ("fmxr");
9782 else
9783 return FAIL;
9784
9785 return SUCCESS;
9786 }
9787
9788 static void
9789 do_vmrs (void)
9790 {
9791 unsigned Rt = inst.operands[0].reg;
9792
9793 if (thumb_mode && Rt == REG_SP)
9794 {
9795 inst.error = BAD_SP;
9796 return;
9797 }
9798
9799 /* MVFR2 is only valid at ARMv8-A. */
9800 if (inst.operands[1].reg == 5)
9801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9802 _(BAD_FPU));
9803
9804 /* APSR_ sets isvec. All other refs to PC are illegal. */
9805 if (!inst.operands[0].isvec && Rt == REG_PC)
9806 {
9807 inst.error = BAD_PC;
9808 return;
9809 }
9810
9811 /* If we get through parsing the register name, we just insert the number
9812 generated into the instruction without further validation. */
9813 inst.instruction |= (inst.operands[1].reg << 16);
9814 inst.instruction |= (Rt << 12);
9815 }
9816
9817 static void
9818 do_vmsr (void)
9819 {
9820 unsigned Rt = inst.operands[1].reg;
9821
9822 if (thumb_mode)
9823 reject_bad_reg (Rt);
9824 else if (Rt == REG_PC)
9825 {
9826 inst.error = BAD_PC;
9827 return;
9828 }
9829
9830 /* MVFR2 is only valid for ARMv8-A. */
9831 if (inst.operands[0].reg == 5)
9832 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9833 _(BAD_FPU));
9834
9835 /* If we get through parsing the register name, we just insert the number
9836 generated into the instruction without further validation. */
9837 inst.instruction |= (inst.operands[0].reg << 16);
9838 inst.instruction |= (Rt << 12);
9839 }
9840
9841 static void
9842 do_mrs (void)
9843 {
9844 unsigned br;
9845
9846 if (do_vfp_nsyn_mrs () == SUCCESS)
9847 return;
9848
9849 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9850 inst.instruction |= inst.operands[0].reg << 12;
9851
9852 if (inst.operands[1].isreg)
9853 {
9854 br = inst.operands[1].reg;
9855 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9856 as_bad (_("bad register for mrs"));
9857 }
9858 else
9859 {
9860 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9861 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9862 != (PSR_c|PSR_f),
9863 _("'APSR', 'CPSR' or 'SPSR' expected"));
9864 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9865 }
9866
9867 inst.instruction |= br;
9868 }
9869
9870 /* Two possible forms:
9871 "{C|S}PSR_<field>, Rm",
9872 "{C|S}PSR_f, #expression". */
9873
9874 static void
9875 do_msr (void)
9876 {
9877 if (do_vfp_nsyn_msr () == SUCCESS)
9878 return;
9879
9880 inst.instruction |= inst.operands[0].imm;
9881 if (inst.operands[1].isreg)
9882 inst.instruction |= inst.operands[1].reg;
9883 else
9884 {
9885 inst.instruction |= INST_IMMEDIATE;
9886 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9887 inst.relocs[0].pc_rel = 0;
9888 }
9889 }
9890
9891 static void
9892 do_mul (void)
9893 {
9894 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9895
9896 if (!inst.operands[2].present)
9897 inst.operands[2].reg = inst.operands[0].reg;
9898 inst.instruction |= inst.operands[0].reg << 16;
9899 inst.instruction |= inst.operands[1].reg;
9900 inst.instruction |= inst.operands[2].reg << 8;
9901
9902 if (inst.operands[0].reg == inst.operands[1].reg
9903 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9904 as_tsktsk (_("Rd and Rm should be different in mul"));
9905 }
9906
9907 /* Long Multiply Parser
9908 UMULL RdLo, RdHi, Rm, Rs
9909 SMULL RdLo, RdHi, Rm, Rs
9910 UMLAL RdLo, RdHi, Rm, Rs
9911 SMLAL RdLo, RdHi, Rm, Rs. */
9912
9913 static void
9914 do_mull (void)
9915 {
9916 inst.instruction |= inst.operands[0].reg << 12;
9917 inst.instruction |= inst.operands[1].reg << 16;
9918 inst.instruction |= inst.operands[2].reg;
9919 inst.instruction |= inst.operands[3].reg << 8;
9920
9921 /* rdhi and rdlo must be different. */
9922 if (inst.operands[0].reg == inst.operands[1].reg)
9923 as_tsktsk (_("rdhi and rdlo must be different"));
9924
9925 /* rdhi, rdlo and rm must all be different before armv6. */
9926 if ((inst.operands[0].reg == inst.operands[2].reg
9927 || inst.operands[1].reg == inst.operands[2].reg)
9928 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9929 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9930 }
9931
9932 static void
9933 do_nop (void)
9934 {
9935 if (inst.operands[0].present
9936 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9937 {
9938 /* Architectural NOP hints are CPSR sets with no bits selected. */
9939 inst.instruction &= 0xf0000000;
9940 inst.instruction |= 0x0320f000;
9941 if (inst.operands[0].present)
9942 inst.instruction |= inst.operands[0].imm;
9943 }
9944 }
9945
9946 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9947 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9948 Condition defaults to COND_ALWAYS.
9949 Error if Rd, Rn or Rm are R15. */
9950
9951 static void
9952 do_pkhbt (void)
9953 {
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 inst.instruction |= inst.operands[2].reg;
9957 if (inst.operands[3].present)
9958 encode_arm_shift (3);
9959 }
9960
9961 /* ARM V6 PKHTB (Argument Parse). */
9962
9963 static void
9964 do_pkhtb (void)
9965 {
9966 if (!inst.operands[3].present)
9967 {
9968 /* If the shift specifier is omitted, turn the instruction
9969 into pkhbt rd, rm, rn. */
9970 inst.instruction &= 0xfff00010;
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg;
9973 inst.instruction |= inst.operands[2].reg << 16;
9974 }
9975 else
9976 {
9977 inst.instruction |= inst.operands[0].reg << 12;
9978 inst.instruction |= inst.operands[1].reg << 16;
9979 inst.instruction |= inst.operands[2].reg;
9980 encode_arm_shift (3);
9981 }
9982 }
9983
9984 /* ARMv5TE: Preload-Cache
9985 MP Extensions: Preload for write
9986
9987 PLD(W) <addr_mode>
9988
9989 Syntactically, like LDR with B=1, W=0, L=1. */
9990
9991 static void
9992 do_pld (void)
9993 {
9994 constraint (!inst.operands[0].isreg,
9995 _("'[' expected after PLD mnemonic"));
9996 constraint (inst.operands[0].postind,
9997 _("post-indexed expression used in preload instruction"));
9998 constraint (inst.operands[0].writeback,
9999 _("writeback used in preload instruction"));
10000 constraint (!inst.operands[0].preind,
10001 _("unindexed addressing used in preload instruction"));
10002 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10003 }
10004
10005 /* ARMv7: PLI <addr_mode> */
10006 static void
10007 do_pli (void)
10008 {
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLI mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 inst.instruction &= ~PRE_INDEX;
10019 }
10020
10021 static void
10022 do_push_pop (void)
10023 {
10024 constraint (inst.operands[0].writeback,
10025 _("push/pop do not support {reglist}^"));
10026 inst.operands[1] = inst.operands[0];
10027 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10028 inst.operands[0].isreg = 1;
10029 inst.operands[0].writeback = 1;
10030 inst.operands[0].reg = REG_SP;
10031 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10032 }
10033
10034 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10035 word at the specified address and the following word
10036 respectively.
10037 Unconditionally executed.
10038 Error if Rn is R15. */
10039
10040 static void
10041 do_rfe (void)
10042 {
10043 inst.instruction |= inst.operands[0].reg << 16;
10044 if (inst.operands[0].writeback)
10045 inst.instruction |= WRITE_BACK;
10046 }
10047
10048 /* ARM V6 ssat (argument parse). */
10049
10050 static void
10051 do_ssat (void)
10052 {
10053 inst.instruction |= inst.operands[0].reg << 12;
10054 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10055 inst.instruction |= inst.operands[2].reg;
10056
10057 if (inst.operands[3].present)
10058 encode_arm_shift (3);
10059 }
10060
10061 /* ARM V6 usat (argument parse). */
10062
10063 static void
10064 do_usat (void)
10065 {
10066 inst.instruction |= inst.operands[0].reg << 12;
10067 inst.instruction |= inst.operands[1].imm << 16;
10068 inst.instruction |= inst.operands[2].reg;
10069
10070 if (inst.operands[3].present)
10071 encode_arm_shift (3);
10072 }
10073
10074 /* ARM V6 ssat16 (argument parse). */
10075
10076 static void
10077 do_ssat16 (void)
10078 {
10079 inst.instruction |= inst.operands[0].reg << 12;
10080 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10081 inst.instruction |= inst.operands[2].reg;
10082 }
10083
10084 static void
10085 do_usat16 (void)
10086 {
10087 inst.instruction |= inst.operands[0].reg << 12;
10088 inst.instruction |= inst.operands[1].imm << 16;
10089 inst.instruction |= inst.operands[2].reg;
10090 }
10091
10092 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10093 preserving the other bits.
10094
10095 setend <endian_specifier>, where <endian_specifier> is either
10096 BE or LE. */
10097
10098 static void
10099 do_setend (void)
10100 {
10101 if (warn_on_deprecated
10102 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10103 as_tsktsk (_("setend use is deprecated for ARMv8"));
10104
10105 if (inst.operands[0].imm)
10106 inst.instruction |= 0x200;
10107 }
10108
10109 static void
10110 do_shift (void)
10111 {
10112 unsigned int Rm = (inst.operands[1].present
10113 ? inst.operands[1].reg
10114 : inst.operands[0].reg);
10115
10116 inst.instruction |= inst.operands[0].reg << 12;
10117 inst.instruction |= Rm;
10118 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10119 {
10120 inst.instruction |= inst.operands[2].reg << 8;
10121 inst.instruction |= SHIFT_BY_REG;
10122 /* PR 12854: Error on extraneous shifts. */
10123 constraint (inst.operands[2].shifted,
10124 _("extraneous shift as part of operand to shift insn"));
10125 }
10126 else
10127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10128 }
10129
10130 static void
10131 do_smc (void)
10132 {
10133 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10134 inst.relocs[0].pc_rel = 0;
10135 }
10136
10137 static void
10138 do_hvc (void)
10139 {
10140 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10141 inst.relocs[0].pc_rel = 0;
10142 }
10143
10144 static void
10145 do_swi (void)
10146 {
10147 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10148 inst.relocs[0].pc_rel = 0;
10149 }
10150
10151 static void
10152 do_setpan (void)
10153 {
10154 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10155 _("selected processor does not support SETPAN instruction"));
10156
10157 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10158 }
10159
10160 static void
10161 do_t_setpan (void)
10162 {
10163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10164 _("selected processor does not support SETPAN instruction"));
10165
10166 inst.instruction |= (inst.operands[0].imm << 3);
10167 }
10168
10169 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10170 SMLAxy{cond} Rd,Rm,Rs,Rn
10171 SMLAWy{cond} Rd,Rm,Rs,Rn
10172 Error if any register is R15. */
10173
10174 static void
10175 do_smla (void)
10176 {
10177 inst.instruction |= inst.operands[0].reg << 16;
10178 inst.instruction |= inst.operands[1].reg;
10179 inst.instruction |= inst.operands[2].reg << 8;
10180 inst.instruction |= inst.operands[3].reg << 12;
10181 }
10182
10183 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10184 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10185 Error if any register is R15.
10186 Warning if Rdlo == Rdhi. */
10187
10188 static void
10189 do_smlal (void)
10190 {
10191 inst.instruction |= inst.operands[0].reg << 12;
10192 inst.instruction |= inst.operands[1].reg << 16;
10193 inst.instruction |= inst.operands[2].reg;
10194 inst.instruction |= inst.operands[3].reg << 8;
10195
10196 if (inst.operands[0].reg == inst.operands[1].reg)
10197 as_tsktsk (_("rdhi and rdlo must be different"));
10198 }
10199
10200 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10201 SMULxy{cond} Rd,Rm,Rs
10202 Error if any register is R15. */
10203
10204 static void
10205 do_smul (void)
10206 {
10207 inst.instruction |= inst.operands[0].reg << 16;
10208 inst.instruction |= inst.operands[1].reg;
10209 inst.instruction |= inst.operands[2].reg << 8;
10210 }
10211
10212 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10213 the same for both ARM and Thumb-2. */
10214
10215 static void
10216 do_srs (void)
10217 {
10218 int reg;
10219
10220 if (inst.operands[0].present)
10221 {
10222 reg = inst.operands[0].reg;
10223 constraint (reg != REG_SP, _("SRS base register must be r13"));
10224 }
10225 else
10226 reg = REG_SP;
10227
10228 inst.instruction |= reg << 16;
10229 inst.instruction |= inst.operands[1].imm;
10230 if (inst.operands[0].writeback || inst.operands[1].writeback)
10231 inst.instruction |= WRITE_BACK;
10232 }
10233
10234 /* ARM V6 strex (argument parse). */
10235
10236 static void
10237 do_strex (void)
10238 {
10239 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10240 || inst.operands[2].postind || inst.operands[2].writeback
10241 || inst.operands[2].immisreg || inst.operands[2].shifted
10242 || inst.operands[2].negative
10243 /* See comment in do_ldrex(). */
10244 || (inst.operands[2].reg == REG_PC),
10245 BAD_ADDR_MODE);
10246
10247 constraint (inst.operands[0].reg == inst.operands[1].reg
10248 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10249
10250 constraint (inst.relocs[0].exp.X_op != O_constant
10251 || inst.relocs[0].exp.X_add_number != 0,
10252 _("offset must be zero in ARM encoding"));
10253
10254 inst.instruction |= inst.operands[0].reg << 12;
10255 inst.instruction |= inst.operands[1].reg;
10256 inst.instruction |= inst.operands[2].reg << 16;
10257 inst.relocs[0].type = BFD_RELOC_UNUSED;
10258 }
10259
10260 static void
10261 do_t_strexbh (void)
10262 {
10263 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10264 || inst.operands[2].postind || inst.operands[2].writeback
10265 || inst.operands[2].immisreg || inst.operands[2].shifted
10266 || inst.operands[2].negative,
10267 BAD_ADDR_MODE);
10268
10269 constraint (inst.operands[0].reg == inst.operands[1].reg
10270 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10271
10272 do_rm_rd_rn ();
10273 }
10274
10275 static void
10276 do_strexd (void)
10277 {
10278 constraint (inst.operands[1].reg % 2 != 0,
10279 _("even register required"));
10280 constraint (inst.operands[2].present
10281 && inst.operands[2].reg != inst.operands[1].reg + 1,
10282 _("can only store two consecutive registers"));
10283 /* If op 2 were present and equal to PC, this function wouldn't
10284 have been called in the first place. */
10285 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10286
10287 constraint (inst.operands[0].reg == inst.operands[1].reg
10288 || inst.operands[0].reg == inst.operands[1].reg + 1
10289 || inst.operands[0].reg == inst.operands[3].reg,
10290 BAD_OVERLAP);
10291
10292 inst.instruction |= inst.operands[0].reg << 12;
10293 inst.instruction |= inst.operands[1].reg;
10294 inst.instruction |= inst.operands[3].reg << 16;
10295 }
10296
10297 /* ARM V8 STRL. */
10298 static void
10299 do_stlex (void)
10300 {
10301 constraint (inst.operands[0].reg == inst.operands[1].reg
10302 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10303
10304 do_rd_rm_rn ();
10305 }
10306
10307 static void
10308 do_t_stlex (void)
10309 {
10310 constraint (inst.operands[0].reg == inst.operands[1].reg
10311 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10312
10313 do_rm_rd_rn ();
10314 }
10315
10316 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10317 extends it to 32-bits, and adds the result to a value in another
10318 register. You can specify a rotation by 0, 8, 16, or 24 bits
10319 before extracting the 16-bit value.
10320 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10321 Condition defaults to COND_ALWAYS.
10322 Error if any register uses R15. */
10323
10324 static void
10325 do_sxtah (void)
10326 {
10327 inst.instruction |= inst.operands[0].reg << 12;
10328 inst.instruction |= inst.operands[1].reg << 16;
10329 inst.instruction |= inst.operands[2].reg;
10330 inst.instruction |= inst.operands[3].imm << 10;
10331 }
10332
10333 /* ARM V6 SXTH.
10334
10335 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
10339 static void
10340 do_sxth (void)
10341 {
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg;
10344 inst.instruction |= inst.operands[2].imm << 10;
10345 }
10346 \f
10347 /* VFP instructions. In a logical order: SP variant first, monad
10348 before dyad, arithmetic then move then load/store. */
10349
10350 static void
10351 do_vfp_sp_monadic (void)
10352 {
10353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10354 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10355 _(BAD_FPU));
10356
10357 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10358 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10359 }
10360
10361 static void
10362 do_vfp_sp_dyadic (void)
10363 {
10364 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10365 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10366 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10367 }
10368
10369 static void
10370 do_vfp_sp_compare_z (void)
10371 {
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 }
10374
10375 static void
10376 do_vfp_dp_sp_cvt (void)
10377 {
10378 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10379 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10380 }
10381
10382 static void
10383 do_vfp_sp_dp_cvt (void)
10384 {
10385 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10387 }
10388
10389 static void
10390 do_vfp_reg_from_sp (void)
10391 {
10392 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10393 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10394 _(BAD_FPU));
10395
10396 inst.instruction |= inst.operands[0].reg << 12;
10397 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10398 }
10399
10400 static void
10401 do_vfp_reg2_from_sp2 (void)
10402 {
10403 constraint (inst.operands[2].imm != 2,
10404 _("only two consecutive VFP SP registers allowed here"));
10405 inst.instruction |= inst.operands[0].reg << 12;
10406 inst.instruction |= inst.operands[1].reg << 16;
10407 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10408 }
10409
10410 static void
10411 do_vfp_sp_from_reg (void)
10412 {
10413 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10414 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10415 _(BAD_FPU));
10416
10417 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10418 inst.instruction |= inst.operands[1].reg << 12;
10419 }
10420
10421 static void
10422 do_vfp_sp2_from_reg2 (void)
10423 {
10424 constraint (inst.operands[0].imm != 2,
10425 _("only two consecutive VFP SP registers allowed here"));
10426 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10427 inst.instruction |= inst.operands[1].reg << 12;
10428 inst.instruction |= inst.operands[2].reg << 16;
10429 }
10430
10431 static void
10432 do_vfp_sp_ldst (void)
10433 {
10434 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10435 encode_arm_cp_address (1, FALSE, TRUE, 0);
10436 }
10437
10438 static void
10439 do_vfp_dp_ldst (void)
10440 {
10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10442 encode_arm_cp_address (1, FALSE, TRUE, 0);
10443 }
10444
10445
10446 static void
10447 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10448 {
10449 if (inst.operands[0].writeback)
10450 inst.instruction |= WRITE_BACK;
10451 else
10452 constraint (ldstm_type != VFP_LDSTMIA,
10453 _("this addressing mode requires base-register writeback"));
10454 inst.instruction |= inst.operands[0].reg << 16;
10455 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10456 inst.instruction |= inst.operands[1].imm;
10457 }
10458
10459 static void
10460 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10461 {
10462 int count;
10463
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10468 _("this addressing mode requires base-register writeback"));
10469
10470 inst.instruction |= inst.operands[0].reg << 16;
10471 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10472
10473 count = inst.operands[1].imm << 1;
10474 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10475 count += 1;
10476
10477 inst.instruction |= count;
10478 }
10479
10480 static void
10481 do_vfp_sp_ldstmia (void)
10482 {
10483 vfp_sp_ldstm (VFP_LDSTMIA);
10484 }
10485
10486 static void
10487 do_vfp_sp_ldstmdb (void)
10488 {
10489 vfp_sp_ldstm (VFP_LDSTMDB);
10490 }
10491
10492 static void
10493 do_vfp_dp_ldstmia (void)
10494 {
10495 vfp_dp_ldstm (VFP_LDSTMIA);
10496 }
10497
10498 static void
10499 do_vfp_dp_ldstmdb (void)
10500 {
10501 vfp_dp_ldstm (VFP_LDSTMDB);
10502 }
10503
10504 static void
10505 do_vfp_xp_ldstmia (void)
10506 {
10507 vfp_dp_ldstm (VFP_LDSTMIAX);
10508 }
10509
10510 static void
10511 do_vfp_xp_ldstmdb (void)
10512 {
10513 vfp_dp_ldstm (VFP_LDSTMDBX);
10514 }
10515
10516 static void
10517 do_vfp_dp_rd_rm (void)
10518 {
10519 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10520 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10521 _(BAD_FPU));
10522
10523 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10524 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10525 }
10526
10527 static void
10528 do_vfp_dp_rn_rd (void)
10529 {
10530 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10531 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10532 }
10533
10534 static void
10535 do_vfp_dp_rd_rn (void)
10536 {
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539 }
10540
10541 static void
10542 do_vfp_dp_rd_rn_rm (void)
10543 {
10544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10546 _(BAD_FPU));
10547
10548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10549 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10550 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10551 }
10552
10553 static void
10554 do_vfp_dp_rd (void)
10555 {
10556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10557 }
10558
10559 static void
10560 do_vfp_dp_rm_rd_rn (void)
10561 {
10562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10563 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10564 _(BAD_FPU));
10565
10566 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10567 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10568 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10569 }
10570
10571 /* VFPv3 instructions. */
10572 static void
10573 do_vfp_sp_const (void)
10574 {
10575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10576 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10577 inst.instruction |= (inst.operands[1].imm & 0x0f);
10578 }
10579
10580 static void
10581 do_vfp_dp_const (void)
10582 {
10583 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10584 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10585 inst.instruction |= (inst.operands[1].imm & 0x0f);
10586 }
10587
10588 static void
10589 vfp_conv (int srcsize)
10590 {
10591 int immbits = srcsize - inst.operands[1].imm;
10592
10593 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10594 {
10595 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10596 i.e. immbits must be in range 0 - 16. */
10597 inst.error = _("immediate value out of range, expected range [0, 16]");
10598 return;
10599 }
10600 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10601 {
10602 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10603 i.e. immbits must be in range 0 - 31. */
10604 inst.error = _("immediate value out of range, expected range [1, 32]");
10605 return;
10606 }
10607
10608 inst.instruction |= (immbits & 1) << 5;
10609 inst.instruction |= (immbits >> 1);
10610 }
10611
10612 static void
10613 do_vfp_sp_conv_16 (void)
10614 {
10615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10616 vfp_conv (16);
10617 }
10618
10619 static void
10620 do_vfp_dp_conv_16 (void)
10621 {
10622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10623 vfp_conv (16);
10624 }
10625
10626 static void
10627 do_vfp_sp_conv_32 (void)
10628 {
10629 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10630 vfp_conv (32);
10631 }
10632
10633 static void
10634 do_vfp_dp_conv_32 (void)
10635 {
10636 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10637 vfp_conv (32);
10638 }
10639 \f
10640 /* FPA instructions. Also in a logical order. */
10641
10642 static void
10643 do_fpa_cmp (void)
10644 {
10645 inst.instruction |= inst.operands[0].reg << 16;
10646 inst.instruction |= inst.operands[1].reg;
10647 }
10648
10649 static void
10650 do_fpa_ldmstm (void)
10651 {
10652 inst.instruction |= inst.operands[0].reg << 12;
10653 switch (inst.operands[1].imm)
10654 {
10655 case 1: inst.instruction |= CP_T_X; break;
10656 case 2: inst.instruction |= CP_T_Y; break;
10657 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10658 case 4: break;
10659 default: abort ();
10660 }
10661
10662 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10663 {
10664 /* The instruction specified "ea" or "fd", so we can only accept
10665 [Rn]{!}. The instruction does not really support stacking or
10666 unstacking, so we have to emulate these by setting appropriate
10667 bits and offsets. */
10668 constraint (inst.relocs[0].exp.X_op != O_constant
10669 || inst.relocs[0].exp.X_add_number != 0,
10670 _("this instruction does not support indexing"));
10671
10672 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10673 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10674
10675 if (!(inst.instruction & INDEX_UP))
10676 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10677
10678 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10679 {
10680 inst.operands[2].preind = 0;
10681 inst.operands[2].postind = 1;
10682 }
10683 }
10684
10685 encode_arm_cp_address (2, TRUE, TRUE, 0);
10686 }
10687 \f
10688 /* iWMMXt instructions: strictly in alphabetical order. */
10689
10690 static void
10691 do_iwmmxt_tandorc (void)
10692 {
10693 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10694 }
10695
10696 static void
10697 do_iwmmxt_textrc (void)
10698 {
10699 inst.instruction |= inst.operands[0].reg << 12;
10700 inst.instruction |= inst.operands[1].imm;
10701 }
10702
10703 static void
10704 do_iwmmxt_textrm (void)
10705 {
10706 inst.instruction |= inst.operands[0].reg << 12;
10707 inst.instruction |= inst.operands[1].reg << 16;
10708 inst.instruction |= inst.operands[2].imm;
10709 }
10710
10711 static void
10712 do_iwmmxt_tinsr (void)
10713 {
10714 inst.instruction |= inst.operands[0].reg << 16;
10715 inst.instruction |= inst.operands[1].reg << 12;
10716 inst.instruction |= inst.operands[2].imm;
10717 }
10718
10719 static void
10720 do_iwmmxt_tmia (void)
10721 {
10722 inst.instruction |= inst.operands[0].reg << 5;
10723 inst.instruction |= inst.operands[1].reg;
10724 inst.instruction |= inst.operands[2].reg << 12;
10725 }
10726
10727 static void
10728 do_iwmmxt_waligni (void)
10729 {
10730 inst.instruction |= inst.operands[0].reg << 12;
10731 inst.instruction |= inst.operands[1].reg << 16;
10732 inst.instruction |= inst.operands[2].reg;
10733 inst.instruction |= inst.operands[3].imm << 20;
10734 }
10735
10736 static void
10737 do_iwmmxt_wmerge (void)
10738 {
10739 inst.instruction |= inst.operands[0].reg << 12;
10740 inst.instruction |= inst.operands[1].reg << 16;
10741 inst.instruction |= inst.operands[2].reg;
10742 inst.instruction |= inst.operands[3].imm << 21;
10743 }
10744
10745 static void
10746 do_iwmmxt_wmov (void)
10747 {
10748 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10749 inst.instruction |= inst.operands[0].reg << 12;
10750 inst.instruction |= inst.operands[1].reg << 16;
10751 inst.instruction |= inst.operands[1].reg;
10752 }
10753
10754 static void
10755 do_iwmmxt_wldstbh (void)
10756 {
10757 int reloc;
10758 inst.instruction |= inst.operands[0].reg << 12;
10759 if (thumb_mode)
10760 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10761 else
10762 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10763 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10764 }
10765
10766 static void
10767 do_iwmmxt_wldstw (void)
10768 {
10769 /* RIWR_RIWC clears .isreg for a control register. */
10770 if (!inst.operands[0].isreg)
10771 {
10772 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10773 inst.instruction |= 0xf0000000;
10774 }
10775
10776 inst.instruction |= inst.operands[0].reg << 12;
10777 encode_arm_cp_address (1, TRUE, TRUE, 0);
10778 }
10779
10780 static void
10781 do_iwmmxt_wldstd (void)
10782 {
10783 inst.instruction |= inst.operands[0].reg << 12;
10784 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10785 && inst.operands[1].immisreg)
10786 {
10787 inst.instruction &= ~0x1a000ff;
10788 inst.instruction |= (0xfU << 28);
10789 if (inst.operands[1].preind)
10790 inst.instruction |= PRE_INDEX;
10791 if (!inst.operands[1].negative)
10792 inst.instruction |= INDEX_UP;
10793 if (inst.operands[1].writeback)
10794 inst.instruction |= WRITE_BACK;
10795 inst.instruction |= inst.operands[1].reg << 16;
10796 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10797 inst.instruction |= inst.operands[1].imm;
10798 }
10799 else
10800 encode_arm_cp_address (1, TRUE, FALSE, 0);
10801 }
10802
10803 static void
10804 do_iwmmxt_wshufh (void)
10805 {
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[1].reg << 16;
10808 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10809 inst.instruction |= (inst.operands[2].imm & 0x0f);
10810 }
10811
10812 static void
10813 do_iwmmxt_wzero (void)
10814 {
10815 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10816 inst.instruction |= inst.operands[0].reg;
10817 inst.instruction |= inst.operands[0].reg << 12;
10818 inst.instruction |= inst.operands[0].reg << 16;
10819 }
10820
10821 static void
10822 do_iwmmxt_wrwrwr_or_imm5 (void)
10823 {
10824 if (inst.operands[2].isreg)
10825 do_rd_rn_rm ();
10826 else {
10827 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10828 _("immediate operand requires iWMMXt2"));
10829 do_rd_rn ();
10830 if (inst.operands[2].imm == 0)
10831 {
10832 switch ((inst.instruction >> 20) & 0xf)
10833 {
10834 case 4:
10835 case 5:
10836 case 6:
10837 case 7:
10838 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10839 inst.operands[2].imm = 16;
10840 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10841 break;
10842 case 8:
10843 case 9:
10844 case 10:
10845 case 11:
10846 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10847 inst.operands[2].imm = 32;
10848 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10849 break;
10850 case 12:
10851 case 13:
10852 case 14:
10853 case 15:
10854 {
10855 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10856 unsigned long wrn;
10857 wrn = (inst.instruction >> 16) & 0xf;
10858 inst.instruction &= 0xff0fff0f;
10859 inst.instruction |= wrn;
10860 /* Bail out here; the instruction is now assembled. */
10861 return;
10862 }
10863 }
10864 }
10865 /* Map 32 -> 0, etc. */
10866 inst.operands[2].imm &= 0x1f;
10867 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10868 }
10869 }
10870 \f
10871 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10872 operations first, then control, shift, and load/store. */
10873
10874 /* Insns like "foo X,Y,Z". */
10875
10876 static void
10877 do_mav_triple (void)
10878 {
10879 inst.instruction |= inst.operands[0].reg << 16;
10880 inst.instruction |= inst.operands[1].reg;
10881 inst.instruction |= inst.operands[2].reg << 12;
10882 }
10883
10884 /* Insns like "foo W,X,Y,Z".
10885 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10886
10887 static void
10888 do_mav_quad (void)
10889 {
10890 inst.instruction |= inst.operands[0].reg << 5;
10891 inst.instruction |= inst.operands[1].reg << 12;
10892 inst.instruction |= inst.operands[2].reg << 16;
10893 inst.instruction |= inst.operands[3].reg;
10894 }
10895
10896 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10897 static void
10898 do_mav_dspsc (void)
10899 {
10900 inst.instruction |= inst.operands[1].reg << 12;
10901 }
10902
10903 /* Maverick shift immediate instructions.
10904 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10905 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10906
10907 static void
10908 do_mav_shift (void)
10909 {
10910 int imm = inst.operands[2].imm;
10911
10912 inst.instruction |= inst.operands[0].reg << 12;
10913 inst.instruction |= inst.operands[1].reg << 16;
10914
10915 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10916 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10917 Bit 4 should be 0. */
10918 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10919
10920 inst.instruction |= imm;
10921 }
10922 \f
10923 /* XScale instructions. Also sorted arithmetic before move. */
10924
10925 /* Xscale multiply-accumulate (argument parse)
10926 MIAcc acc0,Rm,Rs
10927 MIAPHcc acc0,Rm,Rs
10928 MIAxycc acc0,Rm,Rs. */
10929
10930 static void
10931 do_xsc_mia (void)
10932 {
10933 inst.instruction |= inst.operands[1].reg;
10934 inst.instruction |= inst.operands[2].reg << 12;
10935 }
10936
10937 /* Xscale move-accumulator-register (argument parse)
10938
10939 MARcc acc0,RdLo,RdHi. */
10940
10941 static void
10942 do_xsc_mar (void)
10943 {
10944 inst.instruction |= inst.operands[1].reg << 12;
10945 inst.instruction |= inst.operands[2].reg << 16;
10946 }
10947
10948 /* Xscale move-register-accumulator (argument parse)
10949
10950 MRAcc RdLo,RdHi,acc0. */
10951
10952 static void
10953 do_xsc_mra (void)
10954 {
10955 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10956 inst.instruction |= inst.operands[0].reg << 12;
10957 inst.instruction |= inst.operands[1].reg << 16;
10958 }
10959 \f
10960 /* Encoding functions relevant only to Thumb. */
10961
10962 /* inst.operands[i] is a shifted-register operand; encode
10963 it into inst.instruction in the format used by Thumb32. */
10964
10965 static void
10966 encode_thumb32_shifted_operand (int i)
10967 {
10968 unsigned int value = inst.relocs[0].exp.X_add_number;
10969 unsigned int shift = inst.operands[i].shift_kind;
10970
10971 constraint (inst.operands[i].immisreg,
10972 _("shift by register not allowed in thumb mode"));
10973 inst.instruction |= inst.operands[i].reg;
10974 if (shift == SHIFT_RRX)
10975 inst.instruction |= SHIFT_ROR << 4;
10976 else
10977 {
10978 constraint (inst.relocs[0].exp.X_op != O_constant,
10979 _("expression too complex"));
10980
10981 constraint (value > 32
10982 || (value == 32 && (shift == SHIFT_LSL
10983 || shift == SHIFT_ROR)),
10984 _("shift expression is too large"));
10985
10986 if (value == 0)
10987 shift = SHIFT_LSL;
10988 else if (value == 32)
10989 value = 0;
10990
10991 inst.instruction |= shift << 4;
10992 inst.instruction |= (value & 0x1c) << 10;
10993 inst.instruction |= (value & 0x03) << 6;
10994 }
10995 }
10996
10997
10998 /* inst.operands[i] was set up by parse_address. Encode it into a
10999 Thumb32 format load or store instruction. Reject forms that cannot
11000 be used with such instructions. If is_t is true, reject forms that
11001 cannot be used with a T instruction; if is_d is true, reject forms
11002 that cannot be used with a D instruction. If it is a store insn,
11003 reject PC in Rn. */
11004
11005 static void
11006 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11007 {
11008 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11009
11010 constraint (!inst.operands[i].isreg,
11011 _("Instruction does not support =N addresses"));
11012
11013 inst.instruction |= inst.operands[i].reg << 16;
11014 if (inst.operands[i].immisreg)
11015 {
11016 constraint (is_pc, BAD_PC_ADDRESSING);
11017 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11018 constraint (inst.operands[i].negative,
11019 _("Thumb does not support negative register indexing"));
11020 constraint (inst.operands[i].postind,
11021 _("Thumb does not support register post-indexing"));
11022 constraint (inst.operands[i].writeback,
11023 _("Thumb does not support register indexing with writeback"));
11024 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11025 _("Thumb supports only LSL in shifted register indexing"));
11026
11027 inst.instruction |= inst.operands[i].imm;
11028 if (inst.operands[i].shifted)
11029 {
11030 constraint (inst.relocs[0].exp.X_op != O_constant,
11031 _("expression too complex"));
11032 constraint (inst.relocs[0].exp.X_add_number < 0
11033 || inst.relocs[0].exp.X_add_number > 3,
11034 _("shift out of range"));
11035 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11036 }
11037 inst.relocs[0].type = BFD_RELOC_UNUSED;
11038 }
11039 else if (inst.operands[i].preind)
11040 {
11041 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11042 constraint (is_t && inst.operands[i].writeback,
11043 _("cannot use writeback with this instruction"));
11044 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11045 BAD_PC_ADDRESSING);
11046
11047 if (is_d)
11048 {
11049 inst.instruction |= 0x01000000;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00200000;
11052 }
11053 else
11054 {
11055 inst.instruction |= 0x00000c00;
11056 if (inst.operands[i].writeback)
11057 inst.instruction |= 0x00000100;
11058 }
11059 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11060 }
11061 else if (inst.operands[i].postind)
11062 {
11063 gas_assert (inst.operands[i].writeback);
11064 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11065 constraint (is_t, _("cannot use post-indexing with this instruction"));
11066
11067 if (is_d)
11068 inst.instruction |= 0x00200000;
11069 else
11070 inst.instruction |= 0x00000900;
11071 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11072 }
11073 else /* unindexed - only for coprocessor */
11074 inst.error = _("instruction does not accept unindexed addressing");
11075 }
11076
11077 /* Table of Thumb instructions which exist in both 16- and 32-bit
11078 encodings (the latter only in post-V6T2 cores). The index is the
11079 value used in the insns table below. When there is more than one
11080 possible 16-bit encoding for the instruction, this table always
11081 holds variant (1).
11082 Also contains several pseudo-instructions used during relaxation. */
11083 #define T16_32_TAB \
11084 X(_adc, 4140, eb400000), \
11085 X(_adcs, 4140, eb500000), \
11086 X(_add, 1c00, eb000000), \
11087 X(_adds, 1c00, eb100000), \
11088 X(_addi, 0000, f1000000), \
11089 X(_addis, 0000, f1100000), \
11090 X(_add_pc,000f, f20f0000), \
11091 X(_add_sp,000d, f10d0000), \
11092 X(_adr, 000f, f20f0000), \
11093 X(_and, 4000, ea000000), \
11094 X(_ands, 4000, ea100000), \
11095 X(_asr, 1000, fa40f000), \
11096 X(_asrs, 1000, fa50f000), \
11097 X(_b, e000, f000b000), \
11098 X(_bcond, d000, f0008000), \
11099 X(_bf, 0000, f040e001), \
11100 X(_bfcsel,0000, f000e001), \
11101 X(_bfx, 0000, f060e001), \
11102 X(_bfl, 0000, f000c001), \
11103 X(_bflx, 0000, f070e001), \
11104 X(_bic, 4380, ea200000), \
11105 X(_bics, 4380, ea300000), \
11106 X(_cmn, 42c0, eb100f00), \
11107 X(_cmp, 2800, ebb00f00), \
11108 X(_cpsie, b660, f3af8400), \
11109 X(_cpsid, b670, f3af8600), \
11110 X(_cpy, 4600, ea4f0000), \
11111 X(_dec_sp,80dd, f1ad0d00), \
11112 X(_dls, 0000, f040e001), \
11113 X(_eor, 4040, ea800000), \
11114 X(_eors, 4040, ea900000), \
11115 X(_inc_sp,00dd, f10d0d00), \
11116 X(_ldmia, c800, e8900000), \
11117 X(_ldr, 6800, f8500000), \
11118 X(_ldrb, 7800, f8100000), \
11119 X(_ldrh, 8800, f8300000), \
11120 X(_ldrsb, 5600, f9100000), \
11121 X(_ldrsh, 5e00, f9300000), \
11122 X(_ldr_pc,4800, f85f0000), \
11123 X(_ldr_pc2,4800, f85f0000), \
11124 X(_ldr_sp,9800, f85d0000), \
11125 X(_le, 0000, f00fc001), \
11126 X(_lsl, 0000, fa00f000), \
11127 X(_lsls, 0000, fa10f000), \
11128 X(_lsr, 0800, fa20f000), \
11129 X(_lsrs, 0800, fa30f000), \
11130 X(_mov, 2000, ea4f0000), \
11131 X(_movs, 2000, ea5f0000), \
11132 X(_mul, 4340, fb00f000), \
11133 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11134 X(_mvn, 43c0, ea6f0000), \
11135 X(_mvns, 43c0, ea7f0000), \
11136 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11137 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11138 X(_orr, 4300, ea400000), \
11139 X(_orrs, 4300, ea500000), \
11140 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11141 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11142 X(_rev, ba00, fa90f080), \
11143 X(_rev16, ba40, fa90f090), \
11144 X(_revsh, bac0, fa90f0b0), \
11145 X(_ror, 41c0, fa60f000), \
11146 X(_rors, 41c0, fa70f000), \
11147 X(_sbc, 4180, eb600000), \
11148 X(_sbcs, 4180, eb700000), \
11149 X(_stmia, c000, e8800000), \
11150 X(_str, 6000, f8400000), \
11151 X(_strb, 7000, f8000000), \
11152 X(_strh, 8000, f8200000), \
11153 X(_str_sp,9000, f84d0000), \
11154 X(_sub, 1e00, eba00000), \
11155 X(_subs, 1e00, ebb00000), \
11156 X(_subi, 8000, f1a00000), \
11157 X(_subis, 8000, f1b00000), \
11158 X(_sxtb, b240, fa4ff080), \
11159 X(_sxth, b200, fa0ff080), \
11160 X(_tst, 4200, ea100f00), \
11161 X(_uxtb, b2c0, fa5ff080), \
11162 X(_uxth, b280, fa1ff080), \
11163 X(_nop, bf00, f3af8000), \
11164 X(_yield, bf10, f3af8001), \
11165 X(_wfe, bf20, f3af8002), \
11166 X(_wfi, bf30, f3af8003), \
11167 X(_wls, 0000, f040c001), \
11168 X(_sev, bf40, f3af8004), \
11169 X(_sevl, bf50, f3af8005), \
11170 X(_udf, de00, f7f0a000)
11171
11172 /* To catch errors in encoding functions, the codes are all offset by
11173 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11174 as 16-bit instructions. */
11175 #define X(a,b,c) T_MNEM##a
11176 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11177 #undef X
11178
11179 #define X(a,b,c) 0x##b
11180 static const unsigned short thumb_op16[] = { T16_32_TAB };
11181 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11182 #undef X
11183
11184 #define X(a,b,c) 0x##c
11185 static const unsigned int thumb_op32[] = { T16_32_TAB };
11186 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11187 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11188 #undef X
11189 #undef T16_32_TAB
11190
11191 /* Thumb instruction encoders, in alphabetical order. */
11192
11193 /* ADDW or SUBW. */
11194
11195 static void
11196 do_t_add_sub_w (void)
11197 {
11198 int Rd, Rn;
11199
11200 Rd = inst.operands[0].reg;
11201 Rn = inst.operands[1].reg;
11202
11203 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11204 is the SP-{plus,minus}-immediate form of the instruction. */
11205 if (Rn == REG_SP)
11206 constraint (Rd == REG_PC, BAD_PC);
11207 else
11208 reject_bad_reg (Rd);
11209
11210 inst.instruction |= (Rn << 16) | (Rd << 8);
11211 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11212 }
11213
11214 /* Parse an add or subtract instruction. We get here with inst.instruction
11215 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11216
11217 static void
11218 do_t_add_sub (void)
11219 {
11220 int Rd, Rs, Rn;
11221
11222 Rd = inst.operands[0].reg;
11223 Rs = (inst.operands[1].present
11224 ? inst.operands[1].reg /* Rd, Rs, foo */
11225 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11226
11227 if (Rd == REG_PC)
11228 set_pred_insn_type_last ();
11229
11230 if (unified_syntax)
11231 {
11232 bfd_boolean flags;
11233 bfd_boolean narrow;
11234 int opcode;
11235
11236 flags = (inst.instruction == T_MNEM_adds
11237 || inst.instruction == T_MNEM_subs);
11238 if (flags)
11239 narrow = !in_pred_block ();
11240 else
11241 narrow = in_pred_block ();
11242 if (!inst.operands[2].isreg)
11243 {
11244 int add;
11245
11246 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11247 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11248
11249 add = (inst.instruction == T_MNEM_add
11250 || inst.instruction == T_MNEM_adds);
11251 opcode = 0;
11252 if (inst.size_req != 4)
11253 {
11254 /* Attempt to use a narrow opcode, with relaxation if
11255 appropriate. */
11256 if (Rd == REG_SP && Rs == REG_SP && !flags)
11257 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11258 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11259 opcode = T_MNEM_add_sp;
11260 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11261 opcode = T_MNEM_add_pc;
11262 else if (Rd <= 7 && Rs <= 7 && narrow)
11263 {
11264 if (flags)
11265 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11266 else
11267 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11268 }
11269 if (opcode)
11270 {
11271 inst.instruction = THUMB_OP16(opcode);
11272 inst.instruction |= (Rd << 4) | Rs;
11273 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11274 || (inst.relocs[0].type
11275 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11276 {
11277 if (inst.size_req == 2)
11278 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11279 else
11280 inst.relax = opcode;
11281 }
11282 }
11283 else
11284 constraint (inst.size_req == 2, BAD_HIREG);
11285 }
11286 if (inst.size_req == 4
11287 || (inst.size_req != 2 && !opcode))
11288 {
11289 constraint ((inst.relocs[0].type
11290 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11291 && (inst.relocs[0].type
11292 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11293 THUMB1_RELOC_ONLY);
11294 if (Rd == REG_PC)
11295 {
11296 constraint (add, BAD_PC);
11297 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11298 _("only SUBS PC, LR, #const allowed"));
11299 constraint (inst.relocs[0].exp.X_op != O_constant,
11300 _("expression too complex"));
11301 constraint (inst.relocs[0].exp.X_add_number < 0
11302 || inst.relocs[0].exp.X_add_number > 0xff,
11303 _("immediate value out of range"));
11304 inst.instruction = T2_SUBS_PC_LR
11305 | inst.relocs[0].exp.X_add_number;
11306 inst.relocs[0].type = BFD_RELOC_UNUSED;
11307 return;
11308 }
11309 else if (Rs == REG_PC)
11310 {
11311 /* Always use addw/subw. */
11312 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11313 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11314 }
11315 else
11316 {
11317 inst.instruction = THUMB_OP32 (inst.instruction);
11318 inst.instruction = (inst.instruction & 0xe1ffffff)
11319 | 0x10000000;
11320 if (flags)
11321 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11322 else
11323 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11324 }
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rs << 16;
11327 }
11328 }
11329 else
11330 {
11331 unsigned int value = inst.relocs[0].exp.X_add_number;
11332 unsigned int shift = inst.operands[2].shift_kind;
11333
11334 Rn = inst.operands[2].reg;
11335 /* See if we can do this with a 16-bit instruction. */
11336 if (!inst.operands[2].shifted && inst.size_req != 4)
11337 {
11338 if (Rd > 7 || Rs > 7 || Rn > 7)
11339 narrow = FALSE;
11340
11341 if (narrow)
11342 {
11343 inst.instruction = ((inst.instruction == T_MNEM_adds
11344 || inst.instruction == T_MNEM_add)
11345 ? T_OPCODE_ADD_R3
11346 : T_OPCODE_SUB_R3);
11347 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11348 return;
11349 }
11350
11351 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11352 {
11353 /* Thumb-1 cores (except v6-M) require at least one high
11354 register in a narrow non flag setting add. */
11355 if (Rd > 7 || Rn > 7
11356 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11357 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11358 {
11359 if (Rd == Rn)
11360 {
11361 Rn = Rs;
11362 Rs = Rd;
11363 }
11364 inst.instruction = T_OPCODE_ADD_HI;
11365 inst.instruction |= (Rd & 8) << 4;
11366 inst.instruction |= (Rd & 7);
11367 inst.instruction |= Rn << 3;
11368 return;
11369 }
11370 }
11371 }
11372
11373 constraint (Rd == REG_PC, BAD_PC);
11374 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11375 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11376 constraint (Rs == REG_PC, BAD_PC);
11377 reject_bad_reg (Rn);
11378
11379 /* If we get here, it can't be done in 16 bits. */
11380 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11381 _("shift must be constant"));
11382 inst.instruction = THUMB_OP32 (inst.instruction);
11383 inst.instruction |= Rd << 8;
11384 inst.instruction |= Rs << 16;
11385 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11386 _("shift value over 3 not allowed in thumb mode"));
11387 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11388 _("only LSL shift allowed in thumb mode"));
11389 encode_thumb32_shifted_operand (2);
11390 }
11391 }
11392 else
11393 {
11394 constraint (inst.instruction == T_MNEM_adds
11395 || inst.instruction == T_MNEM_subs,
11396 BAD_THUMB32);
11397
11398 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11399 {
11400 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11401 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11402 BAD_HIREG);
11403
11404 inst.instruction = (inst.instruction == T_MNEM_add
11405 ? 0x0000 : 0x8000);
11406 inst.instruction |= (Rd << 4) | Rs;
11407 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11408 return;
11409 }
11410
11411 Rn = inst.operands[2].reg;
11412 constraint (inst.operands[2].shifted, _("unshifted register required"));
11413
11414 /* We now have Rd, Rs, and Rn set to registers. */
11415 if (Rd > 7 || Rs > 7 || Rn > 7)
11416 {
11417 /* Can't do this for SUB. */
11418 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11419 inst.instruction = T_OPCODE_ADD_HI;
11420 inst.instruction |= (Rd & 8) << 4;
11421 inst.instruction |= (Rd & 7);
11422 if (Rs == Rd)
11423 inst.instruction |= Rn << 3;
11424 else if (Rn == Rd)
11425 inst.instruction |= Rs << 3;
11426 else
11427 constraint (1, _("dest must overlap one source register"));
11428 }
11429 else
11430 {
11431 inst.instruction = (inst.instruction == T_MNEM_add
11432 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11433 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11434 }
11435 }
11436 }
11437
11438 static void
11439 do_t_adr (void)
11440 {
11441 unsigned Rd;
11442
11443 Rd = inst.operands[0].reg;
11444 reject_bad_reg (Rd);
11445
11446 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11447 {
11448 /* Defer to section relaxation. */
11449 inst.relax = inst.instruction;
11450 inst.instruction = THUMB_OP16 (inst.instruction);
11451 inst.instruction |= Rd << 4;
11452 }
11453 else if (unified_syntax && inst.size_req != 2)
11454 {
11455 /* Generate a 32-bit opcode. */
11456 inst.instruction = THUMB_OP32 (inst.instruction);
11457 inst.instruction |= Rd << 8;
11458 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11459 inst.relocs[0].pc_rel = 1;
11460 }
11461 else
11462 {
11463 /* Generate a 16-bit opcode. */
11464 inst.instruction = THUMB_OP16 (inst.instruction);
11465 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11466 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11467 inst.relocs[0].pc_rel = 1;
11468 inst.instruction |= Rd << 4;
11469 }
11470
11471 if (inst.relocs[0].exp.X_op == O_symbol
11472 && inst.relocs[0].exp.X_add_symbol != NULL
11473 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11474 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11475 inst.relocs[0].exp.X_add_number += 1;
11476 }
11477
11478 /* Arithmetic instructions for which there is just one 16-bit
11479 instruction encoding, and it allows only two low registers.
11480 For maximal compatibility with ARM syntax, we allow three register
11481 operands even when Thumb-32 instructions are not available, as long
11482 as the first two are identical. For instance, both "sbc r0,r1" and
11483 "sbc r0,r0,r1" are allowed. */
11484 static void
11485 do_t_arit3 (void)
11486 {
11487 int Rd, Rs, Rn;
11488
11489 Rd = inst.operands[0].reg;
11490 Rs = (inst.operands[1].present
11491 ? inst.operands[1].reg /* Rd, Rs, foo */
11492 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11493 Rn = inst.operands[2].reg;
11494
11495 reject_bad_reg (Rd);
11496 reject_bad_reg (Rs);
11497 if (inst.operands[2].isreg)
11498 reject_bad_reg (Rn);
11499
11500 if (unified_syntax)
11501 {
11502 if (!inst.operands[2].isreg)
11503 {
11504 /* For an immediate, we always generate a 32-bit opcode;
11505 section relaxation will shrink it later if possible. */
11506 inst.instruction = THUMB_OP32 (inst.instruction);
11507 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11508 inst.instruction |= Rd << 8;
11509 inst.instruction |= Rs << 16;
11510 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11511 }
11512 else
11513 {
11514 bfd_boolean narrow;
11515
11516 /* See if we can do this with a 16-bit instruction. */
11517 if (THUMB_SETS_FLAGS (inst.instruction))
11518 narrow = !in_pred_block ();
11519 else
11520 narrow = in_pred_block ();
11521
11522 if (Rd > 7 || Rn > 7 || Rs > 7)
11523 narrow = FALSE;
11524 if (inst.operands[2].shifted)
11525 narrow = FALSE;
11526 if (inst.size_req == 4)
11527 narrow = FALSE;
11528
11529 if (narrow
11530 && Rd == Rs)
11531 {
11532 inst.instruction = THUMB_OP16 (inst.instruction);
11533 inst.instruction |= Rd;
11534 inst.instruction |= Rn << 3;
11535 return;
11536 }
11537
11538 /* If we get here, it can't be done in 16 bits. */
11539 constraint (inst.operands[2].shifted
11540 && inst.operands[2].immisreg,
11541 _("shift must be constant"));
11542 inst.instruction = THUMB_OP32 (inst.instruction);
11543 inst.instruction |= Rd << 8;
11544 inst.instruction |= Rs << 16;
11545 encode_thumb32_shifted_operand (2);
11546 }
11547 }
11548 else
11549 {
11550 /* On its face this is a lie - the instruction does set the
11551 flags. However, the only supported mnemonic in this mode
11552 says it doesn't. */
11553 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11554
11555 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11556 _("unshifted register required"));
11557 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11558 constraint (Rd != Rs,
11559 _("dest and source1 must be the same register"));
11560
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= Rd;
11563 inst.instruction |= Rn << 3;
11564 }
11565 }
11566
11567 /* Similarly, but for instructions where the arithmetic operation is
11568 commutative, so we can allow either of them to be different from
11569 the destination operand in a 16-bit instruction. For instance, all
11570 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11571 accepted. */
11572 static void
11573 do_t_arit3c (void)
11574 {
11575 int Rd, Rs, Rn;
11576
11577 Rd = inst.operands[0].reg;
11578 Rs = (inst.operands[1].present
11579 ? inst.operands[1].reg /* Rd, Rs, foo */
11580 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11581 Rn = inst.operands[2].reg;
11582
11583 reject_bad_reg (Rd);
11584 reject_bad_reg (Rs);
11585 if (inst.operands[2].isreg)
11586 reject_bad_reg (Rn);
11587
11588 if (unified_syntax)
11589 {
11590 if (!inst.operands[2].isreg)
11591 {
11592 /* For an immediate, we always generate a 32-bit opcode;
11593 section relaxation will shrink it later if possible. */
11594 inst.instruction = THUMB_OP32 (inst.instruction);
11595 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11596 inst.instruction |= Rd << 8;
11597 inst.instruction |= Rs << 16;
11598 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11599 }
11600 else
11601 {
11602 bfd_boolean narrow;
11603
11604 /* See if we can do this with a 16-bit instruction. */
11605 if (THUMB_SETS_FLAGS (inst.instruction))
11606 narrow = !in_pred_block ();
11607 else
11608 narrow = in_pred_block ();
11609
11610 if (Rd > 7 || Rn > 7 || Rs > 7)
11611 narrow = FALSE;
11612 if (inst.operands[2].shifted)
11613 narrow = FALSE;
11614 if (inst.size_req == 4)
11615 narrow = FALSE;
11616
11617 if (narrow)
11618 {
11619 if (Rd == Rs)
11620 {
11621 inst.instruction = THUMB_OP16 (inst.instruction);
11622 inst.instruction |= Rd;
11623 inst.instruction |= Rn << 3;
11624 return;
11625 }
11626 if (Rd == Rn)
11627 {
11628 inst.instruction = THUMB_OP16 (inst.instruction);
11629 inst.instruction |= Rd;
11630 inst.instruction |= Rs << 3;
11631 return;
11632 }
11633 }
11634
11635 /* If we get here, it can't be done in 16 bits. */
11636 constraint (inst.operands[2].shifted
11637 && inst.operands[2].immisreg,
11638 _("shift must be constant"));
11639 inst.instruction = THUMB_OP32 (inst.instruction);
11640 inst.instruction |= Rd << 8;
11641 inst.instruction |= Rs << 16;
11642 encode_thumb32_shifted_operand (2);
11643 }
11644 }
11645 else
11646 {
11647 /* On its face this is a lie - the instruction does set the
11648 flags. However, the only supported mnemonic in this mode
11649 says it doesn't. */
11650 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11651
11652 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11653 _("unshifted register required"));
11654 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11655
11656 inst.instruction = THUMB_OP16 (inst.instruction);
11657 inst.instruction |= Rd;
11658
11659 if (Rd == Rs)
11660 inst.instruction |= Rn << 3;
11661 else if (Rd == Rn)
11662 inst.instruction |= Rs << 3;
11663 else
11664 constraint (1, _("dest must overlap one source register"));
11665 }
11666 }
11667
11668 static void
11669 do_t_bfc (void)
11670 {
11671 unsigned Rd;
11672 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11673 constraint (msb > 32, _("bit-field extends past end of register"));
11674 /* The instruction encoding stores the LSB and MSB,
11675 not the LSB and width. */
11676 Rd = inst.operands[0].reg;
11677 reject_bad_reg (Rd);
11678 inst.instruction |= Rd << 8;
11679 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11680 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11681 inst.instruction |= msb - 1;
11682 }
11683
11684 static void
11685 do_t_bfi (void)
11686 {
11687 int Rd, Rn;
11688 unsigned int msb;
11689
11690 Rd = inst.operands[0].reg;
11691 reject_bad_reg (Rd);
11692
11693 /* #0 in second position is alternative syntax for bfc, which is
11694 the same instruction but with REG_PC in the Rm field. */
11695 if (!inst.operands[1].isreg)
11696 Rn = REG_PC;
11697 else
11698 {
11699 Rn = inst.operands[1].reg;
11700 reject_bad_reg (Rn);
11701 }
11702
11703 msb = inst.operands[2].imm + inst.operands[3].imm;
11704 constraint (msb > 32, _("bit-field extends past end of register"));
11705 /* The instruction encoding stores the LSB and MSB,
11706 not the LSB and width. */
11707 inst.instruction |= Rd << 8;
11708 inst.instruction |= Rn << 16;
11709 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11710 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11711 inst.instruction |= msb - 1;
11712 }
11713
11714 static void
11715 do_t_bfx (void)
11716 {
11717 unsigned Rd, Rn;
11718
11719 Rd = inst.operands[0].reg;
11720 Rn = inst.operands[1].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rn);
11724
11725 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11726 _("bit-field extends past end of register"));
11727 inst.instruction |= Rd << 8;
11728 inst.instruction |= Rn << 16;
11729 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11730 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11731 inst.instruction |= inst.operands[3].imm - 1;
11732 }
11733
11734 /* ARM V5 Thumb BLX (argument parse)
11735 BLX <target_addr> which is BLX(1)
11736 BLX <Rm> which is BLX(2)
11737 Unfortunately, there are two different opcodes for this mnemonic.
11738 So, the insns[].value is not used, and the code here zaps values
11739 into inst.instruction.
11740
11741 ??? How to take advantage of the additional two bits of displacement
11742 available in Thumb32 mode? Need new relocation? */
11743
11744 static void
11745 do_t_blx (void)
11746 {
11747 set_pred_insn_type_last ();
11748
11749 if (inst.operands[0].isreg)
11750 {
11751 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11752 /* We have a register, so this is BLX(2). */
11753 inst.instruction |= inst.operands[0].reg << 3;
11754 }
11755 else
11756 {
11757 /* No register. This must be BLX(1). */
11758 inst.instruction = 0xf000e800;
11759 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11760 }
11761 }
11762
11763 static void
11764 do_t_branch (void)
11765 {
11766 int opcode;
11767 int cond;
11768 bfd_reloc_code_real_type reloc;
11769
11770 cond = inst.cond;
11771 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11772
11773 if (in_pred_block ())
11774 {
11775 /* Conditional branches inside IT blocks are encoded as unconditional
11776 branches. */
11777 cond = COND_ALWAYS;
11778 }
11779 else
11780 cond = inst.cond;
11781
11782 if (cond != COND_ALWAYS)
11783 opcode = T_MNEM_bcond;
11784 else
11785 opcode = inst.instruction;
11786
11787 if (unified_syntax
11788 && (inst.size_req == 4
11789 || (inst.size_req != 2
11790 && (inst.operands[0].hasreloc
11791 || inst.relocs[0].exp.X_op == O_constant))))
11792 {
11793 inst.instruction = THUMB_OP32(opcode);
11794 if (cond == COND_ALWAYS)
11795 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11796 else
11797 {
11798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11799 _("selected architecture does not support "
11800 "wide conditional branch instruction"));
11801
11802 gas_assert (cond != 0xF);
11803 inst.instruction |= cond << 22;
11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11805 }
11806 }
11807 else
11808 {
11809 inst.instruction = THUMB_OP16(opcode);
11810 if (cond == COND_ALWAYS)
11811 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11812 else
11813 {
11814 inst.instruction |= cond << 8;
11815 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11816 }
11817 /* Allow section relaxation. */
11818 if (unified_syntax && inst.size_req != 2)
11819 inst.relax = opcode;
11820 }
11821 inst.relocs[0].type = reloc;
11822 inst.relocs[0].pc_rel = 1;
11823 }
11824
11825 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11826 between the two is the maximum immediate allowed - which is passed in
11827 RANGE. */
11828 static void
11829 do_t_bkpt_hlt1 (int range)
11830 {
11831 constraint (inst.cond != COND_ALWAYS,
11832 _("instruction is always unconditional"));
11833 if (inst.operands[0].present)
11834 {
11835 constraint (inst.operands[0].imm > range,
11836 _("immediate value out of range"));
11837 inst.instruction |= inst.operands[0].imm;
11838 }
11839
11840 set_pred_insn_type (NEUTRAL_IT_INSN);
11841 }
11842
11843 static void
11844 do_t_hlt (void)
11845 {
11846 do_t_bkpt_hlt1 (63);
11847 }
11848
11849 static void
11850 do_t_bkpt (void)
11851 {
11852 do_t_bkpt_hlt1 (255);
11853 }
11854
11855 static void
11856 do_t_branch23 (void)
11857 {
11858 set_pred_insn_type_last ();
11859 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11860
11861 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11862 this file. We used to simply ignore the PLT reloc type here --
11863 the branch encoding is now needed to deal with TLSCALL relocs.
11864 So if we see a PLT reloc now, put it back to how it used to be to
11865 keep the preexisting behaviour. */
11866 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11867 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11868
11869 #if defined(OBJ_COFF)
11870 /* If the destination of the branch is a defined symbol which does not have
11871 the THUMB_FUNC attribute, then we must be calling a function which has
11872 the (interfacearm) attribute. We look for the Thumb entry point to that
11873 function and change the branch to refer to that function instead. */
11874 if ( inst.relocs[0].exp.X_op == O_symbol
11875 && inst.relocs[0].exp.X_add_symbol != NULL
11876 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11877 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11878 inst.relocs[0].exp.X_add_symbol
11879 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11880 #endif
11881 }
11882
11883 static void
11884 do_t_bx (void)
11885 {
11886 set_pred_insn_type_last ();
11887 inst.instruction |= inst.operands[0].reg << 3;
11888 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11889 should cause the alignment to be checked once it is known. This is
11890 because BX PC only works if the instruction is word aligned. */
11891 }
11892
11893 static void
11894 do_t_bxj (void)
11895 {
11896 int Rm;
11897
11898 set_pred_insn_type_last ();
11899 Rm = inst.operands[0].reg;
11900 reject_bad_reg (Rm);
11901 inst.instruction |= Rm << 16;
11902 }
11903
11904 static void
11905 do_t_clz (void)
11906 {
11907 unsigned Rd;
11908 unsigned Rm;
11909
11910 Rd = inst.operands[0].reg;
11911 Rm = inst.operands[1].reg;
11912
11913 reject_bad_reg (Rd);
11914 reject_bad_reg (Rm);
11915
11916 inst.instruction |= Rd << 8;
11917 inst.instruction |= Rm << 16;
11918 inst.instruction |= Rm;
11919 }
11920
11921 static void
11922 do_t_csdb (void)
11923 {
11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
11925 }
11926
11927 static void
11928 do_t_cps (void)
11929 {
11930 set_pred_insn_type (OUTSIDE_PRED_INSN);
11931 inst.instruction |= inst.operands[0].imm;
11932 }
11933
11934 static void
11935 do_t_cpsi (void)
11936 {
11937 set_pred_insn_type (OUTSIDE_PRED_INSN);
11938 if (unified_syntax
11939 && (inst.operands[1].present || inst.size_req == 4)
11940 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11941 {
11942 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11943 inst.instruction = 0xf3af8000;
11944 inst.instruction |= imod << 9;
11945 inst.instruction |= inst.operands[0].imm << 5;
11946 if (inst.operands[1].present)
11947 inst.instruction |= 0x100 | inst.operands[1].imm;
11948 }
11949 else
11950 {
11951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11952 && (inst.operands[0].imm & 4),
11953 _("selected processor does not support 'A' form "
11954 "of this instruction"));
11955 constraint (inst.operands[1].present || inst.size_req == 4,
11956 _("Thumb does not support the 2-argument "
11957 "form of this instruction"));
11958 inst.instruction |= inst.operands[0].imm;
11959 }
11960 }
11961
11962 /* THUMB CPY instruction (argument parse). */
11963
11964 static void
11965 do_t_cpy (void)
11966 {
11967 if (inst.size_req == 4)
11968 {
11969 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11970 inst.instruction |= inst.operands[0].reg << 8;
11971 inst.instruction |= inst.operands[1].reg;
11972 }
11973 else
11974 {
11975 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11976 inst.instruction |= (inst.operands[0].reg & 0x7);
11977 inst.instruction |= inst.operands[1].reg << 3;
11978 }
11979 }
11980
11981 static void
11982 do_t_cbz (void)
11983 {
11984 set_pred_insn_type (OUTSIDE_PRED_INSN);
11985 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11986 inst.instruction |= inst.operands[0].reg;
11987 inst.relocs[0].pc_rel = 1;
11988 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11989 }
11990
11991 static void
11992 do_t_dbg (void)
11993 {
11994 inst.instruction |= inst.operands[0].imm;
11995 }
11996
11997 static void
11998 do_t_div (void)
11999 {
12000 unsigned Rd, Rn, Rm;
12001
12002 Rd = inst.operands[0].reg;
12003 Rn = (inst.operands[1].present
12004 ? inst.operands[1].reg : Rd);
12005 Rm = inst.operands[2].reg;
12006
12007 reject_bad_reg (Rd);
12008 reject_bad_reg (Rn);
12009 reject_bad_reg (Rm);
12010
12011 inst.instruction |= Rd << 8;
12012 inst.instruction |= Rn << 16;
12013 inst.instruction |= Rm;
12014 }
12015
12016 static void
12017 do_t_hint (void)
12018 {
12019 if (unified_syntax && inst.size_req == 4)
12020 inst.instruction = THUMB_OP32 (inst.instruction);
12021 else
12022 inst.instruction = THUMB_OP16 (inst.instruction);
12023 }
12024
12025 static void
12026 do_t_it (void)
12027 {
12028 unsigned int cond = inst.operands[0].imm;
12029
12030 set_pred_insn_type (IT_INSN);
12031 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12032 now_pred.cc = cond;
12033 now_pred.warn_deprecated = FALSE;
12034 now_pred.type = SCALAR_PRED;
12035
12036 /* If the condition is a negative condition, invert the mask. */
12037 if ((cond & 0x1) == 0x0)
12038 {
12039 unsigned int mask = inst.instruction & 0x000f;
12040
12041 if ((mask & 0x7) == 0)
12042 {
12043 /* No conversion needed. */
12044 now_pred.block_length = 1;
12045 }
12046 else if ((mask & 0x3) == 0)
12047 {
12048 mask ^= 0x8;
12049 now_pred.block_length = 2;
12050 }
12051 else if ((mask & 0x1) == 0)
12052 {
12053 mask ^= 0xC;
12054 now_pred.block_length = 3;
12055 }
12056 else
12057 {
12058 mask ^= 0xE;
12059 now_pred.block_length = 4;
12060 }
12061
12062 inst.instruction &= 0xfff0;
12063 inst.instruction |= mask;
12064 }
12065
12066 inst.instruction |= cond << 4;
12067 }
12068
12069 /* Helper function used for both push/pop and ldm/stm. */
12070 static void
12071 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12072 bfd_boolean writeback)
12073 {
12074 bfd_boolean load, store;
12075
12076 gas_assert (base != -1 || !do_io);
12077 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12078 store = do_io && !load;
12079
12080 if (mask & (1 << 13))
12081 inst.error = _("SP not allowed in register list");
12082
12083 if (do_io && (mask & (1 << base)) != 0
12084 && writeback)
12085 inst.error = _("having the base register in the register list when "
12086 "using write back is UNPREDICTABLE");
12087
12088 if (load)
12089 {
12090 if (mask & (1 << 15))
12091 {
12092 if (mask & (1 << 14))
12093 inst.error = _("LR and PC should not both be in register list");
12094 else
12095 set_pred_insn_type_last ();
12096 }
12097 }
12098 else if (store)
12099 {
12100 if (mask & (1 << 15))
12101 inst.error = _("PC not allowed in register list");
12102 }
12103
12104 if (do_io && ((mask & (mask - 1)) == 0))
12105 {
12106 /* Single register transfers implemented as str/ldr. */
12107 if (writeback)
12108 {
12109 if (inst.instruction & (1 << 23))
12110 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12111 else
12112 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12113 }
12114 else
12115 {
12116 if (inst.instruction & (1 << 23))
12117 inst.instruction = 0x00800000; /* ia -> [base] */
12118 else
12119 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12120 }
12121
12122 inst.instruction |= 0xf8400000;
12123 if (load)
12124 inst.instruction |= 0x00100000;
12125
12126 mask = ffs (mask) - 1;
12127 mask <<= 12;
12128 }
12129 else if (writeback)
12130 inst.instruction |= WRITE_BACK;
12131
12132 inst.instruction |= mask;
12133 if (do_io)
12134 inst.instruction |= base << 16;
12135 }
12136
12137 static void
12138 do_t_ldmstm (void)
12139 {
12140 /* This really doesn't seem worth it. */
12141 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12142 _("expression too complex"));
12143 constraint (inst.operands[1].writeback,
12144 _("Thumb load/store multiple does not support {reglist}^"));
12145
12146 if (unified_syntax)
12147 {
12148 bfd_boolean narrow;
12149 unsigned mask;
12150
12151 narrow = FALSE;
12152 /* See if we can use a 16-bit instruction. */
12153 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12154 && inst.size_req != 4
12155 && !(inst.operands[1].imm & ~0xff))
12156 {
12157 mask = 1 << inst.operands[0].reg;
12158
12159 if (inst.operands[0].reg <= 7)
12160 {
12161 if (inst.instruction == T_MNEM_stmia
12162 ? inst.operands[0].writeback
12163 : (inst.operands[0].writeback
12164 == !(inst.operands[1].imm & mask)))
12165 {
12166 if (inst.instruction == T_MNEM_stmia
12167 && (inst.operands[1].imm & mask)
12168 && (inst.operands[1].imm & (mask - 1)))
12169 as_warn (_("value stored for r%d is UNKNOWN"),
12170 inst.operands[0].reg);
12171
12172 inst.instruction = THUMB_OP16 (inst.instruction);
12173 inst.instruction |= inst.operands[0].reg << 8;
12174 inst.instruction |= inst.operands[1].imm;
12175 narrow = TRUE;
12176 }
12177 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12178 {
12179 /* This means 1 register in reg list one of 3 situations:
12180 1. Instruction is stmia, but without writeback.
12181 2. lmdia without writeback, but with Rn not in
12182 reglist.
12183 3. ldmia with writeback, but with Rn in reglist.
12184 Case 3 is UNPREDICTABLE behaviour, so we handle
12185 case 1 and 2 which can be converted into a 16-bit
12186 str or ldr. The SP cases are handled below. */
12187 unsigned long opcode;
12188 /* First, record an error for Case 3. */
12189 if (inst.operands[1].imm & mask
12190 && inst.operands[0].writeback)
12191 inst.error =
12192 _("having the base register in the register list when "
12193 "using write back is UNPREDICTABLE");
12194
12195 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12196 : T_MNEM_ldr);
12197 inst.instruction = THUMB_OP16 (opcode);
12198 inst.instruction |= inst.operands[0].reg << 3;
12199 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12200 narrow = TRUE;
12201 }
12202 }
12203 else if (inst.operands[0] .reg == REG_SP)
12204 {
12205 if (inst.operands[0].writeback)
12206 {
12207 inst.instruction =
12208 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12209 ? T_MNEM_push : T_MNEM_pop);
12210 inst.instruction |= inst.operands[1].imm;
12211 narrow = TRUE;
12212 }
12213 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12214 {
12215 inst.instruction =
12216 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12217 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12218 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12219 narrow = TRUE;
12220 }
12221 }
12222 }
12223
12224 if (!narrow)
12225 {
12226 if (inst.instruction < 0xffff)
12227 inst.instruction = THUMB_OP32 (inst.instruction);
12228
12229 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12230 inst.operands[1].imm,
12231 inst.operands[0].writeback);
12232 }
12233 }
12234 else
12235 {
12236 constraint (inst.operands[0].reg > 7
12237 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12238 constraint (inst.instruction != T_MNEM_ldmia
12239 && inst.instruction != T_MNEM_stmia,
12240 _("Thumb-2 instruction only valid in unified syntax"));
12241 if (inst.instruction == T_MNEM_stmia)
12242 {
12243 if (!inst.operands[0].writeback)
12244 as_warn (_("this instruction will write back the base register"));
12245 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12246 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12247 as_warn (_("value stored for r%d is UNKNOWN"),
12248 inst.operands[0].reg);
12249 }
12250 else
12251 {
12252 if (!inst.operands[0].writeback
12253 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12254 as_warn (_("this instruction will write back the base register"));
12255 else if (inst.operands[0].writeback
12256 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12257 as_warn (_("this instruction will not write back the base register"));
12258 }
12259
12260 inst.instruction = THUMB_OP16 (inst.instruction);
12261 inst.instruction |= inst.operands[0].reg << 8;
12262 inst.instruction |= inst.operands[1].imm;
12263 }
12264 }
12265
12266 static void
12267 do_t_ldrex (void)
12268 {
12269 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12270 || inst.operands[1].postind || inst.operands[1].writeback
12271 || inst.operands[1].immisreg || inst.operands[1].shifted
12272 || inst.operands[1].negative,
12273 BAD_ADDR_MODE);
12274
12275 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12276
12277 inst.instruction |= inst.operands[0].reg << 12;
12278 inst.instruction |= inst.operands[1].reg << 16;
12279 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12280 }
12281
12282 static void
12283 do_t_ldrexd (void)
12284 {
12285 if (!inst.operands[1].present)
12286 {
12287 constraint (inst.operands[0].reg == REG_LR,
12288 _("r14 not allowed as first register "
12289 "when second register is omitted"));
12290 inst.operands[1].reg = inst.operands[0].reg + 1;
12291 }
12292 constraint (inst.operands[0].reg == inst.operands[1].reg,
12293 BAD_OVERLAP);
12294
12295 inst.instruction |= inst.operands[0].reg << 12;
12296 inst.instruction |= inst.operands[1].reg << 8;
12297 inst.instruction |= inst.operands[2].reg << 16;
12298 }
12299
12300 static void
12301 do_t_ldst (void)
12302 {
12303 unsigned long opcode;
12304 int Rn;
12305
12306 if (inst.operands[0].isreg
12307 && !inst.operands[0].preind
12308 && inst.operands[0].reg == REG_PC)
12309 set_pred_insn_type_last ();
12310
12311 opcode = inst.instruction;
12312 if (unified_syntax)
12313 {
12314 if (!inst.operands[1].isreg)
12315 {
12316 if (opcode <= 0xffff)
12317 inst.instruction = THUMB_OP32 (opcode);
12318 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12319 return;
12320 }
12321 if (inst.operands[1].isreg
12322 && !inst.operands[1].writeback
12323 && !inst.operands[1].shifted && !inst.operands[1].postind
12324 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12325 && opcode <= 0xffff
12326 && inst.size_req != 4)
12327 {
12328 /* Insn may have a 16-bit form. */
12329 Rn = inst.operands[1].reg;
12330 if (inst.operands[1].immisreg)
12331 {
12332 inst.instruction = THUMB_OP16 (opcode);
12333 /* [Rn, Rik] */
12334 if (Rn <= 7 && inst.operands[1].imm <= 7)
12335 goto op16;
12336 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12337 reject_bad_reg (inst.operands[1].imm);
12338 }
12339 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12340 && opcode != T_MNEM_ldrsb)
12341 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12342 || (Rn == REG_SP && opcode == T_MNEM_str))
12343 {
12344 /* [Rn, #const] */
12345 if (Rn > 7)
12346 {
12347 if (Rn == REG_PC)
12348 {
12349 if (inst.relocs[0].pc_rel)
12350 opcode = T_MNEM_ldr_pc2;
12351 else
12352 opcode = T_MNEM_ldr_pc;
12353 }
12354 else
12355 {
12356 if (opcode == T_MNEM_ldr)
12357 opcode = T_MNEM_ldr_sp;
12358 else
12359 opcode = T_MNEM_str_sp;
12360 }
12361 inst.instruction = inst.operands[0].reg << 8;
12362 }
12363 else
12364 {
12365 inst.instruction = inst.operands[0].reg;
12366 inst.instruction |= inst.operands[1].reg << 3;
12367 }
12368 inst.instruction |= THUMB_OP16 (opcode);
12369 if (inst.size_req == 2)
12370 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12371 else
12372 inst.relax = opcode;
12373 return;
12374 }
12375 }
12376 /* Definitely a 32-bit variant. */
12377
12378 /* Warning for Erratum 752419. */
12379 if (opcode == T_MNEM_ldr
12380 && inst.operands[0].reg == REG_SP
12381 && inst.operands[1].writeback == 1
12382 && !inst.operands[1].immisreg)
12383 {
12384 if (no_cpu_selected ()
12385 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12386 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12387 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12388 as_warn (_("This instruction may be unpredictable "
12389 "if executed on M-profile cores "
12390 "with interrupts enabled."));
12391 }
12392
12393 /* Do some validations regarding addressing modes. */
12394 if (inst.operands[1].immisreg)
12395 reject_bad_reg (inst.operands[1].imm);
12396
12397 constraint (inst.operands[1].writeback == 1
12398 && inst.operands[0].reg == inst.operands[1].reg,
12399 BAD_OVERLAP);
12400
12401 inst.instruction = THUMB_OP32 (opcode);
12402 inst.instruction |= inst.operands[0].reg << 12;
12403 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12404 check_ldr_r15_aligned ();
12405 return;
12406 }
12407
12408 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12409
12410 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12411 {
12412 /* Only [Rn,Rm] is acceptable. */
12413 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12414 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12415 || inst.operands[1].postind || inst.operands[1].shifted
12416 || inst.operands[1].negative,
12417 _("Thumb does not support this addressing mode"));
12418 inst.instruction = THUMB_OP16 (inst.instruction);
12419 goto op16;
12420 }
12421
12422 inst.instruction = THUMB_OP16 (inst.instruction);
12423 if (!inst.operands[1].isreg)
12424 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12425 return;
12426
12427 constraint (!inst.operands[1].preind
12428 || inst.operands[1].shifted
12429 || inst.operands[1].writeback,
12430 _("Thumb does not support this addressing mode"));
12431 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12432 {
12433 constraint (inst.instruction & 0x0600,
12434 _("byte or halfword not valid for base register"));
12435 constraint (inst.operands[1].reg == REG_PC
12436 && !(inst.instruction & THUMB_LOAD_BIT),
12437 _("r15 based store not allowed"));
12438 constraint (inst.operands[1].immisreg,
12439 _("invalid base register for register offset"));
12440
12441 if (inst.operands[1].reg == REG_PC)
12442 inst.instruction = T_OPCODE_LDR_PC;
12443 else if (inst.instruction & THUMB_LOAD_BIT)
12444 inst.instruction = T_OPCODE_LDR_SP;
12445 else
12446 inst.instruction = T_OPCODE_STR_SP;
12447
12448 inst.instruction |= inst.operands[0].reg << 8;
12449 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12450 return;
12451 }
12452
12453 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12454 if (!inst.operands[1].immisreg)
12455 {
12456 /* Immediate offset. */
12457 inst.instruction |= inst.operands[0].reg;
12458 inst.instruction |= inst.operands[1].reg << 3;
12459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12460 return;
12461 }
12462
12463 /* Register offset. */
12464 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12465 constraint (inst.operands[1].negative,
12466 _("Thumb does not support this addressing mode"));
12467
12468 op16:
12469 switch (inst.instruction)
12470 {
12471 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12472 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12473 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12474 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12475 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12476 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12477 case 0x5600 /* ldrsb */:
12478 case 0x5e00 /* ldrsh */: break;
12479 default: abort ();
12480 }
12481
12482 inst.instruction |= inst.operands[0].reg;
12483 inst.instruction |= inst.operands[1].reg << 3;
12484 inst.instruction |= inst.operands[1].imm << 6;
12485 }
12486
12487 static void
12488 do_t_ldstd (void)
12489 {
12490 if (!inst.operands[1].present)
12491 {
12492 inst.operands[1].reg = inst.operands[0].reg + 1;
12493 constraint (inst.operands[0].reg == REG_LR,
12494 _("r14 not allowed here"));
12495 constraint (inst.operands[0].reg == REG_R12,
12496 _("r12 not allowed here"));
12497 }
12498
12499 if (inst.operands[2].writeback
12500 && (inst.operands[0].reg == inst.operands[2].reg
12501 || inst.operands[1].reg == inst.operands[2].reg))
12502 as_warn (_("base register written back, and overlaps "
12503 "one of transfer registers"));
12504
12505 inst.instruction |= inst.operands[0].reg << 12;
12506 inst.instruction |= inst.operands[1].reg << 8;
12507 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12508 }
12509
12510 static void
12511 do_t_ldstt (void)
12512 {
12513 inst.instruction |= inst.operands[0].reg << 12;
12514 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12515 }
12516
12517 static void
12518 do_t_mla (void)
12519 {
12520 unsigned Rd, Rn, Rm, Ra;
12521
12522 Rd = inst.operands[0].reg;
12523 Rn = inst.operands[1].reg;
12524 Rm = inst.operands[2].reg;
12525 Ra = inst.operands[3].reg;
12526
12527 reject_bad_reg (Rd);
12528 reject_bad_reg (Rn);
12529 reject_bad_reg (Rm);
12530 reject_bad_reg (Ra);
12531
12532 inst.instruction |= Rd << 8;
12533 inst.instruction |= Rn << 16;
12534 inst.instruction |= Rm;
12535 inst.instruction |= Ra << 12;
12536 }
12537
12538 static void
12539 do_t_mlal (void)
12540 {
12541 unsigned RdLo, RdHi, Rn, Rm;
12542
12543 RdLo = inst.operands[0].reg;
12544 RdHi = inst.operands[1].reg;
12545 Rn = inst.operands[2].reg;
12546 Rm = inst.operands[3].reg;
12547
12548 reject_bad_reg (RdLo);
12549 reject_bad_reg (RdHi);
12550 reject_bad_reg (Rn);
12551 reject_bad_reg (Rm);
12552
12553 inst.instruction |= RdLo << 12;
12554 inst.instruction |= RdHi << 8;
12555 inst.instruction |= Rn << 16;
12556 inst.instruction |= Rm;
12557 }
12558
12559 static void
12560 do_t_mov_cmp (void)
12561 {
12562 unsigned Rn, Rm;
12563
12564 Rn = inst.operands[0].reg;
12565 Rm = inst.operands[1].reg;
12566
12567 if (Rn == REG_PC)
12568 set_pred_insn_type_last ();
12569
12570 if (unified_syntax)
12571 {
12572 int r0off = (inst.instruction == T_MNEM_mov
12573 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12574 unsigned long opcode;
12575 bfd_boolean narrow;
12576 bfd_boolean low_regs;
12577
12578 low_regs = (Rn <= 7 && Rm <= 7);
12579 opcode = inst.instruction;
12580 if (in_pred_block ())
12581 narrow = opcode != T_MNEM_movs;
12582 else
12583 narrow = opcode != T_MNEM_movs || low_regs;
12584 if (inst.size_req == 4
12585 || inst.operands[1].shifted)
12586 narrow = FALSE;
12587
12588 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12589 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12590 && !inst.operands[1].shifted
12591 && Rn == REG_PC
12592 && Rm == REG_LR)
12593 {
12594 inst.instruction = T2_SUBS_PC_LR;
12595 return;
12596 }
12597
12598 if (opcode == T_MNEM_cmp)
12599 {
12600 constraint (Rn == REG_PC, BAD_PC);
12601 if (narrow)
12602 {
12603 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12604 but valid. */
12605 warn_deprecated_sp (Rm);
12606 /* R15 was documented as a valid choice for Rm in ARMv6,
12607 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12608 tools reject R15, so we do too. */
12609 constraint (Rm == REG_PC, BAD_PC);
12610 }
12611 else
12612 reject_bad_reg (Rm);
12613 }
12614 else if (opcode == T_MNEM_mov
12615 || opcode == T_MNEM_movs)
12616 {
12617 if (inst.operands[1].isreg)
12618 {
12619 if (opcode == T_MNEM_movs)
12620 {
12621 reject_bad_reg (Rn);
12622 reject_bad_reg (Rm);
12623 }
12624 else if (narrow)
12625 {
12626 /* This is mov.n. */
12627 if ((Rn == REG_SP || Rn == REG_PC)
12628 && (Rm == REG_SP || Rm == REG_PC))
12629 {
12630 as_tsktsk (_("Use of r%u as a source register is "
12631 "deprecated when r%u is the destination "
12632 "register."), Rm, Rn);
12633 }
12634 }
12635 else
12636 {
12637 /* This is mov.w. */
12638 constraint (Rn == REG_PC, BAD_PC);
12639 constraint (Rm == REG_PC, BAD_PC);
12640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12641 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12642 }
12643 }
12644 else
12645 reject_bad_reg (Rn);
12646 }
12647
12648 if (!inst.operands[1].isreg)
12649 {
12650 /* Immediate operand. */
12651 if (!in_pred_block () && opcode == T_MNEM_mov)
12652 narrow = 0;
12653 if (low_regs && narrow)
12654 {
12655 inst.instruction = THUMB_OP16 (opcode);
12656 inst.instruction |= Rn << 8;
12657 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12658 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12659 {
12660 if (inst.size_req == 2)
12661 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12662 else
12663 inst.relax = opcode;
12664 }
12665 }
12666 else
12667 {
12668 constraint ((inst.relocs[0].type
12669 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12670 && (inst.relocs[0].type
12671 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12672 THUMB1_RELOC_ONLY);
12673
12674 inst.instruction = THUMB_OP32 (inst.instruction);
12675 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12676 inst.instruction |= Rn << r0off;
12677 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12678 }
12679 }
12680 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12681 && (inst.instruction == T_MNEM_mov
12682 || inst.instruction == T_MNEM_movs))
12683 {
12684 /* Register shifts are encoded as separate shift instructions. */
12685 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12686
12687 if (in_pred_block ())
12688 narrow = !flags;
12689 else
12690 narrow = flags;
12691
12692 if (inst.size_req == 4)
12693 narrow = FALSE;
12694
12695 if (!low_regs || inst.operands[1].imm > 7)
12696 narrow = FALSE;
12697
12698 if (Rn != Rm)
12699 narrow = FALSE;
12700
12701 switch (inst.operands[1].shift_kind)
12702 {
12703 case SHIFT_LSL:
12704 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12705 break;
12706 case SHIFT_ASR:
12707 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12708 break;
12709 case SHIFT_LSR:
12710 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12711 break;
12712 case SHIFT_ROR:
12713 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12714 break;
12715 default:
12716 abort ();
12717 }
12718
12719 inst.instruction = opcode;
12720 if (narrow)
12721 {
12722 inst.instruction |= Rn;
12723 inst.instruction |= inst.operands[1].imm << 3;
12724 }
12725 else
12726 {
12727 if (flags)
12728 inst.instruction |= CONDS_BIT;
12729
12730 inst.instruction |= Rn << 8;
12731 inst.instruction |= Rm << 16;
12732 inst.instruction |= inst.operands[1].imm;
12733 }
12734 }
12735 else if (!narrow)
12736 {
12737 /* Some mov with immediate shift have narrow variants.
12738 Register shifts are handled above. */
12739 if (low_regs && inst.operands[1].shifted
12740 && (inst.instruction == T_MNEM_mov
12741 || inst.instruction == T_MNEM_movs))
12742 {
12743 if (in_pred_block ())
12744 narrow = (inst.instruction == T_MNEM_mov);
12745 else
12746 narrow = (inst.instruction == T_MNEM_movs);
12747 }
12748
12749 if (narrow)
12750 {
12751 switch (inst.operands[1].shift_kind)
12752 {
12753 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12754 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12755 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12756 default: narrow = FALSE; break;
12757 }
12758 }
12759
12760 if (narrow)
12761 {
12762 inst.instruction |= Rn;
12763 inst.instruction |= Rm << 3;
12764 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12765 }
12766 else
12767 {
12768 inst.instruction = THUMB_OP32 (inst.instruction);
12769 inst.instruction |= Rn << r0off;
12770 encode_thumb32_shifted_operand (1);
12771 }
12772 }
12773 else
12774 switch (inst.instruction)
12775 {
12776 case T_MNEM_mov:
12777 /* In v4t or v5t a move of two lowregs produces unpredictable
12778 results. Don't allow this. */
12779 if (low_regs)
12780 {
12781 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12782 "MOV Rd, Rs with two low registers is not "
12783 "permitted on this architecture");
12784 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12785 arm_ext_v6);
12786 }
12787
12788 inst.instruction = T_OPCODE_MOV_HR;
12789 inst.instruction |= (Rn & 0x8) << 4;
12790 inst.instruction |= (Rn & 0x7);
12791 inst.instruction |= Rm << 3;
12792 break;
12793
12794 case T_MNEM_movs:
12795 /* We know we have low registers at this point.
12796 Generate LSLS Rd, Rs, #0. */
12797 inst.instruction = T_OPCODE_LSL_I;
12798 inst.instruction |= Rn;
12799 inst.instruction |= Rm << 3;
12800 break;
12801
12802 case T_MNEM_cmp:
12803 if (low_regs)
12804 {
12805 inst.instruction = T_OPCODE_CMP_LR;
12806 inst.instruction |= Rn;
12807 inst.instruction |= Rm << 3;
12808 }
12809 else
12810 {
12811 inst.instruction = T_OPCODE_CMP_HR;
12812 inst.instruction |= (Rn & 0x8) << 4;
12813 inst.instruction |= (Rn & 0x7);
12814 inst.instruction |= Rm << 3;
12815 }
12816 break;
12817 }
12818 return;
12819 }
12820
12821 inst.instruction = THUMB_OP16 (inst.instruction);
12822
12823 /* PR 10443: Do not silently ignore shifted operands. */
12824 constraint (inst.operands[1].shifted,
12825 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12826
12827 if (inst.operands[1].isreg)
12828 {
12829 if (Rn < 8 && Rm < 8)
12830 {
12831 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12832 since a MOV instruction produces unpredictable results. */
12833 if (inst.instruction == T_OPCODE_MOV_I8)
12834 inst.instruction = T_OPCODE_ADD_I3;
12835 else
12836 inst.instruction = T_OPCODE_CMP_LR;
12837
12838 inst.instruction |= Rn;
12839 inst.instruction |= Rm << 3;
12840 }
12841 else
12842 {
12843 if (inst.instruction == T_OPCODE_MOV_I8)
12844 inst.instruction = T_OPCODE_MOV_HR;
12845 else
12846 inst.instruction = T_OPCODE_CMP_HR;
12847 do_t_cpy ();
12848 }
12849 }
12850 else
12851 {
12852 constraint (Rn > 7,
12853 _("only lo regs allowed with immediate"));
12854 inst.instruction |= Rn << 8;
12855 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12856 }
12857 }
12858
12859 static void
12860 do_t_mov16 (void)
12861 {
12862 unsigned Rd;
12863 bfd_vma imm;
12864 bfd_boolean top;
12865
12866 top = (inst.instruction & 0x00800000) != 0;
12867 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12868 {
12869 constraint (top, _(":lower16: not allowed in this instruction"));
12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12871 }
12872 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12873 {
12874 constraint (!top, _(":upper16: not allowed in this instruction"));
12875 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12876 }
12877
12878 Rd = inst.operands[0].reg;
12879 reject_bad_reg (Rd);
12880
12881 inst.instruction |= Rd << 8;
12882 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12883 {
12884 imm = inst.relocs[0].exp.X_add_number;
12885 inst.instruction |= (imm & 0xf000) << 4;
12886 inst.instruction |= (imm & 0x0800) << 15;
12887 inst.instruction |= (imm & 0x0700) << 4;
12888 inst.instruction |= (imm & 0x00ff);
12889 }
12890 }
12891
12892 static void
12893 do_t_mvn_tst (void)
12894 {
12895 unsigned Rn, Rm;
12896
12897 Rn = inst.operands[0].reg;
12898 Rm = inst.operands[1].reg;
12899
12900 if (inst.instruction == T_MNEM_cmp
12901 || inst.instruction == T_MNEM_cmn)
12902 constraint (Rn == REG_PC, BAD_PC);
12903 else
12904 reject_bad_reg (Rn);
12905 reject_bad_reg (Rm);
12906
12907 if (unified_syntax)
12908 {
12909 int r0off = (inst.instruction == T_MNEM_mvn
12910 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12911 bfd_boolean narrow;
12912
12913 if (inst.size_req == 4
12914 || inst.instruction > 0xffff
12915 || inst.operands[1].shifted
12916 || Rn > 7 || Rm > 7)
12917 narrow = FALSE;
12918 else if (inst.instruction == T_MNEM_cmn
12919 || inst.instruction == T_MNEM_tst)
12920 narrow = TRUE;
12921 else if (THUMB_SETS_FLAGS (inst.instruction))
12922 narrow = !in_pred_block ();
12923 else
12924 narrow = in_pred_block ();
12925
12926 if (!inst.operands[1].isreg)
12927 {
12928 /* For an immediate, we always generate a 32-bit opcode;
12929 section relaxation will shrink it later if possible. */
12930 if (inst.instruction < 0xffff)
12931 inst.instruction = THUMB_OP32 (inst.instruction);
12932 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12933 inst.instruction |= Rn << r0off;
12934 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12935 }
12936 else
12937 {
12938 /* See if we can do this with a 16-bit instruction. */
12939 if (narrow)
12940 {
12941 inst.instruction = THUMB_OP16 (inst.instruction);
12942 inst.instruction |= Rn;
12943 inst.instruction |= Rm << 3;
12944 }
12945 else
12946 {
12947 constraint (inst.operands[1].shifted
12948 && inst.operands[1].immisreg,
12949 _("shift must be constant"));
12950 if (inst.instruction < 0xffff)
12951 inst.instruction = THUMB_OP32 (inst.instruction);
12952 inst.instruction |= Rn << r0off;
12953 encode_thumb32_shifted_operand (1);
12954 }
12955 }
12956 }
12957 else
12958 {
12959 constraint (inst.instruction > 0xffff
12960 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12961 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12962 _("unshifted register required"));
12963 constraint (Rn > 7 || Rm > 7,
12964 BAD_HIREG);
12965
12966 inst.instruction = THUMB_OP16 (inst.instruction);
12967 inst.instruction |= Rn;
12968 inst.instruction |= Rm << 3;
12969 }
12970 }
12971
12972 static void
12973 do_t_mrs (void)
12974 {
12975 unsigned Rd;
12976
12977 if (do_vfp_nsyn_mrs () == SUCCESS)
12978 return;
12979
12980 Rd = inst.operands[0].reg;
12981 reject_bad_reg (Rd);
12982 inst.instruction |= Rd << 8;
12983
12984 if (inst.operands[1].isreg)
12985 {
12986 unsigned br = inst.operands[1].reg;
12987 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12988 as_bad (_("bad register for mrs"));
12989
12990 inst.instruction |= br & (0xf << 16);
12991 inst.instruction |= (br & 0x300) >> 4;
12992 inst.instruction |= (br & SPSR_BIT) >> 2;
12993 }
12994 else
12995 {
12996 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12997
12998 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12999 {
13000 /* PR gas/12698: The constraint is only applied for m_profile.
13001 If the user has specified -march=all, we want to ignore it as
13002 we are building for any CPU type, including non-m variants. */
13003 bfd_boolean m_profile =
13004 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13005 constraint ((flags != 0) && m_profile, _("selected processor does "
13006 "not support requested special purpose register"));
13007 }
13008 else
13009 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13010 devices). */
13011 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13012 _("'APSR', 'CPSR' or 'SPSR' expected"));
13013
13014 inst.instruction |= (flags & SPSR_BIT) >> 2;
13015 inst.instruction |= inst.operands[1].imm & 0xff;
13016 inst.instruction |= 0xf0000;
13017 }
13018 }
13019
13020 static void
13021 do_t_msr (void)
13022 {
13023 int flags;
13024 unsigned Rn;
13025
13026 if (do_vfp_nsyn_msr () == SUCCESS)
13027 return;
13028
13029 constraint (!inst.operands[1].isreg,
13030 _("Thumb encoding does not support an immediate here"));
13031
13032 if (inst.operands[0].isreg)
13033 flags = (int)(inst.operands[0].reg);
13034 else
13035 flags = inst.operands[0].imm;
13036
13037 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13038 {
13039 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13040
13041 /* PR gas/12698: The constraint is only applied for m_profile.
13042 If the user has specified -march=all, we want to ignore it as
13043 we are building for any CPU type, including non-m variants. */
13044 bfd_boolean m_profile =
13045 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13046 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13047 && (bits & ~(PSR_s | PSR_f)) != 0)
13048 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13049 && bits != PSR_f)) && m_profile,
13050 _("selected processor does not support requested special "
13051 "purpose register"));
13052 }
13053 else
13054 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13055 "requested special purpose register"));
13056
13057 Rn = inst.operands[1].reg;
13058 reject_bad_reg (Rn);
13059
13060 inst.instruction |= (flags & SPSR_BIT) >> 2;
13061 inst.instruction |= (flags & 0xf0000) >> 8;
13062 inst.instruction |= (flags & 0x300) >> 4;
13063 inst.instruction |= (flags & 0xff);
13064 inst.instruction |= Rn << 16;
13065 }
13066
13067 static void
13068 do_t_mul (void)
13069 {
13070 bfd_boolean narrow;
13071 unsigned Rd, Rn, Rm;
13072
13073 if (!inst.operands[2].present)
13074 inst.operands[2].reg = inst.operands[0].reg;
13075
13076 Rd = inst.operands[0].reg;
13077 Rn = inst.operands[1].reg;
13078 Rm = inst.operands[2].reg;
13079
13080 if (unified_syntax)
13081 {
13082 if (inst.size_req == 4
13083 || (Rd != Rn
13084 && Rd != Rm)
13085 || Rn > 7
13086 || Rm > 7)
13087 narrow = FALSE;
13088 else if (inst.instruction == T_MNEM_muls)
13089 narrow = !in_pred_block ();
13090 else
13091 narrow = in_pred_block ();
13092 }
13093 else
13094 {
13095 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13096 constraint (Rn > 7 || Rm > 7,
13097 BAD_HIREG);
13098 narrow = TRUE;
13099 }
13100
13101 if (narrow)
13102 {
13103 /* 16-bit MULS/Conditional MUL. */
13104 inst.instruction = THUMB_OP16 (inst.instruction);
13105 inst.instruction |= Rd;
13106
13107 if (Rd == Rn)
13108 inst.instruction |= Rm << 3;
13109 else if (Rd == Rm)
13110 inst.instruction |= Rn << 3;
13111 else
13112 constraint (1, _("dest must overlap one source register"));
13113 }
13114 else
13115 {
13116 constraint (inst.instruction != T_MNEM_mul,
13117 _("Thumb-2 MUL must not set flags"));
13118 /* 32-bit MUL. */
13119 inst.instruction = THUMB_OP32 (inst.instruction);
13120 inst.instruction |= Rd << 8;
13121 inst.instruction |= Rn << 16;
13122 inst.instruction |= Rm << 0;
13123
13124 reject_bad_reg (Rd);
13125 reject_bad_reg (Rn);
13126 reject_bad_reg (Rm);
13127 }
13128 }
13129
13130 static void
13131 do_t_mull (void)
13132 {
13133 unsigned RdLo, RdHi, Rn, Rm;
13134
13135 RdLo = inst.operands[0].reg;
13136 RdHi = inst.operands[1].reg;
13137 Rn = inst.operands[2].reg;
13138 Rm = inst.operands[3].reg;
13139
13140 reject_bad_reg (RdLo);
13141 reject_bad_reg (RdHi);
13142 reject_bad_reg (Rn);
13143 reject_bad_reg (Rm);
13144
13145 inst.instruction |= RdLo << 12;
13146 inst.instruction |= RdHi << 8;
13147 inst.instruction |= Rn << 16;
13148 inst.instruction |= Rm;
13149
13150 if (RdLo == RdHi)
13151 as_tsktsk (_("rdhi and rdlo must be different"));
13152 }
13153
13154 static void
13155 do_t_nop (void)
13156 {
13157 set_pred_insn_type (NEUTRAL_IT_INSN);
13158
13159 if (unified_syntax)
13160 {
13161 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13162 {
13163 inst.instruction = THUMB_OP32 (inst.instruction);
13164 inst.instruction |= inst.operands[0].imm;
13165 }
13166 else
13167 {
13168 /* PR9722: Check for Thumb2 availability before
13169 generating a thumb2 nop instruction. */
13170 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13171 {
13172 inst.instruction = THUMB_OP16 (inst.instruction);
13173 inst.instruction |= inst.operands[0].imm << 4;
13174 }
13175 else
13176 inst.instruction = 0x46c0;
13177 }
13178 }
13179 else
13180 {
13181 constraint (inst.operands[0].present,
13182 _("Thumb does not support NOP with hints"));
13183 inst.instruction = 0x46c0;
13184 }
13185 }
13186
13187 static void
13188 do_t_neg (void)
13189 {
13190 if (unified_syntax)
13191 {
13192 bfd_boolean narrow;
13193
13194 if (THUMB_SETS_FLAGS (inst.instruction))
13195 narrow = !in_pred_block ();
13196 else
13197 narrow = in_pred_block ();
13198 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13199 narrow = FALSE;
13200 if (inst.size_req == 4)
13201 narrow = FALSE;
13202
13203 if (!narrow)
13204 {
13205 inst.instruction = THUMB_OP32 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg << 8;
13207 inst.instruction |= inst.operands[1].reg << 16;
13208 }
13209 else
13210 {
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
13214 }
13215 }
13216 else
13217 {
13218 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13219 BAD_HIREG);
13220 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13221
13222 inst.instruction = THUMB_OP16 (inst.instruction);
13223 inst.instruction |= inst.operands[0].reg;
13224 inst.instruction |= inst.operands[1].reg << 3;
13225 }
13226 }
13227
13228 static void
13229 do_t_orn (void)
13230 {
13231 unsigned Rd, Rn;
13232
13233 Rd = inst.operands[0].reg;
13234 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13235
13236 reject_bad_reg (Rd);
13237 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13238 reject_bad_reg (Rn);
13239
13240 inst.instruction |= Rd << 8;
13241 inst.instruction |= Rn << 16;
13242
13243 if (!inst.operands[2].isreg)
13244 {
13245 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13246 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13247 }
13248 else
13249 {
13250 unsigned Rm;
13251
13252 Rm = inst.operands[2].reg;
13253 reject_bad_reg (Rm);
13254
13255 constraint (inst.operands[2].shifted
13256 && inst.operands[2].immisreg,
13257 _("shift must be constant"));
13258 encode_thumb32_shifted_operand (2);
13259 }
13260 }
13261
13262 static void
13263 do_t_pkhbt (void)
13264 {
13265 unsigned Rd, Rn, Rm;
13266
13267 Rd = inst.operands[0].reg;
13268 Rn = inst.operands[1].reg;
13269 Rm = inst.operands[2].reg;
13270
13271 reject_bad_reg (Rd);
13272 reject_bad_reg (Rn);
13273 reject_bad_reg (Rm);
13274
13275 inst.instruction |= Rd << 8;
13276 inst.instruction |= Rn << 16;
13277 inst.instruction |= Rm;
13278 if (inst.operands[3].present)
13279 {
13280 unsigned int val = inst.relocs[0].exp.X_add_number;
13281 constraint (inst.relocs[0].exp.X_op != O_constant,
13282 _("expression too complex"));
13283 inst.instruction |= (val & 0x1c) << 10;
13284 inst.instruction |= (val & 0x03) << 6;
13285 }
13286 }
13287
13288 static void
13289 do_t_pkhtb (void)
13290 {
13291 if (!inst.operands[3].present)
13292 {
13293 unsigned Rtmp;
13294
13295 inst.instruction &= ~0x00000020;
13296
13297 /* PR 10168. Swap the Rm and Rn registers. */
13298 Rtmp = inst.operands[1].reg;
13299 inst.operands[1].reg = inst.operands[2].reg;
13300 inst.operands[2].reg = Rtmp;
13301 }
13302 do_t_pkhbt ();
13303 }
13304
13305 static void
13306 do_t_pld (void)
13307 {
13308 if (inst.operands[0].immisreg)
13309 reject_bad_reg (inst.operands[0].imm);
13310
13311 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13312 }
13313
13314 static void
13315 do_t_push_pop (void)
13316 {
13317 unsigned mask;
13318
13319 constraint (inst.operands[0].writeback,
13320 _("push/pop do not support {reglist}^"));
13321 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13322 _("expression too complex"));
13323
13324 mask = inst.operands[0].imm;
13325 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13326 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13327 else if (inst.size_req != 4
13328 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13329 ? REG_LR : REG_PC)))
13330 {
13331 inst.instruction = THUMB_OP16 (inst.instruction);
13332 inst.instruction |= THUMB_PP_PC_LR;
13333 inst.instruction |= mask & 0xff;
13334 }
13335 else if (unified_syntax)
13336 {
13337 inst.instruction = THUMB_OP32 (inst.instruction);
13338 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13339 }
13340 else
13341 {
13342 inst.error = _("invalid register list to push/pop instruction");
13343 return;
13344 }
13345 }
13346
13347 static void
13348 do_t_clrm (void)
13349 {
13350 if (unified_syntax)
13351 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13352 else
13353 {
13354 inst.error = _("invalid register list to push/pop instruction");
13355 return;
13356 }
13357 }
13358
13359 static void
13360 do_t_vscclrm (void)
13361 {
13362 if (inst.operands[0].issingle)
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13365 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13366 inst.instruction |= inst.operands[0].imm;
13367 }
13368 else
13369 {
13370 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13371 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13372 inst.instruction |= 1 << 8;
13373 inst.instruction |= inst.operands[0].imm << 1;
13374 }
13375 }
13376
13377 static void
13378 do_t_rbit (void)
13379 {
13380 unsigned Rd, Rm;
13381
13382 Rd = inst.operands[0].reg;
13383 Rm = inst.operands[1].reg;
13384
13385 reject_bad_reg (Rd);
13386 reject_bad_reg (Rm);
13387
13388 inst.instruction |= Rd << 8;
13389 inst.instruction |= Rm << 16;
13390 inst.instruction |= Rm;
13391 }
13392
13393 static void
13394 do_t_rev (void)
13395 {
13396 unsigned Rd, Rm;
13397
13398 Rd = inst.operands[0].reg;
13399 Rm = inst.operands[1].reg;
13400
13401 reject_bad_reg (Rd);
13402 reject_bad_reg (Rm);
13403
13404 if (Rd <= 7 && Rm <= 7
13405 && inst.size_req != 4)
13406 {
13407 inst.instruction = THUMB_OP16 (inst.instruction);
13408 inst.instruction |= Rd;
13409 inst.instruction |= Rm << 3;
13410 }
13411 else if (unified_syntax)
13412 {
13413 inst.instruction = THUMB_OP32 (inst.instruction);
13414 inst.instruction |= Rd << 8;
13415 inst.instruction |= Rm << 16;
13416 inst.instruction |= Rm;
13417 }
13418 else
13419 inst.error = BAD_HIREG;
13420 }
13421
13422 static void
13423 do_t_rrx (void)
13424 {
13425 unsigned Rd, Rm;
13426
13427 Rd = inst.operands[0].reg;
13428 Rm = inst.operands[1].reg;
13429
13430 reject_bad_reg (Rd);
13431 reject_bad_reg (Rm);
13432
13433 inst.instruction |= Rd << 8;
13434 inst.instruction |= Rm;
13435 }
13436
13437 static void
13438 do_t_rsb (void)
13439 {
13440 unsigned Rd, Rs;
13441
13442 Rd = inst.operands[0].reg;
13443 Rs = (inst.operands[1].present
13444 ? inst.operands[1].reg /* Rd, Rs, foo */
13445 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13446
13447 reject_bad_reg (Rd);
13448 reject_bad_reg (Rs);
13449 if (inst.operands[2].isreg)
13450 reject_bad_reg (inst.operands[2].reg);
13451
13452 inst.instruction |= Rd << 8;
13453 inst.instruction |= Rs << 16;
13454 if (!inst.operands[2].isreg)
13455 {
13456 bfd_boolean narrow;
13457
13458 if ((inst.instruction & 0x00100000) != 0)
13459 narrow = !in_pred_block ();
13460 else
13461 narrow = in_pred_block ();
13462
13463 if (Rd > 7 || Rs > 7)
13464 narrow = FALSE;
13465
13466 if (inst.size_req == 4 || !unified_syntax)
13467 narrow = FALSE;
13468
13469 if (inst.relocs[0].exp.X_op != O_constant
13470 || inst.relocs[0].exp.X_add_number != 0)
13471 narrow = FALSE;
13472
13473 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13474 relaxation, but it doesn't seem worth the hassle. */
13475 if (narrow)
13476 {
13477 inst.relocs[0].type = BFD_RELOC_UNUSED;
13478 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13479 inst.instruction |= Rs << 3;
13480 inst.instruction |= Rd;
13481 }
13482 else
13483 {
13484 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13485 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13486 }
13487 }
13488 else
13489 encode_thumb32_shifted_operand (2);
13490 }
13491
13492 static void
13493 do_t_setend (void)
13494 {
13495 if (warn_on_deprecated
13496 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13497 as_tsktsk (_("setend use is deprecated for ARMv8"));
13498
13499 set_pred_insn_type (OUTSIDE_PRED_INSN);
13500 if (inst.operands[0].imm)
13501 inst.instruction |= 0x8;
13502 }
13503
13504 static void
13505 do_t_shift (void)
13506 {
13507 if (!inst.operands[1].present)
13508 inst.operands[1].reg = inst.operands[0].reg;
13509
13510 if (unified_syntax)
13511 {
13512 bfd_boolean narrow;
13513 int shift_kind;
13514
13515 switch (inst.instruction)
13516 {
13517 case T_MNEM_asr:
13518 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13519 case T_MNEM_lsl:
13520 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13521 case T_MNEM_lsr:
13522 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13523 case T_MNEM_ror:
13524 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13525 default: abort ();
13526 }
13527
13528 if (THUMB_SETS_FLAGS (inst.instruction))
13529 narrow = !in_pred_block ();
13530 else
13531 narrow = in_pred_block ();
13532 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13533 narrow = FALSE;
13534 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13535 narrow = FALSE;
13536 if (inst.operands[2].isreg
13537 && (inst.operands[1].reg != inst.operands[0].reg
13538 || inst.operands[2].reg > 7))
13539 narrow = FALSE;
13540 if (inst.size_req == 4)
13541 narrow = FALSE;
13542
13543 reject_bad_reg (inst.operands[0].reg);
13544 reject_bad_reg (inst.operands[1].reg);
13545
13546 if (!narrow)
13547 {
13548 if (inst.operands[2].isreg)
13549 {
13550 reject_bad_reg (inst.operands[2].reg);
13551 inst.instruction = THUMB_OP32 (inst.instruction);
13552 inst.instruction |= inst.operands[0].reg << 8;
13553 inst.instruction |= inst.operands[1].reg << 16;
13554 inst.instruction |= inst.operands[2].reg;
13555
13556 /* PR 12854: Error on extraneous shifts. */
13557 constraint (inst.operands[2].shifted,
13558 _("extraneous shift as part of operand to shift insn"));
13559 }
13560 else
13561 {
13562 inst.operands[1].shifted = 1;
13563 inst.operands[1].shift_kind = shift_kind;
13564 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13565 ? T_MNEM_movs : T_MNEM_mov);
13566 inst.instruction |= inst.operands[0].reg << 8;
13567 encode_thumb32_shifted_operand (1);
13568 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13569 inst.relocs[0].type = BFD_RELOC_UNUSED;
13570 }
13571 }
13572 else
13573 {
13574 if (inst.operands[2].isreg)
13575 {
13576 switch (shift_kind)
13577 {
13578 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13579 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13580 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13581 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13582 default: abort ();
13583 }
13584
13585 inst.instruction |= inst.operands[0].reg;
13586 inst.instruction |= inst.operands[2].reg << 3;
13587
13588 /* PR 12854: Error on extraneous shifts. */
13589 constraint (inst.operands[2].shifted,
13590 _("extraneous shift as part of operand to shift insn"));
13591 }
13592 else
13593 {
13594 switch (shift_kind)
13595 {
13596 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13597 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13598 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13599 default: abort ();
13600 }
13601 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13602 inst.instruction |= inst.operands[0].reg;
13603 inst.instruction |= inst.operands[1].reg << 3;
13604 }
13605 }
13606 }
13607 else
13608 {
13609 constraint (inst.operands[0].reg > 7
13610 || inst.operands[1].reg > 7, BAD_HIREG);
13611 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13612
13613 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13614 {
13615 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13616 constraint (inst.operands[0].reg != inst.operands[1].reg,
13617 _("source1 and dest must be same register"));
13618
13619 switch (inst.instruction)
13620 {
13621 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13622 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13623 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13624 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13625 default: abort ();
13626 }
13627
13628 inst.instruction |= inst.operands[0].reg;
13629 inst.instruction |= inst.operands[2].reg << 3;
13630
13631 /* PR 12854: Error on extraneous shifts. */
13632 constraint (inst.operands[2].shifted,
13633 _("extraneous shift as part of operand to shift insn"));
13634 }
13635 else
13636 {
13637 switch (inst.instruction)
13638 {
13639 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13640 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13641 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13642 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13643 default: abort ();
13644 }
13645 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13646 inst.instruction |= inst.operands[0].reg;
13647 inst.instruction |= inst.operands[1].reg << 3;
13648 }
13649 }
13650 }
13651
13652 static void
13653 do_t_simd (void)
13654 {
13655 unsigned Rd, Rn, Rm;
13656
13657 Rd = inst.operands[0].reg;
13658 Rn = inst.operands[1].reg;
13659 Rm = inst.operands[2].reg;
13660
13661 reject_bad_reg (Rd);
13662 reject_bad_reg (Rn);
13663 reject_bad_reg (Rm);
13664
13665 inst.instruction |= Rd << 8;
13666 inst.instruction |= Rn << 16;
13667 inst.instruction |= Rm;
13668 }
13669
13670 static void
13671 do_t_simd2 (void)
13672 {
13673 unsigned Rd, Rn, Rm;
13674
13675 Rd = inst.operands[0].reg;
13676 Rm = inst.operands[1].reg;
13677 Rn = inst.operands[2].reg;
13678
13679 reject_bad_reg (Rd);
13680 reject_bad_reg (Rn);
13681 reject_bad_reg (Rm);
13682
13683 inst.instruction |= Rd << 8;
13684 inst.instruction |= Rn << 16;
13685 inst.instruction |= Rm;
13686 }
13687
13688 static void
13689 do_t_smc (void)
13690 {
13691 unsigned int value = inst.relocs[0].exp.X_add_number;
13692 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13693 _("SMC is not permitted on this architecture"));
13694 constraint (inst.relocs[0].exp.X_op != O_constant,
13695 _("expression too complex"));
13696 inst.relocs[0].type = BFD_RELOC_UNUSED;
13697 inst.instruction |= (value & 0xf000) >> 12;
13698 inst.instruction |= (value & 0x0ff0);
13699 inst.instruction |= (value & 0x000f) << 16;
13700 /* PR gas/15623: SMC instructions must be last in an IT block. */
13701 set_pred_insn_type_last ();
13702 }
13703
13704 static void
13705 do_t_hvc (void)
13706 {
13707 unsigned int value = inst.relocs[0].exp.X_add_number;
13708
13709 inst.relocs[0].type = BFD_RELOC_UNUSED;
13710 inst.instruction |= (value & 0x0fff);
13711 inst.instruction |= (value & 0xf000) << 4;
13712 }
13713
13714 static void
13715 do_t_ssat_usat (int bias)
13716 {
13717 unsigned Rd, Rn;
13718
13719 Rd = inst.operands[0].reg;
13720 Rn = inst.operands[2].reg;
13721
13722 reject_bad_reg (Rd);
13723 reject_bad_reg (Rn);
13724
13725 inst.instruction |= Rd << 8;
13726 inst.instruction |= inst.operands[1].imm - bias;
13727 inst.instruction |= Rn << 16;
13728
13729 if (inst.operands[3].present)
13730 {
13731 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13732
13733 inst.relocs[0].type = BFD_RELOC_UNUSED;
13734
13735 constraint (inst.relocs[0].exp.X_op != O_constant,
13736 _("expression too complex"));
13737
13738 if (shift_amount != 0)
13739 {
13740 constraint (shift_amount > 31,
13741 _("shift expression is too large"));
13742
13743 if (inst.operands[3].shift_kind == SHIFT_ASR)
13744 inst.instruction |= 0x00200000; /* sh bit. */
13745
13746 inst.instruction |= (shift_amount & 0x1c) << 10;
13747 inst.instruction |= (shift_amount & 0x03) << 6;
13748 }
13749 }
13750 }
13751
13752 static void
13753 do_t_ssat (void)
13754 {
13755 do_t_ssat_usat (1);
13756 }
13757
13758 static void
13759 do_t_ssat16 (void)
13760 {
13761 unsigned Rd, Rn;
13762
13763 Rd = inst.operands[0].reg;
13764 Rn = inst.operands[2].reg;
13765
13766 reject_bad_reg (Rd);
13767 reject_bad_reg (Rn);
13768
13769 inst.instruction |= Rd << 8;
13770 inst.instruction |= inst.operands[1].imm - 1;
13771 inst.instruction |= Rn << 16;
13772 }
13773
13774 static void
13775 do_t_strex (void)
13776 {
13777 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13778 || inst.operands[2].postind || inst.operands[2].writeback
13779 || inst.operands[2].immisreg || inst.operands[2].shifted
13780 || inst.operands[2].negative,
13781 BAD_ADDR_MODE);
13782
13783 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13784
13785 inst.instruction |= inst.operands[0].reg << 8;
13786 inst.instruction |= inst.operands[1].reg << 12;
13787 inst.instruction |= inst.operands[2].reg << 16;
13788 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13789 }
13790
13791 static void
13792 do_t_strexd (void)
13793 {
13794 if (!inst.operands[2].present)
13795 inst.operands[2].reg = inst.operands[1].reg + 1;
13796
13797 constraint (inst.operands[0].reg == inst.operands[1].reg
13798 || inst.operands[0].reg == inst.operands[2].reg
13799 || inst.operands[0].reg == inst.operands[3].reg,
13800 BAD_OVERLAP);
13801
13802 inst.instruction |= inst.operands[0].reg;
13803 inst.instruction |= inst.operands[1].reg << 12;
13804 inst.instruction |= inst.operands[2].reg << 8;
13805 inst.instruction |= inst.operands[3].reg << 16;
13806 }
13807
13808 static void
13809 do_t_sxtah (void)
13810 {
13811 unsigned Rd, Rn, Rm;
13812
13813 Rd = inst.operands[0].reg;
13814 Rn = inst.operands[1].reg;
13815 Rm = inst.operands[2].reg;
13816
13817 reject_bad_reg (Rd);
13818 reject_bad_reg (Rn);
13819 reject_bad_reg (Rm);
13820
13821 inst.instruction |= Rd << 8;
13822 inst.instruction |= Rn << 16;
13823 inst.instruction |= Rm;
13824 inst.instruction |= inst.operands[3].imm << 4;
13825 }
13826
13827 static void
13828 do_t_sxth (void)
13829 {
13830 unsigned Rd, Rm;
13831
13832 Rd = inst.operands[0].reg;
13833 Rm = inst.operands[1].reg;
13834
13835 reject_bad_reg (Rd);
13836 reject_bad_reg (Rm);
13837
13838 if (inst.instruction <= 0xffff
13839 && inst.size_req != 4
13840 && Rd <= 7 && Rm <= 7
13841 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13842 {
13843 inst.instruction = THUMB_OP16 (inst.instruction);
13844 inst.instruction |= Rd;
13845 inst.instruction |= Rm << 3;
13846 }
13847 else if (unified_syntax)
13848 {
13849 if (inst.instruction <= 0xffff)
13850 inst.instruction = THUMB_OP32 (inst.instruction);
13851 inst.instruction |= Rd << 8;
13852 inst.instruction |= Rm;
13853 inst.instruction |= inst.operands[2].imm << 4;
13854 }
13855 else
13856 {
13857 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13858 _("Thumb encoding does not support rotation"));
13859 constraint (1, BAD_HIREG);
13860 }
13861 }
13862
13863 static void
13864 do_t_swi (void)
13865 {
13866 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13867 }
13868
13869 static void
13870 do_t_tb (void)
13871 {
13872 unsigned Rn, Rm;
13873 int half;
13874
13875 half = (inst.instruction & 0x10) != 0;
13876 set_pred_insn_type_last ();
13877 constraint (inst.operands[0].immisreg,
13878 _("instruction requires register index"));
13879
13880 Rn = inst.operands[0].reg;
13881 Rm = inst.operands[0].imm;
13882
13883 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13884 constraint (Rn == REG_SP, BAD_SP);
13885 reject_bad_reg (Rm);
13886
13887 constraint (!half && inst.operands[0].shifted,
13888 _("instruction does not allow shifted index"));
13889 inst.instruction |= (Rn << 16) | Rm;
13890 }
13891
13892 static void
13893 do_t_udf (void)
13894 {
13895 if (!inst.operands[0].present)
13896 inst.operands[0].imm = 0;
13897
13898 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13899 {
13900 constraint (inst.size_req == 2,
13901 _("immediate value out of range"));
13902 inst.instruction = THUMB_OP32 (inst.instruction);
13903 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13904 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13905 }
13906 else
13907 {
13908 inst.instruction = THUMB_OP16 (inst.instruction);
13909 inst.instruction |= inst.operands[0].imm;
13910 }
13911
13912 set_pred_insn_type (NEUTRAL_IT_INSN);
13913 }
13914
13915
13916 static void
13917 do_t_usat (void)
13918 {
13919 do_t_ssat_usat (0);
13920 }
13921
13922 static void
13923 do_t_usat16 (void)
13924 {
13925 unsigned Rd, Rn;
13926
13927 Rd = inst.operands[0].reg;
13928 Rn = inst.operands[2].reg;
13929
13930 reject_bad_reg (Rd);
13931 reject_bad_reg (Rn);
13932
13933 inst.instruction |= Rd << 8;
13934 inst.instruction |= inst.operands[1].imm;
13935 inst.instruction |= Rn << 16;
13936 }
13937
13938 /* Checking the range of the branch offset (VAL) with NBITS bits
13939 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13940 static int
13941 v8_1_branch_value_check (int val, int nbits, int is_signed)
13942 {
13943 gas_assert (nbits > 0 && nbits <= 32);
13944 if (is_signed)
13945 {
13946 int cmp = (1 << (nbits - 1));
13947 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13948 return FAIL;
13949 }
13950 else
13951 {
13952 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13953 return FAIL;
13954 }
13955 return SUCCESS;
13956 }
13957
13958 /* For branches in Armv8.1-M Mainline. */
13959 static void
13960 do_t_branch_future (void)
13961 {
13962 unsigned long insn = inst.instruction;
13963
13964 inst.instruction = THUMB_OP32 (inst.instruction);
13965 if (inst.operands[0].hasreloc == 0)
13966 {
13967 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13968 as_bad (BAD_BRANCH_OFF);
13969
13970 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13971 }
13972 else
13973 {
13974 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13975 inst.relocs[0].pc_rel = 1;
13976 }
13977
13978 switch (insn)
13979 {
13980 case T_MNEM_bf:
13981 if (inst.operands[1].hasreloc == 0)
13982 {
13983 int val = inst.operands[1].imm;
13984 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13985 as_bad (BAD_BRANCH_OFF);
13986
13987 int immA = (val & 0x0001f000) >> 12;
13988 int immB = (val & 0x00000ffc) >> 2;
13989 int immC = (val & 0x00000002) >> 1;
13990 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13991 }
13992 else
13993 {
13994 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13995 inst.relocs[1].pc_rel = 1;
13996 }
13997 break;
13998
13999 case T_MNEM_bfl:
14000 if (inst.operands[1].hasreloc == 0)
14001 {
14002 int val = inst.operands[1].imm;
14003 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14004 as_bad (BAD_BRANCH_OFF);
14005
14006 int immA = (val & 0x0007f000) >> 12;
14007 int immB = (val & 0x00000ffc) >> 2;
14008 int immC = (val & 0x00000002) >> 1;
14009 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14010 }
14011 else
14012 {
14013 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14014 inst.relocs[1].pc_rel = 1;
14015 }
14016 break;
14017
14018 case T_MNEM_bfcsel:
14019 /* Operand 1. */
14020 if (inst.operands[1].hasreloc == 0)
14021 {
14022 int val = inst.operands[1].imm;
14023 int immA = (val & 0x00001000) >> 12;
14024 int immB = (val & 0x00000ffc) >> 2;
14025 int immC = (val & 0x00000002) >> 1;
14026 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14027 }
14028 else
14029 {
14030 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14031 inst.relocs[1].pc_rel = 1;
14032 }
14033
14034 /* Operand 2. */
14035 if (inst.operands[2].hasreloc == 0)
14036 {
14037 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14038 int val2 = inst.operands[2].imm;
14039 int val0 = inst.operands[0].imm & 0x1f;
14040 int diff = val2 - val0;
14041 if (diff == 4)
14042 inst.instruction |= 1 << 17; /* T bit. */
14043 else if (diff != 2)
14044 as_bad (_("out of range label-relative fixup value"));
14045 }
14046 else
14047 {
14048 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14049 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14050 inst.relocs[2].pc_rel = 1;
14051 }
14052
14053 /* Operand 3. */
14054 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14055 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14056 break;
14057
14058 case T_MNEM_bfx:
14059 case T_MNEM_bflx:
14060 inst.instruction |= inst.operands[1].reg << 16;
14061 break;
14062
14063 default: abort ();
14064 }
14065 }
14066
14067 /* Helper function for do_t_loloop to handle relocations. */
14068 static void
14069 v8_1_loop_reloc (int is_le)
14070 {
14071 if (inst.relocs[0].exp.X_op == O_constant)
14072 {
14073 int value = inst.relocs[0].exp.X_add_number;
14074 value = (is_le) ? -value : value;
14075
14076 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14077 as_bad (BAD_BRANCH_OFF);
14078
14079 int imml, immh;
14080
14081 immh = (value & 0x00000ffc) >> 2;
14082 imml = (value & 0x00000002) >> 1;
14083
14084 inst.instruction |= (imml << 11) | (immh << 1);
14085 }
14086 else
14087 {
14088 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14089 inst.relocs[0].pc_rel = 1;
14090 }
14091 }
14092
14093 /* To handle the Scalar Low Overhead Loop instructions
14094 in Armv8.1-M Mainline. */
14095 static void
14096 do_t_loloop (void)
14097 {
14098 unsigned long insn = inst.instruction;
14099
14100 set_pred_insn_type (OUTSIDE_PRED_INSN);
14101 inst.instruction = THUMB_OP32 (inst.instruction);
14102
14103 switch (insn)
14104 {
14105 case T_MNEM_le:
14106 /* le <label>. */
14107 if (!inst.operands[0].present)
14108 inst.instruction |= 1 << 21;
14109
14110 v8_1_loop_reloc (TRUE);
14111 break;
14112
14113 case T_MNEM_wls:
14114 v8_1_loop_reloc (FALSE);
14115 /* Fall through. */
14116 case T_MNEM_dls:
14117 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14118 inst.instruction |= (inst.operands[1].reg << 16);
14119 break;
14120
14121 default: abort();
14122 }
14123 }
14124
14125 /* MVE instruction encoder helpers. */
14126 #define M_MNEM_vabav 0xee800f01
14127 #define M_MNEM_vmladav 0xeef00e00
14128 #define M_MNEM_vmladava 0xeef00e20
14129 #define M_MNEM_vmladavx 0xeef01e00
14130 #define M_MNEM_vmladavax 0xeef01e20
14131 #define M_MNEM_vmlsdav 0xeef00e01
14132 #define M_MNEM_vmlsdava 0xeef00e21
14133 #define M_MNEM_vmlsdavx 0xeef01e01
14134 #define M_MNEM_vmlsdavax 0xeef01e21
14135 #define M_MNEM_vmullt 0xee011e00
14136 #define M_MNEM_vmullb 0xee010e00
14137 #define M_MNEM_vst20 0xfc801e00
14138 #define M_MNEM_vst21 0xfc801e20
14139 #define M_MNEM_vst40 0xfc801e01
14140 #define M_MNEM_vst41 0xfc801e21
14141 #define M_MNEM_vst42 0xfc801e41
14142 #define M_MNEM_vst43 0xfc801e61
14143 #define M_MNEM_vld20 0xfc901e00
14144 #define M_MNEM_vld21 0xfc901e20
14145 #define M_MNEM_vld40 0xfc901e01
14146 #define M_MNEM_vld41 0xfc901e21
14147 #define M_MNEM_vld42 0xfc901e41
14148 #define M_MNEM_vld43 0xfc901e61
14149 #define M_MNEM_vstrb 0xec000e00
14150 #define M_MNEM_vstrh 0xec000e10
14151 #define M_MNEM_vstrw 0xec000e40
14152 #define M_MNEM_vstrd 0xec000e50
14153 #define M_MNEM_vldrb 0xec100e00
14154 #define M_MNEM_vldrh 0xec100e10
14155 #define M_MNEM_vldrw 0xec100e40
14156 #define M_MNEM_vldrd 0xec100e50
14157 #define M_MNEM_vmovlt 0xeea01f40
14158 #define M_MNEM_vmovlb 0xeea00f40
14159 #define M_MNEM_vmovnt 0xfe311e81
14160 #define M_MNEM_vmovnb 0xfe310e81
14161 #define M_MNEM_vadc 0xee300f00
14162 #define M_MNEM_vadci 0xee301f00
14163 #define M_MNEM_vbrsr 0xfe011e60
14164 #define M_MNEM_vaddlv 0xee890f00
14165 #define M_MNEM_vaddlva 0xee890f20
14166 #define M_MNEM_vaddv 0xeef10f00
14167 #define M_MNEM_vaddva 0xeef10f20
14168 #define M_MNEM_vddup 0xee011f6e
14169 #define M_MNEM_vdwdup 0xee011f60
14170 #define M_MNEM_vidup 0xee010f6e
14171 #define M_MNEM_viwdup 0xee010f60
14172 #define M_MNEM_vmaxv 0xeee20f00
14173 #define M_MNEM_vmaxav 0xeee00f00
14174 #define M_MNEM_vminv 0xeee20f80
14175 #define M_MNEM_vminav 0xeee00f80
14176 #define M_MNEM_vmlaldav 0xee800e00
14177 #define M_MNEM_vmlaldava 0xee800e20
14178 #define M_MNEM_vmlaldavx 0xee801e00
14179 #define M_MNEM_vmlaldavax 0xee801e20
14180 #define M_MNEM_vmlsldav 0xee800e01
14181 #define M_MNEM_vmlsldava 0xee800e21
14182 #define M_MNEM_vmlsldavx 0xee801e01
14183 #define M_MNEM_vmlsldavax 0xee801e21
14184 #define M_MNEM_vrmlaldavhx 0xee801f00
14185 #define M_MNEM_vrmlaldavhax 0xee801f20
14186 #define M_MNEM_vrmlsldavh 0xfe800e01
14187 #define M_MNEM_vrmlsldavha 0xfe800e21
14188 #define M_MNEM_vrmlsldavhx 0xfe801e01
14189 #define M_MNEM_vrmlsldavhax 0xfe801e21
14190
14191 /* Neon instruction encoder helpers. */
14192
14193 /* Encodings for the different types for various Neon opcodes. */
14194
14195 /* An "invalid" code for the following tables. */
14196 #define N_INV -1u
14197
14198 struct neon_tab_entry
14199 {
14200 unsigned integer;
14201 unsigned float_or_poly;
14202 unsigned scalar_or_imm;
14203 };
14204
14205 /* Map overloaded Neon opcodes to their respective encodings. */
14206 #define NEON_ENC_TAB \
14207 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14208 X(vabdl, 0x0800700, N_INV, N_INV), \
14209 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14210 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14211 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14212 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14213 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14214 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14215 X(vaddl, 0x0800000, N_INV, N_INV), \
14216 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14217 X(vsubl, 0x0800200, N_INV, N_INV), \
14218 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14219 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14220 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14221 /* Register variants of the following two instructions are encoded as
14222 vcge / vcgt with the operands reversed. */ \
14223 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14224 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14225 X(vfma, N_INV, 0x0000c10, N_INV), \
14226 X(vfms, N_INV, 0x0200c10, N_INV), \
14227 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14228 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14229 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14230 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14231 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14232 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14233 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14234 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14235 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14236 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14237 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14238 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14239 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14240 X(vshl, 0x0000400, N_INV, 0x0800510), \
14241 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14242 X(vand, 0x0000110, N_INV, 0x0800030), \
14243 X(vbic, 0x0100110, N_INV, 0x0800030), \
14244 X(veor, 0x1000110, N_INV, N_INV), \
14245 X(vorn, 0x0300110, N_INV, 0x0800010), \
14246 X(vorr, 0x0200110, N_INV, 0x0800010), \
14247 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14248 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14249 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14250 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14251 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14252 X(vst1, 0x0000000, 0x0800000, N_INV), \
14253 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14254 X(vst2, 0x0000100, 0x0800100, N_INV), \
14255 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14256 X(vst3, 0x0000200, 0x0800200, N_INV), \
14257 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14258 X(vst4, 0x0000300, 0x0800300, N_INV), \
14259 X(vmovn, 0x1b20200, N_INV, N_INV), \
14260 X(vtrn, 0x1b20080, N_INV, N_INV), \
14261 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14262 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14263 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14264 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14265 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14266 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14267 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14268 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14269 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14270 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14271 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14272 X(vseleq, 0xe000a00, N_INV, N_INV), \
14273 X(vselvs, 0xe100a00, N_INV, N_INV), \
14274 X(vselge, 0xe200a00, N_INV, N_INV), \
14275 X(vselgt, 0xe300a00, N_INV, N_INV), \
14276 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14277 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14278 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14279 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14280 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14281 X(aes, 0x3b00300, N_INV, N_INV), \
14282 X(sha3op, 0x2000c00, N_INV, N_INV), \
14283 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14284 X(sha2op, 0x3ba0380, N_INV, N_INV)
14285
14286 enum neon_opc
14287 {
14288 #define X(OPC,I,F,S) N_MNEM_##OPC
14289 NEON_ENC_TAB
14290 #undef X
14291 };
14292
14293 static const struct neon_tab_entry neon_enc_tab[] =
14294 {
14295 #define X(OPC,I,F,S) { (I), (F), (S) }
14296 NEON_ENC_TAB
14297 #undef X
14298 };
14299
14300 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14301 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14302 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14303 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14304 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14305 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14306 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14307 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14308 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14309 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14310 #define NEON_ENC_SINGLE_(X) \
14311 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14312 #define NEON_ENC_DOUBLE_(X) \
14313 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14314 #define NEON_ENC_FPV8_(X) \
14315 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14316
14317 #define NEON_ENCODE(type, inst) \
14318 do \
14319 { \
14320 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14321 inst.is_neon = 1; \
14322 } \
14323 while (0)
14324
14325 #define check_neon_suffixes \
14326 do \
14327 { \
14328 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14329 { \
14330 as_bad (_("invalid neon suffix for non neon instruction")); \
14331 return; \
14332 } \
14333 } \
14334 while (0)
14335
14336 /* Define shapes for instruction operands. The following mnemonic characters
14337 are used in this table:
14338
14339 F - VFP S<n> register
14340 D - Neon D<n> register
14341 Q - Neon Q<n> register
14342 I - Immediate
14343 S - Scalar
14344 R - ARM register
14345 L - D<n> register list
14346
14347 This table is used to generate various data:
14348 - enumerations of the form NS_DDR to be used as arguments to
14349 neon_select_shape.
14350 - a table classifying shapes into single, double, quad, mixed.
14351 - a table used to drive neon_select_shape. */
14352
14353 #define NEON_SHAPE_DEF \
14354 X(4, (R, R, Q, Q), QUAD), \
14355 X(4, (Q, R, R, I), QUAD), \
14356 X(4, (R, R, S, S), QUAD), \
14357 X(4, (S, S, R, R), QUAD), \
14358 X(3, (Q, R, I), QUAD), \
14359 X(3, (I, Q, Q), QUAD), \
14360 X(3, (I, Q, R), QUAD), \
14361 X(3, (R, Q, Q), QUAD), \
14362 X(3, (D, D, D), DOUBLE), \
14363 X(3, (Q, Q, Q), QUAD), \
14364 X(3, (D, D, I), DOUBLE), \
14365 X(3, (Q, Q, I), QUAD), \
14366 X(3, (D, D, S), DOUBLE), \
14367 X(3, (Q, Q, S), QUAD), \
14368 X(3, (Q, Q, R), QUAD), \
14369 X(3, (R, R, Q), QUAD), \
14370 X(2, (R, Q), QUAD), \
14371 X(2, (D, D), DOUBLE), \
14372 X(2, (Q, Q), QUAD), \
14373 X(2, (D, S), DOUBLE), \
14374 X(2, (Q, S), QUAD), \
14375 X(2, (D, R), DOUBLE), \
14376 X(2, (Q, R), QUAD), \
14377 X(2, (D, I), DOUBLE), \
14378 X(2, (Q, I), QUAD), \
14379 X(3, (D, L, D), DOUBLE), \
14380 X(2, (D, Q), MIXED), \
14381 X(2, (Q, D), MIXED), \
14382 X(3, (D, Q, I), MIXED), \
14383 X(3, (Q, D, I), MIXED), \
14384 X(3, (Q, D, D), MIXED), \
14385 X(3, (D, Q, Q), MIXED), \
14386 X(3, (Q, Q, D), MIXED), \
14387 X(3, (Q, D, S), MIXED), \
14388 X(3, (D, Q, S), MIXED), \
14389 X(4, (D, D, D, I), DOUBLE), \
14390 X(4, (Q, Q, Q, I), QUAD), \
14391 X(4, (D, D, S, I), DOUBLE), \
14392 X(4, (Q, Q, S, I), QUAD), \
14393 X(2, (F, F), SINGLE), \
14394 X(3, (F, F, F), SINGLE), \
14395 X(2, (F, I), SINGLE), \
14396 X(2, (F, D), MIXED), \
14397 X(2, (D, F), MIXED), \
14398 X(3, (F, F, I), MIXED), \
14399 X(4, (R, R, F, F), SINGLE), \
14400 X(4, (F, F, R, R), SINGLE), \
14401 X(3, (D, R, R), DOUBLE), \
14402 X(3, (R, R, D), DOUBLE), \
14403 X(2, (S, R), SINGLE), \
14404 X(2, (R, S), SINGLE), \
14405 X(2, (F, R), SINGLE), \
14406 X(2, (R, F), SINGLE), \
14407 /* Half float shape supported so far. */\
14408 X (2, (H, D), MIXED), \
14409 X (2, (D, H), MIXED), \
14410 X (2, (H, F), MIXED), \
14411 X (2, (F, H), MIXED), \
14412 X (2, (H, H), HALF), \
14413 X (2, (H, R), HALF), \
14414 X (2, (R, H), HALF), \
14415 X (2, (H, I), HALF), \
14416 X (3, (H, H, H), HALF), \
14417 X (3, (H, F, I), MIXED), \
14418 X (3, (F, H, I), MIXED), \
14419 X (3, (D, H, H), MIXED), \
14420 X (3, (D, H, S), MIXED)
14421
14422 #define S2(A,B) NS_##A##B
14423 #define S3(A,B,C) NS_##A##B##C
14424 #define S4(A,B,C,D) NS_##A##B##C##D
14425
14426 #define X(N, L, C) S##N L
14427
14428 enum neon_shape
14429 {
14430 NEON_SHAPE_DEF,
14431 NS_NULL
14432 };
14433
14434 #undef X
14435 #undef S2
14436 #undef S3
14437 #undef S4
14438
14439 enum neon_shape_class
14440 {
14441 SC_HALF,
14442 SC_SINGLE,
14443 SC_DOUBLE,
14444 SC_QUAD,
14445 SC_MIXED
14446 };
14447
14448 #define X(N, L, C) SC_##C
14449
14450 static enum neon_shape_class neon_shape_class[] =
14451 {
14452 NEON_SHAPE_DEF
14453 };
14454
14455 #undef X
14456
14457 enum neon_shape_el
14458 {
14459 SE_H,
14460 SE_F,
14461 SE_D,
14462 SE_Q,
14463 SE_I,
14464 SE_S,
14465 SE_R,
14466 SE_L
14467 };
14468
14469 /* Register widths of above. */
14470 static unsigned neon_shape_el_size[] =
14471 {
14472 16,
14473 32,
14474 64,
14475 128,
14476 0,
14477 32,
14478 32,
14479 0
14480 };
14481
14482 struct neon_shape_info
14483 {
14484 unsigned els;
14485 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14486 };
14487
14488 #define S2(A,B) { SE_##A, SE_##B }
14489 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14490 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14491
14492 #define X(N, L, C) { N, S##N L }
14493
14494 static struct neon_shape_info neon_shape_tab[] =
14495 {
14496 NEON_SHAPE_DEF
14497 };
14498
14499 #undef X
14500 #undef S2
14501 #undef S3
14502 #undef S4
14503
14504 /* Bit masks used in type checking given instructions.
14505 'N_EQK' means the type must be the same as (or based on in some way) the key
14506 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14507 set, various other bits can be set as well in order to modify the meaning of
14508 the type constraint. */
14509
14510 enum neon_type_mask
14511 {
14512 N_S8 = 0x0000001,
14513 N_S16 = 0x0000002,
14514 N_S32 = 0x0000004,
14515 N_S64 = 0x0000008,
14516 N_U8 = 0x0000010,
14517 N_U16 = 0x0000020,
14518 N_U32 = 0x0000040,
14519 N_U64 = 0x0000080,
14520 N_I8 = 0x0000100,
14521 N_I16 = 0x0000200,
14522 N_I32 = 0x0000400,
14523 N_I64 = 0x0000800,
14524 N_8 = 0x0001000,
14525 N_16 = 0x0002000,
14526 N_32 = 0x0004000,
14527 N_64 = 0x0008000,
14528 N_P8 = 0x0010000,
14529 N_P16 = 0x0020000,
14530 N_F16 = 0x0040000,
14531 N_F32 = 0x0080000,
14532 N_F64 = 0x0100000,
14533 N_P64 = 0x0200000,
14534 N_KEY = 0x1000000, /* Key element (main type specifier). */
14535 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14536 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14537 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14545 N_UTYP = 0,
14546 N_MAX_NONSPECIAL = N_P64
14547 };
14548
14549 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14550
14551 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14552 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14553 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14554 #define N_S_32 (N_S8 | N_S16 | N_S32)
14555 #define N_F_16_32 (N_F16 | N_F32)
14556 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14557 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14558 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14559 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14560 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14561 #define N_F_MVE (N_F16 | N_F32)
14562 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14563
14564 /* Pass this as the first type argument to neon_check_type to ignore types
14565 altogether. */
14566 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14567
14568 /* Select a "shape" for the current instruction (describing register types or
14569 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14570 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14571 function of operand parsing, so this function doesn't need to be called.
14572 Shapes should be listed in order of decreasing length. */
14573
14574 static enum neon_shape
14575 neon_select_shape (enum neon_shape shape, ...)
14576 {
14577 va_list ap;
14578 enum neon_shape first_shape = shape;
14579
14580 /* Fix missing optional operands. FIXME: we don't know at this point how
14581 many arguments we should have, so this makes the assumption that we have
14582 > 1. This is true of all current Neon opcodes, I think, but may not be
14583 true in the future. */
14584 if (!inst.operands[1].present)
14585 inst.operands[1] = inst.operands[0];
14586
14587 va_start (ap, shape);
14588
14589 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14590 {
14591 unsigned j;
14592 int matches = 1;
14593
14594 for (j = 0; j < neon_shape_tab[shape].els; j++)
14595 {
14596 if (!inst.operands[j].present)
14597 {
14598 matches = 0;
14599 break;
14600 }
14601
14602 switch (neon_shape_tab[shape].el[j])
14603 {
14604 /* If a .f16, .16, .u16, .s16 type specifier is given over
14605 a VFP single precision register operand, it's essentially
14606 means only half of the register is used.
14607
14608 If the type specifier is given after the mnemonics, the
14609 information is stored in inst.vectype. If the type specifier
14610 is given after register operand, the information is stored
14611 in inst.operands[].vectype.
14612
14613 When there is only one type specifier, and all the register
14614 operands are the same type of hardware register, the type
14615 specifier applies to all register operands.
14616
14617 If no type specifier is given, the shape is inferred from
14618 operand information.
14619
14620 for example:
14621 vadd.f16 s0, s1, s2: NS_HHH
14622 vabs.f16 s0, s1: NS_HH
14623 vmov.f16 s0, r1: NS_HR
14624 vmov.f16 r0, s1: NS_RH
14625 vcvt.f16 r0, s1: NS_RH
14626 vcvt.f16.s32 s2, s2, #29: NS_HFI
14627 vcvt.f16.s32 s2, s2: NS_HF
14628 */
14629 case SE_H:
14630 if (!(inst.operands[j].isreg
14631 && inst.operands[j].isvec
14632 && inst.operands[j].issingle
14633 && !inst.operands[j].isquad
14634 && ((inst.vectype.elems == 1
14635 && inst.vectype.el[0].size == 16)
14636 || (inst.vectype.elems > 1
14637 && inst.vectype.el[j].size == 16)
14638 || (inst.vectype.elems == 0
14639 && inst.operands[j].vectype.type != NT_invtype
14640 && inst.operands[j].vectype.size == 16))))
14641 matches = 0;
14642 break;
14643
14644 case SE_F:
14645 if (!(inst.operands[j].isreg
14646 && inst.operands[j].isvec
14647 && inst.operands[j].issingle
14648 && !inst.operands[j].isquad
14649 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14650 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14651 || (inst.vectype.elems == 0
14652 && (inst.operands[j].vectype.size == 32
14653 || inst.operands[j].vectype.type == NT_invtype)))))
14654 matches = 0;
14655 break;
14656
14657 case SE_D:
14658 if (!(inst.operands[j].isreg
14659 && inst.operands[j].isvec
14660 && !inst.operands[j].isquad
14661 && !inst.operands[j].issingle))
14662 matches = 0;
14663 break;
14664
14665 case SE_R:
14666 if (!(inst.operands[j].isreg
14667 && !inst.operands[j].isvec))
14668 matches = 0;
14669 break;
14670
14671 case SE_Q:
14672 if (!(inst.operands[j].isreg
14673 && inst.operands[j].isvec
14674 && inst.operands[j].isquad
14675 && !inst.operands[j].issingle))
14676 matches = 0;
14677 break;
14678
14679 case SE_I:
14680 if (!(!inst.operands[j].isreg
14681 && !inst.operands[j].isscalar))
14682 matches = 0;
14683 break;
14684
14685 case SE_S:
14686 if (!(!inst.operands[j].isreg
14687 && inst.operands[j].isscalar))
14688 matches = 0;
14689 break;
14690
14691 case SE_L:
14692 break;
14693 }
14694 if (!matches)
14695 break;
14696 }
14697 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14698 /* We've matched all the entries in the shape table, and we don't
14699 have any left over operands which have not been matched. */
14700 break;
14701 }
14702
14703 va_end (ap);
14704
14705 if (shape == NS_NULL && first_shape != NS_NULL)
14706 first_error (_("invalid instruction shape"));
14707
14708 return shape;
14709 }
14710
14711 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14712 means the Q bit should be set). */
14713
14714 static int
14715 neon_quad (enum neon_shape shape)
14716 {
14717 return neon_shape_class[shape] == SC_QUAD;
14718 }
14719
14720 static void
14721 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14722 unsigned *g_size)
14723 {
14724 /* Allow modification to be made to types which are constrained to be
14725 based on the key element, based on bits set alongside N_EQK. */
14726 if ((typebits & N_EQK) != 0)
14727 {
14728 if ((typebits & N_HLF) != 0)
14729 *g_size /= 2;
14730 else if ((typebits & N_DBL) != 0)
14731 *g_size *= 2;
14732 if ((typebits & N_SGN) != 0)
14733 *g_type = NT_signed;
14734 else if ((typebits & N_UNS) != 0)
14735 *g_type = NT_unsigned;
14736 else if ((typebits & N_INT) != 0)
14737 *g_type = NT_integer;
14738 else if ((typebits & N_FLT) != 0)
14739 *g_type = NT_float;
14740 else if ((typebits & N_SIZ) != 0)
14741 *g_type = NT_untyped;
14742 }
14743 }
14744
14745 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14746 operand type, i.e. the single type specified in a Neon instruction when it
14747 is the only one given. */
14748
14749 static struct neon_type_el
14750 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14751 {
14752 struct neon_type_el dest = *key;
14753
14754 gas_assert ((thisarg & N_EQK) != 0);
14755
14756 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14757
14758 return dest;
14759 }
14760
14761 /* Convert Neon type and size into compact bitmask representation. */
14762
14763 static enum neon_type_mask
14764 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14765 {
14766 switch (type)
14767 {
14768 case NT_untyped:
14769 switch (size)
14770 {
14771 case 8: return N_8;
14772 case 16: return N_16;
14773 case 32: return N_32;
14774 case 64: return N_64;
14775 default: ;
14776 }
14777 break;
14778
14779 case NT_integer:
14780 switch (size)
14781 {
14782 case 8: return N_I8;
14783 case 16: return N_I16;
14784 case 32: return N_I32;
14785 case 64: return N_I64;
14786 default: ;
14787 }
14788 break;
14789
14790 case NT_float:
14791 switch (size)
14792 {
14793 case 16: return N_F16;
14794 case 32: return N_F32;
14795 case 64: return N_F64;
14796 default: ;
14797 }
14798 break;
14799
14800 case NT_poly:
14801 switch (size)
14802 {
14803 case 8: return N_P8;
14804 case 16: return N_P16;
14805 case 64: return N_P64;
14806 default: ;
14807 }
14808 break;
14809
14810 case NT_signed:
14811 switch (size)
14812 {
14813 case 8: return N_S8;
14814 case 16: return N_S16;
14815 case 32: return N_S32;
14816 case 64: return N_S64;
14817 default: ;
14818 }
14819 break;
14820
14821 case NT_unsigned:
14822 switch (size)
14823 {
14824 case 8: return N_U8;
14825 case 16: return N_U16;
14826 case 32: return N_U32;
14827 case 64: return N_U64;
14828 default: ;
14829 }
14830 break;
14831
14832 default: ;
14833 }
14834
14835 return N_UTYP;
14836 }
14837
14838 /* Convert compact Neon bitmask type representation to a type and size. Only
14839 handles the case where a single bit is set in the mask. */
14840
14841 static int
14842 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14843 enum neon_type_mask mask)
14844 {
14845 if ((mask & N_EQK) != 0)
14846 return FAIL;
14847
14848 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14849 *size = 8;
14850 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14851 *size = 16;
14852 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14853 *size = 32;
14854 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14855 *size = 64;
14856 else
14857 return FAIL;
14858
14859 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14860 *type = NT_signed;
14861 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14862 *type = NT_unsigned;
14863 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14864 *type = NT_integer;
14865 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14866 *type = NT_untyped;
14867 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14868 *type = NT_poly;
14869 else if ((mask & (N_F_ALL)) != 0)
14870 *type = NT_float;
14871 else
14872 return FAIL;
14873
14874 return SUCCESS;
14875 }
14876
14877 /* Modify a bitmask of allowed types. This is only needed for type
14878 relaxation. */
14879
14880 static unsigned
14881 modify_types_allowed (unsigned allowed, unsigned mods)
14882 {
14883 unsigned size;
14884 enum neon_el_type type;
14885 unsigned destmask;
14886 int i;
14887
14888 destmask = 0;
14889
14890 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14891 {
14892 if (el_type_of_type_chk (&type, &size,
14893 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14894 {
14895 neon_modify_type_size (mods, &type, &size);
14896 destmask |= type_chk_of_el_type (type, size);
14897 }
14898 }
14899
14900 return destmask;
14901 }
14902
14903 /* Check type and return type classification.
14904 The manual states (paraphrase): If one datatype is given, it indicates the
14905 type given in:
14906 - the second operand, if there is one
14907 - the operand, if there is no second operand
14908 - the result, if there are no operands.
14909 This isn't quite good enough though, so we use a concept of a "key" datatype
14910 which is set on a per-instruction basis, which is the one which matters when
14911 only one data type is written.
14912 Note: this function has side-effects (e.g. filling in missing operands). All
14913 Neon instructions should call it before performing bit encoding. */
14914
14915 static struct neon_type_el
14916 neon_check_type (unsigned els, enum neon_shape ns, ...)
14917 {
14918 va_list ap;
14919 unsigned i, pass, key_el = 0;
14920 unsigned types[NEON_MAX_TYPE_ELS];
14921 enum neon_el_type k_type = NT_invtype;
14922 unsigned k_size = -1u;
14923 struct neon_type_el badtype = {NT_invtype, -1};
14924 unsigned key_allowed = 0;
14925
14926 /* Optional registers in Neon instructions are always (not) in operand 1.
14927 Fill in the missing operand here, if it was omitted. */
14928 if (els > 1 && !inst.operands[1].present)
14929 inst.operands[1] = inst.operands[0];
14930
14931 /* Suck up all the varargs. */
14932 va_start (ap, ns);
14933 for (i = 0; i < els; i++)
14934 {
14935 unsigned thisarg = va_arg (ap, unsigned);
14936 if (thisarg == N_IGNORE_TYPE)
14937 {
14938 va_end (ap);
14939 return badtype;
14940 }
14941 types[i] = thisarg;
14942 if ((thisarg & N_KEY) != 0)
14943 key_el = i;
14944 }
14945 va_end (ap);
14946
14947 if (inst.vectype.elems > 0)
14948 for (i = 0; i < els; i++)
14949 if (inst.operands[i].vectype.type != NT_invtype)
14950 {
14951 first_error (_("types specified in both the mnemonic and operands"));
14952 return badtype;
14953 }
14954
14955 /* Duplicate inst.vectype elements here as necessary.
14956 FIXME: No idea if this is exactly the same as the ARM assembler,
14957 particularly when an insn takes one register and one non-register
14958 operand. */
14959 if (inst.vectype.elems == 1 && els > 1)
14960 {
14961 unsigned j;
14962 inst.vectype.elems = els;
14963 inst.vectype.el[key_el] = inst.vectype.el[0];
14964 for (j = 0; j < els; j++)
14965 if (j != key_el)
14966 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14967 types[j]);
14968 }
14969 else if (inst.vectype.elems == 0 && els > 0)
14970 {
14971 unsigned j;
14972 /* No types were given after the mnemonic, so look for types specified
14973 after each operand. We allow some flexibility here; as long as the
14974 "key" operand has a type, we can infer the others. */
14975 for (j = 0; j < els; j++)
14976 if (inst.operands[j].vectype.type != NT_invtype)
14977 inst.vectype.el[j] = inst.operands[j].vectype;
14978
14979 if (inst.operands[key_el].vectype.type != NT_invtype)
14980 {
14981 for (j = 0; j < els; j++)
14982 if (inst.operands[j].vectype.type == NT_invtype)
14983 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14984 types[j]);
14985 }
14986 else
14987 {
14988 first_error (_("operand types can't be inferred"));
14989 return badtype;
14990 }
14991 }
14992 else if (inst.vectype.elems != els)
14993 {
14994 first_error (_("type specifier has the wrong number of parts"));
14995 return badtype;
14996 }
14997
14998 for (pass = 0; pass < 2; pass++)
14999 {
15000 for (i = 0; i < els; i++)
15001 {
15002 unsigned thisarg = types[i];
15003 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15004 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15005 enum neon_el_type g_type = inst.vectype.el[i].type;
15006 unsigned g_size = inst.vectype.el[i].size;
15007
15008 /* Decay more-specific signed & unsigned types to sign-insensitive
15009 integer types if sign-specific variants are unavailable. */
15010 if ((g_type == NT_signed || g_type == NT_unsigned)
15011 && (types_allowed & N_SU_ALL) == 0)
15012 g_type = NT_integer;
15013
15014 /* If only untyped args are allowed, decay any more specific types to
15015 them. Some instructions only care about signs for some element
15016 sizes, so handle that properly. */
15017 if (((types_allowed & N_UNT) == 0)
15018 && ((g_size == 8 && (types_allowed & N_8) != 0)
15019 || (g_size == 16 && (types_allowed & N_16) != 0)
15020 || (g_size == 32 && (types_allowed & N_32) != 0)
15021 || (g_size == 64 && (types_allowed & N_64) != 0)))
15022 g_type = NT_untyped;
15023
15024 if (pass == 0)
15025 {
15026 if ((thisarg & N_KEY) != 0)
15027 {
15028 k_type = g_type;
15029 k_size = g_size;
15030 key_allowed = thisarg & ~N_KEY;
15031
15032 /* Check architecture constraint on FP16 extension. */
15033 if (k_size == 16
15034 && k_type == NT_float
15035 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15036 {
15037 inst.error = _(BAD_FP16);
15038 return badtype;
15039 }
15040 }
15041 }
15042 else
15043 {
15044 if ((thisarg & N_VFP) != 0)
15045 {
15046 enum neon_shape_el regshape;
15047 unsigned regwidth, match;
15048
15049 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15050 if (ns == NS_NULL)
15051 {
15052 first_error (_("invalid instruction shape"));
15053 return badtype;
15054 }
15055 regshape = neon_shape_tab[ns].el[i];
15056 regwidth = neon_shape_el_size[regshape];
15057
15058 /* In VFP mode, operands must match register widths. If we
15059 have a key operand, use its width, else use the width of
15060 the current operand. */
15061 if (k_size != -1u)
15062 match = k_size;
15063 else
15064 match = g_size;
15065
15066 /* FP16 will use a single precision register. */
15067 if (regwidth == 32 && match == 16)
15068 {
15069 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15070 match = regwidth;
15071 else
15072 {
15073 inst.error = _(BAD_FP16);
15074 return badtype;
15075 }
15076 }
15077
15078 if (regwidth != match)
15079 {
15080 first_error (_("operand size must match register width"));
15081 return badtype;
15082 }
15083 }
15084
15085 if ((thisarg & N_EQK) == 0)
15086 {
15087 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15088
15089 if ((given_type & types_allowed) == 0)
15090 {
15091 first_error (BAD_SIMD_TYPE);
15092 return badtype;
15093 }
15094 }
15095 else
15096 {
15097 enum neon_el_type mod_k_type = k_type;
15098 unsigned mod_k_size = k_size;
15099 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15100 if (g_type != mod_k_type || g_size != mod_k_size)
15101 {
15102 first_error (_("inconsistent types in Neon instruction"));
15103 return badtype;
15104 }
15105 }
15106 }
15107 }
15108 }
15109
15110 return inst.vectype.el[key_el];
15111 }
15112
15113 /* Neon-style VFP instruction forwarding. */
15114
15115 /* Thumb VFP instructions have 0xE in the condition field. */
15116
15117 static void
15118 do_vfp_cond_or_thumb (void)
15119 {
15120 inst.is_neon = 1;
15121
15122 if (thumb_mode)
15123 inst.instruction |= 0xe0000000;
15124 else
15125 inst.instruction |= inst.cond << 28;
15126 }
15127
15128 /* Look up and encode a simple mnemonic, for use as a helper function for the
15129 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15130 etc. It is assumed that operand parsing has already been done, and that the
15131 operands are in the form expected by the given opcode (this isn't necessarily
15132 the same as the form in which they were parsed, hence some massaging must
15133 take place before this function is called).
15134 Checks current arch version against that in the looked-up opcode. */
15135
15136 static void
15137 do_vfp_nsyn_opcode (const char *opname)
15138 {
15139 const struct asm_opcode *opcode;
15140
15141 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15142
15143 if (!opcode)
15144 abort ();
15145
15146 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15147 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15148 _(BAD_FPU));
15149
15150 inst.is_neon = 1;
15151
15152 if (thumb_mode)
15153 {
15154 inst.instruction = opcode->tvalue;
15155 opcode->tencode ();
15156 }
15157 else
15158 {
15159 inst.instruction = (inst.cond << 28) | opcode->avalue;
15160 opcode->aencode ();
15161 }
15162 }
15163
15164 static void
15165 do_vfp_nsyn_add_sub (enum neon_shape rs)
15166 {
15167 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15168
15169 if (rs == NS_FFF || rs == NS_HHH)
15170 {
15171 if (is_add)
15172 do_vfp_nsyn_opcode ("fadds");
15173 else
15174 do_vfp_nsyn_opcode ("fsubs");
15175
15176 /* ARMv8.2 fp16 instruction. */
15177 if (rs == NS_HHH)
15178 do_scalar_fp16_v82_encode ();
15179 }
15180 else
15181 {
15182 if (is_add)
15183 do_vfp_nsyn_opcode ("faddd");
15184 else
15185 do_vfp_nsyn_opcode ("fsubd");
15186 }
15187 }
15188
15189 /* Check operand types to see if this is a VFP instruction, and if so call
15190 PFN (). */
15191
15192 static int
15193 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15194 {
15195 enum neon_shape rs;
15196 struct neon_type_el et;
15197
15198 switch (args)
15199 {
15200 case 2:
15201 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15202 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15203 break;
15204
15205 case 3:
15206 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15207 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15208 N_F_ALL | N_KEY | N_VFP);
15209 break;
15210
15211 default:
15212 abort ();
15213 }
15214
15215 if (et.type != NT_invtype)
15216 {
15217 pfn (rs);
15218 return SUCCESS;
15219 }
15220
15221 inst.error = NULL;
15222 return FAIL;
15223 }
15224
15225 static void
15226 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15227 {
15228 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15229
15230 if (rs == NS_FFF || rs == NS_HHH)
15231 {
15232 if (is_mla)
15233 do_vfp_nsyn_opcode ("fmacs");
15234 else
15235 do_vfp_nsyn_opcode ("fnmacs");
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
15240 }
15241 else
15242 {
15243 if (is_mla)
15244 do_vfp_nsyn_opcode ("fmacd");
15245 else
15246 do_vfp_nsyn_opcode ("fnmacd");
15247 }
15248 }
15249
15250 static void
15251 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15252 {
15253 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15254
15255 if (rs == NS_FFF || rs == NS_HHH)
15256 {
15257 if (is_fma)
15258 do_vfp_nsyn_opcode ("ffmas");
15259 else
15260 do_vfp_nsyn_opcode ("ffnmas");
15261
15262 /* ARMv8.2 fp16 instruction. */
15263 if (rs == NS_HHH)
15264 do_scalar_fp16_v82_encode ();
15265 }
15266 else
15267 {
15268 if (is_fma)
15269 do_vfp_nsyn_opcode ("ffmad");
15270 else
15271 do_vfp_nsyn_opcode ("ffnmad");
15272 }
15273 }
15274
15275 static void
15276 do_vfp_nsyn_mul (enum neon_shape rs)
15277 {
15278 if (rs == NS_FFF || rs == NS_HHH)
15279 {
15280 do_vfp_nsyn_opcode ("fmuls");
15281
15282 /* ARMv8.2 fp16 instruction. */
15283 if (rs == NS_HHH)
15284 do_scalar_fp16_v82_encode ();
15285 }
15286 else
15287 do_vfp_nsyn_opcode ("fmuld");
15288 }
15289
15290 static void
15291 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15292 {
15293 int is_neg = (inst.instruction & 0x80) != 0;
15294 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15295
15296 if (rs == NS_FF || rs == NS_HH)
15297 {
15298 if (is_neg)
15299 do_vfp_nsyn_opcode ("fnegs");
15300 else
15301 do_vfp_nsyn_opcode ("fabss");
15302
15303 /* ARMv8.2 fp16 instruction. */
15304 if (rs == NS_HH)
15305 do_scalar_fp16_v82_encode ();
15306 }
15307 else
15308 {
15309 if (is_neg)
15310 do_vfp_nsyn_opcode ("fnegd");
15311 else
15312 do_vfp_nsyn_opcode ("fabsd");
15313 }
15314 }
15315
15316 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15317 insns belong to Neon, and are handled elsewhere. */
15318
15319 static void
15320 do_vfp_nsyn_ldm_stm (int is_dbmode)
15321 {
15322 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15323 if (is_ldm)
15324 {
15325 if (is_dbmode)
15326 do_vfp_nsyn_opcode ("fldmdbs");
15327 else
15328 do_vfp_nsyn_opcode ("fldmias");
15329 }
15330 else
15331 {
15332 if (is_dbmode)
15333 do_vfp_nsyn_opcode ("fstmdbs");
15334 else
15335 do_vfp_nsyn_opcode ("fstmias");
15336 }
15337 }
15338
15339 static void
15340 do_vfp_nsyn_sqrt (void)
15341 {
15342 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15343 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15344
15345 if (rs == NS_FF || rs == NS_HH)
15346 {
15347 do_vfp_nsyn_opcode ("fsqrts");
15348
15349 /* ARMv8.2 fp16 instruction. */
15350 if (rs == NS_HH)
15351 do_scalar_fp16_v82_encode ();
15352 }
15353 else
15354 do_vfp_nsyn_opcode ("fsqrtd");
15355 }
15356
15357 static void
15358 do_vfp_nsyn_div (void)
15359 {
15360 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15361 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15362 N_F_ALL | N_KEY | N_VFP);
15363
15364 if (rs == NS_FFF || rs == NS_HHH)
15365 {
15366 do_vfp_nsyn_opcode ("fdivs");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HHH)
15370 do_scalar_fp16_v82_encode ();
15371 }
15372 else
15373 do_vfp_nsyn_opcode ("fdivd");
15374 }
15375
15376 static void
15377 do_vfp_nsyn_nmul (void)
15378 {
15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15381 N_F_ALL | N_KEY | N_VFP);
15382
15383 if (rs == NS_FFF || rs == NS_HHH)
15384 {
15385 NEON_ENCODE (SINGLE, inst);
15386 do_vfp_sp_dyadic ();
15387
15388 /* ARMv8.2 fp16 instruction. */
15389 if (rs == NS_HHH)
15390 do_scalar_fp16_v82_encode ();
15391 }
15392 else
15393 {
15394 NEON_ENCODE (DOUBLE, inst);
15395 do_vfp_dp_rd_rn_rm ();
15396 }
15397 do_vfp_cond_or_thumb ();
15398
15399 }
15400
15401 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15402 (0, 1, 2, 3). */
15403
15404 static unsigned
15405 neon_logbits (unsigned x)
15406 {
15407 return ffs (x) - 4;
15408 }
15409
15410 #define LOW4(R) ((R) & 0xf)
15411 #define HI1(R) (((R) >> 4) & 1)
15412
15413 static unsigned
15414 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15415 {
15416 switch (et.type)
15417 {
15418 default:
15419 first_error (BAD_EL_TYPE);
15420 return 0;
15421 case NT_float:
15422 switch (inst.operands[0].imm)
15423 {
15424 default:
15425 first_error (_("invalid condition"));
15426 return 0;
15427 case 0x0:
15428 /* eq. */
15429 return 0;
15430 case 0x1:
15431 /* ne. */
15432 return 1;
15433 case 0xa:
15434 /* ge/ */
15435 return 4;
15436 case 0xb:
15437 /* lt. */
15438 return 5;
15439 case 0xc:
15440 /* gt. */
15441 return 6;
15442 case 0xd:
15443 /* le. */
15444 return 7;
15445 }
15446 case NT_integer:
15447 /* only accept eq and ne. */
15448 if (inst.operands[0].imm > 1)
15449 {
15450 first_error (_("invalid condition"));
15451 return 0;
15452 }
15453 return inst.operands[0].imm;
15454 case NT_unsigned:
15455 if (inst.operands[0].imm == 0x2)
15456 return 2;
15457 else if (inst.operands[0].imm == 0x8)
15458 return 3;
15459 else
15460 {
15461 first_error (_("invalid condition"));
15462 return 0;
15463 }
15464 case NT_signed:
15465 switch (inst.operands[0].imm)
15466 {
15467 default:
15468 first_error (_("invalid condition"));
15469 return 0;
15470 case 0xa:
15471 /* ge. */
15472 return 4;
15473 case 0xb:
15474 /* lt. */
15475 return 5;
15476 case 0xc:
15477 /* gt. */
15478 return 6;
15479 case 0xd:
15480 /* le. */
15481 return 7;
15482 }
15483 }
15484 /* Should be unreachable. */
15485 abort ();
15486 }
15487
15488 static void
15489 do_mve_vpt (void)
15490 {
15491 /* We are dealing with a vector predicated block. */
15492 if (inst.operands[0].present)
15493 {
15494 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15495 struct neon_type_el et
15496 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15497 N_EQK);
15498
15499 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15500
15501 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15502
15503 if (et.type == NT_invtype)
15504 return;
15505
15506 if (et.type == NT_float)
15507 {
15508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15509 BAD_FPU);
15510 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15511 inst.instruction |= (et.size == 16) << 28;
15512 inst.instruction |= 0x3 << 20;
15513 }
15514 else
15515 {
15516 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15517 BAD_EL_TYPE);
15518 inst.instruction |= 1 << 28;
15519 inst.instruction |= neon_logbits (et.size) << 20;
15520 }
15521
15522 if (inst.operands[2].isquad)
15523 {
15524 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15525 inst.instruction |= LOW4 (inst.operands[2].reg);
15526 inst.instruction |= (fcond & 0x2) >> 1;
15527 }
15528 else
15529 {
15530 if (inst.operands[2].reg == REG_SP)
15531 as_tsktsk (MVE_BAD_SP);
15532 inst.instruction |= 1 << 6;
15533 inst.instruction |= (fcond & 0x2) << 4;
15534 inst.instruction |= inst.operands[2].reg;
15535 }
15536 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15537 inst.instruction |= (fcond & 0x4) << 10;
15538 inst.instruction |= (fcond & 0x1) << 7;
15539
15540 }
15541 set_pred_insn_type (VPT_INSN);
15542 now_pred.cc = 0;
15543 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15544 | ((inst.instruction & 0xe000) >> 13);
15545 now_pred.warn_deprecated = FALSE;
15546 now_pred.type = VECTOR_PRED;
15547 inst.is_neon = 1;
15548 }
15549
15550 static void
15551 do_mve_vcmp (void)
15552 {
15553 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15554 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15555 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15556 if (!inst.operands[2].present)
15557 first_error (_("MVE vector or ARM register expected"));
15558 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15559
15560 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15561 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15562 && inst.operands[1].isquad)
15563 {
15564 inst.instruction = N_MNEM_vcmp;
15565 inst.cond = 0x10;
15566 }
15567
15568 if (inst.cond > COND_ALWAYS)
15569 inst.pred_insn_type = INSIDE_VPT_INSN;
15570 else
15571 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15572
15573 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15574 struct neon_type_el et
15575 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15576 N_EQK);
15577
15578 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15579 && !inst.operands[2].iszr, BAD_PC);
15580
15581 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15582
15583 inst.instruction = 0xee010f00;
15584 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15585 inst.instruction |= (fcond & 0x4) << 10;
15586 inst.instruction |= (fcond & 0x1) << 7;
15587 if (et.type == NT_float)
15588 {
15589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15590 BAD_FPU);
15591 inst.instruction |= (et.size == 16) << 28;
15592 inst.instruction |= 0x3 << 20;
15593 }
15594 else
15595 {
15596 inst.instruction |= 1 << 28;
15597 inst.instruction |= neon_logbits (et.size) << 20;
15598 }
15599 if (inst.operands[2].isquad)
15600 {
15601 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15602 inst.instruction |= (fcond & 0x2) >> 1;
15603 inst.instruction |= LOW4 (inst.operands[2].reg);
15604 }
15605 else
15606 {
15607 if (inst.operands[2].reg == REG_SP)
15608 as_tsktsk (MVE_BAD_SP);
15609 inst.instruction |= 1 << 6;
15610 inst.instruction |= (fcond & 0x2) << 4;
15611 inst.instruction |= inst.operands[2].reg;
15612 }
15613
15614 inst.is_neon = 1;
15615 return;
15616 }
15617
15618 static void
15619 do_mve_vmaxa_vmina (void)
15620 {
15621 if (inst.cond > COND_ALWAYS)
15622 inst.pred_insn_type = INSIDE_VPT_INSN;
15623 else
15624 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15625
15626 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15627 struct neon_type_el et
15628 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15629
15630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15631 inst.instruction |= neon_logbits (et.size) << 18;
15632 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15633 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15634 inst.instruction |= LOW4 (inst.operands[1].reg);
15635 inst.is_neon = 1;
15636 }
15637
15638 static void
15639 do_mve_vfmas (void)
15640 {
15641 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15642 struct neon_type_el et
15643 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15644
15645 if (inst.cond > COND_ALWAYS)
15646 inst.pred_insn_type = INSIDE_VPT_INSN;
15647 else
15648 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15649
15650 if (inst.operands[2].reg == REG_SP)
15651 as_tsktsk (MVE_BAD_SP);
15652 else if (inst.operands[2].reg == REG_PC)
15653 as_tsktsk (MVE_BAD_PC);
15654
15655 inst.instruction |= (et.size == 16) << 28;
15656 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15657 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15658 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15659 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15660 inst.instruction |= inst.operands[2].reg;
15661 inst.is_neon = 1;
15662 }
15663
15664 static void
15665 do_mve_viddup (void)
15666 {
15667 if (inst.cond > COND_ALWAYS)
15668 inst.pred_insn_type = INSIDE_VPT_INSN;
15669 else
15670 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15671
15672 unsigned imm = inst.relocs[0].exp.X_add_number;
15673 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15674 _("immediate must be either 1, 2, 4 or 8"));
15675
15676 enum neon_shape rs;
15677 struct neon_type_el et;
15678 unsigned Rm;
15679 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15680 {
15681 rs = neon_select_shape (NS_QRI, NS_NULL);
15682 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15683 Rm = 7;
15684 }
15685 else
15686 {
15687 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15688 if (inst.operands[2].reg == REG_SP)
15689 as_tsktsk (MVE_BAD_SP);
15690 else if (inst.operands[2].reg == REG_PC)
15691 first_error (BAD_PC);
15692
15693 rs = neon_select_shape (NS_QRRI, NS_NULL);
15694 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15695 Rm = inst.operands[2].reg >> 1;
15696 }
15697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15698 inst.instruction |= neon_logbits (et.size) << 20;
15699 inst.instruction |= inst.operands[1].reg << 16;
15700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15701 inst.instruction |= (imm > 2) << 7;
15702 inst.instruction |= Rm << 1;
15703 inst.instruction |= (imm == 2 || imm == 8);
15704 inst.is_neon = 1;
15705 }
15706
15707 static void
15708 do_mve_vmlas (void)
15709 {
15710 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15711 struct neon_type_el et
15712 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15713
15714 if (inst.operands[2].reg == REG_PC)
15715 as_tsktsk (MVE_BAD_PC);
15716 else if (inst.operands[2].reg == REG_SP)
15717 as_tsktsk (MVE_BAD_SP);
15718
15719 if (inst.cond > COND_ALWAYS)
15720 inst.pred_insn_type = INSIDE_VPT_INSN;
15721 else
15722 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15723
15724 inst.instruction |= (et.type == NT_unsigned) << 28;
15725 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15726 inst.instruction |= neon_logbits (et.size) << 20;
15727 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15728 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15729 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15730 inst.instruction |= inst.operands[2].reg;
15731 inst.is_neon = 1;
15732 }
15733
15734 static void
15735 do_mve_vmaxnma_vminnma (void)
15736 {
15737 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15738 struct neon_type_el et
15739 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15740
15741 if (inst.cond > COND_ALWAYS)
15742 inst.pred_insn_type = INSIDE_VPT_INSN;
15743 else
15744 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15745
15746 inst.instruction |= (et.size == 16) << 28;
15747 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15748 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15749 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15750 inst.instruction |= LOW4 (inst.operands[1].reg);
15751 inst.is_neon = 1;
15752 }
15753
15754 static void
15755 do_mve_vcmul (void)
15756 {
15757 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15758 struct neon_type_el et
15759 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15760
15761 if (inst.cond > COND_ALWAYS)
15762 inst.pred_insn_type = INSIDE_VPT_INSN;
15763 else
15764 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15765
15766 unsigned rot = inst.relocs[0].exp.X_add_number;
15767 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15768 _("immediate out of range"));
15769
15770 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15771 || inst.operands[0].reg == inst.operands[2].reg))
15772 as_tsktsk (BAD_MVE_SRCDEST);
15773
15774 inst.instruction |= (et.size == 32) << 28;
15775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15776 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15778 inst.instruction |= (rot > 90) << 12;
15779 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15780 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15781 inst.instruction |= LOW4 (inst.operands[2].reg);
15782 inst.instruction |= (rot == 90 || rot == 270);
15783 inst.is_neon = 1;
15784 }
15785
15786 static void
15787 do_vfp_nsyn_cmp (void)
15788 {
15789 enum neon_shape rs;
15790 if (!inst.operands[0].isreg)
15791 {
15792 do_mve_vcmp ();
15793 return;
15794 }
15795 else
15796 {
15797 constraint (inst.operands[2].present, BAD_SYNTAX);
15798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15799 BAD_FPU);
15800 }
15801
15802 if (inst.operands[1].isreg)
15803 {
15804 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15805 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15806
15807 if (rs == NS_FF || rs == NS_HH)
15808 {
15809 NEON_ENCODE (SINGLE, inst);
15810 do_vfp_sp_monadic ();
15811 }
15812 else
15813 {
15814 NEON_ENCODE (DOUBLE, inst);
15815 do_vfp_dp_rd_rm ();
15816 }
15817 }
15818 else
15819 {
15820 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15821 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15822
15823 switch (inst.instruction & 0x0fffffff)
15824 {
15825 case N_MNEM_vcmp:
15826 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15827 break;
15828 case N_MNEM_vcmpe:
15829 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15830 break;
15831 default:
15832 abort ();
15833 }
15834
15835 if (rs == NS_FI || rs == NS_HI)
15836 {
15837 NEON_ENCODE (SINGLE, inst);
15838 do_vfp_sp_compare_z ();
15839 }
15840 else
15841 {
15842 NEON_ENCODE (DOUBLE, inst);
15843 do_vfp_dp_rd ();
15844 }
15845 }
15846 do_vfp_cond_or_thumb ();
15847
15848 /* ARMv8.2 fp16 instruction. */
15849 if (rs == NS_HI || rs == NS_HH)
15850 do_scalar_fp16_v82_encode ();
15851 }
15852
15853 static void
15854 nsyn_insert_sp (void)
15855 {
15856 inst.operands[1] = inst.operands[0];
15857 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15858 inst.operands[0].reg = REG_SP;
15859 inst.operands[0].isreg = 1;
15860 inst.operands[0].writeback = 1;
15861 inst.operands[0].present = 1;
15862 }
15863
15864 static void
15865 do_vfp_nsyn_push (void)
15866 {
15867 nsyn_insert_sp ();
15868
15869 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15870 _("register list must contain at least 1 and at most 16 "
15871 "registers"));
15872
15873 if (inst.operands[1].issingle)
15874 do_vfp_nsyn_opcode ("fstmdbs");
15875 else
15876 do_vfp_nsyn_opcode ("fstmdbd");
15877 }
15878
15879 static void
15880 do_vfp_nsyn_pop (void)
15881 {
15882 nsyn_insert_sp ();
15883
15884 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15885 _("register list must contain at least 1 and at most 16 "
15886 "registers"));
15887
15888 if (inst.operands[1].issingle)
15889 do_vfp_nsyn_opcode ("fldmias");
15890 else
15891 do_vfp_nsyn_opcode ("fldmiad");
15892 }
15893
15894 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15895 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15896
15897 static void
15898 neon_dp_fixup (struct arm_it* insn)
15899 {
15900 unsigned int i = insn->instruction;
15901 insn->is_neon = 1;
15902
15903 if (thumb_mode)
15904 {
15905 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15906 if (i & (1 << 24))
15907 i |= 1 << 28;
15908
15909 i &= ~(1 << 24);
15910
15911 i |= 0xef000000;
15912 }
15913 else
15914 i |= 0xf2000000;
15915
15916 insn->instruction = i;
15917 }
15918
15919 static void
15920 mve_encode_qqr (int size, int U, int fp)
15921 {
15922 if (inst.operands[2].reg == REG_SP)
15923 as_tsktsk (MVE_BAD_SP);
15924 else if (inst.operands[2].reg == REG_PC)
15925 as_tsktsk (MVE_BAD_PC);
15926
15927 if (fp)
15928 {
15929 /* vadd. */
15930 if (((unsigned)inst.instruction) == 0xd00)
15931 inst.instruction = 0xee300f40;
15932 /* vsub. */
15933 else if (((unsigned)inst.instruction) == 0x200d00)
15934 inst.instruction = 0xee301f40;
15935 /* vmul. */
15936 else if (((unsigned)inst.instruction) == 0x1000d10)
15937 inst.instruction = 0xee310e60;
15938
15939 /* Setting size which is 1 for F16 and 0 for F32. */
15940 inst.instruction |= (size == 16) << 28;
15941 }
15942 else
15943 {
15944 /* vadd. */
15945 if (((unsigned)inst.instruction) == 0x800)
15946 inst.instruction = 0xee010f40;
15947 /* vsub. */
15948 else if (((unsigned)inst.instruction) == 0x1000800)
15949 inst.instruction = 0xee011f40;
15950 /* vhadd. */
15951 else if (((unsigned)inst.instruction) == 0)
15952 inst.instruction = 0xee000f40;
15953 /* vhsub. */
15954 else if (((unsigned)inst.instruction) == 0x200)
15955 inst.instruction = 0xee001f40;
15956 /* vmla. */
15957 else if (((unsigned)inst.instruction) == 0x900)
15958 inst.instruction = 0xee010e40;
15959 /* vmul. */
15960 else if (((unsigned)inst.instruction) == 0x910)
15961 inst.instruction = 0xee011e60;
15962 /* vqadd. */
15963 else if (((unsigned)inst.instruction) == 0x10)
15964 inst.instruction = 0xee000f60;
15965 /* vqsub. */
15966 else if (((unsigned)inst.instruction) == 0x210)
15967 inst.instruction = 0xee001f60;
15968
15969 /* Set U-bit. */
15970 inst.instruction |= U << 28;
15971
15972 /* Setting bits for size. */
15973 inst.instruction |= neon_logbits (size) << 20;
15974 }
15975 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15976 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15977 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15978 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15979 inst.instruction |= inst.operands[2].reg;
15980 inst.is_neon = 1;
15981 }
15982
15983 static void
15984 mve_encode_rqq (unsigned bit28, unsigned size)
15985 {
15986 inst.instruction |= bit28 << 28;
15987 inst.instruction |= neon_logbits (size) << 20;
15988 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15989 inst.instruction |= inst.operands[0].reg << 12;
15990 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15991 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15992 inst.instruction |= LOW4 (inst.operands[2].reg);
15993 inst.is_neon = 1;
15994 }
15995
15996 static void
15997 mve_encode_qqq (int ubit, int size)
15998 {
15999
16000 inst.instruction |= (ubit != 0) << 28;
16001 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16002 inst.instruction |= neon_logbits (size) << 20;
16003 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16004 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16005 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16006 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16007 inst.instruction |= LOW4 (inst.operands[2].reg);
16008
16009 inst.is_neon = 1;
16010 }
16011
16012 static void
16013 mve_encode_rq (unsigned bit28, unsigned size)
16014 {
16015 inst.instruction |= bit28 << 28;
16016 inst.instruction |= neon_logbits (size) << 18;
16017 inst.instruction |= inst.operands[0].reg << 12;
16018 inst.instruction |= LOW4 (inst.operands[1].reg);
16019 inst.is_neon = 1;
16020 }
16021
16022 static void
16023 mve_encode_rrqq (unsigned U, unsigned size)
16024 {
16025 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16026
16027 inst.instruction |= U << 28;
16028 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16029 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16030 inst.instruction |= (size == 32) << 16;
16031 inst.instruction |= inst.operands[0].reg << 12;
16032 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16033 inst.instruction |= inst.operands[3].reg;
16034 inst.is_neon = 1;
16035 }
16036
16037 /* Encode insns with bit pattern:
16038
16039 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16040 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16041
16042 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16043 different meaning for some instruction. */
16044
16045 static void
16046 neon_three_same (int isquad, int ubit, int size)
16047 {
16048 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16049 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16050 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16051 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16052 inst.instruction |= LOW4 (inst.operands[2].reg);
16053 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16054 inst.instruction |= (isquad != 0) << 6;
16055 inst.instruction |= (ubit != 0) << 24;
16056 if (size != -1)
16057 inst.instruction |= neon_logbits (size) << 20;
16058
16059 neon_dp_fixup (&inst);
16060 }
16061
16062 /* Encode instructions of the form:
16063
16064 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16065 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16066
16067 Don't write size if SIZE == -1. */
16068
16069 static void
16070 neon_two_same (int qbit, int ubit, int size)
16071 {
16072 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16073 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16074 inst.instruction |= LOW4 (inst.operands[1].reg);
16075 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16076 inst.instruction |= (qbit != 0) << 6;
16077 inst.instruction |= (ubit != 0) << 24;
16078
16079 if (size != -1)
16080 inst.instruction |= neon_logbits (size) << 18;
16081
16082 neon_dp_fixup (&inst);
16083 }
16084
16085 enum vfp_or_neon_is_neon_bits
16086 {
16087 NEON_CHECK_CC = 1,
16088 NEON_CHECK_ARCH = 2,
16089 NEON_CHECK_ARCH8 = 4
16090 };
16091
16092 /* Call this function if an instruction which may have belonged to the VFP or
16093 Neon instruction sets, but turned out to be a Neon instruction (due to the
16094 operand types involved, etc.). We have to check and/or fix-up a couple of
16095 things:
16096
16097 - Make sure the user hasn't attempted to make a Neon instruction
16098 conditional.
16099 - Alter the value in the condition code field if necessary.
16100 - Make sure that the arch supports Neon instructions.
16101
16102 Which of these operations take place depends on bits from enum
16103 vfp_or_neon_is_neon_bits.
16104
16105 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16106 current instruction's condition is COND_ALWAYS, the condition field is
16107 changed to inst.uncond_value. This is necessary because instructions shared
16108 between VFP and Neon may be conditional for the VFP variants only, and the
16109 unconditional Neon version must have, e.g., 0xF in the condition field. */
16110
16111 static int
16112 vfp_or_neon_is_neon (unsigned check)
16113 {
16114 /* Conditions are always legal in Thumb mode (IT blocks). */
16115 if (!thumb_mode && (check & NEON_CHECK_CC))
16116 {
16117 if (inst.cond != COND_ALWAYS)
16118 {
16119 first_error (_(BAD_COND));
16120 return FAIL;
16121 }
16122 if (inst.uncond_value != -1)
16123 inst.instruction |= inst.uncond_value << 28;
16124 }
16125
16126
16127 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16128 || ((check & NEON_CHECK_ARCH8)
16129 && !mark_feature_used (&fpu_neon_ext_armv8)))
16130 {
16131 first_error (_(BAD_FPU));
16132 return FAIL;
16133 }
16134
16135 return SUCCESS;
16136 }
16137
16138 static int
16139 check_simd_pred_availability (int fp, unsigned check)
16140 {
16141 if (inst.cond > COND_ALWAYS)
16142 {
16143 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16144 {
16145 inst.error = BAD_FPU;
16146 return 1;
16147 }
16148 inst.pred_insn_type = INSIDE_VPT_INSN;
16149 }
16150 else if (inst.cond < COND_ALWAYS)
16151 {
16152 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16153 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16154 else if (vfp_or_neon_is_neon (check) == FAIL)
16155 return 2;
16156 }
16157 else
16158 {
16159 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16160 && vfp_or_neon_is_neon (check) == FAIL)
16161 return 3;
16162
16163 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16164 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16165 }
16166 return 0;
16167 }
16168
16169 /* Neon instruction encoders, in approximate order of appearance. */
16170
16171 static void
16172 do_neon_dyadic_i_su (void)
16173 {
16174 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16175 return;
16176
16177 enum neon_shape rs;
16178 struct neon_type_el et;
16179 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16180 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16181 else
16182 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16183
16184 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16185
16186
16187 if (rs != NS_QQR)
16188 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16189 else
16190 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16191 }
16192
16193 static void
16194 do_neon_dyadic_i64_su (void)
16195 {
16196 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16197 return;
16198 enum neon_shape rs;
16199 struct neon_type_el et;
16200 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16201 {
16202 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16203 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16204 }
16205 else
16206 {
16207 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16208 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16209 }
16210 if (rs == NS_QQR)
16211 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16212 else
16213 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16214 }
16215
16216 static void
16217 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16218 unsigned immbits)
16219 {
16220 unsigned size = et.size >> 3;
16221 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16222 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16223 inst.instruction |= LOW4 (inst.operands[1].reg);
16224 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16225 inst.instruction |= (isquad != 0) << 6;
16226 inst.instruction |= immbits << 16;
16227 inst.instruction |= (size >> 3) << 7;
16228 inst.instruction |= (size & 0x7) << 19;
16229 if (write_ubit)
16230 inst.instruction |= (uval != 0) << 24;
16231
16232 neon_dp_fixup (&inst);
16233 }
16234
16235 static void
16236 do_neon_shl_imm (void)
16237 {
16238 if (!inst.operands[2].isreg)
16239 {
16240 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16241 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16242 int imm = inst.operands[2].imm;
16243
16244 constraint (imm < 0 || (unsigned)imm >= et.size,
16245 _("immediate out of range for shift"));
16246 NEON_ENCODE (IMMED, inst);
16247 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16248 }
16249 else
16250 {
16251 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16252 struct neon_type_el et = neon_check_type (3, rs,
16253 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16254 unsigned int tmp;
16255
16256 /* VSHL/VQSHL 3-register variants have syntax such as:
16257 vshl.xx Dd, Dm, Dn
16258 whereas other 3-register operations encoded by neon_three_same have
16259 syntax like:
16260 vadd.xx Dd, Dn, Dm
16261 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16262 here. */
16263 tmp = inst.operands[2].reg;
16264 inst.operands[2].reg = inst.operands[1].reg;
16265 inst.operands[1].reg = tmp;
16266 NEON_ENCODE (INTEGER, inst);
16267 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16268 }
16269 }
16270
16271 static void
16272 do_neon_qshl_imm (void)
16273 {
16274 if (!inst.operands[2].isreg)
16275 {
16276 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16277 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16278 int imm = inst.operands[2].imm;
16279
16280 constraint (imm < 0 || (unsigned)imm >= et.size,
16281 _("immediate out of range for shift"));
16282 NEON_ENCODE (IMMED, inst);
16283 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16284 }
16285 else
16286 {
16287 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16288 struct neon_type_el et = neon_check_type (3, rs,
16289 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16290 unsigned int tmp;
16291
16292 /* See note in do_neon_shl_imm. */
16293 tmp = inst.operands[2].reg;
16294 inst.operands[2].reg = inst.operands[1].reg;
16295 inst.operands[1].reg = tmp;
16296 NEON_ENCODE (INTEGER, inst);
16297 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16298 }
16299 }
16300
16301 static void
16302 do_neon_rshl (void)
16303 {
16304 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16305 struct neon_type_el et = neon_check_type (3, rs,
16306 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16307 unsigned int tmp;
16308
16309 tmp = inst.operands[2].reg;
16310 inst.operands[2].reg = inst.operands[1].reg;
16311 inst.operands[1].reg = tmp;
16312 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16313 }
16314
16315 static int
16316 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16317 {
16318 /* Handle .I8 pseudo-instructions. */
16319 if (size == 8)
16320 {
16321 /* Unfortunately, this will make everything apart from zero out-of-range.
16322 FIXME is this the intended semantics? There doesn't seem much point in
16323 accepting .I8 if so. */
16324 immediate |= immediate << 8;
16325 size = 16;
16326 }
16327
16328 if (size >= 32)
16329 {
16330 if (immediate == (immediate & 0x000000ff))
16331 {
16332 *immbits = immediate;
16333 return 0x1;
16334 }
16335 else if (immediate == (immediate & 0x0000ff00))
16336 {
16337 *immbits = immediate >> 8;
16338 return 0x3;
16339 }
16340 else if (immediate == (immediate & 0x00ff0000))
16341 {
16342 *immbits = immediate >> 16;
16343 return 0x5;
16344 }
16345 else if (immediate == (immediate & 0xff000000))
16346 {
16347 *immbits = immediate >> 24;
16348 return 0x7;
16349 }
16350 if ((immediate & 0xffff) != (immediate >> 16))
16351 goto bad_immediate;
16352 immediate &= 0xffff;
16353 }
16354
16355 if (immediate == (immediate & 0x000000ff))
16356 {
16357 *immbits = immediate;
16358 return 0x9;
16359 }
16360 else if (immediate == (immediate & 0x0000ff00))
16361 {
16362 *immbits = immediate >> 8;
16363 return 0xb;
16364 }
16365
16366 bad_immediate:
16367 first_error (_("immediate value out of range"));
16368 return FAIL;
16369 }
16370
16371 static void
16372 do_neon_logic (void)
16373 {
16374 if (inst.operands[2].present && inst.operands[2].isreg)
16375 {
16376 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16377 if (rs == NS_QQQ
16378 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16379 == FAIL)
16380 return;
16381 else if (rs != NS_QQQ
16382 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16383 first_error (BAD_FPU);
16384
16385 neon_check_type (3, rs, N_IGNORE_TYPE);
16386 /* U bit and size field were set as part of the bitmask. */
16387 NEON_ENCODE (INTEGER, inst);
16388 neon_three_same (neon_quad (rs), 0, -1);
16389 }
16390 else
16391 {
16392 const int three_ops_form = (inst.operands[2].present
16393 && !inst.operands[2].isreg);
16394 const int immoperand = (three_ops_form ? 2 : 1);
16395 enum neon_shape rs = (three_ops_form
16396 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16397 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16398 /* Because neon_select_shape makes the second operand a copy of the first
16399 if the second operand is not present. */
16400 if (rs == NS_QQI
16401 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16402 == FAIL)
16403 return;
16404 else if (rs != NS_QQI
16405 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16406 first_error (BAD_FPU);
16407
16408 struct neon_type_el et;
16409 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16410 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16411 else
16412 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16413 | N_KEY, N_EQK);
16414
16415 if (et.type == NT_invtype)
16416 return;
16417 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16418 unsigned immbits;
16419 int cmode;
16420
16421
16422 if (three_ops_form)
16423 constraint (inst.operands[0].reg != inst.operands[1].reg,
16424 _("first and second operands shall be the same register"));
16425
16426 NEON_ENCODE (IMMED, inst);
16427
16428 immbits = inst.operands[immoperand].imm;
16429 if (et.size == 64)
16430 {
16431 /* .i64 is a pseudo-op, so the immediate must be a repeating
16432 pattern. */
16433 if (immbits != (inst.operands[immoperand].regisimm ?
16434 inst.operands[immoperand].reg : 0))
16435 {
16436 /* Set immbits to an invalid constant. */
16437 immbits = 0xdeadbeef;
16438 }
16439 }
16440
16441 switch (opcode)
16442 {
16443 case N_MNEM_vbic:
16444 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16445 break;
16446
16447 case N_MNEM_vorr:
16448 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16449 break;
16450
16451 case N_MNEM_vand:
16452 /* Pseudo-instruction for VBIC. */
16453 neon_invert_size (&immbits, 0, et.size);
16454 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16455 break;
16456
16457 case N_MNEM_vorn:
16458 /* Pseudo-instruction for VORR. */
16459 neon_invert_size (&immbits, 0, et.size);
16460 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16461 break;
16462
16463 default:
16464 abort ();
16465 }
16466
16467 if (cmode == FAIL)
16468 return;
16469
16470 inst.instruction |= neon_quad (rs) << 6;
16471 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16472 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16473 inst.instruction |= cmode << 8;
16474 neon_write_immbits (immbits);
16475
16476 neon_dp_fixup (&inst);
16477 }
16478 }
16479
16480 static void
16481 do_neon_bitfield (void)
16482 {
16483 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16484 neon_check_type (3, rs, N_IGNORE_TYPE);
16485 neon_three_same (neon_quad (rs), 0, -1);
16486 }
16487
16488 static void
16489 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16490 unsigned destbits)
16491 {
16492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16493 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16494 types | N_KEY);
16495 if (et.type == NT_float)
16496 {
16497 NEON_ENCODE (FLOAT, inst);
16498 if (rs == NS_QQR)
16499 mve_encode_qqr (et.size, 0, 1);
16500 else
16501 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16502 }
16503 else
16504 {
16505 NEON_ENCODE (INTEGER, inst);
16506 if (rs == NS_QQR)
16507 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16508 else
16509 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16510 }
16511 }
16512
16513
16514 static void
16515 do_neon_dyadic_if_su_d (void)
16516 {
16517 /* This version only allow D registers, but that constraint is enforced during
16518 operand parsing so we don't need to do anything extra here. */
16519 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16520 }
16521
16522 static void
16523 do_neon_dyadic_if_i_d (void)
16524 {
16525 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16526 affected if we specify unsigned args. */
16527 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16528 }
16529
16530 static void
16531 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16532 {
16533 constraint (size < 32, BAD_ADDR_MODE);
16534 constraint (size != elsize, BAD_EL_TYPE);
16535 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16536 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16537 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16538 _("destination register and offset register may not be the"
16539 " same"));
16540
16541 int imm = inst.relocs[0].exp.X_add_number;
16542 int add = 1;
16543 if (imm < 0)
16544 {
16545 add = 0;
16546 imm = -imm;
16547 }
16548 constraint ((imm % (size / 8) != 0)
16549 || imm > (0x7f << neon_logbits (size)),
16550 (size == 32) ? _("immediate must be a multiple of 4 in the"
16551 " range of +/-[0,508]")
16552 : _("immediate must be a multiple of 8 in the"
16553 " range of +/-[0,1016]"));
16554 inst.instruction |= 0x11 << 24;
16555 inst.instruction |= add << 23;
16556 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16557 inst.instruction |= inst.operands[1].writeback << 21;
16558 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16559 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16560 inst.instruction |= 1 << 12;
16561 inst.instruction |= (size == 64) << 8;
16562 inst.instruction &= 0xffffff00;
16563 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16564 inst.instruction |= imm >> neon_logbits (size);
16565 }
16566
16567 static void
16568 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16569 {
16570 unsigned os = inst.operands[1].imm >> 5;
16571 constraint (os != 0 && size == 8,
16572 _("can not shift offsets when accessing less than half-word"));
16573 constraint (os && os != neon_logbits (size),
16574 _("shift immediate must be 1, 2 or 3 for half-word, word"
16575 " or double-word accesses respectively"));
16576 if (inst.operands[1].reg == REG_PC)
16577 as_tsktsk (MVE_BAD_PC);
16578
16579 switch (size)
16580 {
16581 case 8:
16582 constraint (elsize >= 64, BAD_EL_TYPE);
16583 break;
16584 case 16:
16585 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16586 break;
16587 case 32:
16588 case 64:
16589 constraint (elsize != size, BAD_EL_TYPE);
16590 break;
16591 default:
16592 break;
16593 }
16594 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16595 BAD_ADDR_MODE);
16596 if (load)
16597 {
16598 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16599 _("destination register and offset register may not be"
16600 " the same"));
16601 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16602 BAD_EL_TYPE);
16603 constraint (inst.vectype.el[0].type != NT_unsigned
16604 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16605 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16606 }
16607 else
16608 {
16609 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16610 }
16611
16612 inst.instruction |= 1 << 23;
16613 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16614 inst.instruction |= inst.operands[1].reg << 16;
16615 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16616 inst.instruction |= neon_logbits (elsize) << 7;
16617 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16618 inst.instruction |= LOW4 (inst.operands[1].imm);
16619 inst.instruction |= !!os;
16620 }
16621
16622 static void
16623 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16624 {
16625 enum neon_el_type type = inst.vectype.el[0].type;
16626
16627 constraint (size >= 64, BAD_ADDR_MODE);
16628 switch (size)
16629 {
16630 case 16:
16631 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16632 break;
16633 case 32:
16634 constraint (elsize != size, BAD_EL_TYPE);
16635 break;
16636 default:
16637 break;
16638 }
16639 if (load)
16640 {
16641 constraint (elsize != size && type != NT_unsigned
16642 && type != NT_signed, BAD_EL_TYPE);
16643 }
16644 else
16645 {
16646 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16647 }
16648
16649 int imm = inst.relocs[0].exp.X_add_number;
16650 int add = 1;
16651 if (imm < 0)
16652 {
16653 add = 0;
16654 imm = -imm;
16655 }
16656
16657 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16658 {
16659 switch (size)
16660 {
16661 case 8:
16662 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16663 break;
16664 case 16:
16665 constraint (1, _("immediate must be a multiple of 2 in the"
16666 " range of +/-[0,254]"));
16667 break;
16668 case 32:
16669 constraint (1, _("immediate must be a multiple of 4 in the"
16670 " range of +/-[0,508]"));
16671 break;
16672 }
16673 }
16674
16675 if (size != elsize)
16676 {
16677 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16678 constraint (inst.operands[0].reg > 14,
16679 _("MVE vector register in the range [Q0..Q7] expected"));
16680 inst.instruction |= (load && type == NT_unsigned) << 28;
16681 inst.instruction |= (size == 16) << 19;
16682 inst.instruction |= neon_logbits (elsize) << 7;
16683 }
16684 else
16685 {
16686 if (inst.operands[1].reg == REG_PC)
16687 as_tsktsk (MVE_BAD_PC);
16688 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16689 as_tsktsk (MVE_BAD_SP);
16690 inst.instruction |= 1 << 12;
16691 inst.instruction |= neon_logbits (size) << 7;
16692 }
16693 inst.instruction |= inst.operands[1].preind << 24;
16694 inst.instruction |= add << 23;
16695 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16696 inst.instruction |= inst.operands[1].writeback << 21;
16697 inst.instruction |= inst.operands[1].reg << 16;
16698 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16699 inst.instruction &= 0xffffff80;
16700 inst.instruction |= imm >> neon_logbits (size);
16701
16702 }
16703
16704 static void
16705 do_mve_vstr_vldr (void)
16706 {
16707 unsigned size;
16708 int load = 0;
16709
16710 if (inst.cond > COND_ALWAYS)
16711 inst.pred_insn_type = INSIDE_VPT_INSN;
16712 else
16713 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16714
16715 switch (inst.instruction)
16716 {
16717 default:
16718 gas_assert (0);
16719 break;
16720 case M_MNEM_vldrb:
16721 load = 1;
16722 /* fall through. */
16723 case M_MNEM_vstrb:
16724 size = 8;
16725 break;
16726 case M_MNEM_vldrh:
16727 load = 1;
16728 /* fall through. */
16729 case M_MNEM_vstrh:
16730 size = 16;
16731 break;
16732 case M_MNEM_vldrw:
16733 load = 1;
16734 /* fall through. */
16735 case M_MNEM_vstrw:
16736 size = 32;
16737 break;
16738 case M_MNEM_vldrd:
16739 load = 1;
16740 /* fall through. */
16741 case M_MNEM_vstrd:
16742 size = 64;
16743 break;
16744 }
16745 unsigned elsize = inst.vectype.el[0].size;
16746
16747 if (inst.operands[1].isquad)
16748 {
16749 /* We are dealing with [Q, imm]{!} cases. */
16750 do_mve_vstr_vldr_QI (size, elsize, load);
16751 }
16752 else
16753 {
16754 if (inst.operands[1].immisreg == 2)
16755 {
16756 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16757 do_mve_vstr_vldr_RQ (size, elsize, load);
16758 }
16759 else if (!inst.operands[1].immisreg)
16760 {
16761 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16762 do_mve_vstr_vldr_RI (size, elsize, load);
16763 }
16764 else
16765 constraint (1, BAD_ADDR_MODE);
16766 }
16767
16768 inst.is_neon = 1;
16769 }
16770
16771 static void
16772 do_mve_vst_vld (void)
16773 {
16774 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16775 return;
16776
16777 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16778 || inst.relocs[0].exp.X_add_number != 0
16779 || inst.operands[1].immisreg != 0,
16780 BAD_ADDR_MODE);
16781 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16782 if (inst.operands[1].reg == REG_PC)
16783 as_tsktsk (MVE_BAD_PC);
16784 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16785 as_tsktsk (MVE_BAD_SP);
16786
16787
16788 /* These instructions are one of the "exceptions" mentioned in
16789 handle_pred_state. They are MVE instructions that are not VPT compatible
16790 and do not accept a VPT code, thus appending such a code is a syntax
16791 error. */
16792 if (inst.cond > COND_ALWAYS)
16793 first_error (BAD_SYNTAX);
16794 /* If we append a scalar condition code we can set this to
16795 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16796 else if (inst.cond < COND_ALWAYS)
16797 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16798 else
16799 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16800
16801 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16802 inst.instruction |= inst.operands[1].writeback << 21;
16803 inst.instruction |= inst.operands[1].reg << 16;
16804 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16805 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16806 inst.is_neon = 1;
16807 }
16808
16809 static void
16810 do_mve_vaddlv (void)
16811 {
16812 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16813 struct neon_type_el et
16814 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16815
16816 if (et.type == NT_invtype)
16817 first_error (BAD_EL_TYPE);
16818
16819 if (inst.cond > COND_ALWAYS)
16820 inst.pred_insn_type = INSIDE_VPT_INSN;
16821 else
16822 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16823
16824 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16825
16826 inst.instruction |= (et.type == NT_unsigned) << 28;
16827 inst.instruction |= inst.operands[1].reg << 19;
16828 inst.instruction |= inst.operands[0].reg << 12;
16829 inst.instruction |= inst.operands[2].reg;
16830 inst.is_neon = 1;
16831 }
16832
16833 static void
16834 do_neon_dyadic_if_su (void)
16835 {
16836 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16837 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16838 N_SUF_32 | N_KEY);
16839
16840 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16841 || inst.instruction == ((unsigned) N_MNEM_vmin))
16842 && et.type == NT_float
16843 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16844
16845 if (check_simd_pred_availability (et.type == NT_float,
16846 NEON_CHECK_ARCH | NEON_CHECK_CC))
16847 return;
16848
16849 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16850 }
16851
16852 static void
16853 do_neon_addsub_if_i (void)
16854 {
16855 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16856 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16857 return;
16858
16859 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16860 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16861 N_EQK, N_IF_32 | N_I64 | N_KEY);
16862
16863 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16864 /* If we are parsing Q registers and the element types match MVE, which NEON
16865 also supports, then we must check whether this is an instruction that can
16866 be used by both MVE/NEON. This distinction can be made based on whether
16867 they are predicated or not. */
16868 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16869 {
16870 if (check_simd_pred_availability (et.type == NT_float,
16871 NEON_CHECK_ARCH | NEON_CHECK_CC))
16872 return;
16873 }
16874 else
16875 {
16876 /* If they are either in a D register or are using an unsupported. */
16877 if (rs != NS_QQR
16878 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16879 return;
16880 }
16881
16882 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16883 affected if we specify unsigned args. */
16884 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16885 }
16886
16887 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16888 result to be:
16889 V<op> A,B (A is operand 0, B is operand 2)
16890 to mean:
16891 V<op> A,B,A
16892 not:
16893 V<op> A,B,B
16894 so handle that case specially. */
16895
16896 static void
16897 neon_exchange_operands (void)
16898 {
16899 if (inst.operands[1].present)
16900 {
16901 void *scratch = xmalloc (sizeof (inst.operands[0]));
16902
16903 /* Swap operands[1] and operands[2]. */
16904 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16905 inst.operands[1] = inst.operands[2];
16906 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16907 free (scratch);
16908 }
16909 else
16910 {
16911 inst.operands[1] = inst.operands[2];
16912 inst.operands[2] = inst.operands[0];
16913 }
16914 }
16915
16916 static void
16917 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16918 {
16919 if (inst.operands[2].isreg)
16920 {
16921 if (invert)
16922 neon_exchange_operands ();
16923 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16924 }
16925 else
16926 {
16927 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16928 struct neon_type_el et = neon_check_type (2, rs,
16929 N_EQK | N_SIZ, immtypes | N_KEY);
16930
16931 NEON_ENCODE (IMMED, inst);
16932 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16933 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16934 inst.instruction |= LOW4 (inst.operands[1].reg);
16935 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16936 inst.instruction |= neon_quad (rs) << 6;
16937 inst.instruction |= (et.type == NT_float) << 10;
16938 inst.instruction |= neon_logbits (et.size) << 18;
16939
16940 neon_dp_fixup (&inst);
16941 }
16942 }
16943
16944 static void
16945 do_neon_cmp (void)
16946 {
16947 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16948 }
16949
16950 static void
16951 do_neon_cmp_inv (void)
16952 {
16953 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16954 }
16955
16956 static void
16957 do_neon_ceq (void)
16958 {
16959 neon_compare (N_IF_32, N_IF_32, FALSE);
16960 }
16961
16962 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16963 scalars, which are encoded in 5 bits, M : Rm.
16964 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16965 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16966 index in M.
16967
16968 Dot Product instructions are similar to multiply instructions except elsize
16969 should always be 32.
16970
16971 This function translates SCALAR, which is GAS's internal encoding of indexed
16972 scalar register, to raw encoding. There is also register and index range
16973 check based on ELSIZE. */
16974
16975 static unsigned
16976 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16977 {
16978 unsigned regno = NEON_SCALAR_REG (scalar);
16979 unsigned elno = NEON_SCALAR_INDEX (scalar);
16980
16981 switch (elsize)
16982 {
16983 case 16:
16984 if (regno > 7 || elno > 3)
16985 goto bad_scalar;
16986 return regno | (elno << 3);
16987
16988 case 32:
16989 if (regno > 15 || elno > 1)
16990 goto bad_scalar;
16991 return regno | (elno << 4);
16992
16993 default:
16994 bad_scalar:
16995 first_error (_("scalar out of range for multiply instruction"));
16996 }
16997
16998 return 0;
16999 }
17000
17001 /* Encode multiply / multiply-accumulate scalar instructions. */
17002
17003 static void
17004 neon_mul_mac (struct neon_type_el et, int ubit)
17005 {
17006 unsigned scalar;
17007
17008 /* Give a more helpful error message if we have an invalid type. */
17009 if (et.type == NT_invtype)
17010 return;
17011
17012 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17013 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17014 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17015 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17016 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17017 inst.instruction |= LOW4 (scalar);
17018 inst.instruction |= HI1 (scalar) << 5;
17019 inst.instruction |= (et.type == NT_float) << 8;
17020 inst.instruction |= neon_logbits (et.size) << 20;
17021 inst.instruction |= (ubit != 0) << 24;
17022
17023 neon_dp_fixup (&inst);
17024 }
17025
17026 static void
17027 do_neon_mac_maybe_scalar (void)
17028 {
17029 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17030 return;
17031
17032 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17033 return;
17034
17035 if (inst.operands[2].isscalar)
17036 {
17037 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17038 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17039 struct neon_type_el et = neon_check_type (3, rs,
17040 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17041 NEON_ENCODE (SCALAR, inst);
17042 neon_mul_mac (et, neon_quad (rs));
17043 }
17044 else if (!inst.operands[2].isvec)
17045 {
17046 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17047
17048 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17049 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17050
17051 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17052 }
17053 else
17054 {
17055 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17056 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17057 affected if we specify unsigned args. */
17058 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17059 }
17060 }
17061
17062 static void
17063 do_neon_fmac (void)
17064 {
17065 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17066 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17067 return;
17068
17069 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17070 return;
17071
17072 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17073 {
17074 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17075 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17076 N_EQK);
17077
17078 if (rs == NS_QQR)
17079 {
17080 if (inst.operands[2].reg == REG_SP)
17081 as_tsktsk (MVE_BAD_SP);
17082 else if (inst.operands[2].reg == REG_PC)
17083 as_tsktsk (MVE_BAD_PC);
17084
17085 inst.instruction = 0xee310e40;
17086 inst.instruction |= (et.size == 16) << 28;
17087 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17088 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17089 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17090 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17091 inst.instruction |= inst.operands[2].reg;
17092 inst.is_neon = 1;
17093 return;
17094 }
17095 }
17096 else
17097 {
17098 constraint (!inst.operands[2].isvec, BAD_FPU);
17099 }
17100
17101 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17102 }
17103
17104 static void
17105 do_neon_tst (void)
17106 {
17107 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17108 struct neon_type_el et = neon_check_type (3, rs,
17109 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17110 neon_three_same (neon_quad (rs), 0, et.size);
17111 }
17112
17113 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17114 same types as the MAC equivalents. The polynomial type for this instruction
17115 is encoded the same as the integer type. */
17116
17117 static void
17118 do_neon_mul (void)
17119 {
17120 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17121 return;
17122
17123 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17124 return;
17125
17126 if (inst.operands[2].isscalar)
17127 {
17128 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17129 do_neon_mac_maybe_scalar ();
17130 }
17131 else
17132 {
17133 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17134 {
17135 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17136 struct neon_type_el et
17137 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17138 if (et.type == NT_float)
17139 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17140 BAD_FPU);
17141
17142 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17143 }
17144 else
17145 {
17146 constraint (!inst.operands[2].isvec, BAD_FPU);
17147 neon_dyadic_misc (NT_poly,
17148 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17149 }
17150 }
17151 }
17152
17153 static void
17154 do_neon_qdmulh (void)
17155 {
17156 if (inst.operands[2].isscalar)
17157 {
17158 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17159 struct neon_type_el et = neon_check_type (3, rs,
17160 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17161 NEON_ENCODE (SCALAR, inst);
17162 neon_mul_mac (et, neon_quad (rs));
17163 }
17164 else
17165 {
17166 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17167 struct neon_type_el et = neon_check_type (3, rs,
17168 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17169 NEON_ENCODE (INTEGER, inst);
17170 /* The U bit (rounding) comes from bit mask. */
17171 neon_three_same (neon_quad (rs), 0, et.size);
17172 }
17173 }
17174
17175 static void
17176 do_mve_vaddv (void)
17177 {
17178 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17179 struct neon_type_el et
17180 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17181
17182 if (et.type == NT_invtype)
17183 first_error (BAD_EL_TYPE);
17184
17185 if (inst.cond > COND_ALWAYS)
17186 inst.pred_insn_type = INSIDE_VPT_INSN;
17187 else
17188 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17189
17190 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17191
17192 mve_encode_rq (et.type == NT_unsigned, et.size);
17193 }
17194
17195 static void
17196 do_mve_vhcadd (void)
17197 {
17198 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17199 struct neon_type_el et
17200 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17201
17202 if (inst.cond > COND_ALWAYS)
17203 inst.pred_insn_type = INSIDE_VPT_INSN;
17204 else
17205 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17206
17207 unsigned rot = inst.relocs[0].exp.X_add_number;
17208 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17209
17210 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17211 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17212 "operand makes instruction UNPREDICTABLE"));
17213
17214 mve_encode_qqq (0, et.size);
17215 inst.instruction |= (rot == 270) << 12;
17216 inst.is_neon = 1;
17217 }
17218
17219 static void
17220 do_mve_vadc (void)
17221 {
17222 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17223 struct neon_type_el et
17224 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17225
17226 if (et.type == NT_invtype)
17227 first_error (BAD_EL_TYPE);
17228
17229 if (inst.cond > COND_ALWAYS)
17230 inst.pred_insn_type = INSIDE_VPT_INSN;
17231 else
17232 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17233
17234 mve_encode_qqq (0, 64);
17235 }
17236
17237 static void
17238 do_mve_vbrsr (void)
17239 {
17240 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17241 struct neon_type_el et
17242 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17243
17244 if (inst.cond > COND_ALWAYS)
17245 inst.pred_insn_type = INSIDE_VPT_INSN;
17246 else
17247 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17248
17249 mve_encode_qqr (et.size, 0, 0);
17250 }
17251
17252 static void
17253 do_mve_vsbc (void)
17254 {
17255 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17256
17257 if (inst.cond > COND_ALWAYS)
17258 inst.pred_insn_type = INSIDE_VPT_INSN;
17259 else
17260 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17261
17262 mve_encode_qqq (1, 64);
17263 }
17264
17265 static void
17266 do_mve_vmulh (void)
17267 {
17268 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17269 struct neon_type_el et
17270 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17271
17272 if (inst.cond > COND_ALWAYS)
17273 inst.pred_insn_type = INSIDE_VPT_INSN;
17274 else
17275 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17276
17277 mve_encode_qqq (et.type == NT_unsigned, et.size);
17278 }
17279
17280 static void
17281 do_mve_vmull (void)
17282 {
17283
17284 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17285 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17286 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17287 && inst.cond == COND_ALWAYS
17288 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17289 {
17290 if (rs == NS_QQQ)
17291 {
17292
17293 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17294 N_SUF_32 | N_F64 | N_P8
17295 | N_P16 | N_I_MVE | N_KEY);
17296 if (((et.type == NT_poly) && et.size == 8
17297 && ARM_CPU_IS_ANY (cpu_variant))
17298 || (et.type == NT_integer) || (et.type == NT_float))
17299 goto neon_vmul;
17300 }
17301 else
17302 goto neon_vmul;
17303 }
17304
17305 constraint (rs != NS_QQQ, BAD_FPU);
17306 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17307 N_SU_32 | N_P8 | N_P16 | N_KEY);
17308
17309 /* We are dealing with MVE's vmullt. */
17310 if (et.size == 32
17311 && (inst.operands[0].reg == inst.operands[1].reg
17312 || inst.operands[0].reg == inst.operands[2].reg))
17313 as_tsktsk (BAD_MVE_SRCDEST);
17314
17315 if (inst.cond > COND_ALWAYS)
17316 inst.pred_insn_type = INSIDE_VPT_INSN;
17317 else
17318 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17319
17320 if (et.type == NT_poly)
17321 mve_encode_qqq (neon_logbits (et.size), 64);
17322 else
17323 mve_encode_qqq (et.type == NT_unsigned, et.size);
17324
17325 return;
17326
17327 neon_vmul:
17328 inst.instruction = N_MNEM_vmul;
17329 inst.cond = 0xb;
17330 if (thumb_mode)
17331 inst.pred_insn_type = INSIDE_IT_INSN;
17332 do_neon_mul ();
17333 }
17334
17335 static void
17336 do_mve_vabav (void)
17337 {
17338 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17339
17340 if (rs == NS_NULL)
17341 return;
17342
17343 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17344 return;
17345
17346 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17347 | N_S16 | N_S32 | N_U8 | N_U16
17348 | N_U32);
17349
17350 if (inst.cond > COND_ALWAYS)
17351 inst.pred_insn_type = INSIDE_VPT_INSN;
17352 else
17353 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17354
17355 mve_encode_rqq (et.type == NT_unsigned, et.size);
17356 }
17357
17358 static void
17359 do_mve_vmladav (void)
17360 {
17361 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17362 struct neon_type_el et = neon_check_type (3, rs,
17363 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17364
17365 if (et.type == NT_unsigned
17366 && (inst.instruction == M_MNEM_vmladavx
17367 || inst.instruction == M_MNEM_vmladavax
17368 || inst.instruction == M_MNEM_vmlsdav
17369 || inst.instruction == M_MNEM_vmlsdava
17370 || inst.instruction == M_MNEM_vmlsdavx
17371 || inst.instruction == M_MNEM_vmlsdavax))
17372 first_error (BAD_SIMD_TYPE);
17373
17374 constraint (inst.operands[2].reg > 14,
17375 _("MVE vector register in the range [Q0..Q7] expected"));
17376
17377 if (inst.cond > COND_ALWAYS)
17378 inst.pred_insn_type = INSIDE_VPT_INSN;
17379 else
17380 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17381
17382 if (inst.instruction == M_MNEM_vmlsdav
17383 || inst.instruction == M_MNEM_vmlsdava
17384 || inst.instruction == M_MNEM_vmlsdavx
17385 || inst.instruction == M_MNEM_vmlsdavax)
17386 inst.instruction |= (et.size == 8) << 28;
17387 else
17388 inst.instruction |= (et.size == 8) << 8;
17389
17390 mve_encode_rqq (et.type == NT_unsigned, 64);
17391 inst.instruction |= (et.size == 32) << 16;
17392 }
17393
17394 static void
17395 do_mve_vmlaldav (void)
17396 {
17397 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17398 struct neon_type_el et
17399 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17400 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17401
17402 if (et.type == NT_unsigned
17403 && (inst.instruction == M_MNEM_vmlsldav
17404 || inst.instruction == M_MNEM_vmlsldava
17405 || inst.instruction == M_MNEM_vmlsldavx
17406 || inst.instruction == M_MNEM_vmlsldavax))
17407 first_error (BAD_SIMD_TYPE);
17408
17409 if (inst.cond > COND_ALWAYS)
17410 inst.pred_insn_type = INSIDE_VPT_INSN;
17411 else
17412 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17413
17414 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17415 }
17416
17417 static void
17418 do_mve_vrmlaldavh (void)
17419 {
17420 struct neon_type_el et;
17421 if (inst.instruction == M_MNEM_vrmlsldavh
17422 || inst.instruction == M_MNEM_vrmlsldavha
17423 || inst.instruction == M_MNEM_vrmlsldavhx
17424 || inst.instruction == M_MNEM_vrmlsldavhax)
17425 {
17426 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17427 if (inst.operands[1].reg == REG_SP)
17428 as_tsktsk (MVE_BAD_SP);
17429 }
17430 else
17431 {
17432 if (inst.instruction == M_MNEM_vrmlaldavhx
17433 || inst.instruction == M_MNEM_vrmlaldavhax)
17434 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17435 else
17436 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17437 N_U32 | N_S32 | N_KEY);
17438 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17439 with vmax/min instructions, making the use of SP in assembly really
17440 nonsensical, so instead of issuing a warning like we do for other uses
17441 of SP for the odd register operand we error out. */
17442 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17443 }
17444
17445 /* Make sure we still check the second operand is an odd one and that PC is
17446 disallowed. This because we are parsing for any GPR operand, to be able
17447 to distinguish between giving a warning or an error for SP as described
17448 above. */
17449 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17450 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17451
17452 if (inst.cond > COND_ALWAYS)
17453 inst.pred_insn_type = INSIDE_VPT_INSN;
17454 else
17455 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17456
17457 mve_encode_rrqq (et.type == NT_unsigned, 0);
17458 }
17459
17460
17461 static void
17462 do_mve_vmaxnmv (void)
17463 {
17464 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17465 struct neon_type_el et
17466 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17467
17468 if (inst.cond > COND_ALWAYS)
17469 inst.pred_insn_type = INSIDE_VPT_INSN;
17470 else
17471 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17472
17473 if (inst.operands[0].reg == REG_SP)
17474 as_tsktsk (MVE_BAD_SP);
17475 else if (inst.operands[0].reg == REG_PC)
17476 as_tsktsk (MVE_BAD_PC);
17477
17478 mve_encode_rq (et.size == 16, 64);
17479 }
17480
17481 static void
17482 do_mve_vmaxv (void)
17483 {
17484 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17485 struct neon_type_el et;
17486
17487 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17488 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17489 else
17490 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17491
17492 if (inst.cond > COND_ALWAYS)
17493 inst.pred_insn_type = INSIDE_VPT_INSN;
17494 else
17495 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17496
17497 if (inst.operands[0].reg == REG_SP)
17498 as_tsktsk (MVE_BAD_SP);
17499 else if (inst.operands[0].reg == REG_PC)
17500 as_tsktsk (MVE_BAD_PC);
17501
17502 mve_encode_rq (et.type == NT_unsigned, et.size);
17503 }
17504
17505
17506 static void
17507 do_neon_qrdmlah (void)
17508 {
17509 /* Check we're on the correct architecture. */
17510 if (!mark_feature_used (&fpu_neon_ext_armv8))
17511 inst.error =
17512 _("instruction form not available on this architecture.");
17513 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17514 {
17515 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17516 record_feature_use (&fpu_neon_ext_v8_1);
17517 }
17518
17519 if (inst.operands[2].isscalar)
17520 {
17521 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17522 struct neon_type_el et = neon_check_type (3, rs,
17523 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17524 NEON_ENCODE (SCALAR, inst);
17525 neon_mul_mac (et, neon_quad (rs));
17526 }
17527 else
17528 {
17529 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17530 struct neon_type_el et = neon_check_type (3, rs,
17531 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17532 NEON_ENCODE (INTEGER, inst);
17533 /* The U bit (rounding) comes from bit mask. */
17534 neon_three_same (neon_quad (rs), 0, et.size);
17535 }
17536 }
17537
17538 static void
17539 do_neon_fcmp_absolute (void)
17540 {
17541 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17542 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17543 N_F_16_32 | N_KEY);
17544 /* Size field comes from bit mask. */
17545 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17546 }
17547
17548 static void
17549 do_neon_fcmp_absolute_inv (void)
17550 {
17551 neon_exchange_operands ();
17552 do_neon_fcmp_absolute ();
17553 }
17554
17555 static void
17556 do_neon_step (void)
17557 {
17558 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17559 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17560 N_F_16_32 | N_KEY);
17561 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17562 }
17563
17564 static void
17565 do_neon_abs_neg (void)
17566 {
17567 enum neon_shape rs;
17568 struct neon_type_el et;
17569
17570 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17571 return;
17572
17573 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17574 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17575
17576 if (check_simd_pred_availability (et.type == NT_float,
17577 NEON_CHECK_ARCH | NEON_CHECK_CC))
17578 return;
17579
17580 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17581 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17582 inst.instruction |= LOW4 (inst.operands[1].reg);
17583 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17584 inst.instruction |= neon_quad (rs) << 6;
17585 inst.instruction |= (et.type == NT_float) << 10;
17586 inst.instruction |= neon_logbits (et.size) << 18;
17587
17588 neon_dp_fixup (&inst);
17589 }
17590
17591 static void
17592 do_neon_sli (void)
17593 {
17594 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17595 struct neon_type_el et = neon_check_type (2, rs,
17596 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17597 int imm = inst.operands[2].imm;
17598 constraint (imm < 0 || (unsigned)imm >= et.size,
17599 _("immediate out of range for insert"));
17600 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17601 }
17602
17603 static void
17604 do_neon_sri (void)
17605 {
17606 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17607 struct neon_type_el et = neon_check_type (2, rs,
17608 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17609 int imm = inst.operands[2].imm;
17610 constraint (imm < 1 || (unsigned)imm > et.size,
17611 _("immediate out of range for insert"));
17612 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17613 }
17614
17615 static void
17616 do_neon_qshlu_imm (void)
17617 {
17618 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17619 struct neon_type_el et = neon_check_type (2, rs,
17620 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17621 int imm = inst.operands[2].imm;
17622 constraint (imm < 0 || (unsigned)imm >= et.size,
17623 _("immediate out of range for shift"));
17624 /* Only encodes the 'U present' variant of the instruction.
17625 In this case, signed types have OP (bit 8) set to 0.
17626 Unsigned types have OP set to 1. */
17627 inst.instruction |= (et.type == NT_unsigned) << 8;
17628 /* The rest of the bits are the same as other immediate shifts. */
17629 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17630 }
17631
17632 static void
17633 do_neon_qmovn (void)
17634 {
17635 struct neon_type_el et = neon_check_type (2, NS_DQ,
17636 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17637 /* Saturating move where operands can be signed or unsigned, and the
17638 destination has the same signedness. */
17639 NEON_ENCODE (INTEGER, inst);
17640 if (et.type == NT_unsigned)
17641 inst.instruction |= 0xc0;
17642 else
17643 inst.instruction |= 0x80;
17644 neon_two_same (0, 1, et.size / 2);
17645 }
17646
17647 static void
17648 do_neon_qmovun (void)
17649 {
17650 struct neon_type_el et = neon_check_type (2, NS_DQ,
17651 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17652 /* Saturating move with unsigned results. Operands must be signed. */
17653 NEON_ENCODE (INTEGER, inst);
17654 neon_two_same (0, 1, et.size / 2);
17655 }
17656
17657 static void
17658 do_neon_rshift_sat_narrow (void)
17659 {
17660 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17661 or unsigned. If operands are unsigned, results must also be unsigned. */
17662 struct neon_type_el et = neon_check_type (2, NS_DQI,
17663 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17664 int imm = inst.operands[2].imm;
17665 /* This gets the bounds check, size encoding and immediate bits calculation
17666 right. */
17667 et.size /= 2;
17668
17669 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17670 VQMOVN.I<size> <Dd>, <Qm>. */
17671 if (imm == 0)
17672 {
17673 inst.operands[2].present = 0;
17674 inst.instruction = N_MNEM_vqmovn;
17675 do_neon_qmovn ();
17676 return;
17677 }
17678
17679 constraint (imm < 1 || (unsigned)imm > et.size,
17680 _("immediate out of range"));
17681 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17682 }
17683
17684 static void
17685 do_neon_rshift_sat_narrow_u (void)
17686 {
17687 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17688 or unsigned. If operands are unsigned, results must also be unsigned. */
17689 struct neon_type_el et = neon_check_type (2, NS_DQI,
17690 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17691 int imm = inst.operands[2].imm;
17692 /* This gets the bounds check, size encoding and immediate bits calculation
17693 right. */
17694 et.size /= 2;
17695
17696 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17697 VQMOVUN.I<size> <Dd>, <Qm>. */
17698 if (imm == 0)
17699 {
17700 inst.operands[2].present = 0;
17701 inst.instruction = N_MNEM_vqmovun;
17702 do_neon_qmovun ();
17703 return;
17704 }
17705
17706 constraint (imm < 1 || (unsigned)imm > et.size,
17707 _("immediate out of range"));
17708 /* FIXME: The manual is kind of unclear about what value U should have in
17709 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17710 must be 1. */
17711 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17712 }
17713
17714 static void
17715 do_neon_movn (void)
17716 {
17717 struct neon_type_el et = neon_check_type (2, NS_DQ,
17718 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17719 NEON_ENCODE (INTEGER, inst);
17720 neon_two_same (0, 1, et.size / 2);
17721 }
17722
17723 static void
17724 do_neon_rshift_narrow (void)
17725 {
17726 struct neon_type_el et = neon_check_type (2, NS_DQI,
17727 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17728 int imm = inst.operands[2].imm;
17729 /* This gets the bounds check, size encoding and immediate bits calculation
17730 right. */
17731 et.size /= 2;
17732
17733 /* If immediate is zero then we are a pseudo-instruction for
17734 VMOVN.I<size> <Dd>, <Qm> */
17735 if (imm == 0)
17736 {
17737 inst.operands[2].present = 0;
17738 inst.instruction = N_MNEM_vmovn;
17739 do_neon_movn ();
17740 return;
17741 }
17742
17743 constraint (imm < 1 || (unsigned)imm > et.size,
17744 _("immediate out of range for narrowing operation"));
17745 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17746 }
17747
17748 static void
17749 do_neon_shll (void)
17750 {
17751 /* FIXME: Type checking when lengthening. */
17752 struct neon_type_el et = neon_check_type (2, NS_QDI,
17753 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17754 unsigned imm = inst.operands[2].imm;
17755
17756 if (imm == et.size)
17757 {
17758 /* Maximum shift variant. */
17759 NEON_ENCODE (INTEGER, inst);
17760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17762 inst.instruction |= LOW4 (inst.operands[1].reg);
17763 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17764 inst.instruction |= neon_logbits (et.size) << 18;
17765
17766 neon_dp_fixup (&inst);
17767 }
17768 else
17769 {
17770 /* A more-specific type check for non-max versions. */
17771 et = neon_check_type (2, NS_QDI,
17772 N_EQK | N_DBL, N_SU_32 | N_KEY);
17773 NEON_ENCODE (IMMED, inst);
17774 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17775 }
17776 }
17777
17778 /* Check the various types for the VCVT instruction, and return which version
17779 the current instruction is. */
17780
17781 #define CVT_FLAVOUR_VAR \
17782 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17783 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17784 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17785 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17786 /* Half-precision conversions. */ \
17787 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17788 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17789 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17790 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17791 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17792 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17793 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17794 Compared with single/double precision variants, only the co-processor \
17795 field is different, so the encoding flow is reused here. */ \
17796 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17797 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17798 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17799 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17800 /* VFP instructions. */ \
17801 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17802 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17803 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17804 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17805 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17806 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17807 /* VFP instructions with bitshift. */ \
17808 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17809 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17810 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17811 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17812 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17813 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17814 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17815 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17816
17817 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17818 neon_cvt_flavour_##C,
17819
17820 /* The different types of conversions we can do. */
17821 enum neon_cvt_flavour
17822 {
17823 CVT_FLAVOUR_VAR
17824 neon_cvt_flavour_invalid,
17825 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17826 };
17827
17828 #undef CVT_VAR
17829
17830 static enum neon_cvt_flavour
17831 get_neon_cvt_flavour (enum neon_shape rs)
17832 {
17833 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17834 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17835 if (et.type != NT_invtype) \
17836 { \
17837 inst.error = NULL; \
17838 return (neon_cvt_flavour_##C); \
17839 }
17840
17841 struct neon_type_el et;
17842 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17843 || rs == NS_FF) ? N_VFP : 0;
17844 /* The instruction versions which take an immediate take one register
17845 argument, which is extended to the width of the full register. Thus the
17846 "source" and "destination" registers must have the same width. Hack that
17847 here by making the size equal to the key (wider, in this case) operand. */
17848 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17849
17850 CVT_FLAVOUR_VAR;
17851
17852 return neon_cvt_flavour_invalid;
17853 #undef CVT_VAR
17854 }
17855
17856 enum neon_cvt_mode
17857 {
17858 neon_cvt_mode_a,
17859 neon_cvt_mode_n,
17860 neon_cvt_mode_p,
17861 neon_cvt_mode_m,
17862 neon_cvt_mode_z,
17863 neon_cvt_mode_x,
17864 neon_cvt_mode_r
17865 };
17866
17867 /* Neon-syntax VFP conversions. */
17868
17869 static void
17870 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17871 {
17872 const char *opname = 0;
17873
17874 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17875 || rs == NS_FHI || rs == NS_HFI)
17876 {
17877 /* Conversions with immediate bitshift. */
17878 const char *enc[] =
17879 {
17880 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17881 CVT_FLAVOUR_VAR
17882 NULL
17883 #undef CVT_VAR
17884 };
17885
17886 if (flavour < (int) ARRAY_SIZE (enc))
17887 {
17888 opname = enc[flavour];
17889 constraint (inst.operands[0].reg != inst.operands[1].reg,
17890 _("operands 0 and 1 must be the same register"));
17891 inst.operands[1] = inst.operands[2];
17892 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17893 }
17894 }
17895 else
17896 {
17897 /* Conversions without bitshift. */
17898 const char *enc[] =
17899 {
17900 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17901 CVT_FLAVOUR_VAR
17902 NULL
17903 #undef CVT_VAR
17904 };
17905
17906 if (flavour < (int) ARRAY_SIZE (enc))
17907 opname = enc[flavour];
17908 }
17909
17910 if (opname)
17911 do_vfp_nsyn_opcode (opname);
17912
17913 /* ARMv8.2 fp16 VCVT instruction. */
17914 if (flavour == neon_cvt_flavour_s32_f16
17915 || flavour == neon_cvt_flavour_u32_f16
17916 || flavour == neon_cvt_flavour_f16_u32
17917 || flavour == neon_cvt_flavour_f16_s32)
17918 do_scalar_fp16_v82_encode ();
17919 }
17920
17921 static void
17922 do_vfp_nsyn_cvtz (void)
17923 {
17924 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17925 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17926 const char *enc[] =
17927 {
17928 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17929 CVT_FLAVOUR_VAR
17930 NULL
17931 #undef CVT_VAR
17932 };
17933
17934 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17935 do_vfp_nsyn_opcode (enc[flavour]);
17936 }
17937
17938 static void
17939 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17940 enum neon_cvt_mode mode)
17941 {
17942 int sz, op;
17943 int rm;
17944
17945 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17946 D register operands. */
17947 if (flavour == neon_cvt_flavour_s32_f64
17948 || flavour == neon_cvt_flavour_u32_f64)
17949 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17950 _(BAD_FPU));
17951
17952 if (flavour == neon_cvt_flavour_s32_f16
17953 || flavour == neon_cvt_flavour_u32_f16)
17954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17955 _(BAD_FP16));
17956
17957 set_pred_insn_type (OUTSIDE_PRED_INSN);
17958
17959 switch (flavour)
17960 {
17961 case neon_cvt_flavour_s32_f64:
17962 sz = 1;
17963 op = 1;
17964 break;
17965 case neon_cvt_flavour_s32_f32:
17966 sz = 0;
17967 op = 1;
17968 break;
17969 case neon_cvt_flavour_s32_f16:
17970 sz = 0;
17971 op = 1;
17972 break;
17973 case neon_cvt_flavour_u32_f64:
17974 sz = 1;
17975 op = 0;
17976 break;
17977 case neon_cvt_flavour_u32_f32:
17978 sz = 0;
17979 op = 0;
17980 break;
17981 case neon_cvt_flavour_u32_f16:
17982 sz = 0;
17983 op = 0;
17984 break;
17985 default:
17986 first_error (_("invalid instruction shape"));
17987 return;
17988 }
17989
17990 switch (mode)
17991 {
17992 case neon_cvt_mode_a: rm = 0; break;
17993 case neon_cvt_mode_n: rm = 1; break;
17994 case neon_cvt_mode_p: rm = 2; break;
17995 case neon_cvt_mode_m: rm = 3; break;
17996 default: first_error (_("invalid rounding mode")); return;
17997 }
17998
17999 NEON_ENCODE (FPV8, inst);
18000 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18001 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18002 inst.instruction |= sz << 8;
18003
18004 /* ARMv8.2 fp16 VCVT instruction. */
18005 if (flavour == neon_cvt_flavour_s32_f16
18006 ||flavour == neon_cvt_flavour_u32_f16)
18007 do_scalar_fp16_v82_encode ();
18008 inst.instruction |= op << 7;
18009 inst.instruction |= rm << 16;
18010 inst.instruction |= 0xf0000000;
18011 inst.is_neon = TRUE;
18012 }
18013
18014 static void
18015 do_neon_cvt_1 (enum neon_cvt_mode mode)
18016 {
18017 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18018 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18019 NS_FH, NS_HF, NS_FHI, NS_HFI,
18020 NS_NULL);
18021 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18022
18023 if (flavour == neon_cvt_flavour_invalid)
18024 return;
18025
18026 /* PR11109: Handle round-to-zero for VCVT conversions. */
18027 if (mode == neon_cvt_mode_z
18028 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18029 && (flavour == neon_cvt_flavour_s16_f16
18030 || flavour == neon_cvt_flavour_u16_f16
18031 || flavour == neon_cvt_flavour_s32_f32
18032 || flavour == neon_cvt_flavour_u32_f32
18033 || flavour == neon_cvt_flavour_s32_f64
18034 || flavour == neon_cvt_flavour_u32_f64)
18035 && (rs == NS_FD || rs == NS_FF))
18036 {
18037 do_vfp_nsyn_cvtz ();
18038 return;
18039 }
18040
18041 /* ARMv8.2 fp16 VCVT conversions. */
18042 if (mode == neon_cvt_mode_z
18043 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18044 && (flavour == neon_cvt_flavour_s32_f16
18045 || flavour == neon_cvt_flavour_u32_f16)
18046 && (rs == NS_FH))
18047 {
18048 do_vfp_nsyn_cvtz ();
18049 do_scalar_fp16_v82_encode ();
18050 return;
18051 }
18052
18053 /* VFP rather than Neon conversions. */
18054 if (flavour >= neon_cvt_flavour_first_fp)
18055 {
18056 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18057 do_vfp_nsyn_cvt (rs, flavour);
18058 else
18059 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18060
18061 return;
18062 }
18063
18064 switch (rs)
18065 {
18066 case NS_QQI:
18067 if (mode == neon_cvt_mode_z
18068 && (flavour == neon_cvt_flavour_f16_s16
18069 || flavour == neon_cvt_flavour_f16_u16
18070 || flavour == neon_cvt_flavour_s16_f16
18071 || flavour == neon_cvt_flavour_u16_f16
18072 || flavour == neon_cvt_flavour_f32_u32
18073 || flavour == neon_cvt_flavour_f32_s32
18074 || flavour == neon_cvt_flavour_s32_f32
18075 || flavour == neon_cvt_flavour_u32_f32))
18076 {
18077 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18078 return;
18079 }
18080 else if (mode == neon_cvt_mode_n)
18081 {
18082 /* We are dealing with vcvt with the 'ne' condition. */
18083 inst.cond = 0x1;
18084 inst.instruction = N_MNEM_vcvt;
18085 do_neon_cvt_1 (neon_cvt_mode_z);
18086 return;
18087 }
18088 /* fall through. */
18089 case NS_DDI:
18090 {
18091 unsigned immbits;
18092 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18093 0x0000100, 0x1000100, 0x0, 0x1000000};
18094
18095 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18096 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18097 return;
18098
18099 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18100 {
18101 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18102 _("immediate value out of range"));
18103 switch (flavour)
18104 {
18105 case neon_cvt_flavour_f16_s16:
18106 case neon_cvt_flavour_f16_u16:
18107 case neon_cvt_flavour_s16_f16:
18108 case neon_cvt_flavour_u16_f16:
18109 constraint (inst.operands[2].imm > 16,
18110 _("immediate value out of range"));
18111 break;
18112 case neon_cvt_flavour_f32_u32:
18113 case neon_cvt_flavour_f32_s32:
18114 case neon_cvt_flavour_s32_f32:
18115 case neon_cvt_flavour_u32_f32:
18116 constraint (inst.operands[2].imm > 32,
18117 _("immediate value out of range"));
18118 break;
18119 default:
18120 inst.error = BAD_FPU;
18121 return;
18122 }
18123 }
18124
18125 /* Fixed-point conversion with #0 immediate is encoded as an
18126 integer conversion. */
18127 if (inst.operands[2].present && inst.operands[2].imm == 0)
18128 goto int_encode;
18129 NEON_ENCODE (IMMED, inst);
18130 if (flavour != neon_cvt_flavour_invalid)
18131 inst.instruction |= enctab[flavour];
18132 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18133 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18134 inst.instruction |= LOW4 (inst.operands[1].reg);
18135 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18136 inst.instruction |= neon_quad (rs) << 6;
18137 inst.instruction |= 1 << 21;
18138 if (flavour < neon_cvt_flavour_s16_f16)
18139 {
18140 inst.instruction |= 1 << 21;
18141 immbits = 32 - inst.operands[2].imm;
18142 inst.instruction |= immbits << 16;
18143 }
18144 else
18145 {
18146 inst.instruction |= 3 << 20;
18147 immbits = 16 - inst.operands[2].imm;
18148 inst.instruction |= immbits << 16;
18149 inst.instruction &= ~(1 << 9);
18150 }
18151
18152 neon_dp_fixup (&inst);
18153 }
18154 break;
18155
18156 case NS_QQ:
18157 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18158 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18159 && (flavour == neon_cvt_flavour_s16_f16
18160 || flavour == neon_cvt_flavour_u16_f16
18161 || flavour == neon_cvt_flavour_s32_f32
18162 || flavour == neon_cvt_flavour_u32_f32))
18163 {
18164 if (check_simd_pred_availability (1,
18165 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18166 return;
18167 }
18168 else if (mode == neon_cvt_mode_z
18169 && (flavour == neon_cvt_flavour_f16_s16
18170 || flavour == neon_cvt_flavour_f16_u16
18171 || flavour == neon_cvt_flavour_s16_f16
18172 || flavour == neon_cvt_flavour_u16_f16
18173 || flavour == neon_cvt_flavour_f32_u32
18174 || flavour == neon_cvt_flavour_f32_s32
18175 || flavour == neon_cvt_flavour_s32_f32
18176 || flavour == neon_cvt_flavour_u32_f32))
18177 {
18178 if (check_simd_pred_availability (1,
18179 NEON_CHECK_CC | NEON_CHECK_ARCH))
18180 return;
18181 }
18182 /* fall through. */
18183 case NS_DD:
18184 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18185 {
18186
18187 NEON_ENCODE (FLOAT, inst);
18188 if (check_simd_pred_availability (1,
18189 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18190 return;
18191
18192 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18193 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18194 inst.instruction |= LOW4 (inst.operands[1].reg);
18195 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18196 inst.instruction |= neon_quad (rs) << 6;
18197 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18198 || flavour == neon_cvt_flavour_u32_f32) << 7;
18199 inst.instruction |= mode << 8;
18200 if (flavour == neon_cvt_flavour_u16_f16
18201 || flavour == neon_cvt_flavour_s16_f16)
18202 /* Mask off the original size bits and reencode them. */
18203 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18204
18205 if (thumb_mode)
18206 inst.instruction |= 0xfc000000;
18207 else
18208 inst.instruction |= 0xf0000000;
18209 }
18210 else
18211 {
18212 int_encode:
18213 {
18214 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18215 0x100, 0x180, 0x0, 0x080};
18216
18217 NEON_ENCODE (INTEGER, inst);
18218
18219 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18220 {
18221 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18222 return;
18223 }
18224
18225 if (flavour != neon_cvt_flavour_invalid)
18226 inst.instruction |= enctab[flavour];
18227
18228 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18229 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18230 inst.instruction |= LOW4 (inst.operands[1].reg);
18231 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18232 inst.instruction |= neon_quad (rs) << 6;
18233 if (flavour >= neon_cvt_flavour_s16_f16
18234 && flavour <= neon_cvt_flavour_f16_u16)
18235 /* Half precision. */
18236 inst.instruction |= 1 << 18;
18237 else
18238 inst.instruction |= 2 << 18;
18239
18240 neon_dp_fixup (&inst);
18241 }
18242 }
18243 break;
18244
18245 /* Half-precision conversions for Advanced SIMD -- neon. */
18246 case NS_QD:
18247 case NS_DQ:
18248 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18249 return;
18250
18251 if ((rs == NS_DQ)
18252 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18253 {
18254 as_bad (_("operand size must match register width"));
18255 break;
18256 }
18257
18258 if ((rs == NS_QD)
18259 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18260 {
18261 as_bad (_("operand size must match register width"));
18262 break;
18263 }
18264
18265 if (rs == NS_DQ)
18266 inst.instruction = 0x3b60600;
18267 else
18268 inst.instruction = 0x3b60700;
18269
18270 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18271 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18272 inst.instruction |= LOW4 (inst.operands[1].reg);
18273 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18274 neon_dp_fixup (&inst);
18275 break;
18276
18277 default:
18278 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18279 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18280 do_vfp_nsyn_cvt (rs, flavour);
18281 else
18282 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18283 }
18284 }
18285
18286 static void
18287 do_neon_cvtr (void)
18288 {
18289 do_neon_cvt_1 (neon_cvt_mode_x);
18290 }
18291
18292 static void
18293 do_neon_cvt (void)
18294 {
18295 do_neon_cvt_1 (neon_cvt_mode_z);
18296 }
18297
18298 static void
18299 do_neon_cvta (void)
18300 {
18301 do_neon_cvt_1 (neon_cvt_mode_a);
18302 }
18303
18304 static void
18305 do_neon_cvtn (void)
18306 {
18307 do_neon_cvt_1 (neon_cvt_mode_n);
18308 }
18309
18310 static void
18311 do_neon_cvtp (void)
18312 {
18313 do_neon_cvt_1 (neon_cvt_mode_p);
18314 }
18315
18316 static void
18317 do_neon_cvtm (void)
18318 {
18319 do_neon_cvt_1 (neon_cvt_mode_m);
18320 }
18321
18322 static void
18323 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18324 {
18325 if (is_double)
18326 mark_feature_used (&fpu_vfp_ext_armv8);
18327
18328 encode_arm_vfp_reg (inst.operands[0].reg,
18329 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18330 encode_arm_vfp_reg (inst.operands[1].reg,
18331 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18332 inst.instruction |= to ? 0x10000 : 0;
18333 inst.instruction |= t ? 0x80 : 0;
18334 inst.instruction |= is_double ? 0x100 : 0;
18335 do_vfp_cond_or_thumb ();
18336 }
18337
18338 static void
18339 do_neon_cvttb_1 (bfd_boolean t)
18340 {
18341 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18342 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18343
18344 if (rs == NS_NULL)
18345 return;
18346 else if (rs == NS_QQ || rs == NS_QQI)
18347 {
18348 int single_to_half = 0;
18349 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18350 return;
18351
18352 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18353
18354 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18355 && (flavour == neon_cvt_flavour_u16_f16
18356 || flavour == neon_cvt_flavour_s16_f16
18357 || flavour == neon_cvt_flavour_f16_s16
18358 || flavour == neon_cvt_flavour_f16_u16
18359 || flavour == neon_cvt_flavour_u32_f32
18360 || flavour == neon_cvt_flavour_s32_f32
18361 || flavour == neon_cvt_flavour_f32_s32
18362 || flavour == neon_cvt_flavour_f32_u32))
18363 {
18364 inst.cond = 0xf;
18365 inst.instruction = N_MNEM_vcvt;
18366 set_pred_insn_type (INSIDE_VPT_INSN);
18367 do_neon_cvt_1 (neon_cvt_mode_z);
18368 return;
18369 }
18370 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18371 single_to_half = 1;
18372 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18373 {
18374 first_error (BAD_FPU);
18375 return;
18376 }
18377
18378 inst.instruction = 0xee3f0e01;
18379 inst.instruction |= single_to_half << 28;
18380 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18381 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18382 inst.instruction |= t << 12;
18383 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18384 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18385 inst.is_neon = 1;
18386 }
18387 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18388 {
18389 inst.error = NULL;
18390 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18391 }
18392 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18393 {
18394 inst.error = NULL;
18395 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18396 }
18397 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18398 {
18399 /* The VCVTB and VCVTT instructions with D-register operands
18400 don't work for SP only targets. */
18401 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18402 _(BAD_FPU));
18403
18404 inst.error = NULL;
18405 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18406 }
18407 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18408 {
18409 /* The VCVTB and VCVTT instructions with D-register operands
18410 don't work for SP only targets. */
18411 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18412 _(BAD_FPU));
18413
18414 inst.error = NULL;
18415 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18416 }
18417 else
18418 return;
18419 }
18420
18421 static void
18422 do_neon_cvtb (void)
18423 {
18424 do_neon_cvttb_1 (FALSE);
18425 }
18426
18427
18428 static void
18429 do_neon_cvtt (void)
18430 {
18431 do_neon_cvttb_1 (TRUE);
18432 }
18433
18434 static void
18435 neon_move_immediate (void)
18436 {
18437 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18438 struct neon_type_el et = neon_check_type (2, rs,
18439 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18440 unsigned immlo, immhi = 0, immbits;
18441 int op, cmode, float_p;
18442
18443 constraint (et.type == NT_invtype,
18444 _("operand size must be specified for immediate VMOV"));
18445
18446 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18447 op = (inst.instruction & (1 << 5)) != 0;
18448
18449 immlo = inst.operands[1].imm;
18450 if (inst.operands[1].regisimm)
18451 immhi = inst.operands[1].reg;
18452
18453 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18454 _("immediate has bits set outside the operand size"));
18455
18456 float_p = inst.operands[1].immisfloat;
18457
18458 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18459 et.size, et.type)) == FAIL)
18460 {
18461 /* Invert relevant bits only. */
18462 neon_invert_size (&immlo, &immhi, et.size);
18463 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18464 with one or the other; those cases are caught by
18465 neon_cmode_for_move_imm. */
18466 op = !op;
18467 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18468 &op, et.size, et.type)) == FAIL)
18469 {
18470 first_error (_("immediate out of range"));
18471 return;
18472 }
18473 }
18474
18475 inst.instruction &= ~(1 << 5);
18476 inst.instruction |= op << 5;
18477
18478 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18479 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18480 inst.instruction |= neon_quad (rs) << 6;
18481 inst.instruction |= cmode << 8;
18482
18483 neon_write_immbits (immbits);
18484 }
18485
18486 static void
18487 do_neon_mvn (void)
18488 {
18489 if (inst.operands[1].isreg)
18490 {
18491 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18492
18493 NEON_ENCODE (INTEGER, inst);
18494 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18495 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18496 inst.instruction |= LOW4 (inst.operands[1].reg);
18497 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18498 inst.instruction |= neon_quad (rs) << 6;
18499 }
18500 else
18501 {
18502 NEON_ENCODE (IMMED, inst);
18503 neon_move_immediate ();
18504 }
18505
18506 neon_dp_fixup (&inst);
18507 }
18508
18509 /* Encode instructions of form:
18510
18511 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18512 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18513
18514 static void
18515 neon_mixed_length (struct neon_type_el et, unsigned size)
18516 {
18517 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18518 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18519 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18520 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18521 inst.instruction |= LOW4 (inst.operands[2].reg);
18522 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18523 inst.instruction |= (et.type == NT_unsigned) << 24;
18524 inst.instruction |= neon_logbits (size) << 20;
18525
18526 neon_dp_fixup (&inst);
18527 }
18528
18529 static void
18530 do_neon_dyadic_long (void)
18531 {
18532 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18533 if (rs == NS_QDD)
18534 {
18535 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18536 return;
18537
18538 NEON_ENCODE (INTEGER, inst);
18539 /* FIXME: Type checking for lengthening op. */
18540 struct neon_type_el et = neon_check_type (3, NS_QDD,
18541 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18542 neon_mixed_length (et, et.size);
18543 }
18544 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18545 && (inst.cond == 0xf || inst.cond == 0x10))
18546 {
18547 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18548 in an IT block with le/lt conditions. */
18549
18550 if (inst.cond == 0xf)
18551 inst.cond = 0xb;
18552 else if (inst.cond == 0x10)
18553 inst.cond = 0xd;
18554
18555 inst.pred_insn_type = INSIDE_IT_INSN;
18556
18557 if (inst.instruction == N_MNEM_vaddl)
18558 {
18559 inst.instruction = N_MNEM_vadd;
18560 do_neon_addsub_if_i ();
18561 }
18562 else if (inst.instruction == N_MNEM_vsubl)
18563 {
18564 inst.instruction = N_MNEM_vsub;
18565 do_neon_addsub_if_i ();
18566 }
18567 else if (inst.instruction == N_MNEM_vabdl)
18568 {
18569 inst.instruction = N_MNEM_vabd;
18570 do_neon_dyadic_if_su ();
18571 }
18572 }
18573 else
18574 first_error (BAD_FPU);
18575 }
18576
18577 static void
18578 do_neon_abal (void)
18579 {
18580 struct neon_type_el et = neon_check_type (3, NS_QDD,
18581 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18582 neon_mixed_length (et, et.size);
18583 }
18584
18585 static void
18586 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18587 {
18588 if (inst.operands[2].isscalar)
18589 {
18590 struct neon_type_el et = neon_check_type (3, NS_QDS,
18591 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18592 NEON_ENCODE (SCALAR, inst);
18593 neon_mul_mac (et, et.type == NT_unsigned);
18594 }
18595 else
18596 {
18597 struct neon_type_el et = neon_check_type (3, NS_QDD,
18598 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18599 NEON_ENCODE (INTEGER, inst);
18600 neon_mixed_length (et, et.size);
18601 }
18602 }
18603
18604 static void
18605 do_neon_mac_maybe_scalar_long (void)
18606 {
18607 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18608 }
18609
18610 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18611 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18612
18613 static unsigned
18614 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18615 {
18616 unsigned regno = NEON_SCALAR_REG (scalar);
18617 unsigned elno = NEON_SCALAR_INDEX (scalar);
18618
18619 if (quad_p)
18620 {
18621 if (regno > 7 || elno > 3)
18622 goto bad_scalar;
18623
18624 return ((regno & 0x7)
18625 | ((elno & 0x1) << 3)
18626 | (((elno >> 1) & 0x1) << 5));
18627 }
18628 else
18629 {
18630 if (regno > 15 || elno > 1)
18631 goto bad_scalar;
18632
18633 return (((regno & 0x1) << 5)
18634 | ((regno >> 1) & 0x7)
18635 | ((elno & 0x1) << 3));
18636 }
18637
18638 bad_scalar:
18639 first_error (_("scalar out of range for multiply instruction"));
18640 return 0;
18641 }
18642
18643 static void
18644 do_neon_fmac_maybe_scalar_long (int subtype)
18645 {
18646 enum neon_shape rs;
18647 int high8;
18648 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18649 field (bits[21:20]) has different meaning. For scalar index variant, it's
18650 used to differentiate add and subtract, otherwise it's with fixed value
18651 0x2. */
18652 int size = -1;
18653
18654 if (inst.cond != COND_ALWAYS)
18655 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18656 "behaviour is UNPREDICTABLE"));
18657
18658 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18659 _(BAD_FP16));
18660
18661 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18662 _(BAD_FPU));
18663
18664 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18665 be a scalar index register. */
18666 if (inst.operands[2].isscalar)
18667 {
18668 high8 = 0xfe000000;
18669 if (subtype)
18670 size = 16;
18671 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18672 }
18673 else
18674 {
18675 high8 = 0xfc000000;
18676 size = 32;
18677 if (subtype)
18678 inst.instruction |= (0x1 << 23);
18679 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18680 }
18681
18682 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18683
18684 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18685 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18686 so we simply pass -1 as size. */
18687 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18688 neon_three_same (quad_p, 0, size);
18689
18690 /* Undo neon_dp_fixup. Redo the high eight bits. */
18691 inst.instruction &= 0x00ffffff;
18692 inst.instruction |= high8;
18693
18694 #define LOW1(R) ((R) & 0x1)
18695 #define HI4(R) (((R) >> 1) & 0xf)
18696 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18697 whether the instruction is in Q form and whether Vm is a scalar indexed
18698 operand. */
18699 if (inst.operands[2].isscalar)
18700 {
18701 unsigned rm
18702 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18703 inst.instruction &= 0xffffffd0;
18704 inst.instruction |= rm;
18705
18706 if (!quad_p)
18707 {
18708 /* Redo Rn as well. */
18709 inst.instruction &= 0xfff0ff7f;
18710 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18711 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18712 }
18713 }
18714 else if (!quad_p)
18715 {
18716 /* Redo Rn and Rm. */
18717 inst.instruction &= 0xfff0ff50;
18718 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18719 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18720 inst.instruction |= HI4 (inst.operands[2].reg);
18721 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18722 }
18723 }
18724
18725 static void
18726 do_neon_vfmal (void)
18727 {
18728 return do_neon_fmac_maybe_scalar_long (0);
18729 }
18730
18731 static void
18732 do_neon_vfmsl (void)
18733 {
18734 return do_neon_fmac_maybe_scalar_long (1);
18735 }
18736
18737 static void
18738 do_neon_dyadic_wide (void)
18739 {
18740 struct neon_type_el et = neon_check_type (3, NS_QQD,
18741 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18742 neon_mixed_length (et, et.size);
18743 }
18744
18745 static void
18746 do_neon_dyadic_narrow (void)
18747 {
18748 struct neon_type_el et = neon_check_type (3, NS_QDD,
18749 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18750 /* Operand sign is unimportant, and the U bit is part of the opcode,
18751 so force the operand type to integer. */
18752 et.type = NT_integer;
18753 neon_mixed_length (et, et.size / 2);
18754 }
18755
18756 static void
18757 do_neon_mul_sat_scalar_long (void)
18758 {
18759 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18760 }
18761
18762 static void
18763 do_neon_vmull (void)
18764 {
18765 if (inst.operands[2].isscalar)
18766 do_neon_mac_maybe_scalar_long ();
18767 else
18768 {
18769 struct neon_type_el et = neon_check_type (3, NS_QDD,
18770 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18771
18772 if (et.type == NT_poly)
18773 NEON_ENCODE (POLY, inst);
18774 else
18775 NEON_ENCODE (INTEGER, inst);
18776
18777 /* For polynomial encoding the U bit must be zero, and the size must
18778 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18779 obviously, as 0b10). */
18780 if (et.size == 64)
18781 {
18782 /* Check we're on the correct architecture. */
18783 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18784 inst.error =
18785 _("Instruction form not available on this architecture.");
18786
18787 et.size = 32;
18788 }
18789
18790 neon_mixed_length (et, et.size);
18791 }
18792 }
18793
18794 static void
18795 do_neon_ext (void)
18796 {
18797 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18798 struct neon_type_el et = neon_check_type (3, rs,
18799 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18800 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18801
18802 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18803 _("shift out of range"));
18804 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18805 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18806 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18807 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18808 inst.instruction |= LOW4 (inst.operands[2].reg);
18809 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18810 inst.instruction |= neon_quad (rs) << 6;
18811 inst.instruction |= imm << 8;
18812
18813 neon_dp_fixup (&inst);
18814 }
18815
18816 static void
18817 do_neon_rev (void)
18818 {
18819 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18820 struct neon_type_el et = neon_check_type (2, rs,
18821 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18822 unsigned op = (inst.instruction >> 7) & 3;
18823 /* N (width of reversed regions) is encoded as part of the bitmask. We
18824 extract it here to check the elements to be reversed are smaller.
18825 Otherwise we'd get a reserved instruction. */
18826 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18827 gas_assert (elsize != 0);
18828 constraint (et.size >= elsize,
18829 _("elements must be smaller than reversal region"));
18830 neon_two_same (neon_quad (rs), 1, et.size);
18831 }
18832
18833 static void
18834 do_neon_dup (void)
18835 {
18836 if (inst.operands[1].isscalar)
18837 {
18838 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18839 BAD_FPU);
18840 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18841 struct neon_type_el et = neon_check_type (2, rs,
18842 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18843 unsigned sizebits = et.size >> 3;
18844 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18845 int logsize = neon_logbits (et.size);
18846 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18847
18848 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18849 return;
18850
18851 NEON_ENCODE (SCALAR, inst);
18852 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18853 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18854 inst.instruction |= LOW4 (dm);
18855 inst.instruction |= HI1 (dm) << 5;
18856 inst.instruction |= neon_quad (rs) << 6;
18857 inst.instruction |= x << 17;
18858 inst.instruction |= sizebits << 16;
18859
18860 neon_dp_fixup (&inst);
18861 }
18862 else
18863 {
18864 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18865 struct neon_type_el et = neon_check_type (2, rs,
18866 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18867 if (rs == NS_QR)
18868 {
18869 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18870 return;
18871 }
18872 else
18873 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18874 BAD_FPU);
18875
18876 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18877 {
18878 if (inst.operands[1].reg == REG_SP)
18879 as_tsktsk (MVE_BAD_SP);
18880 else if (inst.operands[1].reg == REG_PC)
18881 as_tsktsk (MVE_BAD_PC);
18882 }
18883
18884 /* Duplicate ARM register to lanes of vector. */
18885 NEON_ENCODE (ARMREG, inst);
18886 switch (et.size)
18887 {
18888 case 8: inst.instruction |= 0x400000; break;
18889 case 16: inst.instruction |= 0x000020; break;
18890 case 32: inst.instruction |= 0x000000; break;
18891 default: break;
18892 }
18893 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18894 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18895 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18896 inst.instruction |= neon_quad (rs) << 21;
18897 /* The encoding for this instruction is identical for the ARM and Thumb
18898 variants, except for the condition field. */
18899 do_vfp_cond_or_thumb ();
18900 }
18901 }
18902
18903 static void
18904 do_mve_mov (int toQ)
18905 {
18906 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18907 return;
18908 if (inst.cond > COND_ALWAYS)
18909 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18910
18911 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18912 if (toQ)
18913 {
18914 Q0 = 0;
18915 Q1 = 1;
18916 Rt = 2;
18917 Rt2 = 3;
18918 }
18919
18920 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18921 _("Index one must be [2,3] and index two must be two less than"
18922 " index one."));
18923 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18924 _("General purpose registers may not be the same"));
18925 constraint (inst.operands[Rt].reg == REG_SP
18926 || inst.operands[Rt2].reg == REG_SP,
18927 BAD_SP);
18928 constraint (inst.operands[Rt].reg == REG_PC
18929 || inst.operands[Rt2].reg == REG_PC,
18930 BAD_PC);
18931
18932 inst.instruction = 0xec000f00;
18933 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18934 inst.instruction |= !!toQ << 20;
18935 inst.instruction |= inst.operands[Rt2].reg << 16;
18936 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18937 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18938 inst.instruction |= inst.operands[Rt].reg;
18939 }
18940
18941 static void
18942 do_mve_movn (void)
18943 {
18944 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18945 return;
18946
18947 if (inst.cond > COND_ALWAYS)
18948 inst.pred_insn_type = INSIDE_VPT_INSN;
18949 else
18950 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18951
18952 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18953 | N_KEY);
18954
18955 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18956 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18957 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18958 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18959 inst.instruction |= LOW4 (inst.operands[1].reg);
18960 inst.is_neon = 1;
18961
18962 }
18963
18964 /* VMOV has particularly many variations. It can be one of:
18965 0. VMOV<c><q> <Qd>, <Qm>
18966 1. VMOV<c><q> <Dd>, <Dm>
18967 (Register operations, which are VORR with Rm = Rn.)
18968 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18969 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18970 (Immediate loads.)
18971 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18972 (ARM register to scalar.)
18973 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18974 (Two ARM registers to vector.)
18975 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18976 (Scalar to ARM register.)
18977 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18978 (Vector to two ARM registers.)
18979 8. VMOV.F32 <Sd>, <Sm>
18980 9. VMOV.F64 <Dd>, <Dm>
18981 (VFP register moves.)
18982 10. VMOV.F32 <Sd>, #imm
18983 11. VMOV.F64 <Dd>, #imm
18984 (VFP float immediate load.)
18985 12. VMOV <Rd>, <Sm>
18986 (VFP single to ARM reg.)
18987 13. VMOV <Sd>, <Rm>
18988 (ARM reg to VFP single.)
18989 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18990 (Two ARM regs to two VFP singles.)
18991 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18992 (Two VFP singles to two ARM regs.)
18993 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18994 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18995 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18996 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18997
18998 These cases can be disambiguated using neon_select_shape, except cases 1/9
18999 and 3/11 which depend on the operand type too.
19000
19001 All the encoded bits are hardcoded by this function.
19002
19003 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19004 Cases 5, 7 may be used with VFPv2 and above.
19005
19006 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19007 can specify a type where it doesn't make sense to, and is ignored). */
19008
19009 static void
19010 do_neon_mov (void)
19011 {
19012 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19013 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19014 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19015 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19016 NS_NULL);
19017 struct neon_type_el et;
19018 const char *ldconst = 0;
19019
19020 switch (rs)
19021 {
19022 case NS_DD: /* case 1/9. */
19023 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19024 /* It is not an error here if no type is given. */
19025 inst.error = NULL;
19026 if (et.type == NT_float && et.size == 64)
19027 {
19028 do_vfp_nsyn_opcode ("fcpyd");
19029 break;
19030 }
19031 /* fall through. */
19032
19033 case NS_QQ: /* case 0/1. */
19034 {
19035 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19036 return;
19037 /* The architecture manual I have doesn't explicitly state which
19038 value the U bit should have for register->register moves, but
19039 the equivalent VORR instruction has U = 0, so do that. */
19040 inst.instruction = 0x0200110;
19041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19043 inst.instruction |= LOW4 (inst.operands[1].reg);
19044 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19045 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19046 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19047 inst.instruction |= neon_quad (rs) << 6;
19048
19049 neon_dp_fixup (&inst);
19050 }
19051 break;
19052
19053 case NS_DI: /* case 3/11. */
19054 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19055 inst.error = NULL;
19056 if (et.type == NT_float && et.size == 64)
19057 {
19058 /* case 11 (fconstd). */
19059 ldconst = "fconstd";
19060 goto encode_fconstd;
19061 }
19062 /* fall through. */
19063
19064 case NS_QI: /* case 2/3. */
19065 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19066 return;
19067 inst.instruction = 0x0800010;
19068 neon_move_immediate ();
19069 neon_dp_fixup (&inst);
19070 break;
19071
19072 case NS_SR: /* case 4. */
19073 {
19074 unsigned bcdebits = 0;
19075 int logsize;
19076 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19077 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19078
19079 /* .<size> is optional here, defaulting to .32. */
19080 if (inst.vectype.elems == 0
19081 && inst.operands[0].vectype.type == NT_invtype
19082 && inst.operands[1].vectype.type == NT_invtype)
19083 {
19084 inst.vectype.el[0].type = NT_untyped;
19085 inst.vectype.el[0].size = 32;
19086 inst.vectype.elems = 1;
19087 }
19088
19089 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19090 logsize = neon_logbits (et.size);
19091
19092 if (et.size != 32)
19093 {
19094 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19095 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19096 return;
19097 }
19098 else
19099 {
19100 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19101 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19102 _(BAD_FPU));
19103 }
19104
19105 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19106 {
19107 if (inst.operands[1].reg == REG_SP)
19108 as_tsktsk (MVE_BAD_SP);
19109 else if (inst.operands[1].reg == REG_PC)
19110 as_tsktsk (MVE_BAD_PC);
19111 }
19112 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19113
19114 constraint (et.type == NT_invtype, _("bad type for scalar"));
19115 constraint (x >= size / et.size, _("scalar index out of range"));
19116
19117
19118 switch (et.size)
19119 {
19120 case 8: bcdebits = 0x8; break;
19121 case 16: bcdebits = 0x1; break;
19122 case 32: bcdebits = 0x0; break;
19123 default: ;
19124 }
19125
19126 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19127
19128 inst.instruction = 0xe000b10;
19129 do_vfp_cond_or_thumb ();
19130 inst.instruction |= LOW4 (dn) << 16;
19131 inst.instruction |= HI1 (dn) << 7;
19132 inst.instruction |= inst.operands[1].reg << 12;
19133 inst.instruction |= (bcdebits & 3) << 5;
19134 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19135 inst.instruction |= (x >> (3-logsize)) << 16;
19136 }
19137 break;
19138
19139 case NS_DRR: /* case 5 (fmdrr). */
19140 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19141 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19142 _(BAD_FPU));
19143
19144 inst.instruction = 0xc400b10;
19145 do_vfp_cond_or_thumb ();
19146 inst.instruction |= LOW4 (inst.operands[0].reg);
19147 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19148 inst.instruction |= inst.operands[1].reg << 12;
19149 inst.instruction |= inst.operands[2].reg << 16;
19150 break;
19151
19152 case NS_RS: /* case 6. */
19153 {
19154 unsigned logsize;
19155 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19156 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19157 unsigned abcdebits = 0;
19158
19159 /* .<dt> is optional here, defaulting to .32. */
19160 if (inst.vectype.elems == 0
19161 && inst.operands[0].vectype.type == NT_invtype
19162 && inst.operands[1].vectype.type == NT_invtype)
19163 {
19164 inst.vectype.el[0].type = NT_untyped;
19165 inst.vectype.el[0].size = 32;
19166 inst.vectype.elems = 1;
19167 }
19168
19169 et = neon_check_type (2, NS_NULL,
19170 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19171 logsize = neon_logbits (et.size);
19172
19173 if (et.size != 32)
19174 {
19175 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19176 && vfp_or_neon_is_neon (NEON_CHECK_CC
19177 | NEON_CHECK_ARCH) == FAIL)
19178 return;
19179 }
19180 else
19181 {
19182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19183 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19184 _(BAD_FPU));
19185 }
19186
19187 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19188 {
19189 if (inst.operands[0].reg == REG_SP)
19190 as_tsktsk (MVE_BAD_SP);
19191 else if (inst.operands[0].reg == REG_PC)
19192 as_tsktsk (MVE_BAD_PC);
19193 }
19194
19195 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19196
19197 constraint (et.type == NT_invtype, _("bad type for scalar"));
19198 constraint (x >= size / et.size, _("scalar index out of range"));
19199
19200 switch (et.size)
19201 {
19202 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19203 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19204 case 32: abcdebits = 0x00; break;
19205 default: ;
19206 }
19207
19208 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19209 inst.instruction = 0xe100b10;
19210 do_vfp_cond_or_thumb ();
19211 inst.instruction |= LOW4 (dn) << 16;
19212 inst.instruction |= HI1 (dn) << 7;
19213 inst.instruction |= inst.operands[0].reg << 12;
19214 inst.instruction |= (abcdebits & 3) << 5;
19215 inst.instruction |= (abcdebits >> 2) << 21;
19216 inst.instruction |= (x >> (3-logsize)) << 16;
19217 }
19218 break;
19219
19220 case NS_RRD: /* case 7 (fmrrd). */
19221 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19222 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19223 _(BAD_FPU));
19224
19225 inst.instruction = 0xc500b10;
19226 do_vfp_cond_or_thumb ();
19227 inst.instruction |= inst.operands[0].reg << 12;
19228 inst.instruction |= inst.operands[1].reg << 16;
19229 inst.instruction |= LOW4 (inst.operands[2].reg);
19230 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19231 break;
19232
19233 case NS_FF: /* case 8 (fcpys). */
19234 do_vfp_nsyn_opcode ("fcpys");
19235 break;
19236
19237 case NS_HI:
19238 case NS_FI: /* case 10 (fconsts). */
19239 ldconst = "fconsts";
19240 encode_fconstd:
19241 if (!inst.operands[1].immisfloat)
19242 {
19243 unsigned new_imm;
19244 /* Immediate has to fit in 8 bits so float is enough. */
19245 float imm = (float) inst.operands[1].imm;
19246 memcpy (&new_imm, &imm, sizeof (float));
19247 /* But the assembly may have been written to provide an integer
19248 bit pattern that equates to a float, so check that the
19249 conversion has worked. */
19250 if (is_quarter_float (new_imm))
19251 {
19252 if (is_quarter_float (inst.operands[1].imm))
19253 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19254
19255 inst.operands[1].imm = new_imm;
19256 inst.operands[1].immisfloat = 1;
19257 }
19258 }
19259
19260 if (is_quarter_float (inst.operands[1].imm))
19261 {
19262 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19263 do_vfp_nsyn_opcode (ldconst);
19264
19265 /* ARMv8.2 fp16 vmov.f16 instruction. */
19266 if (rs == NS_HI)
19267 do_scalar_fp16_v82_encode ();
19268 }
19269 else
19270 first_error (_("immediate out of range"));
19271 break;
19272
19273 case NS_RH:
19274 case NS_RF: /* case 12 (fmrs). */
19275 do_vfp_nsyn_opcode ("fmrs");
19276 /* ARMv8.2 fp16 vmov.f16 instruction. */
19277 if (rs == NS_RH)
19278 do_scalar_fp16_v82_encode ();
19279 break;
19280
19281 case NS_HR:
19282 case NS_FR: /* case 13 (fmsr). */
19283 do_vfp_nsyn_opcode ("fmsr");
19284 /* ARMv8.2 fp16 vmov.f16 instruction. */
19285 if (rs == NS_HR)
19286 do_scalar_fp16_v82_encode ();
19287 break;
19288
19289 case NS_RRSS:
19290 do_mve_mov (0);
19291 break;
19292 case NS_SSRR:
19293 do_mve_mov (1);
19294 break;
19295
19296 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19297 (one of which is a list), but we have parsed four. Do some fiddling to
19298 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19299 expect. */
19300 case NS_RRFF: /* case 14 (fmrrs). */
19301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19302 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19303 _(BAD_FPU));
19304 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19305 _("VFP registers must be adjacent"));
19306 inst.operands[2].imm = 2;
19307 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19308 do_vfp_nsyn_opcode ("fmrrs");
19309 break;
19310
19311 case NS_FFRR: /* case 15 (fmsrr). */
19312 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19313 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19314 _(BAD_FPU));
19315 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19316 _("VFP registers must be adjacent"));
19317 inst.operands[1] = inst.operands[2];
19318 inst.operands[2] = inst.operands[3];
19319 inst.operands[0].imm = 2;
19320 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19321 do_vfp_nsyn_opcode ("fmsrr");
19322 break;
19323
19324 case NS_NULL:
19325 /* neon_select_shape has determined that the instruction
19326 shape is wrong and has already set the error message. */
19327 break;
19328
19329 default:
19330 abort ();
19331 }
19332 }
19333
19334 static void
19335 do_mve_movl (void)
19336 {
19337 if (!(inst.operands[0].present && inst.operands[0].isquad
19338 && inst.operands[1].present && inst.operands[1].isquad
19339 && !inst.operands[2].present))
19340 {
19341 inst.instruction = 0;
19342 inst.cond = 0xb;
19343 if (thumb_mode)
19344 set_pred_insn_type (INSIDE_IT_INSN);
19345 do_neon_mov ();
19346 return;
19347 }
19348
19349 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19350 return;
19351
19352 if (inst.cond != COND_ALWAYS)
19353 inst.pred_insn_type = INSIDE_VPT_INSN;
19354
19355 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19356 | N_S16 | N_U16 | N_KEY);
19357
19358 inst.instruction |= (et.type == NT_unsigned) << 28;
19359 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19360 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19361 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19362 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19363 inst.instruction |= LOW4 (inst.operands[1].reg);
19364 inst.is_neon = 1;
19365 }
19366
19367 static void
19368 do_neon_rshift_round_imm (void)
19369 {
19370 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19371 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19372 int imm = inst.operands[2].imm;
19373
19374 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19375 if (imm == 0)
19376 {
19377 inst.operands[2].present = 0;
19378 do_neon_mov ();
19379 return;
19380 }
19381
19382 constraint (imm < 1 || (unsigned)imm > et.size,
19383 _("immediate out of range for shift"));
19384 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19385 et.size - imm);
19386 }
19387
19388 static void
19389 do_neon_movhf (void)
19390 {
19391 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19392 constraint (rs != NS_HH, _("invalid suffix"));
19393
19394 if (inst.cond != COND_ALWAYS)
19395 {
19396 if (thumb_mode)
19397 {
19398 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19399 " the behaviour is UNPREDICTABLE"));
19400 }
19401 else
19402 {
19403 inst.error = BAD_COND;
19404 return;
19405 }
19406 }
19407
19408 do_vfp_sp_monadic ();
19409
19410 inst.is_neon = 1;
19411 inst.instruction |= 0xf0000000;
19412 }
19413
19414 static void
19415 do_neon_movl (void)
19416 {
19417 struct neon_type_el et = neon_check_type (2, NS_QD,
19418 N_EQK | N_DBL, N_SU_32 | N_KEY);
19419 unsigned sizebits = et.size >> 3;
19420 inst.instruction |= sizebits << 19;
19421 neon_two_same (0, et.type == NT_unsigned, -1);
19422 }
19423
19424 static void
19425 do_neon_trn (void)
19426 {
19427 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19428 struct neon_type_el et = neon_check_type (2, rs,
19429 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19430 NEON_ENCODE (INTEGER, inst);
19431 neon_two_same (neon_quad (rs), 1, et.size);
19432 }
19433
19434 static void
19435 do_neon_zip_uzp (void)
19436 {
19437 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19438 struct neon_type_el et = neon_check_type (2, rs,
19439 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19440 if (rs == NS_DD && et.size == 32)
19441 {
19442 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19443 inst.instruction = N_MNEM_vtrn;
19444 do_neon_trn ();
19445 return;
19446 }
19447 neon_two_same (neon_quad (rs), 1, et.size);
19448 }
19449
19450 static void
19451 do_neon_sat_abs_neg (void)
19452 {
19453 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19454 struct neon_type_el et = neon_check_type (2, rs,
19455 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19456 neon_two_same (neon_quad (rs), 1, et.size);
19457 }
19458
19459 static void
19460 do_neon_pair_long (void)
19461 {
19462 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19463 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19464 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19465 inst.instruction |= (et.type == NT_unsigned) << 7;
19466 neon_two_same (neon_quad (rs), 1, et.size);
19467 }
19468
19469 static void
19470 do_neon_recip_est (void)
19471 {
19472 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19473 struct neon_type_el et = neon_check_type (2, rs,
19474 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19475 inst.instruction |= (et.type == NT_float) << 8;
19476 neon_two_same (neon_quad (rs), 1, et.size);
19477 }
19478
19479 static void
19480 do_neon_cls (void)
19481 {
19482 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19483 return;
19484
19485 enum neon_shape rs;
19486 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19487 rs = neon_select_shape (NS_QQ, NS_NULL);
19488 else
19489 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19490
19491 struct neon_type_el et = neon_check_type (2, rs,
19492 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19493 neon_two_same (neon_quad (rs), 1, et.size);
19494 }
19495
19496 static void
19497 do_neon_clz (void)
19498 {
19499 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19500 return;
19501
19502 enum neon_shape rs;
19503 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19504 rs = neon_select_shape (NS_QQ, NS_NULL);
19505 else
19506 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19507
19508 struct neon_type_el et = neon_check_type (2, rs,
19509 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19510 neon_two_same (neon_quad (rs), 1, et.size);
19511 }
19512
19513 static void
19514 do_neon_cnt (void)
19515 {
19516 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19517 struct neon_type_el et = neon_check_type (2, rs,
19518 N_EQK | N_INT, N_8 | N_KEY);
19519 neon_two_same (neon_quad (rs), 1, et.size);
19520 }
19521
19522 static void
19523 do_neon_swp (void)
19524 {
19525 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19526 neon_two_same (neon_quad (rs), 1, -1);
19527 }
19528
19529 static void
19530 do_neon_tbl_tbx (void)
19531 {
19532 unsigned listlenbits;
19533 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19534
19535 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19536 {
19537 first_error (_("bad list length for table lookup"));
19538 return;
19539 }
19540
19541 listlenbits = inst.operands[1].imm - 1;
19542 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19543 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19544 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19545 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19546 inst.instruction |= LOW4 (inst.operands[2].reg);
19547 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19548 inst.instruction |= listlenbits << 8;
19549
19550 neon_dp_fixup (&inst);
19551 }
19552
19553 static void
19554 do_neon_ldm_stm (void)
19555 {
19556 /* P, U and L bits are part of bitmask. */
19557 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19558 unsigned offsetbits = inst.operands[1].imm * 2;
19559
19560 if (inst.operands[1].issingle)
19561 {
19562 do_vfp_nsyn_ldm_stm (is_dbmode);
19563 return;
19564 }
19565
19566 constraint (is_dbmode && !inst.operands[0].writeback,
19567 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19568
19569 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19570 _("register list must contain at least 1 and at most 16 "
19571 "registers"));
19572
19573 inst.instruction |= inst.operands[0].reg << 16;
19574 inst.instruction |= inst.operands[0].writeback << 21;
19575 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19576 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19577
19578 inst.instruction |= offsetbits;
19579
19580 do_vfp_cond_or_thumb ();
19581 }
19582
19583 static void
19584 do_neon_ldr_str (void)
19585 {
19586 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19587
19588 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19589 And is UNPREDICTABLE in thumb mode. */
19590 if (!is_ldr
19591 && inst.operands[1].reg == REG_PC
19592 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19593 {
19594 if (thumb_mode)
19595 inst.error = _("Use of PC here is UNPREDICTABLE");
19596 else if (warn_on_deprecated)
19597 as_tsktsk (_("Use of PC here is deprecated"));
19598 }
19599
19600 if (inst.operands[0].issingle)
19601 {
19602 if (is_ldr)
19603 do_vfp_nsyn_opcode ("flds");
19604 else
19605 do_vfp_nsyn_opcode ("fsts");
19606
19607 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19608 if (inst.vectype.el[0].size == 16)
19609 do_scalar_fp16_v82_encode ();
19610 }
19611 else
19612 {
19613 if (is_ldr)
19614 do_vfp_nsyn_opcode ("fldd");
19615 else
19616 do_vfp_nsyn_opcode ("fstd");
19617 }
19618 }
19619
19620 static void
19621 do_t_vldr_vstr_sysreg (void)
19622 {
19623 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19624 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19625
19626 /* Use of PC is UNPREDICTABLE. */
19627 if (inst.operands[1].reg == REG_PC)
19628 inst.error = _("Use of PC here is UNPREDICTABLE");
19629
19630 if (inst.operands[1].immisreg)
19631 inst.error = _("instruction does not accept register index");
19632
19633 if (!inst.operands[1].isreg)
19634 inst.error = _("instruction does not accept PC-relative addressing");
19635
19636 if (abs (inst.operands[1].imm) >= (1 << 7))
19637 inst.error = _("immediate value out of range");
19638
19639 inst.instruction = 0xec000f80;
19640 if (is_vldr)
19641 inst.instruction |= 1 << sysreg_vldr_bitno;
19642 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19643 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19644 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19645 }
19646
19647 static void
19648 do_vldr_vstr (void)
19649 {
19650 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19651
19652 /* VLDR/VSTR (System Register). */
19653 if (sysreg_op)
19654 {
19655 if (!mark_feature_used (&arm_ext_v8_1m_main))
19656 as_bad (_("Instruction not permitted on this architecture"));
19657
19658 do_t_vldr_vstr_sysreg ();
19659 }
19660 /* VLDR/VSTR. */
19661 else
19662 {
19663 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19664 as_bad (_("Instruction not permitted on this architecture"));
19665 do_neon_ldr_str ();
19666 }
19667 }
19668
19669 /* "interleave" version also handles non-interleaving register VLD1/VST1
19670 instructions. */
19671
19672 static void
19673 do_neon_ld_st_interleave (void)
19674 {
19675 struct neon_type_el et = neon_check_type (1, NS_NULL,
19676 N_8 | N_16 | N_32 | N_64);
19677 unsigned alignbits = 0;
19678 unsigned idx;
19679 /* The bits in this table go:
19680 0: register stride of one (0) or two (1)
19681 1,2: register list length, minus one (1, 2, 3, 4).
19682 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19683 We use -1 for invalid entries. */
19684 const int typetable[] =
19685 {
19686 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19687 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19688 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19689 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19690 };
19691 int typebits;
19692
19693 if (et.type == NT_invtype)
19694 return;
19695
19696 if (inst.operands[1].immisalign)
19697 switch (inst.operands[1].imm >> 8)
19698 {
19699 case 64: alignbits = 1; break;
19700 case 128:
19701 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19702 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19703 goto bad_alignment;
19704 alignbits = 2;
19705 break;
19706 case 256:
19707 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19708 goto bad_alignment;
19709 alignbits = 3;
19710 break;
19711 default:
19712 bad_alignment:
19713 first_error (_("bad alignment"));
19714 return;
19715 }
19716
19717 inst.instruction |= alignbits << 4;
19718 inst.instruction |= neon_logbits (et.size) << 6;
19719
19720 /* Bits [4:6] of the immediate in a list specifier encode register stride
19721 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19722 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19723 up the right value for "type" in a table based on this value and the given
19724 list style, then stick it back. */
19725 idx = ((inst.operands[0].imm >> 4) & 7)
19726 | (((inst.instruction >> 8) & 3) << 3);
19727
19728 typebits = typetable[idx];
19729
19730 constraint (typebits == -1, _("bad list type for instruction"));
19731 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19732 BAD_EL_TYPE);
19733
19734 inst.instruction &= ~0xf00;
19735 inst.instruction |= typebits << 8;
19736 }
19737
19738 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19739 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19740 otherwise. The variable arguments are a list of pairs of legal (size, align)
19741 values, terminated with -1. */
19742
19743 static int
19744 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19745 {
19746 va_list ap;
19747 int result = FAIL, thissize, thisalign;
19748
19749 if (!inst.operands[1].immisalign)
19750 {
19751 *do_alignment = 0;
19752 return SUCCESS;
19753 }
19754
19755 va_start (ap, do_alignment);
19756
19757 do
19758 {
19759 thissize = va_arg (ap, int);
19760 if (thissize == -1)
19761 break;
19762 thisalign = va_arg (ap, int);
19763
19764 if (size == thissize && align == thisalign)
19765 result = SUCCESS;
19766 }
19767 while (result != SUCCESS);
19768
19769 va_end (ap);
19770
19771 if (result == SUCCESS)
19772 *do_alignment = 1;
19773 else
19774 first_error (_("unsupported alignment for instruction"));
19775
19776 return result;
19777 }
19778
19779 static void
19780 do_neon_ld_st_lane (void)
19781 {
19782 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19783 int align_good, do_alignment = 0;
19784 int logsize = neon_logbits (et.size);
19785 int align = inst.operands[1].imm >> 8;
19786 int n = (inst.instruction >> 8) & 3;
19787 int max_el = 64 / et.size;
19788
19789 if (et.type == NT_invtype)
19790 return;
19791
19792 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19793 _("bad list length"));
19794 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19795 _("scalar index out of range"));
19796 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19797 && et.size == 8,
19798 _("stride of 2 unavailable when element size is 8"));
19799
19800 switch (n)
19801 {
19802 case 0: /* VLD1 / VST1. */
19803 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19804 32, 32, -1);
19805 if (align_good == FAIL)
19806 return;
19807 if (do_alignment)
19808 {
19809 unsigned alignbits = 0;
19810 switch (et.size)
19811 {
19812 case 16: alignbits = 0x1; break;
19813 case 32: alignbits = 0x3; break;
19814 default: ;
19815 }
19816 inst.instruction |= alignbits << 4;
19817 }
19818 break;
19819
19820 case 1: /* VLD2 / VST2. */
19821 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19822 16, 32, 32, 64, -1);
19823 if (align_good == FAIL)
19824 return;
19825 if (do_alignment)
19826 inst.instruction |= 1 << 4;
19827 break;
19828
19829 case 2: /* VLD3 / VST3. */
19830 constraint (inst.operands[1].immisalign,
19831 _("can't use alignment with this instruction"));
19832 break;
19833
19834 case 3: /* VLD4 / VST4. */
19835 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19836 16, 64, 32, 64, 32, 128, -1);
19837 if (align_good == FAIL)
19838 return;
19839 if (do_alignment)
19840 {
19841 unsigned alignbits = 0;
19842 switch (et.size)
19843 {
19844 case 8: alignbits = 0x1; break;
19845 case 16: alignbits = 0x1; break;
19846 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19847 default: ;
19848 }
19849 inst.instruction |= alignbits << 4;
19850 }
19851 break;
19852
19853 default: ;
19854 }
19855
19856 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19857 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19858 inst.instruction |= 1 << (4 + logsize);
19859
19860 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19861 inst.instruction |= logsize << 10;
19862 }
19863
19864 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19865
19866 static void
19867 do_neon_ld_dup (void)
19868 {
19869 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19870 int align_good, do_alignment = 0;
19871
19872 if (et.type == NT_invtype)
19873 return;
19874
19875 switch ((inst.instruction >> 8) & 3)
19876 {
19877 case 0: /* VLD1. */
19878 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19879 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19880 &do_alignment, 16, 16, 32, 32, -1);
19881 if (align_good == FAIL)
19882 return;
19883 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19884 {
19885 case 1: break;
19886 case 2: inst.instruction |= 1 << 5; break;
19887 default: first_error (_("bad list length")); return;
19888 }
19889 inst.instruction |= neon_logbits (et.size) << 6;
19890 break;
19891
19892 case 1: /* VLD2. */
19893 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19894 &do_alignment, 8, 16, 16, 32, 32, 64,
19895 -1);
19896 if (align_good == FAIL)
19897 return;
19898 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19899 _("bad list length"));
19900 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19901 inst.instruction |= 1 << 5;
19902 inst.instruction |= neon_logbits (et.size) << 6;
19903 break;
19904
19905 case 2: /* VLD3. */
19906 constraint (inst.operands[1].immisalign,
19907 _("can't use alignment with this instruction"));
19908 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19909 _("bad list length"));
19910 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19911 inst.instruction |= 1 << 5;
19912 inst.instruction |= neon_logbits (et.size) << 6;
19913 break;
19914
19915 case 3: /* VLD4. */
19916 {
19917 int align = inst.operands[1].imm >> 8;
19918 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19919 16, 64, 32, 64, 32, 128, -1);
19920 if (align_good == FAIL)
19921 return;
19922 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19923 _("bad list length"));
19924 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19925 inst.instruction |= 1 << 5;
19926 if (et.size == 32 && align == 128)
19927 inst.instruction |= 0x3 << 6;
19928 else
19929 inst.instruction |= neon_logbits (et.size) << 6;
19930 }
19931 break;
19932
19933 default: ;
19934 }
19935
19936 inst.instruction |= do_alignment << 4;
19937 }
19938
19939 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19940 apart from bits [11:4]. */
19941
19942 static void
19943 do_neon_ldx_stx (void)
19944 {
19945 if (inst.operands[1].isreg)
19946 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19947
19948 switch (NEON_LANE (inst.operands[0].imm))
19949 {
19950 case NEON_INTERLEAVE_LANES:
19951 NEON_ENCODE (INTERLV, inst);
19952 do_neon_ld_st_interleave ();
19953 break;
19954
19955 case NEON_ALL_LANES:
19956 NEON_ENCODE (DUP, inst);
19957 if (inst.instruction == N_INV)
19958 {
19959 first_error ("only loads support such operands");
19960 break;
19961 }
19962 do_neon_ld_dup ();
19963 break;
19964
19965 default:
19966 NEON_ENCODE (LANE, inst);
19967 do_neon_ld_st_lane ();
19968 }
19969
19970 /* L bit comes from bit mask. */
19971 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19972 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19973 inst.instruction |= inst.operands[1].reg << 16;
19974
19975 if (inst.operands[1].postind)
19976 {
19977 int postreg = inst.operands[1].imm & 0xf;
19978 constraint (!inst.operands[1].immisreg,
19979 _("post-index must be a register"));
19980 constraint (postreg == 0xd || postreg == 0xf,
19981 _("bad register for post-index"));
19982 inst.instruction |= postreg;
19983 }
19984 else
19985 {
19986 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19987 constraint (inst.relocs[0].exp.X_op != O_constant
19988 || inst.relocs[0].exp.X_add_number != 0,
19989 BAD_ADDR_MODE);
19990
19991 if (inst.operands[1].writeback)
19992 {
19993 inst.instruction |= 0xd;
19994 }
19995 else
19996 inst.instruction |= 0xf;
19997 }
19998
19999 if (thumb_mode)
20000 inst.instruction |= 0xf9000000;
20001 else
20002 inst.instruction |= 0xf4000000;
20003 }
20004
20005 /* FP v8. */
20006 static void
20007 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20008 {
20009 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20010 D register operands. */
20011 if (neon_shape_class[rs] == SC_DOUBLE)
20012 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20013 _(BAD_FPU));
20014
20015 NEON_ENCODE (FPV8, inst);
20016
20017 if (rs == NS_FFF || rs == NS_HHH)
20018 {
20019 do_vfp_sp_dyadic ();
20020
20021 /* ARMv8.2 fp16 instruction. */
20022 if (rs == NS_HHH)
20023 do_scalar_fp16_v82_encode ();
20024 }
20025 else
20026 do_vfp_dp_rd_rn_rm ();
20027
20028 if (rs == NS_DDD)
20029 inst.instruction |= 0x100;
20030
20031 inst.instruction |= 0xf0000000;
20032 }
20033
20034 static void
20035 do_vsel (void)
20036 {
20037 set_pred_insn_type (OUTSIDE_PRED_INSN);
20038
20039 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20040 first_error (_("invalid instruction shape"));
20041 }
20042
20043 static void
20044 do_vmaxnm (void)
20045 {
20046 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20047 set_pred_insn_type (OUTSIDE_PRED_INSN);
20048
20049 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20050 return;
20051
20052 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20053 return;
20054
20055 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20056 }
20057
20058 static void
20059 do_vrint_1 (enum neon_cvt_mode mode)
20060 {
20061 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20062 struct neon_type_el et;
20063
20064 if (rs == NS_NULL)
20065 return;
20066
20067 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20068 D register operands. */
20069 if (neon_shape_class[rs] == SC_DOUBLE)
20070 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20071 _(BAD_FPU));
20072
20073 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20074 | N_VFP);
20075 if (et.type != NT_invtype)
20076 {
20077 /* VFP encodings. */
20078 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20079 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20080 set_pred_insn_type (OUTSIDE_PRED_INSN);
20081
20082 NEON_ENCODE (FPV8, inst);
20083 if (rs == NS_FF || rs == NS_HH)
20084 do_vfp_sp_monadic ();
20085 else
20086 do_vfp_dp_rd_rm ();
20087
20088 switch (mode)
20089 {
20090 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20091 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20092 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20093 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20094 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20095 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20096 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20097 default: abort ();
20098 }
20099
20100 inst.instruction |= (rs == NS_DD) << 8;
20101 do_vfp_cond_or_thumb ();
20102
20103 /* ARMv8.2 fp16 vrint instruction. */
20104 if (rs == NS_HH)
20105 do_scalar_fp16_v82_encode ();
20106 }
20107 else
20108 {
20109 /* Neon encodings (or something broken...). */
20110 inst.error = NULL;
20111 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20112
20113 if (et.type == NT_invtype)
20114 return;
20115
20116 set_pred_insn_type (OUTSIDE_PRED_INSN);
20117 NEON_ENCODE (FLOAT, inst);
20118
20119 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20120 return;
20121
20122 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20123 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20124 inst.instruction |= LOW4 (inst.operands[1].reg);
20125 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20126 inst.instruction |= neon_quad (rs) << 6;
20127 /* Mask off the original size bits and reencode them. */
20128 inst.instruction = ((inst.instruction & 0xfff3ffff)
20129 | neon_logbits (et.size) << 18);
20130
20131 switch (mode)
20132 {
20133 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20134 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20135 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20136 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20137 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20138 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20139 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20140 default: abort ();
20141 }
20142
20143 if (thumb_mode)
20144 inst.instruction |= 0xfc000000;
20145 else
20146 inst.instruction |= 0xf0000000;
20147 }
20148 }
20149
20150 static void
20151 do_vrintx (void)
20152 {
20153 do_vrint_1 (neon_cvt_mode_x);
20154 }
20155
20156 static void
20157 do_vrintz (void)
20158 {
20159 do_vrint_1 (neon_cvt_mode_z);
20160 }
20161
20162 static void
20163 do_vrintr (void)
20164 {
20165 do_vrint_1 (neon_cvt_mode_r);
20166 }
20167
20168 static void
20169 do_vrinta (void)
20170 {
20171 do_vrint_1 (neon_cvt_mode_a);
20172 }
20173
20174 static void
20175 do_vrintn (void)
20176 {
20177 do_vrint_1 (neon_cvt_mode_n);
20178 }
20179
20180 static void
20181 do_vrintp (void)
20182 {
20183 do_vrint_1 (neon_cvt_mode_p);
20184 }
20185
20186 static void
20187 do_vrintm (void)
20188 {
20189 do_vrint_1 (neon_cvt_mode_m);
20190 }
20191
20192 static unsigned
20193 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20194 {
20195 unsigned regno = NEON_SCALAR_REG (opnd);
20196 unsigned elno = NEON_SCALAR_INDEX (opnd);
20197
20198 if (elsize == 16 && elno < 2 && regno < 16)
20199 return regno | (elno << 4);
20200 else if (elsize == 32 && elno == 0)
20201 return regno;
20202
20203 first_error (_("scalar out of range"));
20204 return 0;
20205 }
20206
20207 static void
20208 do_vcmla (void)
20209 {
20210 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20211 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20212 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20213 constraint (inst.relocs[0].exp.X_op != O_constant,
20214 _("expression too complex"));
20215 unsigned rot = inst.relocs[0].exp.X_add_number;
20216 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20217 _("immediate out of range"));
20218 rot /= 90;
20219
20220 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20221 return;
20222
20223 if (inst.operands[2].isscalar)
20224 {
20225 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20226 first_error (_("invalid instruction shape"));
20227 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20228 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20229 N_KEY | N_F16 | N_F32).size;
20230 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20231 inst.is_neon = 1;
20232 inst.instruction = 0xfe000800;
20233 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20234 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20235 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20236 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20237 inst.instruction |= LOW4 (m);
20238 inst.instruction |= HI1 (m) << 5;
20239 inst.instruction |= neon_quad (rs) << 6;
20240 inst.instruction |= rot << 20;
20241 inst.instruction |= (size == 32) << 23;
20242 }
20243 else
20244 {
20245 enum neon_shape rs;
20246 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20247 rs = neon_select_shape (NS_QQQI, NS_NULL);
20248 else
20249 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20250
20251 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20252 N_KEY | N_F16 | N_F32).size;
20253 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20254 && (inst.operands[0].reg == inst.operands[1].reg
20255 || inst.operands[0].reg == inst.operands[2].reg))
20256 as_tsktsk (BAD_MVE_SRCDEST);
20257
20258 neon_three_same (neon_quad (rs), 0, -1);
20259 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20260 inst.instruction |= 0xfc200800;
20261 inst.instruction |= rot << 23;
20262 inst.instruction |= (size == 32) << 20;
20263 }
20264 }
20265
20266 static void
20267 do_vcadd (void)
20268 {
20269 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20270 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20271 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20272 constraint (inst.relocs[0].exp.X_op != O_constant,
20273 _("expression too complex"));
20274
20275 unsigned rot = inst.relocs[0].exp.X_add_number;
20276 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20277 enum neon_shape rs;
20278 struct neon_type_el et;
20279 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20280 {
20281 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20282 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20283 }
20284 else
20285 {
20286 rs = neon_select_shape (NS_QQQI, NS_NULL);
20287 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20288 | N_I16 | N_I32);
20289 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20290 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20291 "operand makes instruction UNPREDICTABLE"));
20292 }
20293
20294 if (et.type == NT_invtype)
20295 return;
20296
20297 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20298 | NEON_CHECK_CC))
20299 return;
20300
20301 if (et.type == NT_float)
20302 {
20303 neon_three_same (neon_quad (rs), 0, -1);
20304 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20305 inst.instruction |= 0xfc800800;
20306 inst.instruction |= (rot == 270) << 24;
20307 inst.instruction |= (et.size == 32) << 20;
20308 }
20309 else
20310 {
20311 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20312 inst.instruction = 0xfe000f00;
20313 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20314 inst.instruction |= neon_logbits (et.size) << 20;
20315 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20316 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20317 inst.instruction |= (rot == 270) << 12;
20318 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20319 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20320 inst.instruction |= LOW4 (inst.operands[2].reg);
20321 inst.is_neon = 1;
20322 }
20323 }
20324
20325 /* Dot Product instructions encoding support. */
20326
20327 static void
20328 do_neon_dotproduct (int unsigned_p)
20329 {
20330 enum neon_shape rs;
20331 unsigned scalar_oprd2 = 0;
20332 int high8;
20333
20334 if (inst.cond != COND_ALWAYS)
20335 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20336 "is UNPREDICTABLE"));
20337
20338 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20339 _(BAD_FPU));
20340
20341 /* Dot Product instructions are in three-same D/Q register format or the third
20342 operand can be a scalar index register. */
20343 if (inst.operands[2].isscalar)
20344 {
20345 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20346 high8 = 0xfe000000;
20347 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20348 }
20349 else
20350 {
20351 high8 = 0xfc000000;
20352 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20353 }
20354
20355 if (unsigned_p)
20356 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20357 else
20358 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20359
20360 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20361 Product instruction, so we pass 0 as the "ubit" parameter. And the
20362 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20363 neon_three_same (neon_quad (rs), 0, 32);
20364
20365 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20366 different NEON three-same encoding. */
20367 inst.instruction &= 0x00ffffff;
20368 inst.instruction |= high8;
20369 /* Encode 'U' bit which indicates signedness. */
20370 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20371 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20372 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20373 the instruction encoding. */
20374 if (inst.operands[2].isscalar)
20375 {
20376 inst.instruction &= 0xffffffd0;
20377 inst.instruction |= LOW4 (scalar_oprd2);
20378 inst.instruction |= HI1 (scalar_oprd2) << 5;
20379 }
20380 }
20381
20382 /* Dot Product instructions for signed integer. */
20383
20384 static void
20385 do_neon_dotproduct_s (void)
20386 {
20387 return do_neon_dotproduct (0);
20388 }
20389
20390 /* Dot Product instructions for unsigned integer. */
20391
20392 static void
20393 do_neon_dotproduct_u (void)
20394 {
20395 return do_neon_dotproduct (1);
20396 }
20397
20398 /* Crypto v1 instructions. */
20399 static void
20400 do_crypto_2op_1 (unsigned elttype, int op)
20401 {
20402 set_pred_insn_type (OUTSIDE_PRED_INSN);
20403
20404 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20405 == NT_invtype)
20406 return;
20407
20408 inst.error = NULL;
20409
20410 NEON_ENCODE (INTEGER, inst);
20411 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20412 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20413 inst.instruction |= LOW4 (inst.operands[1].reg);
20414 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20415 if (op != -1)
20416 inst.instruction |= op << 6;
20417
20418 if (thumb_mode)
20419 inst.instruction |= 0xfc000000;
20420 else
20421 inst.instruction |= 0xf0000000;
20422 }
20423
20424 static void
20425 do_crypto_3op_1 (int u, int op)
20426 {
20427 set_pred_insn_type (OUTSIDE_PRED_INSN);
20428
20429 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20430 N_32 | N_UNT | N_KEY).type == NT_invtype)
20431 return;
20432
20433 inst.error = NULL;
20434
20435 NEON_ENCODE (INTEGER, inst);
20436 neon_three_same (1, u, 8 << op);
20437 }
20438
20439 static void
20440 do_aese (void)
20441 {
20442 do_crypto_2op_1 (N_8, 0);
20443 }
20444
20445 static void
20446 do_aesd (void)
20447 {
20448 do_crypto_2op_1 (N_8, 1);
20449 }
20450
20451 static void
20452 do_aesmc (void)
20453 {
20454 do_crypto_2op_1 (N_8, 2);
20455 }
20456
20457 static void
20458 do_aesimc (void)
20459 {
20460 do_crypto_2op_1 (N_8, 3);
20461 }
20462
20463 static void
20464 do_sha1c (void)
20465 {
20466 do_crypto_3op_1 (0, 0);
20467 }
20468
20469 static void
20470 do_sha1p (void)
20471 {
20472 do_crypto_3op_1 (0, 1);
20473 }
20474
20475 static void
20476 do_sha1m (void)
20477 {
20478 do_crypto_3op_1 (0, 2);
20479 }
20480
20481 static void
20482 do_sha1su0 (void)
20483 {
20484 do_crypto_3op_1 (0, 3);
20485 }
20486
20487 static void
20488 do_sha256h (void)
20489 {
20490 do_crypto_3op_1 (1, 0);
20491 }
20492
20493 static void
20494 do_sha256h2 (void)
20495 {
20496 do_crypto_3op_1 (1, 1);
20497 }
20498
20499 static void
20500 do_sha256su1 (void)
20501 {
20502 do_crypto_3op_1 (1, 2);
20503 }
20504
20505 static void
20506 do_sha1h (void)
20507 {
20508 do_crypto_2op_1 (N_32, -1);
20509 }
20510
20511 static void
20512 do_sha1su1 (void)
20513 {
20514 do_crypto_2op_1 (N_32, 0);
20515 }
20516
20517 static void
20518 do_sha256su0 (void)
20519 {
20520 do_crypto_2op_1 (N_32, 1);
20521 }
20522
20523 static void
20524 do_crc32_1 (unsigned int poly, unsigned int sz)
20525 {
20526 unsigned int Rd = inst.operands[0].reg;
20527 unsigned int Rn = inst.operands[1].reg;
20528 unsigned int Rm = inst.operands[2].reg;
20529
20530 set_pred_insn_type (OUTSIDE_PRED_INSN);
20531 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20532 inst.instruction |= LOW4 (Rn) << 16;
20533 inst.instruction |= LOW4 (Rm);
20534 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20535 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20536
20537 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20538 as_warn (UNPRED_REG ("r15"));
20539 }
20540
20541 static void
20542 do_crc32b (void)
20543 {
20544 do_crc32_1 (0, 0);
20545 }
20546
20547 static void
20548 do_crc32h (void)
20549 {
20550 do_crc32_1 (0, 1);
20551 }
20552
20553 static void
20554 do_crc32w (void)
20555 {
20556 do_crc32_1 (0, 2);
20557 }
20558
20559 static void
20560 do_crc32cb (void)
20561 {
20562 do_crc32_1 (1, 0);
20563 }
20564
20565 static void
20566 do_crc32ch (void)
20567 {
20568 do_crc32_1 (1, 1);
20569 }
20570
20571 static void
20572 do_crc32cw (void)
20573 {
20574 do_crc32_1 (1, 2);
20575 }
20576
20577 static void
20578 do_vjcvt (void)
20579 {
20580 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20581 _(BAD_FPU));
20582 neon_check_type (2, NS_FD, N_S32, N_F64);
20583 do_vfp_sp_dp_cvt ();
20584 do_vfp_cond_or_thumb ();
20585 }
20586
20587 \f
20588 /* Overall per-instruction processing. */
20589
20590 /* We need to be able to fix up arbitrary expressions in some statements.
20591 This is so that we can handle symbols that are an arbitrary distance from
20592 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20593 which returns part of an address in a form which will be valid for
20594 a data instruction. We do this by pushing the expression into a symbol
20595 in the expr_section, and creating a fix for that. */
20596
20597 static void
20598 fix_new_arm (fragS * frag,
20599 int where,
20600 short int size,
20601 expressionS * exp,
20602 int pc_rel,
20603 int reloc)
20604 {
20605 fixS * new_fix;
20606
20607 switch (exp->X_op)
20608 {
20609 case O_constant:
20610 if (pc_rel)
20611 {
20612 /* Create an absolute valued symbol, so we have something to
20613 refer to in the object file. Unfortunately for us, gas's
20614 generic expression parsing will already have folded out
20615 any use of .set foo/.type foo %function that may have
20616 been used to set type information of the target location,
20617 that's being specified symbolically. We have to presume
20618 the user knows what they are doing. */
20619 char name[16 + 8];
20620 symbolS *symbol;
20621
20622 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20623
20624 symbol = symbol_find_or_make (name);
20625 S_SET_SEGMENT (symbol, absolute_section);
20626 symbol_set_frag (symbol, &zero_address_frag);
20627 S_SET_VALUE (symbol, exp->X_add_number);
20628 exp->X_op = O_symbol;
20629 exp->X_add_symbol = symbol;
20630 exp->X_add_number = 0;
20631 }
20632 /* FALLTHROUGH */
20633 case O_symbol:
20634 case O_add:
20635 case O_subtract:
20636 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20637 (enum bfd_reloc_code_real) reloc);
20638 break;
20639
20640 default:
20641 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20642 pc_rel, (enum bfd_reloc_code_real) reloc);
20643 break;
20644 }
20645
20646 /* Mark whether the fix is to a THUMB instruction, or an ARM
20647 instruction. */
20648 new_fix->tc_fix_data = thumb_mode;
20649 }
20650
20651 /* Create a frg for an instruction requiring relaxation. */
20652 static void
20653 output_relax_insn (void)
20654 {
20655 char * to;
20656 symbolS *sym;
20657 int offset;
20658
20659 /* The size of the instruction is unknown, so tie the debug info to the
20660 start of the instruction. */
20661 dwarf2_emit_insn (0);
20662
20663 switch (inst.relocs[0].exp.X_op)
20664 {
20665 case O_symbol:
20666 sym = inst.relocs[0].exp.X_add_symbol;
20667 offset = inst.relocs[0].exp.X_add_number;
20668 break;
20669 case O_constant:
20670 sym = NULL;
20671 offset = inst.relocs[0].exp.X_add_number;
20672 break;
20673 default:
20674 sym = make_expr_symbol (&inst.relocs[0].exp);
20675 offset = 0;
20676 break;
20677 }
20678 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20679 inst.relax, sym, offset, NULL/*offset, opcode*/);
20680 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20681 }
20682
20683 /* Write a 32-bit thumb instruction to buf. */
20684 static void
20685 put_thumb32_insn (char * buf, unsigned long insn)
20686 {
20687 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20688 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20689 }
20690
20691 static void
20692 output_inst (const char * str)
20693 {
20694 char * to = NULL;
20695
20696 if (inst.error)
20697 {
20698 as_bad ("%s -- `%s'", inst.error, str);
20699 return;
20700 }
20701 if (inst.relax)
20702 {
20703 output_relax_insn ();
20704 return;
20705 }
20706 if (inst.size == 0)
20707 return;
20708
20709 to = frag_more (inst.size);
20710 /* PR 9814: Record the thumb mode into the current frag so that we know
20711 what type of NOP padding to use, if necessary. We override any previous
20712 setting so that if the mode has changed then the NOPS that we use will
20713 match the encoding of the last instruction in the frag. */
20714 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20715
20716 if (thumb_mode && (inst.size > THUMB_SIZE))
20717 {
20718 gas_assert (inst.size == (2 * THUMB_SIZE));
20719 put_thumb32_insn (to, inst.instruction);
20720 }
20721 else if (inst.size > INSN_SIZE)
20722 {
20723 gas_assert (inst.size == (2 * INSN_SIZE));
20724 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20725 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20726 }
20727 else
20728 md_number_to_chars (to, inst.instruction, inst.size);
20729
20730 int r;
20731 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20732 {
20733 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20734 fix_new_arm (frag_now, to - frag_now->fr_literal,
20735 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20736 inst.relocs[r].type);
20737 }
20738
20739 dwarf2_emit_insn (inst.size);
20740 }
20741
20742 static char *
20743 output_it_inst (int cond, int mask, char * to)
20744 {
20745 unsigned long instruction = 0xbf00;
20746
20747 mask &= 0xf;
20748 instruction |= mask;
20749 instruction |= cond << 4;
20750
20751 if (to == NULL)
20752 {
20753 to = frag_more (2);
20754 #ifdef OBJ_ELF
20755 dwarf2_emit_insn (2);
20756 #endif
20757 }
20758
20759 md_number_to_chars (to, instruction, 2);
20760
20761 return to;
20762 }
20763
20764 /* Tag values used in struct asm_opcode's tag field. */
20765 enum opcode_tag
20766 {
20767 OT_unconditional, /* Instruction cannot be conditionalized.
20768 The ARM condition field is still 0xE. */
20769 OT_unconditionalF, /* Instruction cannot be conditionalized
20770 and carries 0xF in its ARM condition field. */
20771 OT_csuffix, /* Instruction takes a conditional suffix. */
20772 OT_csuffixF, /* Some forms of the instruction take a scalar
20773 conditional suffix, others place 0xF where the
20774 condition field would be, others take a vector
20775 conditional suffix. */
20776 OT_cinfix3, /* Instruction takes a conditional infix,
20777 beginning at character index 3. (In
20778 unified mode, it becomes a suffix.) */
20779 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20780 tsts, cmps, cmns, and teqs. */
20781 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20782 character index 3, even in unified mode. Used for
20783 legacy instructions where suffix and infix forms
20784 may be ambiguous. */
20785 OT_csuf_or_in3, /* Instruction takes either a conditional
20786 suffix or an infix at character index 3. */
20787 OT_odd_infix_unc, /* This is the unconditional variant of an
20788 instruction that takes a conditional infix
20789 at an unusual position. In unified mode,
20790 this variant will accept a suffix. */
20791 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20792 are the conditional variants of instructions that
20793 take conditional infixes in unusual positions.
20794 The infix appears at character index
20795 (tag - OT_odd_infix_0). These are not accepted
20796 in unified mode. */
20797 };
20798
20799 /* Subroutine of md_assemble, responsible for looking up the primary
20800 opcode from the mnemonic the user wrote. STR points to the
20801 beginning of the mnemonic.
20802
20803 This is not simply a hash table lookup, because of conditional
20804 variants. Most instructions have conditional variants, which are
20805 expressed with a _conditional affix_ to the mnemonic. If we were
20806 to encode each conditional variant as a literal string in the opcode
20807 table, it would have approximately 20,000 entries.
20808
20809 Most mnemonics take this affix as a suffix, and in unified syntax,
20810 'most' is upgraded to 'all'. However, in the divided syntax, some
20811 instructions take the affix as an infix, notably the s-variants of
20812 the arithmetic instructions. Of those instructions, all but six
20813 have the infix appear after the third character of the mnemonic.
20814
20815 Accordingly, the algorithm for looking up primary opcodes given
20816 an identifier is:
20817
20818 1. Look up the identifier in the opcode table.
20819 If we find a match, go to step U.
20820
20821 2. Look up the last two characters of the identifier in the
20822 conditions table. If we find a match, look up the first N-2
20823 characters of the identifier in the opcode table. If we
20824 find a match, go to step CE.
20825
20826 3. Look up the fourth and fifth characters of the identifier in
20827 the conditions table. If we find a match, extract those
20828 characters from the identifier, and look up the remaining
20829 characters in the opcode table. If we find a match, go
20830 to step CM.
20831
20832 4. Fail.
20833
20834 U. Examine the tag field of the opcode structure, in case this is
20835 one of the six instructions with its conditional infix in an
20836 unusual place. If it is, the tag tells us where to find the
20837 infix; look it up in the conditions table and set inst.cond
20838 accordingly. Otherwise, this is an unconditional instruction.
20839 Again set inst.cond accordingly. Return the opcode structure.
20840
20841 CE. Examine the tag field to make sure this is an instruction that
20842 should receive a conditional suffix. If it is not, fail.
20843 Otherwise, set inst.cond from the suffix we already looked up,
20844 and return the opcode structure.
20845
20846 CM. Examine the tag field to make sure this is an instruction that
20847 should receive a conditional infix after the third character.
20848 If it is not, fail. Otherwise, undo the edits to the current
20849 line of input and proceed as for case CE. */
20850
20851 static const struct asm_opcode *
20852 opcode_lookup (char **str)
20853 {
20854 char *end, *base;
20855 char *affix;
20856 const struct asm_opcode *opcode;
20857 const struct asm_cond *cond;
20858 char save[2];
20859
20860 /* Scan up to the end of the mnemonic, which must end in white space,
20861 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20862 for (base = end = *str; *end != '\0'; end++)
20863 if (*end == ' ' || *end == '.')
20864 break;
20865
20866 if (end == base)
20867 return NULL;
20868
20869 /* Handle a possible width suffix and/or Neon type suffix. */
20870 if (end[0] == '.')
20871 {
20872 int offset = 2;
20873
20874 /* The .w and .n suffixes are only valid if the unified syntax is in
20875 use. */
20876 if (unified_syntax && end[1] == 'w')
20877 inst.size_req = 4;
20878 else if (unified_syntax && end[1] == 'n')
20879 inst.size_req = 2;
20880 else
20881 offset = 0;
20882
20883 inst.vectype.elems = 0;
20884
20885 *str = end + offset;
20886
20887 if (end[offset] == '.')
20888 {
20889 /* See if we have a Neon type suffix (possible in either unified or
20890 non-unified ARM syntax mode). */
20891 if (parse_neon_type (&inst.vectype, str) == FAIL)
20892 return NULL;
20893 }
20894 else if (end[offset] != '\0' && end[offset] != ' ')
20895 return NULL;
20896 }
20897 else
20898 *str = end;
20899
20900 /* Look for unaffixed or special-case affixed mnemonic. */
20901 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20902 end - base);
20903 if (opcode)
20904 {
20905 /* step U */
20906 if (opcode->tag < OT_odd_infix_0)
20907 {
20908 inst.cond = COND_ALWAYS;
20909 return opcode;
20910 }
20911
20912 if (warn_on_deprecated && unified_syntax)
20913 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20914 affix = base + (opcode->tag - OT_odd_infix_0);
20915 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20916 gas_assert (cond);
20917
20918 inst.cond = cond->value;
20919 return opcode;
20920 }
20921 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20922 {
20923 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20924 */
20925 if (end - base < 2)
20926 return NULL;
20927 affix = end - 1;
20928 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20929 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20930 affix - base);
20931 /* If this opcode can not be vector predicated then don't accept it with a
20932 vector predication code. */
20933 if (opcode && !opcode->mayBeVecPred)
20934 opcode = NULL;
20935 }
20936 if (!opcode || !cond)
20937 {
20938 /* Cannot have a conditional suffix on a mnemonic of less than two
20939 characters. */
20940 if (end - base < 3)
20941 return NULL;
20942
20943 /* Look for suffixed mnemonic. */
20944 affix = end - 2;
20945 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20946 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20947 affix - base);
20948 }
20949
20950 if (opcode && cond)
20951 {
20952 /* step CE */
20953 switch (opcode->tag)
20954 {
20955 case OT_cinfix3_legacy:
20956 /* Ignore conditional suffixes matched on infix only mnemonics. */
20957 break;
20958
20959 case OT_cinfix3:
20960 case OT_cinfix3_deprecated:
20961 case OT_odd_infix_unc:
20962 if (!unified_syntax)
20963 return NULL;
20964 /* Fall through. */
20965
20966 case OT_csuffix:
20967 case OT_csuffixF:
20968 case OT_csuf_or_in3:
20969 inst.cond = cond->value;
20970 return opcode;
20971
20972 case OT_unconditional:
20973 case OT_unconditionalF:
20974 if (thumb_mode)
20975 inst.cond = cond->value;
20976 else
20977 {
20978 /* Delayed diagnostic. */
20979 inst.error = BAD_COND;
20980 inst.cond = COND_ALWAYS;
20981 }
20982 return opcode;
20983
20984 default:
20985 return NULL;
20986 }
20987 }
20988
20989 /* Cannot have a usual-position infix on a mnemonic of less than
20990 six characters (five would be a suffix). */
20991 if (end - base < 6)
20992 return NULL;
20993
20994 /* Look for infixed mnemonic in the usual position. */
20995 affix = base + 3;
20996 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20997 if (!cond)
20998 return NULL;
20999
21000 memcpy (save, affix, 2);
21001 memmove (affix, affix + 2, (end - affix) - 2);
21002 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21003 (end - base) - 2);
21004 memmove (affix + 2, affix, (end - affix) - 2);
21005 memcpy (affix, save, 2);
21006
21007 if (opcode
21008 && (opcode->tag == OT_cinfix3
21009 || opcode->tag == OT_cinfix3_deprecated
21010 || opcode->tag == OT_csuf_or_in3
21011 || opcode->tag == OT_cinfix3_legacy))
21012 {
21013 /* Step CM. */
21014 if (warn_on_deprecated && unified_syntax
21015 && (opcode->tag == OT_cinfix3
21016 || opcode->tag == OT_cinfix3_deprecated))
21017 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21018
21019 inst.cond = cond->value;
21020 return opcode;
21021 }
21022
21023 return NULL;
21024 }
21025
21026 /* This function generates an initial IT instruction, leaving its block
21027 virtually open for the new instructions. Eventually,
21028 the mask will be updated by now_pred_add_mask () each time
21029 a new instruction needs to be included in the IT block.
21030 Finally, the block is closed with close_automatic_it_block ().
21031 The block closure can be requested either from md_assemble (),
21032 a tencode (), or due to a label hook. */
21033
21034 static void
21035 new_automatic_it_block (int cond)
21036 {
21037 now_pred.state = AUTOMATIC_PRED_BLOCK;
21038 now_pred.mask = 0x18;
21039 now_pred.cc = cond;
21040 now_pred.block_length = 1;
21041 mapping_state (MAP_THUMB);
21042 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21043 now_pred.warn_deprecated = FALSE;
21044 now_pred.insn_cond = TRUE;
21045 }
21046
21047 /* Close an automatic IT block.
21048 See comments in new_automatic_it_block (). */
21049
21050 static void
21051 close_automatic_it_block (void)
21052 {
21053 now_pred.mask = 0x10;
21054 now_pred.block_length = 0;
21055 }
21056
21057 /* Update the mask of the current automatically-generated IT
21058 instruction. See comments in new_automatic_it_block (). */
21059
21060 static void
21061 now_pred_add_mask (int cond)
21062 {
21063 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21064 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21065 | ((bitvalue) << (nbit)))
21066 const int resulting_bit = (cond & 1);
21067
21068 now_pred.mask &= 0xf;
21069 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21070 resulting_bit,
21071 (5 - now_pred.block_length));
21072 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21073 1,
21074 ((5 - now_pred.block_length) - 1));
21075 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21076
21077 #undef CLEAR_BIT
21078 #undef SET_BIT_VALUE
21079 }
21080
21081 /* The IT blocks handling machinery is accessed through the these functions:
21082 it_fsm_pre_encode () from md_assemble ()
21083 set_pred_insn_type () optional, from the tencode functions
21084 set_pred_insn_type_last () ditto
21085 in_pred_block () ditto
21086 it_fsm_post_encode () from md_assemble ()
21087 force_automatic_it_block_close () from label handling functions
21088
21089 Rationale:
21090 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21091 initializing the IT insn type with a generic initial value depending
21092 on the inst.condition.
21093 2) During the tencode function, two things may happen:
21094 a) The tencode function overrides the IT insn type by
21095 calling either set_pred_insn_type (type) or
21096 set_pred_insn_type_last ().
21097 b) The tencode function queries the IT block state by
21098 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21099
21100 Both set_pred_insn_type and in_pred_block run the internal FSM state
21101 handling function (handle_pred_state), because: a) setting the IT insn
21102 type may incur in an invalid state (exiting the function),
21103 and b) querying the state requires the FSM to be updated.
21104 Specifically we want to avoid creating an IT block for conditional
21105 branches, so it_fsm_pre_encode is actually a guess and we can't
21106 determine whether an IT block is required until the tencode () routine
21107 has decided what type of instruction this actually it.
21108 Because of this, if set_pred_insn_type and in_pred_block have to be
21109 used, set_pred_insn_type has to be called first.
21110
21111 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21112 that determines the insn IT type depending on the inst.cond code.
21113 When a tencode () routine encodes an instruction that can be
21114 either outside an IT block, or, in the case of being inside, has to be
21115 the last one, set_pred_insn_type_last () will determine the proper
21116 IT instruction type based on the inst.cond code. Otherwise,
21117 set_pred_insn_type can be called for overriding that logic or
21118 for covering other cases.
21119
21120 Calling handle_pred_state () may not transition the IT block state to
21121 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21122 still queried. Instead, if the FSM determines that the state should
21123 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21124 after the tencode () function: that's what it_fsm_post_encode () does.
21125
21126 Since in_pred_block () calls the state handling function to get an
21127 updated state, an error may occur (due to invalid insns combination).
21128 In that case, inst.error is set.
21129 Therefore, inst.error has to be checked after the execution of
21130 the tencode () routine.
21131
21132 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21133 any pending state change (if any) that didn't take place in
21134 handle_pred_state () as explained above. */
21135
21136 static void
21137 it_fsm_pre_encode (void)
21138 {
21139 if (inst.cond != COND_ALWAYS)
21140 inst.pred_insn_type = INSIDE_IT_INSN;
21141 else
21142 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21143
21144 now_pred.state_handled = 0;
21145 }
21146
21147 /* IT state FSM handling function. */
21148 /* MVE instructions and non-MVE instructions are handled differently because of
21149 the introduction of VPT blocks.
21150 Specifications say that any non-MVE instruction inside a VPT block is
21151 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21152 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21153 few exceptions we have MVE_UNPREDICABLE_INSN.
21154 The error messages provided depending on the different combinations possible
21155 are described in the cases below:
21156 For 'most' MVE instructions:
21157 1) In an IT block, with an IT code: syntax error
21158 2) In an IT block, with a VPT code: error: must be in a VPT block
21159 3) In an IT block, with no code: warning: UNPREDICTABLE
21160 4) In a VPT block, with an IT code: syntax error
21161 5) In a VPT block, with a VPT code: OK!
21162 6) In a VPT block, with no code: error: missing code
21163 7) Outside a pred block, with an IT code: error: syntax error
21164 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21165 9) Outside a pred block, with no code: OK!
21166 For non-MVE instructions:
21167 10) In an IT block, with an IT code: OK!
21168 11) In an IT block, with a VPT code: syntax error
21169 12) In an IT block, with no code: error: missing code
21170 13) In a VPT block, with an IT code: error: should be in an IT block
21171 14) In a VPT block, with a VPT code: syntax error
21172 15) In a VPT block, with no code: UNPREDICTABLE
21173 16) Outside a pred block, with an IT code: error: should be in an IT block
21174 17) Outside a pred block, with a VPT code: syntax error
21175 18) Outside a pred block, with no code: OK!
21176 */
21177
21178
21179 static int
21180 handle_pred_state (void)
21181 {
21182 now_pred.state_handled = 1;
21183 now_pred.insn_cond = FALSE;
21184
21185 switch (now_pred.state)
21186 {
21187 case OUTSIDE_PRED_BLOCK:
21188 switch (inst.pred_insn_type)
21189 {
21190 case MVE_UNPREDICABLE_INSN:
21191 case MVE_OUTSIDE_PRED_INSN:
21192 if (inst.cond < COND_ALWAYS)
21193 {
21194 /* Case 7: Outside a pred block, with an IT code: error: syntax
21195 error. */
21196 inst.error = BAD_SYNTAX;
21197 return FAIL;
21198 }
21199 /* Case 9: Outside a pred block, with no code: OK! */
21200 break;
21201 case OUTSIDE_PRED_INSN:
21202 if (inst.cond > COND_ALWAYS)
21203 {
21204 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21205 */
21206 inst.error = BAD_SYNTAX;
21207 return FAIL;
21208 }
21209 /* Case 18: Outside a pred block, with no code: OK! */
21210 break;
21211
21212 case INSIDE_VPT_INSN:
21213 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21214 a VPT block. */
21215 inst.error = BAD_OUT_VPT;
21216 return FAIL;
21217
21218 case INSIDE_IT_INSN:
21219 case INSIDE_IT_LAST_INSN:
21220 if (inst.cond < COND_ALWAYS)
21221 {
21222 /* Case 16: Outside a pred block, with an IT code: error: should
21223 be in an IT block. */
21224 if (thumb_mode == 0)
21225 {
21226 if (unified_syntax
21227 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21228 as_tsktsk (_("Warning: conditional outside an IT block"\
21229 " for Thumb."));
21230 }
21231 else
21232 {
21233 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21234 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21235 {
21236 /* Automatically generate the IT instruction. */
21237 new_automatic_it_block (inst.cond);
21238 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21239 close_automatic_it_block ();
21240 }
21241 else
21242 {
21243 inst.error = BAD_OUT_IT;
21244 return FAIL;
21245 }
21246 }
21247 break;
21248 }
21249 else if (inst.cond > COND_ALWAYS)
21250 {
21251 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21252 */
21253 inst.error = BAD_SYNTAX;
21254 return FAIL;
21255 }
21256 else
21257 gas_assert (0);
21258 case IF_INSIDE_IT_LAST_INSN:
21259 case NEUTRAL_IT_INSN:
21260 break;
21261
21262 case VPT_INSN:
21263 if (inst.cond != COND_ALWAYS)
21264 first_error (BAD_SYNTAX);
21265 now_pred.state = MANUAL_PRED_BLOCK;
21266 now_pred.block_length = 0;
21267 now_pred.type = VECTOR_PRED;
21268 now_pred.cc = 0;
21269 break;
21270 case IT_INSN:
21271 now_pred.state = MANUAL_PRED_BLOCK;
21272 now_pred.block_length = 0;
21273 now_pred.type = SCALAR_PRED;
21274 break;
21275 }
21276 break;
21277
21278 case AUTOMATIC_PRED_BLOCK:
21279 /* Three things may happen now:
21280 a) We should increment current it block size;
21281 b) We should close current it block (closing insn or 4 insns);
21282 c) We should close current it block and start a new one (due
21283 to incompatible conditions or
21284 4 insns-length block reached). */
21285
21286 switch (inst.pred_insn_type)
21287 {
21288 case INSIDE_VPT_INSN:
21289 case VPT_INSN:
21290 case MVE_UNPREDICABLE_INSN:
21291 case MVE_OUTSIDE_PRED_INSN:
21292 gas_assert (0);
21293 case OUTSIDE_PRED_INSN:
21294 /* The closure of the block shall happen immediately,
21295 so any in_pred_block () call reports the block as closed. */
21296 force_automatic_it_block_close ();
21297 break;
21298
21299 case INSIDE_IT_INSN:
21300 case INSIDE_IT_LAST_INSN:
21301 case IF_INSIDE_IT_LAST_INSN:
21302 now_pred.block_length++;
21303
21304 if (now_pred.block_length > 4
21305 || !now_pred_compatible (inst.cond))
21306 {
21307 force_automatic_it_block_close ();
21308 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21309 new_automatic_it_block (inst.cond);
21310 }
21311 else
21312 {
21313 now_pred.insn_cond = TRUE;
21314 now_pred_add_mask (inst.cond);
21315 }
21316
21317 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21318 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21319 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21320 close_automatic_it_block ();
21321 break;
21322
21323 case NEUTRAL_IT_INSN:
21324 now_pred.block_length++;
21325 now_pred.insn_cond = TRUE;
21326
21327 if (now_pred.block_length > 4)
21328 force_automatic_it_block_close ();
21329 else
21330 now_pred_add_mask (now_pred.cc & 1);
21331 break;
21332
21333 case IT_INSN:
21334 close_automatic_it_block ();
21335 now_pred.state = MANUAL_PRED_BLOCK;
21336 break;
21337 }
21338 break;
21339
21340 case MANUAL_PRED_BLOCK:
21341 {
21342 int cond, is_last;
21343 if (now_pred.type == SCALAR_PRED)
21344 {
21345 /* Check conditional suffixes. */
21346 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21347 now_pred.mask <<= 1;
21348 now_pred.mask &= 0x1f;
21349 is_last = (now_pred.mask == 0x10);
21350 }
21351 else
21352 {
21353 now_pred.cc ^= (now_pred.mask >> 4);
21354 cond = now_pred.cc + 0xf;
21355 now_pred.mask <<= 1;
21356 now_pred.mask &= 0x1f;
21357 is_last = now_pred.mask == 0x10;
21358 }
21359 now_pred.insn_cond = TRUE;
21360
21361 switch (inst.pred_insn_type)
21362 {
21363 case OUTSIDE_PRED_INSN:
21364 if (now_pred.type == SCALAR_PRED)
21365 {
21366 if (inst.cond == COND_ALWAYS)
21367 {
21368 /* Case 12: In an IT block, with no code: error: missing
21369 code. */
21370 inst.error = BAD_NOT_IT;
21371 return FAIL;
21372 }
21373 else if (inst.cond > COND_ALWAYS)
21374 {
21375 /* Case 11: In an IT block, with a VPT code: syntax error.
21376 */
21377 inst.error = BAD_SYNTAX;
21378 return FAIL;
21379 }
21380 else if (thumb_mode)
21381 {
21382 /* This is for some special cases where a non-MVE
21383 instruction is not allowed in an IT block, such as cbz,
21384 but are put into one with a condition code.
21385 You could argue this should be a syntax error, but we
21386 gave the 'not allowed in IT block' diagnostic in the
21387 past so we will keep doing so. */
21388 inst.error = BAD_NOT_IT;
21389 return FAIL;
21390 }
21391 break;
21392 }
21393 else
21394 {
21395 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21396 as_tsktsk (MVE_NOT_VPT);
21397 return SUCCESS;
21398 }
21399 case MVE_OUTSIDE_PRED_INSN:
21400 if (now_pred.type == SCALAR_PRED)
21401 {
21402 if (inst.cond == COND_ALWAYS)
21403 {
21404 /* Case 3: In an IT block, with no code: warning:
21405 UNPREDICTABLE. */
21406 as_tsktsk (MVE_NOT_IT);
21407 return SUCCESS;
21408 }
21409 else if (inst.cond < COND_ALWAYS)
21410 {
21411 /* Case 1: In an IT block, with an IT code: syntax error.
21412 */
21413 inst.error = BAD_SYNTAX;
21414 return FAIL;
21415 }
21416 else
21417 gas_assert (0);
21418 }
21419 else
21420 {
21421 if (inst.cond < COND_ALWAYS)
21422 {
21423 /* Case 4: In a VPT block, with an IT code: syntax error.
21424 */
21425 inst.error = BAD_SYNTAX;
21426 return FAIL;
21427 }
21428 else if (inst.cond == COND_ALWAYS)
21429 {
21430 /* Case 6: In a VPT block, with no code: error: missing
21431 code. */
21432 inst.error = BAD_NOT_VPT;
21433 return FAIL;
21434 }
21435 else
21436 {
21437 gas_assert (0);
21438 }
21439 }
21440 case MVE_UNPREDICABLE_INSN:
21441 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21442 return SUCCESS;
21443 case INSIDE_IT_INSN:
21444 if (inst.cond > COND_ALWAYS)
21445 {
21446 /* Case 11: In an IT block, with a VPT code: syntax error. */
21447 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21448 inst.error = BAD_SYNTAX;
21449 return FAIL;
21450 }
21451 else if (now_pred.type == SCALAR_PRED)
21452 {
21453 /* Case 10: In an IT block, with an IT code: OK! */
21454 if (cond != inst.cond)
21455 {
21456 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21457 BAD_VPT_COND;
21458 return FAIL;
21459 }
21460 }
21461 else
21462 {
21463 /* Case 13: In a VPT block, with an IT code: error: should be
21464 in an IT block. */
21465 inst.error = BAD_OUT_IT;
21466 return FAIL;
21467 }
21468 break;
21469
21470 case INSIDE_VPT_INSN:
21471 if (now_pred.type == SCALAR_PRED)
21472 {
21473 /* Case 2: In an IT block, with a VPT code: error: must be in a
21474 VPT block. */
21475 inst.error = BAD_OUT_VPT;
21476 return FAIL;
21477 }
21478 /* Case 5: In a VPT block, with a VPT code: OK! */
21479 else if (cond != inst.cond)
21480 {
21481 inst.error = BAD_VPT_COND;
21482 return FAIL;
21483 }
21484 break;
21485 case INSIDE_IT_LAST_INSN:
21486 case IF_INSIDE_IT_LAST_INSN:
21487 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21488 {
21489 /* Case 4: In a VPT block, with an IT code: syntax error. */
21490 /* Case 11: In an IT block, with a VPT code: syntax error. */
21491 inst.error = BAD_SYNTAX;
21492 return FAIL;
21493 }
21494 else if (cond != inst.cond)
21495 {
21496 inst.error = BAD_IT_COND;
21497 return FAIL;
21498 }
21499 if (!is_last)
21500 {
21501 inst.error = BAD_BRANCH;
21502 return FAIL;
21503 }
21504 break;
21505
21506 case NEUTRAL_IT_INSN:
21507 /* The BKPT instruction is unconditional even in a IT or VPT
21508 block. */
21509 break;
21510
21511 case IT_INSN:
21512 if (now_pred.type == SCALAR_PRED)
21513 {
21514 inst.error = BAD_IT_IT;
21515 return FAIL;
21516 }
21517 /* fall through. */
21518 case VPT_INSN:
21519 if (inst.cond == COND_ALWAYS)
21520 {
21521 /* Executing a VPT/VPST instruction inside an IT block or a
21522 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21523 */
21524 if (now_pred.type == SCALAR_PRED)
21525 as_tsktsk (MVE_NOT_IT);
21526 else
21527 as_tsktsk (MVE_NOT_VPT);
21528 return SUCCESS;
21529 }
21530 else
21531 {
21532 /* VPT/VPST do not accept condition codes. */
21533 inst.error = BAD_SYNTAX;
21534 return FAIL;
21535 }
21536 }
21537 }
21538 break;
21539 }
21540
21541 return SUCCESS;
21542 }
21543
21544 struct depr_insn_mask
21545 {
21546 unsigned long pattern;
21547 unsigned long mask;
21548 const char* description;
21549 };
21550
21551 /* List of 16-bit instruction patterns deprecated in an IT block in
21552 ARMv8. */
21553 static const struct depr_insn_mask depr_it_insns[] = {
21554 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21555 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21556 { 0xa000, 0xb800, N_("ADR") },
21557 { 0x4800, 0xf800, N_("Literal loads") },
21558 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21559 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21560 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21561 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21562 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21563 { 0, 0, NULL }
21564 };
21565
21566 static void
21567 it_fsm_post_encode (void)
21568 {
21569 int is_last;
21570
21571 if (!now_pred.state_handled)
21572 handle_pred_state ();
21573
21574 if (now_pred.insn_cond
21575 && !now_pred.warn_deprecated
21576 && warn_on_deprecated
21577 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21578 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21579 {
21580 if (inst.instruction >= 0x10000)
21581 {
21582 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21583 "performance deprecated in ARMv8-A and ARMv8-R"));
21584 now_pred.warn_deprecated = TRUE;
21585 }
21586 else
21587 {
21588 const struct depr_insn_mask *p = depr_it_insns;
21589
21590 while (p->mask != 0)
21591 {
21592 if ((inst.instruction & p->mask) == p->pattern)
21593 {
21594 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21595 "instructions of the following class are "
21596 "performance deprecated in ARMv8-A and "
21597 "ARMv8-R: %s"), p->description);
21598 now_pred.warn_deprecated = TRUE;
21599 break;
21600 }
21601
21602 ++p;
21603 }
21604 }
21605
21606 if (now_pred.block_length > 1)
21607 {
21608 as_tsktsk (_("IT blocks containing more than one conditional "
21609 "instruction are performance deprecated in ARMv8-A and "
21610 "ARMv8-R"));
21611 now_pred.warn_deprecated = TRUE;
21612 }
21613 }
21614
21615 is_last = (now_pred.mask == 0x10);
21616 if (is_last)
21617 {
21618 now_pred.state = OUTSIDE_PRED_BLOCK;
21619 now_pred.mask = 0;
21620 }
21621 }
21622
21623 static void
21624 force_automatic_it_block_close (void)
21625 {
21626 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21627 {
21628 close_automatic_it_block ();
21629 now_pred.state = OUTSIDE_PRED_BLOCK;
21630 now_pred.mask = 0;
21631 }
21632 }
21633
21634 static int
21635 in_pred_block (void)
21636 {
21637 if (!now_pred.state_handled)
21638 handle_pred_state ();
21639
21640 return now_pred.state != OUTSIDE_PRED_BLOCK;
21641 }
21642
21643 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21644 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21645 here, hence the "known" in the function name. */
21646
21647 static bfd_boolean
21648 known_t32_only_insn (const struct asm_opcode *opcode)
21649 {
21650 /* Original Thumb-1 wide instruction. */
21651 if (opcode->tencode == do_t_blx
21652 || opcode->tencode == do_t_branch23
21653 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21654 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21655 return TRUE;
21656
21657 /* Wide-only instruction added to ARMv8-M Baseline. */
21658 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21659 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21660 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21661 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21662 return TRUE;
21663
21664 return FALSE;
21665 }
21666
21667 /* Whether wide instruction variant can be used if available for a valid OPCODE
21668 in ARCH. */
21669
21670 static bfd_boolean
21671 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21672 {
21673 if (known_t32_only_insn (opcode))
21674 return TRUE;
21675
21676 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21677 of variant T3 of B.W is checked in do_t_branch. */
21678 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21679 && opcode->tencode == do_t_branch)
21680 return TRUE;
21681
21682 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21683 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21684 && opcode->tencode == do_t_mov_cmp
21685 /* Make sure CMP instruction is not affected. */
21686 && opcode->aencode == do_mov)
21687 return TRUE;
21688
21689 /* Wide instruction variants of all instructions with narrow *and* wide
21690 variants become available with ARMv6t2. Other opcodes are either
21691 narrow-only or wide-only and are thus available if OPCODE is valid. */
21692 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21693 return TRUE;
21694
21695 /* OPCODE with narrow only instruction variant or wide variant not
21696 available. */
21697 return FALSE;
21698 }
21699
21700 void
21701 md_assemble (char *str)
21702 {
21703 char *p = str;
21704 const struct asm_opcode * opcode;
21705
21706 /* Align the previous label if needed. */
21707 if (last_label_seen != NULL)
21708 {
21709 symbol_set_frag (last_label_seen, frag_now);
21710 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21711 S_SET_SEGMENT (last_label_seen, now_seg);
21712 }
21713
21714 memset (&inst, '\0', sizeof (inst));
21715 int r;
21716 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21717 inst.relocs[r].type = BFD_RELOC_UNUSED;
21718
21719 opcode = opcode_lookup (&p);
21720 if (!opcode)
21721 {
21722 /* It wasn't an instruction, but it might be a register alias of
21723 the form alias .req reg, or a Neon .dn/.qn directive. */
21724 if (! create_register_alias (str, p)
21725 && ! create_neon_reg_alias (str, p))
21726 as_bad (_("bad instruction `%s'"), str);
21727
21728 return;
21729 }
21730
21731 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21732 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21733
21734 /* The value which unconditional instructions should have in place of the
21735 condition field. */
21736 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21737
21738 if (thumb_mode)
21739 {
21740 arm_feature_set variant;
21741
21742 variant = cpu_variant;
21743 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21744 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21745 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21746 /* Check that this instruction is supported for this CPU. */
21747 if (!opcode->tvariant
21748 || (thumb_mode == 1
21749 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21750 {
21751 if (opcode->tencode == do_t_swi)
21752 as_bad (_("SVC is not permitted on this architecture"));
21753 else
21754 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21755 return;
21756 }
21757 if (inst.cond != COND_ALWAYS && !unified_syntax
21758 && opcode->tencode != do_t_branch)
21759 {
21760 as_bad (_("Thumb does not support conditional execution"));
21761 return;
21762 }
21763
21764 /* Two things are addressed here:
21765 1) Implicit require narrow instructions on Thumb-1.
21766 This avoids relaxation accidentally introducing Thumb-2
21767 instructions.
21768 2) Reject wide instructions in non Thumb-2 cores.
21769
21770 Only instructions with narrow and wide variants need to be handled
21771 but selecting all non wide-only instructions is easier. */
21772 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21773 && !t32_insn_ok (variant, opcode))
21774 {
21775 if (inst.size_req == 0)
21776 inst.size_req = 2;
21777 else if (inst.size_req == 4)
21778 {
21779 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21780 as_bad (_("selected processor does not support 32bit wide "
21781 "variant of instruction `%s'"), str);
21782 else
21783 as_bad (_("selected processor does not support `%s' in "
21784 "Thumb-2 mode"), str);
21785 return;
21786 }
21787 }
21788
21789 inst.instruction = opcode->tvalue;
21790
21791 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21792 {
21793 /* Prepare the pred_insn_type for those encodings that don't set
21794 it. */
21795 it_fsm_pre_encode ();
21796
21797 opcode->tencode ();
21798
21799 it_fsm_post_encode ();
21800 }
21801
21802 if (!(inst.error || inst.relax))
21803 {
21804 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21805 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21806 if (inst.size_req && inst.size_req != inst.size)
21807 {
21808 as_bad (_("cannot honor width suffix -- `%s'"), str);
21809 return;
21810 }
21811 }
21812
21813 /* Something has gone badly wrong if we try to relax a fixed size
21814 instruction. */
21815 gas_assert (inst.size_req == 0 || !inst.relax);
21816
21817 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21818 *opcode->tvariant);
21819 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21820 set those bits when Thumb-2 32-bit instructions are seen. The impact
21821 of relaxable instructions will be considered later after we finish all
21822 relaxation. */
21823 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21824 variant = arm_arch_none;
21825 else
21826 variant = cpu_variant;
21827 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21828 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21829 arm_ext_v6t2);
21830
21831 check_neon_suffixes;
21832
21833 if (!inst.error)
21834 {
21835 mapping_state (MAP_THUMB);
21836 }
21837 }
21838 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21839 {
21840 bfd_boolean is_bx;
21841
21842 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21843 is_bx = (opcode->aencode == do_bx);
21844
21845 /* Check that this instruction is supported for this CPU. */
21846 if (!(is_bx && fix_v4bx)
21847 && !(opcode->avariant &&
21848 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21849 {
21850 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21851 return;
21852 }
21853 if (inst.size_req)
21854 {
21855 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21856 return;
21857 }
21858
21859 inst.instruction = opcode->avalue;
21860 if (opcode->tag == OT_unconditionalF)
21861 inst.instruction |= 0xFU << 28;
21862 else
21863 inst.instruction |= inst.cond << 28;
21864 inst.size = INSN_SIZE;
21865 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21866 {
21867 it_fsm_pre_encode ();
21868 opcode->aencode ();
21869 it_fsm_post_encode ();
21870 }
21871 /* Arm mode bx is marked as both v4T and v5 because it's still required
21872 on a hypothetical non-thumb v5 core. */
21873 if (is_bx)
21874 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21875 else
21876 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21877 *opcode->avariant);
21878
21879 check_neon_suffixes;
21880
21881 if (!inst.error)
21882 {
21883 mapping_state (MAP_ARM);
21884 }
21885 }
21886 else
21887 {
21888 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21889 "-- `%s'"), str);
21890 return;
21891 }
21892 output_inst (str);
21893 }
21894
21895 static void
21896 check_pred_blocks_finished (void)
21897 {
21898 #ifdef OBJ_ELF
21899 asection *sect;
21900
21901 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21902 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21903 == MANUAL_PRED_BLOCK)
21904 {
21905 if (now_pred.type == SCALAR_PRED)
21906 as_warn (_("section '%s' finished with an open IT block."),
21907 sect->name);
21908 else
21909 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21910 sect->name);
21911 }
21912 #else
21913 if (now_pred.state == MANUAL_PRED_BLOCK)
21914 {
21915 if (now_pred.type == SCALAR_PRED)
21916 as_warn (_("file finished with an open IT block."));
21917 else
21918 as_warn (_("file finished with an open VPT/VPST block."));
21919 }
21920 #endif
21921 }
21922
21923 /* Various frobbings of labels and their addresses. */
21924
21925 void
21926 arm_start_line_hook (void)
21927 {
21928 last_label_seen = NULL;
21929 }
21930
21931 void
21932 arm_frob_label (symbolS * sym)
21933 {
21934 last_label_seen = sym;
21935
21936 ARM_SET_THUMB (sym, thumb_mode);
21937
21938 #if defined OBJ_COFF || defined OBJ_ELF
21939 ARM_SET_INTERWORK (sym, support_interwork);
21940 #endif
21941
21942 force_automatic_it_block_close ();
21943
21944 /* Note - do not allow local symbols (.Lxxx) to be labelled
21945 as Thumb functions. This is because these labels, whilst
21946 they exist inside Thumb code, are not the entry points for
21947 possible ARM->Thumb calls. Also, these labels can be used
21948 as part of a computed goto or switch statement. eg gcc
21949 can generate code that looks like this:
21950
21951 ldr r2, [pc, .Laaa]
21952 lsl r3, r3, #2
21953 ldr r2, [r3, r2]
21954 mov pc, r2
21955
21956 .Lbbb: .word .Lxxx
21957 .Lccc: .word .Lyyy
21958 ..etc...
21959 .Laaa: .word Lbbb
21960
21961 The first instruction loads the address of the jump table.
21962 The second instruction converts a table index into a byte offset.
21963 The third instruction gets the jump address out of the table.
21964 The fourth instruction performs the jump.
21965
21966 If the address stored at .Laaa is that of a symbol which has the
21967 Thumb_Func bit set, then the linker will arrange for this address
21968 to have the bottom bit set, which in turn would mean that the
21969 address computation performed by the third instruction would end
21970 up with the bottom bit set. Since the ARM is capable of unaligned
21971 word loads, the instruction would then load the incorrect address
21972 out of the jump table, and chaos would ensue. */
21973 if (label_is_thumb_function_name
21974 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21975 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21976 {
21977 /* When the address of a Thumb function is taken the bottom
21978 bit of that address should be set. This will allow
21979 interworking between Arm and Thumb functions to work
21980 correctly. */
21981
21982 THUMB_SET_FUNC (sym, 1);
21983
21984 label_is_thumb_function_name = FALSE;
21985 }
21986
21987 dwarf2_emit_label (sym);
21988 }
21989
21990 bfd_boolean
21991 arm_data_in_code (void)
21992 {
21993 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21994 {
21995 *input_line_pointer = '/';
21996 input_line_pointer += 5;
21997 *input_line_pointer = 0;
21998 return TRUE;
21999 }
22000
22001 return FALSE;
22002 }
22003
22004 char *
22005 arm_canonicalize_symbol_name (char * name)
22006 {
22007 int len;
22008
22009 if (thumb_mode && (len = strlen (name)) > 5
22010 && streq (name + len - 5, "/data"))
22011 *(name + len - 5) = 0;
22012
22013 return name;
22014 }
22015 \f
22016 /* Table of all register names defined by default. The user can
22017 define additional names with .req. Note that all register names
22018 should appear in both upper and lowercase variants. Some registers
22019 also have mixed-case names. */
22020
22021 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22022 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22023 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22024 #define REGSET(p,t) \
22025 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22026 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22027 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22028 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22029 #define REGSETH(p,t) \
22030 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22031 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22032 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22033 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22034 #define REGSET2(p,t) \
22035 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22036 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22037 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22038 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22039 #define SPLRBANK(base,bank,t) \
22040 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22041 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22042 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22043 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22044 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22045 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22046
22047 static const struct reg_entry reg_names[] =
22048 {
22049 /* ARM integer registers. */
22050 REGSET(r, RN), REGSET(R, RN),
22051
22052 /* ATPCS synonyms. */
22053 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22054 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22055 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22056
22057 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22058 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22059 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22060
22061 /* Well-known aliases. */
22062 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22063 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22064
22065 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22066 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22067
22068 /* Defining the new Zero register from ARMv8.1-M. */
22069 REGDEF(zr,15,ZR),
22070 REGDEF(ZR,15,ZR),
22071
22072 /* Coprocessor numbers. */
22073 REGSET(p, CP), REGSET(P, CP),
22074
22075 /* Coprocessor register numbers. The "cr" variants are for backward
22076 compatibility. */
22077 REGSET(c, CN), REGSET(C, CN),
22078 REGSET(cr, CN), REGSET(CR, CN),
22079
22080 /* ARM banked registers. */
22081 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22082 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22083 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22084 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22085 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22086 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22087 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22088
22089 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22090 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22091 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22092 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22093 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22094 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22095 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22096 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22097
22098 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22099 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22100 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22101 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22102 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22103 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22104 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22105 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22106 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22107
22108 /* FPA registers. */
22109 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22110 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22111
22112 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22113 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22114
22115 /* VFP SP registers. */
22116 REGSET(s,VFS), REGSET(S,VFS),
22117 REGSETH(s,VFS), REGSETH(S,VFS),
22118
22119 /* VFP DP Registers. */
22120 REGSET(d,VFD), REGSET(D,VFD),
22121 /* Extra Neon DP registers. */
22122 REGSETH(d,VFD), REGSETH(D,VFD),
22123
22124 /* Neon QP registers. */
22125 REGSET2(q,NQ), REGSET2(Q,NQ),
22126
22127 /* VFP control registers. */
22128 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22129 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22130 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22131 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22132 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22133 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22134 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22135
22136 /* Maverick DSP coprocessor registers. */
22137 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22138 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22139
22140 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22141 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22142 REGDEF(dspsc,0,DSPSC),
22143
22144 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22145 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22146 REGDEF(DSPSC,0,DSPSC),
22147
22148 /* iWMMXt data registers - p0, c0-15. */
22149 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22150
22151 /* iWMMXt control registers - p1, c0-3. */
22152 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22153 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22154 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22155 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22156
22157 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22158 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22159 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22160 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22161 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22162
22163 /* XScale accumulator registers. */
22164 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22165 };
22166 #undef REGDEF
22167 #undef REGNUM
22168 #undef REGSET
22169
22170 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22171 within psr_required_here. */
22172 static const struct asm_psr psrs[] =
22173 {
22174 /* Backward compatibility notation. Note that "all" is no longer
22175 truly all possible PSR bits. */
22176 {"all", PSR_c | PSR_f},
22177 {"flg", PSR_f},
22178 {"ctl", PSR_c},
22179
22180 /* Individual flags. */
22181 {"f", PSR_f},
22182 {"c", PSR_c},
22183 {"x", PSR_x},
22184 {"s", PSR_s},
22185
22186 /* Combinations of flags. */
22187 {"fs", PSR_f | PSR_s},
22188 {"fx", PSR_f | PSR_x},
22189 {"fc", PSR_f | PSR_c},
22190 {"sf", PSR_s | PSR_f},
22191 {"sx", PSR_s | PSR_x},
22192 {"sc", PSR_s | PSR_c},
22193 {"xf", PSR_x | PSR_f},
22194 {"xs", PSR_x | PSR_s},
22195 {"xc", PSR_x | PSR_c},
22196 {"cf", PSR_c | PSR_f},
22197 {"cs", PSR_c | PSR_s},
22198 {"cx", PSR_c | PSR_x},
22199 {"fsx", PSR_f | PSR_s | PSR_x},
22200 {"fsc", PSR_f | PSR_s | PSR_c},
22201 {"fxs", PSR_f | PSR_x | PSR_s},
22202 {"fxc", PSR_f | PSR_x | PSR_c},
22203 {"fcs", PSR_f | PSR_c | PSR_s},
22204 {"fcx", PSR_f | PSR_c | PSR_x},
22205 {"sfx", PSR_s | PSR_f | PSR_x},
22206 {"sfc", PSR_s | PSR_f | PSR_c},
22207 {"sxf", PSR_s | PSR_x | PSR_f},
22208 {"sxc", PSR_s | PSR_x | PSR_c},
22209 {"scf", PSR_s | PSR_c | PSR_f},
22210 {"scx", PSR_s | PSR_c | PSR_x},
22211 {"xfs", PSR_x | PSR_f | PSR_s},
22212 {"xfc", PSR_x | PSR_f | PSR_c},
22213 {"xsf", PSR_x | PSR_s | PSR_f},
22214 {"xsc", PSR_x | PSR_s | PSR_c},
22215 {"xcf", PSR_x | PSR_c | PSR_f},
22216 {"xcs", PSR_x | PSR_c | PSR_s},
22217 {"cfs", PSR_c | PSR_f | PSR_s},
22218 {"cfx", PSR_c | PSR_f | PSR_x},
22219 {"csf", PSR_c | PSR_s | PSR_f},
22220 {"csx", PSR_c | PSR_s | PSR_x},
22221 {"cxf", PSR_c | PSR_x | PSR_f},
22222 {"cxs", PSR_c | PSR_x | PSR_s},
22223 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22224 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22225 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22226 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22227 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22228 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22229 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22230 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22231 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22232 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22233 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22234 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22235 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22236 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22237 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22238 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22239 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22240 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22241 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22242 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22243 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22244 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22245 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22246 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22247 };
22248
22249 /* Table of V7M psr names. */
22250 static const struct asm_psr v7m_psrs[] =
22251 {
22252 {"apsr", 0x0 }, {"APSR", 0x0 },
22253 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22254 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22255 {"psr", 0x3 }, {"PSR", 0x3 },
22256 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22257 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22258 {"epsr", 0x6 }, {"EPSR", 0x6 },
22259 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22260 {"msp", 0x8 }, {"MSP", 0x8 },
22261 {"psp", 0x9 }, {"PSP", 0x9 },
22262 {"msplim", 0xa }, {"MSPLIM", 0xa },
22263 {"psplim", 0xb }, {"PSPLIM", 0xb },
22264 {"primask", 0x10}, {"PRIMASK", 0x10},
22265 {"basepri", 0x11}, {"BASEPRI", 0x11},
22266 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22267 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22268 {"control", 0x14}, {"CONTROL", 0x14},
22269 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22270 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22271 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22272 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22273 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22274 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22275 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22276 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22277 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22278 };
22279
22280 /* Table of all shift-in-operand names. */
22281 static const struct asm_shift_name shift_names [] =
22282 {
22283 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22284 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22285 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22286 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22287 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22288 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22289 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22290 };
22291
22292 /* Table of all explicit relocation names. */
22293 #ifdef OBJ_ELF
22294 static struct reloc_entry reloc_names[] =
22295 {
22296 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22297 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22298 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22299 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22300 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22301 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22302 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22303 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22304 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22305 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22306 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22307 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22308 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22309 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22310 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22311 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22312 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22313 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22314 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22315 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22316 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22317 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22318 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22319 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22320 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22321 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22322 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22323 };
22324 #endif
22325
22326 /* Table of all conditional affixes. */
22327 static const struct asm_cond conds[] =
22328 {
22329 {"eq", 0x0},
22330 {"ne", 0x1},
22331 {"cs", 0x2}, {"hs", 0x2},
22332 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22333 {"mi", 0x4},
22334 {"pl", 0x5},
22335 {"vs", 0x6},
22336 {"vc", 0x7},
22337 {"hi", 0x8},
22338 {"ls", 0x9},
22339 {"ge", 0xa},
22340 {"lt", 0xb},
22341 {"gt", 0xc},
22342 {"le", 0xd},
22343 {"al", 0xe}
22344 };
22345 static const struct asm_cond vconds[] =
22346 {
22347 {"t", 0xf},
22348 {"e", 0x10}
22349 };
22350
22351 #define UL_BARRIER(L,U,CODE,FEAT) \
22352 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22353 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22354
22355 static struct asm_barrier_opt barrier_opt_names[] =
22356 {
22357 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22358 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22359 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22360 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22361 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22362 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22363 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22364 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22365 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22366 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22367 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22368 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22369 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22370 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22371 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22372 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22373 };
22374
22375 #undef UL_BARRIER
22376
22377 /* Table of ARM-format instructions. */
22378
22379 /* Macros for gluing together operand strings. N.B. In all cases
22380 other than OPS0, the trailing OP_stop comes from default
22381 zero-initialization of the unspecified elements of the array. */
22382 #define OPS0() { OP_stop, }
22383 #define OPS1(a) { OP_##a, }
22384 #define OPS2(a,b) { OP_##a,OP_##b, }
22385 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22386 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22387 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22388 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22389
22390 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22391 This is useful when mixing operands for ARM and THUMB, i.e. using the
22392 MIX_ARM_THUMB_OPERANDS macro.
22393 In order to use these macros, prefix the number of operands with _
22394 e.g. _3. */
22395 #define OPS_1(a) { a, }
22396 #define OPS_2(a,b) { a,b, }
22397 #define OPS_3(a,b,c) { a,b,c, }
22398 #define OPS_4(a,b,c,d) { a,b,c,d, }
22399 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22400 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22401
22402 /* These macros abstract out the exact format of the mnemonic table and
22403 save some repeated characters. */
22404
22405 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22406 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22407 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22408 THUMB_VARIANT, do_##ae, do_##te, 0 }
22409
22410 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22411 a T_MNEM_xyz enumerator. */
22412 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22413 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22414 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22415 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22416
22417 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22418 infix after the third character. */
22419 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22420 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22421 THUMB_VARIANT, do_##ae, do_##te, 0 }
22422 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22423 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22424 THUMB_VARIANT, do_##ae, do_##te, 0 }
22425 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22426 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22427 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22428 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22429 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22430 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22431 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22432 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22433
22434 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22435 field is still 0xE. Many of the Thumb variants can be executed
22436 conditionally, so this is checked separately. */
22437 #define TUE(mnem, op, top, nops, ops, ae, te) \
22438 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22439 THUMB_VARIANT, do_##ae, do_##te, 0 }
22440
22441 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22442 Used by mnemonics that have very minimal differences in the encoding for
22443 ARM and Thumb variants and can be handled in a common function. */
22444 #define TUEc(mnem, op, top, nops, ops, en) \
22445 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22446 THUMB_VARIANT, do_##en, do_##en, 0 }
22447
22448 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22449 condition code field. */
22450 #define TUF(mnem, op, top, nops, ops, ae, te) \
22451 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22452 THUMB_VARIANT, do_##ae, do_##te, 0 }
22453
22454 /* ARM-only variants of all the above. */
22455 #define CE(mnem, op, nops, ops, ae) \
22456 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22457
22458 #define C3(mnem, op, nops, ops, ae) \
22459 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22460
22461 /* Thumb-only variants of TCE and TUE. */
22462 #define ToC(mnem, top, nops, ops, te) \
22463 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22464 do_##te, 0 }
22465
22466 #define ToU(mnem, top, nops, ops, te) \
22467 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22468 NULL, do_##te, 0 }
22469
22470 /* T_MNEM_xyz enumerator variants of ToC. */
22471 #define toC(mnem, top, nops, ops, te) \
22472 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22473 do_##te, 0 }
22474
22475 /* T_MNEM_xyz enumerator variants of ToU. */
22476 #define toU(mnem, top, nops, ops, te) \
22477 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22478 NULL, do_##te, 0 }
22479
22480 /* Legacy mnemonics that always have conditional infix after the third
22481 character. */
22482 #define CL(mnem, op, nops, ops, ae) \
22483 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22484 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22485
22486 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22487 #define cCE(mnem, op, nops, ops, ae) \
22488 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22489
22490 /* mov instructions that are shared between coprocessor and MVE. */
22491 #define mcCE(mnem, op, nops, ops, ae) \
22492 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22493
22494 /* Legacy coprocessor instructions where conditional infix and conditional
22495 suffix are ambiguous. For consistency this includes all FPA instructions,
22496 not just the potentially ambiguous ones. */
22497 #define cCL(mnem, op, nops, ops, ae) \
22498 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22499 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22500
22501 /* Coprocessor, takes either a suffix or a position-3 infix
22502 (for an FPA corner case). */
22503 #define C3E(mnem, op, nops, ops, ae) \
22504 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22505 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22506
22507 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22508 { m1 #m2 m3, OPS##nops ops, \
22509 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22510 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22511
22512 #define CM(m1, m2, op, nops, ops, ae) \
22513 xCM_ (m1, , m2, op, nops, ops, ae), \
22514 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22515 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22516 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22517 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22518 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22519 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22520 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22521 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22522 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22523 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22524 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22525 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22526 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22527 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22528 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22529 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22530 xCM_ (m1, le, m2, op, nops, ops, ae), \
22531 xCM_ (m1, al, m2, op, nops, ops, ae)
22532
22533 #define UE(mnem, op, nops, ops, ae) \
22534 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22535
22536 #define UF(mnem, op, nops, ops, ae) \
22537 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22538
22539 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22540 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22541 use the same encoding function for each. */
22542 #define NUF(mnem, op, nops, ops, enc) \
22543 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22544 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22545
22546 /* Neon data processing, version which indirects through neon_enc_tab for
22547 the various overloaded versions of opcodes. */
22548 #define nUF(mnem, op, nops, ops, enc) \
22549 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22550 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22551
22552 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22553 version. */
22554 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22555 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22556 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22557
22558 #define NCE(mnem, op, nops, ops, enc) \
22559 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22560
22561 #define NCEF(mnem, op, nops, ops, enc) \
22562 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22563
22564 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22565 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22566 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22567 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22568
22569 #define nCE(mnem, op, nops, ops, enc) \
22570 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22571
22572 #define nCEF(mnem, op, nops, ops, enc) \
22573 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22574
22575 /* */
22576 #define mCEF(mnem, op, nops, ops, enc) \
22577 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22578 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22579
22580
22581 /* nCEF but for MVE predicated instructions. */
22582 #define mnCEF(mnem, op, nops, ops, enc) \
22583 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22584
22585 /* nCE but for MVE predicated instructions. */
22586 #define mnCE(mnem, op, nops, ops, enc) \
22587 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22588
22589 /* NUF but for potentially MVE predicated instructions. */
22590 #define MNUF(mnem, op, nops, ops, enc) \
22591 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22592 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22593
22594 /* nUF but for potentially MVE predicated instructions. */
22595 #define mnUF(mnem, op, nops, ops, enc) \
22596 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22597 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22598
22599 /* ToC but for potentially MVE predicated instructions. */
22600 #define mToC(mnem, top, nops, ops, te) \
22601 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22602 do_##te, 1 }
22603
22604 /* NCE but for MVE predicated instructions. */
22605 #define MNCE(mnem, op, nops, ops, enc) \
22606 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22607
22608 /* NCEF but for MVE predicated instructions. */
22609 #define MNCEF(mnem, op, nops, ops, enc) \
22610 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22611 #define do_0 0
22612
22613 static const struct asm_opcode insns[] =
22614 {
22615 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22616 #define THUMB_VARIANT & arm_ext_v4t
22617 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22618 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22619 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22620 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22621 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22622 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22623 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22624 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22625 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22626 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22627 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22628 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22629 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22630 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22631 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22632 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22633
22634 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22635 for setting PSR flag bits. They are obsolete in V6 and do not
22636 have Thumb equivalents. */
22637 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22638 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22639 CL("tstp", 110f000, 2, (RR, SH), cmp),
22640 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22641 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22642 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22643 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22644 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22645 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22646
22647 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22648 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22649 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22650 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22651
22652 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22653 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22654 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22655 OP_RRnpc),
22656 OP_ADDRGLDR),ldst, t_ldst),
22657 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22658
22659 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22660 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22661 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22662 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22663 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22664 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22665
22666 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22667 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22668
22669 /* Pseudo ops. */
22670 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22671 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22672 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22673 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22674
22675 /* Thumb-compatibility pseudo ops. */
22676 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22677 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22678 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22679 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22680 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22681 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22682 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22683 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22684 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22685 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22686 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22687 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22688
22689 /* These may simplify to neg. */
22690 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22691 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22692
22693 #undef THUMB_VARIANT
22694 #define THUMB_VARIANT & arm_ext_os
22695
22696 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22697 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22698
22699 #undef THUMB_VARIANT
22700 #define THUMB_VARIANT & arm_ext_v6
22701
22702 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22703
22704 /* V1 instructions with no Thumb analogue prior to V6T2. */
22705 #undef THUMB_VARIANT
22706 #define THUMB_VARIANT & arm_ext_v6t2
22707
22708 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22709 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22710 CL("teqp", 130f000, 2, (RR, SH), cmp),
22711
22712 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22713 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22714 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22715 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22716
22717 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22718 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22719
22720 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22721 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22722
22723 /* V1 instructions with no Thumb analogue at all. */
22724 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22725 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22726
22727 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22728 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22729 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22730 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22731 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22732 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22733 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22734 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22735
22736 #undef ARM_VARIANT
22737 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22738 #undef THUMB_VARIANT
22739 #define THUMB_VARIANT & arm_ext_v4t
22740
22741 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22742 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22743
22744 #undef THUMB_VARIANT
22745 #define THUMB_VARIANT & arm_ext_v6t2
22746
22747 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22748 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22749
22750 /* Generic coprocessor instructions. */
22751 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22752 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22753 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22754 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22755 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22756 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22757 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22758
22759 #undef ARM_VARIANT
22760 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22761
22762 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22763 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22764
22765 #undef ARM_VARIANT
22766 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22767 #undef THUMB_VARIANT
22768 #define THUMB_VARIANT & arm_ext_msr
22769
22770 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22771 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22772
22773 #undef ARM_VARIANT
22774 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22775 #undef THUMB_VARIANT
22776 #define THUMB_VARIANT & arm_ext_v6t2
22777
22778 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22779 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22780 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22781 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22782 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22783 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22784 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22785 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22786
22787 #undef ARM_VARIANT
22788 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22789 #undef THUMB_VARIANT
22790 #define THUMB_VARIANT & arm_ext_v4t
22791
22792 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22793 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22794 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22795 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22796 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22797 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22798
22799 #undef ARM_VARIANT
22800 #define ARM_VARIANT & arm_ext_v4t_5
22801
22802 /* ARM Architecture 4T. */
22803 /* Note: bx (and blx) are required on V5, even if the processor does
22804 not support Thumb. */
22805 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22806
22807 #undef ARM_VARIANT
22808 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22809 #undef THUMB_VARIANT
22810 #define THUMB_VARIANT & arm_ext_v5t
22811
22812 /* Note: blx has 2 variants; the .value coded here is for
22813 BLX(2). Only this variant has conditional execution. */
22814 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22815 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22816
22817 #undef THUMB_VARIANT
22818 #define THUMB_VARIANT & arm_ext_v6t2
22819
22820 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22821 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22822 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22823 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22824 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22825 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22826 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22827 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22828
22829 #undef ARM_VARIANT
22830 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22831 #undef THUMB_VARIANT
22832 #define THUMB_VARIANT & arm_ext_v5exp
22833
22834 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22835 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22836 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22837 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22838
22839 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22840 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22841
22842 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22843 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22844 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22845 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22846
22847 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22848 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22849 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22850 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22851
22852 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22853 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22854
22855 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22856 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22857 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22858 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22859
22860 #undef ARM_VARIANT
22861 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22862 #undef THUMB_VARIANT
22863 #define THUMB_VARIANT & arm_ext_v6t2
22864
22865 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22866 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22867 ldrd, t_ldstd),
22868 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22869 ADDRGLDRS), ldrd, t_ldstd),
22870
22871 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22872 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22873
22874 #undef ARM_VARIANT
22875 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22876
22877 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22878
22879 #undef ARM_VARIANT
22880 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22881 #undef THUMB_VARIANT
22882 #define THUMB_VARIANT & arm_ext_v6
22883
22884 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22885 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22886 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22887 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22888 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22889 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22890 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22891 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22892 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22893 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22894
22895 #undef THUMB_VARIANT
22896 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22897
22898 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22899 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22900 strex, t_strex),
22901 #undef THUMB_VARIANT
22902 #define THUMB_VARIANT & arm_ext_v6t2
22903
22904 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22905 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22906
22907 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22908 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22909
22910 /* ARM V6 not included in V7M. */
22911 #undef THUMB_VARIANT
22912 #define THUMB_VARIANT & arm_ext_v6_notm
22913 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22914 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22915 UF(rfeib, 9900a00, 1, (RRw), rfe),
22916 UF(rfeda, 8100a00, 1, (RRw), rfe),
22917 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22918 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22919 UF(rfefa, 8100a00, 1, (RRw), rfe),
22920 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22921 UF(rfeed, 9900a00, 1, (RRw), rfe),
22922 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22923 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22924 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22925 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22926 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22927 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22928 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22929 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22930 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22931 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22932
22933 /* ARM V6 not included in V7M (eg. integer SIMD). */
22934 #undef THUMB_VARIANT
22935 #define THUMB_VARIANT & arm_ext_v6_dsp
22936 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22937 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22938 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22939 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22940 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22941 /* Old name for QASX. */
22942 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22943 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22944 /* Old name for QSAX. */
22945 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22946 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22947 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22948 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22949 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22950 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22951 /* Old name for SASX. */
22952 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22953 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22954 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22955 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22956 /* Old name for SHASX. */
22957 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22958 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22959 /* Old name for SHSAX. */
22960 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22961 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22962 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22963 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22964 /* Old name for SSAX. */
22965 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22966 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22967 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22968 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22969 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22970 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22971 /* Old name for UASX. */
22972 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22973 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22974 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22975 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22976 /* Old name for UHASX. */
22977 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22978 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22979 /* Old name for UHSAX. */
22980 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22981 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22982 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22983 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22984 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22985 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22986 /* Old name for UQASX. */
22987 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22988 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22989 /* Old name for UQSAX. */
22990 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22991 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22992 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22993 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22994 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22995 /* Old name for USAX. */
22996 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22997 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22998 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22999 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23000 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23001 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23002 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23003 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23004 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23005 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23006 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23007 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23008 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23009 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23010 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23011 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23012 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23013 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23014 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23015 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23016 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23017 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23018 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23019 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23020 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23021 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23022 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23023 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23024 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23025 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23026 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23027 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23028 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23029 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23030
23031 #undef ARM_VARIANT
23032 #define ARM_VARIANT & arm_ext_v6k_v6t2
23033 #undef THUMB_VARIANT
23034 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23035
23036 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23037 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23038 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23039 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23040
23041 #undef THUMB_VARIANT
23042 #define THUMB_VARIANT & arm_ext_v6_notm
23043 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23044 ldrexd, t_ldrexd),
23045 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23046 RRnpcb), strexd, t_strexd),
23047
23048 #undef THUMB_VARIANT
23049 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23050 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23051 rd_rn, rd_rn),
23052 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23053 rd_rn, rd_rn),
23054 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23055 strex, t_strexbh),
23056 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23057 strex, t_strexbh),
23058 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23059
23060 #undef ARM_VARIANT
23061 #define ARM_VARIANT & arm_ext_sec
23062 #undef THUMB_VARIANT
23063 #define THUMB_VARIANT & arm_ext_sec
23064
23065 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23066
23067 #undef ARM_VARIANT
23068 #define ARM_VARIANT & arm_ext_virt
23069 #undef THUMB_VARIANT
23070 #define THUMB_VARIANT & arm_ext_virt
23071
23072 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23073 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23074
23075 #undef ARM_VARIANT
23076 #define ARM_VARIANT & arm_ext_pan
23077 #undef THUMB_VARIANT
23078 #define THUMB_VARIANT & arm_ext_pan
23079
23080 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23081
23082 #undef ARM_VARIANT
23083 #define ARM_VARIANT & arm_ext_v6t2
23084 #undef THUMB_VARIANT
23085 #define THUMB_VARIANT & arm_ext_v6t2
23086
23087 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23088 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23089 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23090 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23091
23092 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23093 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23094
23095 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23096 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23097 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23098 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23099
23100 #undef ARM_VARIANT
23101 #define ARM_VARIANT & arm_ext_v3
23102 #undef THUMB_VARIANT
23103 #define THUMB_VARIANT & arm_ext_v6t2
23104
23105 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23106 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23107 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23108
23109 #undef ARM_VARIANT
23110 #define ARM_VARIANT & arm_ext_v6t2
23111 #undef THUMB_VARIANT
23112 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23113 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23114 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23115
23116 /* Thumb-only instructions. */
23117 #undef ARM_VARIANT
23118 #define ARM_VARIANT NULL
23119 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23120 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23121
23122 /* ARM does not really have an IT instruction, so always allow it.
23123 The opcode is copied from Thumb in order to allow warnings in
23124 -mimplicit-it=[never | arm] modes. */
23125 #undef ARM_VARIANT
23126 #define ARM_VARIANT & arm_ext_v1
23127 #undef THUMB_VARIANT
23128 #define THUMB_VARIANT & arm_ext_v6t2
23129
23130 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23131 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23132 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23133 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23134 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23135 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23136 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23137 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23138 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23139 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23140 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23141 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23142 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23143 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23144 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23145 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23146 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23147 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23148
23149 /* Thumb2 only instructions. */
23150 #undef ARM_VARIANT
23151 #define ARM_VARIANT NULL
23152
23153 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23154 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23155 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23156 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23157 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23158 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23159
23160 /* Hardware division instructions. */
23161 #undef ARM_VARIANT
23162 #define ARM_VARIANT & arm_ext_adiv
23163 #undef THUMB_VARIANT
23164 #define THUMB_VARIANT & arm_ext_div
23165
23166 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23167 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23168
23169 /* ARM V6M/V7 instructions. */
23170 #undef ARM_VARIANT
23171 #define ARM_VARIANT & arm_ext_barrier
23172 #undef THUMB_VARIANT
23173 #define THUMB_VARIANT & arm_ext_barrier
23174
23175 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23176 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23177 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23178
23179 /* ARM V7 instructions. */
23180 #undef ARM_VARIANT
23181 #define ARM_VARIANT & arm_ext_v7
23182 #undef THUMB_VARIANT
23183 #define THUMB_VARIANT & arm_ext_v7
23184
23185 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23186 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23187
23188 #undef ARM_VARIANT
23189 #define ARM_VARIANT & arm_ext_mp
23190 #undef THUMB_VARIANT
23191 #define THUMB_VARIANT & arm_ext_mp
23192
23193 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23194
23195 /* AArchv8 instructions. */
23196 #undef ARM_VARIANT
23197 #define ARM_VARIANT & arm_ext_v8
23198
23199 /* Instructions shared between armv8-a and armv8-m. */
23200 #undef THUMB_VARIANT
23201 #define THUMB_VARIANT & arm_ext_atomics
23202
23203 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23204 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23205 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23206 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23207 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23208 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23209 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23210 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23211 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23212 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23213 stlex, t_stlex),
23214 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23215 stlex, t_stlex),
23216 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23217 stlex, t_stlex),
23218 #undef THUMB_VARIANT
23219 #define THUMB_VARIANT & arm_ext_v8
23220
23221 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23222 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23223 ldrexd, t_ldrexd),
23224 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23225 strexd, t_strexd),
23226
23227 /* Defined in V8 but is in undefined encoding space for earlier
23228 architectures. However earlier architectures are required to treat
23229 this instuction as a semihosting trap as well. Hence while not explicitly
23230 defined as such, it is in fact correct to define the instruction for all
23231 architectures. */
23232 #undef THUMB_VARIANT
23233 #define THUMB_VARIANT & arm_ext_v1
23234 #undef ARM_VARIANT
23235 #define ARM_VARIANT & arm_ext_v1
23236 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23237
23238 /* ARMv8 T32 only. */
23239 #undef ARM_VARIANT
23240 #define ARM_VARIANT NULL
23241 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23242 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23243 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23244
23245 /* FP for ARMv8. */
23246 #undef ARM_VARIANT
23247 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23248 #undef THUMB_VARIANT
23249 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23250
23251 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23252 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23253 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23254 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23255 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23256 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23257 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23258 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23259 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23260 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23261 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23262
23263 /* Crypto v1 extensions. */
23264 #undef ARM_VARIANT
23265 #define ARM_VARIANT & fpu_crypto_ext_armv8
23266 #undef THUMB_VARIANT
23267 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23268
23269 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23270 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23271 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23272 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23273 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23274 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23275 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23276 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23277 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23278 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23279 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23280 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23281 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23282 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23283
23284 #undef ARM_VARIANT
23285 #define ARM_VARIANT & crc_ext_armv8
23286 #undef THUMB_VARIANT
23287 #define THUMB_VARIANT & crc_ext_armv8
23288 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23289 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23290 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23291 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23292 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23293 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23294
23295 /* ARMv8.2 RAS extension. */
23296 #undef ARM_VARIANT
23297 #define ARM_VARIANT & arm_ext_ras
23298 #undef THUMB_VARIANT
23299 #define THUMB_VARIANT & arm_ext_ras
23300 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23301
23302 #undef ARM_VARIANT
23303 #define ARM_VARIANT & arm_ext_v8_3
23304 #undef THUMB_VARIANT
23305 #define THUMB_VARIANT & arm_ext_v8_3
23306 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23307
23308 #undef ARM_VARIANT
23309 #define ARM_VARIANT & fpu_neon_ext_dotprod
23310 #undef THUMB_VARIANT
23311 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23312 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23313 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23314
23315 #undef ARM_VARIANT
23316 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23317 #undef THUMB_VARIANT
23318 #define THUMB_VARIANT NULL
23319
23320 cCE("wfs", e200110, 1, (RR), rd),
23321 cCE("rfs", e300110, 1, (RR), rd),
23322 cCE("wfc", e400110, 1, (RR), rd),
23323 cCE("rfc", e500110, 1, (RR), rd),
23324
23325 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23326 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23327 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23328 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23329
23330 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23331 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23332 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23333 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23334
23335 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23336 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23337 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23338 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23339 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23340 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23341 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23342 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23343 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23344 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23345 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23346 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23347
23348 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23349 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23350 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23351 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23352 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23353 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23354 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23355 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23356 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23357 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23358 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23359 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23360
23361 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23362 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23363 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23364 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23365 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23366 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23367 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23368 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23369 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23370 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23371 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23372 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23373
23374 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23375 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23376 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23377 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23378 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23379 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23380 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23381 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23382 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23383 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23384 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23385 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23386
23387 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23388 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23389 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23390 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23391 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23392 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23393 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23394 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23395 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23396 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23397 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23398 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23399
23400 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23401 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23402 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23403 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23404 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23405 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23406 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23407 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23408 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23409 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23410 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23411 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23412
23413 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23414 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23415 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23416 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23417 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23418 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23419 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23420 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23421 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23422 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23423 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23424 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23425
23426 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23427 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23428 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23429 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23430 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23431 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23432 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23433 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23434 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23435 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23436 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23437 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23438
23439 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23440 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23441 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23442 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23443 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23444 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23445 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23446 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23447 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23448 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23449 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23450 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23451
23452 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23453 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23454 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23455 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23456 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23457 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23458 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23459 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23460 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23461 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23462 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23463 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23464
23465 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23466 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23467 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23468 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23469 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23470 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23471 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23472 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23473 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23474 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23475 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23476 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23477
23478 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23479 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23480 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23481 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23482 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23483 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23484 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23485 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23486 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23487 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23488 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23489 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23490
23491 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23492 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23493 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23494 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23495 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23496 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23497 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23498 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23499 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23500 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23501 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23502 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23503
23504 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23505 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23506 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23507 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23508 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23509 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23510 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23511 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23512 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23513 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23514 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23515 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23516
23517 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23518 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23519 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23520 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23521 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23522 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23523 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23524 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23525 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23526 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23527 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23528 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23529
23530 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23531 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23532 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23533 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23534 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23535 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23536 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23537 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23538 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23539 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23540 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23541 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23542
23543 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23544 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23545 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23546 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23547 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23548 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23549 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23550 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23551 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23552 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23553 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23554 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23555
23556 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23557 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23558 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23559 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23560 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23561 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23562 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23563 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23564 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23565 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23566 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23567 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23568
23569 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23570 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23571 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23572 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23573 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23574 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23575 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23576 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23577 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23578 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23579 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23580 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23581
23582 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23583 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23584 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23585 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23586 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23587 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23588 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23589 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23590 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23591 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23592 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23593 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23594
23595 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23596 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23597 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23598 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23599 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23600 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23601 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23602 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23603 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23604 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23605 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23606 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23607
23608 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23609 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23610 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23611 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23612 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23613 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23614 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23615 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23616 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23617 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23618 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23619 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23620
23621 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23622 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23623 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23624 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23625 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23626 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23627 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23628 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23629 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23630 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23631 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23632 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23633
23634 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23635 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23636 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23637 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23638 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23639 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23640 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23641 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23642 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23643 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23644 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23645 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23646
23647 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23648 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23649 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23650 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23651 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23652 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23653 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23654 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23655 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23656 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23657 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23658 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23659
23660 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23661 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23662 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23663 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23664 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23665 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23666 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23667 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23668 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23669 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23670 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23671 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23672
23673 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23674 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23675 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23676 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23677 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23678 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23679 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23680 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23681 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23682 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23683 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23684 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23685
23686 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23687 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23688 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23689 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23690 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23691 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23692 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23693 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23694 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23695 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23696 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23697 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23698
23699 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23700 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23701 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23702 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23703 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23704 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23705 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23706 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23707 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23708 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23709 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23710 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23711
23712 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23713 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23714 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23715 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23716
23717 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23718 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23719 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23720 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23721 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23722 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23723 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23724 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23725 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23726 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23727 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23728 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23729
23730 /* The implementation of the FIX instruction is broken on some
23731 assemblers, in that it accepts a precision specifier as well as a
23732 rounding specifier, despite the fact that this is meaningless.
23733 To be more compatible, we accept it as well, though of course it
23734 does not set any bits. */
23735 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23736 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23737 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23738 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23739 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23740 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23741 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23742 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23743 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23744 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23745 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23746 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23747 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23748
23749 /* Instructions that were new with the real FPA, call them V2. */
23750 #undef ARM_VARIANT
23751 #define ARM_VARIANT & fpu_fpa_ext_v2
23752
23753 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23754 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23755 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23756 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23757 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23758 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23759
23760 #undef ARM_VARIANT
23761 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23762
23763 /* Moves and type conversions. */
23764 cCE("fmstat", ef1fa10, 0, (), noargs),
23765 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23766 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23767 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23768 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23769 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23770 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23771 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23772 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23773 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23774 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23775
23776 /* Memory operations. */
23777 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23778 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23779 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23780 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23781 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23782 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23783 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23784 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23785 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23786 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23787 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23788 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23789 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23790 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23791 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23792 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23793 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23794 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23795
23796 /* Monadic operations. */
23797 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23798 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23799 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23800
23801 /* Dyadic operations. */
23802 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23803 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23804 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23805 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23806 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23807 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23808 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23809 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23810 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23811
23812 /* Comparisons. */
23813 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23814 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23815 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23816 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23817
23818 /* Double precision load/store are still present on single precision
23819 implementations. */
23820 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23821 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23822 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23823 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23824 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23825 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23826 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23827 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23828 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23829 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23830
23831 #undef ARM_VARIANT
23832 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23833
23834 /* Moves and type conversions. */
23835 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23836 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23837 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23838 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23839 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23840 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23841 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23842 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23843 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23844 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23845 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23846 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23847
23848 /* Monadic operations. */
23849 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23850 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23851 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23852
23853 /* Dyadic operations. */
23854 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23855 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23856 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23857 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23858 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23859 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23860 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23861 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23862 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23863
23864 /* Comparisons. */
23865 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23866 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23867 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23868 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23869
23870 /* Instructions which may belong to either the Neon or VFP instruction sets.
23871 Individual encoder functions perform additional architecture checks. */
23872 #undef ARM_VARIANT
23873 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23874 #undef THUMB_VARIANT
23875 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23876
23877 /* These mnemonics are unique to VFP. */
23878 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23879 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23880 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23881 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23882 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23883 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23884 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23885 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23886
23887 /* Mnemonics shared by Neon and VFP. */
23888 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23889
23890 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23891 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23892 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23893 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23894 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23895 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23896
23897 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23898 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23899 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23900 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23901
23902
23903 /* NOTE: All VMOV encoding is special-cased! */
23904 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23905
23906 #undef THUMB_VARIANT
23907 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23908 by different feature bits. Since we are setting the Thumb guard, we can
23909 require Thumb-1 which makes it a nop guard and set the right feature bit in
23910 do_vldr_vstr (). */
23911 #define THUMB_VARIANT & arm_ext_v4t
23912 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23913 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23914
23915 #undef ARM_VARIANT
23916 #define ARM_VARIANT & arm_ext_fp16
23917 #undef THUMB_VARIANT
23918 #define THUMB_VARIANT & arm_ext_fp16
23919 /* New instructions added from v8.2, allowing the extraction and insertion of
23920 the upper 16 bits of a 32-bit vector register. */
23921 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23922 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23923
23924 /* New backported fma/fms instructions optional in v8.2. */
23925 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23926 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23927
23928 #undef THUMB_VARIANT
23929 #define THUMB_VARIANT & fpu_neon_ext_v1
23930 #undef ARM_VARIANT
23931 #define ARM_VARIANT & fpu_neon_ext_v1
23932
23933 /* Data processing with three registers of the same length. */
23934 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23935 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23936 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23937 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23938 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23939 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23940 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23941 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23942 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23943 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23944 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23945 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23946 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23947 /* If not immediate, fall back to neon_dyadic_i64_su.
23948 shl_imm should accept I8 I16 I32 I64,
23949 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23950 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23951 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23952 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23953 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23954 /* Logic ops, types optional & ignored. */
23955 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23956 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23957 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23958 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23959 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23960 /* Bitfield ops, untyped. */
23961 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23962 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23963 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23964 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23965 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23966 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23967 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23968 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23969 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23970 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23971 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23972 back to neon_dyadic_if_su. */
23973 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23974 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23975 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23976 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23977 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23978 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23979 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23980 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23981 /* Comparison. Type I8 I16 I32 F32. */
23982 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23983 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23984 /* As above, D registers only. */
23985 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23986 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23987 /* Int and float variants, signedness unimportant. */
23988 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23989 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23990 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23991 /* Add/sub take types I8 I16 I32 I64 F32. */
23992 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23993 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23994 /* vtst takes sizes 8, 16, 32. */
23995 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23996 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23997 /* VMUL takes I8 I16 I32 F32 P8. */
23998 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23999 /* VQD{R}MULH takes S16 S32. */
24000 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
24001 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24002 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
24003 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24004 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24005 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24006 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24007 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24008 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24009 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24010 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24011 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24012 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24013 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24014 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24015 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24016 /* ARM v8.1 extension. */
24017 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24018 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24019 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24020 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24021
24022 /* Two address, int/float. Types S8 S16 S32 F32. */
24023 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24024 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24025
24026 /* Data processing with two registers and a shift amount. */
24027 /* Right shifts, and variants with rounding.
24028 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24029 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24030 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24031 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24032 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24033 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24034 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24035 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24036 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24037 /* Shift and insert. Sizes accepted 8 16 32 64. */
24038 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24039 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24040 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24041 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24042 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24043 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24044 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24045 /* Right shift immediate, saturating & narrowing, with rounding variants.
24046 Types accepted S16 S32 S64 U16 U32 U64. */
24047 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24048 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24049 /* As above, unsigned. Types accepted S16 S32 S64. */
24050 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24051 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24052 /* Right shift narrowing. Types accepted I16 I32 I64. */
24053 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24054 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24055 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24056 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24057 /* CVT with optional immediate for fixed-point variant. */
24058 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24059
24060 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
24061 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24062
24063 /* Data processing, three registers of different lengths. */
24064 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24065 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24066 /* If not scalar, fall back to neon_dyadic_long.
24067 Vector types as above, scalar types S16 S32 U16 U32. */
24068 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24069 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24070 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24071 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24072 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24073 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24074 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24075 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24076 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24077 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24078 /* Saturating doubling multiplies. Types S16 S32. */
24079 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24080 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24081 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24082 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24083 S16 S32 U16 U32. */
24084 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24085
24086 /* Extract. Size 8. */
24087 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24088 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24089
24090 /* Two registers, miscellaneous. */
24091 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24092 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24093 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24094 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24095 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24096 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24097 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24098 /* Vector replicate. Sizes 8 16 32. */
24099 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24100 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24101 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24102 /* VMOVN. Types I16 I32 I64. */
24103 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24104 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24105 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24106 /* VQMOVUN. Types S16 S32 S64. */
24107 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24108 /* VZIP / VUZP. Sizes 8 16 32. */
24109 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24110 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24111 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24112 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24113 /* VQABS / VQNEG. Types S8 S16 S32. */
24114 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
24115 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24116 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
24117 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24118 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24119 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24120 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24121 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24122 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24123 /* Reciprocal estimates. Types U32 F16 F32. */
24124 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24125 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24126 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24127 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24128 /* VCLS. Types S8 S16 S32. */
24129 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24130 /* VCLZ. Types I8 I16 I32. */
24131 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24132 /* VCNT. Size 8. */
24133 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24134 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24135 /* Two address, untyped. */
24136 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24137 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24138 /* VTRN. Sizes 8 16 32. */
24139 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24140 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24141
24142 /* Table lookup. Size 8. */
24143 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24144 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24145
24146 #undef THUMB_VARIANT
24147 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24148 #undef ARM_VARIANT
24149 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24150
24151 /* Neon element/structure load/store. */
24152 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24153 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24154 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24155 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24156 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24157 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24158 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24159 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24160
24161 #undef THUMB_VARIANT
24162 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24163 #undef ARM_VARIANT
24164 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24165 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24166 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24167 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24168 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24169 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24170 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24171 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24172 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24173 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24174
24175 #undef THUMB_VARIANT
24176 #define THUMB_VARIANT & fpu_vfp_ext_v3
24177 #undef ARM_VARIANT
24178 #define ARM_VARIANT & fpu_vfp_ext_v3
24179
24180 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24181 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24182 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24183 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24184 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24185 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24186 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24187 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24188 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24189
24190 #undef ARM_VARIANT
24191 #define ARM_VARIANT & fpu_vfp_ext_fma
24192 #undef THUMB_VARIANT
24193 #define THUMB_VARIANT & fpu_vfp_ext_fma
24194 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24195 VFP FMA variant; NEON and VFP FMA always includes the NEON
24196 FMA instructions. */
24197 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24198 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24199
24200 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24201 the v form should always be used. */
24202 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24203 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24204 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24205 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24206 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24207 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24208
24209 #undef THUMB_VARIANT
24210 #undef ARM_VARIANT
24211 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24212
24213 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24214 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24215 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24216 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24217 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24218 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24219 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24220 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24221
24222 #undef ARM_VARIANT
24223 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24224
24225 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24226 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24227 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24228 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24229 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24230 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24231 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24232 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24233 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24234 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24235 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24236 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24237 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24238 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24239 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24240 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24241 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24242 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24243 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24244 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24245 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24246 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24247 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24248 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24249 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24250 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24251 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24252 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24253 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24254 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24255 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24256 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24257 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24258 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24259 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24260 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24261 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24262 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24263 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24264 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24265 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24266 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24267 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24268 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24269 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24270 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24271 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24272 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24273 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24274 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24275 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24276 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24277 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24278 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24279 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24280 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24281 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24282 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24283 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24284 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24285 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24286 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24287 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24288 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24289 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24290 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24291 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24292 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24293 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24294 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24295 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24296 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24297 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24298 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24299 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24300 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24301 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24302 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24303 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24304 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24305 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24306 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24307 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24308 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24309 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24310 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24311 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24312 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24313 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24314 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24315 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24316 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24317 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24318 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24319 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24320 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24321 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24322 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24323 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24324 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24325 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24326 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24327 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24328 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24329 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24330 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24331 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24332 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24333 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24334 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24335 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24336 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24337 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24338 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24339 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24340 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24341 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24342 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24343 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24344 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24345 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24346 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24347 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24348 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24349 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24350 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24351 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24352 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24353 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24354 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24355 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24356 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24357 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24358 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24359 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24360 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24361 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24362 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24363 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24364 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24365 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24366 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24367 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24368 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24369 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24370 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24371 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24372 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24373 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24374 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24375 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24376 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24377 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24378 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24379 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24380 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24381 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24382 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24383 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24384 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24385 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24386 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24387
24388 #undef ARM_VARIANT
24389 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24390
24391 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24392 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24393 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24394 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24395 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24396 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24397 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24398 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24399 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24400 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24401 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24402 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24403 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24404 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24405 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24406 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24407 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24408 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24409 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24410 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24411 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24412 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24413 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24414 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24415 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24416 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24417 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24418 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24419 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24420 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24421 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24422 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24423 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24424 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24425 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24426 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24427 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24428 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24429 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24430 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24431 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24432 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24433 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24434 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24435 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24436 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24437 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24438 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24439 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24440 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24441 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24442 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24443 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24444 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24445 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24446 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24447 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24448
24449 #undef ARM_VARIANT
24450 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24451
24452 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24453 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24454 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24455 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24456 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24457 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24458 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24459 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24460 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24461 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24462 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24463 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24464 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24465 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24466 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24467 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24468 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24469 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24470 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24471 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24472 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24473 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24474 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24475 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24476 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24477 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24478 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24479 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24480 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24481 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24482 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24483 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24484 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24485 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24486 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24487 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24488 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24489 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24490 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24491 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24492 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24493 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24494 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24495 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24496 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24497 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24498 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24499 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24500 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24501 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24502 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24503 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24504 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24505 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24506 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24507 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24508 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24509 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24510 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24511 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24512 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24513 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24514 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24515 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24516 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24517 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24518 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24519 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24520 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24521 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24522 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24523 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24524 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24525 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24526 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24527 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24528
24529 /* ARMv8.5-A instructions. */
24530 #undef ARM_VARIANT
24531 #define ARM_VARIANT & arm_ext_sb
24532 #undef THUMB_VARIANT
24533 #define THUMB_VARIANT & arm_ext_sb
24534 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24535
24536 #undef ARM_VARIANT
24537 #define ARM_VARIANT & arm_ext_predres
24538 #undef THUMB_VARIANT
24539 #define THUMB_VARIANT & arm_ext_predres
24540 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24541 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24542 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24543
24544 /* ARMv8-M instructions. */
24545 #undef ARM_VARIANT
24546 #define ARM_VARIANT NULL
24547 #undef THUMB_VARIANT
24548 #define THUMB_VARIANT & arm_ext_v8m
24549 ToU("sg", e97fe97f, 0, (), noargs),
24550 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24551 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24552 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24553 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24554 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24555 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24556
24557 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24558 instructions behave as nop if no VFP is present. */
24559 #undef THUMB_VARIANT
24560 #define THUMB_VARIANT & arm_ext_v8m_main
24561 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24562 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24563
24564 /* Armv8.1-M Mainline instructions. */
24565 #undef THUMB_VARIANT
24566 #define THUMB_VARIANT & arm_ext_v8_1m_main
24567 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24568 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24569 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24570 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24571 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24572
24573 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24574 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24575 toU("le", _le, 2, (oLR, EXP), t_loloop),
24576
24577 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24578 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24579
24580 #undef THUMB_VARIANT
24581 #define THUMB_VARIANT & mve_ext
24582
24583 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24584 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24585 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24586 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24587 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24588 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24589 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24590 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24591 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24592 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24593 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24594 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24595 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24596 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24597 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24598
24599 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24600 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24601 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24602 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24603 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24604 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24605 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24606 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24607 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24608 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24609 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24610 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24611 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24612 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24613 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24614
24615 /* MVE and MVE FP only. */
24616 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24617 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24618 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24619 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24620 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24621 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24622 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24623 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24624 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24625 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24626 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24627 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24628 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24629 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24630 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24631 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24632 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24633
24634 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24635 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24636 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24637 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24638 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24639 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24640 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24641 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24642 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24643 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24644 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24645 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24646 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24647 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24648 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24649 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24650 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24651 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24652 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24653 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24654
24655 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24656 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24657 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24658 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24659 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24660 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24661 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24662 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24663 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24664 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24665 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24666 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24667 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24668 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24669 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24670 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24671 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24672
24673 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24674 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24675 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24676 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24677 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24678 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24679 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24680 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24681 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24682 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24683 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24684 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24685 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24686 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24687 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24688 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24689 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24690 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24691 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24692 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24693
24694 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24695 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24696 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24697
24698 #undef THUMB_VARIANT
24699 #define THUMB_VARIANT & mve_fp_ext
24700 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24701 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24702 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24703 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24704 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24705 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24706 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24707 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24708
24709 #undef ARM_VARIANT
24710 #define ARM_VARIANT & fpu_vfp_ext_v1
24711 #undef THUMB_VARIANT
24712 #define THUMB_VARIANT & arm_ext_v6t2
24713 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24714 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
24715
24716 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24717
24718 #undef ARM_VARIANT
24719 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24720
24721 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24722 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24723 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24724 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24725
24726 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24727 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24728 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24729
24730 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24731 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24732
24733 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24734 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24735
24736 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24737 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24738
24739 #undef ARM_VARIANT
24740 #define ARM_VARIANT & fpu_vfp_ext_v2
24741
24742 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24743 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24744 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24745 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24746
24747 #undef ARM_VARIANT
24748 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24749 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24750 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24751 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24752 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24753 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24754 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24755
24756 #undef ARM_VARIANT
24757 #define ARM_VARIANT & fpu_neon_ext_v1
24758 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24759 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24760 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24761 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24762 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24763 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24764 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24765 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24766 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24767 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24768 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24769 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24770 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24771 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24772 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24773 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24774 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24775 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24776 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
24777
24778 #undef ARM_VARIANT
24779 #define ARM_VARIANT & arm_ext_v8_3
24780 #undef THUMB_VARIANT
24781 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24782 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24783 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24784 };
24785 #undef ARM_VARIANT
24786 #undef THUMB_VARIANT
24787 #undef TCE
24788 #undef TUE
24789 #undef TUF
24790 #undef TCC
24791 #undef cCE
24792 #undef cCL
24793 #undef C3E
24794 #undef C3
24795 #undef CE
24796 #undef CM
24797 #undef CL
24798 #undef UE
24799 #undef UF
24800 #undef UT
24801 #undef NUF
24802 #undef nUF
24803 #undef NCE
24804 #undef nCE
24805 #undef OPS0
24806 #undef OPS1
24807 #undef OPS2
24808 #undef OPS3
24809 #undef OPS4
24810 #undef OPS5
24811 #undef OPS6
24812 #undef do_0
24813 #undef ToC
24814 #undef toC
24815 #undef ToU
24816 #undef toU
24817 \f
24818 /* MD interface: bits in the object file. */
24819
24820 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24821 for use in the a.out file, and stores them in the array pointed to by buf.
24822 This knows about the endian-ness of the target machine and does
24823 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24824 2 (short) and 4 (long) Floating numbers are put out as a series of
24825 LITTLENUMS (shorts, here at least). */
24826
24827 void
24828 md_number_to_chars (char * buf, valueT val, int n)
24829 {
24830 if (target_big_endian)
24831 number_to_chars_bigendian (buf, val, n);
24832 else
24833 number_to_chars_littleendian (buf, val, n);
24834 }
24835
24836 static valueT
24837 md_chars_to_number (char * buf, int n)
24838 {
24839 valueT result = 0;
24840 unsigned char * where = (unsigned char *) buf;
24841
24842 if (target_big_endian)
24843 {
24844 while (n--)
24845 {
24846 result <<= 8;
24847 result |= (*where++ & 255);
24848 }
24849 }
24850 else
24851 {
24852 while (n--)
24853 {
24854 result <<= 8;
24855 result |= (where[n] & 255);
24856 }
24857 }
24858
24859 return result;
24860 }
24861
24862 /* MD interface: Sections. */
24863
24864 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24865 that an rs_machine_dependent frag may reach. */
24866
24867 unsigned int
24868 arm_frag_max_var (fragS *fragp)
24869 {
24870 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24871 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24872
24873 Note that we generate relaxable instructions even for cases that don't
24874 really need it, like an immediate that's a trivial constant. So we're
24875 overestimating the instruction size for some of those cases. Rather
24876 than putting more intelligence here, it would probably be better to
24877 avoid generating a relaxation frag in the first place when it can be
24878 determined up front that a short instruction will suffice. */
24879
24880 gas_assert (fragp->fr_type == rs_machine_dependent);
24881 return INSN_SIZE;
24882 }
24883
24884 /* Estimate the size of a frag before relaxing. Assume everything fits in
24885 2 bytes. */
24886
24887 int
24888 md_estimate_size_before_relax (fragS * fragp,
24889 segT segtype ATTRIBUTE_UNUSED)
24890 {
24891 fragp->fr_var = 2;
24892 return 2;
24893 }
24894
24895 /* Convert a machine dependent frag. */
24896
24897 void
24898 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24899 {
24900 unsigned long insn;
24901 unsigned long old_op;
24902 char *buf;
24903 expressionS exp;
24904 fixS *fixp;
24905 int reloc_type;
24906 int pc_rel;
24907 int opcode;
24908
24909 buf = fragp->fr_literal + fragp->fr_fix;
24910
24911 old_op = bfd_get_16(abfd, buf);
24912 if (fragp->fr_symbol)
24913 {
24914 exp.X_op = O_symbol;
24915 exp.X_add_symbol = fragp->fr_symbol;
24916 }
24917 else
24918 {
24919 exp.X_op = O_constant;
24920 }
24921 exp.X_add_number = fragp->fr_offset;
24922 opcode = fragp->fr_subtype;
24923 switch (opcode)
24924 {
24925 case T_MNEM_ldr_pc:
24926 case T_MNEM_ldr_pc2:
24927 case T_MNEM_ldr_sp:
24928 case T_MNEM_str_sp:
24929 case T_MNEM_ldr:
24930 case T_MNEM_ldrb:
24931 case T_MNEM_ldrh:
24932 case T_MNEM_str:
24933 case T_MNEM_strb:
24934 case T_MNEM_strh:
24935 if (fragp->fr_var == 4)
24936 {
24937 insn = THUMB_OP32 (opcode);
24938 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24939 {
24940 insn |= (old_op & 0x700) << 4;
24941 }
24942 else
24943 {
24944 insn |= (old_op & 7) << 12;
24945 insn |= (old_op & 0x38) << 13;
24946 }
24947 insn |= 0x00000c00;
24948 put_thumb32_insn (buf, insn);
24949 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24950 }
24951 else
24952 {
24953 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24954 }
24955 pc_rel = (opcode == T_MNEM_ldr_pc2);
24956 break;
24957 case T_MNEM_adr:
24958 if (fragp->fr_var == 4)
24959 {
24960 insn = THUMB_OP32 (opcode);
24961 insn |= (old_op & 0xf0) << 4;
24962 put_thumb32_insn (buf, insn);
24963 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24964 }
24965 else
24966 {
24967 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24968 exp.X_add_number -= 4;
24969 }
24970 pc_rel = 1;
24971 break;
24972 case T_MNEM_mov:
24973 case T_MNEM_movs:
24974 case T_MNEM_cmp:
24975 case T_MNEM_cmn:
24976 if (fragp->fr_var == 4)
24977 {
24978 int r0off = (opcode == T_MNEM_mov
24979 || opcode == T_MNEM_movs) ? 0 : 8;
24980 insn = THUMB_OP32 (opcode);
24981 insn = (insn & 0xe1ffffff) | 0x10000000;
24982 insn |= (old_op & 0x700) << r0off;
24983 put_thumb32_insn (buf, insn);
24984 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24985 }
24986 else
24987 {
24988 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24989 }
24990 pc_rel = 0;
24991 break;
24992 case T_MNEM_b:
24993 if (fragp->fr_var == 4)
24994 {
24995 insn = THUMB_OP32(opcode);
24996 put_thumb32_insn (buf, insn);
24997 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24998 }
24999 else
25000 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25001 pc_rel = 1;
25002 break;
25003 case T_MNEM_bcond:
25004 if (fragp->fr_var == 4)
25005 {
25006 insn = THUMB_OP32(opcode);
25007 insn |= (old_op & 0xf00) << 14;
25008 put_thumb32_insn (buf, insn);
25009 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25010 }
25011 else
25012 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25013 pc_rel = 1;
25014 break;
25015 case T_MNEM_add_sp:
25016 case T_MNEM_add_pc:
25017 case T_MNEM_inc_sp:
25018 case T_MNEM_dec_sp:
25019 if (fragp->fr_var == 4)
25020 {
25021 /* ??? Choose between add and addw. */
25022 insn = THUMB_OP32 (opcode);
25023 insn |= (old_op & 0xf0) << 4;
25024 put_thumb32_insn (buf, insn);
25025 if (opcode == T_MNEM_add_pc)
25026 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25027 else
25028 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25029 }
25030 else
25031 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25032 pc_rel = 0;
25033 break;
25034
25035 case T_MNEM_addi:
25036 case T_MNEM_addis:
25037 case T_MNEM_subi:
25038 case T_MNEM_subis:
25039 if (fragp->fr_var == 4)
25040 {
25041 insn = THUMB_OP32 (opcode);
25042 insn |= (old_op & 0xf0) << 4;
25043 insn |= (old_op & 0xf) << 16;
25044 put_thumb32_insn (buf, insn);
25045 if (insn & (1 << 20))
25046 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25047 else
25048 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25049 }
25050 else
25051 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25052 pc_rel = 0;
25053 break;
25054 default:
25055 abort ();
25056 }
25057 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25058 (enum bfd_reloc_code_real) reloc_type);
25059 fixp->fx_file = fragp->fr_file;
25060 fixp->fx_line = fragp->fr_line;
25061 fragp->fr_fix += fragp->fr_var;
25062
25063 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25064 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25065 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25066 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25067 }
25068
25069 /* Return the size of a relaxable immediate operand instruction.
25070 SHIFT and SIZE specify the form of the allowable immediate. */
25071 static int
25072 relax_immediate (fragS *fragp, int size, int shift)
25073 {
25074 offsetT offset;
25075 offsetT mask;
25076 offsetT low;
25077
25078 /* ??? Should be able to do better than this. */
25079 if (fragp->fr_symbol)
25080 return 4;
25081
25082 low = (1 << shift) - 1;
25083 mask = (1 << (shift + size)) - (1 << shift);
25084 offset = fragp->fr_offset;
25085 /* Force misaligned offsets to 32-bit variant. */
25086 if (offset & low)
25087 return 4;
25088 if (offset & ~mask)
25089 return 4;
25090 return 2;
25091 }
25092
25093 /* Get the address of a symbol during relaxation. */
25094 static addressT
25095 relaxed_symbol_addr (fragS *fragp, long stretch)
25096 {
25097 fragS *sym_frag;
25098 addressT addr;
25099 symbolS *sym;
25100
25101 sym = fragp->fr_symbol;
25102 sym_frag = symbol_get_frag (sym);
25103 know (S_GET_SEGMENT (sym) != absolute_section
25104 || sym_frag == &zero_address_frag);
25105 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25106
25107 /* If frag has yet to be reached on this pass, assume it will
25108 move by STRETCH just as we did. If this is not so, it will
25109 be because some frag between grows, and that will force
25110 another pass. */
25111
25112 if (stretch != 0
25113 && sym_frag->relax_marker != fragp->relax_marker)
25114 {
25115 fragS *f;
25116
25117 /* Adjust stretch for any alignment frag. Note that if have
25118 been expanding the earlier code, the symbol may be
25119 defined in what appears to be an earlier frag. FIXME:
25120 This doesn't handle the fr_subtype field, which specifies
25121 a maximum number of bytes to skip when doing an
25122 alignment. */
25123 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25124 {
25125 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25126 {
25127 if (stretch < 0)
25128 stretch = - ((- stretch)
25129 & ~ ((1 << (int) f->fr_offset) - 1));
25130 else
25131 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25132 if (stretch == 0)
25133 break;
25134 }
25135 }
25136 if (f != NULL)
25137 addr += stretch;
25138 }
25139
25140 return addr;
25141 }
25142
25143 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25144 load. */
25145 static int
25146 relax_adr (fragS *fragp, asection *sec, long stretch)
25147 {
25148 addressT addr;
25149 offsetT val;
25150
25151 /* Assume worst case for symbols not known to be in the same section. */
25152 if (fragp->fr_symbol == NULL
25153 || !S_IS_DEFINED (fragp->fr_symbol)
25154 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25155 || S_IS_WEAK (fragp->fr_symbol))
25156 return 4;
25157
25158 val = relaxed_symbol_addr (fragp, stretch);
25159 addr = fragp->fr_address + fragp->fr_fix;
25160 addr = (addr + 4) & ~3;
25161 /* Force misaligned targets to 32-bit variant. */
25162 if (val & 3)
25163 return 4;
25164 val -= addr;
25165 if (val < 0 || val > 1020)
25166 return 4;
25167 return 2;
25168 }
25169
25170 /* Return the size of a relaxable add/sub immediate instruction. */
25171 static int
25172 relax_addsub (fragS *fragp, asection *sec)
25173 {
25174 char *buf;
25175 int op;
25176
25177 buf = fragp->fr_literal + fragp->fr_fix;
25178 op = bfd_get_16(sec->owner, buf);
25179 if ((op & 0xf) == ((op >> 4) & 0xf))
25180 return relax_immediate (fragp, 8, 0);
25181 else
25182 return relax_immediate (fragp, 3, 0);
25183 }
25184
25185 /* Return TRUE iff the definition of symbol S could be pre-empted
25186 (overridden) at link or load time. */
25187 static bfd_boolean
25188 symbol_preemptible (symbolS *s)
25189 {
25190 /* Weak symbols can always be pre-empted. */
25191 if (S_IS_WEAK (s))
25192 return TRUE;
25193
25194 /* Non-global symbols cannot be pre-empted. */
25195 if (! S_IS_EXTERNAL (s))
25196 return FALSE;
25197
25198 #ifdef OBJ_ELF
25199 /* In ELF, a global symbol can be marked protected, or private. In that
25200 case it can't be pre-empted (other definitions in the same link unit
25201 would violate the ODR). */
25202 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25203 return FALSE;
25204 #endif
25205
25206 /* Other global symbols might be pre-empted. */
25207 return TRUE;
25208 }
25209
25210 /* Return the size of a relaxable branch instruction. BITS is the
25211 size of the offset field in the narrow instruction. */
25212
25213 static int
25214 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25215 {
25216 addressT addr;
25217 offsetT val;
25218 offsetT limit;
25219
25220 /* Assume worst case for symbols not known to be in the same section. */
25221 if (!S_IS_DEFINED (fragp->fr_symbol)
25222 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25223 || S_IS_WEAK (fragp->fr_symbol))
25224 return 4;
25225
25226 #ifdef OBJ_ELF
25227 /* A branch to a function in ARM state will require interworking. */
25228 if (S_IS_DEFINED (fragp->fr_symbol)
25229 && ARM_IS_FUNC (fragp->fr_symbol))
25230 return 4;
25231 #endif
25232
25233 if (symbol_preemptible (fragp->fr_symbol))
25234 return 4;
25235
25236 val = relaxed_symbol_addr (fragp, stretch);
25237 addr = fragp->fr_address + fragp->fr_fix + 4;
25238 val -= addr;
25239
25240 /* Offset is a signed value *2 */
25241 limit = 1 << bits;
25242 if (val >= limit || val < -limit)
25243 return 4;
25244 return 2;
25245 }
25246
25247
25248 /* Relax a machine dependent frag. This returns the amount by which
25249 the current size of the frag should change. */
25250
25251 int
25252 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25253 {
25254 int oldsize;
25255 int newsize;
25256
25257 oldsize = fragp->fr_var;
25258 switch (fragp->fr_subtype)
25259 {
25260 case T_MNEM_ldr_pc2:
25261 newsize = relax_adr (fragp, sec, stretch);
25262 break;
25263 case T_MNEM_ldr_pc:
25264 case T_MNEM_ldr_sp:
25265 case T_MNEM_str_sp:
25266 newsize = relax_immediate (fragp, 8, 2);
25267 break;
25268 case T_MNEM_ldr:
25269 case T_MNEM_str:
25270 newsize = relax_immediate (fragp, 5, 2);
25271 break;
25272 case T_MNEM_ldrh:
25273 case T_MNEM_strh:
25274 newsize = relax_immediate (fragp, 5, 1);
25275 break;
25276 case T_MNEM_ldrb:
25277 case T_MNEM_strb:
25278 newsize = relax_immediate (fragp, 5, 0);
25279 break;
25280 case T_MNEM_adr:
25281 newsize = relax_adr (fragp, sec, stretch);
25282 break;
25283 case T_MNEM_mov:
25284 case T_MNEM_movs:
25285 case T_MNEM_cmp:
25286 case T_MNEM_cmn:
25287 newsize = relax_immediate (fragp, 8, 0);
25288 break;
25289 case T_MNEM_b:
25290 newsize = relax_branch (fragp, sec, 11, stretch);
25291 break;
25292 case T_MNEM_bcond:
25293 newsize = relax_branch (fragp, sec, 8, stretch);
25294 break;
25295 case T_MNEM_add_sp:
25296 case T_MNEM_add_pc:
25297 newsize = relax_immediate (fragp, 8, 2);
25298 break;
25299 case T_MNEM_inc_sp:
25300 case T_MNEM_dec_sp:
25301 newsize = relax_immediate (fragp, 7, 2);
25302 break;
25303 case T_MNEM_addi:
25304 case T_MNEM_addis:
25305 case T_MNEM_subi:
25306 case T_MNEM_subis:
25307 newsize = relax_addsub (fragp, sec);
25308 break;
25309 default:
25310 abort ();
25311 }
25312
25313 fragp->fr_var = newsize;
25314 /* Freeze wide instructions that are at or before the same location as
25315 in the previous pass. This avoids infinite loops.
25316 Don't freeze them unconditionally because targets may be artificially
25317 misaligned by the expansion of preceding frags. */
25318 if (stretch <= 0 && newsize > 2)
25319 {
25320 md_convert_frag (sec->owner, sec, fragp);
25321 frag_wane (fragp);
25322 }
25323
25324 return newsize - oldsize;
25325 }
25326
25327 /* Round up a section size to the appropriate boundary. */
25328
25329 valueT
25330 md_section_align (segT segment ATTRIBUTE_UNUSED,
25331 valueT size)
25332 {
25333 return size;
25334 }
25335
25336 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25337 of an rs_align_code fragment. */
25338
25339 void
25340 arm_handle_align (fragS * fragP)
25341 {
25342 static unsigned char const arm_noop[2][2][4] =
25343 {
25344 { /* ARMv1 */
25345 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25346 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25347 },
25348 { /* ARMv6k */
25349 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25350 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25351 },
25352 };
25353 static unsigned char const thumb_noop[2][2][2] =
25354 {
25355 { /* Thumb-1 */
25356 {0xc0, 0x46}, /* LE */
25357 {0x46, 0xc0}, /* BE */
25358 },
25359 { /* Thumb-2 */
25360 {0x00, 0xbf}, /* LE */
25361 {0xbf, 0x00} /* BE */
25362 }
25363 };
25364 static unsigned char const wide_thumb_noop[2][4] =
25365 { /* Wide Thumb-2 */
25366 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25367 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25368 };
25369
25370 unsigned bytes, fix, noop_size;
25371 char * p;
25372 const unsigned char * noop;
25373 const unsigned char *narrow_noop = NULL;
25374 #ifdef OBJ_ELF
25375 enum mstate state;
25376 #endif
25377
25378 if (fragP->fr_type != rs_align_code)
25379 return;
25380
25381 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25382 p = fragP->fr_literal + fragP->fr_fix;
25383 fix = 0;
25384
25385 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25386 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25387
25388 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25389
25390 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25391 {
25392 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25393 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25394 {
25395 narrow_noop = thumb_noop[1][target_big_endian];
25396 noop = wide_thumb_noop[target_big_endian];
25397 }
25398 else
25399 noop = thumb_noop[0][target_big_endian];
25400 noop_size = 2;
25401 #ifdef OBJ_ELF
25402 state = MAP_THUMB;
25403 #endif
25404 }
25405 else
25406 {
25407 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25408 ? selected_cpu : arm_arch_none,
25409 arm_ext_v6k) != 0]
25410 [target_big_endian];
25411 noop_size = 4;
25412 #ifdef OBJ_ELF
25413 state = MAP_ARM;
25414 #endif
25415 }
25416
25417 fragP->fr_var = noop_size;
25418
25419 if (bytes & (noop_size - 1))
25420 {
25421 fix = bytes & (noop_size - 1);
25422 #ifdef OBJ_ELF
25423 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25424 #endif
25425 memset (p, 0, fix);
25426 p += fix;
25427 bytes -= fix;
25428 }
25429
25430 if (narrow_noop)
25431 {
25432 if (bytes & noop_size)
25433 {
25434 /* Insert a narrow noop. */
25435 memcpy (p, narrow_noop, noop_size);
25436 p += noop_size;
25437 bytes -= noop_size;
25438 fix += noop_size;
25439 }
25440
25441 /* Use wide noops for the remainder */
25442 noop_size = 4;
25443 }
25444
25445 while (bytes >= noop_size)
25446 {
25447 memcpy (p, noop, noop_size);
25448 p += noop_size;
25449 bytes -= noop_size;
25450 fix += noop_size;
25451 }
25452
25453 fragP->fr_fix += fix;
25454 }
25455
25456 /* Called from md_do_align. Used to create an alignment
25457 frag in a code section. */
25458
25459 void
25460 arm_frag_align_code (int n, int max)
25461 {
25462 char * p;
25463
25464 /* We assume that there will never be a requirement
25465 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25466 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25467 {
25468 char err_msg[128];
25469
25470 sprintf (err_msg,
25471 _("alignments greater than %d bytes not supported in .text sections."),
25472 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25473 as_fatal ("%s", err_msg);
25474 }
25475
25476 p = frag_var (rs_align_code,
25477 MAX_MEM_FOR_RS_ALIGN_CODE,
25478 1,
25479 (relax_substateT) max,
25480 (symbolS *) NULL,
25481 (offsetT) n,
25482 (char *) NULL);
25483 *p = 0;
25484 }
25485
25486 /* Perform target specific initialisation of a frag.
25487 Note - despite the name this initialisation is not done when the frag
25488 is created, but only when its type is assigned. A frag can be created
25489 and used a long time before its type is set, so beware of assuming that
25490 this initialisation is performed first. */
25491
25492 #ifndef OBJ_ELF
25493 void
25494 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25495 {
25496 /* Record whether this frag is in an ARM or a THUMB area. */
25497 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25498 }
25499
25500 #else /* OBJ_ELF is defined. */
25501 void
25502 arm_init_frag (fragS * fragP, int max_chars)
25503 {
25504 bfd_boolean frag_thumb_mode;
25505
25506 /* If the current ARM vs THUMB mode has not already
25507 been recorded into this frag then do so now. */
25508 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25509 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25510
25511 /* PR 21809: Do not set a mapping state for debug sections
25512 - it just confuses other tools. */
25513 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25514 return;
25515
25516 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25517
25518 /* Record a mapping symbol for alignment frags. We will delete this
25519 later if the alignment ends up empty. */
25520 switch (fragP->fr_type)
25521 {
25522 case rs_align:
25523 case rs_align_test:
25524 case rs_fill:
25525 mapping_state_2 (MAP_DATA, max_chars);
25526 break;
25527 case rs_align_code:
25528 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25529 break;
25530 default:
25531 break;
25532 }
25533 }
25534
25535 /* When we change sections we need to issue a new mapping symbol. */
25536
25537 void
25538 arm_elf_change_section (void)
25539 {
25540 /* Link an unlinked unwind index table section to the .text section. */
25541 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25542 && elf_linked_to_section (now_seg) == NULL)
25543 elf_linked_to_section (now_seg) = text_section;
25544 }
25545
25546 int
25547 arm_elf_section_type (const char * str, size_t len)
25548 {
25549 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25550 return SHT_ARM_EXIDX;
25551
25552 return -1;
25553 }
25554 \f
25555 /* Code to deal with unwinding tables. */
25556
25557 static void add_unwind_adjustsp (offsetT);
25558
25559 /* Generate any deferred unwind frame offset. */
25560
25561 static void
25562 flush_pending_unwind (void)
25563 {
25564 offsetT offset;
25565
25566 offset = unwind.pending_offset;
25567 unwind.pending_offset = 0;
25568 if (offset != 0)
25569 add_unwind_adjustsp (offset);
25570 }
25571
25572 /* Add an opcode to this list for this function. Two-byte opcodes should
25573 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25574 order. */
25575
25576 static void
25577 add_unwind_opcode (valueT op, int length)
25578 {
25579 /* Add any deferred stack adjustment. */
25580 if (unwind.pending_offset)
25581 flush_pending_unwind ();
25582
25583 unwind.sp_restored = 0;
25584
25585 if (unwind.opcode_count + length > unwind.opcode_alloc)
25586 {
25587 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25588 if (unwind.opcodes)
25589 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25590 unwind.opcode_alloc);
25591 else
25592 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25593 }
25594 while (length > 0)
25595 {
25596 length--;
25597 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25598 op >>= 8;
25599 unwind.opcode_count++;
25600 }
25601 }
25602
25603 /* Add unwind opcodes to adjust the stack pointer. */
25604
25605 static void
25606 add_unwind_adjustsp (offsetT offset)
25607 {
25608 valueT op;
25609
25610 if (offset > 0x200)
25611 {
25612 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25613 char bytes[5];
25614 int n;
25615 valueT o;
25616
25617 /* Long form: 0xb2, uleb128. */
25618 /* This might not fit in a word so add the individual bytes,
25619 remembering the list is built in reverse order. */
25620 o = (valueT) ((offset - 0x204) >> 2);
25621 if (o == 0)
25622 add_unwind_opcode (0, 1);
25623
25624 /* Calculate the uleb128 encoding of the offset. */
25625 n = 0;
25626 while (o)
25627 {
25628 bytes[n] = o & 0x7f;
25629 o >>= 7;
25630 if (o)
25631 bytes[n] |= 0x80;
25632 n++;
25633 }
25634 /* Add the insn. */
25635 for (; n; n--)
25636 add_unwind_opcode (bytes[n - 1], 1);
25637 add_unwind_opcode (0xb2, 1);
25638 }
25639 else if (offset > 0x100)
25640 {
25641 /* Two short opcodes. */
25642 add_unwind_opcode (0x3f, 1);
25643 op = (offset - 0x104) >> 2;
25644 add_unwind_opcode (op, 1);
25645 }
25646 else if (offset > 0)
25647 {
25648 /* Short opcode. */
25649 op = (offset - 4) >> 2;
25650 add_unwind_opcode (op, 1);
25651 }
25652 else if (offset < 0)
25653 {
25654 offset = -offset;
25655 while (offset > 0x100)
25656 {
25657 add_unwind_opcode (0x7f, 1);
25658 offset -= 0x100;
25659 }
25660 op = ((offset - 4) >> 2) | 0x40;
25661 add_unwind_opcode (op, 1);
25662 }
25663 }
25664
25665 /* Finish the list of unwind opcodes for this function. */
25666
25667 static void
25668 finish_unwind_opcodes (void)
25669 {
25670 valueT op;
25671
25672 if (unwind.fp_used)
25673 {
25674 /* Adjust sp as necessary. */
25675 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25676 flush_pending_unwind ();
25677
25678 /* After restoring sp from the frame pointer. */
25679 op = 0x90 | unwind.fp_reg;
25680 add_unwind_opcode (op, 1);
25681 }
25682 else
25683 flush_pending_unwind ();
25684 }
25685
25686
25687 /* Start an exception table entry. If idx is nonzero this is an index table
25688 entry. */
25689
25690 static void
25691 start_unwind_section (const segT text_seg, int idx)
25692 {
25693 const char * text_name;
25694 const char * prefix;
25695 const char * prefix_once;
25696 const char * group_name;
25697 char * sec_name;
25698 int type;
25699 int flags;
25700 int linkonce;
25701
25702 if (idx)
25703 {
25704 prefix = ELF_STRING_ARM_unwind;
25705 prefix_once = ELF_STRING_ARM_unwind_once;
25706 type = SHT_ARM_EXIDX;
25707 }
25708 else
25709 {
25710 prefix = ELF_STRING_ARM_unwind_info;
25711 prefix_once = ELF_STRING_ARM_unwind_info_once;
25712 type = SHT_PROGBITS;
25713 }
25714
25715 text_name = segment_name (text_seg);
25716 if (streq (text_name, ".text"))
25717 text_name = "";
25718
25719 if (strncmp (text_name, ".gnu.linkonce.t.",
25720 strlen (".gnu.linkonce.t.")) == 0)
25721 {
25722 prefix = prefix_once;
25723 text_name += strlen (".gnu.linkonce.t.");
25724 }
25725
25726 sec_name = concat (prefix, text_name, (char *) NULL);
25727
25728 flags = SHF_ALLOC;
25729 linkonce = 0;
25730 group_name = 0;
25731
25732 /* Handle COMDAT group. */
25733 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25734 {
25735 group_name = elf_group_name (text_seg);
25736 if (group_name == NULL)
25737 {
25738 as_bad (_("Group section `%s' has no group signature"),
25739 segment_name (text_seg));
25740 ignore_rest_of_line ();
25741 return;
25742 }
25743 flags |= SHF_GROUP;
25744 linkonce = 1;
25745 }
25746
25747 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25748 linkonce, 0);
25749
25750 /* Set the section link for index tables. */
25751 if (idx)
25752 elf_linked_to_section (now_seg) = text_seg;
25753 }
25754
25755
25756 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25757 personality routine data. Returns zero, or the index table value for
25758 an inline entry. */
25759
25760 static valueT
25761 create_unwind_entry (int have_data)
25762 {
25763 int size;
25764 addressT where;
25765 char *ptr;
25766 /* The current word of data. */
25767 valueT data;
25768 /* The number of bytes left in this word. */
25769 int n;
25770
25771 finish_unwind_opcodes ();
25772
25773 /* Remember the current text section. */
25774 unwind.saved_seg = now_seg;
25775 unwind.saved_subseg = now_subseg;
25776
25777 start_unwind_section (now_seg, 0);
25778
25779 if (unwind.personality_routine == NULL)
25780 {
25781 if (unwind.personality_index == -2)
25782 {
25783 if (have_data)
25784 as_bad (_("handlerdata in cantunwind frame"));
25785 return 1; /* EXIDX_CANTUNWIND. */
25786 }
25787
25788 /* Use a default personality routine if none is specified. */
25789 if (unwind.personality_index == -1)
25790 {
25791 if (unwind.opcode_count > 3)
25792 unwind.personality_index = 1;
25793 else
25794 unwind.personality_index = 0;
25795 }
25796
25797 /* Space for the personality routine entry. */
25798 if (unwind.personality_index == 0)
25799 {
25800 if (unwind.opcode_count > 3)
25801 as_bad (_("too many unwind opcodes for personality routine 0"));
25802
25803 if (!have_data)
25804 {
25805 /* All the data is inline in the index table. */
25806 data = 0x80;
25807 n = 3;
25808 while (unwind.opcode_count > 0)
25809 {
25810 unwind.opcode_count--;
25811 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25812 n--;
25813 }
25814
25815 /* Pad with "finish" opcodes. */
25816 while (n--)
25817 data = (data << 8) | 0xb0;
25818
25819 return data;
25820 }
25821 size = 0;
25822 }
25823 else
25824 /* We get two opcodes "free" in the first word. */
25825 size = unwind.opcode_count - 2;
25826 }
25827 else
25828 {
25829 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25830 if (unwind.personality_index != -1)
25831 {
25832 as_bad (_("attempt to recreate an unwind entry"));
25833 return 1;
25834 }
25835
25836 /* An extra byte is required for the opcode count. */
25837 size = unwind.opcode_count + 1;
25838 }
25839
25840 size = (size + 3) >> 2;
25841 if (size > 0xff)
25842 as_bad (_("too many unwind opcodes"));
25843
25844 frag_align (2, 0, 0);
25845 record_alignment (now_seg, 2);
25846 unwind.table_entry = expr_build_dot ();
25847
25848 /* Allocate the table entry. */
25849 ptr = frag_more ((size << 2) + 4);
25850 /* PR 13449: Zero the table entries in case some of them are not used. */
25851 memset (ptr, 0, (size << 2) + 4);
25852 where = frag_now_fix () - ((size << 2) + 4);
25853
25854 switch (unwind.personality_index)
25855 {
25856 case -1:
25857 /* ??? Should this be a PLT generating relocation? */
25858 /* Custom personality routine. */
25859 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25860 BFD_RELOC_ARM_PREL31);
25861
25862 where += 4;
25863 ptr += 4;
25864
25865 /* Set the first byte to the number of additional words. */
25866 data = size > 0 ? size - 1 : 0;
25867 n = 3;
25868 break;
25869
25870 /* ABI defined personality routines. */
25871 case 0:
25872 /* Three opcodes bytes are packed into the first word. */
25873 data = 0x80;
25874 n = 3;
25875 break;
25876
25877 case 1:
25878 case 2:
25879 /* The size and first two opcode bytes go in the first word. */
25880 data = ((0x80 + unwind.personality_index) << 8) | size;
25881 n = 2;
25882 break;
25883
25884 default:
25885 /* Should never happen. */
25886 abort ();
25887 }
25888
25889 /* Pack the opcodes into words (MSB first), reversing the list at the same
25890 time. */
25891 while (unwind.opcode_count > 0)
25892 {
25893 if (n == 0)
25894 {
25895 md_number_to_chars (ptr, data, 4);
25896 ptr += 4;
25897 n = 4;
25898 data = 0;
25899 }
25900 unwind.opcode_count--;
25901 n--;
25902 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25903 }
25904
25905 /* Finish off the last word. */
25906 if (n < 4)
25907 {
25908 /* Pad with "finish" opcodes. */
25909 while (n--)
25910 data = (data << 8) | 0xb0;
25911
25912 md_number_to_chars (ptr, data, 4);
25913 }
25914
25915 if (!have_data)
25916 {
25917 /* Add an empty descriptor if there is no user-specified data. */
25918 ptr = frag_more (4);
25919 md_number_to_chars (ptr, 0, 4);
25920 }
25921
25922 return 0;
25923 }
25924
25925
25926 /* Initialize the DWARF-2 unwind information for this procedure. */
25927
25928 void
25929 tc_arm_frame_initial_instructions (void)
25930 {
25931 cfi_add_CFA_def_cfa (REG_SP, 0);
25932 }
25933 #endif /* OBJ_ELF */
25934
25935 /* Convert REGNAME to a DWARF-2 register number. */
25936
25937 int
25938 tc_arm_regname_to_dw2regnum (char *regname)
25939 {
25940 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25941 if (reg != FAIL)
25942 return reg;
25943
25944 /* PR 16694: Allow VFP registers as well. */
25945 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25946 if (reg != FAIL)
25947 return 64 + reg;
25948
25949 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25950 if (reg != FAIL)
25951 return reg + 256;
25952
25953 return FAIL;
25954 }
25955
25956 #ifdef TE_PE
25957 void
25958 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25959 {
25960 expressionS exp;
25961
25962 exp.X_op = O_secrel;
25963 exp.X_add_symbol = symbol;
25964 exp.X_add_number = 0;
25965 emit_expr (&exp, size);
25966 }
25967 #endif
25968
25969 /* MD interface: Symbol and relocation handling. */
25970
25971 /* Return the address within the segment that a PC-relative fixup is
25972 relative to. For ARM, PC-relative fixups applied to instructions
25973 are generally relative to the location of the fixup plus 8 bytes.
25974 Thumb branches are offset by 4, and Thumb loads relative to PC
25975 require special handling. */
25976
25977 long
25978 md_pcrel_from_section (fixS * fixP, segT seg)
25979 {
25980 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25981
25982 /* If this is pc-relative and we are going to emit a relocation
25983 then we just want to put out any pipeline compensation that the linker
25984 will need. Otherwise we want to use the calculated base.
25985 For WinCE we skip the bias for externals as well, since this
25986 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25987 if (fixP->fx_pcrel
25988 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25989 || (arm_force_relocation (fixP)
25990 #ifdef TE_WINCE
25991 && !S_IS_EXTERNAL (fixP->fx_addsy)
25992 #endif
25993 )))
25994 base = 0;
25995
25996
25997 switch (fixP->fx_r_type)
25998 {
25999 /* PC relative addressing on the Thumb is slightly odd as the
26000 bottom two bits of the PC are forced to zero for the
26001 calculation. This happens *after* application of the
26002 pipeline offset. However, Thumb adrl already adjusts for
26003 this, so we need not do it again. */
26004 case BFD_RELOC_ARM_THUMB_ADD:
26005 return base & ~3;
26006
26007 case BFD_RELOC_ARM_THUMB_OFFSET:
26008 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26009 case BFD_RELOC_ARM_T32_ADD_PC12:
26010 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26011 return (base + 4) & ~3;
26012
26013 /* Thumb branches are simply offset by +4. */
26014 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26015 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26016 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26017 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26018 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26019 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26020 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26021 case BFD_RELOC_ARM_THUMB_BF17:
26022 case BFD_RELOC_ARM_THUMB_BF19:
26023 case BFD_RELOC_ARM_THUMB_BF13:
26024 case BFD_RELOC_ARM_THUMB_LOOP12:
26025 return base + 4;
26026
26027 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26028 if (fixP->fx_addsy
26029 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26030 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26031 && ARM_IS_FUNC (fixP->fx_addsy)
26032 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26033 base = fixP->fx_where + fixP->fx_frag->fr_address;
26034 return base + 4;
26035
26036 /* BLX is like branches above, but forces the low two bits of PC to
26037 zero. */
26038 case BFD_RELOC_THUMB_PCREL_BLX:
26039 if (fixP->fx_addsy
26040 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26041 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26042 && THUMB_IS_FUNC (fixP->fx_addsy)
26043 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26044 base = fixP->fx_where + fixP->fx_frag->fr_address;
26045 return (base + 4) & ~3;
26046
26047 /* ARM mode branches are offset by +8. However, the Windows CE
26048 loader expects the relocation not to take this into account. */
26049 case BFD_RELOC_ARM_PCREL_BLX:
26050 if (fixP->fx_addsy
26051 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26052 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26053 && ARM_IS_FUNC (fixP->fx_addsy)
26054 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26055 base = fixP->fx_where + fixP->fx_frag->fr_address;
26056 return base + 8;
26057
26058 case BFD_RELOC_ARM_PCREL_CALL:
26059 if (fixP->fx_addsy
26060 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26061 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26062 && THUMB_IS_FUNC (fixP->fx_addsy)
26063 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26064 base = fixP->fx_where + fixP->fx_frag->fr_address;
26065 return base + 8;
26066
26067 case BFD_RELOC_ARM_PCREL_BRANCH:
26068 case BFD_RELOC_ARM_PCREL_JUMP:
26069 case BFD_RELOC_ARM_PLT32:
26070 #ifdef TE_WINCE
26071 /* When handling fixups immediately, because we have already
26072 discovered the value of a symbol, or the address of the frag involved
26073 we must account for the offset by +8, as the OS loader will never see the reloc.
26074 see fixup_segment() in write.c
26075 The S_IS_EXTERNAL test handles the case of global symbols.
26076 Those need the calculated base, not just the pipe compensation the linker will need. */
26077 if (fixP->fx_pcrel
26078 && fixP->fx_addsy != NULL
26079 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26080 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26081 return base + 8;
26082 return base;
26083 #else
26084 return base + 8;
26085 #endif
26086
26087
26088 /* ARM mode loads relative to PC are also offset by +8. Unlike
26089 branches, the Windows CE loader *does* expect the relocation
26090 to take this into account. */
26091 case BFD_RELOC_ARM_OFFSET_IMM:
26092 case BFD_RELOC_ARM_OFFSET_IMM8:
26093 case BFD_RELOC_ARM_HWLITERAL:
26094 case BFD_RELOC_ARM_LITERAL:
26095 case BFD_RELOC_ARM_CP_OFF_IMM:
26096 return base + 8;
26097
26098
26099 /* Other PC-relative relocations are un-offset. */
26100 default:
26101 return base;
26102 }
26103 }
26104
26105 static bfd_boolean flag_warn_syms = TRUE;
26106
26107 bfd_boolean
26108 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26109 {
26110 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26111 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26112 does mean that the resulting code might be very confusing to the reader.
26113 Also this warning can be triggered if the user omits an operand before
26114 an immediate address, eg:
26115
26116 LDR =foo
26117
26118 GAS treats this as an assignment of the value of the symbol foo to a
26119 symbol LDR, and so (without this code) it will not issue any kind of
26120 warning or error message.
26121
26122 Note - ARM instructions are case-insensitive but the strings in the hash
26123 table are all stored in lower case, so we must first ensure that name is
26124 lower case too. */
26125 if (flag_warn_syms && arm_ops_hsh)
26126 {
26127 char * nbuf = strdup (name);
26128 char * p;
26129
26130 for (p = nbuf; *p; p++)
26131 *p = TOLOWER (*p);
26132 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26133 {
26134 static struct hash_control * already_warned = NULL;
26135
26136 if (already_warned == NULL)
26137 already_warned = hash_new ();
26138 /* Only warn about the symbol once. To keep the code
26139 simple we let hash_insert do the lookup for us. */
26140 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26141 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26142 }
26143 else
26144 free (nbuf);
26145 }
26146
26147 return FALSE;
26148 }
26149
26150 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26151 Otherwise we have no need to default values of symbols. */
26152
26153 symbolS *
26154 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26155 {
26156 #ifdef OBJ_ELF
26157 if (name[0] == '_' && name[1] == 'G'
26158 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26159 {
26160 if (!GOT_symbol)
26161 {
26162 if (symbol_find (name))
26163 as_bad (_("GOT already in the symbol table"));
26164
26165 GOT_symbol = symbol_new (name, undefined_section,
26166 (valueT) 0, & zero_address_frag);
26167 }
26168
26169 return GOT_symbol;
26170 }
26171 #endif
26172
26173 return NULL;
26174 }
26175
26176 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26177 computed as two separate immediate values, added together. We
26178 already know that this value cannot be computed by just one ARM
26179 instruction. */
26180
26181 static unsigned int
26182 validate_immediate_twopart (unsigned int val,
26183 unsigned int * highpart)
26184 {
26185 unsigned int a;
26186 unsigned int i;
26187
26188 for (i = 0; i < 32; i += 2)
26189 if (((a = rotate_left (val, i)) & 0xff) != 0)
26190 {
26191 if (a & 0xff00)
26192 {
26193 if (a & ~ 0xffff)
26194 continue;
26195 * highpart = (a >> 8) | ((i + 24) << 7);
26196 }
26197 else if (a & 0xff0000)
26198 {
26199 if (a & 0xff000000)
26200 continue;
26201 * highpart = (a >> 16) | ((i + 16) << 7);
26202 }
26203 else
26204 {
26205 gas_assert (a & 0xff000000);
26206 * highpart = (a >> 24) | ((i + 8) << 7);
26207 }
26208
26209 return (a & 0xff) | (i << 7);
26210 }
26211
26212 return FAIL;
26213 }
26214
26215 static int
26216 validate_offset_imm (unsigned int val, int hwse)
26217 {
26218 if ((hwse && val > 255) || val > 4095)
26219 return FAIL;
26220 return val;
26221 }
26222
26223 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26224 negative immediate constant by altering the instruction. A bit of
26225 a hack really.
26226 MOV <-> MVN
26227 AND <-> BIC
26228 ADC <-> SBC
26229 by inverting the second operand, and
26230 ADD <-> SUB
26231 CMP <-> CMN
26232 by negating the second operand. */
26233
26234 static int
26235 negate_data_op (unsigned long * instruction,
26236 unsigned long value)
26237 {
26238 int op, new_inst;
26239 unsigned long negated, inverted;
26240
26241 negated = encode_arm_immediate (-value);
26242 inverted = encode_arm_immediate (~value);
26243
26244 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26245 switch (op)
26246 {
26247 /* First negates. */
26248 case OPCODE_SUB: /* ADD <-> SUB */
26249 new_inst = OPCODE_ADD;
26250 value = negated;
26251 break;
26252
26253 case OPCODE_ADD:
26254 new_inst = OPCODE_SUB;
26255 value = negated;
26256 break;
26257
26258 case OPCODE_CMP: /* CMP <-> CMN */
26259 new_inst = OPCODE_CMN;
26260 value = negated;
26261 break;
26262
26263 case OPCODE_CMN:
26264 new_inst = OPCODE_CMP;
26265 value = negated;
26266 break;
26267
26268 /* Now Inverted ops. */
26269 case OPCODE_MOV: /* MOV <-> MVN */
26270 new_inst = OPCODE_MVN;
26271 value = inverted;
26272 break;
26273
26274 case OPCODE_MVN:
26275 new_inst = OPCODE_MOV;
26276 value = inverted;
26277 break;
26278
26279 case OPCODE_AND: /* AND <-> BIC */
26280 new_inst = OPCODE_BIC;
26281 value = inverted;
26282 break;
26283
26284 case OPCODE_BIC:
26285 new_inst = OPCODE_AND;
26286 value = inverted;
26287 break;
26288
26289 case OPCODE_ADC: /* ADC <-> SBC */
26290 new_inst = OPCODE_SBC;
26291 value = inverted;
26292 break;
26293
26294 case OPCODE_SBC:
26295 new_inst = OPCODE_ADC;
26296 value = inverted;
26297 break;
26298
26299 /* We cannot do anything. */
26300 default:
26301 return FAIL;
26302 }
26303
26304 if (value == (unsigned) FAIL)
26305 return FAIL;
26306
26307 *instruction &= OPCODE_MASK;
26308 *instruction |= new_inst << DATA_OP_SHIFT;
26309 return value;
26310 }
26311
26312 /* Like negate_data_op, but for Thumb-2. */
26313
26314 static unsigned int
26315 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26316 {
26317 int op, new_inst;
26318 int rd;
26319 unsigned int negated, inverted;
26320
26321 negated = encode_thumb32_immediate (-value);
26322 inverted = encode_thumb32_immediate (~value);
26323
26324 rd = (*instruction >> 8) & 0xf;
26325 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26326 switch (op)
26327 {
26328 /* ADD <-> SUB. Includes CMP <-> CMN. */
26329 case T2_OPCODE_SUB:
26330 new_inst = T2_OPCODE_ADD;
26331 value = negated;
26332 break;
26333
26334 case T2_OPCODE_ADD:
26335 new_inst = T2_OPCODE_SUB;
26336 value = negated;
26337 break;
26338
26339 /* ORR <-> ORN. Includes MOV <-> MVN. */
26340 case T2_OPCODE_ORR:
26341 new_inst = T2_OPCODE_ORN;
26342 value = inverted;
26343 break;
26344
26345 case T2_OPCODE_ORN:
26346 new_inst = T2_OPCODE_ORR;
26347 value = inverted;
26348 break;
26349
26350 /* AND <-> BIC. TST has no inverted equivalent. */
26351 case T2_OPCODE_AND:
26352 new_inst = T2_OPCODE_BIC;
26353 if (rd == 15)
26354 value = FAIL;
26355 else
26356 value = inverted;
26357 break;
26358
26359 case T2_OPCODE_BIC:
26360 new_inst = T2_OPCODE_AND;
26361 value = inverted;
26362 break;
26363
26364 /* ADC <-> SBC */
26365 case T2_OPCODE_ADC:
26366 new_inst = T2_OPCODE_SBC;
26367 value = inverted;
26368 break;
26369
26370 case T2_OPCODE_SBC:
26371 new_inst = T2_OPCODE_ADC;
26372 value = inverted;
26373 break;
26374
26375 /* We cannot do anything. */
26376 default:
26377 return FAIL;
26378 }
26379
26380 if (value == (unsigned int)FAIL)
26381 return FAIL;
26382
26383 *instruction &= T2_OPCODE_MASK;
26384 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26385 return value;
26386 }
26387
26388 /* Read a 32-bit thumb instruction from buf. */
26389
26390 static unsigned long
26391 get_thumb32_insn (char * buf)
26392 {
26393 unsigned long insn;
26394 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26395 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26396
26397 return insn;
26398 }
26399
26400 /* We usually want to set the low bit on the address of thumb function
26401 symbols. In particular .word foo - . should have the low bit set.
26402 Generic code tries to fold the difference of two symbols to
26403 a constant. Prevent this and force a relocation when the first symbols
26404 is a thumb function. */
26405
26406 bfd_boolean
26407 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26408 {
26409 if (op == O_subtract
26410 && l->X_op == O_symbol
26411 && r->X_op == O_symbol
26412 && THUMB_IS_FUNC (l->X_add_symbol))
26413 {
26414 l->X_op = O_subtract;
26415 l->X_op_symbol = r->X_add_symbol;
26416 l->X_add_number -= r->X_add_number;
26417 return TRUE;
26418 }
26419
26420 /* Process as normal. */
26421 return FALSE;
26422 }
26423
26424 /* Encode Thumb2 unconditional branches and calls. The encoding
26425 for the 2 are identical for the immediate values. */
26426
26427 static void
26428 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26429 {
26430 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26431 offsetT newval;
26432 offsetT newval2;
26433 addressT S, I1, I2, lo, hi;
26434
26435 S = (value >> 24) & 0x01;
26436 I1 = (value >> 23) & 0x01;
26437 I2 = (value >> 22) & 0x01;
26438 hi = (value >> 12) & 0x3ff;
26439 lo = (value >> 1) & 0x7ff;
26440 newval = md_chars_to_number (buf, THUMB_SIZE);
26441 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26442 newval |= (S << 10) | hi;
26443 newval2 &= ~T2I1I2MASK;
26444 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26445 md_number_to_chars (buf, newval, THUMB_SIZE);
26446 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26447 }
26448
26449 void
26450 md_apply_fix (fixS * fixP,
26451 valueT * valP,
26452 segT seg)
26453 {
26454 offsetT value = * valP;
26455 offsetT newval;
26456 unsigned int newimm;
26457 unsigned long temp;
26458 int sign;
26459 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26460
26461 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26462
26463 /* Note whether this will delete the relocation. */
26464
26465 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26466 fixP->fx_done = 1;
26467
26468 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26469 consistency with the behaviour on 32-bit hosts. Remember value
26470 for emit_reloc. */
26471 value &= 0xffffffff;
26472 value ^= 0x80000000;
26473 value -= 0x80000000;
26474
26475 *valP = value;
26476 fixP->fx_addnumber = value;
26477
26478 /* Same treatment for fixP->fx_offset. */
26479 fixP->fx_offset &= 0xffffffff;
26480 fixP->fx_offset ^= 0x80000000;
26481 fixP->fx_offset -= 0x80000000;
26482
26483 switch (fixP->fx_r_type)
26484 {
26485 case BFD_RELOC_NONE:
26486 /* This will need to go in the object file. */
26487 fixP->fx_done = 0;
26488 break;
26489
26490 case BFD_RELOC_ARM_IMMEDIATE:
26491 /* We claim that this fixup has been processed here,
26492 even if in fact we generate an error because we do
26493 not have a reloc for it, so tc_gen_reloc will reject it. */
26494 fixP->fx_done = 1;
26495
26496 if (fixP->fx_addsy)
26497 {
26498 const char *msg = 0;
26499
26500 if (! S_IS_DEFINED (fixP->fx_addsy))
26501 msg = _("undefined symbol %s used as an immediate value");
26502 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26503 msg = _("symbol %s is in a different section");
26504 else if (S_IS_WEAK (fixP->fx_addsy))
26505 msg = _("symbol %s is weak and may be overridden later");
26506
26507 if (msg)
26508 {
26509 as_bad_where (fixP->fx_file, fixP->fx_line,
26510 msg, S_GET_NAME (fixP->fx_addsy));
26511 break;
26512 }
26513 }
26514
26515 temp = md_chars_to_number (buf, INSN_SIZE);
26516
26517 /* If the offset is negative, we should use encoding A2 for ADR. */
26518 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26519 newimm = negate_data_op (&temp, value);
26520 else
26521 {
26522 newimm = encode_arm_immediate (value);
26523
26524 /* If the instruction will fail, see if we can fix things up by
26525 changing the opcode. */
26526 if (newimm == (unsigned int) FAIL)
26527 newimm = negate_data_op (&temp, value);
26528 /* MOV accepts both ARM modified immediate (A1 encoding) and
26529 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26530 When disassembling, MOV is preferred when there is no encoding
26531 overlap. */
26532 if (newimm == (unsigned int) FAIL
26533 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26534 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26535 && !((temp >> SBIT_SHIFT) & 0x1)
26536 && value >= 0 && value <= 0xffff)
26537 {
26538 /* Clear bits[23:20] to change encoding from A1 to A2. */
26539 temp &= 0xff0fffff;
26540 /* Encoding high 4bits imm. Code below will encode the remaining
26541 low 12bits. */
26542 temp |= (value & 0x0000f000) << 4;
26543 newimm = value & 0x00000fff;
26544 }
26545 }
26546
26547 if (newimm == (unsigned int) FAIL)
26548 {
26549 as_bad_where (fixP->fx_file, fixP->fx_line,
26550 _("invalid constant (%lx) after fixup"),
26551 (unsigned long) value);
26552 break;
26553 }
26554
26555 newimm |= (temp & 0xfffff000);
26556 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26557 break;
26558
26559 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26560 {
26561 unsigned int highpart = 0;
26562 unsigned int newinsn = 0xe1a00000; /* nop. */
26563
26564 if (fixP->fx_addsy)
26565 {
26566 const char *msg = 0;
26567
26568 if (! S_IS_DEFINED (fixP->fx_addsy))
26569 msg = _("undefined symbol %s used as an immediate value");
26570 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26571 msg = _("symbol %s is in a different section");
26572 else if (S_IS_WEAK (fixP->fx_addsy))
26573 msg = _("symbol %s is weak and may be overridden later");
26574
26575 if (msg)
26576 {
26577 as_bad_where (fixP->fx_file, fixP->fx_line,
26578 msg, S_GET_NAME (fixP->fx_addsy));
26579 break;
26580 }
26581 }
26582
26583 newimm = encode_arm_immediate (value);
26584 temp = md_chars_to_number (buf, INSN_SIZE);
26585
26586 /* If the instruction will fail, see if we can fix things up by
26587 changing the opcode. */
26588 if (newimm == (unsigned int) FAIL
26589 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26590 {
26591 /* No ? OK - try using two ADD instructions to generate
26592 the value. */
26593 newimm = validate_immediate_twopart (value, & highpart);
26594
26595 /* Yes - then make sure that the second instruction is
26596 also an add. */
26597 if (newimm != (unsigned int) FAIL)
26598 newinsn = temp;
26599 /* Still No ? Try using a negated value. */
26600 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26601 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26602 /* Otherwise - give up. */
26603 else
26604 {
26605 as_bad_where (fixP->fx_file, fixP->fx_line,
26606 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26607 (long) value);
26608 break;
26609 }
26610
26611 /* Replace the first operand in the 2nd instruction (which
26612 is the PC) with the destination register. We have
26613 already added in the PC in the first instruction and we
26614 do not want to do it again. */
26615 newinsn &= ~ 0xf0000;
26616 newinsn |= ((newinsn & 0x0f000) << 4);
26617 }
26618
26619 newimm |= (temp & 0xfffff000);
26620 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26621
26622 highpart |= (newinsn & 0xfffff000);
26623 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26624 }
26625 break;
26626
26627 case BFD_RELOC_ARM_OFFSET_IMM:
26628 if (!fixP->fx_done && seg->use_rela_p)
26629 value = 0;
26630 /* Fall through. */
26631
26632 case BFD_RELOC_ARM_LITERAL:
26633 sign = value > 0;
26634
26635 if (value < 0)
26636 value = - value;
26637
26638 if (validate_offset_imm (value, 0) == FAIL)
26639 {
26640 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26641 as_bad_where (fixP->fx_file, fixP->fx_line,
26642 _("invalid literal constant: pool needs to be closer"));
26643 else
26644 as_bad_where (fixP->fx_file, fixP->fx_line,
26645 _("bad immediate value for offset (%ld)"),
26646 (long) value);
26647 break;
26648 }
26649
26650 newval = md_chars_to_number (buf, INSN_SIZE);
26651 if (value == 0)
26652 newval &= 0xfffff000;
26653 else
26654 {
26655 newval &= 0xff7ff000;
26656 newval |= value | (sign ? INDEX_UP : 0);
26657 }
26658 md_number_to_chars (buf, newval, INSN_SIZE);
26659 break;
26660
26661 case BFD_RELOC_ARM_OFFSET_IMM8:
26662 case BFD_RELOC_ARM_HWLITERAL:
26663 sign = value > 0;
26664
26665 if (value < 0)
26666 value = - value;
26667
26668 if (validate_offset_imm (value, 1) == FAIL)
26669 {
26670 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26671 as_bad_where (fixP->fx_file, fixP->fx_line,
26672 _("invalid literal constant: pool needs to be closer"));
26673 else
26674 as_bad_where (fixP->fx_file, fixP->fx_line,
26675 _("bad immediate value for 8-bit offset (%ld)"),
26676 (long) value);
26677 break;
26678 }
26679
26680 newval = md_chars_to_number (buf, INSN_SIZE);
26681 if (value == 0)
26682 newval &= 0xfffff0f0;
26683 else
26684 {
26685 newval &= 0xff7ff0f0;
26686 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26687 }
26688 md_number_to_chars (buf, newval, INSN_SIZE);
26689 break;
26690
26691 case BFD_RELOC_ARM_T32_OFFSET_U8:
26692 if (value < 0 || value > 1020 || value % 4 != 0)
26693 as_bad_where (fixP->fx_file, fixP->fx_line,
26694 _("bad immediate value for offset (%ld)"), (long) value);
26695 value /= 4;
26696
26697 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26698 newval |= value;
26699 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26700 break;
26701
26702 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26703 /* This is a complicated relocation used for all varieties of Thumb32
26704 load/store instruction with immediate offset:
26705
26706 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26707 *4, optional writeback(W)
26708 (doubleword load/store)
26709
26710 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26711 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26712 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26713 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26714 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26715
26716 Uppercase letters indicate bits that are already encoded at
26717 this point. Lowercase letters are our problem. For the
26718 second block of instructions, the secondary opcode nybble
26719 (bits 8..11) is present, and bit 23 is zero, even if this is
26720 a PC-relative operation. */
26721 newval = md_chars_to_number (buf, THUMB_SIZE);
26722 newval <<= 16;
26723 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26724
26725 if ((newval & 0xf0000000) == 0xe0000000)
26726 {
26727 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26728 if (value >= 0)
26729 newval |= (1 << 23);
26730 else
26731 value = -value;
26732 if (value % 4 != 0)
26733 {
26734 as_bad_where (fixP->fx_file, fixP->fx_line,
26735 _("offset not a multiple of 4"));
26736 break;
26737 }
26738 value /= 4;
26739 if (value > 0xff)
26740 {
26741 as_bad_where (fixP->fx_file, fixP->fx_line,
26742 _("offset out of range"));
26743 break;
26744 }
26745 newval &= ~0xff;
26746 }
26747 else if ((newval & 0x000f0000) == 0x000f0000)
26748 {
26749 /* PC-relative, 12-bit offset. */
26750 if (value >= 0)
26751 newval |= (1 << 23);
26752 else
26753 value = -value;
26754 if (value > 0xfff)
26755 {
26756 as_bad_where (fixP->fx_file, fixP->fx_line,
26757 _("offset out of range"));
26758 break;
26759 }
26760 newval &= ~0xfff;
26761 }
26762 else if ((newval & 0x00000100) == 0x00000100)
26763 {
26764 /* Writeback: 8-bit, +/- offset. */
26765 if (value >= 0)
26766 newval |= (1 << 9);
26767 else
26768 value = -value;
26769 if (value > 0xff)
26770 {
26771 as_bad_where (fixP->fx_file, fixP->fx_line,
26772 _("offset out of range"));
26773 break;
26774 }
26775 newval &= ~0xff;
26776 }
26777 else if ((newval & 0x00000f00) == 0x00000e00)
26778 {
26779 /* T-instruction: positive 8-bit offset. */
26780 if (value < 0 || value > 0xff)
26781 {
26782 as_bad_where (fixP->fx_file, fixP->fx_line,
26783 _("offset out of range"));
26784 break;
26785 }
26786 newval &= ~0xff;
26787 newval |= value;
26788 }
26789 else
26790 {
26791 /* Positive 12-bit or negative 8-bit offset. */
26792 int limit;
26793 if (value >= 0)
26794 {
26795 newval |= (1 << 23);
26796 limit = 0xfff;
26797 }
26798 else
26799 {
26800 value = -value;
26801 limit = 0xff;
26802 }
26803 if (value > limit)
26804 {
26805 as_bad_where (fixP->fx_file, fixP->fx_line,
26806 _("offset out of range"));
26807 break;
26808 }
26809 newval &= ~limit;
26810 }
26811
26812 newval |= value;
26813 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26814 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26815 break;
26816
26817 case BFD_RELOC_ARM_SHIFT_IMM:
26818 newval = md_chars_to_number (buf, INSN_SIZE);
26819 if (((unsigned long) value) > 32
26820 || (value == 32
26821 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26822 {
26823 as_bad_where (fixP->fx_file, fixP->fx_line,
26824 _("shift expression is too large"));
26825 break;
26826 }
26827
26828 if (value == 0)
26829 /* Shifts of zero must be done as lsl. */
26830 newval &= ~0x60;
26831 else if (value == 32)
26832 value = 0;
26833 newval &= 0xfffff07f;
26834 newval |= (value & 0x1f) << 7;
26835 md_number_to_chars (buf, newval, INSN_SIZE);
26836 break;
26837
26838 case BFD_RELOC_ARM_T32_IMMEDIATE:
26839 case BFD_RELOC_ARM_T32_ADD_IMM:
26840 case BFD_RELOC_ARM_T32_IMM12:
26841 case BFD_RELOC_ARM_T32_ADD_PC12:
26842 /* We claim that this fixup has been processed here,
26843 even if in fact we generate an error because we do
26844 not have a reloc for it, so tc_gen_reloc will reject it. */
26845 fixP->fx_done = 1;
26846
26847 if (fixP->fx_addsy
26848 && ! S_IS_DEFINED (fixP->fx_addsy))
26849 {
26850 as_bad_where (fixP->fx_file, fixP->fx_line,
26851 _("undefined symbol %s used as an immediate value"),
26852 S_GET_NAME (fixP->fx_addsy));
26853 break;
26854 }
26855
26856 newval = md_chars_to_number (buf, THUMB_SIZE);
26857 newval <<= 16;
26858 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26859
26860 newimm = FAIL;
26861 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26862 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26863 Thumb2 modified immediate encoding (T2). */
26864 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26865 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26866 {
26867 newimm = encode_thumb32_immediate (value);
26868 if (newimm == (unsigned int) FAIL)
26869 newimm = thumb32_negate_data_op (&newval, value);
26870 }
26871 if (newimm == (unsigned int) FAIL)
26872 {
26873 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26874 {
26875 /* Turn add/sum into addw/subw. */
26876 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26877 newval = (newval & 0xfeffffff) | 0x02000000;
26878 /* No flat 12-bit imm encoding for addsw/subsw. */
26879 if ((newval & 0x00100000) == 0)
26880 {
26881 /* 12 bit immediate for addw/subw. */
26882 if (value < 0)
26883 {
26884 value = -value;
26885 newval ^= 0x00a00000;
26886 }
26887 if (value > 0xfff)
26888 newimm = (unsigned int) FAIL;
26889 else
26890 newimm = value;
26891 }
26892 }
26893 else
26894 {
26895 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26896 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26897 disassembling, MOV is preferred when there is no encoding
26898 overlap. */
26899 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26900 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26901 but with the Rn field [19:16] set to 1111. */
26902 && (((newval >> 16) & 0xf) == 0xf)
26903 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26904 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26905 && value >= 0 && value <= 0xffff)
26906 {
26907 /* Toggle bit[25] to change encoding from T2 to T3. */
26908 newval ^= 1 << 25;
26909 /* Clear bits[19:16]. */
26910 newval &= 0xfff0ffff;
26911 /* Encoding high 4bits imm. Code below will encode the
26912 remaining low 12bits. */
26913 newval |= (value & 0x0000f000) << 4;
26914 newimm = value & 0x00000fff;
26915 }
26916 }
26917 }
26918
26919 if (newimm == (unsigned int)FAIL)
26920 {
26921 as_bad_where (fixP->fx_file, fixP->fx_line,
26922 _("invalid constant (%lx) after fixup"),
26923 (unsigned long) value);
26924 break;
26925 }
26926
26927 newval |= (newimm & 0x800) << 15;
26928 newval |= (newimm & 0x700) << 4;
26929 newval |= (newimm & 0x0ff);
26930
26931 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26932 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26933 break;
26934
26935 case BFD_RELOC_ARM_SMC:
26936 if (((unsigned long) value) > 0xffff)
26937 as_bad_where (fixP->fx_file, fixP->fx_line,
26938 _("invalid smc expression"));
26939 newval = md_chars_to_number (buf, INSN_SIZE);
26940 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26941 md_number_to_chars (buf, newval, INSN_SIZE);
26942 break;
26943
26944 case BFD_RELOC_ARM_HVC:
26945 if (((unsigned long) value) > 0xffff)
26946 as_bad_where (fixP->fx_file, fixP->fx_line,
26947 _("invalid hvc expression"));
26948 newval = md_chars_to_number (buf, INSN_SIZE);
26949 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26950 md_number_to_chars (buf, newval, INSN_SIZE);
26951 break;
26952
26953 case BFD_RELOC_ARM_SWI:
26954 if (fixP->tc_fix_data != 0)
26955 {
26956 if (((unsigned long) value) > 0xff)
26957 as_bad_where (fixP->fx_file, fixP->fx_line,
26958 _("invalid swi expression"));
26959 newval = md_chars_to_number (buf, THUMB_SIZE);
26960 newval |= value;
26961 md_number_to_chars (buf, newval, THUMB_SIZE);
26962 }
26963 else
26964 {
26965 if (((unsigned long) value) > 0x00ffffff)
26966 as_bad_where (fixP->fx_file, fixP->fx_line,
26967 _("invalid swi expression"));
26968 newval = md_chars_to_number (buf, INSN_SIZE);
26969 newval |= value;
26970 md_number_to_chars (buf, newval, INSN_SIZE);
26971 }
26972 break;
26973
26974 case BFD_RELOC_ARM_MULTI:
26975 if (((unsigned long) value) > 0xffff)
26976 as_bad_where (fixP->fx_file, fixP->fx_line,
26977 _("invalid expression in load/store multiple"));
26978 newval = value | md_chars_to_number (buf, INSN_SIZE);
26979 md_number_to_chars (buf, newval, INSN_SIZE);
26980 break;
26981
26982 #ifdef OBJ_ELF
26983 case BFD_RELOC_ARM_PCREL_CALL:
26984
26985 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26986 && fixP->fx_addsy
26987 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26988 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26989 && THUMB_IS_FUNC (fixP->fx_addsy))
26990 /* Flip the bl to blx. This is a simple flip
26991 bit here because we generate PCREL_CALL for
26992 unconditional bls. */
26993 {
26994 newval = md_chars_to_number (buf, INSN_SIZE);
26995 newval = newval | 0x10000000;
26996 md_number_to_chars (buf, newval, INSN_SIZE);
26997 temp = 1;
26998 fixP->fx_done = 1;
26999 }
27000 else
27001 temp = 3;
27002 goto arm_branch_common;
27003
27004 case BFD_RELOC_ARM_PCREL_JUMP:
27005 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27006 && fixP->fx_addsy
27007 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27008 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27009 && THUMB_IS_FUNC (fixP->fx_addsy))
27010 {
27011 /* This would map to a bl<cond>, b<cond>,
27012 b<always> to a Thumb function. We
27013 need to force a relocation for this particular
27014 case. */
27015 newval = md_chars_to_number (buf, INSN_SIZE);
27016 fixP->fx_done = 0;
27017 }
27018 /* Fall through. */
27019
27020 case BFD_RELOC_ARM_PLT32:
27021 #endif
27022 case BFD_RELOC_ARM_PCREL_BRANCH:
27023 temp = 3;
27024 goto arm_branch_common;
27025
27026 case BFD_RELOC_ARM_PCREL_BLX:
27027
27028 temp = 1;
27029 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27030 && fixP->fx_addsy
27031 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27032 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27033 && ARM_IS_FUNC (fixP->fx_addsy))
27034 {
27035 /* Flip the blx to a bl and warn. */
27036 const char *name = S_GET_NAME (fixP->fx_addsy);
27037 newval = 0xeb000000;
27038 as_warn_where (fixP->fx_file, fixP->fx_line,
27039 _("blx to '%s' an ARM ISA state function changed to bl"),
27040 name);
27041 md_number_to_chars (buf, newval, INSN_SIZE);
27042 temp = 3;
27043 fixP->fx_done = 1;
27044 }
27045
27046 #ifdef OBJ_ELF
27047 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27048 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27049 #endif
27050
27051 arm_branch_common:
27052 /* We are going to store value (shifted right by two) in the
27053 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27054 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27055 also be clear. */
27056 if (value & temp)
27057 as_bad_where (fixP->fx_file, fixP->fx_line,
27058 _("misaligned branch destination"));
27059 if ((value & (offsetT)0xfe000000) != (offsetT)0
27060 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27061 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27062
27063 if (fixP->fx_done || !seg->use_rela_p)
27064 {
27065 newval = md_chars_to_number (buf, INSN_SIZE);
27066 newval |= (value >> 2) & 0x00ffffff;
27067 /* Set the H bit on BLX instructions. */
27068 if (temp == 1)
27069 {
27070 if (value & 2)
27071 newval |= 0x01000000;
27072 else
27073 newval &= ~0x01000000;
27074 }
27075 md_number_to_chars (buf, newval, INSN_SIZE);
27076 }
27077 break;
27078
27079 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27080 /* CBZ can only branch forward. */
27081
27082 /* Attempts to use CBZ to branch to the next instruction
27083 (which, strictly speaking, are prohibited) will be turned into
27084 no-ops.
27085
27086 FIXME: It may be better to remove the instruction completely and
27087 perform relaxation. */
27088 if (value == -2)
27089 {
27090 newval = md_chars_to_number (buf, THUMB_SIZE);
27091 newval = 0xbf00; /* NOP encoding T1 */
27092 md_number_to_chars (buf, newval, THUMB_SIZE);
27093 }
27094 else
27095 {
27096 if (value & ~0x7e)
27097 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27098
27099 if (fixP->fx_done || !seg->use_rela_p)
27100 {
27101 newval = md_chars_to_number (buf, THUMB_SIZE);
27102 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27103 md_number_to_chars (buf, newval, THUMB_SIZE);
27104 }
27105 }
27106 break;
27107
27108 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27109 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27110 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27111
27112 if (fixP->fx_done || !seg->use_rela_p)
27113 {
27114 newval = md_chars_to_number (buf, THUMB_SIZE);
27115 newval |= (value & 0x1ff) >> 1;
27116 md_number_to_chars (buf, newval, THUMB_SIZE);
27117 }
27118 break;
27119
27120 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27121 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27122 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27123
27124 if (fixP->fx_done || !seg->use_rela_p)
27125 {
27126 newval = md_chars_to_number (buf, THUMB_SIZE);
27127 newval |= (value & 0xfff) >> 1;
27128 md_number_to_chars (buf, newval, THUMB_SIZE);
27129 }
27130 break;
27131
27132 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27133 if (fixP->fx_addsy
27134 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27135 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27136 && ARM_IS_FUNC (fixP->fx_addsy)
27137 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27138 {
27139 /* Force a relocation for a branch 20 bits wide. */
27140 fixP->fx_done = 0;
27141 }
27142 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27143 as_bad_where (fixP->fx_file, fixP->fx_line,
27144 _("conditional branch out of range"));
27145
27146 if (fixP->fx_done || !seg->use_rela_p)
27147 {
27148 offsetT newval2;
27149 addressT S, J1, J2, lo, hi;
27150
27151 S = (value & 0x00100000) >> 20;
27152 J2 = (value & 0x00080000) >> 19;
27153 J1 = (value & 0x00040000) >> 18;
27154 hi = (value & 0x0003f000) >> 12;
27155 lo = (value & 0x00000ffe) >> 1;
27156
27157 newval = md_chars_to_number (buf, THUMB_SIZE);
27158 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27159 newval |= (S << 10) | hi;
27160 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27161 md_number_to_chars (buf, newval, THUMB_SIZE);
27162 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27163 }
27164 break;
27165
27166 case BFD_RELOC_THUMB_PCREL_BLX:
27167 /* If there is a blx from a thumb state function to
27168 another thumb function flip this to a bl and warn
27169 about it. */
27170
27171 if (fixP->fx_addsy
27172 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27173 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27174 && THUMB_IS_FUNC (fixP->fx_addsy))
27175 {
27176 const char *name = S_GET_NAME (fixP->fx_addsy);
27177 as_warn_where (fixP->fx_file, fixP->fx_line,
27178 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27179 name);
27180 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27181 newval = newval | 0x1000;
27182 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27183 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27184 fixP->fx_done = 1;
27185 }
27186
27187
27188 goto thumb_bl_common;
27189
27190 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27191 /* A bl from Thumb state ISA to an internal ARM state function
27192 is converted to a blx. */
27193 if (fixP->fx_addsy
27194 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27195 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27196 && ARM_IS_FUNC (fixP->fx_addsy)
27197 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27198 {
27199 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27200 newval = newval & ~0x1000;
27201 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27202 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27203 fixP->fx_done = 1;
27204 }
27205
27206 thumb_bl_common:
27207
27208 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27209 /* For a BLX instruction, make sure that the relocation is rounded up
27210 to a word boundary. This follows the semantics of the instruction
27211 which specifies that bit 1 of the target address will come from bit
27212 1 of the base address. */
27213 value = (value + 3) & ~ 3;
27214
27215 #ifdef OBJ_ELF
27216 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27217 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27218 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27219 #endif
27220
27221 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27222 {
27223 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27224 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27225 else if ((value & ~0x1ffffff)
27226 && ((value & ~0x1ffffff) != ~0x1ffffff))
27227 as_bad_where (fixP->fx_file, fixP->fx_line,
27228 _("Thumb2 branch out of range"));
27229 }
27230
27231 if (fixP->fx_done || !seg->use_rela_p)
27232 encode_thumb2_b_bl_offset (buf, value);
27233
27234 break;
27235
27236 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27237 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27238 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27239
27240 if (fixP->fx_done || !seg->use_rela_p)
27241 encode_thumb2_b_bl_offset (buf, value);
27242
27243 break;
27244
27245 case BFD_RELOC_8:
27246 if (fixP->fx_done || !seg->use_rela_p)
27247 *buf = value;
27248 break;
27249
27250 case BFD_RELOC_16:
27251 if (fixP->fx_done || !seg->use_rela_p)
27252 md_number_to_chars (buf, value, 2);
27253 break;
27254
27255 #ifdef OBJ_ELF
27256 case BFD_RELOC_ARM_TLS_CALL:
27257 case BFD_RELOC_ARM_THM_TLS_CALL:
27258 case BFD_RELOC_ARM_TLS_DESCSEQ:
27259 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27260 case BFD_RELOC_ARM_TLS_GOTDESC:
27261 case BFD_RELOC_ARM_TLS_GD32:
27262 case BFD_RELOC_ARM_TLS_LE32:
27263 case BFD_RELOC_ARM_TLS_IE32:
27264 case BFD_RELOC_ARM_TLS_LDM32:
27265 case BFD_RELOC_ARM_TLS_LDO32:
27266 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27267 break;
27268
27269 /* Same handling as above, but with the arm_fdpic guard. */
27270 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27271 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27272 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27273 if (arm_fdpic)
27274 {
27275 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27276 }
27277 else
27278 {
27279 as_bad_where (fixP->fx_file, fixP->fx_line,
27280 _("Relocation supported only in FDPIC mode"));
27281 }
27282 break;
27283
27284 case BFD_RELOC_ARM_GOT32:
27285 case BFD_RELOC_ARM_GOTOFF:
27286 break;
27287
27288 case BFD_RELOC_ARM_GOT_PREL:
27289 if (fixP->fx_done || !seg->use_rela_p)
27290 md_number_to_chars (buf, value, 4);
27291 break;
27292
27293 case BFD_RELOC_ARM_TARGET2:
27294 /* TARGET2 is not partial-inplace, so we need to write the
27295 addend here for REL targets, because it won't be written out
27296 during reloc processing later. */
27297 if (fixP->fx_done || !seg->use_rela_p)
27298 md_number_to_chars (buf, fixP->fx_offset, 4);
27299 break;
27300
27301 /* Relocations for FDPIC. */
27302 case BFD_RELOC_ARM_GOTFUNCDESC:
27303 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27304 case BFD_RELOC_ARM_FUNCDESC:
27305 if (arm_fdpic)
27306 {
27307 if (fixP->fx_done || !seg->use_rela_p)
27308 md_number_to_chars (buf, 0, 4);
27309 }
27310 else
27311 {
27312 as_bad_where (fixP->fx_file, fixP->fx_line,
27313 _("Relocation supported only in FDPIC mode"));
27314 }
27315 break;
27316 #endif
27317
27318 case BFD_RELOC_RVA:
27319 case BFD_RELOC_32:
27320 case BFD_RELOC_ARM_TARGET1:
27321 case BFD_RELOC_ARM_ROSEGREL32:
27322 case BFD_RELOC_ARM_SBREL32:
27323 case BFD_RELOC_32_PCREL:
27324 #ifdef TE_PE
27325 case BFD_RELOC_32_SECREL:
27326 #endif
27327 if (fixP->fx_done || !seg->use_rela_p)
27328 #ifdef TE_WINCE
27329 /* For WinCE we only do this for pcrel fixups. */
27330 if (fixP->fx_done || fixP->fx_pcrel)
27331 #endif
27332 md_number_to_chars (buf, value, 4);
27333 break;
27334
27335 #ifdef OBJ_ELF
27336 case BFD_RELOC_ARM_PREL31:
27337 if (fixP->fx_done || !seg->use_rela_p)
27338 {
27339 newval = md_chars_to_number (buf, 4) & 0x80000000;
27340 if ((value ^ (value >> 1)) & 0x40000000)
27341 {
27342 as_bad_where (fixP->fx_file, fixP->fx_line,
27343 _("rel31 relocation overflow"));
27344 }
27345 newval |= value & 0x7fffffff;
27346 md_number_to_chars (buf, newval, 4);
27347 }
27348 break;
27349 #endif
27350
27351 case BFD_RELOC_ARM_CP_OFF_IMM:
27352 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27353 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27354 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27355 newval = md_chars_to_number (buf, INSN_SIZE);
27356 else
27357 newval = get_thumb32_insn (buf);
27358 if ((newval & 0x0f200f00) == 0x0d000900)
27359 {
27360 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27361 has permitted values that are multiples of 2, in the range 0
27362 to 510. */
27363 if (value < -510 || value > 510 || (value & 1))
27364 as_bad_where (fixP->fx_file, fixP->fx_line,
27365 _("co-processor offset out of range"));
27366 }
27367 else if ((newval & 0xfe001f80) == 0xec000f80)
27368 {
27369 if (value < -511 || value > 512 || (value & 3))
27370 as_bad_where (fixP->fx_file, fixP->fx_line,
27371 _("co-processor offset out of range"));
27372 }
27373 else if (value < -1023 || value > 1023 || (value & 3))
27374 as_bad_where (fixP->fx_file, fixP->fx_line,
27375 _("co-processor offset out of range"));
27376 cp_off_common:
27377 sign = value > 0;
27378 if (value < 0)
27379 value = -value;
27380 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27381 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27382 newval = md_chars_to_number (buf, INSN_SIZE);
27383 else
27384 newval = get_thumb32_insn (buf);
27385 if (value == 0)
27386 {
27387 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27388 newval &= 0xffffff80;
27389 else
27390 newval &= 0xffffff00;
27391 }
27392 else
27393 {
27394 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27395 newval &= 0xff7fff80;
27396 else
27397 newval &= 0xff7fff00;
27398 if ((newval & 0x0f200f00) == 0x0d000900)
27399 {
27400 /* This is a fp16 vstr/vldr.
27401
27402 It requires the immediate offset in the instruction is shifted
27403 left by 1 to be a half-word offset.
27404
27405 Here, left shift by 1 first, and later right shift by 2
27406 should get the right offset. */
27407 value <<= 1;
27408 }
27409 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27410 }
27411 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27412 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27413 md_number_to_chars (buf, newval, INSN_SIZE);
27414 else
27415 put_thumb32_insn (buf, newval);
27416 break;
27417
27418 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27419 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27420 if (value < -255 || value > 255)
27421 as_bad_where (fixP->fx_file, fixP->fx_line,
27422 _("co-processor offset out of range"));
27423 value *= 4;
27424 goto cp_off_common;
27425
27426 case BFD_RELOC_ARM_THUMB_OFFSET:
27427 newval = md_chars_to_number (buf, THUMB_SIZE);
27428 /* Exactly what ranges, and where the offset is inserted depends
27429 on the type of instruction, we can establish this from the
27430 top 4 bits. */
27431 switch (newval >> 12)
27432 {
27433 case 4: /* PC load. */
27434 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27435 forced to zero for these loads; md_pcrel_from has already
27436 compensated for this. */
27437 if (value & 3)
27438 as_bad_where (fixP->fx_file, fixP->fx_line,
27439 _("invalid offset, target not word aligned (0x%08lX)"),
27440 (((unsigned long) fixP->fx_frag->fr_address
27441 + (unsigned long) fixP->fx_where) & ~3)
27442 + (unsigned long) value);
27443
27444 if (value & ~0x3fc)
27445 as_bad_where (fixP->fx_file, fixP->fx_line,
27446 _("invalid offset, value too big (0x%08lX)"),
27447 (long) value);
27448
27449 newval |= value >> 2;
27450 break;
27451
27452 case 9: /* SP load/store. */
27453 if (value & ~0x3fc)
27454 as_bad_where (fixP->fx_file, fixP->fx_line,
27455 _("invalid offset, value too big (0x%08lX)"),
27456 (long) value);
27457 newval |= value >> 2;
27458 break;
27459
27460 case 6: /* Word load/store. */
27461 if (value & ~0x7c)
27462 as_bad_where (fixP->fx_file, fixP->fx_line,
27463 _("invalid offset, value too big (0x%08lX)"),
27464 (long) value);
27465 newval |= value << 4; /* 6 - 2. */
27466 break;
27467
27468 case 7: /* Byte load/store. */
27469 if (value & ~0x1f)
27470 as_bad_where (fixP->fx_file, fixP->fx_line,
27471 _("invalid offset, value too big (0x%08lX)"),
27472 (long) value);
27473 newval |= value << 6;
27474 break;
27475
27476 case 8: /* Halfword load/store. */
27477 if (value & ~0x3e)
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 _("invalid offset, value too big (0x%08lX)"),
27480 (long) value);
27481 newval |= value << 5; /* 6 - 1. */
27482 break;
27483
27484 default:
27485 as_bad_where (fixP->fx_file, fixP->fx_line,
27486 "Unable to process relocation for thumb opcode: %lx",
27487 (unsigned long) newval);
27488 break;
27489 }
27490 md_number_to_chars (buf, newval, THUMB_SIZE);
27491 break;
27492
27493 case BFD_RELOC_ARM_THUMB_ADD:
27494 /* This is a complicated relocation, since we use it for all of
27495 the following immediate relocations:
27496
27497 3bit ADD/SUB
27498 8bit ADD/SUB
27499 9bit ADD/SUB SP word-aligned
27500 10bit ADD PC/SP word-aligned
27501
27502 The type of instruction being processed is encoded in the
27503 instruction field:
27504
27505 0x8000 SUB
27506 0x00F0 Rd
27507 0x000F Rs
27508 */
27509 newval = md_chars_to_number (buf, THUMB_SIZE);
27510 {
27511 int rd = (newval >> 4) & 0xf;
27512 int rs = newval & 0xf;
27513 int subtract = !!(newval & 0x8000);
27514
27515 /* Check for HI regs, only very restricted cases allowed:
27516 Adjusting SP, and using PC or SP to get an address. */
27517 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27518 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27519 as_bad_where (fixP->fx_file, fixP->fx_line,
27520 _("invalid Hi register with immediate"));
27521
27522 /* If value is negative, choose the opposite instruction. */
27523 if (value < 0)
27524 {
27525 value = -value;
27526 subtract = !subtract;
27527 if (value < 0)
27528 as_bad_where (fixP->fx_file, fixP->fx_line,
27529 _("immediate value out of range"));
27530 }
27531
27532 if (rd == REG_SP)
27533 {
27534 if (value & ~0x1fc)
27535 as_bad_where (fixP->fx_file, fixP->fx_line,
27536 _("invalid immediate for stack address calculation"));
27537 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27538 newval |= value >> 2;
27539 }
27540 else if (rs == REG_PC || rs == REG_SP)
27541 {
27542 /* PR gas/18541. If the addition is for a defined symbol
27543 within range of an ADR instruction then accept it. */
27544 if (subtract
27545 && value == 4
27546 && fixP->fx_addsy != NULL)
27547 {
27548 subtract = 0;
27549
27550 if (! S_IS_DEFINED (fixP->fx_addsy)
27551 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27552 || S_IS_WEAK (fixP->fx_addsy))
27553 {
27554 as_bad_where (fixP->fx_file, fixP->fx_line,
27555 _("address calculation needs a strongly defined nearby symbol"));
27556 }
27557 else
27558 {
27559 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27560
27561 /* Round up to the next 4-byte boundary. */
27562 if (v & 3)
27563 v = (v + 3) & ~ 3;
27564 else
27565 v += 4;
27566 v = S_GET_VALUE (fixP->fx_addsy) - v;
27567
27568 if (v & ~0x3fc)
27569 {
27570 as_bad_where (fixP->fx_file, fixP->fx_line,
27571 _("symbol too far away"));
27572 }
27573 else
27574 {
27575 fixP->fx_done = 1;
27576 value = v;
27577 }
27578 }
27579 }
27580
27581 if (subtract || value & ~0x3fc)
27582 as_bad_where (fixP->fx_file, fixP->fx_line,
27583 _("invalid immediate for address calculation (value = 0x%08lX)"),
27584 (unsigned long) (subtract ? - value : value));
27585 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27586 newval |= rd << 8;
27587 newval |= value >> 2;
27588 }
27589 else if (rs == rd)
27590 {
27591 if (value & ~0xff)
27592 as_bad_where (fixP->fx_file, fixP->fx_line,
27593 _("immediate value out of range"));
27594 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27595 newval |= (rd << 8) | value;
27596 }
27597 else
27598 {
27599 if (value & ~0x7)
27600 as_bad_where (fixP->fx_file, fixP->fx_line,
27601 _("immediate value out of range"));
27602 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27603 newval |= rd | (rs << 3) | (value << 6);
27604 }
27605 }
27606 md_number_to_chars (buf, newval, THUMB_SIZE);
27607 break;
27608
27609 case BFD_RELOC_ARM_THUMB_IMM:
27610 newval = md_chars_to_number (buf, THUMB_SIZE);
27611 if (value < 0 || value > 255)
27612 as_bad_where (fixP->fx_file, fixP->fx_line,
27613 _("invalid immediate: %ld is out of range"),
27614 (long) value);
27615 newval |= value;
27616 md_number_to_chars (buf, newval, THUMB_SIZE);
27617 break;
27618
27619 case BFD_RELOC_ARM_THUMB_SHIFT:
27620 /* 5bit shift value (0..32). LSL cannot take 32. */
27621 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27622 temp = newval & 0xf800;
27623 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27624 as_bad_where (fixP->fx_file, fixP->fx_line,
27625 _("invalid shift value: %ld"), (long) value);
27626 /* Shifts of zero must be encoded as LSL. */
27627 if (value == 0)
27628 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27629 /* Shifts of 32 are encoded as zero. */
27630 else if (value == 32)
27631 value = 0;
27632 newval |= value << 6;
27633 md_number_to_chars (buf, newval, THUMB_SIZE);
27634 break;
27635
27636 case BFD_RELOC_VTABLE_INHERIT:
27637 case BFD_RELOC_VTABLE_ENTRY:
27638 fixP->fx_done = 0;
27639 return;
27640
27641 case BFD_RELOC_ARM_MOVW:
27642 case BFD_RELOC_ARM_MOVT:
27643 case BFD_RELOC_ARM_THUMB_MOVW:
27644 case BFD_RELOC_ARM_THUMB_MOVT:
27645 if (fixP->fx_done || !seg->use_rela_p)
27646 {
27647 /* REL format relocations are limited to a 16-bit addend. */
27648 if (!fixP->fx_done)
27649 {
27650 if (value < -0x8000 || value > 0x7fff)
27651 as_bad_where (fixP->fx_file, fixP->fx_line,
27652 _("offset out of range"));
27653 }
27654 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27655 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27656 {
27657 value >>= 16;
27658 }
27659
27660 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27661 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27662 {
27663 newval = get_thumb32_insn (buf);
27664 newval &= 0xfbf08f00;
27665 newval |= (value & 0xf000) << 4;
27666 newval |= (value & 0x0800) << 15;
27667 newval |= (value & 0x0700) << 4;
27668 newval |= (value & 0x00ff);
27669 put_thumb32_insn (buf, newval);
27670 }
27671 else
27672 {
27673 newval = md_chars_to_number (buf, 4);
27674 newval &= 0xfff0f000;
27675 newval |= value & 0x0fff;
27676 newval |= (value & 0xf000) << 4;
27677 md_number_to_chars (buf, newval, 4);
27678 }
27679 }
27680 return;
27681
27682 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27683 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27684 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27685 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27686 gas_assert (!fixP->fx_done);
27687 {
27688 bfd_vma insn;
27689 bfd_boolean is_mov;
27690 bfd_vma encoded_addend = value;
27691
27692 /* Check that addend can be encoded in instruction. */
27693 if (!seg->use_rela_p && (value < 0 || value > 255))
27694 as_bad_where (fixP->fx_file, fixP->fx_line,
27695 _("the offset 0x%08lX is not representable"),
27696 (unsigned long) encoded_addend);
27697
27698 /* Extract the instruction. */
27699 insn = md_chars_to_number (buf, THUMB_SIZE);
27700 is_mov = (insn & 0xf800) == 0x2000;
27701
27702 /* Encode insn. */
27703 if (is_mov)
27704 {
27705 if (!seg->use_rela_p)
27706 insn |= encoded_addend;
27707 }
27708 else
27709 {
27710 int rd, rs;
27711
27712 /* Extract the instruction. */
27713 /* Encoding is the following
27714 0x8000 SUB
27715 0x00F0 Rd
27716 0x000F Rs
27717 */
27718 /* The following conditions must be true :
27719 - ADD
27720 - Rd == Rs
27721 - Rd <= 7
27722 */
27723 rd = (insn >> 4) & 0xf;
27724 rs = insn & 0xf;
27725 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27726 as_bad_where (fixP->fx_file, fixP->fx_line,
27727 _("Unable to process relocation for thumb opcode: %lx"),
27728 (unsigned long) insn);
27729
27730 /* Encode as ADD immediate8 thumb 1 code. */
27731 insn = 0x3000 | (rd << 8);
27732
27733 /* Place the encoded addend into the first 8 bits of the
27734 instruction. */
27735 if (!seg->use_rela_p)
27736 insn |= encoded_addend;
27737 }
27738
27739 /* Update the instruction. */
27740 md_number_to_chars (buf, insn, THUMB_SIZE);
27741 }
27742 break;
27743
27744 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27745 case BFD_RELOC_ARM_ALU_PC_G0:
27746 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27747 case BFD_RELOC_ARM_ALU_PC_G1:
27748 case BFD_RELOC_ARM_ALU_PC_G2:
27749 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27750 case BFD_RELOC_ARM_ALU_SB_G0:
27751 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27752 case BFD_RELOC_ARM_ALU_SB_G1:
27753 case BFD_RELOC_ARM_ALU_SB_G2:
27754 gas_assert (!fixP->fx_done);
27755 if (!seg->use_rela_p)
27756 {
27757 bfd_vma insn;
27758 bfd_vma encoded_addend;
27759 bfd_vma addend_abs = llabs (value);
27760
27761 /* Check that the absolute value of the addend can be
27762 expressed as an 8-bit constant plus a rotation. */
27763 encoded_addend = encode_arm_immediate (addend_abs);
27764 if (encoded_addend == (unsigned int) FAIL)
27765 as_bad_where (fixP->fx_file, fixP->fx_line,
27766 _("the offset 0x%08lX is not representable"),
27767 (unsigned long) addend_abs);
27768
27769 /* Extract the instruction. */
27770 insn = md_chars_to_number (buf, INSN_SIZE);
27771
27772 /* If the addend is positive, use an ADD instruction.
27773 Otherwise use a SUB. Take care not to destroy the S bit. */
27774 insn &= 0xff1fffff;
27775 if (value < 0)
27776 insn |= 1 << 22;
27777 else
27778 insn |= 1 << 23;
27779
27780 /* Place the encoded addend into the first 12 bits of the
27781 instruction. */
27782 insn &= 0xfffff000;
27783 insn |= encoded_addend;
27784
27785 /* Update the instruction. */
27786 md_number_to_chars (buf, insn, INSN_SIZE);
27787 }
27788 break;
27789
27790 case BFD_RELOC_ARM_LDR_PC_G0:
27791 case BFD_RELOC_ARM_LDR_PC_G1:
27792 case BFD_RELOC_ARM_LDR_PC_G2:
27793 case BFD_RELOC_ARM_LDR_SB_G0:
27794 case BFD_RELOC_ARM_LDR_SB_G1:
27795 case BFD_RELOC_ARM_LDR_SB_G2:
27796 gas_assert (!fixP->fx_done);
27797 if (!seg->use_rela_p)
27798 {
27799 bfd_vma insn;
27800 bfd_vma addend_abs = llabs (value);
27801
27802 /* Check that the absolute value of the addend can be
27803 encoded in 12 bits. */
27804 if (addend_abs >= 0x1000)
27805 as_bad_where (fixP->fx_file, fixP->fx_line,
27806 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27807 (unsigned long) addend_abs);
27808
27809 /* Extract the instruction. */
27810 insn = md_chars_to_number (buf, INSN_SIZE);
27811
27812 /* If the addend is negative, clear bit 23 of the instruction.
27813 Otherwise set it. */
27814 if (value < 0)
27815 insn &= ~(1 << 23);
27816 else
27817 insn |= 1 << 23;
27818
27819 /* Place the absolute value of the addend into the first 12 bits
27820 of the instruction. */
27821 insn &= 0xfffff000;
27822 insn |= addend_abs;
27823
27824 /* Update the instruction. */
27825 md_number_to_chars (buf, insn, INSN_SIZE);
27826 }
27827 break;
27828
27829 case BFD_RELOC_ARM_LDRS_PC_G0:
27830 case BFD_RELOC_ARM_LDRS_PC_G1:
27831 case BFD_RELOC_ARM_LDRS_PC_G2:
27832 case BFD_RELOC_ARM_LDRS_SB_G0:
27833 case BFD_RELOC_ARM_LDRS_SB_G1:
27834 case BFD_RELOC_ARM_LDRS_SB_G2:
27835 gas_assert (!fixP->fx_done);
27836 if (!seg->use_rela_p)
27837 {
27838 bfd_vma insn;
27839 bfd_vma addend_abs = llabs (value);
27840
27841 /* Check that the absolute value of the addend can be
27842 encoded in 8 bits. */
27843 if (addend_abs >= 0x100)
27844 as_bad_where (fixP->fx_file, fixP->fx_line,
27845 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27846 (unsigned long) addend_abs);
27847
27848 /* Extract the instruction. */
27849 insn = md_chars_to_number (buf, INSN_SIZE);
27850
27851 /* If the addend is negative, clear bit 23 of the instruction.
27852 Otherwise set it. */
27853 if (value < 0)
27854 insn &= ~(1 << 23);
27855 else
27856 insn |= 1 << 23;
27857
27858 /* Place the first four bits of the absolute value of the addend
27859 into the first 4 bits of the instruction, and the remaining
27860 four into bits 8 .. 11. */
27861 insn &= 0xfffff0f0;
27862 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27863
27864 /* Update the instruction. */
27865 md_number_to_chars (buf, insn, INSN_SIZE);
27866 }
27867 break;
27868
27869 case BFD_RELOC_ARM_LDC_PC_G0:
27870 case BFD_RELOC_ARM_LDC_PC_G1:
27871 case BFD_RELOC_ARM_LDC_PC_G2:
27872 case BFD_RELOC_ARM_LDC_SB_G0:
27873 case BFD_RELOC_ARM_LDC_SB_G1:
27874 case BFD_RELOC_ARM_LDC_SB_G2:
27875 gas_assert (!fixP->fx_done);
27876 if (!seg->use_rela_p)
27877 {
27878 bfd_vma insn;
27879 bfd_vma addend_abs = llabs (value);
27880
27881 /* Check that the absolute value of the addend is a multiple of
27882 four and, when divided by four, fits in 8 bits. */
27883 if (addend_abs & 0x3)
27884 as_bad_where (fixP->fx_file, fixP->fx_line,
27885 _("bad offset 0x%08lX (must be word-aligned)"),
27886 (unsigned long) addend_abs);
27887
27888 if ((addend_abs >> 2) > 0xff)
27889 as_bad_where (fixP->fx_file, fixP->fx_line,
27890 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27891 (unsigned long) addend_abs);
27892
27893 /* Extract the instruction. */
27894 insn = md_chars_to_number (buf, INSN_SIZE);
27895
27896 /* If the addend is negative, clear bit 23 of the instruction.
27897 Otherwise set it. */
27898 if (value < 0)
27899 insn &= ~(1 << 23);
27900 else
27901 insn |= 1 << 23;
27902
27903 /* Place the addend (divided by four) into the first eight
27904 bits of the instruction. */
27905 insn &= 0xfffffff0;
27906 insn |= addend_abs >> 2;
27907
27908 /* Update the instruction. */
27909 md_number_to_chars (buf, insn, INSN_SIZE);
27910 }
27911 break;
27912
27913 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27914 if (fixP->fx_addsy
27915 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27916 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27917 && ARM_IS_FUNC (fixP->fx_addsy)
27918 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27919 {
27920 /* Force a relocation for a branch 5 bits wide. */
27921 fixP->fx_done = 0;
27922 }
27923 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27924 as_bad_where (fixP->fx_file, fixP->fx_line,
27925 BAD_BRANCH_OFF);
27926
27927 if (fixP->fx_done || !seg->use_rela_p)
27928 {
27929 addressT boff = value >> 1;
27930
27931 newval = md_chars_to_number (buf, THUMB_SIZE);
27932 newval |= (boff << 7);
27933 md_number_to_chars (buf, newval, THUMB_SIZE);
27934 }
27935 break;
27936
27937 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27938 if (fixP->fx_addsy
27939 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27940 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27941 && ARM_IS_FUNC (fixP->fx_addsy)
27942 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27943 {
27944 fixP->fx_done = 0;
27945 }
27946 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27947 as_bad_where (fixP->fx_file, fixP->fx_line,
27948 _("branch out of range"));
27949
27950 if (fixP->fx_done || !seg->use_rela_p)
27951 {
27952 newval = md_chars_to_number (buf, THUMB_SIZE);
27953
27954 addressT boff = ((newval & 0x0780) >> 7) << 1;
27955 addressT diff = value - boff;
27956
27957 if (diff == 4)
27958 {
27959 newval |= 1 << 1; /* T bit. */
27960 }
27961 else if (diff != 2)
27962 {
27963 as_bad_where (fixP->fx_file, fixP->fx_line,
27964 _("out of range label-relative fixup value"));
27965 }
27966 md_number_to_chars (buf, newval, THUMB_SIZE);
27967 }
27968 break;
27969
27970 case BFD_RELOC_ARM_THUMB_BF17:
27971 if (fixP->fx_addsy
27972 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27973 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27974 && ARM_IS_FUNC (fixP->fx_addsy)
27975 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27976 {
27977 /* Force a relocation for a branch 17 bits wide. */
27978 fixP->fx_done = 0;
27979 }
27980
27981 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27982 as_bad_where (fixP->fx_file, fixP->fx_line,
27983 BAD_BRANCH_OFF);
27984
27985 if (fixP->fx_done || !seg->use_rela_p)
27986 {
27987 offsetT newval2;
27988 addressT immA, immB, immC;
27989
27990 immA = (value & 0x0001f000) >> 12;
27991 immB = (value & 0x00000ffc) >> 2;
27992 immC = (value & 0x00000002) >> 1;
27993
27994 newval = md_chars_to_number (buf, THUMB_SIZE);
27995 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27996 newval |= immA;
27997 newval2 |= (immC << 11) | (immB << 1);
27998 md_number_to_chars (buf, newval, THUMB_SIZE);
27999 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28000 }
28001 break;
28002
28003 case BFD_RELOC_ARM_THUMB_BF19:
28004 if (fixP->fx_addsy
28005 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28006 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28007 && ARM_IS_FUNC (fixP->fx_addsy)
28008 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28009 {
28010 /* Force a relocation for a branch 19 bits wide. */
28011 fixP->fx_done = 0;
28012 }
28013
28014 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28015 as_bad_where (fixP->fx_file, fixP->fx_line,
28016 BAD_BRANCH_OFF);
28017
28018 if (fixP->fx_done || !seg->use_rela_p)
28019 {
28020 offsetT newval2;
28021 addressT immA, immB, immC;
28022
28023 immA = (value & 0x0007f000) >> 12;
28024 immB = (value & 0x00000ffc) >> 2;
28025 immC = (value & 0x00000002) >> 1;
28026
28027 newval = md_chars_to_number (buf, THUMB_SIZE);
28028 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28029 newval |= immA;
28030 newval2 |= (immC << 11) | (immB << 1);
28031 md_number_to_chars (buf, newval, THUMB_SIZE);
28032 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28033 }
28034 break;
28035
28036 case BFD_RELOC_ARM_THUMB_BF13:
28037 if (fixP->fx_addsy
28038 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28039 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28040 && ARM_IS_FUNC (fixP->fx_addsy)
28041 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28042 {
28043 /* Force a relocation for a branch 13 bits wide. */
28044 fixP->fx_done = 0;
28045 }
28046
28047 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28048 as_bad_where (fixP->fx_file, fixP->fx_line,
28049 BAD_BRANCH_OFF);
28050
28051 if (fixP->fx_done || !seg->use_rela_p)
28052 {
28053 offsetT newval2;
28054 addressT immA, immB, immC;
28055
28056 immA = (value & 0x00001000) >> 12;
28057 immB = (value & 0x00000ffc) >> 2;
28058 immC = (value & 0x00000002) >> 1;
28059
28060 newval = md_chars_to_number (buf, THUMB_SIZE);
28061 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28062 newval |= immA;
28063 newval2 |= (immC << 11) | (immB << 1);
28064 md_number_to_chars (buf, newval, THUMB_SIZE);
28065 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28066 }
28067 break;
28068
28069 case BFD_RELOC_ARM_THUMB_LOOP12:
28070 if (fixP->fx_addsy
28071 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28072 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28073 && ARM_IS_FUNC (fixP->fx_addsy)
28074 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28075 {
28076 /* Force a relocation for a branch 12 bits wide. */
28077 fixP->fx_done = 0;
28078 }
28079
28080 bfd_vma insn = get_thumb32_insn (buf);
28081 /* le lr, <label> or le <label> */
28082 if (((insn & 0xffffffff) == 0xf00fc001)
28083 || ((insn & 0xffffffff) == 0xf02fc001))
28084 value = -value;
28085
28086 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28087 as_bad_where (fixP->fx_file, fixP->fx_line,
28088 BAD_BRANCH_OFF);
28089 if (fixP->fx_done || !seg->use_rela_p)
28090 {
28091 addressT imml, immh;
28092
28093 immh = (value & 0x00000ffc) >> 2;
28094 imml = (value & 0x00000002) >> 1;
28095
28096 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28097 newval |= (imml << 11) | (immh << 1);
28098 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28099 }
28100 break;
28101
28102 case BFD_RELOC_ARM_V4BX:
28103 /* This will need to go in the object file. */
28104 fixP->fx_done = 0;
28105 break;
28106
28107 case BFD_RELOC_UNUSED:
28108 default:
28109 as_bad_where (fixP->fx_file, fixP->fx_line,
28110 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28111 }
28112 }
28113
28114 /* Translate internal representation of relocation info to BFD target
28115 format. */
28116
28117 arelent *
28118 tc_gen_reloc (asection *section, fixS *fixp)
28119 {
28120 arelent * reloc;
28121 bfd_reloc_code_real_type code;
28122
28123 reloc = XNEW (arelent);
28124
28125 reloc->sym_ptr_ptr = XNEW (asymbol *);
28126 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28127 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28128
28129 if (fixp->fx_pcrel)
28130 {
28131 if (section->use_rela_p)
28132 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28133 else
28134 fixp->fx_offset = reloc->address;
28135 }
28136 reloc->addend = fixp->fx_offset;
28137
28138 switch (fixp->fx_r_type)
28139 {
28140 case BFD_RELOC_8:
28141 if (fixp->fx_pcrel)
28142 {
28143 code = BFD_RELOC_8_PCREL;
28144 break;
28145 }
28146 /* Fall through. */
28147
28148 case BFD_RELOC_16:
28149 if (fixp->fx_pcrel)
28150 {
28151 code = BFD_RELOC_16_PCREL;
28152 break;
28153 }
28154 /* Fall through. */
28155
28156 case BFD_RELOC_32:
28157 if (fixp->fx_pcrel)
28158 {
28159 code = BFD_RELOC_32_PCREL;
28160 break;
28161 }
28162 /* Fall through. */
28163
28164 case BFD_RELOC_ARM_MOVW:
28165 if (fixp->fx_pcrel)
28166 {
28167 code = BFD_RELOC_ARM_MOVW_PCREL;
28168 break;
28169 }
28170 /* Fall through. */
28171
28172 case BFD_RELOC_ARM_MOVT:
28173 if (fixp->fx_pcrel)
28174 {
28175 code = BFD_RELOC_ARM_MOVT_PCREL;
28176 break;
28177 }
28178 /* Fall through. */
28179
28180 case BFD_RELOC_ARM_THUMB_MOVW:
28181 if (fixp->fx_pcrel)
28182 {
28183 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28184 break;
28185 }
28186 /* Fall through. */
28187
28188 case BFD_RELOC_ARM_THUMB_MOVT:
28189 if (fixp->fx_pcrel)
28190 {
28191 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28192 break;
28193 }
28194 /* Fall through. */
28195
28196 case BFD_RELOC_NONE:
28197 case BFD_RELOC_ARM_PCREL_BRANCH:
28198 case BFD_RELOC_ARM_PCREL_BLX:
28199 case BFD_RELOC_RVA:
28200 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28201 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28202 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28203 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28204 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28205 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28206 case BFD_RELOC_VTABLE_ENTRY:
28207 case BFD_RELOC_VTABLE_INHERIT:
28208 #ifdef TE_PE
28209 case BFD_RELOC_32_SECREL:
28210 #endif
28211 code = fixp->fx_r_type;
28212 break;
28213
28214 case BFD_RELOC_THUMB_PCREL_BLX:
28215 #ifdef OBJ_ELF
28216 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28217 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28218 else
28219 #endif
28220 code = BFD_RELOC_THUMB_PCREL_BLX;
28221 break;
28222
28223 case BFD_RELOC_ARM_LITERAL:
28224 case BFD_RELOC_ARM_HWLITERAL:
28225 /* If this is called then the a literal has
28226 been referenced across a section boundary. */
28227 as_bad_where (fixp->fx_file, fixp->fx_line,
28228 _("literal referenced across section boundary"));
28229 return NULL;
28230
28231 #ifdef OBJ_ELF
28232 case BFD_RELOC_ARM_TLS_CALL:
28233 case BFD_RELOC_ARM_THM_TLS_CALL:
28234 case BFD_RELOC_ARM_TLS_DESCSEQ:
28235 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28236 case BFD_RELOC_ARM_GOT32:
28237 case BFD_RELOC_ARM_GOTOFF:
28238 case BFD_RELOC_ARM_GOT_PREL:
28239 case BFD_RELOC_ARM_PLT32:
28240 case BFD_RELOC_ARM_TARGET1:
28241 case BFD_RELOC_ARM_ROSEGREL32:
28242 case BFD_RELOC_ARM_SBREL32:
28243 case BFD_RELOC_ARM_PREL31:
28244 case BFD_RELOC_ARM_TARGET2:
28245 case BFD_RELOC_ARM_TLS_LDO32:
28246 case BFD_RELOC_ARM_PCREL_CALL:
28247 case BFD_RELOC_ARM_PCREL_JUMP:
28248 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28249 case BFD_RELOC_ARM_ALU_PC_G0:
28250 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28251 case BFD_RELOC_ARM_ALU_PC_G1:
28252 case BFD_RELOC_ARM_ALU_PC_G2:
28253 case BFD_RELOC_ARM_LDR_PC_G0:
28254 case BFD_RELOC_ARM_LDR_PC_G1:
28255 case BFD_RELOC_ARM_LDR_PC_G2:
28256 case BFD_RELOC_ARM_LDRS_PC_G0:
28257 case BFD_RELOC_ARM_LDRS_PC_G1:
28258 case BFD_RELOC_ARM_LDRS_PC_G2:
28259 case BFD_RELOC_ARM_LDC_PC_G0:
28260 case BFD_RELOC_ARM_LDC_PC_G1:
28261 case BFD_RELOC_ARM_LDC_PC_G2:
28262 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28263 case BFD_RELOC_ARM_ALU_SB_G0:
28264 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28265 case BFD_RELOC_ARM_ALU_SB_G1:
28266 case BFD_RELOC_ARM_ALU_SB_G2:
28267 case BFD_RELOC_ARM_LDR_SB_G0:
28268 case BFD_RELOC_ARM_LDR_SB_G1:
28269 case BFD_RELOC_ARM_LDR_SB_G2:
28270 case BFD_RELOC_ARM_LDRS_SB_G0:
28271 case BFD_RELOC_ARM_LDRS_SB_G1:
28272 case BFD_RELOC_ARM_LDRS_SB_G2:
28273 case BFD_RELOC_ARM_LDC_SB_G0:
28274 case BFD_RELOC_ARM_LDC_SB_G1:
28275 case BFD_RELOC_ARM_LDC_SB_G2:
28276 case BFD_RELOC_ARM_V4BX:
28277 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28278 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28279 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28280 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28281 case BFD_RELOC_ARM_GOTFUNCDESC:
28282 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28283 case BFD_RELOC_ARM_FUNCDESC:
28284 case BFD_RELOC_ARM_THUMB_BF17:
28285 case BFD_RELOC_ARM_THUMB_BF19:
28286 case BFD_RELOC_ARM_THUMB_BF13:
28287 code = fixp->fx_r_type;
28288 break;
28289
28290 case BFD_RELOC_ARM_TLS_GOTDESC:
28291 case BFD_RELOC_ARM_TLS_GD32:
28292 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28293 case BFD_RELOC_ARM_TLS_LE32:
28294 case BFD_RELOC_ARM_TLS_IE32:
28295 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28296 case BFD_RELOC_ARM_TLS_LDM32:
28297 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28298 /* BFD will include the symbol's address in the addend.
28299 But we don't want that, so subtract it out again here. */
28300 if (!S_IS_COMMON (fixp->fx_addsy))
28301 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28302 code = fixp->fx_r_type;
28303 break;
28304 #endif
28305
28306 case BFD_RELOC_ARM_IMMEDIATE:
28307 as_bad_where (fixp->fx_file, fixp->fx_line,
28308 _("internal relocation (type: IMMEDIATE) not fixed up"));
28309 return NULL;
28310
28311 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28312 as_bad_where (fixp->fx_file, fixp->fx_line,
28313 _("ADRL used for a symbol not defined in the same file"));
28314 return NULL;
28315
28316 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28317 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28318 case BFD_RELOC_ARM_THUMB_LOOP12:
28319 as_bad_where (fixp->fx_file, fixp->fx_line,
28320 _("%s used for a symbol not defined in the same file"),
28321 bfd_get_reloc_code_name (fixp->fx_r_type));
28322 return NULL;
28323
28324 case BFD_RELOC_ARM_OFFSET_IMM:
28325 if (section->use_rela_p)
28326 {
28327 code = fixp->fx_r_type;
28328 break;
28329 }
28330
28331 if (fixp->fx_addsy != NULL
28332 && !S_IS_DEFINED (fixp->fx_addsy)
28333 && S_IS_LOCAL (fixp->fx_addsy))
28334 {
28335 as_bad_where (fixp->fx_file, fixp->fx_line,
28336 _("undefined local label `%s'"),
28337 S_GET_NAME (fixp->fx_addsy));
28338 return NULL;
28339 }
28340
28341 as_bad_where (fixp->fx_file, fixp->fx_line,
28342 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28343 return NULL;
28344
28345 default:
28346 {
28347 const char * type;
28348
28349 switch (fixp->fx_r_type)
28350 {
28351 case BFD_RELOC_NONE: type = "NONE"; break;
28352 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28353 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28354 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28355 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28356 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28357 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28358 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28359 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28360 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28361 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28362 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28363 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28364 default: type = _("<unknown>"); break;
28365 }
28366 as_bad_where (fixp->fx_file, fixp->fx_line,
28367 _("cannot represent %s relocation in this object file format"),
28368 type);
28369 return NULL;
28370 }
28371 }
28372
28373 #ifdef OBJ_ELF
28374 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28375 && GOT_symbol
28376 && fixp->fx_addsy == GOT_symbol)
28377 {
28378 code = BFD_RELOC_ARM_GOTPC;
28379 reloc->addend = fixp->fx_offset = reloc->address;
28380 }
28381 #endif
28382
28383 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28384
28385 if (reloc->howto == NULL)
28386 {
28387 as_bad_where (fixp->fx_file, fixp->fx_line,
28388 _("cannot represent %s relocation in this object file format"),
28389 bfd_get_reloc_code_name (code));
28390 return NULL;
28391 }
28392
28393 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28394 vtable entry to be used in the relocation's section offset. */
28395 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28396 reloc->address = fixp->fx_offset;
28397
28398 return reloc;
28399 }
28400
28401 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28402
28403 void
28404 cons_fix_new_arm (fragS * frag,
28405 int where,
28406 int size,
28407 expressionS * exp,
28408 bfd_reloc_code_real_type reloc)
28409 {
28410 int pcrel = 0;
28411
28412 /* Pick a reloc.
28413 FIXME: @@ Should look at CPU word size. */
28414 switch (size)
28415 {
28416 case 1:
28417 reloc = BFD_RELOC_8;
28418 break;
28419 case 2:
28420 reloc = BFD_RELOC_16;
28421 break;
28422 case 4:
28423 default:
28424 reloc = BFD_RELOC_32;
28425 break;
28426 case 8:
28427 reloc = BFD_RELOC_64;
28428 break;
28429 }
28430
28431 #ifdef TE_PE
28432 if (exp->X_op == O_secrel)
28433 {
28434 exp->X_op = O_symbol;
28435 reloc = BFD_RELOC_32_SECREL;
28436 }
28437 #endif
28438
28439 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28440 }
28441
28442 #if defined (OBJ_COFF)
28443 void
28444 arm_validate_fix (fixS * fixP)
28445 {
28446 /* If the destination of the branch is a defined symbol which does not have
28447 the THUMB_FUNC attribute, then we must be calling a function which has
28448 the (interfacearm) attribute. We look for the Thumb entry point to that
28449 function and change the branch to refer to that function instead. */
28450 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28451 && fixP->fx_addsy != NULL
28452 && S_IS_DEFINED (fixP->fx_addsy)
28453 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28454 {
28455 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28456 }
28457 }
28458 #endif
28459
28460
28461 int
28462 arm_force_relocation (struct fix * fixp)
28463 {
28464 #if defined (OBJ_COFF) && defined (TE_PE)
28465 if (fixp->fx_r_type == BFD_RELOC_RVA)
28466 return 1;
28467 #endif
28468
28469 /* In case we have a call or a branch to a function in ARM ISA mode from
28470 a thumb function or vice-versa force the relocation. These relocations
28471 are cleared off for some cores that might have blx and simple transformations
28472 are possible. */
28473
28474 #ifdef OBJ_ELF
28475 switch (fixp->fx_r_type)
28476 {
28477 case BFD_RELOC_ARM_PCREL_JUMP:
28478 case BFD_RELOC_ARM_PCREL_CALL:
28479 case BFD_RELOC_THUMB_PCREL_BLX:
28480 if (THUMB_IS_FUNC (fixp->fx_addsy))
28481 return 1;
28482 break;
28483
28484 case BFD_RELOC_ARM_PCREL_BLX:
28485 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28486 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28487 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28488 if (ARM_IS_FUNC (fixp->fx_addsy))
28489 return 1;
28490 break;
28491
28492 default:
28493 break;
28494 }
28495 #endif
28496
28497 /* Resolve these relocations even if the symbol is extern or weak.
28498 Technically this is probably wrong due to symbol preemption.
28499 In practice these relocations do not have enough range to be useful
28500 at dynamic link time, and some code (e.g. in the Linux kernel)
28501 expects these references to be resolved. */
28502 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28503 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28504 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28505 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28506 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28507 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28508 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28509 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28510 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28511 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28512 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28513 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28514 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28515 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28516 return 0;
28517
28518 /* Always leave these relocations for the linker. */
28519 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28520 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28521 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28522 return 1;
28523
28524 /* Always generate relocations against function symbols. */
28525 if (fixp->fx_r_type == BFD_RELOC_32
28526 && fixp->fx_addsy
28527 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28528 return 1;
28529
28530 return generic_force_reloc (fixp);
28531 }
28532
28533 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28534 /* Relocations against function names must be left unadjusted,
28535 so that the linker can use this information to generate interworking
28536 stubs. The MIPS version of this function
28537 also prevents relocations that are mips-16 specific, but I do not
28538 know why it does this.
28539
28540 FIXME:
28541 There is one other problem that ought to be addressed here, but
28542 which currently is not: Taking the address of a label (rather
28543 than a function) and then later jumping to that address. Such
28544 addresses also ought to have their bottom bit set (assuming that
28545 they reside in Thumb code), but at the moment they will not. */
28546
28547 bfd_boolean
28548 arm_fix_adjustable (fixS * fixP)
28549 {
28550 if (fixP->fx_addsy == NULL)
28551 return 1;
28552
28553 /* Preserve relocations against symbols with function type. */
28554 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28555 return FALSE;
28556
28557 if (THUMB_IS_FUNC (fixP->fx_addsy)
28558 && fixP->fx_subsy == NULL)
28559 return FALSE;
28560
28561 /* We need the symbol name for the VTABLE entries. */
28562 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28563 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28564 return FALSE;
28565
28566 /* Don't allow symbols to be discarded on GOT related relocs. */
28567 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28568 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28569 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28570 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28571 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28572 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28573 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28574 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28575 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28576 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28577 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28578 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28579 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28580 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28581 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28582 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28583 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28584 return FALSE;
28585
28586 /* Similarly for group relocations. */
28587 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28588 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28589 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28590 return FALSE;
28591
28592 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28593 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28594 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28595 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28596 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28597 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28598 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28599 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28600 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28601 return FALSE;
28602
28603 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28604 offsets, so keep these symbols. */
28605 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28606 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28607 return FALSE;
28608
28609 return TRUE;
28610 }
28611 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28612
28613 #ifdef OBJ_ELF
28614 const char *
28615 elf32_arm_target_format (void)
28616 {
28617 #ifdef TE_SYMBIAN
28618 return (target_big_endian
28619 ? "elf32-bigarm-symbian"
28620 : "elf32-littlearm-symbian");
28621 #elif defined (TE_VXWORKS)
28622 return (target_big_endian
28623 ? "elf32-bigarm-vxworks"
28624 : "elf32-littlearm-vxworks");
28625 #elif defined (TE_NACL)
28626 return (target_big_endian
28627 ? "elf32-bigarm-nacl"
28628 : "elf32-littlearm-nacl");
28629 #else
28630 if (arm_fdpic)
28631 {
28632 if (target_big_endian)
28633 return "elf32-bigarm-fdpic";
28634 else
28635 return "elf32-littlearm-fdpic";
28636 }
28637 else
28638 {
28639 if (target_big_endian)
28640 return "elf32-bigarm";
28641 else
28642 return "elf32-littlearm";
28643 }
28644 #endif
28645 }
28646
28647 void
28648 armelf_frob_symbol (symbolS * symp,
28649 int * puntp)
28650 {
28651 elf_frob_symbol (symp, puntp);
28652 }
28653 #endif
28654
28655 /* MD interface: Finalization. */
28656
28657 void
28658 arm_cleanup (void)
28659 {
28660 literal_pool * pool;
28661
28662 /* Ensure that all the predication blocks are properly closed. */
28663 check_pred_blocks_finished ();
28664
28665 for (pool = list_of_pools; pool; pool = pool->next)
28666 {
28667 /* Put it at the end of the relevant section. */
28668 subseg_set (pool->section, pool->sub_section);
28669 #ifdef OBJ_ELF
28670 arm_elf_change_section ();
28671 #endif
28672 s_ltorg (0);
28673 }
28674 }
28675
28676 #ifdef OBJ_ELF
28677 /* Remove any excess mapping symbols generated for alignment frags in
28678 SEC. We may have created a mapping symbol before a zero byte
28679 alignment; remove it if there's a mapping symbol after the
28680 alignment. */
28681 static void
28682 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28683 void *dummy ATTRIBUTE_UNUSED)
28684 {
28685 segment_info_type *seginfo = seg_info (sec);
28686 fragS *fragp;
28687
28688 if (seginfo == NULL || seginfo->frchainP == NULL)
28689 return;
28690
28691 for (fragp = seginfo->frchainP->frch_root;
28692 fragp != NULL;
28693 fragp = fragp->fr_next)
28694 {
28695 symbolS *sym = fragp->tc_frag_data.last_map;
28696 fragS *next = fragp->fr_next;
28697
28698 /* Variable-sized frags have been converted to fixed size by
28699 this point. But if this was variable-sized to start with,
28700 there will be a fixed-size frag after it. So don't handle
28701 next == NULL. */
28702 if (sym == NULL || next == NULL)
28703 continue;
28704
28705 if (S_GET_VALUE (sym) < next->fr_address)
28706 /* Not at the end of this frag. */
28707 continue;
28708 know (S_GET_VALUE (sym) == next->fr_address);
28709
28710 do
28711 {
28712 if (next->tc_frag_data.first_map != NULL)
28713 {
28714 /* Next frag starts with a mapping symbol. Discard this
28715 one. */
28716 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28717 break;
28718 }
28719
28720 if (next->fr_next == NULL)
28721 {
28722 /* This mapping symbol is at the end of the section. Discard
28723 it. */
28724 know (next->fr_fix == 0 && next->fr_var == 0);
28725 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28726 break;
28727 }
28728
28729 /* As long as we have empty frags without any mapping symbols,
28730 keep looking. */
28731 /* If the next frag is non-empty and does not start with a
28732 mapping symbol, then this mapping symbol is required. */
28733 if (next->fr_address != next->fr_next->fr_address)
28734 break;
28735
28736 next = next->fr_next;
28737 }
28738 while (next != NULL);
28739 }
28740 }
28741 #endif
28742
28743 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28744 ARM ones. */
28745
28746 void
28747 arm_adjust_symtab (void)
28748 {
28749 #ifdef OBJ_COFF
28750 symbolS * sym;
28751
28752 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28753 {
28754 if (ARM_IS_THUMB (sym))
28755 {
28756 if (THUMB_IS_FUNC (sym))
28757 {
28758 /* Mark the symbol as a Thumb function. */
28759 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28760 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28761 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28762
28763 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28764 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28765 else
28766 as_bad (_("%s: unexpected function type: %d"),
28767 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28768 }
28769 else switch (S_GET_STORAGE_CLASS (sym))
28770 {
28771 case C_EXT:
28772 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28773 break;
28774 case C_STAT:
28775 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28776 break;
28777 case C_LABEL:
28778 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28779 break;
28780 default:
28781 /* Do nothing. */
28782 break;
28783 }
28784 }
28785
28786 if (ARM_IS_INTERWORK (sym))
28787 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28788 }
28789 #endif
28790 #ifdef OBJ_ELF
28791 symbolS * sym;
28792 char bind;
28793
28794 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28795 {
28796 if (ARM_IS_THUMB (sym))
28797 {
28798 elf_symbol_type * elf_sym;
28799
28800 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28801 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28802
28803 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28804 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28805 {
28806 /* If it's a .thumb_func, declare it as so,
28807 otherwise tag label as .code 16. */
28808 if (THUMB_IS_FUNC (sym))
28809 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28810 ST_BRANCH_TO_THUMB);
28811 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28812 elf_sym->internal_elf_sym.st_info =
28813 ELF_ST_INFO (bind, STT_ARM_16BIT);
28814 }
28815 }
28816 }
28817
28818 /* Remove any overlapping mapping symbols generated by alignment frags. */
28819 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28820 /* Now do generic ELF adjustments. */
28821 elf_adjust_symtab ();
28822 #endif
28823 }
28824
28825 /* MD interface: Initialization. */
28826
28827 static void
28828 set_constant_flonums (void)
28829 {
28830 int i;
28831
28832 for (i = 0; i < NUM_FLOAT_VALS; i++)
28833 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28834 abort ();
28835 }
28836
28837 /* Auto-select Thumb mode if it's the only available instruction set for the
28838 given architecture. */
28839
28840 static void
28841 autoselect_thumb_from_cpu_variant (void)
28842 {
28843 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28844 opcode_select (16);
28845 }
28846
28847 void
28848 md_begin (void)
28849 {
28850 unsigned mach;
28851 unsigned int i;
28852
28853 if ( (arm_ops_hsh = hash_new ()) == NULL
28854 || (arm_cond_hsh = hash_new ()) == NULL
28855 || (arm_vcond_hsh = hash_new ()) == NULL
28856 || (arm_shift_hsh = hash_new ()) == NULL
28857 || (arm_psr_hsh = hash_new ()) == NULL
28858 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28859 || (arm_reg_hsh = hash_new ()) == NULL
28860 || (arm_reloc_hsh = hash_new ()) == NULL
28861 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28862 as_fatal (_("virtual memory exhausted"));
28863
28864 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28865 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28866 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28867 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28868 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28869 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28870 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28871 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28872 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28873 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28874 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28875 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28876 (void *) (v7m_psrs + i));
28877 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28878 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28879 for (i = 0;
28880 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28881 i++)
28882 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28883 (void *) (barrier_opt_names + i));
28884 #ifdef OBJ_ELF
28885 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28886 {
28887 struct reloc_entry * entry = reloc_names + i;
28888
28889 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28890 /* This makes encode_branch() use the EABI versions of this relocation. */
28891 entry->reloc = BFD_RELOC_UNUSED;
28892
28893 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28894 }
28895 #endif
28896
28897 set_constant_flonums ();
28898
28899 /* Set the cpu variant based on the command-line options. We prefer
28900 -mcpu= over -march= if both are set (as for GCC); and we prefer
28901 -mfpu= over any other way of setting the floating point unit.
28902 Use of legacy options with new options are faulted. */
28903 if (legacy_cpu)
28904 {
28905 if (mcpu_cpu_opt || march_cpu_opt)
28906 as_bad (_("use of old and new-style options to set CPU type"));
28907
28908 selected_arch = *legacy_cpu;
28909 }
28910 else if (mcpu_cpu_opt)
28911 {
28912 selected_arch = *mcpu_cpu_opt;
28913 selected_ext = *mcpu_ext_opt;
28914 }
28915 else if (march_cpu_opt)
28916 {
28917 selected_arch = *march_cpu_opt;
28918 selected_ext = *march_ext_opt;
28919 }
28920 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28921
28922 if (legacy_fpu)
28923 {
28924 if (mfpu_opt)
28925 as_bad (_("use of old and new-style options to set FPU type"));
28926
28927 selected_fpu = *legacy_fpu;
28928 }
28929 else if (mfpu_opt)
28930 selected_fpu = *mfpu_opt;
28931 else
28932 {
28933 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28934 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28935 /* Some environments specify a default FPU. If they don't, infer it
28936 from the processor. */
28937 if (mcpu_fpu_opt)
28938 selected_fpu = *mcpu_fpu_opt;
28939 else if (march_fpu_opt)
28940 selected_fpu = *march_fpu_opt;
28941 #else
28942 selected_fpu = fpu_default;
28943 #endif
28944 }
28945
28946 if (ARM_FEATURE_ZERO (selected_fpu))
28947 {
28948 if (!no_cpu_selected ())
28949 selected_fpu = fpu_default;
28950 else
28951 selected_fpu = fpu_arch_fpa;
28952 }
28953
28954 #ifdef CPU_DEFAULT
28955 if (ARM_FEATURE_ZERO (selected_arch))
28956 {
28957 selected_arch = cpu_default;
28958 selected_cpu = selected_arch;
28959 }
28960 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28961 #else
28962 /* Autodection of feature mode: allow all features in cpu_variant but leave
28963 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28964 after all instruction have been processed and we can decide what CPU
28965 should be selected. */
28966 if (ARM_FEATURE_ZERO (selected_arch))
28967 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28968 else
28969 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28970 #endif
28971
28972 autoselect_thumb_from_cpu_variant ();
28973
28974 arm_arch_used = thumb_arch_used = arm_arch_none;
28975
28976 #if defined OBJ_COFF || defined OBJ_ELF
28977 {
28978 unsigned int flags = 0;
28979
28980 #if defined OBJ_ELF
28981 flags = meabi_flags;
28982
28983 switch (meabi_flags)
28984 {
28985 case EF_ARM_EABI_UNKNOWN:
28986 #endif
28987 /* Set the flags in the private structure. */
28988 if (uses_apcs_26) flags |= F_APCS26;
28989 if (support_interwork) flags |= F_INTERWORK;
28990 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28991 if (pic_code) flags |= F_PIC;
28992 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28993 flags |= F_SOFT_FLOAT;
28994
28995 switch (mfloat_abi_opt)
28996 {
28997 case ARM_FLOAT_ABI_SOFT:
28998 case ARM_FLOAT_ABI_SOFTFP:
28999 flags |= F_SOFT_FLOAT;
29000 break;
29001
29002 case ARM_FLOAT_ABI_HARD:
29003 if (flags & F_SOFT_FLOAT)
29004 as_bad (_("hard-float conflicts with specified fpu"));
29005 break;
29006 }
29007
29008 /* Using pure-endian doubles (even if soft-float). */
29009 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29010 flags |= F_VFP_FLOAT;
29011
29012 #if defined OBJ_ELF
29013 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29014 flags |= EF_ARM_MAVERICK_FLOAT;
29015 break;
29016
29017 case EF_ARM_EABI_VER4:
29018 case EF_ARM_EABI_VER5:
29019 /* No additional flags to set. */
29020 break;
29021
29022 default:
29023 abort ();
29024 }
29025 #endif
29026 bfd_set_private_flags (stdoutput, flags);
29027
29028 /* We have run out flags in the COFF header to encode the
29029 status of ATPCS support, so instead we create a dummy,
29030 empty, debug section called .arm.atpcs. */
29031 if (atpcs)
29032 {
29033 asection * sec;
29034
29035 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29036
29037 if (sec != NULL)
29038 {
29039 bfd_set_section_flags
29040 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29041 bfd_set_section_size (stdoutput, sec, 0);
29042 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29043 }
29044 }
29045 }
29046 #endif
29047
29048 /* Record the CPU type as well. */
29049 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29050 mach = bfd_mach_arm_iWMMXt2;
29051 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29052 mach = bfd_mach_arm_iWMMXt;
29053 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29054 mach = bfd_mach_arm_XScale;
29055 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29056 mach = bfd_mach_arm_ep9312;
29057 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29058 mach = bfd_mach_arm_5TE;
29059 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29060 {
29061 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29062 mach = bfd_mach_arm_5T;
29063 else
29064 mach = bfd_mach_arm_5;
29065 }
29066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29067 {
29068 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29069 mach = bfd_mach_arm_4T;
29070 else
29071 mach = bfd_mach_arm_4;
29072 }
29073 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29074 mach = bfd_mach_arm_3M;
29075 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29076 mach = bfd_mach_arm_3;
29077 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29078 mach = bfd_mach_arm_2a;
29079 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29080 mach = bfd_mach_arm_2;
29081 else
29082 mach = bfd_mach_arm_unknown;
29083
29084 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29085 }
29086
29087 /* Command line processing. */
29088
29089 /* md_parse_option
29090 Invocation line includes a switch not recognized by the base assembler.
29091 See if it's a processor-specific option.
29092
29093 This routine is somewhat complicated by the need for backwards
29094 compatibility (since older releases of gcc can't be changed).
29095 The new options try to make the interface as compatible as
29096 possible with GCC.
29097
29098 New options (supported) are:
29099
29100 -mcpu=<cpu name> Assemble for selected processor
29101 -march=<architecture name> Assemble for selected architecture
29102 -mfpu=<fpu architecture> Assemble for selected FPU.
29103 -EB/-mbig-endian Big-endian
29104 -EL/-mlittle-endian Little-endian
29105 -k Generate PIC code
29106 -mthumb Start in Thumb mode
29107 -mthumb-interwork Code supports ARM/Thumb interworking
29108
29109 -m[no-]warn-deprecated Warn about deprecated features
29110 -m[no-]warn-syms Warn when symbols match instructions
29111
29112 For now we will also provide support for:
29113
29114 -mapcs-32 32-bit Program counter
29115 -mapcs-26 26-bit Program counter
29116 -macps-float Floats passed in FP registers
29117 -mapcs-reentrant Reentrant code
29118 -matpcs
29119 (sometime these will probably be replaced with -mapcs=<list of options>
29120 and -matpcs=<list of options>)
29121
29122 The remaining options are only supported for back-wards compatibility.
29123 Cpu variants, the arm part is optional:
29124 -m[arm]1 Currently not supported.
29125 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29126 -m[arm]3 Arm 3 processor
29127 -m[arm]6[xx], Arm 6 processors
29128 -m[arm]7[xx][t][[d]m] Arm 7 processors
29129 -m[arm]8[10] Arm 8 processors
29130 -m[arm]9[20][tdmi] Arm 9 processors
29131 -mstrongarm[110[0]] StrongARM processors
29132 -mxscale XScale processors
29133 -m[arm]v[2345[t[e]]] Arm architectures
29134 -mall All (except the ARM1)
29135 FP variants:
29136 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29137 -mfpe-old (No float load/store multiples)
29138 -mvfpxd VFP Single precision
29139 -mvfp All VFP
29140 -mno-fpu Disable all floating point instructions
29141
29142 The following CPU names are recognized:
29143 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29144 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29145 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29146 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29147 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29148 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29149 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29150
29151 */
29152
29153 const char * md_shortopts = "m:k";
29154
29155 #ifdef ARM_BI_ENDIAN
29156 #define OPTION_EB (OPTION_MD_BASE + 0)
29157 #define OPTION_EL (OPTION_MD_BASE + 1)
29158 #else
29159 #if TARGET_BYTES_BIG_ENDIAN
29160 #define OPTION_EB (OPTION_MD_BASE + 0)
29161 #else
29162 #define OPTION_EL (OPTION_MD_BASE + 1)
29163 #endif
29164 #endif
29165 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29166 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29167
29168 struct option md_longopts[] =
29169 {
29170 #ifdef OPTION_EB
29171 {"EB", no_argument, NULL, OPTION_EB},
29172 #endif
29173 #ifdef OPTION_EL
29174 {"EL", no_argument, NULL, OPTION_EL},
29175 #endif
29176 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29177 #ifdef OBJ_ELF
29178 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29179 #endif
29180 {NULL, no_argument, NULL, 0}
29181 };
29182
29183 size_t md_longopts_size = sizeof (md_longopts);
29184
29185 struct arm_option_table
29186 {
29187 const char * option; /* Option name to match. */
29188 const char * help; /* Help information. */
29189 int * var; /* Variable to change. */
29190 int value; /* What to change it to. */
29191 const char * deprecated; /* If non-null, print this message. */
29192 };
29193
29194 struct arm_option_table arm_opts[] =
29195 {
29196 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29197 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29198 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29199 &support_interwork, 1, NULL},
29200 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29201 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29202 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29203 1, NULL},
29204 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29205 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29206 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29207 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29208 NULL},
29209
29210 /* These are recognized by the assembler, but have no affect on code. */
29211 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29212 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29213
29214 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29215 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29216 &warn_on_deprecated, 0, NULL},
29217 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29218 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29219 {NULL, NULL, NULL, 0, NULL}
29220 };
29221
29222 struct arm_legacy_option_table
29223 {
29224 const char * option; /* Option name to match. */
29225 const arm_feature_set ** var; /* Variable to change. */
29226 const arm_feature_set value; /* What to change it to. */
29227 const char * deprecated; /* If non-null, print this message. */
29228 };
29229
29230 const struct arm_legacy_option_table arm_legacy_opts[] =
29231 {
29232 /* DON'T add any new processors to this list -- we want the whole list
29233 to go away... Add them to the processors table instead. */
29234 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29235 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29236 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29237 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29238 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29239 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29240 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29241 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29242 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29243 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29244 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29245 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29246 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29247 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29248 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29249 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29250 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29251 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29252 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29253 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29254 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29255 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29256 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29257 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29258 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29259 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29260 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29261 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29262 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29263 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29264 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29265 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29266 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29267 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29268 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29269 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29270 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29271 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29272 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29273 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29274 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29275 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29276 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29277 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29278 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29279 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29280 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29281 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29282 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29283 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29284 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29285 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29286 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29287 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29288 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29289 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29290 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29291 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29292 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29293 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29294 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29295 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29296 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29297 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29298 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29299 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29300 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29301 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29302 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29303 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29304 N_("use -mcpu=strongarm110")},
29305 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29306 N_("use -mcpu=strongarm1100")},
29307 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29308 N_("use -mcpu=strongarm1110")},
29309 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29310 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29311 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29312
29313 /* Architecture variants -- don't add any more to this list either. */
29314 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29315 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29316 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29317 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29318 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29319 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29320 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29321 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29322 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29323 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29324 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29325 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29326 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29327 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29328 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29329 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29330 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29331 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29332
29333 /* Floating point variants -- don't add any more to this list either. */
29334 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29335 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29336 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29337 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29338 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29339
29340 {NULL, NULL, ARM_ARCH_NONE, NULL}
29341 };
29342
29343 struct arm_cpu_option_table
29344 {
29345 const char * name;
29346 size_t name_len;
29347 const arm_feature_set value;
29348 const arm_feature_set ext;
29349 /* For some CPUs we assume an FPU unless the user explicitly sets
29350 -mfpu=... */
29351 const arm_feature_set default_fpu;
29352 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29353 case. */
29354 const char * canonical_name;
29355 };
29356
29357 /* This list should, at a minimum, contain all the cpu names
29358 recognized by GCC. */
29359 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29360
29361 static const struct arm_cpu_option_table arm_cpus[] =
29362 {
29363 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29364 ARM_ARCH_NONE,
29365 FPU_ARCH_FPA),
29366 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29367 ARM_ARCH_NONE,
29368 FPU_ARCH_FPA),
29369 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29370 ARM_ARCH_NONE,
29371 FPU_ARCH_FPA),
29372 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29373 ARM_ARCH_NONE,
29374 FPU_ARCH_FPA),
29375 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29376 ARM_ARCH_NONE,
29377 FPU_ARCH_FPA),
29378 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29379 ARM_ARCH_NONE,
29380 FPU_ARCH_FPA),
29381 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29382 ARM_ARCH_NONE,
29383 FPU_ARCH_FPA),
29384 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29385 ARM_ARCH_NONE,
29386 FPU_ARCH_FPA),
29387 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29388 ARM_ARCH_NONE,
29389 FPU_ARCH_FPA),
29390 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29391 ARM_ARCH_NONE,
29392 FPU_ARCH_FPA),
29393 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29394 ARM_ARCH_NONE,
29395 FPU_ARCH_FPA),
29396 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29397 ARM_ARCH_NONE,
29398 FPU_ARCH_FPA),
29399 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29400 ARM_ARCH_NONE,
29401 FPU_ARCH_FPA),
29402 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29403 ARM_ARCH_NONE,
29404 FPU_ARCH_FPA),
29405 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29406 ARM_ARCH_NONE,
29407 FPU_ARCH_FPA),
29408 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29409 ARM_ARCH_NONE,
29410 FPU_ARCH_FPA),
29411 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29412 ARM_ARCH_NONE,
29413 FPU_ARCH_FPA),
29414 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29415 ARM_ARCH_NONE,
29416 FPU_ARCH_FPA),
29417 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29418 ARM_ARCH_NONE,
29419 FPU_ARCH_FPA),
29420 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29421 ARM_ARCH_NONE,
29422 FPU_ARCH_FPA),
29423 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29424 ARM_ARCH_NONE,
29425 FPU_ARCH_FPA),
29426 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29427 ARM_ARCH_NONE,
29428 FPU_ARCH_FPA),
29429 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29430 ARM_ARCH_NONE,
29431 FPU_ARCH_FPA),
29432 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29433 ARM_ARCH_NONE,
29434 FPU_ARCH_FPA),
29435 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29436 ARM_ARCH_NONE,
29437 FPU_ARCH_FPA),
29438 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29439 ARM_ARCH_NONE,
29440 FPU_ARCH_FPA),
29441 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29442 ARM_ARCH_NONE,
29443 FPU_ARCH_FPA),
29444 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29445 ARM_ARCH_NONE,
29446 FPU_ARCH_FPA),
29447 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29448 ARM_ARCH_NONE,
29449 FPU_ARCH_FPA),
29450 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29451 ARM_ARCH_NONE,
29452 FPU_ARCH_FPA),
29453 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29454 ARM_ARCH_NONE,
29455 FPU_ARCH_FPA),
29456 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29457 ARM_ARCH_NONE,
29458 FPU_ARCH_FPA),
29459 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29460 ARM_ARCH_NONE,
29461 FPU_ARCH_FPA),
29462 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29463 ARM_ARCH_NONE,
29464 FPU_ARCH_FPA),
29465 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29466 ARM_ARCH_NONE,
29467 FPU_ARCH_FPA),
29468 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29469 ARM_ARCH_NONE,
29470 FPU_ARCH_FPA),
29471 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29472 ARM_ARCH_NONE,
29473 FPU_ARCH_FPA),
29474 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29475 ARM_ARCH_NONE,
29476 FPU_ARCH_FPA),
29477 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29478 ARM_ARCH_NONE,
29479 FPU_ARCH_FPA),
29480 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29481 ARM_ARCH_NONE,
29482 FPU_ARCH_FPA),
29483 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29484 ARM_ARCH_NONE,
29485 FPU_ARCH_FPA),
29486 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29487 ARM_ARCH_NONE,
29488 FPU_ARCH_FPA),
29489 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29490 ARM_ARCH_NONE,
29491 FPU_ARCH_FPA),
29492 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29493 ARM_ARCH_NONE,
29494 FPU_ARCH_FPA),
29495 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29496 ARM_ARCH_NONE,
29497 FPU_ARCH_FPA),
29498 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29499 ARM_ARCH_NONE,
29500 FPU_ARCH_FPA),
29501
29502 /* For V5 or later processors we default to using VFP; but the user
29503 should really set the FPU type explicitly. */
29504 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29505 ARM_ARCH_NONE,
29506 FPU_ARCH_VFP_V2),
29507 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29508 ARM_ARCH_NONE,
29509 FPU_ARCH_VFP_V2),
29510 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29511 ARM_ARCH_NONE,
29512 FPU_ARCH_VFP_V2),
29513 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29514 ARM_ARCH_NONE,
29515 FPU_ARCH_VFP_V2),
29516 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29517 ARM_ARCH_NONE,
29518 FPU_ARCH_VFP_V2),
29519 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29520 ARM_ARCH_NONE,
29521 FPU_ARCH_VFP_V2),
29522 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29523 ARM_ARCH_NONE,
29524 FPU_ARCH_VFP_V2),
29525 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29526 ARM_ARCH_NONE,
29527 FPU_ARCH_VFP_V2),
29528 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29529 ARM_ARCH_NONE,
29530 FPU_ARCH_VFP_V2),
29531 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29532 ARM_ARCH_NONE,
29533 FPU_ARCH_VFP_V2),
29534 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29535 ARM_ARCH_NONE,
29536 FPU_ARCH_VFP_V2),
29537 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29538 ARM_ARCH_NONE,
29539 FPU_ARCH_VFP_V2),
29540 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29541 ARM_ARCH_NONE,
29542 FPU_ARCH_VFP_V1),
29543 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29544 ARM_ARCH_NONE,
29545 FPU_ARCH_VFP_V1),
29546 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29547 ARM_ARCH_NONE,
29548 FPU_ARCH_VFP_V2),
29549 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29550 ARM_ARCH_NONE,
29551 FPU_ARCH_VFP_V2),
29552 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29553 ARM_ARCH_NONE,
29554 FPU_ARCH_VFP_V1),
29555 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29556 ARM_ARCH_NONE,
29557 FPU_ARCH_VFP_V2),
29558 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29559 ARM_ARCH_NONE,
29560 FPU_ARCH_VFP_V2),
29561 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29562 ARM_ARCH_NONE,
29563 FPU_ARCH_VFP_V2),
29564 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29565 ARM_ARCH_NONE,
29566 FPU_ARCH_VFP_V2),
29567 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29568 ARM_ARCH_NONE,
29569 FPU_ARCH_VFP_V2),
29570 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29571 ARM_ARCH_NONE,
29572 FPU_ARCH_VFP_V2),
29573 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29574 ARM_ARCH_NONE,
29575 FPU_ARCH_VFP_V2),
29576 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29577 ARM_ARCH_NONE,
29578 FPU_ARCH_VFP_V2),
29579 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29580 ARM_ARCH_NONE,
29581 FPU_ARCH_VFP_V2),
29582 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29583 ARM_ARCH_NONE,
29584 FPU_NONE),
29585 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29586 ARM_ARCH_NONE,
29587 FPU_NONE),
29588 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29589 ARM_ARCH_NONE,
29590 FPU_ARCH_VFP_V2),
29591 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29592 ARM_ARCH_NONE,
29593 FPU_ARCH_VFP_V2),
29594 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29595 ARM_ARCH_NONE,
29596 FPU_ARCH_VFP_V2),
29597 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29598 ARM_ARCH_NONE,
29599 FPU_NONE),
29600 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29601 ARM_ARCH_NONE,
29602 FPU_NONE),
29603 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29604 ARM_ARCH_NONE,
29605 FPU_ARCH_VFP_V2),
29606 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29607 ARM_ARCH_NONE,
29608 FPU_NONE),
29609 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29610 ARM_ARCH_NONE,
29611 FPU_ARCH_VFP_V2),
29612 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29613 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29614 FPU_NONE),
29615 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29616 ARM_ARCH_NONE,
29617 FPU_ARCH_NEON_VFP_V4),
29618 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29619 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29620 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29621 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29622 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29623 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29624 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29625 ARM_ARCH_NONE,
29626 FPU_ARCH_NEON_VFP_V4),
29627 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29628 ARM_ARCH_NONE,
29629 FPU_ARCH_NEON_VFP_V4),
29630 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29631 ARM_ARCH_NONE,
29632 FPU_ARCH_NEON_VFP_V4),
29633 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29634 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29635 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29636 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29637 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29638 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29639 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29640 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29641 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29642 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29643 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29644 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29645 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29646 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29647 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29648 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29649 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29650 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29651 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29652 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29653 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29654 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29655 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29656 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29657 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29658 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29659 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29660 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29661 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29662 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29663 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29664 ARM_ARCH_NONE,
29665 FPU_NONE),
29666 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29667 ARM_ARCH_NONE,
29668 FPU_ARCH_VFP_V3D16),
29669 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29670 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29671 FPU_NONE),
29672 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29673 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29674 FPU_ARCH_VFP_V3D16),
29675 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29676 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29677 FPU_ARCH_VFP_V3D16),
29678 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29679 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29680 FPU_ARCH_NEON_VFP_ARMV8),
29681 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29682 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29683 FPU_NONE),
29684 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29685 ARM_ARCH_NONE,
29686 FPU_NONE),
29687 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29688 ARM_ARCH_NONE,
29689 FPU_NONE),
29690 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29691 ARM_ARCH_NONE,
29692 FPU_NONE),
29693 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29694 ARM_ARCH_NONE,
29695 FPU_NONE),
29696 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29697 ARM_ARCH_NONE,
29698 FPU_NONE),
29699 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29700 ARM_ARCH_NONE,
29701 FPU_NONE),
29702 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29703 ARM_ARCH_NONE,
29704 FPU_NONE),
29705 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29706 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29707 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29708 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29709 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29710 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29711 /* ??? XSCALE is really an architecture. */
29712 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29713 ARM_ARCH_NONE,
29714 FPU_ARCH_VFP_V2),
29715
29716 /* ??? iwmmxt is not a processor. */
29717 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29718 ARM_ARCH_NONE,
29719 FPU_ARCH_VFP_V2),
29720 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29721 ARM_ARCH_NONE,
29722 FPU_ARCH_VFP_V2),
29723 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29724 ARM_ARCH_NONE,
29725 FPU_ARCH_VFP_V2),
29726
29727 /* Maverick. */
29728 ARM_CPU_OPT ("ep9312", "ARM920T",
29729 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29730 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29731
29732 /* Marvell processors. */
29733 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29734 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29735 FPU_ARCH_VFP_V3D16),
29736 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29737 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29738 FPU_ARCH_NEON_VFP_V4),
29739
29740 /* APM X-Gene family. */
29741 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29742 ARM_ARCH_NONE,
29743 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29744 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29745 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29746 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29747
29748 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29749 };
29750 #undef ARM_CPU_OPT
29751
29752 struct arm_ext_table
29753 {
29754 const char * name;
29755 size_t name_len;
29756 const arm_feature_set merge;
29757 const arm_feature_set clear;
29758 };
29759
29760 struct arm_arch_option_table
29761 {
29762 const char * name;
29763 size_t name_len;
29764 const arm_feature_set value;
29765 const arm_feature_set default_fpu;
29766 const struct arm_ext_table * ext_table;
29767 };
29768
29769 /* Used to add support for +E and +noE extension. */
29770 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29771 /* Used to add support for a +E extension. */
29772 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29773 /* Used to add support for a +noE extension. */
29774 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29775
29776 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29777 ~0 & ~FPU_ENDIAN_PURE)
29778
29779 static const struct arm_ext_table armv5te_ext_table[] =
29780 {
29781 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29782 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29783 };
29784
29785 static const struct arm_ext_table armv7_ext_table[] =
29786 {
29787 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29788 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29789 };
29790
29791 static const struct arm_ext_table armv7ve_ext_table[] =
29792 {
29793 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29794 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29795 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29796 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29797 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29798 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29799 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29800
29801 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29802 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29803
29804 /* Aliases for +simd. */
29805 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29806
29807 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29808 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29809 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29810
29811 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29812 };
29813
29814 static const struct arm_ext_table armv7a_ext_table[] =
29815 {
29816 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29817 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29818 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29819 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29820 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29821 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29822 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29823
29824 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29825 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29826
29827 /* Aliases for +simd. */
29828 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29829 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29830
29831 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29832 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29833
29834 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29835 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29836 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29837 };
29838
29839 static const struct arm_ext_table armv7r_ext_table[] =
29840 {
29841 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29842 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29843 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29844 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29845 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29846 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29847 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29848 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29849 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29850 };
29851
29852 static const struct arm_ext_table armv7em_ext_table[] =
29853 {
29854 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29855 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29856 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29857 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29858 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29859 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29860 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29861 };
29862
29863 static const struct arm_ext_table armv8a_ext_table[] =
29864 {
29865 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29866 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29867 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29868 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29869
29870 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29871 should use the +simd option to turn on FP. */
29872 ARM_REMOVE ("fp", ALL_FP),
29873 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29874 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29875 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29876 };
29877
29878
29879 static const struct arm_ext_table armv81a_ext_table[] =
29880 {
29881 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29882 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29883 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29884
29885 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29886 should use the +simd option to turn on FP. */
29887 ARM_REMOVE ("fp", ALL_FP),
29888 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29889 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29890 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29891 };
29892
29893 static const struct arm_ext_table armv82a_ext_table[] =
29894 {
29895 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29896 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29897 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29898 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29899 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29900 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29901
29902 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29903 should use the +simd option to turn on FP. */
29904 ARM_REMOVE ("fp", ALL_FP),
29905 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29906 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29907 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29908 };
29909
29910 static const struct arm_ext_table armv84a_ext_table[] =
29911 {
29912 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29913 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29914 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29915 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29916
29917 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29918 should use the +simd option to turn on FP. */
29919 ARM_REMOVE ("fp", ALL_FP),
29920 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29921 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29922 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29923 };
29924
29925 static const struct arm_ext_table armv85a_ext_table[] =
29926 {
29927 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29928 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29929 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29930 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29931
29932 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29933 should use the +simd option to turn on FP. */
29934 ARM_REMOVE ("fp", ALL_FP),
29935 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29936 };
29937
29938 static const struct arm_ext_table armv8m_main_ext_table[] =
29939 {
29940 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29941 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29942 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29943 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29944 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29945 };
29946
29947 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29948 {
29949 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29950 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29951 ARM_EXT ("fp",
29952 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29953 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29954 ALL_FP),
29955 ARM_ADD ("fp.dp",
29956 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29957 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29958 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29959 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29960 ARM_ADD ("mve.fp",
29961 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29962 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29963 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29964 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29965 };
29966
29967 static const struct arm_ext_table armv8r_ext_table[] =
29968 {
29969 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29970 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29971 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29972 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29973 ARM_REMOVE ("fp", ALL_FP),
29974 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29975 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29976 };
29977
29978 /* This list should, at a minimum, contain all the architecture names
29979 recognized by GCC. */
29980 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29981 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29982 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29983
29984 static const struct arm_arch_option_table arm_archs[] =
29985 {
29986 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29987 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29988 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29989 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29990 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29991 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29992 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29993 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29994 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29995 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29996 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29997 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29998 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29999 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30000 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30001 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30002 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30003 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30004 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30005 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30006 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30007 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30008 kept to preserve existing behaviour. */
30009 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30010 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30011 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30012 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30013 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30014 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30015 kept to preserve existing behaviour. */
30016 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30017 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30018 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30019 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30020 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30021 /* The official spelling of the ARMv7 profile variants is the dashed form.
30022 Accept the non-dashed form for compatibility with old toolchains. */
30023 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30024 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30025 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30026 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30027 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30028 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30029 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30030 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30031 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30032 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30033 armv8m_main),
30034 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30035 armv8_1m_main),
30036 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30037 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30038 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30039 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30040 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30041 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30042 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30043 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30044 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30045 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30046 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30047 };
30048 #undef ARM_ARCH_OPT
30049
30050 /* ISA extensions in the co-processor and main instruction set space. */
30051
30052 struct arm_option_extension_value_table
30053 {
30054 const char * name;
30055 size_t name_len;
30056 const arm_feature_set merge_value;
30057 const arm_feature_set clear_value;
30058 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30059 indicates that an extension is available for all architectures while
30060 ARM_ANY marks an empty entry. */
30061 const arm_feature_set allowed_archs[2];
30062 };
30063
30064 /* The following table must be in alphabetical order with a NULL last entry. */
30065
30066 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30067 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30068
30069 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30070 use the context sensitive approach using arm_ext_table's. */
30071 static const struct arm_option_extension_value_table arm_extensions[] =
30072 {
30073 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30074 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30075 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30076 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30077 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30078 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30079 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30080 ARM_ARCH_V8_2A),
30081 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30082 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30083 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30084 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30085 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30086 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30087 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30088 ARM_ARCH_V8_2A),
30089 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30090 | ARM_EXT2_FP16_FML),
30091 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30092 | ARM_EXT2_FP16_FML),
30093 ARM_ARCH_V8_2A),
30094 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30095 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30096 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30097 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30098 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30099 Thumb divide instruction. Due to this having the same name as the
30100 previous entry, this will be ignored when doing command-line parsing and
30101 only considered by build attribute selection code. */
30102 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30103 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30104 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30105 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30106 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30107 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30108 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30109 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30110 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30111 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30112 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30113 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30114 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30115 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30116 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30117 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30118 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30119 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30120 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30121 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30122 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30123 ARM_ARCH_V8A),
30124 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30125 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30126 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30127 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30128 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30129 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30130 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30131 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30132 ARM_ARCH_V8A),
30133 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30134 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30135 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30136 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30137 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30138 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30139 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30140 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30141 | ARM_EXT_DIV),
30142 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30143 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30144 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30145 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30146 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30147 };
30148 #undef ARM_EXT_OPT
30149
30150 /* ISA floating-point and Advanced SIMD extensions. */
30151 struct arm_option_fpu_value_table
30152 {
30153 const char * name;
30154 const arm_feature_set value;
30155 };
30156
30157 /* This list should, at a minimum, contain all the fpu names
30158 recognized by GCC. */
30159 static const struct arm_option_fpu_value_table arm_fpus[] =
30160 {
30161 {"softfpa", FPU_NONE},
30162 {"fpe", FPU_ARCH_FPE},
30163 {"fpe2", FPU_ARCH_FPE},
30164 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30165 {"fpa", FPU_ARCH_FPA},
30166 {"fpa10", FPU_ARCH_FPA},
30167 {"fpa11", FPU_ARCH_FPA},
30168 {"arm7500fe", FPU_ARCH_FPA},
30169 {"softvfp", FPU_ARCH_VFP},
30170 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30171 {"vfp", FPU_ARCH_VFP_V2},
30172 {"vfp9", FPU_ARCH_VFP_V2},
30173 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30174 {"vfp10", FPU_ARCH_VFP_V2},
30175 {"vfp10-r0", FPU_ARCH_VFP_V1},
30176 {"vfpxd", FPU_ARCH_VFP_V1xD},
30177 {"vfpv2", FPU_ARCH_VFP_V2},
30178 {"vfpv3", FPU_ARCH_VFP_V3},
30179 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30180 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30181 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30182 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30183 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30184 {"arm1020t", FPU_ARCH_VFP_V1},
30185 {"arm1020e", FPU_ARCH_VFP_V2},
30186 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30187 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30188 {"maverick", FPU_ARCH_MAVERICK},
30189 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30190 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30191 {"neon-fp16", FPU_ARCH_NEON_FP16},
30192 {"vfpv4", FPU_ARCH_VFP_V4},
30193 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30194 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30195 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30196 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30197 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30198 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30199 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30200 {"crypto-neon-fp-armv8",
30201 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30202 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30203 {"crypto-neon-fp-armv8.1",
30204 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30205 {NULL, ARM_ARCH_NONE}
30206 };
30207
30208 struct arm_option_value_table
30209 {
30210 const char *name;
30211 long value;
30212 };
30213
30214 static const struct arm_option_value_table arm_float_abis[] =
30215 {
30216 {"hard", ARM_FLOAT_ABI_HARD},
30217 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30218 {"soft", ARM_FLOAT_ABI_SOFT},
30219 {NULL, 0}
30220 };
30221
30222 #ifdef OBJ_ELF
30223 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30224 static const struct arm_option_value_table arm_eabis[] =
30225 {
30226 {"gnu", EF_ARM_EABI_UNKNOWN},
30227 {"4", EF_ARM_EABI_VER4},
30228 {"5", EF_ARM_EABI_VER5},
30229 {NULL, 0}
30230 };
30231 #endif
30232
30233 struct arm_long_option_table
30234 {
30235 const char * option; /* Substring to match. */
30236 const char * help; /* Help information. */
30237 int (* func) (const char * subopt); /* Function to decode sub-option. */
30238 const char * deprecated; /* If non-null, print this message. */
30239 };
30240
30241 static bfd_boolean
30242 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30243 arm_feature_set *ext_set,
30244 const struct arm_ext_table *ext_table)
30245 {
30246 /* We insist on extensions being specified in alphabetical order, and with
30247 extensions being added before being removed. We achieve this by having
30248 the global ARM_EXTENSIONS table in alphabetical order, and using the
30249 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30250 or removing it (0) and only allowing it to change in the order
30251 -1 -> 1 -> 0. */
30252 const struct arm_option_extension_value_table * opt = NULL;
30253 const arm_feature_set arm_any = ARM_ANY;
30254 int adding_value = -1;
30255
30256 while (str != NULL && *str != 0)
30257 {
30258 const char *ext;
30259 size_t len;
30260
30261 if (*str != '+')
30262 {
30263 as_bad (_("invalid architectural extension"));
30264 return FALSE;
30265 }
30266
30267 str++;
30268 ext = strchr (str, '+');
30269
30270 if (ext != NULL)
30271 len = ext - str;
30272 else
30273 len = strlen (str);
30274
30275 if (len >= 2 && strncmp (str, "no", 2) == 0)
30276 {
30277 if (adding_value != 0)
30278 {
30279 adding_value = 0;
30280 opt = arm_extensions;
30281 }
30282
30283 len -= 2;
30284 str += 2;
30285 }
30286 else if (len > 0)
30287 {
30288 if (adding_value == -1)
30289 {
30290 adding_value = 1;
30291 opt = arm_extensions;
30292 }
30293 else if (adding_value != 1)
30294 {
30295 as_bad (_("must specify extensions to add before specifying "
30296 "those to remove"));
30297 return FALSE;
30298 }
30299 }
30300
30301 if (len == 0)
30302 {
30303 as_bad (_("missing architectural extension"));
30304 return FALSE;
30305 }
30306
30307 gas_assert (adding_value != -1);
30308 gas_assert (opt != NULL);
30309
30310 if (ext_table != NULL)
30311 {
30312 const struct arm_ext_table * ext_opt = ext_table;
30313 bfd_boolean found = FALSE;
30314 for (; ext_opt->name != NULL; ext_opt++)
30315 if (ext_opt->name_len == len
30316 && strncmp (ext_opt->name, str, len) == 0)
30317 {
30318 if (adding_value)
30319 {
30320 if (ARM_FEATURE_ZERO (ext_opt->merge))
30321 /* TODO: Option not supported. When we remove the
30322 legacy table this case should error out. */
30323 continue;
30324
30325 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30326 }
30327 else
30328 {
30329 if (ARM_FEATURE_ZERO (ext_opt->clear))
30330 /* TODO: Option not supported. When we remove the
30331 legacy table this case should error out. */
30332 continue;
30333 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30334 }
30335 found = TRUE;
30336 break;
30337 }
30338 if (found)
30339 {
30340 str = ext;
30341 continue;
30342 }
30343 }
30344
30345 /* Scan over the options table trying to find an exact match. */
30346 for (; opt->name != NULL; opt++)
30347 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30348 {
30349 int i, nb_allowed_archs =
30350 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30351 /* Check we can apply the extension to this architecture. */
30352 for (i = 0; i < nb_allowed_archs; i++)
30353 {
30354 /* Empty entry. */
30355 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30356 continue;
30357 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30358 break;
30359 }
30360 if (i == nb_allowed_archs)
30361 {
30362 as_bad (_("extension does not apply to the base architecture"));
30363 return FALSE;
30364 }
30365
30366 /* Add or remove the extension. */
30367 if (adding_value)
30368 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30369 else
30370 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30371
30372 /* Allowing Thumb division instructions for ARMv7 in autodetection
30373 rely on this break so that duplicate extensions (extensions
30374 with the same name as a previous extension in the list) are not
30375 considered for command-line parsing. */
30376 break;
30377 }
30378
30379 if (opt->name == NULL)
30380 {
30381 /* Did we fail to find an extension because it wasn't specified in
30382 alphabetical order, or because it does not exist? */
30383
30384 for (opt = arm_extensions; opt->name != NULL; opt++)
30385 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30386 break;
30387
30388 if (opt->name == NULL)
30389 as_bad (_("unknown architectural extension `%s'"), str);
30390 else
30391 as_bad (_("architectural extensions must be specified in "
30392 "alphabetical order"));
30393
30394 return FALSE;
30395 }
30396 else
30397 {
30398 /* We should skip the extension we've just matched the next time
30399 round. */
30400 opt++;
30401 }
30402
30403 str = ext;
30404 };
30405
30406 return TRUE;
30407 }
30408
30409 static bfd_boolean
30410 arm_parse_cpu (const char *str)
30411 {
30412 const struct arm_cpu_option_table *opt;
30413 const char *ext = strchr (str, '+');
30414 size_t len;
30415
30416 if (ext != NULL)
30417 len = ext - str;
30418 else
30419 len = strlen (str);
30420
30421 if (len == 0)
30422 {
30423 as_bad (_("missing cpu name `%s'"), str);
30424 return FALSE;
30425 }
30426
30427 for (opt = arm_cpus; opt->name != NULL; opt++)
30428 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30429 {
30430 mcpu_cpu_opt = &opt->value;
30431 if (mcpu_ext_opt == NULL)
30432 mcpu_ext_opt = XNEW (arm_feature_set);
30433 *mcpu_ext_opt = opt->ext;
30434 mcpu_fpu_opt = &opt->default_fpu;
30435 if (opt->canonical_name)
30436 {
30437 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30438 strcpy (selected_cpu_name, opt->canonical_name);
30439 }
30440 else
30441 {
30442 size_t i;
30443
30444 if (len >= sizeof selected_cpu_name)
30445 len = (sizeof selected_cpu_name) - 1;
30446
30447 for (i = 0; i < len; i++)
30448 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30449 selected_cpu_name[i] = 0;
30450 }
30451
30452 if (ext != NULL)
30453 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30454
30455 return TRUE;
30456 }
30457
30458 as_bad (_("unknown cpu `%s'"), str);
30459 return FALSE;
30460 }
30461
30462 static bfd_boolean
30463 arm_parse_arch (const char *str)
30464 {
30465 const struct arm_arch_option_table *opt;
30466 const char *ext = strchr (str, '+');
30467 size_t len;
30468
30469 if (ext != NULL)
30470 len = ext - str;
30471 else
30472 len = strlen (str);
30473
30474 if (len == 0)
30475 {
30476 as_bad (_("missing architecture name `%s'"), str);
30477 return FALSE;
30478 }
30479
30480 for (opt = arm_archs; opt->name != NULL; opt++)
30481 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30482 {
30483 march_cpu_opt = &opt->value;
30484 if (march_ext_opt == NULL)
30485 march_ext_opt = XNEW (arm_feature_set);
30486 *march_ext_opt = arm_arch_none;
30487 march_fpu_opt = &opt->default_fpu;
30488 strcpy (selected_cpu_name, opt->name);
30489
30490 if (ext != NULL)
30491 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30492 opt->ext_table);
30493
30494 return TRUE;
30495 }
30496
30497 as_bad (_("unknown architecture `%s'\n"), str);
30498 return FALSE;
30499 }
30500
30501 static bfd_boolean
30502 arm_parse_fpu (const char * str)
30503 {
30504 const struct arm_option_fpu_value_table * opt;
30505
30506 for (opt = arm_fpus; opt->name != NULL; opt++)
30507 if (streq (opt->name, str))
30508 {
30509 mfpu_opt = &opt->value;
30510 return TRUE;
30511 }
30512
30513 as_bad (_("unknown floating point format `%s'\n"), str);
30514 return FALSE;
30515 }
30516
30517 static bfd_boolean
30518 arm_parse_float_abi (const char * str)
30519 {
30520 const struct arm_option_value_table * opt;
30521
30522 for (opt = arm_float_abis; opt->name != NULL; opt++)
30523 if (streq (opt->name, str))
30524 {
30525 mfloat_abi_opt = opt->value;
30526 return TRUE;
30527 }
30528
30529 as_bad (_("unknown floating point abi `%s'\n"), str);
30530 return FALSE;
30531 }
30532
30533 #ifdef OBJ_ELF
30534 static bfd_boolean
30535 arm_parse_eabi (const char * str)
30536 {
30537 const struct arm_option_value_table *opt;
30538
30539 for (opt = arm_eabis; opt->name != NULL; opt++)
30540 if (streq (opt->name, str))
30541 {
30542 meabi_flags = opt->value;
30543 return TRUE;
30544 }
30545 as_bad (_("unknown EABI `%s'\n"), str);
30546 return FALSE;
30547 }
30548 #endif
30549
30550 static bfd_boolean
30551 arm_parse_it_mode (const char * str)
30552 {
30553 bfd_boolean ret = TRUE;
30554
30555 if (streq ("arm", str))
30556 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30557 else if (streq ("thumb", str))
30558 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30559 else if (streq ("always", str))
30560 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30561 else if (streq ("never", str))
30562 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30563 else
30564 {
30565 as_bad (_("unknown implicit IT mode `%s', should be "\
30566 "arm, thumb, always, or never."), str);
30567 ret = FALSE;
30568 }
30569
30570 return ret;
30571 }
30572
30573 static bfd_boolean
30574 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30575 {
30576 codecomposer_syntax = TRUE;
30577 arm_comment_chars[0] = ';';
30578 arm_line_separator_chars[0] = 0;
30579 return TRUE;
30580 }
30581
30582 struct arm_long_option_table arm_long_opts[] =
30583 {
30584 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30585 arm_parse_cpu, NULL},
30586 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30587 arm_parse_arch, NULL},
30588 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30589 arm_parse_fpu, NULL},
30590 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30591 arm_parse_float_abi, NULL},
30592 #ifdef OBJ_ELF
30593 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30594 arm_parse_eabi, NULL},
30595 #endif
30596 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30597 arm_parse_it_mode, NULL},
30598 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30599 arm_ccs_mode, NULL},
30600 {NULL, NULL, 0, NULL}
30601 };
30602
30603 int
30604 md_parse_option (int c, const char * arg)
30605 {
30606 struct arm_option_table *opt;
30607 const struct arm_legacy_option_table *fopt;
30608 struct arm_long_option_table *lopt;
30609
30610 switch (c)
30611 {
30612 #ifdef OPTION_EB
30613 case OPTION_EB:
30614 target_big_endian = 1;
30615 break;
30616 #endif
30617
30618 #ifdef OPTION_EL
30619 case OPTION_EL:
30620 target_big_endian = 0;
30621 break;
30622 #endif
30623
30624 case OPTION_FIX_V4BX:
30625 fix_v4bx = TRUE;
30626 break;
30627
30628 #ifdef OBJ_ELF
30629 case OPTION_FDPIC:
30630 arm_fdpic = TRUE;
30631 break;
30632 #endif /* OBJ_ELF */
30633
30634 case 'a':
30635 /* Listing option. Just ignore these, we don't support additional
30636 ones. */
30637 return 0;
30638
30639 default:
30640 for (opt = arm_opts; opt->option != NULL; opt++)
30641 {
30642 if (c == opt->option[0]
30643 && ((arg == NULL && opt->option[1] == 0)
30644 || streq (arg, opt->option + 1)))
30645 {
30646 /* If the option is deprecated, tell the user. */
30647 if (warn_on_deprecated && opt->deprecated != NULL)
30648 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30649 arg ? arg : "", _(opt->deprecated));
30650
30651 if (opt->var != NULL)
30652 *opt->var = opt->value;
30653
30654 return 1;
30655 }
30656 }
30657
30658 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30659 {
30660 if (c == fopt->option[0]
30661 && ((arg == NULL && fopt->option[1] == 0)
30662 || streq (arg, fopt->option + 1)))
30663 {
30664 /* If the option is deprecated, tell the user. */
30665 if (warn_on_deprecated && fopt->deprecated != NULL)
30666 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30667 arg ? arg : "", _(fopt->deprecated));
30668
30669 if (fopt->var != NULL)
30670 *fopt->var = &fopt->value;
30671
30672 return 1;
30673 }
30674 }
30675
30676 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30677 {
30678 /* These options are expected to have an argument. */
30679 if (c == lopt->option[0]
30680 && arg != NULL
30681 && strncmp (arg, lopt->option + 1,
30682 strlen (lopt->option + 1)) == 0)
30683 {
30684 /* If the option is deprecated, tell the user. */
30685 if (warn_on_deprecated && lopt->deprecated != NULL)
30686 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30687 _(lopt->deprecated));
30688
30689 /* Call the sup-option parser. */
30690 return lopt->func (arg + strlen (lopt->option) - 1);
30691 }
30692 }
30693
30694 return 0;
30695 }
30696
30697 return 1;
30698 }
30699
30700 void
30701 md_show_usage (FILE * fp)
30702 {
30703 struct arm_option_table *opt;
30704 struct arm_long_option_table *lopt;
30705
30706 fprintf (fp, _(" ARM-specific assembler options:\n"));
30707
30708 for (opt = arm_opts; opt->option != NULL; opt++)
30709 if (opt->help != NULL)
30710 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30711
30712 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30713 if (lopt->help != NULL)
30714 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30715
30716 #ifdef OPTION_EB
30717 fprintf (fp, _("\
30718 -EB assemble code for a big-endian cpu\n"));
30719 #endif
30720
30721 #ifdef OPTION_EL
30722 fprintf (fp, _("\
30723 -EL assemble code for a little-endian cpu\n"));
30724 #endif
30725
30726 fprintf (fp, _("\
30727 --fix-v4bx Allow BX in ARMv4 code\n"));
30728
30729 #ifdef OBJ_ELF
30730 fprintf (fp, _("\
30731 --fdpic generate an FDPIC object file\n"));
30732 #endif /* OBJ_ELF */
30733 }
30734
30735 #ifdef OBJ_ELF
30736
30737 typedef struct
30738 {
30739 int val;
30740 arm_feature_set flags;
30741 } cpu_arch_ver_table;
30742
30743 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30744 chronologically for architectures, with an exception for ARMv6-M and
30745 ARMv6S-M due to legacy reasons. No new architecture should have a
30746 special case. This allows for build attribute selection results to be
30747 stable when new architectures are added. */
30748 static const cpu_arch_ver_table cpu_arch_ver[] =
30749 {
30750 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30751 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30752 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30753 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30754 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30755 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30756 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30757 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30758 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30759 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30760 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30761 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30762 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30763 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30764 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30765 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30766 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30767 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30768 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30769 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30770 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30771 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30772 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30773 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30774
30775 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30776 always selected build attributes to match those of ARMv6-M
30777 (resp. ARMv6S-M). However, due to these architectures being a strict
30778 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30779 would be selected when fully respecting chronology of architectures.
30780 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30781 move them before ARMv7 architectures. */
30782 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30783 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30784
30785 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30786 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30787 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30788 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30789 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30790 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30791 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30792 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30793 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30794 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30795 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30796 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30797 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30798 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30799 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30800 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30801 {-1, ARM_ARCH_NONE}
30802 };
30803
30804 /* Set an attribute if it has not already been set by the user. */
30805
30806 static void
30807 aeabi_set_attribute_int (int tag, int value)
30808 {
30809 if (tag < 1
30810 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30811 || !attributes_set_explicitly[tag])
30812 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30813 }
30814
30815 static void
30816 aeabi_set_attribute_string (int tag, const char *value)
30817 {
30818 if (tag < 1
30819 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30820 || !attributes_set_explicitly[tag])
30821 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30822 }
30823
30824 /* Return whether features in the *NEEDED feature set are available via
30825 extensions for the architecture whose feature set is *ARCH_FSET. */
30826
30827 static bfd_boolean
30828 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30829 const arm_feature_set *needed)
30830 {
30831 int i, nb_allowed_archs;
30832 arm_feature_set ext_fset;
30833 const struct arm_option_extension_value_table *opt;
30834
30835 ext_fset = arm_arch_none;
30836 for (opt = arm_extensions; opt->name != NULL; opt++)
30837 {
30838 /* Extension does not provide any feature we need. */
30839 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30840 continue;
30841
30842 nb_allowed_archs =
30843 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30844 for (i = 0; i < nb_allowed_archs; i++)
30845 {
30846 /* Empty entry. */
30847 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30848 break;
30849
30850 /* Extension is available, add it. */
30851 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30852 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30853 }
30854 }
30855
30856 /* Can we enable all features in *needed? */
30857 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30858 }
30859
30860 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30861 a given architecture feature set *ARCH_EXT_FSET including extension feature
30862 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30863 - if true, check for an exact match of the architecture modulo extensions;
30864 - otherwise, select build attribute value of the first superset
30865 architecture released so that results remains stable when new architectures
30866 are added.
30867 For -march/-mcpu=all the build attribute value of the most featureful
30868 architecture is returned. Tag_CPU_arch_profile result is returned in
30869 PROFILE. */
30870
30871 static int
30872 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30873 const arm_feature_set *ext_fset,
30874 char *profile, int exact_match)
30875 {
30876 arm_feature_set arch_fset;
30877 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30878
30879 /* Select most featureful architecture with all its extensions if building
30880 for -march=all as the feature sets used to set build attributes. */
30881 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30882 {
30883 /* Force revisiting of decision for each new architecture. */
30884 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30885 *profile = 'A';
30886 return TAG_CPU_ARCH_V8;
30887 }
30888
30889 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30890
30891 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30892 {
30893 arm_feature_set known_arch_fset;
30894
30895 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30896 if (exact_match)
30897 {
30898 /* Base architecture match user-specified architecture and
30899 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30900 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30901 {
30902 p_ver_ret = p_ver;
30903 goto found;
30904 }
30905 /* Base architecture match user-specified architecture only
30906 (eg. ARMv6-M in the same case as above). Record it in case we
30907 find a match with above condition. */
30908 else if (p_ver_ret == NULL
30909 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30910 p_ver_ret = p_ver;
30911 }
30912 else
30913 {
30914
30915 /* Architecture has all features wanted. */
30916 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30917 {
30918 arm_feature_set added_fset;
30919
30920 /* Compute features added by this architecture over the one
30921 recorded in p_ver_ret. */
30922 if (p_ver_ret != NULL)
30923 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30924 p_ver_ret->flags);
30925 /* First architecture that match incl. with extensions, or the
30926 only difference in features over the recorded match is
30927 features that were optional and are now mandatory. */
30928 if (p_ver_ret == NULL
30929 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30930 {
30931 p_ver_ret = p_ver;
30932 goto found;
30933 }
30934 }
30935 else if (p_ver_ret == NULL)
30936 {
30937 arm_feature_set needed_ext_fset;
30938
30939 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30940
30941 /* Architecture has all features needed when using some
30942 extensions. Record it and continue searching in case there
30943 exist an architecture providing all needed features without
30944 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30945 OS extension). */
30946 if (have_ext_for_needed_feat_p (&known_arch_fset,
30947 &needed_ext_fset))
30948 p_ver_ret = p_ver;
30949 }
30950 }
30951 }
30952
30953 if (p_ver_ret == NULL)
30954 return -1;
30955
30956 found:
30957 /* Tag_CPU_arch_profile. */
30958 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30959 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30960 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30961 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30962 *profile = 'A';
30963 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30964 *profile = 'R';
30965 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30966 *profile = 'M';
30967 else
30968 *profile = '\0';
30969 return p_ver_ret->val;
30970 }
30971
30972 /* Set the public EABI object attributes. */
30973
30974 static void
30975 aeabi_set_public_attributes (void)
30976 {
30977 char profile = '\0';
30978 int arch = -1;
30979 int virt_sec = 0;
30980 int fp16_optional = 0;
30981 int skip_exact_match = 0;
30982 arm_feature_set flags, flags_arch, flags_ext;
30983
30984 /* Autodetection mode, choose the architecture based the instructions
30985 actually used. */
30986 if (no_cpu_selected ())
30987 {
30988 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30989
30990 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30991 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30992
30993 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30994 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30995
30996 /* Code run during relaxation relies on selected_cpu being set. */
30997 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30998 flags_ext = arm_arch_none;
30999 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31000 selected_ext = flags_ext;
31001 selected_cpu = flags;
31002 }
31003 /* Otherwise, choose the architecture based on the capabilities of the
31004 requested cpu. */
31005 else
31006 {
31007 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31008 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31009 flags_ext = selected_ext;
31010 flags = selected_cpu;
31011 }
31012 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31013
31014 /* Allow the user to override the reported architecture. */
31015 if (!ARM_FEATURE_ZERO (selected_object_arch))
31016 {
31017 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31018 flags_ext = arm_arch_none;
31019 }
31020 else
31021 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31022
31023 /* When this function is run again after relaxation has happened there is no
31024 way to determine whether an architecture or CPU was specified by the user:
31025 - selected_cpu is set above for relaxation to work;
31026 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31027 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31028 Therefore, if not in -march=all case we first try an exact match and fall
31029 back to autodetection. */
31030 if (!skip_exact_match)
31031 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31032 if (arch == -1)
31033 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31034 if (arch == -1)
31035 as_bad (_("no architecture contains all the instructions used\n"));
31036
31037 /* Tag_CPU_name. */
31038 if (selected_cpu_name[0])
31039 {
31040 char *q;
31041
31042 q = selected_cpu_name;
31043 if (strncmp (q, "armv", 4) == 0)
31044 {
31045 int i;
31046
31047 q += 4;
31048 for (i = 0; q[i]; i++)
31049 q[i] = TOUPPER (q[i]);
31050 }
31051 aeabi_set_attribute_string (Tag_CPU_name, q);
31052 }
31053
31054 /* Tag_CPU_arch. */
31055 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31056
31057 /* Tag_CPU_arch_profile. */
31058 if (profile != '\0')
31059 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31060
31061 /* Tag_DSP_extension. */
31062 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31063 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31064
31065 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31066 /* Tag_ARM_ISA_use. */
31067 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31068 || ARM_FEATURE_ZERO (flags_arch))
31069 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31070
31071 /* Tag_THUMB_ISA_use. */
31072 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31073 || ARM_FEATURE_ZERO (flags_arch))
31074 {
31075 int thumb_isa_use;
31076
31077 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31078 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31079 thumb_isa_use = 3;
31080 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31081 thumb_isa_use = 2;
31082 else
31083 thumb_isa_use = 1;
31084 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31085 }
31086
31087 /* Tag_VFP_arch. */
31088 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31089 aeabi_set_attribute_int (Tag_VFP_arch,
31090 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31091 ? 7 : 8);
31092 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31093 aeabi_set_attribute_int (Tag_VFP_arch,
31094 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31095 ? 5 : 6);
31096 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31097 {
31098 fp16_optional = 1;
31099 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31100 }
31101 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31102 {
31103 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31104 fp16_optional = 1;
31105 }
31106 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31107 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31108 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31109 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31110 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31111
31112 /* Tag_ABI_HardFP_use. */
31113 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31114 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31115 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31116
31117 /* Tag_WMMX_arch. */
31118 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31119 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31120 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31121 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31122
31123 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31124 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31125 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31126 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31127 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31128 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31129 {
31130 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31131 {
31132 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31133 }
31134 else
31135 {
31136 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31137 fp16_optional = 1;
31138 }
31139 }
31140
31141 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31142 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31143 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31144 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31145
31146 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31147 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31148 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31149
31150 /* Tag_DIV_use.
31151
31152 We set Tag_DIV_use to two when integer divide instructions have been used
31153 in ARM state, or when Thumb integer divide instructions have been used,
31154 but we have no architecture profile set, nor have we any ARM instructions.
31155
31156 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31157 by the base architecture.
31158
31159 For new architectures we will have to check these tests. */
31160 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31161 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31162 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31163 aeabi_set_attribute_int (Tag_DIV_use, 0);
31164 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31165 || (profile == '\0'
31166 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31167 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31168 aeabi_set_attribute_int (Tag_DIV_use, 2);
31169
31170 /* Tag_MP_extension_use. */
31171 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31172 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31173
31174 /* Tag Virtualization_use. */
31175 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31176 virt_sec |= 1;
31177 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31178 virt_sec |= 2;
31179 if (virt_sec != 0)
31180 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31181 }
31182
31183 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31184 finished and free extension feature bits which will not be used anymore. */
31185
31186 void
31187 arm_md_post_relax (void)
31188 {
31189 aeabi_set_public_attributes ();
31190 XDELETE (mcpu_ext_opt);
31191 mcpu_ext_opt = NULL;
31192 XDELETE (march_ext_opt);
31193 march_ext_opt = NULL;
31194 }
31195
31196 /* Add the default contents for the .ARM.attributes section. */
31197
31198 void
31199 arm_md_end (void)
31200 {
31201 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31202 return;
31203
31204 aeabi_set_public_attributes ();
31205 }
31206 #endif /* OBJ_ELF */
31207
31208 /* Parse a .cpu directive. */
31209
31210 static void
31211 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31212 {
31213 const struct arm_cpu_option_table *opt;
31214 char *name;
31215 char saved_char;
31216
31217 name = input_line_pointer;
31218 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31219 input_line_pointer++;
31220 saved_char = *input_line_pointer;
31221 *input_line_pointer = 0;
31222
31223 /* Skip the first "all" entry. */
31224 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31225 if (streq (opt->name, name))
31226 {
31227 selected_arch = opt->value;
31228 selected_ext = opt->ext;
31229 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31230 if (opt->canonical_name)
31231 strcpy (selected_cpu_name, opt->canonical_name);
31232 else
31233 {
31234 int i;
31235 for (i = 0; opt->name[i]; i++)
31236 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31237
31238 selected_cpu_name[i] = 0;
31239 }
31240 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31241
31242 *input_line_pointer = saved_char;
31243 demand_empty_rest_of_line ();
31244 return;
31245 }
31246 as_bad (_("unknown cpu `%s'"), name);
31247 *input_line_pointer = saved_char;
31248 ignore_rest_of_line ();
31249 }
31250
31251 /* Parse a .arch directive. */
31252
31253 static void
31254 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31255 {
31256 const struct arm_arch_option_table *opt;
31257 char saved_char;
31258 char *name;
31259
31260 name = input_line_pointer;
31261 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31262 input_line_pointer++;
31263 saved_char = *input_line_pointer;
31264 *input_line_pointer = 0;
31265
31266 /* Skip the first "all" entry. */
31267 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31268 if (streq (opt->name, name))
31269 {
31270 selected_arch = opt->value;
31271 selected_ext = arm_arch_none;
31272 selected_cpu = selected_arch;
31273 strcpy (selected_cpu_name, opt->name);
31274 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31275 *input_line_pointer = saved_char;
31276 demand_empty_rest_of_line ();
31277 return;
31278 }
31279
31280 as_bad (_("unknown architecture `%s'\n"), name);
31281 *input_line_pointer = saved_char;
31282 ignore_rest_of_line ();
31283 }
31284
31285 /* Parse a .object_arch directive. */
31286
31287 static void
31288 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31289 {
31290 const struct arm_arch_option_table *opt;
31291 char saved_char;
31292 char *name;
31293
31294 name = input_line_pointer;
31295 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31296 input_line_pointer++;
31297 saved_char = *input_line_pointer;
31298 *input_line_pointer = 0;
31299
31300 /* Skip the first "all" entry. */
31301 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31302 if (streq (opt->name, name))
31303 {
31304 selected_object_arch = opt->value;
31305 *input_line_pointer = saved_char;
31306 demand_empty_rest_of_line ();
31307 return;
31308 }
31309
31310 as_bad (_("unknown architecture `%s'\n"), name);
31311 *input_line_pointer = saved_char;
31312 ignore_rest_of_line ();
31313 }
31314
31315 /* Parse a .arch_extension directive. */
31316
31317 static void
31318 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31319 {
31320 const struct arm_option_extension_value_table *opt;
31321 char saved_char;
31322 char *name;
31323 int adding_value = 1;
31324
31325 name = input_line_pointer;
31326 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31327 input_line_pointer++;
31328 saved_char = *input_line_pointer;
31329 *input_line_pointer = 0;
31330
31331 if (strlen (name) >= 2
31332 && strncmp (name, "no", 2) == 0)
31333 {
31334 adding_value = 0;
31335 name += 2;
31336 }
31337
31338 for (opt = arm_extensions; opt->name != NULL; opt++)
31339 if (streq (opt->name, name))
31340 {
31341 int i, nb_allowed_archs =
31342 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31343 for (i = 0; i < nb_allowed_archs; i++)
31344 {
31345 /* Empty entry. */
31346 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31347 continue;
31348 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31349 break;
31350 }
31351
31352 if (i == nb_allowed_archs)
31353 {
31354 as_bad (_("architectural extension `%s' is not allowed for the "
31355 "current base architecture"), name);
31356 break;
31357 }
31358
31359 if (adding_value)
31360 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31361 opt->merge_value);
31362 else
31363 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31364
31365 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31366 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31367 *input_line_pointer = saved_char;
31368 demand_empty_rest_of_line ();
31369 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31370 on this return so that duplicate extensions (extensions with the
31371 same name as a previous extension in the list) are not considered
31372 for command-line parsing. */
31373 return;
31374 }
31375
31376 if (opt->name == NULL)
31377 as_bad (_("unknown architecture extension `%s'\n"), name);
31378
31379 *input_line_pointer = saved_char;
31380 ignore_rest_of_line ();
31381 }
31382
31383 /* Parse a .fpu directive. */
31384
31385 static void
31386 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31387 {
31388 const struct arm_option_fpu_value_table *opt;
31389 char saved_char;
31390 char *name;
31391
31392 name = input_line_pointer;
31393 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31394 input_line_pointer++;
31395 saved_char = *input_line_pointer;
31396 *input_line_pointer = 0;
31397
31398 for (opt = arm_fpus; opt->name != NULL; opt++)
31399 if (streq (opt->name, name))
31400 {
31401 selected_fpu = opt->value;
31402 #ifndef CPU_DEFAULT
31403 if (no_cpu_selected ())
31404 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31405 else
31406 #endif
31407 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31408 *input_line_pointer = saved_char;
31409 demand_empty_rest_of_line ();
31410 return;
31411 }
31412
31413 as_bad (_("unknown floating point format `%s'\n"), name);
31414 *input_line_pointer = saved_char;
31415 ignore_rest_of_line ();
31416 }
31417
31418 /* Copy symbol information. */
31419
31420 void
31421 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31422 {
31423 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31424 }
31425
31426 #ifdef OBJ_ELF
31427 /* Given a symbolic attribute NAME, return the proper integer value.
31428 Returns -1 if the attribute is not known. */
31429
31430 int
31431 arm_convert_symbolic_attribute (const char *name)
31432 {
31433 static const struct
31434 {
31435 const char * name;
31436 const int tag;
31437 }
31438 attribute_table[] =
31439 {
31440 /* When you modify this table you should
31441 also modify the list in doc/c-arm.texi. */
31442 #define T(tag) {#tag, tag}
31443 T (Tag_CPU_raw_name),
31444 T (Tag_CPU_name),
31445 T (Tag_CPU_arch),
31446 T (Tag_CPU_arch_profile),
31447 T (Tag_ARM_ISA_use),
31448 T (Tag_THUMB_ISA_use),
31449 T (Tag_FP_arch),
31450 T (Tag_VFP_arch),
31451 T (Tag_WMMX_arch),
31452 T (Tag_Advanced_SIMD_arch),
31453 T (Tag_PCS_config),
31454 T (Tag_ABI_PCS_R9_use),
31455 T (Tag_ABI_PCS_RW_data),
31456 T (Tag_ABI_PCS_RO_data),
31457 T (Tag_ABI_PCS_GOT_use),
31458 T (Tag_ABI_PCS_wchar_t),
31459 T (Tag_ABI_FP_rounding),
31460 T (Tag_ABI_FP_denormal),
31461 T (Tag_ABI_FP_exceptions),
31462 T (Tag_ABI_FP_user_exceptions),
31463 T (Tag_ABI_FP_number_model),
31464 T (Tag_ABI_align_needed),
31465 T (Tag_ABI_align8_needed),
31466 T (Tag_ABI_align_preserved),
31467 T (Tag_ABI_align8_preserved),
31468 T (Tag_ABI_enum_size),
31469 T (Tag_ABI_HardFP_use),
31470 T (Tag_ABI_VFP_args),
31471 T (Tag_ABI_WMMX_args),
31472 T (Tag_ABI_optimization_goals),
31473 T (Tag_ABI_FP_optimization_goals),
31474 T (Tag_compatibility),
31475 T (Tag_CPU_unaligned_access),
31476 T (Tag_FP_HP_extension),
31477 T (Tag_VFP_HP_extension),
31478 T (Tag_ABI_FP_16bit_format),
31479 T (Tag_MPextension_use),
31480 T (Tag_DIV_use),
31481 T (Tag_nodefaults),
31482 T (Tag_also_compatible_with),
31483 T (Tag_conformance),
31484 T (Tag_T2EE_use),
31485 T (Tag_Virtualization_use),
31486 T (Tag_DSP_extension),
31487 T (Tag_MVE_arch),
31488 /* We deliberately do not include Tag_MPextension_use_legacy. */
31489 #undef T
31490 };
31491 unsigned int i;
31492
31493 if (name == NULL)
31494 return -1;
31495
31496 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31497 if (streq (name, attribute_table[i].name))
31498 return attribute_table[i].tag;
31499
31500 return -1;
31501 }
31502
31503 /* Apply sym value for relocations only in the case that they are for
31504 local symbols in the same segment as the fixup and you have the
31505 respective architectural feature for blx and simple switches. */
31506
31507 int
31508 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31509 {
31510 if (fixP->fx_addsy
31511 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31512 /* PR 17444: If the local symbol is in a different section then a reloc
31513 will always be generated for it, so applying the symbol value now
31514 will result in a double offset being stored in the relocation. */
31515 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31516 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31517 {
31518 switch (fixP->fx_r_type)
31519 {
31520 case BFD_RELOC_ARM_PCREL_BLX:
31521 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31522 if (ARM_IS_FUNC (fixP->fx_addsy))
31523 return 1;
31524 break;
31525
31526 case BFD_RELOC_ARM_PCREL_CALL:
31527 case BFD_RELOC_THUMB_PCREL_BLX:
31528 if (THUMB_IS_FUNC (fixP->fx_addsy))
31529 return 1;
31530 break;
31531
31532 default:
31533 break;
31534 }
31535
31536 }
31537 return 0;
31538 }
31539 #endif /* OBJ_ELF */
This page took 0.671525 seconds and 5 git commands to generate.